
www.allitebooks.com

http://www.allitebooks.org

Monitoring Elasticsearch

Monitor your Elasticsearch cluster's health, and
diagnose and solve its performance and reliability
issues

Dan Noble

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Monitoring Elasticsearch

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1200716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-780-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Dan Noble

Reviewers
James A. Cubeta

Joseph E McMahon

Parkhe Kishor B.

Acquisition Editor
Sonali Vernekar

Content Development Editors
Amey Varangaonkar

Merint Mathew

Technical Editor
Hussain Kanchwala

Copy Editor
Priyanka Ravi

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dan Noble is a software engineer with a passion for writing secure, clean, and
articulate code. He enjoys working with a variety of programming languages and
software frameworks, particularly Python, Elasticsearch, and frontend technologies.
Dan currently works on geospatial web applications and data processing systems.

Dan has been a user and advocate of Elasticsearch since 2011. He has given talks
about Elasticsearch at various meetup groups, and is the author of the Python
Elasticsearch client rawes. Dan was also a technical reviewer for the Elasticsearch
Cookbook, Second Edition, by Alberto Paro.

I would like to thank my beautiful wife, Julie, for putting up with me
while I wrote this book. Thanks for supporting me every step of the
way.

I would also like to thank my friends and colleagues James Cubeta,
Joe McMahon, and Mahmoud Lababidi, who shared their insight,
time, and support. I would like to give a special thanks to Abe Usher
– you have been an incredible mentor over the years.

Finally, thanks to everyone at Packt Publishing for helping to
make this book happen. A special thanks to Merint Mathew, Sonali
Vernekar, Hussain Kanchwala, and Amey Varangaonkar for your
valuable and careful feedback.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

James A. Cubeta is a computer scientist with more than 20 years of experience,
spanning government contracting, commercial companies, and research organizations.
With a technical emphasis on data management, ETL, multi-tier application
development, and relational and NoSQL databases, he has also helped author Java
courses at Sun Microsystems and served as a technical reviewer for O'Reilly Media's
extremely successful book Head First Java. He is currently a senior technologist at the
HumanGeo Group, LLC.

Joseph E McMahon is a computer scientist with over 25 years of experience
developing distributed systems with a focus on effective and performant messaging
components. He has vast experience integrating geospatial solutions and data
collection architectures. Currently, he leads a division in The HumanGeo Group
supporting a variety of government customers. When not coding, he enjoys cooking,
woodworking, and traveling with his wife and three children.

Parkhe Kishor B. received a BSc degree and an MTech degree in industrial
mathematics and computer applications from the University of Pune. He joined
High Mark Credit Information Service in 2012, where he worked as senior software
engineer in the research and development department. He also has experience
working in information retrieval, big data, and distributed computing. He is
currently working as a design engineer at Introp Software Solutions, India. He is
frequently a consultant to the industry in the area of big data, NoSQL, machine
learning, artificial intelligence, and business intelligence.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Monitoring Elasticsearch	 1

An overview of Elasticsearch	 1
Learning more about Elasticsearch	 1
Data distribution, redundancy, and fault tolerance	 2
Full-text search	 5
Similar technologies	 7

Apache Lucene	 7
Solr	 8
Ferret	 8

Monitoring Elasticsearch	 8
Resourcefulness and problem solving	 9
Summary	 10

Chapter 2: Installation and the Requirements for Elasticsearch	 11
Installing Elasticsearch	 12

DEB/RPM installation	 13
The yum and apt-get repositories	 13
Ubuntu/Debian and apt-get	 13
CentOS/RHEL and yum	 14
Verification	 14
Configuration files	 16

Configuring an Elasticsearch cluster	 16
Cluster name	 16
Memory configuration	 17
Open file limit	 17
The maximum file limit	 17

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Updating max file descriptors on Ubuntu Linux	 18
Enabling pluggable authentication modules	 19
Verifying the open file limit	 19
Disabling swapping	 20

Understanding your cluster	 21
Installing Elasticsearch-head	 21
Installing Bigdesk	 23
Marvel	 24

Cluster requirements	 26
Summary	 27

Chapter 3: Elasticsearch-head and Bigdesk	 29
Cluster setup	 29

Cluster configuration	 30
Sample data	 31

Elasticsearch-head	 33
The Overview tab	 33
Cluster states	 34
Node and index actions	 37
The Indices tab	 39
The Browser tab	 40
The Structured Query tab	 40
The Any Request tab	 41
The official website	 42

Bigdesk	 42
The Elasticsearch cat API	 46

Background	 46
Count	 47
Health	 47
Indices	 48
Shards	 49

Summary	 49
Chapter 4: Marvel Dashboard	 51

Setting up Marvel	 51
Upgrading Marvel	 56
Configuring Marvel	 57

Marvel agent configuration settings	 58
Marvel index configuration	 59
Understanding the Marvel dashboard	 61

Overview dashboard	 63
Indices dashboard	 66

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Nodes dashboard	 69
Monitoring node failures	 71
Summary	 72

Chapter 5: System Monitoring	 73
Working with Kopf	 73

Installing Kopf	 74
The cluster page	 76
The nodes page	 77
The rest page	 78
The more dropdown	 79

Working with Logstash and Kibana	 80
ELK	 80
Installation	 80

Installing Logstash	 81
Loading NGINX logs	 81
Installing Kibana	 84

Working with Nagios	 92
Installing Nagios	 92

Command line tools for system and process management	 97
top	 97
tail	 98
grep	 98
ps	 99
kill	 100
free	 101
du and df	 101

Summary	 102
Chapter 6: Troubleshooting Performance and Reliability
Issues	 105

System configuration	 105
The fielddata cache	 106
Analyzing queries	 108

Slow log	 108
Improving query performance	 110

High-cardinality fields	 110
Querying smaller indices	 110
Cold indices	 111
The shard query cache	 115
Script queries	 117
Testing meticulously	 117

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

System and data architecting	 118
Hot-Warm architecture	 118

Master nodes	 118
Hot nodes	 118
Warm nodes	 118

Reducing disk size	 119
Compression	 119
Storing the _source and analyzed fields	 120

Optimizing data ingestion	 121
Bulk indexing operations	 122
Drive configuration	 124

Case studies	 124
Node configuration	 124
Query optimization	 126
Web application performance	 129

Summary	 130
Chapter 7: Node Failure and Post-Mortem Analysis	 131

Diagnosing problems	 131
OutOfMemoryError exceptions	 132

Shard failures	 133
Slow queries	 137
Resolving OutOfMemoryError exceptions	 138

Elasticsearch process crashes	 141
Disk space	 142

Resolving the issue	 143
Reviewing some case studies	 143

The ES process quits unexpectedly	 144
Query requests slow and timing out	 145

Summary	 146
Chapter 8: Looking Forward	 147

Elasticsearch 5 overview	 147
Performance and reliability	 148
Data loss	 149

Upgrading to Elasticsearch 5.0	 149
When to upgrade	 152

Monitoring Elasticsearch 5	 153
Summary	 154

Index	 157

[v]

Preface
Welcome to Monitoring Elasticsearch!

There are many books and online tutorials that cover the Elasticsearch API
and how to configure a cluster. But, until now, there hasn't been a thorough,
accessible resource for monitoring and troubleshooting purposes. We've found that
Elasticsearch monitoring tools drastically improve our ability to solve cluster issues
and greatly increase cluster reliability and performance as a result. We wrote this
book to share those use cases and the insights that came out of them.

This book covers how to use several popular open source and commercial
Elasticsearch monitoring tools, namely, Elasticsearch-head, Bigdesk, Marvel, Kopf,
and Kibana. There's also a section on the Elasticsearch cat API and how to use Nagios
to perform general system monitoring. Moreover, we will discuss several case studies
with real-world examples of troubleshooting Elasticsearch issues using these tools.

We believe that the best way to learn is to do. In this book, we'll go over how to set
up a sample Elasticsearch cluster and load it with data. At times, we'll deliberately
introduce problems into the cluster so that we can see how the errors are tracked
using our various monitoring tools. Following along with these examples in your
own cluster will help you learn both how to use the monitoring tools and how to
tackle new and unknown issues that may arise.

After reading this book, we hope that you will be better equipped to run and
maintain an Elasticsearch cluster. You will also be more prepared to diagnose and
solve cluster issues, such as a node going down, the Elasticsearch process dying,
configuration errors, shard errors, OutOfMemoryError exceptions, slow queries, and
slow indexing performance.

Preface

[vi]

What this book covers
Chapter 1, Introduction to Monitoring Elasticsearch, gives an overview of Elasticsearch
and talks about some things to keep in mind when monitoring a cluster or
troubleshooting a problem.

Chapter 2, Installation and the Requirements for Elasticsearch, covers how to install
Elasticsearch and several Elasticsearch monitoring tools.

Chapter 3, Elasticsearch-head and Bigdesk, demonstrates how to configure a multinode
Elasticsearch cluster and how to use the monitoring tools Elasticsearch-head and
Bigdesk to examine the health and status of a cluster.

Chapter 4, Marvel Dashboard, goes over Marvel, a commercial monitoring tool created
by the makers of Elasticsearch.

Chapter 5, System Monitoring, covers the Elasticsearch utilities Kopf, Kibana, the
Elasticsearch cat API, and several Unix command-line utilities. This chapter also
demonstrates how to use Nagios for general system monitoring.

Chapter 6, Troubleshooting Performance and Reliability Issues, covers how to tackle
some of the common performance and reliability issues that arise when using
Elasticsearch. It also contains case studies with some real-world examples of
troubleshooting.

Chapter 7, Node Failure and Post-Mortem Analysis, dives into analyzing your cluster's
historical performance and how to get to the bottom of and recover from system
failures. It also contains some case studies with real-world examples.

Chapter 8, Looking Forward, concludes the book by discussing what is to come with
Elasticsearch 5, the next major software release, and some new monitoring tools that
will be available for the release.

What you need for this book
To follow along with the examples in this book, you'll need a real or virtualized
three-node Elasticsearch cluster. You may optionally want two other nodes to run
Marvel and Nagios, covered in Chapter 4, Marvel Dashboard, and Chapter 5, System
Monitoring, respectively. It is possible to run Marvel and Nagios on the same host
as a node in your Elasticsearch cluster, but you shouldn't do this in a production
cluster. Check out VMWare Player (https://www.vmware.com/products/player)
and VirtualBox (https://www.virtualbox.org/wiki/Downloads) for standing up
your own virtual five-node environment or Amazon EC2 (https://aws.amazon.
com/ec2/) for building a cluster in the cloud.

https://www.vmware.com/products/player
https://www.virtualbox.org/wiki/Downloads
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Preface

[vii]

For your Elasticsearch nodes, you'll need a 64-bit version of Windows, Mac OS X, or
Linux and a recent distribution of the Java Runtime Environment. The CPU speed
doesn't matter as much on these hosts, but we recommend that you have at least 512
MB of memory per node. We use Ubuntu 14.04 and Oracle Java 7 for all examples
in this book, but any modern operating system and either OpenJDK or Oracle Java
7 and 8 will work for running through the examples. The only exception is Nagios,
which needs to run on Linux.

You will need the following software packages:

•	 Java 7 or Java 8 (http://www.oracle.com/technetwork/java/javase/
downloads/index.html)

•	 Elasticsearch 2.3.2 (https://www.elastic.co/downloads/past-releases/
elasticsearch-2-3-2)

•	 Elasticsearch-head (https://github.com/mobz/elasticsearch-head)
•	 Bigdesk (http://bigdesk.org/)
•	 Marvel—free for development, subscription fee for use in production

(https://www.elastic.co/downloads/marvel)
•	 Kibana (https://www.elastic.co/downloads/kibana)
•	 Kopf (https://github.com/lmenezes/elasticsearch-kopf)
•	 Nagios (https://www.nagios.org/downloads/)

All of these software packages are free and open source except for Marvel, which is
only free for use in development.

Finally, several examples in this book use the curl (https://curl.haxx.se/)
command-line utility for making REST calls to Elasticsearch and, optionally, Python
2.7 for pretty-printing the results.

Who this book is for
This book is for software developers, DevOps engineers, and system administrators
who use Elasticsearch. We'll cover the basics of Elasticsearch to get a simple cluster
installed and configured, but we will avoid going into detail about the Elasticsearch
API. Thus, a basic understanding of the Elasticsearch API may be helpful, though not
required, to understand this book.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.elastic.co/downloads/past-releases/elasticsearch-2-3-2
https://www.elastic.co/downloads/past-releases/elasticsearch-2-3-2
https://github.com/mobz/elasticsearch-head
http://bigdesk.org/
https://www.elastic.co/downloads/marvel
https://www.elastic.co/downloads/kibana
https://github.com/lmenezes/elasticsearch-kopf
https://www.nagios.org/downloads/
https://curl.haxx.se/

Preface

[viii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now we'll install Marvel on the elasticsearch-marvel-01."

A block of code is set as follows:

cluster.name: my_elasticsearch_cluster
node.name: "elasticsearch-node-01"
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["elasticsearch-node-02",
 "elasticsearch-node-03"]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

cluster.name: my_elasticsearch_cluster
node.name: "elasticsearch-node-01"
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["elasticsearch-node-02",
 "elasticsearch-node-03"]

Any command-line input or output is written as follows:

sudo service elasticsearch start

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[x]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Monitoring-Elasticsearch. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/MonitoringElasticsearch_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Monitoring-Elasticsearch
https://github.com/PacktPublishing/Monitoring-Elasticsearch
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MonitoringElasticsearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MonitoringElasticsearch_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Monitoring
Elasticsearch

Elasticsearch is a distributed and horizontally scalable full-text search engine with
built-in data redundancy. It is a powerful and incredibly useful tool. However, as
with any distributed system, problems may arise as it scales with more nodes and
more data.

The information provided by Elasticsearch monitoring tools can drastically improve
your ability to solve cluster issues and greatly increase cluster reliability and
performance as a result. This chapter gives an overview of Elasticsearch and talks
about why and how to monitor a cluster.

Specifically, this chapter covers the following topics:

•	 An overview of Elasticsearch
•	 Monitoring Elasticsearch
•	 Resourcefulness and problem solving

An overview of Elasticsearch
This section gives a high-level overview of Elasticsearch and discusses some related
full-text search products.

Learning more about Elasticsearch
Elasticsearch is a free and open source full-text search engine that is built on top
of Apache Lucene. Out of the box, Elasticsearch supports horizontal scaling and
data redundancy. Released in 2010, Elasticsearch quickly gained recognition in
the full-text search space. Its scalability features helped the tool gain market share
against similar technologies such as Apache Solr.

Introduction to Monitoring Elasticsearch

[2]

Elasticsearch is a persistent document store and retrieval system, and it is similar
to a database. However, it is different from relational databases such as MySQL,
PostgreSQL, and Oracle in many ways:

•	 Distributed: Elasticsearch stores data and executes queries across multiple
data nodes. This improves scalability, reliability, and performance.

•	 Fault tolerant: Data is replicated across multiple nodes in an Elasticsearch
cluster, so if one node goes down, data is still available.

•	 Full-text search: Elasticsearch is built on top of Lucene, a full-text search
technology, allowing it to understand and search natural language text.

•	 JSON document store: Elasticsearch stores documents as JSON instead of as
rows in a table.

•	 NoSQL: Elasticsearch uses a JSON-based query language as opposed to a
sequel query language (SQL).

•	 Non-relational: Unlike relational databases, Elasticsearch doesn't support
JOINS across tables.

•	 Analytics: Elasticsearch has built-in analytical capabilities, such as word
aggregations, geospatial queries, and scripting language support.

•	 Dynamic Mappings: A mapping in Elasticsearch is analogous to a schema
in the relational database world. If the data type for a document field isn't
explicitly defined, Elasticsearch will dynamically assign a type to it.

Data distribution, redundancy, and fault
tolerance
Figures 1.1 through 1.4 explain how Elasticsearch distributes data across multiple
nodes and how it automatically recovers from node failures:

Chapter 1

[3]

Figure 1.1: Elasticsearch Data Distribution

In this figure, we have an Elasticsearch cluster made up of three nodes:
elasticsearch-node-01, elasticsearch-node-02, and elasticsearch-node-03.
Our data index, is broken into three pieces, called shards. These shards are labeled 0,
1, and 2. Each shard is replicated once; this means that there is a redundant copy of
all shards. The cluster is colored green because the cluster is in good health; all data
shards and replicas are available.

Let's say that the elasticsearch-node-03 host experiences a hardware failure and
shuts down. The following figures show what happens to the cluster in this scenario:

Figure 1.2: Node failure

Introduction to Monitoring Elasticsearch

[4]

Figure 1.2 shows elasticsearch-node-03 experiencing a failure, and the cluster
entering a yellow state. This state means that there is at least one copy of each shard
active in the cluster, but not all shard replicas are active. In our case, a copy of the 1
and 2 shards were on the node that failed, elasticsearch-node-03. A yellow state
also warns us that if there's another hardware failure, it's possible that not all data
shards will be available.

When elasticsearch-node-03 goes down, Elasticsearch will automatically start
rebuilding redundant copies of the 1 and 2 shards on the remaining nodes; in our
case, this is elasticsearch-node-01 and elasticsearch-node-02. This is shown
in the following figure:

Figure 1.3: Cluster recovering

Once Elasticsearch finishes rebuilding the data replicas, the cluster enters a green
state once again. Now, all data and shards are available to query.

Chapter 1

[5]

Figure 1.4: Cluster recovered

The cluster recovery process demonstrated in Figures 1.3 and 1.4 happens
automatically in Elasticsearch. No extra configuration or user action is required.

Full-text search
Full-text search refers to running keyword queries against natural-language text
documents. A document can be something, such as a newspaper article, a blog post,
a forum post, or a tweet. In fact, many popular newspapers, forums, and social
media websites, such as The New York Times, Stack Overflow, and Foursquare,
use Elasticsearch.

Assume that we were to store the following text string in Elasticsearch:

We demand rigidly defined areas of doubt and uncertainty!

A user can find this document by searching Elasticsearch using keywords, such as
demand or doubt. Elasticsearch also supports word stemming. This means that if we
searched for the word define, Elasticsearch would still find this document because the
root word of defined is define.

This piece of text, along with some additional metadata, may be stored as follows in
Elasticsearch in the JSON format:

{
 "text" : "We demand rigidly defined areas of doubt and
uncertainty!",
 "author" : "Douglas Adams",
 "published" : "1979-10-12",

Introduction to Monitoring Elasticsearch

[6]

 "likes" : 583,
 "source" : "The Hitchhiker's Guide to the Galaxy",
 "tags" : ["science fiction", "satire"]
}

If we let Elasticsearch dynamically assign a mapping (think schema) to this document,
it would look like this:

{
 "quote" : {
 "properties" : {
 "author" : {
 "type" : "string"
 },
 "likes" : {
 "type" : "long"
 },
 "published" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"
 },
 "source" : {
 "type" : "string"
 },
 "tags" : {
 "type" : "string"
 },
 "text" : {
 "type" : "string"
 }
 }
 }
}

Note that Elasticsearch was able to pick up that the published field looked like
a date.

An Elasticsearch query that searches for this document looks like this:

{
 "query" : {
 "query_string" : {
 "query" : "demand rigidly"
 }
 },
 "size" : 10
}

Chapter 1

[7]

Specifics about Elasticsearch mappings and the Search API are beyond the scope
of this book, but you can learn more about them through the official Elasticsearch
documentation at the following links:

•	 Elasticsearch Mappings: https://www.elastic.co/guide/en/
elasticsearch/reference/current/mapping.html

•	 Elasticsearch Search API: https://www.elastic.co/guide/en/
elasticsearch/reference/current/search-search.html

Elasticsearch should not be your primary data store. It does not
provide guarantees, such as the Atomicity, Consistency, Isolation, and
Durability (ACID) of a traditional SQL data store, nor the reliability
guarantees of other NoSQL databases such as HBase or Cassandra.
Even though Elasticsearch has built-in data redundancy and fault
tolerance, it's best practice to archive your data in a separate data store
in order to re-index data into Elasticsearch if needed.

Similar technologies
This section explains a few of the many open source full-text search engines
available, and discusses how they match up to Elasticsearch.

Apache Lucene
Apache Lucene (https://lucene.apache.org/core/) is an open source full-text
search Java library. As mentioned earlier, Lucene is Elasticsearch's underlying search
technology. Lucene also provides Elasticsearch's analytics features such as text
aggregations and geospatial search. Using Apache Lucene directly is a good choice
if you perform full-text search in Java on a small scale, or are building your own
full-text search engine.

The benefits of using Elasticsearch over Lucene are as follows:

•	 REST API instead of a Java API
•	 JSON document store
•	 Horizontal scalability, reliability, and fault tolerance

On the other hand, Lucene is much more lightweight and flexible to build custom
applications that require full-text search integrated from the ground up.

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html
https://lucene.apache.org/core/

Introduction to Monitoring Elasticsearch

[8]

Lucene.NET is a popular .NET port of the library written in C#

Solr
Solr is another full-text search engine built on top of Apache Lucene. It has similar
search, analytic, and scaling capabilities to Elasticsearch. For most applications that
need a full-text search engine, choosing between Solr and Elasticsearch comes down
to personal preference.

