
www.allitebooks.com

http://www.allitebooks.org

Multithreading with
C# Cookbook
Second Edition

Over 70 recipes to get you writing powerful
and efficient multithreaded, asynchronous,
and parallel programs in C# 6.0

Eugene Agafonov

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Multithreading with C# Cookbook
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Second Edition: April 2016

Production reference: 1150416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-125-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Eugene Agafonov

Reviewers
Chad McCallum

Philip Pierce

Commissioning Editor
Edward Gordon

Acquisition Editor
Kirk D'Costa

Content Development Editor
Nikhil Borkar

Technical Editor
Vivek Pala

Copy Editor
Neha Vyas

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Eugene Agafonov leads the development department at ABBYY and lives in Moscow.
He has over 15 years of professional experience in software development, and he started
working with C# when it was in beta version. He is a Microsoft MVP in ASP.NET since 2006,
and he often speaks at local software development conferences, such as DevCon Russia,
about cutting-edge technologies in modern web and server-side application development. His
main professional interests are cloud-based software architecture, scalability, and reliability.
Eugene is a huge fan of football and plays the guitar with a local rock band. You can reach him
at his personal blog, eugeneagafonov.com, or find him on Twitter at @eugene_agafonov.

ABBYY is a global leader in the development of document recognition, content capture, and
language-based technologies and solutions that are integrated across the entire information
life cycle.

He is the author of Multhreading in C# 5.0 Cookbook and Mastering C# Concurrency
by Packt Publishing.

I'd like to dedicate this book to my dearly beloved wife, Helen, and son,
Nikita.

www.allitebooks.com

eugeneagafonov.com
http://www.allitebooks.org

About the Reviewers

Chad McCallum is a Saskatchewan computer geek with a passion for software
development. He has over 10 years of .NET experience (and 2 years of PHP, but we won't
talk about that). After graduating from SIAST Kelsey Campus, he picked up freelance PHP
contracting work until he could pester iQmetrix to give him a job, which he's hung onto for
the last 10 years. He's come back to his roots in Regina and started HackREGINA, a local
hackathon organization aimed at strengthening the developer community while coding and
drinking beer. His current focus is mastering the art of multitenant e-commerce with .NET.
Between his obsession with board gaming and random app ideas, he tries to learn a new
technology every week. You can see the results at www.rtigger.com.

Philip Pierce is a software developer with 20 years of experience in mobile, web, desktop,
and server development, database design and management, and game development. His
background includes creating A.I. for games and business software, converting AAA games
between various platforms, developing multithreaded applications, and creating patented
client/server communication technologies.

Philip has won several hackathons, including Best Mobile App at the AT&T Developer
Summit 2013, and a runner up for Best Windows 8 App at PayPal's Battlethon Miami.
His most recent project was converting Rail Rush and Temple Run 2 from the Android
platform to Arcade platforms.

Philip's portfolios can be found at the following websites:

ff http://www.rocketgamesmobile.com

ff http://www.philippiercedeveloper.com

www.allitebooks.com

www.rtigger.com
http://www.rocketgamesmobile.com
http://www.philippiercedeveloper.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Threading Basics	 1

Introduction	 2
Creating a thread in C#	 2
Pausing a thread	 6
Making a thread wait	 7
Aborting a thread	 8
Determining a thread state	 10
Thread priority	 12
Foreground and background threads	 14
Passing parameters to a thread	 16
Locking with a C# lock keyword	 19
Locking with a Monitor construct	 22
Handling exceptions	 24

Chapter 2: Thread Synchronization	 27
Introduction	 27
Performing basic atomic operations	 28
Using the Mutex construct	 31
Using the SemaphoreSlim construct	 32
Using the AutoResetEvent construct	 34
Using the ManualResetEventSlim construct	 36
Using the CountDownEvent construct	 38
Using the Barrier construct	 39
Using the ReaderWriterLockSlim construct	 41
Using the SpinWait construct	 44

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Using a Thread Pool	 47
Introduction	 47
Invoking a delegate on a thread pool	 49
Posting an asynchronous operation on a thread pool	 52
A thread pool and the degree of parallelism	 54
Implementing a cancellation option	 56
Using a wait handle and timeout with a thread pool	 59
Using a timer	 61
Using the BackgroundWorker component	 63

Chapter 4: Using the Task Parallel Library	 67
Introduction	 67
Creating a task	 69
Performing basic operations with a task	 70
Combining tasks	 72
Converting the APM pattern to tasks	 75
Converting the EAP pattern to tasks	 79
Implementing a cancelation option	 81
Handling exceptions in tasks	 83
Running tasks in parallel	 85
Tweaking the execution of tasks with TaskScheduler	 87

Chapter 5: Using C# 6.0	 93
Introduction	 93
Using the await operator to get asynchronous task results	 96
Using the await operator in a lambda expression	 98
Using the await operator with consequent asynchronous tasks	 100
Using the await operator for the execution of parallel asynchronous tasks	 102
Handling exceptions in asynchronous operations	 104
Avoiding the use of the captured synchronization context	 107
Working around the async void method	 111
Designing a custom awaitable type	 114
Using the dynamic type with await	 118

Chapter 6: Using Concurrent Collections	 123
Introduction	 123
Using ConcurrentDictionary	 125
Implementing asynchronous processing using ConcurrentQueue	 127
Changing asynchronous processing order with ConcurrentStack	 130
Creating a scalable crawler with ConcurrentBag	 132
Generalizing asynchronous processing with BlockingCollection	 136

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 7: Using PLINQ	 141
Introduction	 141
Using the Parallel class	 143
Parallelizing a LINQ query	 145
Tweaking the parameters of a PLINQ query	 148
Handling exceptions in a PLINQ query	 151
Managing data partitioning in a PLINQ query	 153
Creating a custom aggregator for a PLINQ query	 157

Chapter 8: Reactive Extensions	 161
Introduction	 161
Converting a collection to an asynchronous Observable	 162
Writing custom Observable	 165
Using the Subjects type	 168
Creating an Observable object	 172
Using LINQ queries against an observable collection	 174
Creating asynchronous operations with Rx	 177

Chapter 9: Using Asynchronous I/O	 181
Introduction	 181
Working with files asynchronously	 183
Writing an asynchronous HTTP server and client	 187
Working with a database asynchronously	 190
Calling a WCF service asynchronously	 194

Chapter 10: Parallel Programming Patterns	 199
Introduction	 199
Implementing Lazy-evaluated shared states	 200
Implementing Parallel Pipeline with BlockingCollection	 205
Implementing Parallel Pipeline with TPL DataFlow	 210
Implementing Map/Reduce with PLINQ	 215

Chapter 11: There's More	 221
Introduction	 221
Using a timer in a Universal Windows Platform application	 223
Using WinRT from usual applications	 227
Using BackgroundTask in Universal Windows Platform applications	 230
Running a .NET Core application on OS X	 237
Running a .NET Core application on Ubuntu Linux	 240

Index	 243

www.allitebooks.com

http://www.allitebooks.org

v

Preface
Not so long ago, a typical personal computer CPU had only one computing core, and the
power consumption was enough to cook fried eggs on it. In 2005, Intel introduced its first
multiple-core CPU, and since then, computers started developing in a different direction.
Low-power consumption and a number of computing cores became more important than
a row computing core performance. This lead to programming paradigm changes as well.
Now, we need to learn how to use all CPU cores effectively to achieve the best performance,
and at the same time, we need to save battery power by running only the programs that we
need at a particular time. Besides that, we need to program server applications in a way to
use multiple CPU cores or even multiple computers as efficiently as possible to support as
many users as we can.

To be able to create such applications, you have to learn to use multiple CPU cores in your
programs effectively. If you use the Microsoft .NET development platform and C#, this book
will be a perfect starting point for you to program fast and responsive applications.

The purpose of this book is to provide you with a step-by-step guide for multithreading and
parallel programming in C#. We will start with the basic concepts, going through more and
more advanced topics based on the information from previous chapters, and we will end with
real-world parallel programming patterns, Universal Windows applications, and cross-platform
applications samples.

What this book covers
Chapter 1, Threading Basics, introduces the basic operations with threads in C#. It explains
what a thread is, the pros and cons of using threads, and other important thread aspects.

Chapter 2, Thread Synchronization, describes thread interaction details. You will learn why we
need to coordinate threads together and the different ways of organizing thread coordination.

Chapter 3, Using a Thread Pool, explains the thread pool concept. It shows how to use a
thread pool, how to work with asynchronous operations, and the good and bad practices
of using a thread pool.

Preface

vi

Chapter 4, Using the Task Parallel Library, is a deep dive into the Task Parallel Library (TPL)
framework. This chapter outlines every important aspect of TPL, including task combination,
exception management, and operation cancelation.

Chapter 5, Using C# 6.0, explains in detail the recently introduced C# feature—asynchronous
methods. You will find out what the async and await keywords mean, how to use them in
different scenarios, and how await works under the hood.

Chapter 6, Using Concurrent Collections, describes the standard data structures for parallel
algorithms included in .NET Framework. It goes through sample programming scenarios for
each data structure.

Chapter 7, Using PLINQ, is a deep dive into the Parallel LINQ infrastructure. The chapter
describes task and data parallelism, parallelizing a LINQ query, tweaking parallelism options,
partitioning a query, and aggregating the parallel query result.

Chapter 8, Reactive Extensions, explains how and when to use the Reactive Extensions
framework. You will learn how to compose events and how to perform a LINQ query against
an event sequence.

Chapter 9, Using Asynchronous I/O, covers in detail the asynchronous I/O process, including
files, networks, and database scenarios.

Chapter 10, Parallel Programming Patterns, outlines the solutions to common parallel
programming problems.

Chapter 11, There's More, covers the aspects of programming asynchronous applications for
Windows 10, OS X, and Linux. You will learn how to work with Windows 10 asynchronous APIs
and how to perform the background work in Universal Windows applications. Also, you will get
familiar with cross-platform .NET development tools and components.

What you need for this book
For most of the recipes, you will need Microsoft Visual Studio Community 2015. The recipes
in Chapter 11, There's more, for OS X and Linux will optionally require the Visual Studio Code
editor. However, you can use any specific editor you are familiar with.

Who this book is for
This book is written for existing C# developers with little or no background in multithreading and
asynchronous and parallel programming. The book covers these topics from basic concepts to
complicated programming patterns and algorithms using the C# and .NET ecosystem.

Preface

vii

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "When the program is run, it creates a thread that
will execute a code in the PrintNumbersWithDelay method."

A block of code is set as follows:

static void LockTooMuch(object lock1, object lock2)
{
 lock (lock1)
 {
 Sleep(1000);
 lock (lock2);
 }
}

Any command-line input or output is written as follows:

dotnet restore

dotnet run

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Right-click on the References
folder in the project, and select the Manage NuGet Packages… menu option".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

viii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

ix

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

1

1
Threading Basics

In this chapter, we will cover the basic tasks to work with threads in C#. You will learn the
following recipes:

ff Creating a thread in C#

ff Pausing a thread

ff Making a thread wait

ff Aborting a thread

ff Determining a thread state

ff Thread priority

ff Foreground and background threads

ff Passing parameters to a thread

ff Locking with a C# lock keyword

ff Locking with a Monitor construct

ff Handling exceptions

Threading Basics

2

Introduction
At some point of time in the past, the common computer had only one computing unit and
could not execute several computing tasks simultaneously. However, operating systems could
already work with multiple programs simultaneously, implementing the concept of multitasking.
To prevent the possibility of one program taking control of the CPU forever, causing other
applications and the operating system itself to hang, the operating systems had to split a
physical computing unit across a few virtualized processors in some way and give a certain
amount of computing power to each executing program. Moreover, an operating system must
always have priority access to the CPU and should be able to prioritize CPU access to different
programs. A thread is an implementation of this concept. It could be considered as a virtual
processor that is given to the one specific program and runs it independently.

Remember that a thread consumes a significant amount of operating system
resources. Trying to share one physical processor across many threads will
lead to a situation where an operating system is busy just managing threads
instead of running programs.

Therefore, while it was possible to enhance computer processors, making them execute more
and more commands per second, working with threads was usually an operating system task.
There was no sense in trying to compute some tasks in parallel on a single-core CPU because
it would take more time than running those computations sequentially. However, when
processors started to have more computing cores, older programs could not take advantage
of this because they just used one processor core.

To use a modern processor's computing power effectively, it is very important to be able to
compose a program in a way that it can use more than one computing core, which leads to
organizing it as several threads that communicate and synchronize with each other.

The recipes in this chapter focus on performing some very basic operations with threads
in the C# language. We will cover a thread's life cycle, which includes creating, suspending,
making a thread wait, and aborting a thread, and then, we will go through the basic
synchronization techniques.

Creating a thread in C#
Throughout the following recipes, we will use Visual Studio 2015 as the main tool to write
multithreaded programs in C#. This recipe will show you how to create a new C# program and
use threads in it.

A free Visual Studio Community 2015 IDE can be downloaded from
the Microsoft website and used to run the code samples.

Chapter 1

3

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other
prerequisites. The source code for this recipe can be found in the BookSamples\Chapter1\
Recipe1 directory.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.
You can download the code files by following these steps:

ff Log in or register to our website using your e-mail address and
password.

ff Hover the mouse pointer on the SUPPORT tab at the top.
ff Click on Code Downloads & Errata.
ff Enter the name of the book in the Search box.
ff Select the book for which you're looking to download the code files.
ff Choose from the drop-down menu where you purchased this book from.
ff Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

ff WinRAR/7-Zip for Windows
ff Zipeg/iZip / UnRarX for Mac
ff 7-Zip/PeaZip for Linux

How to do it...
To understand how to create a new C# program and use threads in it, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

http://www.packtpub.com
http://www.packtpub.com/support

Threading Basics

4

2.	 Make sure that the project uses .NET Framework 4.6 or higher; however, the code in
this chapter will work with previous versions.

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;

4.	 Add the following code snippet below the Main method:
static void PrintNumbers()
{
 WriteLine("Starting...");
 for (int i = 1; i < 10; i++)
 {
 WriteLine(i);
 }
}

Chapter 1

5

5.	 Add the following code snippet inside the Main method:
Thread t = new Thread(PrintNumbers);
t.Start();
PrintNumbers();

6.	 Run the program. The output will be something like the following screenshot:

How it works...
In step 1 and 2, we created a simple console application in C# using .Net Framework version
4.0. Then, in step 3, we included the System.Threading namespace, which contains all the
types needed for the program. Then, we used the using static feature from C# 6.0, which
allows us to use the System.Console type's static methods without specifying the type name.

An instance of a program that is being executed can be referred to as
a process. A process consists of one or more threads. This means that
when we run a program, we always have one main thread that executes
the program code.

In step 4, we defined the PrintNumbers method, which will be used in both the main and
newly created threads. Then, in step 5, we created a thread that runs PrintNumbers. When
we construct a thread, an instance of the ThreadStart or ParameterizedThreadStart
delegate is passed to the constructor. The C# compiler creates this object behind the scenes
when we just type the name of the method we want to run in a different thread. Then, we start
a thread and run PrintNumbers in the usual manner on the main thread.

Threading Basics

6

As a result, there will be two ranges of numbers from 1 to 10 randomly crossing each other.
This illustrates that the PrintNumbers method runs simultaneously on the main thread and
on the other thread.

Pausing a thread
This recipe will show you how to make a thread wait for some time without wasting operating
system resources.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other
prerequisites. The source code for this recipe can be found at BookSamples\Chapter1\
Recipe2.

How to do it...
To understand how to make a thread wait without wasting operating system resources,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void PrintNumbers()
{
 WriteLine("Starting...");
 for (int i = 1; i < 10; i++)
 {
 WriteLine(i);
 }
}
static void PrintNumbersWithDelay()
{
 WriteLine("Starting...");
 for (int i = 1; i < 10; i++)
 {
 Sleep(TimeSpan.FromSeconds(2));

Chapter 1

7

 WriteLine(i);
 }
}

4.	 Add the following code snippet inside the Main method:
Thread t = new Thread(PrintNumbersWithDelay);
t.Start();
PrintNumbers();

5.	 Run the program.

How it works...
When the program is run, it creates a thread that will execute a code in the
PrintNumbersWithDelay method. Immediately after that, it runs the PrintNumbers
method. The key feature here is adding the Thread.Sleep method call to a
PrintNumbersWithDelay method. It causes the thread executing this code to wait a
specified amount of time (2 seconds in our case) before printing each number. While a thread
sleeps, it uses as little CPU time as possible. As a result, we will see that the code in the
PrintNumbers method, which usually runs later, will be executed before the code in the
PrintNumbersWithDelay method in a separate thread.

Making a thread wait
This recipe will show you how a program can wait for some computation in another thread
to complete to use its result later in the code. It is not enough to use the Thread.Sleep
method because we don't know the exact time the computation will take.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe3.

How to do it...
To understand how a program waits for some computation in another thread to complete in
order to use its result later, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;

Threading Basics

8

using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void PrintNumbersWithDelay()
{
 WriteLine("Starting...");
 for (int i = 1; i < 10; i++)
 {
 Sleep(TimeSpan.FromSeconds(2));
 WriteLine(i);
 }
}

4.	 Add the following code snippet inside the Main method:
WriteLine("Starting...");
Thread t = new Thread(PrintNumbersWithDelay);
t.Start();
t.Join();
WriteLine("Thread completed");

5.	 Run the program.

How it works...
When the program is run, it runs a long-running thread that prints out numbers and waits
two seconds before printing each number. But, in the main program, we called the t.Join
method, which allows us to wait for the thread t to complete working. When it is complete, the
main program continues to run. With the help of this technique, it is possible to synchronize
execution steps between two threads. The first one waits until another one is complete and
then continues to work. While the first thread waits, it is in a blocked state (as it is in the
previous recipe when you call Thread.Sleep).

Aborting a thread
In this recipe, we will describe how to abort another thread's execution.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe4.

Chapter 1

9

How to do it...
To understand how to abort another thread's execution, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;

3.	 Using the static System.Threading.Thread, add the following code snippet below
the Main method:
static void PrintNumbersWithDelay()
{
 WriteLine("Starting...");
 for (int i = 1; i < 10; i++)
 {
 Sleep(TimeSpan.FromSeconds(2));
 WriteLine(i);
 }
}

4.	 Add the following code snippet inside the Main method:
WriteLine("Starting program...");
Thread t = new Thread(PrintNumbersWithDelay);
t.Start();
Thread.Sleep(TimeSpan.FromSeconds(6));
t.Abort();
WriteLine("A thread has been aborted");
Thread t = new Thread(PrintNumbers);
t.Start();
PrintNumbers();

5.	 Run the program.

Threading Basics

10

How it works...
When the main program and a separate number-printing thread run, we wait for six seconds
and then call a t.Abort method on a thread. This injects a ThreadAbortException
method into a thread, causing it to terminate. It is very dangerous, generally because this
exception can happen at any point and may totally destroy the application. In addition, it is
not always possible to terminate a thread with this technique. The target thread may refuse to
abort by handling this exception by calling the Thread.ResetAbort method. Thus, it is not
recommended that you use the Abort method to close a thread. There are different methods
that are preferred, such as providing a CancellationToken object to cancel a thread
execution. This approach will be described in Chapter 3, Using a Thread Pool.

Determining a thread state
This recipe will describe the possible states a thread could have. It is useful to get information
about whether a thread is started yet or whether it is in a blocked state. Note that because a
thread runs independently, its state could be changed at any time.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe5.

How to do it...
To understand how to determine a thread state and acquire useful information about it,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void DoNothing()
{
 Sleep(TimeSpan.FromSeconds(2));
}

static void PrintNumbersWithStatus()

Chapter 1

11

{
 WriteLine("Starting...");
 WriteLine(CurrentThread.ThreadState.ToString());
 for (int i = 1; i < 10; i++)
 {
 Sleep(TimeSpan.FromSeconds(2));
 WriteLine(i);
 }
}

4.	 Add the following code snippet inside the Main method:
WriteLine("Starting program...");
Thread t = new Thread(PrintNumbersWithStatus);
Thread t2 = new Thread(DoNothing);
WriteLine(t.ThreadState.ToString());
t2.Start();
t.Start();
for (int i = 1; i < 30; i++)
{
 WriteLine(t.ThreadState.ToString());
}
Sleep(TimeSpan.FromSeconds(6));
t.Abort();
WriteLine("A thread has been aborted");
WriteLine(t.ThreadState.ToString());
WriteLine(t2.ThreadState.ToString());

5.	 Run the program.

How it works...
When the main program starts, it defines two different threads; one of them will be
aborted and the other runs successfully. The thread state is located in the ThreadState
property of a Thread object, which is a C# enumeration. At first, the thread has a
ThreadState.Unstarted state. Then, we run it and assume that for the duration of
30 iterations of a cycle, the thread will change its state from ThreadState.Running to
ThreadState.WaitSleepJoin.