Ferret
Ferret is a full-text search engine for Ruby. It's similar to Lucene, but it is not as
feature-rich. It's generally better used for Ruby applications that don't require the
power (or complexity) of a search engine, such as Elasticsearch or Solr.

Monitoring Elasticsearch
Monitoring distributed systems is difficult because as the number of nodes, the
number of users, and the amount of data increase, problems will begin to crop up.

Furthermore, it may not be immediately obvious if there is an error. Often, the
cluster will keep running and try to recover from the error automatically. As shown
in Figures 1.2, 1.3, and 1.4 earlier, a node failed, but Elasticsearch brought itself back
to a green state without any action on our part. Unless monitored, failures such as
these can go unnoticed. This can have a detrimental impact on system performance
and reliability. Fewer nodes means less processing power to respond to queries, and,
as in the previous example, if another node fails, our cluster won't be able to return
to a green state.

The aspects of an Elasticsearch cluster that we'll want to keep track of include
the following:

•	 Cluster health and data availability
•	 Node failures
•	 Elasticsearch JVM memory usage
•	 Elasticsearch cache size
•	 System utilization (CPU, Memory, and Disk)
•	 Query response times
•	 Query rate

Chapter 1

[9]

•	 Data index times
•	 Data index rate
•	 Number of indices and shards
•	 Index and shard size
•	 System configuration

In this book, we'll go over how to understand each of these variables in context and
how understanding them can help diagnose, recover from, and prevent problems in
our cluster. It's certainly not possible to preemptively stop all Elasticsearch errors.
However, by proactively monitoring our cluster, we'll have a good idea of when
things are awry and will be better positioned to take corrective action.

In the following chapters, we'll go over everything from web-based cluster monitoring
tools to Unix command line tools and log file monitoring. Some of the specific tools
this book covers are as follows:

•	 Elasticsearch-head
•	 Bigdesk
•	 Marvel
•	 Kopf
•	 Kibana
•	 Nagios
•	 Unix command-line tools

These tools will give us the information we need to effectively diagnose, solve,
and prevent problems with Elasticsearch.

Resourcefulness and problem solving
Monitoring tools do a great job of telling you what is going on in your cluster, and
they can often point out if there is a problem. However, these tools won't give you
a recipe for how to actually fix a problem. Resolving issues takes critical thinking,
attention to detail, and persistence. Some of the problem-solving themes this book
talks about are as follows:

•	 Always try to recreate the problem
•	 Be on the lookout for configuration and user errors
•	 Only make one configuration change at a time before testing

This book also provides some real-world case studies that help you turn the
information provided by monitoring tools into insights to resolve Elasticsearch issues.

Introduction to Monitoring Elasticsearch

[10]

Summary
This chapter gave you an overview of Elasticsearch and why it's important to
proactively monitor a cluster. To summarize the points from the chapter:

•	 Elasticsearch is an open source scalable, fast, and fault-tolerant search engine
•	 Elasticsearch is built on top of Apache Lucene, the same library that powers

Apache Solr
•	 Monitoring tools will help us get a better understanding of our cluster and

will let us know when problems arise
•	 As helpful as monitoring tools are, it's up to us to actually diagnose and fix

cluster issues

In the next chapter, we'll cover how to get a simple Elasticsearch cluster running and
loaded with data, and how to install several monitoring tools.

[11]

Installation and the
Requirements for

Elasticsearch
The Java Runtime Environment (JRE) is the only requirement to run Elasticsearch.

The official Elasticsearch documentation recommends that you use either Oracle
Java 8 (update 20 or later), or Oracle Java 7 (update 55 or later). Once you choose
your version of the JRE, we recommend that all your nodes use the same version to
maintain compatibility. Using different versions of Java across your cluster or using
Java versions earlier than the ones specified here, can lead to data corruption. Once
you choose a version of Elasticsearch, all the nodes in your cluster should use the
same version.

While it is possible to run Elasticsearch on both Windows and Linux, this
book focuses on using it exclusively in a Linux environment. The Elasticsearch
documentation is centered on Linux and most of the Elasticsearch community
runs the software on Linux. However, there is no reason a production cluster of
Elasticsearch cannot run on Windows.

This chapter will specifically cover installation instructions for Ubuntu, CentOS,
and Red Hat Enterprise Linux (RHEL), but any Linux distribution will work. Readers
should use 64-bit operating systems rather than 32-bit operating systems because the
former allows more memory allocation for the JRE.

This chapter covers the following topics:

•	 Installing Elasticsearch
•	 Configuring Elasticsearch

www.allitebooks.com

http://www.allitebooks.org

Installation and the Requirements for Elasticsearch

[12]

•	 Installing monitoring tools (Elasticsearch-head, Bigdesk, and Marvel)
•	 Cluster requirements

Installing Elasticsearch
At the time of writing this book, Elasticsearch 2.3.2 is the current stable release and
Elasticsearch 5 is in alpha testing. For production clusters, we recommend using the
2.3.2 release and quickly updating to the 5 general availability (GA) release once it
is available. Note that while Elasticsearch 5 is compatible with indices created in
Elasticsearch 2.x, there have also been some API changes and feature deprecations
after the 1.x release. Readers should account for these important changes before
upgrading. More details on upgrading from 2.x to 5 can be found on the Elastic
website at the following URLS:

•	 https://www.elastic.co/blog/elasticsearch-5-0-0-alpha1-released

•	 https://www.elastic.co/blog/elasticsearch-5-0-0-alpha2-released

Notable API changes include the following:

•	 Indices from Elasticsearch 1.x must first be upgraded to 2.x before finally
moving to version 5

•	 The deprecated filtered, or, and and queries were removed in favor of the
bool, must, and should queries

•	 The string mapping was deprecated in favor of the text and keyword fields
•	 The index mapping property is now set to true / false instead of analyzed

/ not_analyzed / no
•	 Significant changes to the Percolate API
•	 The _id values are limited to 512 bytes

While examples in this book use the 2.3.2 Elasticsearch release, all examples should
be compatible with the upcoming 5.0 release.

The latest version of Elasticsearch is available at https://www.elastic.co/
downloads/elasticsearch in .zip, .tar.gz, .rpm, and .deb formats. It doesn't
matter how Elasticsearch is installed, but because it is simpler, we recommend using
the .deb installer for Ubuntu users, the .rpm installer for CentOS or RHEL users, and
the .tar.gz or .zip version for users of other Linux distributions, or for users who
require a more customized setup. Elasticsearch also provides official yum and apt-get
repositories.

https://www.elastic.co/blog/elasticsearch-5-0-0-alpha1-released
https://www.elastic.co/blog/elasticsearch-5-0-0-alpha2-released
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch

Chapter 2

[13]

Examples in this chapter assume that the user installed Elasticsearch with the .rpm
or .deb installer, or through the official yum or apt-get repositories. This should also
be similar for users who installed with the .zip and .tar.gz installers.

DEB/RPM installation
First, download the most up-to-date package from https://elastic.co:

1.	 Run the following to install the DEB package on an Ubuntu or
Debian-compatible system:
wget
 https://download.elastic.co/
 elasticsearch/elasticsearch/elasticsearch-2.3.2.deb

sudo dpkg -i elasticsearch-2.3.2.deb

2.	 Run the following to install the RPM package on a CentOS, RHEL,
or another compatible system:

wget
 https://download.elastic.co/elasticsearch/elasticsearch/
 elasticsearch-2.3.2.noarch.rpm

sudo rpm -i elasticsearch-2.3.2.noarch.rpm

The yum and apt-get repositories
The official yum and apt-get repositories are a great way to install Elasticsearch.
However, make sure that you use the official repositories. Many third-party yum and
apt-get Elasticsearch repositories are available, but they may not have the latest
stable release.

Ubuntu/Debian and apt-get
To install Elasticsearch using apt-get follow these steps:

1.	 To enable the repository via apt-get, first add the gpg key:
wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch |
 sudo apt-key add -

2.	 Then, add the repository via the following:
echo "deb http://packages.elastic.co/elasticsearch/2.3/debian
stable main" | sudo tee -a /etc/apt/sources.list.d/elasticsearch-
2.3.list

https://elastic.co

Installation and the Requirements for Elasticsearch

[14]

3.	 Finally, use your package manager to install the following:
sudo apt-get install elasticsearch

CentOS/RHEL and yum
For yum, follow these steps:

1.	 Add the gpg key:
rpm --import https://packages.elastic.co/GPG-KEY-elasticsearch

2.	 Then, create a new yum repository at /etc/yum.repos.d/elasticsearch.
repo with the following content:
[elasticsearch-2.3]

name=Elasticsearch 2.3.X repository

baseurl=http://packages.elastic.co/elasticsearch/2.3/centos

gpgcheck=1

gpgkey=http://packages.elastic.co/GPG-KEY-elasticsearch

enabled=1

3.	 Install the package with the following:
sudo yum install elasticsearch

Verification
Start Elasticsearch with the following command:

sudo /etc/init.d/elasticsearch start

Then verify installation, test to see whether Elasticsearch is running and loaded via
the following:

curl localhost:9200

You should get this response:

{

 "status" : 200,

 "name" : "Inertia",

 "cluster_name" : "Elasticsearch",

 "version" : {

 "number" : "2.3.2",

 "build_hash" : " b9e4a6acad4008027e4038f6abed7f7dba346f94",

Chapter 2

[15]

 "build_timestamp" : "2016-04-21T16:03:47Z ",

 "build_snapshot" : false,

 "lucene_version" : "5.5.0"

 },

 "tagline" : "You Know, for Search"

}

To verify that we are able to write data to Elasticsearch, use the following:

curl -XPUT 'http://localhost:9200/twitter/user/lababidi'
 -d '{ "name" : "Mahmoud Lababidi" }'

This returns the following:

{"_index":"twitter","_type":"user","_id":"lababidi",
 "_version":1,"created":true}

We fetch the data, as follows:

curl -XGET 'http://localhost:9200/twitter/user/
 lababidi?pretty=true'

This returns the following output:

{

 "_index" : "twitter",

 "_type" : "user",

 "_id" : "lababidi",

 "_version" : 1,

 "found" : true,

 "_source":{ "name" : "Mahmoud Lababidi" }

}

As a sanity check, try a nonexisting record:

curl -XGET 'http://localhost:9200/twitter/user/
 kimchy?pretty=true'

This should return an expected false for found:

{

 "_index" : "twitter",

 "_type" : "user",

 "_id" : "kimchy",

 "found" : false

}

Installation and the Requirements for Elasticsearch

[16]

Configuration files
It is worth noting the Elasticsearch installation location, specifically the configuration
files and the log files. For example, on Ubuntu, run the following:

dpkg -L Elasticsearch

This will show that the installation placed the logs in /var/log/elasticsearch and
the config files in /etc/elasticsearch. Any settings for Elasticsearch (not related to
logging) are in elasticsearch.yml while logging.yml handles logging.

We will delve into these files and their respective settings further throughout the book.

Configuring an Elasticsearch cluster
This section will cover some basic Elasticsearch configuration in addition to a few
changes that will positively impact your cluster's performance.

Most Elasticsearch configuration changes will be applied to elasticsearch.
yml. For our installation of Elasticsearch on Ubuntu, this file is located at /etc/
elasticsearch/elasticsearch.yml. Elasticsearch internal configuration changes
are applied to elasticsearch.yml. Environmental variables can be set in the
application's startup script. For our installation of Elasticsearch 2.3.2 on Ubuntu,
these files are in the following locations:

•	 Internal Configuration is located at
/etc/elasticsearch/elasticsearch.yml

•	 Environmental Variable Configuration is located at
/etc/defaults/elasticsearch

Cluster name
A wonderful thing about Elasticsearch is the ease with which you can build a cluster.
Elasticsearch nodes on the same local area network (LAN) will automatically form a
cluster with each other if they have the configuration variable cluster.name set to
the same value.

For example, if we store tweets from Twitter in our cluster, we may want to set
cluster.name to twitter_development. Later on, we may want to create another
cluster with the name twitter_production to hold all of our production data.

To modify this setting, edit the Elasticsearch.yml file and look for the cluster.
name setting. Change this value to: cluster.name: twitter_development.

Chapter 2

[17]

The default value for cluster.name is elasticsearch. It is fine to use this in solo
development, but be careful using it when you are on a LAN with other developers.
If you start a new Elasticsearch with the default cluster.name value and someone
else on your network is also running Elasticsearch with the default configuration,
you'll notice that data from their Elasticsearch instance will start replicating in
your machine.

Memory configuration
Elasticsearch recommends setting the heap size to half of the available RAM on the
machine, but no more than 30.5 GB. We are using a machine with 16 GB of RAM,
so we'll set the heap size to 8 GB. This configuration change is made to the ES_HEAP_
SIZE environment variable in /etc/defaykts/elasticsearch:

ES_HEAP_SIZE=8g

Open file limit
Linux limits the number of file descriptors a process can have open at one time.
This limit exists because every time a process opens a file descriptor, it uses a little
bit of memory. If there were no limit on the number of open files, a process could
potentially open enough files to cause the entire system to run out of memory
and crash.

By default, this limit is set to 1024, which is too low for Elasticsearch. The official
Elasticsearch documentation recommends upping this value to 32k or 64k for
open files.

The maximum file limit
The most up-to-date .rpm and .deb installers will automatically increase the
maximum open file limit in Elasticsearch to 65535. However, if you use an older
version of the .deb or .rpm, or run Elasticsearch from the tarball, you'll have to
increase the limit manually.

To check the maximum number of open files allocated to your current user, run the
following:

$ ulimit -n

65535

The user has a maximum of 65535 files. However, this does not mean Elasticsearch
is assigned this number of files. This may mean that Elasticsearch is running as a
different user or that it was started with different environment settings.

Installation and the Requirements for Elasticsearch

[18]

To check the maximum number of open files allocated to Elasticsearch, run the
following:

curl -XGET 'http://localhost:9200/
 _nodes?os=true&process=true&pretty=true'

The result should look something like this:

{

 "ok" : true,

 "cluster_name" : "Elasticsearch",

 "nodes" : {

 "-P1cQt9lThejPG_rj-reKw" : {

 "name" : "Korg",

 ...

 "process" : {

 "refresh_interval" : 1000,

 "id" : 1407,

 "max_file_descriptors" : 1024

 }

 }

 }

We see that max_file_descriptors was set to 1024, so we'll have to increase it.
If your output says 65535, skip to the next section.

Make sure that this is for the appropriate node; this curl command will display the
max_file descriptors for all nodes in your cluster.

Updating max file descriptors on Ubuntu
Linux
Edit the /etc/security/limits.conf file and add the following lines to the end of
the file:

* soft nofile 65536

* hard nofile 65536

The * symbol means all users. You can also set this to just the user
that runs the Elasticsearch process.

Chapter 2

[19]

Enabling pluggable authentication modules
If we connect to the Linux server over SSH, we'll have to ensure that PAM
authentication is enabled. These instructions are the same if you use Ubuntu or
CentOS/RHEL. To make this configuration change, edit the sshd_config file:

sudo vim /etc/ssh/sshd_config

Ensure that this line is present:

UsePAM yes

Then, restart your SSH server:

sudo service ssh restart

Verifying the open file limit
Log out and log back in again to make these changes take effect, then restart the
Elasticsearch server:

exit

ssh <your_username>@<your_server>

sudo service elasticsearch restart

Finally, be sure to verify that these changes took effect. It is not enough to verify that
ulimit -n returns 65536. It is also important to ensure that the Elasticsearch user
was started up properly with the increased maximum open file limit:

curl -XGET 'http://localhost:9200/
 _nodes?os=true&process=true&pretty=true'

This should result in the following:

{

 "ok" : true,

 "cluster_name" : "Elasticsearch",

 "nodes" : {

 "-P1cQt9lThejPG_rj-reKw" : {

 "name" : "Korg",

 ...

 "process" : {

 "refresh_interval" : 1000,

 "id" : 1407,

Installation and the Requirements for Elasticsearch

[20]

 "max_file_descriptors" : 65536

 }

 }

 }

This time we see that max_file_descriptors is set to 65536.

Disabling swapping
It is important to disable memory swapping on your operating system or
Elasticsearch process.

To disable swapping until your system is rebooted, run the following:

sudo swapoff -a

To disable swapping even after your system is rebooted, edit the /etc/fstab file,
and comment out any lines with the word swap in them. For us, this looked like the
following:

/dev/xvdb none swap
 sw 0 0

To disable swap for just Elasticsearch, you'll first have to set your Elasticsearch heap
size using ES_HEAP_SIZE and set the process maximum amount of locked memory to
ulimited as the root user. If you use the .rpm or .deb installer, both of these settings
can be changed in the /etc/init.d/elasticsearch startup script. Specifically,
uncomment and update these lines, as follows:

(My machine has 512 MB of memory, so I'm setting ES_HEAP_SIZE to 256m.)

Set ES_HEAP_SIZE to 50% of available RAM, but no more than 31g
ES_HEAP_SIZE=256m

A little further down:

Maximum amount of locked memory

MAX_LOCKED_MEMORY=unlimited

Next, edit your elasticsearch.yml file, and add the line:

bootstrap.mlockall: true

Then, reboot your Elasticsearch node:

sudo service elasticsearch restart

Chapter 2

[21]

Finally, verify that this setting worked by running the following:

curl http://localhost:9200/_nodes/process?pretty

You should see the following:

"mlockall" : true

This is the response.

Understanding your cluster
Elasticsearch has many different moving parts, and it can get a little complicated to
ensure that everything runs properly. Fortunately, there are some great open source
monitoring tools that are available to help you keep tabs on your cluster. This section
will cover how to install some of the most popular and useful monitoring tools on
your cluster, and the following two chapters will go into these tools in more detail.

Installing Elasticsearch-head
Elasticsearch-head is a simple, free, open source tool that provides a high-level
examination of your cluster. It is one of the most useful tools used when administering
and monitoring the health of a cluster. Elasticsearch-head only needs to be installed
on one node in your cluster. However, we recommend installing it on all nodes for
redundancy. It's installed as an Elasticsearch plugin.

If you have an Internet connection, you can install Elasticsearch-head with the
Elasticsearch plugin utility, as follows:

sudo /usr/share/elasticsearch/bin/plugin
 install mobz/elasticsearch-head

The location of the plugin script may vary.

The next command assumes that you installed Elasticsearch using the .rpm or .deb
file, but if you are unsure where the plugin script is in your installation, go ahead
and try running the following commands:

sudo updatedb

locate elasticsearch | grep plugin$

For me, this returns the following:

/usr/share/elasticsearch/bin/plugin

Installation and the Requirements for Elasticsearch

[22]

If you don't have an Internet connection on your Elasticsearch instance, you can
download the Elasticsearch-head plugin, transfer it to your server, and install it
using the following methods.

From a machine with an Internet connection, we use the following:

wget https://github.com/mobz/elasticsearch-head/archive/
 master.zip -O Elasticsearch-head.zip

scp Elasticsearch-head.zip your_server:~/

From the Elasticsearch server, we use the following:

sudo /usr/share/elasticsearch/bin/plugin
 install file:///path/to/Elasticsearch-head.zip

If you run an old version of Elasticsearch, you may have to restart your node before
you can open Elasticsearch-head:

sudo service elasticsearch restart

Try out the plugin by visiting http://elasticsearch-server:9200/_plugin/
head/ (for a test environment, elasticsearch-server is probably localhost).
You should see something like the following:

Chapter 2

[23]

Installing Bigdesk
Bigdesk is a free, open source Elasticsearch plugin that allows you to see your
cluster's CPU, memory, and disk usage. It's a great tool to dig into performance
issues with a cluster and, like Elasticsearch-head, it only needs to be installed on one
node in your cluster. We still recommend installing it on all nodes for redundancy.

Here's how to install Bigdesk.

Online installation is as follows:

sudo /usr/share/elasticsearch/bin/plugin
 install AIsaac08/bigdesk

Offline installation is has more than one method.