Note that the current Thread object is always accessible through
the Thread.CurrentThread static property.

Threading Basics

12

If this does not happen, just increase the number of iterations. Then, we abort the first
thread and see that now it has a ThreadState.Aborted state. It is also possible that the
program will print out the ThreadState.AbortRequested state. This illustrates, very well,
the complexity of synchronizing two threads. Keep in mind that you should not use thread
abortion in your programs. I've covered it here only to show the corresponding thread state.

Finally, we can see that our second thread t2 was completed successfully and now has a
ThreadState.Stopped state. There are several other states, but they are partly deprecated
and not as useful as those we examined.

Thread priority
This recipe will describe the different options for thread priority. Setting a thread priority
determines how much CPU time a thread will be given.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe6.

How to do it...
To understand the workings of thread priority, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;
using static System.Diagnostics.Process;

3.	 Add the following code snippet below the Main method:
static void RunThreads()
{
 var sample = new ThreadSample();

 var threadOne = new Thread(sample.CountNumbers);
 threadOne.Name = "ThreadOne";
 var threadTwo = new Thread(sample.CountNumbers);
 threadTwo.Name = "ThreadTwo";

 threadOne.Priority = ThreadPriority.Highest;

Chapter 1

13

 threadTwo.Priority = ThreadPriority.Lowest;
 threadOne.Start();
 threadTwo.Start();

 Sleep(TimeSpan.FromSeconds(2));
 sample.Stop();
}

class ThreadSample
{
 private bool _isStopped = false;

 public void Stop()
 {
 _isStopped = true;
 }

 public void CountNumbers()
 {
 long counter = 0;

 while (!_isStopped)
 {
 counter++;
 }

 WriteLine($"{CurrentThread.Name} with " +
 $"{CurrentThread.Priority,11} priority " +
 $"has a count = {counter,13:N0}");
 }
}

4.	 Add the following code snippet inside the Main method:
WriteLine($"Current thread priority: {CurrentThread.Priority}");
WriteLine("Running on all cores available");
RunThreads();
Sleep(TimeSpan.FromSeconds(2));
WriteLine("Running on a single core");
GetCurrentProcess().ProcessorAffinity = new IntPtr(1);
RunThreads();

5.	 Run the program.

www.allitebooks.com

http://www.allitebooks.org

Threading Basics

14

How it works...
When the main program starts, it defines two different threads. The first one, threadOne,
has the highest thread priority ThreadPriority.Highest, while the second one, that
is threadTwo, has the lowest ThreadPriority.Lowest priority. We print out the main
thread priority value and then start these two threads on all available cores. If we have more
than one computing core, we should get an initial result within two seconds. The highest
priority thread should calculate more iterations usually, but both values should be close.
However, if there are any other programs running that load all the CPU cores, the situation
could be quite different.

To simulate this situation, we set up the ProcessorAffinity option, instructing the
operating system to run all our threads on a single CPU core (number 1). Now, the results
should be very different, and the calculations will take more than two seconds. This happens
because the CPU core runs mostly the high-priority thread, giving the rest of the threads very
little time.

Note that this is an illustration of how an operating system works with thread prioritization.
Usually, you should not write programs relying on this behavior.

Foreground and background threads
This recipe will describe what foreground and background threads are and how setting this
option affects the program's behavior.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe7.

How to do it...
To understand the effect of foreground and background threads on a program, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

Chapter 1

15

3.	 Add the following code snippet below the Main method:
class ThreadSample
{
 private readonly int _iterations;

 public ThreadSample(int iterations)
 {
 _iterations = iterations;
 }
 public void CountNumbers()
 {
 for (int i = 0; i < _iterations; i++)
 {
 Sleep(TimeSpan.FromSeconds(0.5));
 WriteLine($"{CurrentThread.Name} prints {i}");
 }
 }
}

4.	 Add the following code snippet inside the Main method:
var sampleForeground = new ThreadSample(10);
var sampleBackground = new ThreadSample(20);

var threadOne = new Thread(sampleForeground.CountNumbers);
threadOne.Name = "ForegroundThread";
var threadTwo = new Thread(sampleBackground.CountNumbers);
threadTwo.Name = "BackgroundThread";
threadTwo.IsBackground = true;

threadOne.Start();
threadTwo.Start();

5.	 Run the program.

How it works...
When the main program starts, it defines two different threads. By default, a thread that we
create explicitly is a foreground thread. To create a background thread, we manually set the
IsBackground property of the threadTwo object to true. We configure these threads in a
way that the first one will be completed faster, and then we run the program.

Threading Basics

16

After the first thread is complete, the program shuts down and the background thread is
terminated. This is the main difference between the two: a process waits for all the foreground
threads to complete before finishing the work, but if it has background threads, they just
shut down.

It is also important to mention that if a program defines a foreground thread that does not get
completed; the main program does not end properly.

Passing parameters to a thread
This recipe will describe how to provide code that we run in another thread with the required
data. We will go through the different ways to fulfill this task and review common mistakes.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe8.

How to do it...
To understand how to pass parameters to a thread, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void Count(object iterations)
{
 CountNumbers((int)iterations);
}

static void CountNumbers(int iterations)
{
 for (int i = 1; i <= iterations; i++)
 {
 Sleep(TimeSpan.FromSeconds(0.5));
 WriteLine($"{CurrentThread.Name} prints {i}");
 }

Chapter 1

17

}

static void PrintNumber(int number)
{
 WriteLine(number);
}

class ThreadSample
{
 private readonly int _iterations;

 public ThreadSample(int iterations)
 {
 _iterations = iterations;
 }
 public void CountNumbers()
 {
 for (int i = 1; i <= _iterations; i++)
 {
 Sleep(TimeSpan.FromSeconds(0.5));
 WriteLine($"{CurrentThread.Name} prints {i}");
 }
 }
}

4.	 Add the following code snippet inside the Main method:
var sample = new ThreadSample(10);

var threadOne = new Thread(sample.CountNumbers);
threadOne.Name = "ThreadOne";
threadOne.Start();
threadOne.Join();

WriteLine("--------------------------");

var threadTwo = new Thread(Count);
threadTwo.Name = "ThreadTwo";
threadTwo.Start(8);
threadTwo.Join();

WriteLine("--------------------------");

var threadThree = new Thread(() => CountNumbers(12));
threadThree.Name = "ThreadThree";

Threading Basics

18

threadThree.Start();
threadThree.Join();
WriteLine("--------------------------");

int i = 10;
var threadFour = new Thread(() => PrintNumber(i));
i = 20;
var threadFive = new Thread(() => PrintNumber(i));
threadFour.Start();
threadFive.Start();

5.	 Run the program.

How it works...
When the main program starts, it first creates an object of the ThreadSample
class, providing it with a number of iterations. Then, we start a thread with the object's
CountNumbers method. This method runs in another thread, but it uses the number 10,
which is the value that we passed to the object's constructor. Therefore, we just passed
this number of iterations to another thread in the same indirect way.

There's more…
Another way to pass data is to use the Thread.Start method by accepting an object that
can be passed to another thread. To work this way, a method that we started in another
thread must accept one single parameter of the type object. This option is illustrated by
creating a threadTwo thread. We pass 8 as an object to the Count method, where it is
cast to an integer type.

The next option involves the use of lambda expressions. A lambda expression defines a
method that does not belong to any class. We create such a method that invokes another
method with the arguments needed and start it in another thread. When we start the
threadThree thread, it prints out 12 numbers, which are exactly the numbers we passed
to it via the lambda expression.

The use of lambda expressions involves another C# construct named closure. When we
use any local variable in a lambda expression, C# generates a class and makes this variable
a property of this class. So, actually, we do the same thing as in the threadOne thread, but
we do not define the class ourselves; the C# compiler does this automatically.

This could lead to several problems; for example, if we use the same variable from several
lambdas, they will actually share this variable value. This is illustrated by the previous
example where, when we start threadFour and threadFive, they both print 20 because
the variable was changed to hold the value 20 before both threads were started.

Chapter 1

19

Locking with a C# lock keyword
This recipe will describe how to ensure that when one thread uses some resource, another
does not simultaneously use it. We will see why this is needed and what the thread safety
concept is all about.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe9.

How to do it...
To understand how to use the C# lock keyword, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;

3.	 Add the following code snippet below the Main method:
static void TestCounter(CounterBase c)
{
 for (int i = 0; i < 100000; i++)
 {
 c.Increment();
 c.Decrement();
 }
}

class Counter : CounterBase
{
 public int Count { get; private set; }

 public override void Increment()
 {
 Count++;
 }

 public override void Decrement()

Threading Basics

20

 {
 Count--;
 }
}

class CounterWithLock : CounterBase
{
 private readonly object _syncRoot = new Object();

 public int Count { get; private set; }

 public override void Increment()
 {
 lock (_syncRoot)
 {
 Count++;
 }
 }

 public override void Decrement()
 {
 lock (_syncRoot)
 {
 Count--;
 }
 }
}

abstract class CounterBase
{
 public abstract void Increment();

 public abstract void Decrement();
}

4.	 Add the following code snippet inside the Main method:
WriteLine("Incorrect counter");

var c = new Counter();

var t1 = new Thread(() => TestCounter(c));
var t2 = new Thread(() => TestCounter(c));
var t3 = new Thread(() => TestCounter(c));
t1.Start();

Chapter 1

21

t2.Start();
t3.Start();
t1.Join();
t2.Join();
t3.Join();

WriteLine($"Total count: {c.Count}");
WriteLine("--------------------------");

WriteLine("Correct counter");

var c1 = new CounterWithLock();

t1 = new Thread(() => TestCounter(c1));
t2 = new Thread(() => TestCounter(c1));
t3 = new Thread(() => TestCounter(c1));
t1.Start();
t2.Start();
t3.Start();
t1.Join();
t2.Join();
t3.Join();
WriteLine($"Total count: {c1.Count}");

5.	 Run the program.

How it works...
When the main program starts, it first creates an object of the Counter class. This class
defines a simple counter that can be incremented and decremented. Then, we start three
threads that share the same counter instance and perform an increment and decrement in
a cycle. This leads to nondeterministic results. If we run the program several times, it will
print out several different counter values. It could be 0, but mostly won't be.

This happens because the Counter class is not thread-safe. When several threads access
the counter at the same time, the first thread gets the counter value 10 and increments it to
11. Then, a second thread gets the value 11 and increments it to 12. The first thread gets the
counter value 12, but before a decrement takes place, a second thread gets the counter value
12 as well. Then, the first thread decrements 12 to 11 and saves it into the counter, and the
second thread simultaneously does the same. As a result, we have two increments and only
one decrement, which is obviously not right. This kind of a situation is called a race condition
and is a very common cause of errors in a multithreaded environment.

Threading Basics

22

To make sure that this does not happen, we must ensure that while one thread works with the
counter, all other threads wait until the first one finishes the work. We can use the lock keyword
to achieve this kind of behavior. If we lock an object, all the other threads that require an access
to this object will wait in a blocked state until it is unlocked. This could be a serious performance
issue and later, in Chapter 2, Thread Synchronization, you will learn more about this.

Locking with a Monitor construct
This recipe illustrates another common multithreaded error called a deadlock. Since a
deadlock will cause a program to stop working, the first piece in this example is a new
Monitor construct that allows us to avoid a deadlock. Then, the previously described
lock keyword is used to get a deadlock.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe10.

How to do it...
To understand the multithreaded error deadlock, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void LockTooMuch(object lock1, object lock2)
{
 lock (lock1)
 {
 Sleep(1000);
 lock (lock2);
 }
}

4.	 Add the following code snippet inside the Main method:
object lock1 = new object();

Chapter 1

23

object lock2 = new object();

new Thread(() => LockTooMuch(lock1, lock2)).Start();

lock (lock2)
{
 Thread.Sleep(1000);
 WriteLine("Monitor.TryEnter allows not to get stuck, returning
false after a specified timeout is elapsed");
 if (Monitor.TryEnter(lock1, TimeSpan.FromSeconds(5)))
 {
 WriteLine("Acquired a protected resource succesfully");
 }
 else
 {
 WriteLine("Timeout acquiring a resource!");
 }
}

new Thread(() => LockTooMuch(lock1, lock2)).Start();

WriteLine("----------------------------------");
lock (lock2)
{
 WriteLine("This will be a deadlock!");
 Sleep(1000);
 lock (lock1)
 {
 WriteLine("Acquired a protected resource succesfully");
 }
}

5.	 Run the program.

How it works...
Let's start with the LockTooMuch method. In this method, we just lock the first object, wait
for a second, and then lock the second object. Then, we start this method in another thread
and try to lock the second object and then the first object from the main thread.

If we use the lock keyword like in the second part of this demo, there will be a deadlock.
The first thread holds a lock on the lock1 object and waits while the lock2 object gets
free; the main thread holds a lock on the lock2 object and waits for the lock1 object to
become free, which will never happen in this situation.

Threading Basics

24

Actually, the lock keyword is syntactic sugar for the Monitor class usage. If we were to
disassemble code with lock, we would see that it turns into the following code snippet:

bool acquiredLock = false;
try
{
 Monitor.Enter(lockObject, ref acquiredLock);

// Code that accesses resources that are protected by the lock.

}
finally
{
 if (acquiredLock)
 {
 Monitor.Exit(lockObject);
 }
}

Therefore, we can use the Monitor class directly; it has the TryEnter method, which
accepts a timeout parameter and returns false if this timeout parameter expires before
we can acquire the resource protected by lock.

Handling exceptions
This recipe will describe how to handle exceptions in other threads properly. It is very
important to always place a try/catch block inside the thread because it is not possible
to catch an exception outside a thread's code.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter1\Recipe11.

How to do it...
To understand the handling of exceptions in other threads, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;

Chapter 1

25

using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void BadFaultyThread()
{
 WriteLine("Starting a faulty thread...");
 Sleep(TimeSpan.FromSeconds(2));
 throw new Exception("Boom!");
}

static void FaultyThread()
{
 try
 {
 WriteLine("Starting a faulty thread...");
 Sleep(TimeSpan.FromSeconds(1));
 throw new Exception("Boom!");
 }
 catch (Exception ex)
 {
 WriteLine($"Exception handled: {ex.Message}");
 }
}

4.	 Add the following code snippet inside the Main method:
var t = new Thread(FaultyThread);
t.Start();
t.Join();

try
{
 t = new Thread(BadFaultyThread);
 t.Start();
}
catch (Exception ex)
{
 WriteLine("We won't get here!");
}

5.	 Run the program.

Threading Basics

26

How it works...
When the main program starts, it defines two threads that will throw an exception. One of
these threads handles an exception, while the other does not. You can see that the second
exception is not caught by a try/catch block around the code that starts the thread. So, if
you work with threads directly, the general rule is to not throw an exception from a thread, but
to use a try/catch block inside a thread code instead.

In the older versions of .NET Framework (1.0 and 1.1), this behavior was different and
uncaught exceptions did not force an application shutdown. It is possible to use this policy
by adding an application configuration file (such as app.config) that contains the following
code snippet:

<configuration>
 <runtime>
 <legacyUnhandledExceptionPolicy enabled="1" />
 </runtime>
</configuration>

27

2
Thread Synchronization

In this chapter, we will describe some of the common techniques of working with shared
resources from multiple threads. You will learn the following recipes:

ff Performing basic atomic operations

ff Using the Mutex construct

ff Using the SemaphoreSlim construct

ff Using the AutoResetEvent construct

ff Using the ManualResetEventSlim construct

ff Using the CountDownEvent construct

ff Using the Barrier construct

ff Using the ReaderWriterLockSlim construct

ff Using the SpinWait construct

Introduction
As we saw in Chapter 1, Threading Basics, it is problematic to use a shared object
simultaneously from several threads. However, it is very important to synchronize those threads
so that they perform operations on that shared object in a proper sequence. In the Locking with
a C# lock keyword recipe, we faced a problem called the race condition. The problem occurred
because the execution of those multiple threads was not synchronized properly. When one
thread performs increment and decrement operations, the other threads must wait for their
turn. Organizing threads in such a way is often referred to as thread synchronization.

There are several ways to achieve thread synchronization. First, if there is no shared object,
there is no need for synchronization at all. Surprisingly, it is very often the case that we can
get rid of complex synchronization constructs by just redesigning our program and removing
a shared state. If possible, just avoid using a single object from several threads.

Thread Synchronization

28

If we must have a shared state, the second approach is to use only atomic operations. This
means that an operation takes a single quantum of time and completes at once, so no other
thread can perform another operation until the first operation is complete. Therefore, there is
no need to make other threads wait for this operation to complete and there is no need to use
locks; this in turn, excludes the deadlock situation.

If this is not possible and the program's logic is more complicated, then we have to use
different constructs to coordinate threads. One group of these constructs puts a waiting
thread into a blocked state. In a blocked state, a thread uses as little CPU time as possible.
However, this means that it will include at least one so-called context switch—the thread
scheduler of an operating system will save the waiting thread's state and switch to another
thread, restoring its state by turn. This takes a considerable amount of resources; however,
if the thread is going to be suspended for a long time, it is good. These kind of constructs
are also called kernel-mode constructs because only the kernel of an operating system is
able to stop a thread from using CPU time.

In case, we have to wait for a short period of time, it is better to simply wait than switch
the thread to a blocked state. This will save us the context switch at the cost of some
wasted CPU time while the thread is waiting. Such constructs are referred to as user-mode
constructs. They are very lightweight and fast, but they waste a lot of CPU time in case a
thread has to wait for long.

To use the best of both worlds, there are hybrid constructs; these try to use user-mode
waiting first, and then, if a thread waits long enough, it switches to the blocked state,
saving CPU resources.

In this chapter, we will look through the aspects of thread synchronization. We will cover how
to perform atomic operations and how to use the existing synchronization constructs included
in .NET Framework.

Performing basic atomic operations
This recipe will show you how to perform basic atomic operations on an object to prevent the
race condition without blocking threads.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe1.

How to do it...
To understand basic atomic operations, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

Chapter 2

29

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;

3.	 Below the Main method, add the following code snippet:
static void TestCounter(CounterBase c)
{
 for (int i = 0; i < 100000; i++)
 {
 c.Increment();
 c.Decrement();
 }
}

class Counter : CounterBase
{
 private int _count;

 public int Count => _count;

 public override void Increment()
 {
 _count++;
 }

 public override void Decrement()
 {
 _count--;
 }
}

class CounterNoLock : CounterBase
{
 private int _count;

 public int Count => _count;

 public override void Increment()
 {
 Interlocked.Increment(ref _count);
 }

 public override void Decrement()
 {

Thread Synchronization

30

 Interlocked.Decrement(ref _count);
 }
}

abstract class CounterBase
{
 public abstract void Increment();

 public abstract void Decrement();
}

4.	 Inside the Main method, add the following code snippet:
WriteLine("Incorrect counter");

var c = new Counter();

var t1 = new Thread(() => TestCounter(c));
var t2 = new Thread(() => TestCounter(c));
var t3 = new Thread(() => TestCounter(c));
t1.Start();
t2.Start();
t3.Start();
t1.Join();
t2.Join();
t3.Join();

WriteLine($"Total count: {c.Count}");
WriteLine("--------------------------");

WriteLine("Correct counter");

var c1 = new CounterNoLock();

t1 = new Thread(() => TestCounter(c1));
t2 = new Thread(() => TestCounter(c1));
t3 = new Thread(() => TestCounter(c1));
t1.Start();
t2.Start();
t3.Start();
t1.Join();
t2.Join();
t3.Join();

WriteLine($"Total count: {c1.Count}");

5.	 Run the program.

Chapter 2

31

How it works...
When the program runs, it creates three threads that will execute a code in the TestCounter
method. This method runs a sequence of increment/decrement operations on an object.
Initially, the Counter object is not thread-safe and we get a race condition here. So, in the
first case, a counter value is not deterministic. We could get a zero value; however, if you run
the program several times, you will eventually get some incorrect nonzero result.

In Chapter 1, Threading Basics, we resolved this problem by locking our object, causing
other threads to be blocked while one thread gets the old counter value and then computes
and assigns a new value to the counter. However, if we execute this operation in such a way,
it cannot be stopped midway, we would achieve the proper result without any locking, and
this is possible with the help of the Interlocked construct. It provides the Increment,
Decrement, and Add atomic methods for basic math, and it helps us to write the Counter
class without the use of locking.

Using the Mutex construct
This recipe will describe how to synchronize two separate programs using the Mutex construct.
A Mutex construct is a synchronization primitive that grants exclusive access of the shared
resource to only one thread.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe2.