From a machine with an Internet connection, use the following:

wget https://github.com/AIsaac08/bigdesk/zipball/master -O bigdesk.zip

scp bigdesk.zip your_server:~/

From the Elasticsearch server, use the following:

sudo /usr/share/elasticsearch/bin/plugin
 install file:///path/to/bigdesk.zip

As with Elasticsearch-head, if you run an old version of Elasticsearch, you may have
to restart your node before you can open Bigdesk:

sudo service elasticsearch restart

Installation and the Requirements for Elasticsearch

[24]

Try out the plugin by visiting http://elasticsearch-server:9200/_plugin/
bigdesk/ (for a test environment, elasticsearch-server is probably localhost). You
should see something like the following:

Marvel
Marvel is a powerful monitoring tool created by the makers of Elasticsearch. It's free
for use in development, but there's a subscription fee to use it in production. Marvel
consists of the following two components:

1.	 Marvel Agent (requires Marvel License).
2.	 Marvel Dashboard (requires Kibana).

Chapter 2

[25]

To install the Marvel Agent:

•	 Online installation is as follows:
sudo /usr/share/elasticsearch/bin/plugin install license
sudo /usr/share/elasticsearch/bin/
 plugin install marvel-agent

•	 Offline installation is as follows:

wget https://download.elastic.co/elasticsearch/release/org/
 elasticsearch/plugin/license/2.3.3/license-2.3.3.zip

wget https://download.elastic.co/elasticsearch/release/org/
 elasticsearch/plugin/marvel-agent/2.3.3/
 marvel-agent-2.3.3.zip

sudo bin/plugin install file:
 ///absolute/path/to /license-2.3.3.zip

sudo bin/plugin install file:
 ///absolute/path/to/marvel-agent-2.3.3.zip

Restart Elasticsearch after installing the Marvel Agent:

sudo service elasticsearch restart

To install the Marvel Dashboard, use the following steps:

1.	 First, install Kibana:
wget https://download.elastic.co/
 kibana/kibana/kibana-4.5.1-linux-x64.tar.gz

tar xzvf kibana-4.5.1-linux-x64.tar.gz

2.	 Next, install the Marvel Dashboard as a Kibana plugin:
cd kibana-4.5.1

wget https://download.elasticsearch.org/
 elasticsearch/marvel/marvel-2.3.3.tar.gz

bin/kibana plugin
 --install marvel --url file:///tmp/marvel-2.3.3.tar.gz

3.	 Start Kibana:
./bin/kibana

Installation and the Requirements for Elasticsearch

[26]

4.	 Open the Marvel Dashboard by visiting http://server-name:5601/ (for
a test environment, server-name is probably localhost). You should see
something like the following:

Cluster requirements
The requirements for your cluster—the number of nodes and the hardware
specifications of each node—depend on several factors, including the following:

•	 Total volume of data
•	 Data ingest rate
•	 Average record size
•	 Data mapping
•	 Types of queries being run
•	 System performance requirements

There's no one size fits all formula to determine cluster requirements for a given
Elasticsearch use case. The best approach is to meticulously test performance while
changing variables, such as shard size, the number of nodes in the cluster, and
hardware configurations until an optimal solution is found. This section focuses on
high-level guidelines to consider when configuring your cluster.

Chapter 2

[27]

It's a good idea to run at least three nodes in a production environment and to set
data replication to 1, which asks Elasticsearch to maintain one copy of each shard
in the cluster. This configuration will ensure that if a node goes down, your cluster
won't lose any data.

Elasticsearch tends to be more memory intensive than CPU intensive. Any modern
64-bit processor is likely adequate to run Elasticsearch. In general, this favors more
processor cores over faster clock speeds.

Each node in the cluster should have minimum 512 MB of RAM, and half of this
should be allocated to Elasticsearch. The Elasticsearch documentation recommends
allocating no more than 30.5 GB of memory to an Elasticsearch node because the
JVM compresses internally stored memory addresses when heap sizes are less than
30.5 GB but is no longer able to do so when the allocated heap is larger than 30.5
GB. A good rule of thumb is to have no more than 64 GB of total memory per node.
Moreover, when determining your total memory requirement for a cluster, you will
likely need much less total system memory than your total index size, but the specific
amount will vary depending on your use case.

When considering storage for an Elasticsearch cluster, prefer internal drives to
network attached storage (NAS) solutions. Using solid-state drives instead of
traditional hard drives will greatly improve overall system performance.

Summary
This chapter covered Elasticsearch installation, configuration, monitoring tools, and
cluster requirements. Tools such as Elasticsearch-head, Bigdesk, and Marvel all lay
the groundwork to monitor your cluster and analyze its performance. However, you
still have to know what aspects to look for and how to find them. In the next chapter,
we will examine Elasticsearch-head and Bigdesk further, and discuss important
things to look for in these tools when monitoring an Elasticsearch cluster.

[29]

Elasticsearch-head
and Bigdesk

This chapter talks about the Elasticsearch monitoring plugins Elasticsearch-head and
Bigdesk, along with the Elasticsearch cat API. These utilities are used to assess the
status of your cluster and to diagnose issues:

•	 Elasticsearch-head: This is used to get an idea of your overall cluster health,
individual node status, and an understanding of your indices

•	 Bigdesk: This is used to look into the memory, disk, and CPU usage of
individual nodes in your cluster

•	 Elasticsearch cat API: This lets you access many of Elasticsearch's internal
metrics without installing any plugins

Specifically, this chapter explores the following:

•	 Configuring an Elasticsearch cluster
•	 Loading sample data into Elasticsearch
•	 Using Elasticsearch-head
•	 Using Bigdesk
•	 The Elasticsearch cat API

Cluster setup
This section covers configuring a three-node Elasticsearch cluster and loading it with
Twitter data.

Elasticsearch-head and Bigdesk

[30]

Cluster configuration
Setting up an Elasticsearch cluster is simple. All nodes in the cluster should be on the
same local network and have the same version of Java and Elasticsearch installed.
For our cluster, we'll use three Ubuntu Linux 14.04 virtual hosts: elasticsearch-
node-01, elasticsearch-node-02, and elasticsearch-node-03.

After installing Elasticsearch on all hosts, update the elasticsearch.yml
configuration file on each, as follows:

•	 The configuration for elasticsearch-node-01 is as follows:
cluster.name: my_elasticsearch_cluster
node.name: "elasticsearch-node-01"
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["elasticsearch-node-02",
"elasticsearch-node-03"]
index.routing.allocation.disable_allocation: false
cluster.routing.allocation.enable : all

•	 The configuration for elasticsearch-node-02 is as follows:
cluster.name: my_elasticsearch_cluster
node.name: "elasticsearch-node-02"
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["elasticsearch-node-01",
"elasticsearch-node-03"]
index.routing.allocation.disable_allocation: false
cluster.routing.allocation.enable : all

•	 The configuration for elasticsearch-node-03 is as follows:

cluster.name: my_elasticsearch_cluster
node.name: "elasticsearch-node-03"
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["elasticsearch-node-01",
"elasticsearch-node-02"]
index.routing.allocation.disable_allocation: false
cluster.routing.allocation.enable : all

Next, install Elasticsearch-head on all nodes in this cluster using the instructions
found in the previous chapter.

Now, restart all nodes and verify that the cluster is properly formed by visiting
Elasticsearch-head at http://elasticsearch-node-01:9200/_plugin/head/.

Chapter 3

[31]

You should see something like this, with all of your cluster's nodes listed in the
leftmost column:

Sample data
Now that we have a cluster up and running, let's populate it with Twitter data. We
use Twitter data as an example because it is easy to acquire in large quantities and
because it is a continuously-flowing stream of information, which is similar to a lot of
real-world datasets.

Use the Elasticsearch stream2es utility to get the Twitter data. This utility is
available at https://github.com/elastic/stream2es:

1.	 Create a new Twitter account or log into your Twitter account if you already
have one.

2.	 Associate your mobile phone number with the account at https://support.
twitter.com/articles/110250.

3.	 Create a new Twitter application at https://apps.twitter.com/app/new.

For website, you can put a placeholder value such as
http://example.com if you don't have a domain name.

4.	 Make a note of your Consumer Key (API Key) and Consumer Secret (API
Secret) in the Keys and Access Tokens tab:
./stream2es twitter --authorize --key CONSUMER_KEY --secret
CONSUMER_SECRET

www.allitebooks.com

https://github.com/elastic/stream2es
https://support.twitter.com/articles/110250
https://support.twitter.com/articles/110250
https://apps.twitter.com/app/new
http://www.allitebooks.org

Elasticsearch-head and Bigdesk

[32]

5.	 Authorize the app.
6.	 Enter the verification code.
7.	 Create a Twitter mapping:

curl -XPUT 'http://localhost:9200/twitter/' -d '{

 "settings" : {

 "index" : {

 "number_of_shards" : 3,

 "number_of_replicas" : 1

 }

 }

}'

8.	 Collect tweets:
./stream2es twitter --target http://localhost:9200/twitter/status
--settings '{

 "settings" : {

 "index" : {

 "number_of_shards" : 3,

 "number_of_replicas" : 2

 }

 }

}'

9.	 Take a look at the tweets coming in:

curl -XGET "http://localhost:9200/twitter/_search?size=0&pretty"

After letting stream2es run for a while, we get the following:

{

 "took" : 63,

 "timed_out" : false,

 "_shards" : {

 "total" : 3,

 "successful" : 3,

 "failed" : 0

 },

 "hits" : {

 "total" : 150765,

 "max_score" : 0.0,

 "hits" : []

Chapter 3

[33]

 }

}

Now that we have populated our cluster with some sample data, we can discuss how
to use Elasticsearch-head, Bigdesk, and the Elasticsearch cat API.

Elasticsearch-head
In Chapter 2, Installation and the Requirements for Elasticsearch, we introduced and
installed Elasticsearch-head, and now we will begin examining its features.

The Overview tab
The first tab in Elasticsearch-head is the Overview tab. This tab answers questions
such as the following:

•	 How many nodes are in the cluster?
•	 Is the cluster in a healthy state?
•	 Is all of the cluster's data available?
•	 How many indices are in the cluster, and how big are they?
•	 How much data is in the cluster?

Users can also use this tab to perform some basic administrative actions (creating
indices, deleting indices, and so on).

After loading in sample Twitter data from the previous section, our Overview tab
looks like the following:

Elasticsearch-head and Bigdesk

[34]

We can see that three nodes are up and running:

•	 elasticsearch-node-01

•	 elasticsearch-node-02

•	 elasticsearch-node-03

We also have one active index that contains our newly loaded Twitter data.
From this page, we can tell the following:

•	 The Twitter index takes up 456 MB
•	 The Twitter index contains 150,765 documents

Cluster states
An Elasticsearch cluster can be in any of these three states:

•	 Green: All data is available and all shard replicas are assigned.

The previous screenshot tells that we are currently in a
green state.

•	 Yellow: All data is available, but not all replicas are assigned:
°° This usually happens in a one-node cluster when you have a replica

size of > 0, or in a multi node cluster right after a node goes down.
°° If a node in your cluster goes down, a yellow state will resolve itself

after all replica shards are re-assigned.
°° Elasticsearch will automatically try to reassign shards after a default

1-minute wait time to see if the problematic node reappears.

•	 Red: Not all data is available, and not all shards are assigned.

°° This state deserves immediate attention. This is usually caused by
multiple node failures at once due to a simultaneous restart, power
failure, or network failure in your cluster.

°° The best way to resolve this state is to bring all of the down nodes in
your cluster back up.

°° Note that even in a red state, Elasticsearch will still return query
results. However, query counts will be inaccurate.

Chapter 3

[35]

For the purposes of demonstration, we'll shut down elasticsearch-node-02 and
elasticsearch-node-03 to get a sense of what the cluster looks like in different
states:

•	 Shut down elasticsearch-node-02:
ssh elasticsearchn-node-02

sudo /etc/init.d/elasticsearch stop

•	 Refresh Elasticsearch-head. We should see something like this:

Note that elasticsearch-node-02 is no longer present, and that the cluster is in a
yellow state.

Remember that a yellow state means that all data is still available. More node
failures may result in a red state or data being unavailable.

Elasticsearch-head and Bigdesk

[36]

After waiting a few minutes, Elasticsearch will start to reassign these shards to the
remaining hosts:

After reassignment is complete; the cluster will be back in a green state:

Let's experiment and turn the cluster into a red state:

1.	 Turn elasticsearch-node-02 back on and wait until elasticsearch-
node-02 has a few shards assigned to it.

2.	 Once this happens, shut down both elasticsearch-node-02 and
elasticsearch-node-03 without giving the cluster time to reassign shards.

Chapter 3

[37]

3.	 You can do this on Elasticsearch-head by selecting Shutdown from Actions
next to each respective node or on the command line:
ssh elasticsearchn-node-02

sudo /etc/init.d/elasticsearch stop

ssh elasticsearchn-node-03

sudo /etc/init.d/elasticsearch stop

4.	 After shutting down these nodes and refreshing Elasticsearch-head, we'll see
something like this:

5.	 Note that only shards 1 and 2 in the Twitter index are assigned, and shard
0 is unassigned. As a result, the index size and document counts have
decreased from 456 MB to 305 MB and 150,765 to 100,573, respectively.

6.	 Once we restart elasticsearch-node-02 and elasticsearch-node-03,
the cluster will recover and return to a green state.

Node and index actions
Next to the name of each node and index, you'll see dropdowns labeled Info and
Actions. Each of the links in these dropdowns corresponds to various Elasticsearch
API calls:

•	 The Info links all return JSON documents with details about the status of
your index or node

•	 The Actions links provide convenience methods to manipulate your cluster

Elasticsearch-head and Bigdesk

[38]

The following table goes into more detail about each of these links:

Target
(Index
or
Node)

Type
(action or
info)

Name (for
example,
"Node
Stats")

Elasticsearch API
methods

Description

Node Info Cluster
Node Info

GET /_nodes This provides the
node's Elasticsearch
configuration, installed
plugins, and the
server's available
memory, CPU, and
disk space.

Node Info Node Stats GET /_nodes/
stats?all=true

This provides counts
and statistics of the
number of Elasticsearch
documents stored on
the node. Also provides
JVM, network, and
filesystem metrics.

Node Action Shutdown POST /_cluster/
nodes/<NODE_ID>/_
shutdown

This shuts down the
Elasticsearch process
on the specified node.

Index Info Index
Status

GET /_status This provides
information about the
specified index, such
as the state, number of
documents, size, and
various other metrics.

Index Info Index
Metadata

GET /_cluster/
state

This provides the
index's mapping,
aliases, and settings.

Index Actions New Alias... POST /_aliases This creates a new
index alias.

Index Actions Refresh POST /<INDEX_
NAME>/_refresh

This refreshes the
index.

Index Actions Flush POST /<INDEX_
NAME>/_flush

This flushes the index.

Index Actions Optimize... POST /<INDEX_
NAME>/_optimize

This optimizes the
index.

Index Actions Gateway
Snapshot

POST /<INDEX_
NAME>/_gateway/
snapshot

This takes a snapshot
of the index.

Chapter 3

[39]

Target
(Index
or
Node)

Type
(action or
info)

Name (for
example,
"Node
Stats")

Elasticsearch API
methods

Description

Index Actions Test
Analyzer

GET /<INDEX_
NAME>/_
analyze?text=TEXT

This analyzes the
passed in text using
the index's default text
analyzer.

Index Actions Close POST /<INDEX_
NAME>/_analyze

This closes an open
index.

Index Actions Open POST /<INDEX_
NAME>/_open

This opens a closed
index.

Index Actions Delete POST /<INDEX_
NAME>/_delete

This deletes an index.

The Info actions just listed (Cluster Node Info, Node Stats, Index
Status, and Index Metadata) provide a plethora of information about
the state of your cluster and data holdings. However, looking at the
JSON responses for these items can be a little overwhelming.

Bigdesk is the next tool that we'll look at in this chapter. Both Bigdesk and Marvel,
a tool that we'll examine in the next chapter, take many of these metrics and display
them in easy-to-read charts and graphs.

The Indices tab
The Indices tab provides a list of the indices in your cluster, their disk size usage,
and the number of documents in each. It is also a way to create a new index.

This tab doesn't offer any additional information about an index
beyond what is provided in the Overview tab.

Elasticsearch-head and Bigdesk

[40]

The Browser tab
This tab lets you browse, view, and run basic filter queries against the documents in
your indices. The following screenshot is an example of what a document view will
look like in the Browser tab:

The Structured Query tab
The Structured Query tab is an advanced query builder to explore the documents
in your index. This tab is useful when you want to build a complex query without
writing out the full JSON request body.

Chapter 3

[41]

The following screenshot shows a sample query and results created using this
interface:

The Any Request tab
The Any Request tab allows you to run arbitrary API calls against your cluster and
view the results in JSON. The following screenshot shows a sample aggregation query:

Elasticsearch-head and Bigdesk

[42]

The official website
For more information about Elasticsearch-head, visit the plugin's website at
https://mobz.github.io/elasticsearch-head/.

Bigdesk
Bigdesk is a tool to look into various JVM and operating-system level metrics about
your cluster. If your cluster runs slowly or experiences unusual errors, Bigdesk is a
good place to check for anything out of the ordinary.

After following the installation instructions from the previous chapter, access
Bigdesk by visiting http://elasticsearch-node-01:9200/plugin/bigdesk/.
The initial landing page looks like this:

Like Elasticsearch-head, this page shows the nodes in your cluster and the cluster
health. Click on any of the nodes listed in the top row to display its individual
metrics:

https://mobz.github.io/elasticsearch-head/

Chapter 3

[43]

In this screenshot, we selected elasticsearch-node-02 and are looking at JVM
metrics. A notable chart in this section is the Heap Mem figure. If you are using close
to the maximum amount of committed heap memory, you will want to increase your
heap memory by setting ES_HEAP_SIZE to at the most half of your total available
memory.

Further down, we see operating system metrics, namely:

•	 CPU usage
•	 Memory usage
•	 Swap space usage
•	 Load average

Elasticsearch-head and Bigdesk

[44]

Below operating system metrics, we come to process level metrics, including
the following:

•	 Open file descriptors
•	 Process memory usage
•	 CPU usage

Refer to the operating system and process metrics charts if you are experiencing slow
queries or slow data index operations to get a sense of the performance bottleneck.

Chapter 3

[45]

Continuing down the page, we'll see some more notable charts, including:

•	 Cache size
•	 Indexing operations
•	 Filesystem activity

The Cache size chart is an important figure in this screenshot. The ID, Filter, and
Field caches can fill up based on the type of queries you run. If they get too large,
look at your queries for possible modifications to keep cache sizes down.

The Bigdesk charts are also useful for finding configuration errors. For example, if
we meant to configure our node to use 32GB of memory and a maximum of 65535
open file descriptors, but the JVM Heap Mem chart shows only show 247MB of
committed memory and the Process File Descriptors chart shows a limit of 1024
files, we'll know we didn't configure the node correctly.

For more information about Bigdesk, visit the plugin's website
at http://bigdesk.org/.

http://bigdesk.org/

Elasticsearch-head and Bigdesk

[46]

The Elasticsearch cat API
Think of the Elasticsearch cat API as a simpler version of the Elasticsearch Cluster
and Indices APIs mentioned earlier. The cat API returns results in an easy-to-read,
tab-separated format, unlike the JSON returned by the Cluster and Indices APIs.

A complete list of API methods is available at https://www.elastic.co/blog/
introducing-cat-api, but there are some highlights, which we cover in the
following sections.

Background
Elasticsearch-head and Bigdesk are, for the most part, powered by the Elasticsearch
APIs:

•	 Cluster API: https://www.elastic.co/guide/en/elasticsearch/
reference/1.7/cluster.html.

•	 Indices API: https://www.elastic.co/guide/en/elasticsearch/
reference/1.7/indices.html.

These two APIs provide a plethora of information about the inner workings of
Elasticsearch. However, they also return large JSON documents that are complicated
to interpret quickly. For example, here's a snippet from calling the Indices Stats API:

curl -XGET "http://elasticsearch-node-01:9200/_stats?pretty"

{

 ...

 "_all" : {

 "primaries" : {

 "store" : {

 "size_in_bytes" : 477638305,

 "throttle_time_in_millis" : 0

 },

 ...

It's probably not immediately clear that the size_in_bytes value of 477638305
translates to 455 MB.

https://www.elastic.co/blog/introducing-cat-api
https://www.elastic.co/blog/introducing-cat-api
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/cluster.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/cluster.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/indices.html

Chapter 3

[47]

Count
This endpoint provides a document count for the entire cluster:

curl -XGET http://elasticsearch-node-01:9200/_cat/count?v

This gives the output:

epoch timestamp count

1445910583 21:49:43 150765

Passing the v option to the cat API shows a header row.

The output columns represent the following:

•	 epoch: This represents a Unix timestamp
•	 timestamp: This represents the time of day
•	 count: This represents the number of documents in the cluster

Health
This endpoint shows the health color code for the cluster:

curl -XGET http://elasticsearch-node-01:9200/_cat/health?v

This gives the output:

epoch timestamp
 cluster status
 node.total node.data shards
 pri relo init unassign pending_tasks

1445910646 21:50:46
 my_elasticsearch_cluster green
 3 3 6
 3 0 0 0 0

These columns represent the following:

•	 epoch: This represents a Unix timestamp
•	 timestamp: This represents the time of day
•	 cluster: This represents a cluster name
•	 status: This represents a cluster status (green, yellow, or red)

Elasticsearch-head and Bigdesk

[48]

•	 node.total: This represents the number of nodes in the cluster
•	 node.data: This represents the number of data nodes in the cluster
•	 shards: This represents the number of total shards in the cluster
•	 pri: This represents the number of primary shards (as opposed

to replica shards)
•	 relo: This represents the number of shards currently relocating
•	 init: This represents the number of shards currently initializing
•	 unassign: This represents the number of unassigned shards
•	 pending_tasks: This represents the number of cluster tasks in the backlog

Indices
This endpoint provides a list of all indices, their document count, and size in your
cluster:

curl -XGET http://elasticsearch-node-01:9200/_cat/indices?v

This gives the output:

health status index pri rep docs.count docs.deleted
 store.size pri.store.size

green open twitter 3 1 150765 0
 911mb 455.5mb

This output has one line for each index in the cluster. The output columns represent
the following:

•	 health: This is index health (green, yellow, or red)
•	 status: This indicates whether the index is open or closed
•	 index: This is the index name
•	 pri: This is the number of primary shards
•	 rep: This is the replication level (1 means all shards are replicated once)
•	 docs.count: This is the number of documents in this index
•	 docs.deleted: This is the number of deleted documents
•	 store.size: This is the total index size
•	 pri.store.size: This is the size of index without replicas

Chapter 3

[49]

Shards
This endpoint provides a list of index shards and how they are distributed:

curl -XGET http://elasticsearch-node-01:9200/_cat/shards?v

This gives the output:

index shard prirep state docs store ip
 node

twitter 0 r STARTED 50192 150.2mb 127.0.1.1
 elasticsearch-node-03

twitter 0 p STARTED 50192 150.2mb 192.168.56.1
 elasticsearch-node-01

twitter 1 p STARTED 50305 152mb 127.0.1.1
 elasticsearch-node-03

twitter 1 r STARTED 50305 152mb 127.0.1.1
 elasticsearch-node-02

twitter 2 p STARTED 50268 153.2mb 127.0.1.1
 elasticsearch-node-02

twitter 2 r STARTED 50268 153.2mb 192.168.56.1
 elasticsearch-node-01

Each row in this output is for a single shard in the cluster. The columns represent the
following:

•	 index: This is the index name
•	 shard: This is the shard number
•	 prirep: This is p if a primary shard, r if a replica
•	 state: This is the availability of the shard
•	 docs: This is the number of documents in this shard
•	 store: This is the size of the shard on disk
•	 ip: This is the IP address where the shard is located
•	 node: This is the node name where the shard is located

Summary
This chapter discussed how to configure and load data into a three-node
Elasticsearch cluster. Additionally, it covered how to monitor a cluster using
Elasticsearch-head, Bigdesk, and the cat API.