How to do it...
To understand the synchronization of two separate programs using the Mutex construct,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;

3.	 Inside the Main method, add the following code snippet:
const string MutexName = "CSharpThreadingCookbook";

using (var m = new Mutex(false, MutexName))

Thread Synchronization

32

{
 if (!m.WaitOne(TimeSpan.FromSeconds(5), false))
 {
 WriteLine("Second instance is running!");
 }
 else
 {
 WriteLine("Running!");
 ReadLine();
 m.ReleaseMutex();
 }
}

4.	 Run the program.

How it works...
When the main program starts, it defines a mutex with a specific name, providing the
initialOwner flag as false. This allows the program to acquire a mutex if it is already
created. Then, if no mutex is acquired, the program simply displays Running and waits for
any key to be pressed in order to release the mutex and exit.

If we start a second copy of the program, it will wait for 5 seconds, trying to acquire the mutex.
If we press any key in the first copy of a program, the second one will start the execution.
However, if we keep waiting for 5 seconds, the second copy of the program will fail to acquire
the mutex.

Note that a mutex is a global operating system object! Always close
the mutex properly; the best choice is to wrap a mutex object into a
using block.

This makes it possible to synchronize threads in different programs, which could be useful in
a large number of scenarios.

Using the SemaphoreSlim construct
This recipe will show you how to limit multithreaded access to some resources with the help
of the SemaphoreSlim construct. SemaphoreSlim is a lightweight version of Semaphore; it
limits the number of threads that can access a resource concurrently.

Chapter 2

33

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe3.

How to do it...
To understand how to limit a multithreaded access to a resource with the help of the
SemaphoreSlim construct, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Below the Main method, add the following code snippet:
static SemaphoreSlim _semaphore = new SemaphoreSlim(4);

static void AccessDatabase(string name, int seconds)
{
 WriteLine($"{name} waits to access a database");
 _semaphore.Wait();
 WriteLine($"{name} was granted an access to a database");
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine($"{name} is completed");
 _semaphore.Release();
}

4.	 Inside the Main method, add the following code snippet:
for (int i = 1; i <= 6; i++)
{
 string threadName = "Thread " + i;
 int secondsToWait = 2 + 2 * i;
 var t = new Thread(() => AccessDatabase(threadName,
secondsToWait));
 t.Start();
}

5.	 Run the program.

www.allitebooks.com

http://www.allitebooks.org

Thread Synchronization

34

How it works...
When the main program starts, it creates a SemaphoreSlim instance, specifying the number
of concurrent threads allowed in its constructor. Then, it starts six threads with different
names and start times to run.

Every thread tries to acquire access to a database, but we restrict the number of concurrent
accesses to a database to four threads with the help of a semaphore. When four threads get
access to a database, the other two threads wait until one of the previous threads finishes its
work and signals to other threads by calling the _semaphore.Release method.

There's more…
Here, we use a hybrid construct, which allows us to save a context switch in cases where the
wait time is very short. However, there is an older version of this construct called Semaphore.
This version is a pure, kernel-time construct. There is no sense in using it, except in one very
important scenario; we can create a named semaphore like a named mutex and use it to
synchronize threads in different programs. SemaphoreSlim does not use Windows kernel
semaphores and does not support interprocess synchronization, so use Semaphore in
this case.

Using the AutoResetEvent construct
In this recipe, there is an example of how to send notifications from one thread to another
with the help of an AutoResetEvent construct. AutoResetEvent notifies a waiting thread
that an event has occurred.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe4.

How to do it...
To understand how to send notifications from one thread to another with the help of the
AutoResetEvent construct, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;

Chapter 2

35

using static System.Console;
using static System.Threading.Thread;

3.	 Below the Main method, add the following code snippet:
private static AutoResetEvent _workerEvent = new
AutoResetEvent(false);
private static AutoResetEvent _mainEvent = new
AutoResetEvent(false);

static void Process(int seconds)
{
 WriteLine("Starting a long running work...");
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine("Work is done!");
 _workerEvent.Set();
 WriteLine("Waiting for a main thread to complete its work");
 _mainEvent.WaitOne();
 WriteLine("Starting second operation...");
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine("Work is done!");
 _workerEvent.Set();
}

4.	 Inside the Main method, add the following code snippet:
var t = new Thread(() => Process(10));
t.Start();

WriteLine("Waiting for another thread to complete work");
_workerEvent.WaitOne();
WriteLine("First operation is completed!");
WriteLine("Performing an operation on a main thread");
Sleep(TimeSpan.FromSeconds(5));
_mainEvent.Set();
WriteLine("Now running the second operation on a second thread");
_workerEvent.WaitOne();
WriteLine("Second operation is completed!");

5.	 Run the program.

Thread Synchronization

36

How it works...
When the main program starts, it defines two AutoResetEvent instances. One of them is
for signaling from the second thread to the main thread, and the second one is for signaling
from the main thread to the second thread. We provide false to the AutoResetEvent
constructor, specifying the initial sate of both the instances as unsignaled. This means
that any thread calling the WaitOne method of one of these objects will be blocked until
we call the Set method. If we initialize the event state to true, it becomes signaled and
the first thread calling WaitOne will proceed immediately. The event state then becomes
unsignaled automatically, so we need to call the Set method once again to let the other
threads calling the WaitOne method on this instance to continue.

Then, we create a second thread, which executes the first operation for 10 seconds and waits
for the signal from the second thread. The signal notifies that the first operation is completed.
Now, the second thread waits for a signal from the main thread. We do some additional work
on the main thread and send a signal by calling the _mainEvent.Set method. Then, we wait
for another signal from the second thread.

AutoResetEvent is a kernel-time construct, so if the wait time is not significant, it is better
to use the next recipe with ManualResetEventslim, which is a hybrid construct.

Using the ManualResetEventSlim construct
This recipe will describe how to make signaling between threads more flexible with the
ManualResetEventSlim construct.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe5.

How to do it...
To understand the use of the ManualResetEventSlim construct, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

Chapter 2

37

3.	 Below the Main method, add the following code:
static void TravelThroughGates(string threadName, int seconds)
{
 WriteLine($"{threadName} falls to sleep");
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine($"{threadName} waits for the gates to open!");
 _mainEvent.Wait();
 WriteLine($"{threadName} enters the gates!");
}

static ManualResetEventSlim _mainEvent = new
ManualResetEventSlim(false);

4.	 Inside the Main method, add the following code:
var t1 = new Thread(() => TravelThroughGates("Thread 1", 5));
var t2 = new Thread(() => TravelThroughGates("Thread 2", 6));
var t3 = new Thread(() => TravelThroughGates("Thread 3", 12));
t1.Start();
t2.Start();
t3.Start();
Sleep(TimeSpan.FromSeconds(6));
WriteLine("The gates are now open!");
_mainEvent.Set();
Sleep(TimeSpan.FromSeconds(2));
_mainEvent.Reset();
WriteLine("The gates have been closed!");
Sleep(TimeSpan.FromSeconds(10));
WriteLine("The gates are now open for the second time!");
_mainEvent.Set();
Sleep(TimeSpan.FromSeconds(2));
WriteLine("The gates have been closed!");
_mainEvent.Reset();

5.	 Run the program.

How it works...
When the main program starts, it first creates an instance of the ManualResetEventSlim
construct. Then, we start three threads that wait for this event to signal them to continue
the execution.

Thread Synchronization

38

The whole process of working with this construct is like letting people pass through a gate.
The AutoResetEvent event that we looked at in the previous recipe works like a turnstile,
allowing only one person to pass at a time. ManualResetEventSlim, which is a hybrid
version of ManualResetEvent, stays open until we manually call the Reset method. Going
back to the code, when we call _mainEvent.Set, we open it and allow the threads that are
ready to accept this signal to continue working. However, thread number three is still sleeping
and does not make it in time. We call _mainEvent.Reset and we thus close it. The last
thread is now ready to go on, but it has to wait for the next signal, which will happen a few
seconds later.

There's more…
As in one of the previous recipes, we use a hybrid construct that lacks the possibility
to work at the operating system level. If we need to have a global event, we should use
the EventWaitHandle construct, which is the base class for AutoResetEvent and
ManualResetEvent.

Using the CountDownEvent construct
This recipe will describe how to use the CountdownEvent signaling construct to wait until a
certain number of operations complete.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe6.

How to do it...
To understand the use of the CountDownEvent construct, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Below the Main method, add the following code:
static CountdownEvent _countdown = new CountdownEvent(2);

static void PerformOperation(string message, int seconds)

Chapter 2

39

{
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine(message);
 _countdown.Signal();
}

4.	 Inside the Main method, add the following code:
WriteLine("Starting two operations");
var t1 = new Thread(() => PerformOperation("Operation 1 is
completed", 4));
var t2 = new Thread(() => PerformOperation("Operation 2 is
completed", 8));
t1.Start();
t2.Start();
_countdown.Wait();
WriteLine("Both operations have been completed.");
_countdown.Dispose();

5.	 Run the program.

How it works...
When the main program starts, we create a new CountdownEvent instance, specifying that
we want it to signal when two operations complete in its constructor. Then, we start two threads
that signal to the event when they are complete. As soon as the second thread is complete,
the main thread returns from waiting on CountdownEvent and proceeds further. Using this
construct, it is very convenient to wait for multiple asynchronous operations to complete.

However, there is a significant disadvantage; _countdown.Wait() will wait forever if we
fail to call _countdown.Signal() the required number of times. Make sure that all your
threads complete with the Signal method call when using CountdownEvent.

Using the Barrier construct
This recipe illustrates another interesting synchronization construct called Barrier. The
Barrier construct helps to organize several threads so that they meet at some point in time,
providing a callback that will be executed each time the threads call the SignalAndWait
method.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe7.

Thread Synchronization

40

How to do it...
To understand the use of the Barrier construct, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Below the Main method, add the following code:
static Barrier _barrier = new Barrier(2,
 b => WriteLine($"End of phase {b.CurrentPhaseNumber + 1}"));

static void PlayMusic(string name, string message, int seconds)
{
 for (int i = 1; i < 3; i++)
 {
 WriteLine("--");
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine($"{name} starts to {message}");
 Sleep(TimeSpan.FromSeconds(seconds));
 WriteLine($"{name} finishes to {message}");
 _barrier.SignalAndWait();
 }
}

4.	 Inside the Main method, add the following code:
var t1 = new Thread(() => PlayMusic("the guitarist", "play an
amazing solo", 5));
var t2 = new Thread(() => PlayMusic("the singer", "sing his song",
2));

t1.Start();
t2.Start();

5.	 Run the program.

How it works...
We create a Barrier construct, specifying that we want to synchronize two threads, and after
each of those two threads call the _barrier.SignalAndWait method, we need to execute
a callback that will print out the number of phases completed.

Chapter 2

41

Each thread will send a signal to Barrier twice, so we will have two phases. Every time
both the threads call the SignalAndWait method, Barrier will execute the callback. It
is useful for working with multithreaded iteration algorithms, to execute some calculations
on each iteration end. The end of the iteration is reached when the last thread calls the
SignalAndWait method.

Using the ReaderWriterLockSlim construct
This recipe will describe how to create a thread-safe mechanism to read and write
to a collection from multiple threads using a ReaderWriterLockSlim construct.
ReaderWriterLockSlim represents a lock that is used to manage access to a resource,
allowing multiple threads for reading or exclusive access for writing.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe8.

How to do it...
To understand how to create a thread-safe mechanism to read and write to a collection from
multiple threads using the ReaderWriterLockSlim construct, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Below the Main method, add the following code:
static ReaderWriterLockSlim _rw = new ReaderWriterLockSlim();
static Dictionary<int, int> _items = new Dictionary<int, int>();

static void Read()
{
 WriteLine("Reading contents of a dictionary");
 while (true)
 {
 try
 {

Thread Synchronization

42

 _rw.EnterReadLock();
 foreach (var key in _items.Keys)
 {
 Sleep(TimeSpan.FromSeconds(0.1));
 }
 }
 finally
 {
 _rw.ExitReadLock();
 }
 }
}

static void Write(string threadName)
{
 while (true)
 {
 try
 {
 int newKey = new Random().Next(250);
 _rw.EnterUpgradeableReadLock();
 if (!_items.ContainsKey(newKey))
 {
 try
 {
 _rw.EnterWriteLock();
 _items[newKey] = 1;
 WriteLine($"New key {newKey} is added to a dictionary by
a {threadName}");
 }
 finally
 {
 _rw.ExitWriteLock();
 }
 }
 Sleep(TimeSpan.FromSeconds(0.1));
 }
 finally
 {
 _rw.ExitUpgradeableReadLock();
 }
 }
}

Chapter 2

43

4.	 Inside the Main method, add the following code:
new Thread(Read){ IsBackground = true }.Start();
new Thread(Read){ IsBackground = true }.Start();
new Thread(Read){ IsBackground = true }.Start();

new Thread(() => Write("Thread 1"))
{ IsBackground = true }.Start();
new Thread(() => Write("Thread 2"))
{ IsBackground = true }.Start();

Sleep(TimeSpan.FromSeconds(30));

5.	 Run the program.

How it works...
When the main program starts, it simultaneously runs three threads that read data from
a dictionary and two threads that write some data into this dictionary. To achieve thread
safety, we use the ReaderWriterLockSlim construct, which was designed especially
for such scenarios.

It has two kinds of locks: a read lock that allows multiple threads to read and a write lock
that blocks every operation from other threads until this write lock is released. There is also
an interesting scenario when we obtain a read lock, read some data from the collection,
and, depending on that data, decide to obtain a write lock and change the collection. If we
get the write locks at once, too much time is spent, not allowing our readers to read the data
because the collection is blocked when we get a write lock. To minimize this time, there are
EnterUpgradeableReadLock/ExitUpgradeableReadLock methods. We get a read lock
and read the data; if we find that we have to change the underlying collection, we just upgrade
our lock using the EnterWriteLock method, then perform a write operation quickly and
release a write lock using ExitWriteLock.

In our case, we get a random number; we then get a read lock and check whether this number
exists in the dictionary key collection. If not, we upgrade our lock to a write lock and then add
this new key to a dictionary. It is a good practice to use try/finally blocks to make sure
that we always release locks after acquiring them.

All our threads have been created as background threads, and after waiting for 30 seconds,
the main thread as well as all the background threads get completed.

Thread Synchronization

44

Using the SpinWait construct
This recipe will describe how to wait on a thread without involving kernel-mode constructs.
In addition, we introduce SpinWait, a hybrid synchronization construct designed to wait
in the user mode for some time, and then switch to the kernel mode to save CPU time.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter2\Recipe9.

How to do it...
To understand how to wait on a thread without involving kernel-mode constructs, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Below the Main method, add the following code:
static volatile bool _isCompleted = false;

static void UserModeWait()
{
 while (!_isCompleted)
 {
 Write(".");
 }
 WriteLine();
 WriteLine("Waiting is complete");
}

static void HybridSpinWait()
{
 var w = new SpinWait();
 while (!_isCompleted)
 {
 w.SpinOnce();

Chapter 2

45

 WriteLine(w.NextSpinWillYield);
 }
 WriteLine("Waiting is complete");
}

4.	 Inside the Main method, add the following code:
var t1 = new Thread(UserModeWait);
var t2 = new Thread(HybridSpinWait);

WriteLine("Running user mode waiting");
t1.Start();
Sleep(20);
_isCompleted = true;
Sleep(TimeSpan.FromSeconds(1));
_isCompleted = false;
WriteLine("Running hybrid SpinWait construct waiting");
t2.Start();
Sleep(5);
_isCompleted = true;

5.	 Run the program.

How it works...
When the main program starts, it defines a thread that will execute an endless loop for 20
milliseconds until the main thread sets the _isCompleted variable to true. We could
experiment and run this cycle for 20-30 seconds instead, measuring the CPU load with the
Windows task manager. It will show a significant amount of processor time, depending on
how many cores the CPU has.

We use the volatile keyword to declare the _isCompleted static field. The volatile
keyword indicates that a field might be modified by multiple threads being executed at the
same time. Fields that are declared volatile are not subject to compiler and processor
optimizations that assume access by a single thread. This ensures that the most up-to-date
value is present in the field at all times.

Then, we use a SpinWait version, which on each iteration prints a special flag that shows us
whether a thread is going to switch to a blocked state. We run this thread for 5 milliseconds
to see that. In the beginning, SpinWait tries to stay in the user mode, and after about nine
iterations, it begins to switch the thread to a blocked state. If we try to measure the CPU load
with this version, we will not see any CPU usage in the Windows task manager.

47

3
Using a Thread Pool

In this chapter, we will describe the common techniques that are used for working with shared
resources from multiple threads. You will learn the following recipes:

ff Invoking a delegate on a thread pool

ff Posting an asynchronous operation on a thread pool

ff A thread pool and the degree of parallelism

ff Implementing a cancellation option

ff Using a wait handle and timeout with a thread pool

ff Using a timer

ff Using the BackgroundWorker component

Introduction
In the previous chapters, we discussed several ways to create threads and organize their
cooperation. Now, let's consider another scenario where we will create many asynchronous
operations that take very little time to complete. As we discussed in the Introduction section
of Chapter 1, Threading Basics, creating a thread is an expensive operation, so doing this for
each short-lived, asynchronous operation will include a significant overhead expense.

To deal with this problem, there is a common approach called pooling that can be successfully
applied to any situation when we need many short-lived, expensive resources. We allocate a
certain amount of these resources in advance and organize them into a resource pool. Each
time we need a new resource, we just take it from the pool, instead of creating a new one, and
return it to the pool after the resource is no longer needed.

Using a Thread Pool

48

The .NET thread pool is an implementation of this concept. It is accessible via the System.
Threading.ThreadPool type. A thread pool is managed by the .NET Common Language
Runtime (CLR), which means that there is one instance of a thread pool per CLR. The
ThreadPool type has a QueueUserWorkItem static method that accepts a delegate,
representing a user-defined, asynchronous operation. After this method is called, this
delegate goes to the internal queue. Then, if there are no threads inside the pool, it creates a
new worker thread and puts the first delegate in the queue on it.

If we put new operations on a thread pool, after the previous operations are completed, it
is possible to reuse this one thread to execute these operations. However, if we put new
operations faster, the thread pool will create more threads to serve these operations. There
is a limit to prevent creating too many threads, and in that case, new operations wait in the
queue until the worker threads in the pool become free to serve them.

It is very important to keep operations on a thread pool shortlived! Do not put
long-running operations on a thread pool or block worker threads. This will
lead to all worker threads becoming busy, and they will no longer be able to
serve user operations. This, in turn, will lead to performance problems and
errors that are very hard to debug.

When we stop putting new operations on a thread pool, it will eventually remove threads that
are no longer needed after being idle for some time. This will free up any operating system
resources that are no longer required.

I would like to emphasize once again that a thread pool is intended to execute short-running
operations. Using a thread pool lets us save operating system resources at the cost of reducing
the degree of parallelism. We use fewer threads, but execute asynchronous operations more
slowly than usual, batching them by the number of worker threads available. This makes
sense if operations complete rapidly, but this will degrade the performance if we execute
many long-running, compute-bound operations.

Another important thing to be very careful of is using a thread pool in ASP.NET applications.
The ASP.NET infrastructure uses a thread pool itself, and if you waste all worker threads
from a thread pool, a web server will no longer be able to serve incoming requests. It is
recommended that you use only input/output-bound asynchronous operations in ASP.NET
because they use different mechanics called I/O threads. We will discuss I/O threads in
Chapter 9, Using Asynchronous I/O.

Note that worker threads in a thread pool are background threads. This means
that when all of the threads in the foreground (including the main application
thread) are complete, then all the background threads will be stopped.

In this chapter, you will learn to use a thread pool to execute asynchronous operations. We will
cover different ways to put an operation on a thread pool and how to cancel an operation and
prevent it from running for a long time.

Chapter 3

49

Invoking a delegate on a thread pool
This recipe will show you how to execute a delegate asynchronously on a thread pool. In
addition, we will discuss an approach called the Asynchronous Programming Model (APM),
which was historically the first asynchronous programming pattern in .NET.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter3\Recipe1.