The next chapter will discuss Marvel—the official Elasticsearch monitoring tool.

[51]

Marvel Dashboard
The previous two chapters covered Elasticsearch-head and Bigdesk, two open
source monitoring tools. This chapter covers Marvel, a non-free tool for monitoring
Elasticsearch.

Unlike Elasticsearch-head and Bigdesk, Marvel continuously captures and saves
performance metrics to an index. This lets users refer to historical data for analysis,
as opposed to just real-time data analysis. In this chapter, we will look a bit closer at
the following topics:

•	 Setting up Marvel
•	 Upgrading Marvel
•	 Configuring Marvel
•	 Marvel index configuration
•	 Marvel dashboard
•	 Monitoring node failures

Setting up Marvel
See Chapter 2, Installation and the Requirements for Elasticsearch, for instructions on how
to install the Marvel Agent and the Marvel Kibana dashboard.

Marvel stores its metrics data inside Elasticsearch. It is possible to store these
metrics alongside production data in the same Elasticsearch cluster; however,
this is inadvisable because:

•	 Marvel's data indices can grow quite large and, in a production setting, you
won't want these indices affecting the performance of your primary cluster.

•	 If the primary cluster is experiencing issues, having Marvel on a separate
cluster will allow you to more easily diagnose those issues.

Marvel Dashboard

[52]

•	 If Marvel is running on a normal data node, it can inadvertently be
configured to collect data on its own metrics indices. For example, if you
log in to the Marvel dashboard and start querying the Marvel indices, these
queries will then be logged back to the Marvel indices. This is probably not
the intended behavior.

For these reasons, this chapter covers how to set up a separate Elasticsearch cluster
for storing Marvel metrics data. Our primary Elasticsearch cluster from the last
chapter contains three data nodes: elasticsearch-node-01, elasticsearch-
node-02, and elasticsearch-node-03. We'll add a new cluster with a single
Elasticsearch node to store Marvel's data.

Follow these steps to create a new Elasticsearch cluster for Marvel data:

1.	 On a new host called elasticsearch-marvel-01, install Elasticsearch 2.3.2
using the instructions from Chapter 2, Installation and the Requirements for
Elasticsearch.

2.	 Configure Elasticsearch by editing the elasticsearch.yml configuration file
to look like this:
index.routing.allocation.disable_allocation: false

cluster.routing.allocation.enable : all

marvel.agent.enabled: false

cluster.name: my_monitoring_cluster

node.name: elasticsearch-marvel-01

bootstrap.mlockall: true

discovery.zen.ping.multicast.enabled: false

3.	 Install Elasticsearch-head on elasticsearch-marvel-01:
 sudo /usr/share/elasticsearch/bin/plugin

 install mobz/elasticsearch-head

4.	 Install the Marvel Agent on the three primary Elasticsearch nodes
(elasticsearch-node-01, elasticsearch-node-02, and elasticsearch-
node-03). Log in to each host and run the following command to install
Marvel:
 sudo /usr/share/elasticsearch/bin/plugin install license

 sudo /usr/share/elasticsearch/bin/plugin install marvel-agent

Chapter 4

[53]

As mentioned in Chapter 2, Installation and the Requirements for
Elasticsearch, make sure to restart each node after installing Marvel,
in order to get the Marvel agent started.

5.	 Add the following lines of configuration to the elasticsearch.yml in each
of the original three elasticsearch-node-0* nodes:
marvel.agent.exporters:

 my_monitoring_cluster:

 type: http

 host: ["http://elasticsearch-marvel-01:9200"]

6.	 For a larger Marvel cluster with three nodes, for example, the configuration
line might look like this:
marvel.agent.exporters:

 my_monitoring_cluster:

 type: http

 host: ["elasticsearch-marvel-01:9200",
 "elasticsearch-marvel-02:9200",
 "elasticsearch-marvel-03:9200"]

7.	 Install Kibana and the Marvel Kibana plugin on elasticsearch-marvel-01
using the instructions found in Chapter 2, Installation and the Requirements for
Elasticsearch.

8.	 Configure the Marvel Kibana plugin by editing config/kibana.yml to look
like this:
server.port: 5601

server.host: "0.0.0.0"

elasticsearch.url: http://elasticsearch-marvel-01:9200

9.	 Start Kibana on elasticsearch-marvel-01 from the Kibana installation
directory with the following command:
bin/kibana

Marvel Dashboard

[54]

The output from this command should look like this:

10.	 Visit the Marvel dashboard on elasticsearch-marvel-01 in a browser by
going to http://elasticsearch-marvel-01:5601/app/marvel, as seen
in the following screenshot:

Chapter 4

[55]

11.	 Scroll down the page and click the Show History or Hide History button
(highlighted in the next screenshot) to view shard activity for the twitter
index:

12.	 Open Elasticsearch-head on elasticsearch-marvel-01 and view the
indices automatically created by Marvel by visiting http://elasticsearch-
marvel-01:9200/_plugin/head/:

Marvel Dashboard

[56]

The .marvel-2015.12.20 index contains historical data collected by Marvel. By
default, Marvel creates one new index per day to store its data.

Server time synchronization
The clocks on all Elasticsearch hosts must be synchronized or Marvel
won't show any data. Clock synchronization varies depending on
server setup. On a cluster of Ubuntu hosts, run this command on all
nodes to synchronize their clocks:
sudo ntpupdate pool.ntp.org

Upgrading Marvel
Marvel can be upgraded on a rolling basis. This means that nodes are upgraded one
at a time rather than having to shut down the entire cluster to perform an upgrade.
For environments with a monitoring cluster and a production cluster, upgrade
Marvel on the monitoring cluster before upgrading it on the production cluster.

To upgrade the Marvel Agent, run these steps on all nodes in the monitoring cluster
(in this case, just elasticsearch-marvel-01), then for each node in the production
cluster (elasticsearch-node-01, elasticsearch-node-02, and elasticsearch-
node-03):

1.	 Optional: Disable shard allocation on all nodes.

Disabling shard allocation will make the upgrade faster because
the cluster won't try to reallocate shards to other nodes when
the node goes down for an upgrade.

Run the following command:

curl -XPUT elasticsearch-host-01:9200/_cluster/settings -d '{

 "transient" : {

 "cluster.routing.allocation.enable" : "none"

 }

 }'

2.	 Stop Elasticsearch:
sudo /etc/init.d/elasticsearch stop

3.	 Remove the old Marvel plugin:
bin/plugin remove marvel-agent

Chapter 4

[57]

4.	 Install the new Marvel plugin:
plugin install marvel-agent

5.	 Start Elasticsearch:
sudo /etc/init.d/elasticsearch start

6.	 Check logs for errors:
tail -f /var/log/elasticsearch/*

7.	 Once all nodes in the cluster are upgraded, re-enable shard allocation:
curl -XPUT elasticsearch-host-01:9200/_cluster/settings -d '{

 "transient" : {

 "cluster.routing.allocation.enable" : "all"

 }

}'

8.	 Repeat all of these steps for the production cluster.
To upgrade the Marvel Kibana dashboard, run the following commands on
elasticsearch-marvel-01

9.	 Uninstall the old Marvel Kibana plugin with the following command:
bin/kibana plugin --remove marvel

10.	 Install the new Marvel Kibana plugin. In this example, we are upgrading to
Marvel 2.3.2:
bin/kibana plugin install marvel/2.3.2

Configuring Marvel
This section covers how to configure the Marvel Agent and data index. Specifically,
we cover:

•	 Setting the Marvel data store location
•	 Specifying which indices to monitor
•	 Security settings
•	 Data export frequency
•	 Marvel index configuration

Marvel Dashboard

[58]

Marvel agent configuration settings
This section covers configuring the Marvel Agent. Configure the Agent by editing
the elasticsearch.yml file on each node we are monitoring.

The marvel.agent.exporters setting determines where the Agent will deliver its
metrics to. By default, the Marvel agent will export data to the same Elasticsearch
instance that it is installed on. In our example cluster, we are exporting data to
elasticsearch-marvel-01, and the configuration value looks like this:

marvel.agent.exporters:
 my_monitoring_cluster:
 type: http
 host: ["http://elasticsearch-marvel-01:9200"]

Other options for the marvel.agent.exporters settings include:

marvel.agent.exporters:
 your_exporter_name:
 type: http # Set to local or http
 host: ["http://host-01:9200", "http://host-02:9200"]
 # List of hosts to send data to over http or https

 auth:
 username: basic_auth_username # optional
 password: basic_auth_password # optional

 connection:
 timeout: 6s # optional: connection timeout
 read_timeout: 60s # optional: response timeout.
 keep_alive: true # persistent connections

 ssl:
 hostname_verification: true
 # https only: verify host certificate
 protocol: TLSv1.2 # https only: protocol
 truststore.path: /path/to/file # https only:
.jks truststore
 truststore.password: password
 # https only: .jks truststore password
 truststore.algorithm: SunX509
 # https only: .jks truststore algorithm

 index:
 name:
 time_format: YYYY.MM.dd

Chapter 4

[59]

 # marvel index suffix.
 # Set to a value like YYYY.MM to create new
 # indices monthly instead of daily

Other elasticsearch.yml configuration options are described here:

Option Default
Value

Description

marvel.enabled true Controls whether monitoring data will be
exported from this node.

marvel.agent.interval 10s Time interval between monitoring data
exports. Can be set to -1 to disable
exporting of data altogether.

marvel.agent.indices _all
List of

Indices to export data from. Supports
wildcard *, addition +, and subtraction
- operators. For example, to export
data only from nodes that start with
twitter_, except for the index twitter_
development, we would set this
parameter to +twitter_*,-twitter_
development.

marvel.agent.cluster.
state.timeout

10m Timeout for collecting cluster state.

marvel.agent.cluster.
stats.timeout

10m Timeout for collecting cluster statistics.

marvel.history.duration 7d Length of time to retain Marvel indices.
The marvel-agent will automatically
delete indices older than this value. Set to
-1 to disable automatic index deletion.

After making any changes to elasticsearch.yml, restart Elasticsearch:

sudo /etc/init.d/elasticsearch restart

Marvel index configuration
This section covers how to configure the number of shards, replicas, and various
other index settings used by Marvel. By default, each Marvel index uses one shard
and one replica:

1.	 To view the default settings used by Marvel, run:
curl -XGET
 "http://elasticsearch-marvel-01:9200/_template/marvel?pretty"

Marvel Dashboard

[60]

This will return a large JSON object. The settings that are important are
marvel.order, marvel.template, and marvel.settings:

{

 "marvel" : {

 "order" : 0,

 "template" : ".marvel*",

 "settings" : {

 "index.mapper.dynamic" : "true",

 "index.marvel.index_format" : "6",

 "index.analysis.analyzer.default.type" : "standard",

 "index.number_of_replicas" : "1",

 "index.number_of_shards" : "1",

 "index.analysis.analyzer.default.stopwords" : "_none_"

 },

 ...

}

2.	 For large Marvel clusters, consider increasing the number of shards to no
more than the number of hosts in your cluster for optimal performance.
For example, for a four-node Marvel monitoring cluster, increase the
number of shards to four with the following command:
curl -XPOST
 "http://elasticsearch-marvel-01:9200/_template/
 marvel_01?pretty" -d '{

 "template": ".marvel*",

 "order": 1,

 "settings": {

 "number_of_shards": 4

 }

}'

Notice the template is set to .marvel* in order to only alter Marvel's
indices. Additionally, the order setting is 1 so this template,
marvel_01, will have higher precedence than the default template
marvel.

Chapter 4

[61]

Now, when checking the Marvel settings, we should see:

curl -XGET
 "http://elasticsearch-marvel-01:9200/_template/marvel_01?pretty"

{

 "marvel_01" : {

 "order" : 1,

 "template" : ".marvel*",

 "settings" : {

 "index.number_of_shards" : "4"

 },

 "mappings" : { },

 "aliases" : { }

 }

}

Understanding the Marvel dashboard
This section covers how to use the Marvel dashboard to better understand the state
of your cluster.

To make monitoring our cluster more interesting, we'll stream more Twitter data into
it using the stream2es program, and run random queries against the index using a
custom bash script described in this section.

See Chapter 3, Elasticsearch-head and Bigdesk for detailed instructions on how to
install and use stream2es, but, for quick reference, start stream2es using the
following command:

./stream2es twitter --target
 http://elasticsearch-node-01:9200/twitter/status

Next, we'll simulate user interactions by running random queries against
the twitter index. Create a new bash script called run_queries.sh with
the following content:

#!/bin/sh

Path to dictionary file
DICTIONARY_PATH=/usr/share/dict/words
ELASTICSEARCH_URI=http://elasticsearch-node-01:9200/twitter

Total dictionary words

Marvel Dashboard

[62]

TOTAL_WORDS=`wc -l $DICTIONARY_PATH | awk '{print $1}'`

while :
do
 # Pick a random word
 WORD_INDEX=`python
 -c "import random;print random.randint(1,$TOTAL_WORDS)"`
 WORD=`sed "${WORD_INDEX}q;d" $DICTIONARY_PATH`

 # Run query
 echo "Querying elasticsearch $ELASTICSEARCH_URI for $WORD "
 curl -XGET "${ELASTICSEARCH_URI}/_search?q=$WORD"

 # Sleep for one second before running the next query
 echo
 echo "Press [CTRL+C] to stop.."
 sleep 1
done

This script queries the Elasticsearch twitter index with a random dictionary word
once every second.

You may need to install a dictionary on some Linux systems to get this
to work. On Ubuntu, to get a dictionary of American English or British
English words, run the following.
For American English:
sudo apt-get install wamerican

For British English:
sudo apt-get install wbritish

Now make the run_queries.sh script executable:

chmod +x run_queries.sh

And finally, run the run_queries.sh script to start hitting our cluster with random
queries once a second:

./run_queries.sh

Chapter 4

[63]

After running stream2es and run_queries.sh for a few minutes, open Marvel and
navigate to the Overview dashboard to explore the impact of these scripts on our
cluster.

Overview dashboard
The Overview dashboard is the landing page of the Marvel Kibana dashboard. After
running the stream2es command and run_queries.sh script mentioned previously
for a few minutes, this dashboard will look something like this:

Marvel Dashboard

[64]

Here are the labels from the previous screenshot:

No. Description
1 Dashboard title.
2 Other Marvel dashboards.
3 Page auto-refresh interval.
4 Time filter. Defaults to Last 1 hour.
5 Cluster information including cluster status, number of nodes, total memory,

and number of documents.
6 Current and historical search rate. Sample use case: see how heavy search traffic

affects the cluster.
7 Current and historical search latency. Sample use case: diagnose why queries

are running slow.
8 Current and historical indexing rate. Sample use case: diagnose why a bulk

index operation failed.
9 Current and historical indexing latency. Sample use case: diagnose why

indexing operations are slow.
10 Shard activity. Gives the status of shards when they are recovering.

Note that run_queries.sh only runs one query per second, but the
Search Request Rate chart shows an average of about three queries
per second. This is because every time a query is run, it's actually
being run against all three data nodes. The Search Request Rate chart
shows the average queries per second across all data nodes.

Chapter 4

[65]

Any of Marvel's charts can be filtered by time range by clicking and dragging on the
chart, shown in the following figure:

Here is the label from the previous screenshot:

Number Description
1 Click and drag on any chart to filter the chart by time.

Marvel Dashboard

[66]

After applying a filter, the Marvel charts and cluster information banner will update
to show the state of the cluster at the selected moment in time. In the following
screenshot, we can see that the cluster was in a yellow state during the selected
time period:

Indices dashboard
The Indices dashboard lets you examine historical data for a specific index,
including:

•	 Search rate
•	 Index rate
•	 Index size
•	 Memory
•	 Document count
•	 Field data size

Chapter 4

[67]

The Indices dashboard is very similar to the Overview dashboard, except for the list
of indices at the bottom of the page, as seen in the following screenshot:

Here is the label from the preceding screenshot:

Number Description
1 List of all indices in the cluster.

Marvel Dashboard

[68]

Click on the twitter index at the bottom of this page to bring us to a page showing
historical and real-time metrics for that particular index:

Here are the labels from the previous screenshot:

Number Description
1 Index details.
2 Historical and real-time search rate for the index.
3 Historical and real-time indexing rate.
4 Historical and real-time index size.
5 Historical and real-time Lucene memory size.
6 Historical and real-time document count.

Chapter 4

[69]

Number Description
7 Historical and real-time field data size. Sample use case: diagnose

OutOfMemoryError exceptions.
8 Shard distribution for this index. Click on any of the nodes to go to

the node details page, described in the next section.

Nodes dashboard
The Nodes dashboard provides an overview of the cluster's health and node
utilization, in addition to historical and real-time statistics for specific nodes.
This dashboard is used to examine Elasticsearch issues such as:

•	 Nodes in the cluster that are down
•	 Nodes that are running low on disk space
•	 Nodes with high CPU and memory usage

Opening the Nodes dashboard brings us to the following page:

Marvel Dashboard

[70]

This screenshot shows an overview of all nodes in the cluster, along with some real-
time metrics. One advantage this page has over Elasticsearch-head is that if a node
goes down, this page will identify that the node used to be part of the cluster but is
currently offline. Elasticsearch-head on the other hand won't display the offline node
at all.

Clicking on a specific node opens up a dashboard showing data only for that host.
The next screenshot shows the node stats for elasticsearch-node-02:

This page shows several historical and real-time metrics for the selected node:

•	 Search Latency: Historical analysis of search performance.
•	 Index Latency: Historical analysis of data index performance.
•	 JVM Heap Usage: High heap usage may indicate Java OutOfMemoryError

exceptions.

Chapter 4

[71]

•	 CPU Utilization: High CPU utilization can be caused by a number of factors,
but some common causes are running complex queries and shard movement.

•	 System Load Average: This metric is a measure of the average amount of
work performed by the node. This value should ideally be less than the
number of CPU cores on the node.

•	 Segment Count: Number of Lucene segments. This statistic will vary from
cluster to cluster, but if the value increases to higher than usual, try running
a cluster optimization.

•	 Shard Legend: Shows what shards are allocated to this node.

Monitoring node failures
As mentioned previously, Marvel keeps track of nodes even after they leave the
cluster. This is useful when working with large clusters that have many nodes to
keep track of.

We will demonstrate how the Marvel Nodes dashboard displays node failures by
shutting down elasticsearch-node-01:

From elasticsearch-node-01

sudo service elasticsearch stop

The Nodes dashboard in Marvel now looks like this:

Marvel Dashboard

[72]

Here we can see Marvel indicates elasticsearch-node-01 used to be part of the
cluster, but is currently offline.

Elasticsearch-head, on the other hand, shows us the cluster in a yellow state, but
does not indicate that elasticsearch-node-01 was ever part of the cluster:

Elasticsearch-head only displays elasticsearch-node-02 and
elasticsearch-node-03, not elasticsearch-node-01.

Summary
This chapter covered how to install and configure the Marvel Agent and the Marvel
Kibana dashboard. Additionally, it covered setting up a secondary monitoring
cluster for Marvel to store its metrics. Finally, the chapter talked about the various
Marvel Kibana dashboard pages and discussed at a high level how to use those
pages to diagnose cluster issues. The next chapter talks about another monitoring
tool, Kopf, and goes into more detail about how to use Kibana.

[73]

System Monitoring
The previous two chapters focused on Elasticsearch monitoring tools, including
Elasticsearch-head, Bigdesk, and Marvel. This chapter will introduce another
monitoring tool, Kopf. We will also discuss Elasticsearch, Logstash, and Kibana
(ELK), Nagios, and various GNU/Linux command line tools in terms of general
purpose system monitoring.