How to do it...
To understand how to invoke a delegate on a thread pool, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
private delegate string RunOnThreadPool(out int threadId);

private static void Callback(IAsyncResult ar)
{
 WriteLine("Starting a callback...");
 WriteLine($"State passed to a callbak: {ar.AsyncState}");
 WriteLine($"Is thread pool thread:
{CurrentThread.IsThreadPoolThread}");
 WriteLine($"Thread pool worker thread id:
{CurrentThread.ManagedThreadId}");
}

private static string Test(out int threadId)
{
 WriteLine("Starting...");
 WriteLine($"Is thread pool thread:
{CurrentThread.IsThreadPoolThread}");
 Sleep(TimeSpan.FromSeconds(2));

Using a Thread Pool

50

 threadId = CurrentThread.ManagedThreadId;
 return $"Thread pool worker thread id was: {threadId}";
}

4.	 Add the following code inside the Main method:
int threadId = 0;

RunOnThreadPool poolDelegate = Test;

var t = new Thread(() => Test(out threadId));
t.Start();
t.Join();

WriteLine($"Thread id: {threadId}");

IAsyncResult r = poolDelegate.BeginInvoke(out threadId, Callback,
"a delegate asynchronous call");
r.AsyncWaitHandle.WaitOne();

string result = poolDelegate.EndInvoke(out threadId, r);

WriteLine($"Thread pool worker thread id: {threadId}");
WriteLine(result);

Sleep(TimeSpan.FromSeconds(2));

5.	 Run the program.

How it works...
When the program runs, it creates a thread in the old-fashioned way and then starts it
and waits for its completion. Since a thread constructor accepts only a method that does
not return any result, we use a lambda expression to wrap up a call to the Test method.
We make sure that this thread is not from the thread pool by printing out the Thread.
CurrentThread.IsThreadPoolThread property value. We also print out a managed
thread ID to identify a thread on which this code was executed.

Chapter 3

51

Then, we define a delegate and run it by calling the BeginInvoke method. This method
accepts a callback that will be called after the asynchronous operation is complete and a
user-defined state to pass into the callback. This state is usually used to distinguish one
asynchronous call from another. As a result, we get a result object that implements the
IAsyncResult interface. The BeginInvoke method returns the result immediately,
allowing us to continue with any work while the asynchronous operation is being executed on
a worker thread of the thread pool. When we need the result of an asynchronous operation,
we use the result object returned from the BeginInvoke method call. We can poll on it
using the IsCompleted result property, but in this case, we use the AsyncWaitHandle
result property to wait on it until the operation is complete. After this is done, to get a result
from it, we call the EndInvoke method on a delegate, passing the delegate arguments and
our IAsyncResult object.

Actually, using AsyncWaitHandle is not necessary. If we comment out
r.AsyncWaitHandle.WaitOne, the code will still run successfully
because the EndInvoke method actually waits for the asynchronous
operation to complete. It is always important to call EndInvoke (or
EndOperationName for other asynchronous APIs) because it throws
any unhandled exceptions back to the calling thread. Always call both the
Begin and End methods when using this kind of asynchronous API.

When the operation completes, a callback passed to the BeginInvoke method will be
posted on a thread pool, more specifically, a worker thread. If we comment out the Thread.
Sleep method call at the end of the Main method definition, the callback will not be
executed. This is because when the main thread is completed, all the background threads will
be stopped, including this callback. It is possible that both asynchronous calls to a delegate
and a callback will be served by the same worker thread, which is easy to see by a worker
thread ID.

This approach of using the BeginOperationName/EndOperationName method and the
IAsyncResult object in .NET is called the Asynchronous Programming Model or the APM
pattern, and such method pairs are called asynchronous methods. This pattern is still used
in various .NET class library APIs, but in modern programming, it is preferable to use the Task
Parallel Library (TPL) to organize an asynchronous API. We will cover this topic in Chapter 4,
Using the Task Parallel Library.

Using a Thread Pool

52

Posting an asynchronous operation on a
thread pool

This recipe will describe how to put an asynchronous operation on a thread pool.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter3\Recipe2.

How to do it...
To understand how to post an asynchronous operation on a thread pool, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
private static void AsyncOperation(object state)
{
 WriteLine($"Operation state: {state ?? "(null)"}");
 WriteLine($"Worker thread id: {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromSeconds(2));
}

4.	 Add the following code snippet inside the Main method:
const int x = 1;
const int y = 2;
const string lambdaState = "lambda state 2";

ThreadPool.QueueUserWorkItem(AsyncOperation);
Sleep(TimeSpan.FromSeconds(1));

ThreadPool.QueueUserWorkItem(AsyncOperation, "async state");

Chapter 3

53

Sleep(TimeSpan.FromSeconds(1));

ThreadPool.QueueUserWorkItem(state =>
{
 WriteLine($"Operation state: {state}");
 WriteLine($"Worker thread id: {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromSeconds(2));
}, "lambda state");

ThreadPool.QueueUserWorkItem(_ =>
{
 WriteLine($"Operation state: {x + y}, {lambdaState}");
 WriteLine($"Worker thread id: {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromSeconds(2));
}, "lambda state");

Sleep(TimeSpan.FromSeconds(2));

5.	 Run the program.

How it works...
First, we define the AsyncOperation method that accepts a single parameter of the
object type. Then, we post this method on a thread pool using the QueueUserWorkItem
method. Then, we post this method once again, but this time, we pass a state object to this
method call. This object will be passed to the AsynchronousOperation method as the
state parameter.

Making a thread sleep for 1 second after these operations allows the thread pool to reuse
threads for new operations. If you comment on these Thread.Sleep calls, most certainly the
thread IDs will be different in all cases. If not, probably the first two threads will be reused to
run the following two operations.

First, we post a lambda expression to a thread pool. Nothing special here; instead of defining
a separate method, we use the lambda expression syntax.

Secondly, instead of passing the state of a lambda expression, we use closure mechanics.
This gives us more flexibility and allows us to provide more than one object to the asynchronous
operation and static typing for those objects. So, the previous mechanism of passing an object
into a method callback is really redundant and obsolete. There is no need to use it now when we
have closures in C#.

Using a Thread Pool

54

A thread pool and the degree of parallelism
This recipe will show you how a thread pool works with many asynchronous operations and
how it is different from creating many separate threads.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found in BookSamples\Chapter3\Recipe3.

How to do it...
To learn how a thread pool works with many asynchronous operations and how it is different
from creating many separate threads, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Diagnostics;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void UseThreads(int numberOfOperations)
{
 using (var countdown = new CountdownEvent(numberOfOperations))
 {
 WriteLine("Scheduling work by creating threads");
 for (int i = 0; i < numberOfOperations; i++)
 {
 var thread = new Thread(() =>
 {
 Write($"{CurrentThread.ManagedThreadId},");
 Sleep(TimeSpan.FromSeconds(0.1));
 countdown.Signal();
 });
 thread.Start();
 }
 countdown.Wait();

Chapter 3

55

 WriteLine();
 }
}

static void UseThreadPool(int numberOfOperations)
{
 using (var countdown = new CountdownEvent(numberOfOperations))
 {
 WriteLine("Starting work on a threadpool");
 for (int i = 0; i < numberOfOperations; i++)
 {
 ThreadPool.QueueUserWorkItem(_ =>
 {
 Write($"{CurrentThread.ManagedThreadId},");
 Sleep(TimeSpan.FromSeconds(0.1));
 countdown.Signal();
 });
 }
 countdown.Wait();
 WriteLine();
 }
}

4.	 Add the following code snippet inside the Main method:
const int numberOfOperations = 500;
var sw = new Stopwatch();
sw.Start();
UseThreads(numberOfOperations);
sw.Stop();
WriteLine($"Execution time using threads:
{sw.ElapsedMilliseconds}");

sw.Reset();
sw.Start();
UseThreadPool(numberOfOperations);
sw.Stop();
WriteLine($"Execution time using the thread pool:
{sw.ElapsedMilliseconds}");

5.	 Run the program.

Using a Thread Pool

56

How it works...
When the main program starts, we create many different threads and run an operation
on each one of them. This operation prints out a thread ID and blocks a thread for 100
milliseconds. As a result, we create 500 threads running all these operations in parallel.
The total time on my machine is about 300 milliseconds, but we consume many operating
system resources for all these threads.

Then, we follow the same workflow, but instead of creating a thread for each operation,
we post them on a thread pool. After this, the thread pool starts to serve these operations;
it begins to create more threads near the end; however, it still takes much more time, about
12 seconds on my machine. We save memory and threads for operating system use but pay
for it with application performance.

Implementing a cancellation option
This recipe shows an example on how to cancel an asynchronous operation on a thread pool.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found in BookSamples\Chapter3\Recipe4.

How to do it...
To understand how to implement a cancellation option on a thread, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void AsyncOperation1(CancellationToken token)
{
 WriteLine("Starting the first task");
 for (int i = 0; i < 5; i++)
 {
 if (token.IsCancellationRequested)

Chapter 3

57

 {
 WriteLine("The first task has been canceled.");
 return;
 }
 Sleep(TimeSpan.FromSeconds(1));
 }
 WriteLine("The first task has completed succesfully");
}

static void AsyncOperation2(CancellationToken token)
{
 try
 {
 WriteLine("Starting the second task");

 for (int i = 0; i < 5; i++)
 {
 token.ThrowIfCancellationRequested();
 Sleep(TimeSpan.FromSeconds(1));
 }
 WriteLine("The second task has completed succesfully");
 }
 catch (OperationCanceledException)
 {
 WriteLine("The second task has been canceled.");
 }
}

static void AsyncOperation3(CancellationToken token)
{
 bool cancellationFlag = false;
 token.Register(() => cancellationFlag = true);
 WriteLine("Starting the third task");
 for (int i = 0; i < 5; i++)
 {
 if (cancellationFlag)
 {
 WriteLine("The third task has been canceled.");
 return;
 }
 Sleep(TimeSpan.FromSeconds(1));
 }
 WriteLine("The third task has completed succesfully");
}

Using a Thread Pool

58

4.	 Add the following code snippet inside the Main method:
using (var cts = new CancellationTokenSource())
{
 CancellationToken token = cts.Token;
 ThreadPool.QueueUserWorkItem(_ => AsyncOperation1(token));
 Sleep(TimeSpan.FromSeconds(2));
 cts.Cancel();
}

using (var cts = new CancellationTokenSource())
{
 CancellationToken token = cts.Token;
 ThreadPool.QueueUserWorkItem(_ => AsyncOperation2(token));
 Sleep(TimeSpan.FromSeconds(2));
 cts.Cancel();
}

using (var cts = new CancellationTokenSource())
{
 CancellationToken token = cts.Token;
 ThreadPool.QueueUserWorkItem(_ => AsyncOperation3(token));
 Sleep(TimeSpan.FromSeconds(2));
 cts.Cancel();
}

Sleep(TimeSpan.FromSeconds(2));

5.	 Run the program.

How it works...
Here, we introduce the CancellationTokenSource and CancellationToken constructs.
They appeared in .NET 4.0 and now are the de facto standard to implement asynchronous
operation cancellation processes. Since the thread pool has existed for a long time, it has
no special API for cancellation tokens; however, they can still be used.