This chapter covers these topics:

•	 Monitoring Elasticsearch with Kopf
•	 Configuring an Elasticsearch, Logstash, and Kibana (ELK) stack for system

log file aggregation and analysis
•	 System-level monitoring of a cluster using Nagios
•	 GNU/Linux command line tools for system and process management

Working with Kopf
Kopf is a web-based cluster management tool like Elasticsearch-head, but has a more
modern look and a few different features. With Kopf, users can check the state of
nodes and indices, run REST queries, and perform basic management tasks.

System Monitoring

[74]

Installing Kopf
Kopf works on Elasticsearch 0.90.x and up. Use the following table to determine
which Kopf version is best suited to your cluster:

Elasticsearch Version Kopf Branch

0.90.x 0.90

1.x 1.0

2.x 2.0

To install Kopf, follow these steps:

1.	 Install Kopf on at least one node in your cluster as an Elasticsearch plugin
with the following command, replacing {branch} with the value from the
branch column in the preceding table:
$ sudo /usr/share/elasticsearch/bin/plugin install lmenezes/
elasticsearch-kopf/{branch}

This example will install Kopf on elasticsearch-node-01. Since this node
is running Elasticsearch 2.3.2, the command will look like this:

$ sudo /usr/share/elasticsearch/bin/plugin install lmenezes/
elasticsearch-kopf/2.0

2.	 To open Kopf, browse to:

http://elasticsearch-node-01:9200/_plugin/kopf/

You should see something like this:

Chapter 5

[75]

Kopf cluster page

No. Description
1 Titlebar and cluster state
2 Cluster summary
3 Display filters
4 Node and index actions
5 Indices
6 Nodes
7 Shard allocations

System Monitoring

[76]

The green title bar on this page indicates that the cluster is in a green state. Likewise,
the title bar changes to yellow or red if it enters either of those states.

All Kopf dashboard pages also show the indicators listed on the top of this screenshot,
including number of nodes, indices, shards, documents, and total index size.

The cluster page
The screenshot in the previous section shows the Kopf cluster page. The Elasticsearch
cluster's nodes, indices, and shard allocations are listed on this page. This page also
provides the following administrative capabilities:

•	 Closing and opening indices
•	 Optimizing indices
•	 Refreshing indices
•	 Clearing index caches
•	 Deleting indices
•	 Disabling/enabling shard allocation
•	 Viewing index settings
•	 Viewing index mappings

Like the Cluster Overview tab in Elasticsearch-head, the Kopf cluster page is a great
first stop when diagnosing Elasticsearch issues. It will inform you of the cluster state,
whether a node is down, and if the node has a high heap/disk/CPU/load.

Chapter 5

[77]

The nodes page
The nodes page, shown in the following screenshot, provides figures for load,
CPU usage, JVM heap usage, disk usage, and uptime for all nodes in the cluster:

Kopf nodes page

This page, like the cluster page, is a good starting point when diagnosing
Elasticsearch issues.

System Monitoring

[78]

The rest page
The Kopf rest page is a general-purpose tool for running arbitrary queries against
Elasticsearch. You can run any query in the Elasticsearch API using this page. The
following screenshot is running a simple Search API query against the Elasticsearch
cluster:

Kopf rest page

The rest page is useful for everything from testing query syntax to retrieving cluster
metrics, and can help in gauging and optimizing query performance. For example,
if a particular query is running slowly, use the rest page to test different variations
of the query and determine which query components have the highest performance
impact.

Chapter 5

[79]

The more dropdown
The more dropdown has a variety of other cluster management tools, including:

Tool Name Description
Create Index Create an index and assign a number of shards, replicas, mapping,

and other settings
Cluster Settings Configure cluster, routing, and recovery settings
Aliases View existing and create new index aliases
Analysis Test and verify index analyzers
Percolator View existing and create new percolator queries
Warmers View existing and create new index warmer queries
Snapshot Create new index snapshots on the local filesystem, URL, S3, HDFS,

or Azure
Index Templates View existing and create new index templates
Cat APIs Run a subset of all possible Elasticsearch API "Cat" methods
Hot Threads Query for Elasticsearch "Hot" threads

The following screenshot shows the HOT THREADS page. This page is helpful
when diagnosing slow search and indexing performance:

Hot Threads

System Monitoring

[80]

Working with Logstash and Kibana
Logstash is a utility for aggregating and normalizing log files from disparate sources
and storing them in an Elasticsearch cluster. Once logs are stored in Elasticsearch, we
will use Kibana, the same tool Marvel's user interface is built on, to view and explore
our aggregated logs.

ELK
The Elasticsearch community refers to the Elasticsearch, Logstash, and Kibana tool
combination as the ELK stack. This section shows how to load NGINX server logs
into ELK, but there are many other potential use cases for these technologies.

ELK can help us explore NGINX server logs by:

•	 Visualizing server traffic over time
•	 Plotting server visits by location on a map
•	 Searching logs by resource extension (HTML, JS, CSS, and so on), IP address,

byte count, or user-agent strings
•	 Discovering web requests that result in internal server errors
•	 Finding attackers in a distributed denial of service attack

Other uses for ELK include:

•	 Logging all Elasticsearch queries in a web application for future performance
analysis

•	 Aggregating server system logs into one location for analysis and
visualization

•	 Logging operations from a data processing or ingestion pipeline for future
analysis and auditing

Installation
Although this example will store aggregate log data from Logstash directly into
Elasticsearch, it's important to ensure that these aggregated logs do not affect the
performance of the production cluster. To avoid this potential performance problem,
we'll configure Logstash to route logs to a secondary monitoring cluster; in our case,
this is the elasticsearch-marvel-01 node.

Chapter 5

[81]

Installing Logstash
It doesn't matter what host Logstash lives on, since it can redirect logs to any
Elasticsearch instance. Since Kibana will be installed on elasticsearch-marvel-01,
we'll put Logstash there as well:

From elasticsearch-marvel-01, run the following:

sudo mkdir /opt/logstash

sudo chown -R `whoami` /opt/logstash

cd /opt/logstash

wget https://download.elastic.co/
 logstash/logstash/logstash-2.1.1.tar.gz

tar xzvf logstash-2.1.1.tar.gz

cd logstash-2.1.1/

Loading NGINX logs
Now let's load some sample NGINX logs into Elasticsearch using Logstash. While
Logstash has built-in parsers for many different log types (Apache, Linux syslogs, and
so on), it doesn't natively support NGINX logs. This means that users have to explicitly
tell Logstash how to deal with these files. To address this, follow these steps:

1.	 Put some sample NGINX log files in /opt/logstash/logs:
$ ls -1 /opt/logstash/logs | head –n20

NGINX log files for Logstash

www.allitebooks.com

http://www.allitebooks.org

System Monitoring

[82]

2.	 Create a new file on /opt/logstash/patterns/nginx.grok on
elasticsearch-marvel-01 with the following content:
NGINXACCESS
 %{IPORHOST:remote_addr} -
 %{USERNAME:remote_user} \[
 %{HTTPDATE:timestamp}\]
 %{QS:request} %{INT:status}
 %{INT:body_bytes_sent}
 %{QS:http_referer}
 %{QS:http_user_agent}

Then create a Logstash configuration file at /opt/logstash/logstash.conf
with the following content:

input {
 file {
 type => "nginx"
 path => "/opt/logstash/logs/access.log*"
 start_position => "beginning"
 sincedb_path => "/dev/null"
 }
}

filter {
 if [type] == "nginx" {
 grok {
 patterns_dir => "./patterns"
 match => {
 "message" => "%{NGINXACCESS}"
 }
 }
 date {
 match => ["timestamp" , "dd/MMM/yyyy:HH:mm:ss Z"]
 }
 geoip {
 source => "remote_addr"
 }

 }
}

output {
 elasticsearch { hosts => ["elasticsearch-marvel-01:9200"] }
}

Chapter 5

[83]

This configuration tells Logstash to read all access.log* files from the
filesystem using our newly defined nginx format, identifies the timestamp
column used by our NGINX format, tells Logstash to use a Geo IP lookup
on the visitor's IP address, and finally tells Logstash to save logs to the
Elasticsearch host instance at elasticsearch-marvel-01:9200.

Read more about the Logstash configuration file format at:
https://www.elastic.co/guide/en/logstash/current/
configuration.html.

3.	 Now run Logstash, specifying the configuration file:

cd /opt/logstash

./logstash-2.1.1/bin/logstash agent -f logstash.conf

After a few minutes, Logstash will load all of the data into Elasticsearch.
The new index created in Kopf should now be viewable.
The next section will focus on exploring the data in Kibana.

Viewing Logstash index from Kopf

https://www.elastic.co/guide/en/logstash/current/configuration.html
https://www.elastic.co/guide/en/logstash/current/configuration.html

System Monitoring

[84]

This process will go much faster if the geoip configuration setting
from the logstash.conf configuration file is removed.

Installing Kibana
Follow these steps to install Kibana on your system:

1.	 Determine the appropriate version of Kibana to download from https://
www.elastic.co/downloads/kibana. Since this example is using
Elasticsearch 2.3.2, we'll install Kibana 4.5.4.

2.	 Download and unpackage Kibana on elasticsearch-marvel-01 in the /
opt/kibana/ directory:
sudo mkdir /opt/kibana

sudo chown -R `whoami` /opt/kibana/

cd /opt/kibana/

wget https://download.elastic.co/
 kibana/kibana/kibana-4.5.0-linux-x64.tar.gz

tar xzvf kibana-4.5.0-linux-x64.tar.gz

cd kibana-4.5.0-linux-x64/

3.	 Edit Kibana's conf/kibana.yml file to point to the correct Elasticsearch host.
In this case, change this:
The Elasticsearch instance to use for all your queries.

elasticsearch_url: "http://localhost:9200"

To:

The Elasticsearch instance to use for all your queries.

elasticsearch_url: "http://elasticsearch-marvel-01:9200"

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana

Chapter 5

[85]

4.	 Now start Kibana:
./bin/kibana

5.	 Visit http://elasticsearch-marvel-01:5601/ to view the Kibana landing
page. It should look like the following screenshot:

Configuring Kibana

6.	 Notice logstash-* is already selected by default, so just click the Create
button to continue.

System Monitoring

[86]

7.	 Navigate to the Discover tab to start exploring your log data:

Search for data in Kibana

You may not see any data here at first. This is because all of the data loaded
is more than 15 minutes old.

Chapter 5

[87]

8.	 Click the date range filter in the upper-right of the page, by default set to
Last 15 Minutes. Now select a more appropriate range, such as This Month.
You should now start to see some results:

Viewing log data from this month

System Monitoring

[88]

The default _source column is a little hard to read, so specify some columns
from the left-hand side of the page: http_user_agent, remote_addr, and status.
Clicking on any of these selected columns will run an aggregation query displaying
the most commonly occurring values for each field:

Applying search filters to Kibana results

Chapter 5

[89]

The Visualize page lets us create arbitrary data visualizations. As an example, we'll
create two sample visualizations: a Tile map to plot the geolocated IP addresses in
our dataset, and a Vertical bar chart for displaying counts of different HTTP status
codes in the log files. Follow these steps:

1.	 First, configure the Tile map visualization as shown here:

Geospatial visualization of Kibana results

System Monitoring

[90]

2.	 Click Save to save your changes, and create the Vertical bar chart:

Breakdown by HTTP status code

3.	 After saving this chart, go to the Dashboard page in order to display both
components on the same page.

Chapter 5

[91]

4.	 Select the two components by clicking the Add Visualization button.
Move them around the dashboard to resize and reorder them until you get
something like this:

Kibana dashboard view

Learn more about Kibana and Logstash by visiting the official
Elasticsearch documentation at:

•	 https://www.elastic.co/videos/kibana-logstash

•	 https://www.elastic.co/products/kibana

•	 https://www.elastic.co/products/logstash

https://www.elastic.co/videos/kibana-logstash
https://www.elastic.co/products/kibana
https://www.elastic.co/products/logstash

System Monitoring

[92]

Working with Nagios
Nagios is a system monitoring and alerting tool. This section will focus on
configuring a simple Nagios installation that monitors the nodes in our Elasticsearch
cluster, as well as the Elasticsearch process on those. If a node or process shuts down,
Nagios will send us an alert.

It's a good idea to install Nagios on a host outside of the Elasticsearch clusters in
order to avoid affecting the monitoring process due to other things going on in the
system, such as high Elasticsearch load. Create a new host for Nagios and call it
elasticsearch-nagios-01.

Installing Nagios
In addition to the dedicated Nagios host, elasticsearch-nagios-01, install the
Nagios Remote Plugin Executor (NRPE) server on all of the Elasticsearch cluster
nodes in order to monitor the Elasticsearch process. Follow these steps:

1.	 Run the following command on each of the Elasticsearch nodes:
elasticsearch-node-01, elasticsearch-node-02, elasticsearch-
node-03, and elasticsearch-marvel-01:
sudo apt-get install nagios-nrpe-server

2.	 Then install Nagios on the new host elasticsearch-nagios-01:
sudo apt-get install nagios3 nagios-nrpe-plugin

3.	 This process will ask you to enter a password. Make sure you remember it.
Now a Nagios plugin is needed to ensure that Elasticsearch is running. There
are several plugins available, but this book uses a simple script available on
GitHub: https://github.com/orthecreedence/check_elasticsearch.

4.	 To download and install this script on elasticsearch-nagios-01, run:
wget
 https://raw.githubusercontent.com/orthecreedence/
 check_elasticsearch/master/check_elasticsearch

chmod +x check_elasticsearch

sudo cp check_elasticsearch /usr/lib/nagios/plugins/

5.	 Next, add a Nagios command to run this plugin. On elasticsearch-
nagios-01, create a new file, /etc/nagios-plugins/config/
elasticsearch.cfg, with this content:
Check to ensure elasticsearch is running
define command{

https://github.com/orthecreedence/check_elasticsearch

Chapter 5

[93]

 command_name check_elasticsearch
 command_line /usr/lib/nagios/plugins/check_
elasticsearch -H $HOSTNAME$ -P 9200
 }

6.	 Lastly, specify which hosts to monitor for the Nagios server. Be sure to
have it monitor the Elasticsearch process on those hosts, using the check_
elasticsearch utility, by editing the configuration file /etc/nagios3/
conf.d/localhost_nagios2.cfg:
define host{
 use generic-host
 host_name elasticsearch-node-01
 alias elasticsearch-node-01
 address 192.168.56.111
 }

define host{
 use generic-host
 host_name elasticsearch-node-02
 alias elasticsearch-node-02
 address 192.168.56.112
 }

define host{
 use generic-host
 host_name elasticsearch-node-03
 alias elasticsearch-node-03
 address 192.168.56.113
 }

define host{
 use generic-host
 host_name elasticsearch-marvel-01
 alias elasticsearch-marvel-01
 address 192.168.56.120
 }

define hostgroup {
 hostgroup_name elasticsearch-servers
 alias Elasticsearch servers
 members elasticsearch-node-01,
 elasticsearch-node-02,
 elasticsearch-node-03,
 elasticsearch-marvel-01
 }

System Monitoring

[94]

define contact{
 contact_name Elasticsearch Admin
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r,f
 host_notification_options d,u,r,f
 service_notification_commands
 notify-service-by-email
 host_notification_commands notify-host-by-email
 email admin@your-domain.com
 }

define service{
 use
 generic-service ;
 Name of service template to use
 hostgroup_name
 elasticsearch-servers
 service_description Elasticsearch
 check_command check_elasticsearch
 }

7.	 Next, configure elasticsearch-node-01, elasticsearch-node-02,
elasticsearch-node-03, and elasticsearch-marvel-01 to allow our
Nagios host elasticsearch-nagios-01 to collect metrics:
sudo vim /etc/nagios/nrpe.cfg

8.	 Edit the allowed_hosts setting to include the elasticsearch-nagios-01 IP
address; in our case, this is 192.168.56.130:
allowed_hosts=127.0.0.1,192.168.56.130

9.	 Now restart the NRPE server on all nodes in our Elasticsearch clusters:
sudo service nagios-nrpe-server restart

10.	 And finally, restart nagios3 on elasticsearch-nagios-01:
sudo service nagios3 restart

11.	 Open a web browser to see the Nagios web administration portal, with the
username nagiosadmin and the password you entered earlier:
http://elasticsearch-nagios-01/nagios3

12.	 After giving Nagios a few minutes to collect metrics on all nodes, click on the
Hosts sidebar link to see the state of all nodes in the clusters:

Chapter 5

[95]

Viewing Elasticsearch hosts in Nagios

13.	 Click Services in the left-hand menu to see the state of the Elasticsearch
process on each node:

Viewing Elasticsearch status in Nagios

System Monitoring

[96]

Notice that in elasticsearch-marvel-01, the Elasticsearch
process is in a yellow WARNING state. This means that the cluster
is in a yellow state, because there is only one node in the Marvel
cluster and not all shards are replicated.

Now we'll demonstrate what Nagios does when one node shuts down and we stop
the Elasticsearch process on a different node.

Shut down elasticsearch-node-01 and disable Elasticsearch on elasticsearch-
node-02:

ssh root@elasticsearch-node-01

shutdown -h now

ssh root@elasticsearch-node-02

service elasticsearch stop

The next time Nagios polls for the cluster state (this will take a few minutes), the
following will display on the Nagios web dashboard's services page:

Error reporting in Nagios

Chapter 5

[97]

Nagios now indicates that elasticsearch-node-01 is down and that it can't connect
to the Elasticsearch process on elasticsearch-node-02. Nagios also indicates
Elasticsearch has entered a red state on elasticsearch-node-03 because not all
shards are available. Nagios will send admin@your-domain.com an email about
the warnings and errors, based on our previous configuration. Things will return
to normal after starting elasticsearch-node-01 and restarting Elasticsearch on
elasticsearch-node-02.

Command line tools for system and
process management
The command line is an invaluable tool for system monitoring. In this section,
we'll go over a few basic GNU/Linux command line utilities for system and process
management. Knowing these tools is essential for anyone managing an Elasticsearch
cluster on GNU/Linux.

top
The top command lists processes with the highest CPU and memory. This tool is
useful to determine whether a process other than Elasticsearch is hogging resources,
or to check whether Elasticsearch is using an abnormal amount of CPU or memory.

The top command refreshes automatically, so you only have to run it once and watch.

When running the command, you should see the following result:

The top command

System Monitoring

[98]

Press Shift+M while top is running to sort processes by those
using the most memory instead of CPU.

tail
The tail -f command is useful for viewing log files in real time. Use it to view
Elasticsearch log files as follows:

tail -f /var/log/elasticsearch/*

"tailing" Elasticsearch log files

grep
The grep command is a general purpose text search tool. One useful application of
grep is to search through a directory of log files for a specific string. To grep or search
/var/log/elasticsearch for all logged exceptions, run the following command
with the -r (recursive) and -i (case insensitive search) options:

grep -ir exception /var/log/elasticsearch/*.log

Chapter 5

[99]

Assuming there are some exceptions logged in your Elasticsearch log files, you
should see something like this:

"grepping" log files for exceptions

ps
Use the ps command along with the grep command to see whether a particular
process is running. This is a useful sanity check if you are running into issues
stopping or starting Elasticsearch (or another process).

To check whether Elasticsearch is running, use the following command:

ps -ef | grep -i elasticsearch

System Monitoring

[100]

This command will output nothing if Elasticsearch is not running. If it's running, you
should see something like this:

Using ps to view the Elasticsearch process

kill
Use the kill command stop a process that won't shut down gracefully. For example,
to shut down the Elasticsearch process listed previously, run the following command:

sudo kill 2501

Kill the Elasticsearch process and verify it with the ps command

Chapter 5

[101]

free
The free command tells us how much memory is in use on a system. Its usage is:

free -m

Running this command will yield something similar to:

The free command shows the amount of RAM on the system

This output means that we are using 333 MB of our available 490 MB memory store.

du and df
The du and df commands tell us how much disk space is available on the host.
Use du to see how much data is stored in the current directory, as shown here:

cd /var/log/elasticsearch

du -h

You should see a result similar to this:

The du command calculates the size of a directory

In this case, there are 15 MB of log files in /var/log/elasticsearch/.

System Monitoring

[102]

Use df to see how much disk space is available across the system, as shown here:

df -h

You should see a result similar to this:

Disk usage on elasticsearch-node-01

The output here says there is 1.3G of available storage left on the / mount point.

Note that in both of these commands, the -h flag stands for human
readable, meaning they will output values in terms of KB, MB, or GB,
as opposed to just bytes.

Summary
This chapter examined the Elasticsearch monitoring tool Kopf, the Elasticsearch,
Logstash, and Kibana (ELK) log aggregation stack, the system monitoring tool
Nagios, and various GNU/Linux command line utilities.

Some takeaways are:

•	 Kopf is an Elasticsearch monitoring tool similar to Elasticsearch-head, but
provides a few different metrics.

•	 The Elasticsearch, Logstash, and Kibana (ELK) stack is a tool for searching,
analyzing, enriching, and visualizing log files.

•	 Consider using a tool such as Nagios to monitor an Elasticsearch cluster.
Nagios can be configured to send out email notifications when a process goes
down or if the node itself goes down.

•	 Using a few GNU/Linux command tools, we can gather many of the same
metrics provided by the various Elasticsearch monitoring tools.

Chapter 5

[103]

The next chapter will discuss troubleshooting Elasticsearch performance and reliability
issues. The monitoring tools discussed in this chapter will be useful when tackling the
real-world problems outlined in upcoming chapters.

[105]

Troubleshooting Performance
and Reliability Issues

This chapter focuses on troubleshooting common performance and reliability issues
for Elasticsearch using case studies with real-world examples.

This chapter will help answer the following questions:

•	 How do I configure my Elasticsearch cluster to optimize performance?
•	 How do I prevent OutOfMemoryError exceptions?
•	 How does my data-indexing strategy affect cluster resources?
•	 Why are my queries running slow?
•	 How can I keep query performance strong when indexing a large amount

of data?
•	 How can I configure indices to use less disk space?

System configuration
Elasticsearch configuration may lead to a number of performance and reliability
issues, as mentioned in Chapter 2, Installation and the Requirements for Elasticsearch.
A quick reminder that the most important configuration changes to make to your
cluster are as follows:

•	 Ensuring that the Elasticsearch heap size (ES_HEAP) is set to 1/2 of available
system memory, but does not exceed 31 GB. Set this value in /etc/
defaults/elasticsearch

•	 Disabling memory swapping
•	 Locking the Elasticsearch address space into memory by setting bootstrap.

mlockall: true in elasticsearch.yml

Troubleshooting Performance and Reliability Issues

[106]

Refer to Chapter 2, Installation and the Requirements for Elasticsearch, for more detailed
instructions on how to set these values.

The fielddata cache
A poorly configured Elasticsearch fielddata cache is often the reason for
OutOfMemoryError exceptions.

When running a sort or aggregation (or facet) query, Elasticsearch fills the cache
with all distinct field values from the query. This allows similar, subsequent queries
to execute more quickly. However, Elasticsearch doesn't put an upper bound on the
cache size by default; therefore, the data is not automatically evicted. If the cache
causes the total JVM memory to fill up beyond the ES_HEAP size, the node will throw
an OutOfMemoryError exception and will require an Elasticsearch restart.

To limit the fielddata cache size, set the indices.fielddata.cache.size value:

indices.fielddata.cache.size: 30%

This will limit the fielddata cache size to 30% of the available JVM heap space.

You can set this value to a fixed value as well. For example, setting it to 10gb will
limit the cache size to no more than 10 gigabytes. The value that you choose will
depend on the cluster and use case, but if you see an OutOfMemoryError caused by
the fielddata cache overflowing, it's a good idea to set this field. The downside to
limiting the fielddata cache is that it may affect query performance if a query needs
to repopulate evicted fielddata cache items when the cache fills up.

If you see OutOfMemoryError logged to /var/log/elasticsearch/, you can check
whether the fielddata cache is the problem by checking in Bigdesk or Marvel:

The fielddata cache in Bigdesk

Chapter 6

[107]

The fielddata cache from the Marvel Kibana dashboard looks like this:

The fielddata cache in Marvel

Do not change the indices.fielddata.cache.expire setting. This
is a legacy setting to expire old cache values, and it does not provide any
increase in performance. Elasticsearch developers stated that it will be
deprecated in a future release.

You can also reduce the fielddata cache footprint by optimizing queries that use
the cache.

For example, in our Twitter data, we have a timestamp_ms field, which stores
the tweet's timestamp at millisecond precision. Because there are 86,400,000
milliseconds in a day, if we collected 5,000,000 Tweets in 24 hours, it's likely that
the majority of these tweets will have a unique timestamp. If we run a query that
sorts on this field, it will fill up the fielddata cache with as many as 5,000,000
distinct timestamps. This will quickly fill up the cache.

A more functional approach would be to store the timestamp field at either second
or minute precision. Using second precision, the fielddata cache will be reduced from
holding 5,000,000 unique timestamps to approximately 86,400 timestamps. Using
minute precision will reduce it to only 1,440 unique timestamps.

Even after limiting the fielddata cache size to a fixed amount, you may still face
OutOfMemoryError exceptions related to the field cache. This may be a result of a
single query loading the fielddata cache with more data than it has been allocated.

Troubleshooting Performance and Reliability Issues

[108]

This may happen if, for example, the fielddata cache is set to 2 GB, but we run a
single query that tries to load 2.5 GB of data into the cache. This issue can be fixed
by editing the fielddata circuit breaker in elasticsearch.yml.

The fielddata circuit breaker is set by default to 60% of the total JVM heap size:

indices.breaker.fielddata.limit: 60%

This way, if a single query's fielddata is more than 60% of the heap, the circuit
breaker will trip and cause the query to throw an exception rather than causing an
OutOfMemoryError. Using a lower percentage than the default 60% may help in
solving OutOfMemoryError exceptions even when the fielddata cache is limited in size.

Analyzing queries
Analyzing slow queries and improving their performance can be very challenging.
This section examines how to look for the root cause of poor query performance,
and it offers some different approaches to finding a solution.

Slow log
If you notice poor query performance, start with the slow log. To enable the slow
log, edit elasticsearch.yml and add these configuration options to all nodes on
the cluster:

index.search.slowlog.threshold.query.warn: 8s
index.search.slowlog.threshold.query.info: 4s
index.search.slowlog.threshold.query.debug: 2s
index.search.slowlog.threshold.query.trace: 500ms

index.search.slowlog.threshold.fetch.warn: 1s
index.search.slowlog.threshold.fetch.info: 750ms
index.search.slowlog.threshold.fetch.debug: 500ms
index.search.slowlog.threshold.fetch.trace: 250ms

index.indexing.slowlog.threshold.index.warn: 8s
index.indexing.slowlog.threshold.index.info: 4s
index.indexing.slowlog.threshold.index.debug: 2s
index.indexing.slowlog.threshold.index.trace: 500ms
index.indexing.slowlog.level: info
index.indexing.slowlog.source: 5000

After updating elasticsearch.yml on all nodes, restart the cluster.

Chapter 6

[109]

This configuration enables the slow log for three operations:

•	 Query operations: This is when Elasticsearch is performing the actual search
for documents matching the query

•	 Fetch operations: This is when Elasticsearch fetches relevant documents
from the index after finding documents of interest

•	 Index operations: This is when indexing new documents in Elasticsearch

We've also set a threshold level for each point: warn, info, debug, and trace.
These levels identify the point at which Elasticsearch will write to the slow log. For
example, if a query takes six seconds, based on our preceding configuration, the
query will be logged at an info level. These levels make it possible to search for
queries of a specific threshold.

Here's an example of searching the slow log for all queries that took longer than
eight seconds, which were logged at the warn level:

grep "\[WARN \]"
 /var/log/elasticsearch/my_elasticsearch_cluster_*_slowlog.log*

Elasticsearch slow log for actions that took longer than eight seconds

The next section covers some additional approaches to improve query performance.

Troubleshooting Performance and Reliability Issues

[110]

Improving query performance
This section highlights common reasons behind certain slow queries on Elasticsearch,
and offers instruction to improve performance.

High-cardinality fields
As previously mentioned, running aggregation or sorts against high-cardinality
fields (for example, dates precise to the millisecond) can fill up the fielddata cache
which leads to OutOfMemoryError exceptions. However, even without these errors,
running aggregations and sorts can be detrimental to performance. When it comes to
dates, it's generally a good idea to store and use less precise dates in order to speed
up query execution time.

Querying smaller indices
As Elasticsearch indices grow larger, query performance will suffer. Another way
to improve performance is to run queries against small indices. You can do this by
storing our data in several smaller indices instead of one large one.

For example, with Twitter data, you can change the ingestion process to create a new
index every day to store tweets. This way, we only query a subset of the total indices
when running time-bounded queries.

Index templates are helpful in this case because they automatically apply a data
mapping to new indices that follow a certain naming convention.

Let's create a new index template for our daily Twitter indices using the twitter-
YYmmdd naming convention. Using this template, the twitter-20160101 index
will hold all tweets from January 1, 2016. Create this template with the following
curl command:

curl -XPUT elasticsearch-node-01:9200/_template/template_1 -d '

{

 "template" : "twitter-*",

 "settings" : {

 "number_of_shards" : 5

 },

 "mappings" : {

 "twitter" : {

 "status" : {

 ...

Chapter 6

[111]

 }

 ...

 }

 }

}'

Note the use of the * asterisk wildcard in the twitter-* template name.
This wildcard that matches 0 or more characters, so it will match index
names, such as twitter-20160101.

We can also create an index alias that allows us to query many or all of the indices
at once.

The following example creates an alias using the * wildcard to query all available
Twitter data:

curl -XPOST elasticsearch-node-01:9200/_aliases -d '{

 "actions" : [

 { "add" : { "index" : "twitter-*", "alias" : "all_twitter" } }

]

}'

Play around with different index sizes to find the best fit, depending on your data
and setup. It's important to test how they affect your performance before committing
to a particular index size because changing the indexing strategy later will involve
re-indexing all of your data.

If you have a five-node cluster and collect 10,000 records per day, it makes sense to
create new indices monthly versus daily to keep the number of indices down and to
ensure that each individual index isn't too small. However, it's important to test all
assumptions before committing to an indexing strategy. Use a tool such as Logstash
and Kibana to monitor average query performance using different index sizes before
making this decision.

Cold indices
Sometimes, an Elasticsearch query is slow the first few times it runs, but it speeds
up considerably afterwards. The lag occurs because the index is "cold" and the
Elasticsearch caches are not populated with relevant data. After running the query
a few times, Elasticsearch fills up the fielddata cache and other caches based on the
query criteria. Subsequent queries with similar criteria will take advantage of these
cached values and run faster as a result.

Troubleshooting Performance and Reliability Issues

[112]

Elasticsearch "warmers" and "eager fielddata loading" solve the problem of cold
indices by ensuring that the first time a user runs a query, required data for this
query is already loaded in memory.

Indices can be cold for a variety of reasons:

•	 New data is indexed
•	 Automatic shard balancing and movement
•	 An Elasticsearch node restarted
•	 The cache was manually cleared

To demonstrate the performance gains of a slow aggregation query, use the
following command:

curl -XPOST 'http://elasticsearch-node-01:9200/twitter/_cache/clear'

curl -XGET 'http://elasticsearch-node-01:9200/twitter/_search' -d '{

 "size" : 0,

 "query" : {

 "match_all" : {}

 },

 "aggs" : {

 "text" : {

 "terms" : {

 "field" : "text"

 }

 }

 }

}' | python -m json.tool

The results of this are as follows:

{

 ...

 "took": 5864

 ...

}

If we run the query a few more times, we'll start to see results like the following:

{

Chapter 6

[113]

 ...

 "took": 529

 ...

}

This query took 5.8 seconds to finish at first, but after a few runs, it only took 0.529
seconds to complete. The initial slow query can be avoided and the performance can
become more predictable after adding common queries to the Elasticsearch warmer.
We'll demonstrate this by clearing the index cache again, then adding our query to
the twitter index with the Elasticsearch Warmers API:

curl -XPOST 'http://elasticsearch-node-01:9200/twitter/_cache/clear'

curl -XPUT
 http://elasticsearch-node-01:9200/twitter/twitter/
 _warmer/text_agg_warmer?pretty -d '{

 "size" : 0,

 "query" : {

 "match_all" : {}

 },

 "aggs" : {

 "text" : {

 "terms" : {

 "field" : "text"

 }

 }

 }

}'

We can verify that the warmer query made it into our index by checking the Kopf
REGISTERED WARMERS page at http://elasticsearch-node-01:9200/_
plugin/kopf and navigating to more | warmers.

Troubleshooting Performance and Reliability Issues

[114]

This screenshot shows the warmer query on the Kopf warmers page:

Viewing query warmers in Kopf

The warmer will take effect after restarting Elasticsearch. Run the query again to see
a performance increase:

{

 ...

 "took": 418

 ...

}

This led to more than a 10x speedup, from 5.8 seconds to 0.41 seconds. We saw
a similar increase after manually running the query a few times to populate the
fielddata cache with data from the text field.

We can also enable eager fielddata loading for particular Elasticsearch fields:

curl -XPUT http://elasticsearch-node-01:9200/twitter/
 _mapping/twitter -d '{

 "text": {

 "type" : "string",

 "doc_values" : true,

Chapter 6

[115]

 "fielddata" : {

 "loading" : "eager"

 }

 }

}'

If there are only a few distinct values for our fielddata cache, set the loading value
to eager_global_ordinals for more memory optimization. After enabling either
warming queries or eager fielddata loading, verify that the fielddata (and filter cache,
in the case of warming queries) get populated by checking Marvel's node or Index
statistics page or Bigdesk's fielddata chart.

You can read more about warmers and eager field data loading
at https://www.elastic.co/guide/en/elasticsearch/
reference/current/indices-warmers.html and https://
www.elastic.co/guide/en/elasticsearch/guide/
current/preload-fielddata.html.

The shard query cache
The shard query cache saves results for specific queries. Unlike the fielddata cache
where any query that needs fielddata will speed up, with cached queries, we have to
run the exact same query more than once to have a cache hit. Additionally, the entire
query result is stored with the query cache. This is different from the fielddata cache,
in which only part of the query result is stored. This means that the query cache will
return results extremely quickly.

The shard query cache currently only stores hit counts, aggregations, and search
suggestions. It does not store actual search results or hits. Moreover, the search_
type=count query parameter is required when running cached queries. This may be
updated in a future Elasticsearch release.

The query cache defaults to 1% of the JVM heap, but it can be changed in
elasticsearch.yml:

indices.cache.query.size: 2%

The cache key is the JSON body of a search request. Even if a query is logically
identical to a query already in the cache, if there is a difference in whitespace or
key order, the cache will store these as two separate entries.

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-warmers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-warmers.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/preload-fielddata.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/preload-fielddata.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/preload-fielddata.html

Troubleshooting Performance and Reliability Issues

[116]

The shard query cache is disabled by default. To enable it on an existing index, run
the following:

curl -XPUT elasticsearch-node-01:9200/twitter/_settings?pretty -d'{

 "index.cache.query.enable": true

}'

Or when creating a new index, add the same parameter to the settings section:

curl -XPUT elasticsearch-node-01:9200/twitter -d'

{

 ...

 "settings": {

 "index.cache.query.enable": true

 },

 ...

}'

When using the query cache, you will always receive the same up-to-date query
results that you would get when running noncached queries. This is because cache
entries are invalidated automatically when new data is loaded into a shard once the
shard refreshes.

Run the text aggregation query again a few times, this time using the query cache:

curl -XGET
 'elasticsearch-node-01:9200/twitter/
 _search?search_type=count&query_cache=true' -d '{

 "size" : 2,

 "query" : {

 "match_all" : {}

 },

 "aggs" : {

 "text" : {

 "terms" : {

 "field" : "text"

 }

 }

 }

}' | python -m json.tool

Chapter 6

[117]

After a few runs of this query, performance results like this should appear:

{

 ...

 "took": 4

 ...

}

The 4ms response is an improvement from the 418ms response using just the
fielddata cache, and a huge improvement from the original 5.8 seconds against
a cold Elasticsearch index.

Read more about the shard query cache at https://www.elastic.
co/guide/en/elasticsearch/reference/current/shard-
request-cache.html.

Script queries
Script queries are a powerful way to query an index by running arbitrary code to
manipulate or filter each hit the query comes across. However, they are also very
costly, and they can hurt performance in large indices.

Whenever possible, it is best to avoid using scripts in Elasticsearch queries that need
to return in a timely fashion. If you find yourself using them, try to think of ways to
restructure your data to make them no longer necessary.

If you do use scripts in your application, make sure that you access source
document fields with doc["text"] instead of _source.text; the latter
will access the record on disk, while the former accesses it from memory.

Testing meticulously
It's important to meticulously test each optimization strategy individually to see
which is most effective. If you experience a slow query, try to recreate the problem
on a smaller scale and test different optimizations until you find one that works.
Make sure that you only test one change at a time in configuration or in query
parameters. Also, run testing scripts for a long enough time period to account for
normal deviation in performance due to garbage collection, cache evictions, and
so on.

https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html

Troubleshooting Performance and Reliability Issues

[118]

This approach to testing may feel tedious, but it will ultimately provide greater
insight into the cluster, and it will help avoid making unnecessary changes to the
system in the long run.

System and data architecting
This section covers strategies to improve overall system performance, data indexing
performance, and to maximize storage space.

Hot-Warm architecture
For time-series data, including Twitter and other social media data as well as
data from Logstash, Elastic.co recommends setting up what they have dubbed
a Hot-Warm architecture. This setup puts nodes into three groups.

Master nodes
Ideally, dedicate three nodes as master nodes that do not store data or fulfill
queries. These machines don't need to be very powerful; they just perform
cluster management operations.

Hot nodes
Hot nodes hold the most recent data indices. All data writes are directed at
these machines, and they are likely the most-frequently queried nodes. Elastic.
co recommends equipping hot nodes with solid state drives (SSDs) for better I/O
performance.

Warm nodes
In this architecture, data is not being written to warm nodes; instead, they contain
historical time-based data. For example, if we create a new Twitter index every day,
we can move an index from "Hot" to "Warm" after seven days.

To configure a Hot node, add the following to elasticsearch.yml:

node.box_type: hot

Likewise, for a Warm node, add the following:

node.box_type: warm

Chapter 6

[119]

To ensure that newly-created indices are allocated to the Hot nodes, configure the
index on creation with the following:

curl -XPUT elasticsearch-node-01:9200/twitter-2016-03-06

{

 ...

 "settings": {

 "index.routing.allocation.require.box_type" : "hot"

 }

 ...

}

After seven days to move it to the Warm nodes, use the following:

curl -XPOST
 elasticsearch-node-01:9200/twitter-2016-03-06/_settings -d '{

 "settings": {

 "index.routing.allocation.require.box_type" : "warm"

 }

}'

Read more about the "Hot-Warm" architecture at https://www.elastic.co/blog/
hot-warm-architecture.

Reducing disk size
This section covers how to save disk space on your cluster.

Compression
In Elasticsearch 2.0 and higher, you can increase the compression level for an
index to reduce its footprint on disk. Unfortunately, this also makes indexing
new data slower.

For use cases such as the preceding Hot-Warm architecture, it makes sense to
increase the compression level on Warm nodes because they are less taxed than
the Hot nodes.

https://www.elastic.co/blog/hot-warm-architecture
https://www.elastic.co/blog/hot-warm-architecture

Troubleshooting Performance and Reliability Issues

[120]

To increase the compression level on an Elasticsearch 2.0+ node, perform the
following:

1.	 Close the index.
2.	 Configure the index.codec setting to best_compression.
3.	 Re-open the index.

curl -XPOST elasticsearch-node-01:9200/twitter/_close

curl -XPUT elasticsearch-node-01:9200/twitter/_settings -d '{

 "settings": {

 "index.codec": "best_compression"

 }

}'

curl -XPOST elasticsearch-node-01:9200/twitter/_open

Storing the _source and analyzed fields
By default, Elasticesarch stores all documents passed to it in the _source field and
sets all fields to analyzed. This means that some basic tokenizers are run on the
field. Disabling these options can save some disk space. We may decide to disable
the _source field if we have documents stored elsewhere in our system. Or, we can
disable the _source field and set the individual fields that we want to retrieve to
store: true.

For the analyzed fields, think carefully about how you will use your data and set
a field to index: not_analyzed if you don't need it tokenized. E-mail addresses,
IP addresses, social media usernames, or other fields that we don't want to split up
should be set to not_analyzed.

Create a new index with _source disabled, and set some fields to not_analyzed:

curl -XPOST elasticsearch-node-01:9200/newindex -d '{

 "mappings" : {

 "newtype" : {

 "_source" : {

 "enabled" : false

 },

 "properties" : {

 "username" : {

Chapter 6

[121]

 "type" : "string",

 "index" : "not_analyzed",

 "store" : true

 },

 "text" : {

 "type" : "string"

 }

 }

 }

 }

}'

Unfortunately, there are some pretty big downsides to disabling the _source field.
In addition to not being able to retrieve the full source during a query, the following
are only supported if _source is enabled:

•	 The Elasticsearch update API
•	 Elasticsearch highlighting
•	 Many tools and strategies to re-index data

If disk space is a major concern, first check whether enabling data compression will
meet your storage needs before disabling the _source field.

Optimizing data ingestion
This section goes over some additional methods to improve data ingestion.
In all of these methods, it's important to monitor the data ingestion rate to ensure
that changes have the desired impact on performance.

As mentioned earlier, test one change at a time and run each test for a long enough
period to return meaningful results. The best place to monitor ingestion performance
is to select the index of interest in the Marvel Indices dashboard.

Troubleshooting Performance and Reliability Issues

[122]

The following screenshot shows the Marvel Indices dashboard for our twitter
data index:

Marvel indexing requests

Monitor this page in Marvel as you make changes to data ingest operations. This will
allow you to see how changes affect the indexing rate in real time, and you'll be able
to refer back to past indexing rate metrics for reference.

Bulk indexing operations
For bulk indexing operations, test various ingestion sizes and monitor them in
Marvel until you find the optimal size. For example, run tests at 1MB, 5MB, 10MB,
15MB, and 20MB until you find the value that works best. If you run daily ingestion
jobs, consider running them during off-peak hours so that resulting slowdowns
affect fewer users.

After inserting data into Elasticsearch, the index must be refreshed before a user can
see the data. By default, the refresh interval is set to once a second. This means that
after indexing a document, it will appear in search results within one second.

Refreshing as often as once a second can hurt performance during large indexing
operations. Lowering the refresh rate to a value such as 10s or 30s is worthwhile if
your system doesn't need to display new results immediately after they are indexed.

Chapter 6

[123]

Setting the refresh rate to -1 will disable refreshing altogether. This can be useful
for very large, one-time, or less-frequent periodic indexing operations. Remember
to enable index refreshing afterwards.

To disable index refreshing, use the following:

curl -XPUT elasticsearch-node-01:9200/twitter/_settings -d '{

 "index" : {

 "refresh_interval" : "-1"

 }

}'

Turn enable index refreshing on afterwards:

curl -XPUT elasticsearch-node-01:9200/twitter/_settings -d '{

 "index" : {

 "refresh_interval" : "5s"

 }

}'

Warming queries are run every time an index is refreshed. Another option is to keep
index refreshing on, disable warming queries during large index operations, and
then re-enable warming when the indexing job is complete.

Disable index warmers:

curl -XPUT elasticsearch-node-01:9200/twitter/_settings -d '{

 "settings" : {

 "index.warmer.enabled" : "false"

 }

}'

Re-enable index warmers:

curl -XPUT elasticsearch-node-01:9200/twitter/_settings -d '{

 "settings" : {

 "index.warmer.enabled" : "true"

 }

}'

Troubleshooting Performance and Reliability Issues

[124]

Drive configuration
We mentioned in the "Hot-Warm" architecture section that SSDs are great for data
indexing performance. Even if you don't use the "Hot-Warm" architecture, consider
using SSDs for data nodes on your Elasticsearch cluster.

If SSDs are not an option, consider using fast hard drives (10,000+ RPM) configured
in RAID 0. Remember that RAID 0 mirrors for performance, not reliability, but
Elasticsearch's data replicas are sufficient for data reliability.

It's best to avoid storing data on network storage. If you run an Elasticsearch cluster
on virtual machines, make sure that they use local disks for storage.

Case studies
This section offers some real-world problem scenarios and solutions to use
Elasticsearch.

Node configuration
You have a five-node production cluster, where each node has 32GB of total memory
and 16GB is allocated to Elasticsearch. Lately, you've noticed a problem: every couple
of days, node-05 leaves the cluster without warning. Restarting Elasticsearch on this
node solves the problem temporarily, but the node will drop out of the cluster again
in a few days. How do we go about looking into this issue?

The next time this error happens, check the Elasticsearch logs before restarting
the node:

tail -n 500 /var/log/elasticsearch/*.log

You notice in the log file that Elasticsearch is throwing an OutOfMemoryError
exception, like the following:

Caused by: java.lang.OutOfMemoryError: Java heap space
 at org.apache.lucene.store.DataOutput.copyBytes
 (DataOutput.java:273)
 at org.apache.lucene.util.fst.FST.<init>(FST.java:342)
 at org.apache.lucene.util.fst.FST.<init>(FST.java:321)

You know that running out of fielddata can cause OutOfMemoryError exceptions,
so after checking the elasticsearch.yml file, you find the following:

indices.fielddata.cache.size: 30%

Chapter 6

[125]

The cache setting was commented out. Uncomment this line and restart the
Elasticsearch node. This seems to solve the problem at first. However, after two
weeks, another OutOfMemoryError from node-05 appears. After restarting the
node, log into Bigdesk for insight. Clicking on node-05, you see the following:

JVM memory in Bigdesk

It doesn't look like Elasticsearch is using much of the available memory, but this is
probably because the node was just restarted.

Note that the maximum heap memory available for node-05 is only about 250MB.
This is odd, considering the host has 32GB of system memory. At this point, you
want to ensure that the ES_HEAP variable was set properly. Open the following file:

/etc/default/elasticsearch

You will see the following:

ES_HEAP_SIZE=16g

It looks like this configuration, like the indices.fielddata.cache.size, was
also commented out. Uncommenting this line and restarting Elasticsearch brings
the node's total available memory to 16GB, and eliminates the OutOfMemoryError
exceptions.

Troubleshooting Performance and Reliability Issues

[126]

As mentioned earlier, node configuration errors are one of the most common
reasons for poor Elasticsearch performance or crashes. It's important to validate
each configuration change after it is made.

Query optimization
You found a problem in one of your company's internal enterprise Elasticsearch web
applications. First thing in the morning, the web application takes a long time to load
query results. Performance starts to improve only after running a few queries.

To tackle this problem, take a look at the slow log. In one of the nodes, you see a
query that takes 4.7 seconds to run as an INFO event in the log:

[2016-02-29 16:52:43,569][INFO][index.search.slowlog.query]
 [elasticsearch-node-03] [twitter][1] took[4.7s],
 took_millis[4709], types[], stats[],
 search_type[QUERY_THEN_FETCH], total_shards[3],
 source[{"size":0,"query":{"match_all":{}},"aggs":{"screen_name":
 {"terms":{"field":"user.screen_name"}},"text":
 {"terms":{"field":"text"}}}}], extra_source[],

The slow log won't necessarily write entries to all nodes, so check the
log on each host.

Use python -m json.tool to pretty-print the query:

echo '{"size":0,"query":{"match_all":{}},"aggs":{"screen_name":{
 "terms":{"field":"user.screen_name"}},"text":{
 "terms":{"field":"text"}}}}' | python -m json.tool

You will see the following:

{

 "aggs": {

 "screen_name": {

 "terms": {

 "field": "user.screen_name"

 }

 },

 "text": {

 "terms": {

 "field": "text"

 }

 }

Chapter 6

[127]

 },

 "query": {

 "match_all": {}

 },

 "size": 0

}

This aggs parameters may mean that this query makes heavy use of the field data
cache. Diagnose this query and figure out what is causing the performance issue.

First, clear the fielddata cache to ensure consistent results:

curl -XPOST 'http://elasticsearch-node-01:9200/twitter/_cache/clear'

Now, run the query, as follows:

curl -XGET 'http://elasticsearch-node-01:9200/twitter/_search' -d '{

 "size" : 0,

 "query" : {

 "match_all" : {}

 },

 "aggs" : {

 "screen_name" : {

 "terms" : {

 "field" : "user.screen_name"

 }

 },

 "text" : {

 "terms" : {

 "field" : "text"

 }

 }

 }

}' | python -m json.tool

Results will be as follows:

{

 ...

 "took": 4183

 ...

}

Troubleshooting Performance and Reliability Issues

[128]

After running the query a few more times to ensure that the values it needs are
in the fielddata cache, the query runs in around .6 seconds. This is a pretty good
improvement. Verify that the fielddata cache is now populated using Bigdesk or
Marvel (refer to images for fielddata cache for Bigdesk and Marvel).

The fielddata cache was probably getting cleared due to new data ingestion or shard
relocation overnight. To solve this problem, enable eager fielddata loading on both
the user.screen_name and text fields in the Elasticsearch mapping.

However, this query's performance still isn't great. Checking the slow log again, we
note it still triggers a TRACE event:

[2016-02-29 16:54:20,069][TRACE][index.search.slowlog.query]
 [elasticsearch-node-03] [twitter][1] took[680ms],
 took_millis[680], types[], stats[],
 search_type[QUERY_THEN_FETCH], total_shards[3],
 source[{"size":0,"query":{"match_all":{}},"aggs":
 {"screen_name":{"terms":{"field":"user.screen_name"}},"text":
 {"terms":{"field":"text"}}}}], extra_source[],

To figure out why this query takes over 0.5 seconds to run even after the fielddata
cache is populated, break the query down into individual queries—one that runs the
text aggregation, and another that runs the screen_name aggregation:

curl -XGET 'http://elasticsearch-node-01:9200/twitter/_search' -d '{

 "size" : 0,

 "query" : {

 "match_all" : {}

 },

 "aggs" : {

 "text" : {

 "terms" : {

 "field" : "text"

 }

 }

 }

}' | python -m json.tool

This query takes approximately .4 seconds to run:

curl -XGET 'http://elasticsearch-node-01:9200/twitter/_search' -d '{

 "size" : 0,

 "query" : {

Chapter 6

[129]

 "match_all" : {}

 },

 "aggs" : {

 "screen_name" : {

 "terms" : {

 "field" : "user.screen_name"

 }

 }

 }

}' | python -m json.tool

This query runs in .08 seconds; this is a vast improvement over the text
aggregation query.

As we've identified the text aggregation as the slow part of the query, consider
removing that operation and finding another solution which will yield similar
results. Although it depends what the aggregation is used for, aggregating on
a lower-cardinality field may be a suitable solution. For example, if the text
aggregation is used to build a word cloud, consider instead using the entities.
hashtags.text hashtag field to get a similar result.

Another option is keeping the text aggregation, but running it periodically in the
background and caching the results.

Finally, consider using the shard query cache on this query. As no queries are
returned (size=0), we can enable the search_type=count and query_cache=true
parameter to cache the results of the aggregation.

Web application performance
You are working on a web application that searches Twitter data in an Elasticsearch
index. In addition to displaying tweets in the search results page, you want to
display:

•	 Tweet activity over time
•	 Top users in the results
•	 Top hashtags in the results
•	 Top user mentions

Troubleshooting Performance and Reliability Issues

[130]

We can implement all of these items using Elasticsearch aggregations, but these
operations are much more costly than simply running a search for hits.

To speed up page load times, we split this into two AJAX requests: one query for
results, and one query for all aggregations. The queries are both AJAX requests,
meaning that the page will load immediately. The query results will follow shortly
after, and the aggregation results will load last. Because the aggregations query
doesn't return any hits, we can set the parameters search_type=count and
query_cache=true to cache the aggregations for future queries.

When paging through results, make sure to only query for the hits and not for the
aggregation results. Aggregation results will stay the same no matter what page of
data is being looked at.

Summary
This chapter addressed some common performance and reliability issues that come
up when using Elasticsearch. To reiterate some of the major points in this chapter:

•	 Always double-check your Elasticsearch cluster's configuration for errors
•	 Set the fielddata cache size, especially if you see OutOfMemoryError exceptions
•	 Use the slow log to find what queries run slow on your cluster
•	 Avoid aggregations on high-cardinality fields (such as millisecond timestamps)
•	 Be cognizant of your data indexing strategy so that no one index grows

too large
•	 Use index warmers or enable eager_global_ordinals to ensure queries

that use the fielddata cache are fast the first time we run them
•	 If possible, use SSDs on nodes that index data, and avoid storing Elasticsearch

indices on network storage

Most importantly, when diagnosing Elasticsearch issues, be meticulous about testing
at each stage. For example, don't try to optimize a query by making changes to
elasticsearch.yml, modifying the query criteria, and enabling index warmers all at
once before running the query again. Test one variable at a time to extract precisely
where the problem is before deciding how to fix it.

The next chapter discusses how to understand and fix node failures after they've
already happened.

[131]

Node Failure and
Post-Mortem Analysis

In the previous chapter, we learned how to troubleshoot common performance and
reliability issues that come up when using Elasticsearch using case studies with
real-world examples. This chapter explores some common causes of node and
cluster failures. Specific topics covered are as follows:

•	 How to determine the root cause of a failure
•	 How to take corrective action for node failures
•	 Case studies with real-world examples of diagnosing system failures

Diagnosing problems
Elasticsearch node failures can manifest in many different ways. Some of the
symptoms of node failures are as follows:

•	 A node crashes during heavy data indexing
•	 Elasticsearch process stops running for an unknown reason
•	 A cluster won't recover from a yellow or red state
•	 Query requests time out
•	 Index requests time out

Node Failure and Post-Mortem Analysis

[132]

When a node in your cluster experiences problems such as these, it can be tempting
to just restart Elasticsearch or the node itself and move on like nothing happened.
However, without addressing the underlying issue, the problem is likely to resurface
in the future. If you encounter scenarios such as the ones just listed, check the health
of your cluster in the following manner:

•	 Check the cluster health with Elasticsearch-head or Kopf
•	 Check the historical health with Marvel
•	 Check for Nagios alerts
•	 Check Elasticsearch log files
•	 Check system log files
•	 Check the system health using command-line tools

These steps will help diagnose the root cause of problems in your cluster. In this
section, we'll look at some underlying causes that lead to node failure, including
the following:

•	 Out-of-memory errors
•	 Not enough system memory available
•	 Resource contention
•	 Running out of disk space

OutOfMemoryError exceptions
If a node throws an OutOfMemoryError, the immediate fix is to restart it. However,
it's not always obvious when or why a node encounters this error. Symptoms include
the following:

•	 Shard failures
•	 Search query failures
•	 Indexing failures

Often, there will be no immediate symptoms at all. Unfortunately, checking
Elasticsearch-head, Marvel, and Bigdesk won't tell you outright that an
OutOfMemoryError exception has occurred, but they can give us some warning
signs that one may have occurred. To be sure that an OutOfMemoryError exception
has occurred, check the Elasticsearch logs.

Chapter 7

[133]

Shard failures
One sign that an OutOfMemoryError exception has occurred is the appearance
of shard failures in query responses. This response indicates shard failures in the
_shards.failed key, and it describes the failure in _shards.failures.

The following example query shows what a shard failure looks like in a query
response:

curl -XGET http://elasticsearch-node-01:9200/twitter/_search?size=0

{

 "_shards": {

 "failed": 1,

 "failures": [

 {

 "index": "twitter",

 "reason": "NodeDisconnectedException[[elasticsearch-
node-03][inet[elasticsearch-node-03/192.168.56.113:9300]][indices:data/
read/search[phase/query]] disconnected]",

 "shard": 1,

 "status": 500

 }

],

 "successful": 2,

 "total": 3

 },

 "hits": {

 ...

 "total": 10803

 },

 ...

}

Note that even though a shard failed in this query, it still returned results. However,
because there are three total shards and only two returned data successfully, the
query results are not representative of all data in the index.

Node Failure and Post-Mortem Analysis

[134]

Sometimes, if the cluster is in a red state, for example, the _shards object will
indicate fewer successful shards than the total available shards but won't report
an error. Take a look a the following code where _shards.successful is less
than _shards.total, but _shards.failed is set to 0:

{

 "_shards": {

 "failed": 0,

 "successful": 2,

 "total": 3

 },

 "hits": {

 ...

 "total": 10803

 },

 ...

}

In both of these cases, the hits.total value is only representative of approximately
two thirds of our actual total data count.

When we encounter shard failures or shards that don't return data successfully,
it's a good idea to use Elasticsearch-head to check the state of our cluster.
Elasticsearch-head may look something like the following:

Shards relocating in Elasticsearch-head

Chapter 7

[135]

In this screenshot, we can see that all shards are now available, but the cluster is still
recovering and there aren't any shards assigned to elasticsearch-node-01. At this
point, we may also notice that the cluster takes a very long time to return to a green
state, or possibly never returns to a green state. This problem may be due to a node
that is out of heap space failing to relocate one of its shards to another node with
more memory.

Next, open Elasticsearch-kopf to get a more detailed view of our nodes:

Shards relocating in Elasticsearch-kopf

Node Failure and Post-Mortem Analysis

[136]

In Elasticsearch-kopf, we see high heap usage on elasticsearch-node-01 and
elasticsearch-node-02, which is a good indicator that an OutOfMemoryError
exception has occurred. Checking the logs, we confirm that an OutOfMemoryError
was thrown on elasticsearch-node-01:

Examining the Elasticsearch logs shows an OutOfMemoryError

Additionally, we see several other Exceptions recorded in the log file that start
appearing after the OutOfMemoryError, like in the following screenshot:

Additional errors in the Elasticsearch log related to OutOfMemoryError

Chapter 7

[137]

Continuing to examine the log file, we see an error indicating shard failure due to the
node running out of memory:

Shard failure errors in the Elasticsearch log

Slow queries
Slow queries are another sign that an OutOfMemoryError has occurred. In the
previous example, checking the slow-log file with the Unix less command on
elasticsearch-node-02 shows the following:

less my_elasticsearch_cluster_index_search_slowlog.log.2016-04-28

Slow queries may indicate that an error has occurred

Node Failure and Post-Mortem Analysis

[138]

Checking the Elasticsearch log on elasticsearch-node-02, we can verify that an
OutOfMemoryError was captured:

Verifying that Elasticsearch threw an exception

Resolving OutOfMemoryError exceptions
As mentioned earlier, when you see an OutOfMemoryError, it's best to restart
the node to prevent further exceptions. However, this is only a temporary fix.
It's important to also fix the underlying issue that is causing the error. Refer to
Chapter 6, Troubleshooting Performance and Reliability Issues, for more strategies about
solving OutOfMemoryError exceptions. A few strategies are listed, as follows:

•	 Limit the size of the field data cache
•	 Enable circuit breakers for the field data cache
•	 Adjust the size and frequency of bulk data inserts
•	 Reduce the number of total shards
•	 Ensure that ES_HEAP_SIZE is properly set
•	 Ensure that there is enough physical memory available to the machine

After seeing errors in the log, we can correlate their timestamps with Marvel
to see what kind of activity was going on when the error occurred. For example,
let's suppose that we see the following OutOfMemoryError:

Chapter 7

[139]

An OutOfMemoryError exception occurred at 4/29/2016 15:26:39

We can check Marvel's activity around the 4/29/2016 15:26:39 timeframe. In this
case, we'll set it from 2016-04-29 15:25:00 to 2016-04-29 15:27:30, as shown in
the following screenshot:

Change the date range in Marvel

Node Failure and Post-Mortem Analysis

[140]

Although we see no search activities taking place in the index at the time of the
collapse, a modest Indexing Rate is followed by a drop-off in indexing activity:

Investigating with Marvel

The drop-off probably occurred after the OutOfMemoryError, and a heavy indexing
load may have caused the error.

As OutOfMemoryError exceptions may not occur very frequently, it can be difficult
to know for sure whether applying the fixes that we implemented successfully
resolved the issue. To ensure that the issue is completely solved, it's best to find a
way to reliably recreate the error. Then, adjust Elasticsearch configuration settings
and load until you don't see the issue any more. It's often possible to recreate the
issue by standing up a simple single-node cluster with a similar configuration and
load as a node in the primary cluster. In the previous example, we might try to verify
that data bulk loading caused the exception by indexing documents at a similar rate
into a single-node test cluster in a controlled environment.

Chapter 7

[141]

Elasticsearch process crashes
If the Elasticsearch process unexpectedly stops running, it may be because the
operating system killed it. In these cases, the Elasticsearch log file may not have
any useful information about the error, and we instead have to check the syslog:

sudo tail -n200 /var/log/syslog

View the last 200 lines of /var/log/syslog

...

Apr 29 14:56:00 elasticsearch-node-01 kernel: [39935.321257]
 Out of memory: Kill process 5969 (java) score 446 or
 sacrifice child

Apr 29 14:56:00 elasticsearch-node-01 kernel:
 [39935.321343] Killed process 5969 (java) total-vm:2361960kB,
 anon-rss:441676kB, file-rss:14392kB

This can happen if Elasticsearch tries to claim more system memory than the memory
available, and this is often a result of an improperly set ES_HEAP_SIZE or resource
contention with other processes. If your cluster experiences this issue and there are
other memory-heavy processes running on the cluster, it may be a good idea to move
these processes off the Elasticsearch cluster. To verify that Elasticsearch was forcibly
stopped by the operating system, check the syslog file at /var/log/syslog:

Operating-system killed Elasticsearch process due to running out of memory

Node Failure and Post-Mortem Analysis

[142]

Take the following line:
Apr 29 14:55:34 elasticsearch-node-01 kernel: [39909.742047]
 Out of memory: Kill process 5878 (java) score 446 or
 sacrifice child

This line indicates that the operating system killed the Elasticsearch process. In this
case, we won't see any corresponding log entries in the Elasticsearch log files.

Disk space
When a node runs out of disk space, it will stay in the cluster and can still handle
index and search requests, but it offloads its shards to other nodes in the cluster.
As the cluster reallocates shards, queries may run slow or timeout. Once shards
are reallocated to other nodes in the cluster, you'll likely see some performance
degradation as the cluster is operating with one less data node.

A node running out of disk space can be dangerous if all nodes are configured
with the same amount of space. If one node runs out of space, it's likely that other
nodes in the cluster are running low on disk space too. Once the cluster finishes
reallocating shards to other nodes in the cluster, it can cause these nodes to run out
of space as well. This causes a chain reaction that ultimately results in the entire
cluster going down.

We can check whether a node is running low on disk space using Kopf or Marvel or
by configuring a Nagios alert. Additionally, we'll see an error in the Elasticsearch log
related to low disk space, as seen in the following screenshot:

Kopf shows that elasticsearch-node-01 is low on disk space

Chapter 7

[143]

Resolving the issue
Disk space issues can be grouped into two categories:

1.	 Elasticsearch has too much data loaded into it and is filling up the disk.
2.	 Something other than Elasticsearch data is filling up the disk, for example,

a large log file.

To resolve the first category issues, one solution is to increase the node's storage
capacity by adding another drive or volume to the node and configuring Elasticsearch
to use the space. For example, if we mount additional storage at /data, update the
elasticsearch.yml configuration file to use it as follows:

path.data: /var/lib/elasticsearch,/data

Restart Elasticsearch on the node. The node will then distribute its data across the
two data directories.

For the second category, if the cause is external to Elasticsearch, removing the
offending files to clear up disk space will be enough to get Elasticsearch going again.
There's no need to restart the node.

Some additional measures we can take to reduce disk space usage are as follows:

•	 Add additional nodes to the cluster.
•	 Decrease shard replication; for example, from two replicas to one replica.
•	 Ensure that individual shards don't grow too big by breaking large indices

into smaller indices. For example, instead of storing all Twitter data in one
index, create a new index every month to store new data.

•	 Enable data compression (refer to Chapter 6, Troubleshooting Performance
and Reliability Issues).

Reviewing some case studies
This section discusses some real-world scenarios of Elasticsearch node failure
and how to address them.

Node Failure and Post-Mortem Analysis

[144]

The ES process quits unexpectedly
A few weeks ago we noticed in Marvel that the Elasticsearch process was down on
one of our nodes. We restarted Elasticsearch on this node, and everything seemed to
return to normal. However, checking Marvel later on in the week, we notice that the
node is down again. We decide to look at the Elasticsearch log files, but don't notice
any exceptions. As we don't see anything in the Elasticsearch log, we suspect that
the operating system may have killed Elasticsearch. Checking syslog at /var/log/
syslog, we see the error:

Out of memory: Kill process 5969 (java) score 446 or sacrifice child

This verifies that the operating system killed Elasticsearch because the system was
running out of memory. We check the Elasticsearch configuration and don't see any
issues. This node is configured in the same way as the other nodes in the cluster.
Next, we check for resource contention with other processes by running the top
command and get the following results:

top showing resource contention

It looks like a MySQL server is also running on this node and is taking up a lot of
system memory. We suspect that resource contention with MySQL is probably
what's causing the operating system to kill Elasticsearch. We are able to move the
MySQL database to its own dedicated host, and after a few weeks with no more
memory issues, we can conclude that this resolved the problem.

Chapter 7

[145]

Query requests slow and timing out
Users of our corporate Elasticsearch-backed web application have started reporting
that the search functionality is slow and sometimes doesn't return at all. We are able
to verify this by running a few searches on the web application, and we decide to use
Kopf to investigate the issue. In Kopf, we notice that the disk indicator is red for one
of our nodes, elasticsearch-node-01, as seen in the following screenshot:

Kopf shows that elasticsearch-node-01 is low on disk space

The red disk indicator for elasticsearch-node-01 means that we are low on
disk space. Also, all of the node's shards have been reallocated to other nodes.
Checking the log of elasticsearch-node-01 at /var/log/elasticsearch/
my_elasticsearch_cluster.log, we confirm that the disk is full by seeing the
no space left on device message. We are able to resolve the issue by adding an
additional hard drive to all nodes in the cluster and configuring Elasticsearch to use
the new space in the elasticsearch.yml file.

To prevent this issue in the future, we decide to install Nagios using the instructions
found in Chapter 5, System Monitoring, in order to send out e-mail alerts the next time
the disk space gets low.

Node Failure and Post-Mortem Analysis

[146]

Summary
This chapter looked into how to diagnose node failures, determine the root cause of
the problem, and apply corrective action. Some key things we learned are:

•	 Many errors, from shard failures to slow query performance, are caused by
OutOfMemoryError exceptions

•	 Running out of disk space on one node can cause other nodes to run out of
disk space as well when shards are reallocated

•	 Running Elasticsearch alongside other services that require a lot of memory
can result in the operating system killing Elasticsearch to free up memory

The next chapter will talk about Elasticsearch 5.0, the next major release of the
platform, and it will give you an overview of the various new monitoring tools that
will accompany the Elasticsearch 5.0 release.

[147]

Looking Forward
This final chapter discusses the next major release of Elasticsearch, version 5.0, which
is a significant upgrade over 2.3.2. It introduces a number of API enhancements,
in addition to several performance and reliability updates. Many of these changes
will, for better or for worse, affect your interaction with and monitoring of an
Elasticsearch cluster.

The specific topics we'll discuss in this chapter include:

•	 Elasticsearch 5 overview
•	 Upgrading to Elasticsearch 5
•	 Monitoring Elasticsearch 5

Elasticsearch 5 overview
Elasticsearch 5 will follow Elasticsearch 2 as the next major software release.
Although this may be chronologically jarring, Elastic.co purposefully jumped from
version 2 to 5 to better synchronize the updated version of Elasticsearch with several
other Elastic.co products, including Kibana, Logstash, Marvel (called Monitoring in
5.0), and more. This update will help ensure that all Elastic.co software running on a
cluster is both compatible and up-to-date.

There are hundreds of new changes being introduced in version 5, but a few relevant
highlights include:

•	 Compatibility between the Elasticsearch 2 API and Elasticsearch 5
•	 Indices from Elasticsearch 2 can be migrated to version 5:

°° Indices from Elasticsearch 1 must first be migrated to version 2
before migrating them to version 5

Looking Forward

[148]

•	 Marvel is renamed Monitoring
•	 The Elasticsearch-Logstash-Kibana stack is renamed the Elastic Stack
•	 The plugin API no longer supports site plugins, including plugins such as

Elasticsearch-head, Bigdesk, and Kopf
•	 The warmers API is removed in favor of eager field data loading and disk-

based norms
•	 Lucene version upgraded from 5 to 6
•	 Several configuration changes, including removal of all system environment

variables, such as ES_HEAP, in favor of Java VM command-line arguments
•	 text and keyword mapping types deprecated in favor of string type
•	 bin/plugin renamed to bin/elasticsearch-plugin

Elasticsearch-head, Bigdesk, and Kopf have not yet been updated to
be compatible with Elasticsearch 5. When they are upgraded, they
will run as standalone applications, similar to Kibana.

Performance and reliability
Elasticsearch 5 introduces several performance and reliability improvements,
including:

•	 Indexing performance improved 15-20% for small documents
•	 Lucene 6 improves search time by 25% and decreases disk space usage by

50% for numeric, date, and geospatial fields
•	 The elasticsearch.yml settings file is now strictly validated, meaning

Elasticsearch won't start if there is a configuration error
•	 If a production node (meaning a node that isn't bound to the localhost

address) doesn't have enough file handles available, or doesn't have
permission to lock the system's memory usage via the mlockall setting, it
will throw an exception and won't start

Chapter 8

[149]

Data loss
Elasticsearch 2 has a well-publicized, ongoing issue in which, in rare circumstances
involving networking problems and a network partition, Elasticsearch can drop data
during ingestion.

Writes made to Elasticsearch during the network partition will be confirmed, but not
all will actually make it to the index. The Elasticsearch team has made a strong effort
to address this problem, and many—but not all—instances of the bug are fixed in the
new version. In consideration of this, contemplate the following when building an
Elasticsearch-backed application in both version 2 and version 5:

•	 Don't use Elasticsearch as a primary data store. Instead, use a database such
as HBase, Cassandra, PostgreSQL, or another, depending on your data size
and requirements.

•	 Be sure to verify that the number of data records in your primary data store
match those in Elasticsearch.

•	 Have a plan to re-index data in the event of data loss.

While data loss is very unlikely, the potential impact is huge and it is important to
have a plan of action in place.

Upgrading to Elasticsearch 5.0
Elasticsearch 5 version will be released soon. It's a good idea to start testing your
cluster's compatibility with the new version. To help with the upgrade process,
Elastic.co offers a tool called the Elasticsearch Migration Helper. Install this tool as
an Elasticsearch 2.3 plugin:

sudo /usr/share/elasticsearch/bin/plugin install
 https://github.com/elastic/
 elasticsearch-migration/releases/download/v2.0-alpha2/
 elasticsearch-migration-2.0-alpha2.zip

The Elasticsearch Migration Helper is only compatible with
Elasticsearch 2.3.

Looking Forward

[150]

After installing the plugin, open it in the browser by visiting http://elasticsearch-
node-01:9200/_plugin/elasticsearch-migration/, as seen in the following
screenshot:

Elasticsearch Migration Helper

The Cluster Checkup diagnostic will display a report of the necessary updates
before using Elasticsearch 5:

Chapter 8

[151]

Elasticsearch Migration Helper configuration check report

The Cluster Checkup shows us that we'll have to remove some incompatible plugins
before moving to Elasticsearch 5, including Elasticsearch-head, Kopf, and the Marvel
Agent. We'll also have to update a few system and node configuration settings before
upgrading.

After fixing all of these configuration issues, we can use the Elasticsearch Migration
Helper to enable the deprecation log. This log file records anytime we call an
Elasticsearch API method that will be deprecated or removed in version 5.

Looking Forward

[152]

The following screenshot shows how to enable the deprecation log from the
Elasticsearch Migration Helper:

Click the Enable/Disable link to activate the deprecation log

Once the log is enabled, it can be found at:

/var/log/elasticsearch/<cluster_name>_deprecation.log

When to upgrade
After running the Elasticsearch Migration Helper and correcting all relevant errors and
warnings, it's safe to upgrade to Elasticsearch 5 in a development environment. You
can now test the application to ensure that everything works with the new version. Pay
close attention to the deprecation log and note things that you'll need to fix.

Since this is such a major release, it may be worth delaying your production upgrade
until a few months after the General Availability release. As with any new piece of
software, there may be bugs with early versions of Elasticsearch 5 that will be fixed
shortly after it is made generally available.

Chapter 8

[153]

Monitoring Elasticsearch 5
Elastic.co rebranded its suite of monitoring tools, including the Elasticsearch-
Logstash-Kibana (ELK) stack, in Elasticsearch 5. Marvel is now renamed Monitoring
and comes bundled with some additional monitoring tools. The ELK stack is now
just the Elastic Stack.

The Elasticsearch X-Pack is a premium suite of monitoring tools that Elastic.co
charges an annual fee for running in production. The X-Pack consists of the
following tools:

•	 Monitoring: Previously Marvel
•	 Shield: Adds authentication, access control, and HTTPS support to

Elasticsearch
•	 Watcher: Similar to Nagios, but with some Elasticsearch-specific features,

such as sending email alerts if a query runs slow
•	 Graph: Network-graph data visualization tool
•	 Reporting: Generates PDF reports based on data in Kibana

Kibana and Marvel also received an updated look and feel, as seen in the following
screenshots:

Kibana updated look and feel

Looking Forward

[154]

Marvel is now Monitoring with an updated look and feel

Summary
This chapter examined the upcoming Elasticsearch 5 release, discussed upgrading
to version 5, and touched on the new monitoring tools available in the Elasticsearch
X-Pack. Some takeaways from this chapter include:

•	 Elasticsearch 5 has some big performance and reliability gains, but also some
breaking changes to the API.

•	 Elasticsearch-head, Bigdesk, and Kopf are not yet compatible with
Elasticsearch 5.

•	 Elasticsearch 5 is a major release, and upgrading from version 2 may not be
a simple process. Be sure to run the Elasticsearch Migration Helper before
upgrading.

•	 The Elasticsearch X-Pack provides a suite of monitoring tools for
Elasticsearch 5, but isn't free.

Thanks for reading Monitoring Elasticsearch. I hope you learned some new techniques
for monitoring and troubleshooting an Elasticsearch cluster. If you take only one
thing away from reading this book, I hope it is to be meticulous and to test at every
step of the way when troubleshooting issues that pop up when working with
Elasticsearch.

Chapter 8

[155]

If you feel like giving back to the Elasticsearch community, please consider making
contributions to the Elasticsearch-head, Bigdesk, or Kopf projects. These are all
excellent open source tools that make the lives of everyone working with Elasticsearch
easier. And, as mentioned in this chapter, they all need to be re-architected and
updated to work with Elasticsearch 5.

You can read more about the following topics here:
•	 Elasticsearch-head: https://github.com/mobz/

elasticsearch-head
•	 Bigdesk: https://github.com/lukas-vlcek/bigdesk
•	 Kopf: https://github.com/lmenezes/elasticsearch-

kopf

Also, feel free to reach out to me on Twitter: @dwnoble.

https://github.com/mobz/elasticsearch-head
https://github.com/mobz/elasticsearch-head
https://github.com/lukas-vlcek/bigdesk
https://github.com/lmenezes/elasticsearch-kopf
https://github.com/lmenezes/elasticsearch-kopf

[157]

Index
A
Apache Lucene

reference link 7
Atomicity, Consistency, Isolation,

and Durability (ACID) 7

B
Bigdesk

about 29, 42-45
installing 23
reference 45

bulk indexing operations 122, 123

C
case studies, node failures

ES process, terminating 144
queries, timing out 145
slow queries requests 145

cluster
about 21
Bigdesk, installing 23, 24
Elasticsearch-head, installing 21, 22
Marvel 24
Marvel Dashboard, installing 25

Cluster API
reference 46

cluster management tools, more dropdown
Aliases 79
Analysis 79
Cat APIs 79
Cluster Settings 79
Create Index 79
Hot Threads 79

Index Templates 79
Percolator 79
Snapshot 79
Warmers 79

cold indices 111-114
command line tools, for system and process

management
about 97
df command 101, 102
du command 101, 102
free command 101
grep command 98
kill command 100
ps command 99
tail command 98
top command 97

D
data ingestion

bulk indexing operations 122, 123
drive configuration 124
optimizing 121, 122

disk size
_source field, storing 120, 121
analyzed field, storing 120, 121
compression level, increasing 119
reducing 119

disk space
about 142
issue, resolving 143

drive configuration 124

E
eager field data

URL 115

[158]

Elasticsearch
about 1
data distribution 2-5
fault tolerance 2-5
full-text search 5-7
installing 12
monitoring 8, 9
open source full-text search engines 7
overview 1
process crashes 141, 142
redundancy 2-5
reference link 12
version, reference link 12

Elasticsearch 5
data loss 149
monitoring 153
overview 147, 148
performance and reliability

improvements 148
upgrading 149-152
upgrading, situation 152

Elasticsearch cat API
about 29, 46
background 46
document count 47
health color code 47
indices 48
reference 46
shards 49

Elasticsearch cluster configuration
about 16
cluster name 16
max file descriptors, updating on Ubuntu

Linux 18
maximum files limit 18
memory configuration 17
open files limit 17
open files limit, verifying 19
pluggable authentication modules,

enabling 19
swapping, disabling 20, 21

Elasticsearch-head
about 29, 33
Any Request tab 41
Browser tab 40
cluster states 34-37
Indices tab 39

installing 21
node and index actions 37-39
Overview tab 33, 34
reference, for official website 42
Structured Query tab 40

Elasticsearch installation
CentOS/RHEL 14
configuration files 16
DEB/RPM installation 13
reference link 13
Ubuntu/Debian, using 13
verification 14, 15
yum 14
yum and apt-get repositories, using 13

Elasticsearch, Logstash, and Kibana (ELK)
about 73, 80
uses 80

Elasticsearch Mappings
reference link 7

Elasticsearch Migration Helper 149
Elasticsearch Search API

reference link 7
elasticsearch.yml configuration options

marvel.agent.cluster.state.timeout 59
marvel.agent.cluster.stats.timeout 59
marvel.agent.indices 59
marvel.agent.interval 59
marvel.enabled 59
marvel.history.duration 59

Elastic Stack 148, 153

F
features, Elasticsearch

analytics 2
distributed 2
Dynamic Mappings 2
fault tolerant 2
full-text search 2
JSON document store 2
non-relational 2
NoSQL 2

fielddata cache
about 106
size, limiting 106
verifying 106, 107

[159]

H
hot nodes 118
Hot-Warm architecture

about 118
hot nodes 118
master nodes 118
URL 119
warm nodes 118, 119

human readable (-h flag) 102

I
Indices API

reference 46
installations

about 80
Kibana 84
Kopf 74-76
Logstash 81

J
Java Runtime Environment (JRE) 11

K
Kibana

download link 84
installing 84-91
working with 80

Kopf
about 73
installing 74-78
working with 73

Kopf installation
cluster page 76
more dropdown 79
nodes page 77
REST page 78

L
Logstash

configuration file, reference link 83
installing 81
working with 80

M
Marvel

about 24, 25, 51
agent configuration settings 58, 59
components 24
configuring 57
dashboard 61
index configuration 59, 60
setting up 51-56
upgrading 56, 57

Marvel dashboard
about 61, 62
Indices dashboard 66-69
Nodes dashboard 69-71
Overview dashboard 63-65

master nodes 118
Monitoring 147

N
Nagios

check script for Elasticsearch, reference
link 92

installing 92-97
working with 92

Nagios Remote Plugin Executor (NRPE) 92
NGINX logs

loading 81-83
node configuration

case study 124, 125
node failures

case studies 143
disk space 142
Elasticsearch process crashes 141, 142
monitoring 71, 72
OutOfMemoryError exceptions 132
problems, diagnosing 131, 132

O
open source full-text search engines

Apache Lucene 7
Ferret 8
Solr 8

OutOfMemoryError exceptions
about 132
resolving 138-140

[160]

shard failures 133-137
slow queries 137, 138

P
problem solving

themes 9

Q
queries

analyzing 108
slow log 108, 109

query optimization
case study 126-129

query performance
cold indices 111-114
high-cardinality fields 110
improving 110
script queries 117
shard query cache 115-117
smaller indices, querying 110, 111
testing, meticulously 117, 118

R
RAID 0 124
Red Hat Enterprise Linux (RHEL) 11

S
script queries 117
Search API query 78
shard failures

about 133
example 133-137

shard query cache
about 115-117
URL 117

shards 3

slow queries
about 137
example 137, 138

states, Elasticsearch-head
green 34
red 34
yellow 34

stream2es utility
reference link 31

system configuration 105, 106
system performance

improving 118

T
three-node Elasticsearch cluster

configuring 30
sample data 31-33
setting up 29

U
Ubuntu Linux

max file descriptors, updating 18

W
warmers

reference link 115
warm nodes 118, 119
web application optimization

case study 130

X
X-Pack, tools

graph 153
monitoring 153
reporting 153
shield 153
watcher 153

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Monitoring Elasticsearch

	An overview of Elasticsearch
	Learning more about Elasticsearch
	Data distribution, redundancy, and fault tolerance
	Full-text search
	Similar technologies
	Apache Lucene
	Solr
	Ferret

	Monitoring Elasticsearch
	Resourcefulness and problem solving
	Summary

	Chapter 2: Installation and the Requirements for Elasticsearch

	Installing Elasticsearch
	DEB/RPM installation
	The yum and apt-get repositories
	Ubuntu/Debian and apt-get
	CentOS/RHEL and yum
	Verification
	Configuration files

	Configuring an Elasticsearch cluster
	Cluster name
	Memory configuration
	Open file limit
	The maximum file limit
	Updating max file descriptors on Ubuntu Linux
	Enabling pluggable authentication modules
	Verifying the open file limit
	Disabling swapping

	Understanding your cluster
	Installing Elasticsearch-head
	Installing Bigdesk
	Marvel

	Cluster requirements
	Summary

	Chapter 3: Elasticsearch-head
and Bigdesk

	Cluster setup
	Cluster configuration
	Sample data

	Elasticsearch-head
	The Overview tab
	Cluster states
	Node and index actions
	The Indices tab
	The Browser tab
	The Structured Query tab
	The Any Request tab
	The official website

	Bigdesk
	The Elasticsearch cat API
	Background
	Count
	Health
	Indices
	Shards

	Summary

	Chapter 4: Marvel Dashboard

	Setting up Marvel
	Upgrading Marvel
	Configuring Marvel
	Marvel agent configuration settings

	Marvel index configuration
	Understanding the Marvel dashboard
	Overview dashboard
	Indices dashboard
	Nodes dashboard

	Monitoring node failures
	Summary

	Chapter 5: System Monitoring

	Working with Kopf
	Installing Kopf
	The cluster page
	The nodes page
	The rest page
	The more dropdown

	Working with Logstash and Kibana
	ELK
	Installation
	Installing Logstash
	Loading NGINX logs
	Installing Kibana

	Working with Nagios
	Installing Nagios

	Command line tools for system and process management
	top
	tail
	grep
	ps
	kill
	free
	du and df

	Summary

	Chapter 6: Troubleshooting Performance and Reliability Issues

	System configuration
	The fielddata cache
	Analyzing queries
	Slow log

	Improving query performance
	High-cardinality fields
	Querying smaller indices
	Cold indices
	The shard query cache
	Script queries
	Testing meticulously

	System and data architecting
	Hot-Warm architecture
	Master nodes
	Hot nodes
	Warm nodes

	Reducing disk size
	Compression
	Storing the _source and analyzed fields

	Optimizing data ingestion
	Bulk indexing operations
	Drive configuration

	Case studies
	Node configuration
	Query optimization
	Web application performance

	Summary

	Chapter 7: Node Failure and
Post-Mortem Analysis

	Diagnosing problems
	OutOfMemoryError exceptions
	Shard failures
	Slow queries
	Resolving OutOfMemoryError exceptions

	Elasticsearch process crashes
	Disk space
	Resolving the issue

	Reviewing some case studies
	The ES process quits unexpectedly
	Query requests slow and timing out

	Summary

	Chapter 8: Looking Forward

	Elasticsearch 5 overview
	Performance and reliability
	Data loss

	Upgrading to Elasticsearch 5.0
	When to upgrade

	Monitoring Elasticsearch 5
	Summary

	Index