In this program, we see three ways to organize a cancellation process. The first is just to poll
and check the CancellationToken.IsCancellationRequested property. If it is set to
true, this means that our operation is being cancelled and we must abandon the operation.

The second way is to throw an OperationCancelledException exception. This allows
us to control the cancellation process not from inside the operation, which is being canceled,
but from the code on the outside.

The last option is to register a callback that will be called on a thread pool when an operation is
canceled. This will allow us to chain cancellation logic into another asynchronous operation.

Chapter 3

59

Using a wait handle and timeout with a
thread pool

This recipe will describe how to implement a timeout for thread pool operations and how to
wait properly on a thread pool.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter3\Recipe5.

How to do it...
To learn how to implement a timeout and how to wait properly on a thread pool, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void RunOperations(TimeSpan workerOperationTimeout)
{
 using (var evt = new ManualResetEvent(false))
 using (var cts = new CancellationTokenSource())
 {
 WriteLine("Registering timeout operation...");
 var worker = ThreadPool.RegisterWaitForSingleObject(evt
 , (state, isTimedOut) => WorkerOperationWait(cts,
isTimedOut)
 , null
 , workerOperationTimeout
 , true);

 WriteLine("Starting long running operation...");
 ThreadPool.QueueUserWorkItem(_ => WorkerOperation(cts.Token,
evt));

 Sleep(workerOperationTimeout.Add(TimeSpan.FromSeconds(2)));

Using a Thread Pool

60

 worker.Unregister(evt);
 }
}

static void WorkerOperation(CancellationToken token,
ManualResetEvent evt)
{
 for(int i = 0; i < 6; i++)
 {
 if (token.IsCancellationRequested)
 {
 return;
 }
 Sleep(TimeSpan.FromSeconds(1));
 }
 evt.Set();
}

static void WorkerOperationWait(CancellationTokenSource cts, bool
isTimedOut)
{
 if (isTimedOut)
 {
 cts.Cancel();
 WriteLine("Worker operation timed out and was canceled.");
 }
 else
 {
 WriteLine("Worker operation succeded.");
 }
}

4.	 Add the following code snippet inside the Main method:
RunOperations(TimeSpan.FromSeconds(5));
RunOperations(TimeSpan.FromSeconds(7));

5.	 Run the program.

How it works...
A thread pool has another useful method: ThreadPool.RegisterWaitForSingleObject.
This method allows us to queue a callback on a thread pool, and this callback will be executed
when the provided wait handle is signaled or a timeout has occurred. This allows us to
implement a timeout for thread pool operations.

Chapter 3

61

First, we register the timeout handling asynchronous operation. It will be called when one
of the following events take place: on receiving a signal from the ManualResetEvent
object, which is set by the worker operation when it is completed successfully, or when
a timeout has occurred before the first operation is completed. If this happens, we use
CancellationToken to cancel the first operation.

Then, we queue a long-running worker operation on a thread pool. It runs for 6 seconds and
then sets a ManualResetEvent signaling construct, in case it completes successfully. In
other case, if the cancellation is requested, the operation is just abandoned.

Finally, if we provide a 5-second timeout for the operation, that would not be enough. This is
because the operation takes 6 seconds to complete, and we'd need to cancel this operation. So,
if we provide a 7-second timeout, which is acceptable, the operation completes successfully.

There's more…
This is very useful when you have a large number of threads that must wait in the blocked
state for some multithreaded event construct to signal. Instead of blocking all these threads,
we are able to use the thread pool infrastructure. It will allow us to free up these threads
until the event is set. This is a very important scenario for server applications, which require
scalability and performance.

Using a timer
This recipe will describe how to use a System.Threading.Timer object to create
periodically-called asynchronous operations on a thread pool.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter3\Recipe6.

How to do it...
To learn how to create periodically-called asynchronous operations on a thread pool, perform
the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

Using a Thread Pool

62

3.	 Add the following code snippet below the Main method:
static Timer _timer;

static void TimerOperation(DateTime start)
{
 TimeSpan elapsed = DateTime.Now - start;
 WriteLine($"{elapsed.Seconds} seconds from {start}. " +
 $"Timer thread pool thread id:
{CurrentThread.ManagedThreadId}");
}

4.	 Add the following code snippet inside the Main method:
WriteLine("Press 'Enter' to stop the timer...");
DateTime start = DateTime.Now;
timer = new Timer(=> TimerOperation(start), null
 , TimeSpan.FromSeconds(1)
 , TimeSpan.FromSeconds(2));
try
{
 Sleep(TimeSpan.FromSeconds(6));

 _timer.Change(TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(4));

 ReadLine();
}
finally
{
 _timer.Dispose();
}

5.	 Run the program.

How it works...
First, we create a new Timer instance. The first parameter is a lambda expression that will
be executed on a thread pool. We call the TimerOperation method, providing it with a start
date. We do not use the user state object, so the second parameter is null; then, we specify
when are we going to run TimerOperation for the first time and what will be the period
between calls. So, the first value actually means that we start the first operation in 1 second,
and then, we run each of them in 2 seconds.

After this, we wait for 6 seconds and change our timer. We start TimerOperation in a
second after calling the _timer.Change method, and then run each of them for 4 seconds.

Chapter 3

63

A timer could be more complex than this!
It is possible to use a timer in more complicated ways. For instance,
we can run the timer operation only once, by providing a timer period
parameter with the Timeout.Infinite value. Then, inside the
timer asynchronous operation, we are able to set the next time when
the timer operation will be executed, depending on some custom logic.

Lastly, we wait for the Enter key to be pressed and to finish the application. While it is running,
we can see the time passed since the program started.

Using the BackgroundWorker component
This recipe describes another approach to asynchronous programming via an example of a
BackgroundWorker component. With the help of this object, we are able to organize our
asynchronous code as a set of events and event handlers. You will learn how to use this
component for asynchronous programming.

Getting ready
To step into this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter3\Recipe7.

How to do it...
To learn how to use the BackgroundWorker component, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.ComponentModel;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void Worker_DoWork(object sender, DoWorkEventArgs e)
{
 WriteLine($"DoWork thread pool thread id:
{CurrentThread.ManagedThreadId}");
 var bw = (BackgroundWorker) sender;
 for (int i = 1; i <= 100; i++)

Using a Thread Pool

64

 {
 if (bw.CancellationPending)
 {
 e.Cancel = true;
 return;
 }
 if (i%10 == 0)
 {
 bw.ReportProgress(i);
 }

 Sleep(TimeSpan.FromSeconds(0.1));
 }

 e.Result = 42;
}

static void Worker_ProgressChanged(object sender,
ProgressChangedEventArgs e)
{
 WriteLine($"{e.ProgressPercentage}% completed. " +
 $"Progress thread pool thread id:
{CurrentThread.ManagedThreadId}");
}

static void Worker_Completed(object sender,
RunWorkerCompletedEventArgs e)
{
 WriteLine($"Completed thread pool thread id:
{CurrentThread.ManagedThreadId}");
 if (e.Error != null)
 {
 WriteLine($"Exception {e.Error.Message} has occured.");
 }
 else if (e.Cancelled)
 {
 WriteLine($"Operation has been canceled.");
 }
 else
 {
 WriteLine($"The answer is: {e.Result}");
 }
}

Chapter 3

65

4.	 Add the following code snippet inside the Main method:
var bw = new BackgroundWorker();
bw.WorkerReportsProgress = true;
bw.WorkerSupportsCancellation = true;

bw.DoWork += Worker_DoWork;
bw.ProgressChanged += Worker_ProgressChanged;
bw.RunWorkerCompleted += Worker_Completed;

bw.RunWorkerAsync();

WriteLine("Press C to cancel work");
do
{
 if (ReadKey(true).KeyChar == 'C')
 {
 bw.CancelAsync();
 }
}
while(bw.IsBusy);

5.	 Run the program.

How it works...
When the program starts, we create an instance of a BackgroundWorker component. We
explicitly state that we want our background worker to support cancellation and notifications
on the operation's progress.

Now, this is where the most interesting part comes into play. Instead of manipulating with a
thread pool and delegates, we use another C# idiom called events. An event represents a
source of notifications and a number of subscribers ready to react when a notification arrives.
In our case, we state that we will subscribe for three events, and when they occur, we call the
corresponding event handlers. These are methods with a specially defined signature that will
be called when an event notifies its subscribers.

Therefore, instead of organizing an asynchronous API in a pair of Begin/End methods, it
is possible to just start an asynchronous operation and then subscribe to different events
that could happen while this operation is executed. This approach is called an Event-based
Asynchronous Pattern (EAP). It was historically the second attempt to structure asynchronous
programs, and now, it is recommended to use TPL instead, which will be described in Chapter 4,
Using the Task Parallel Library.

Using a Thread Pool

66

So, we subscribed to three events. The first of them is the DoWork event. A handler of this
event will be called when a background worker object starts an asynchronous operation with
the RunWorkerAsync method. The event handler will be executed on a thread pool, and this
is the main operating point where work is canceled if cancellation is requested and where we
provide information on the progress of the operation. At last, when we get the result, we set
it to event arguments, and then, the RunWorkerCompleted event handler is called. Inside
this method, we find out whether our operation has succeeded, there were some errors, or it
was canceled.

Besides this, a BackgroundWorker component is actually intended to be used in Windows
Forms Applications (WPF). Its implementation makes working with UI controls possible from
a background worker's event handler code directly, which is very comfortable as compared to
the interaction of worker threads in a thread pool with UI controls.

67

4
Using the Task
Parallel Library

In this chapter, we will dive into a new asynchronous programming paradigm, the Task Parallel
Library. You will learn the following recipes:

ff Creating a task

ff Performing basic operations with a task

ff Combining tasks together

ff Converting the APM pattern to tasks

ff Converting the EAP pattern to tasks

ff Implementing a cancelation option

ff Handling exceptions in tasks

ff Running tasks in parallel

ff Tweaking the execution of tasks with TaskScheduler

Introduction
In the previous chapters, you learned what a thread is, how to use threads, and why we need
a thread pool. Using a thread pool allows us to save operating system resources at the cost
of reducing a parallelism degree. We can think of a thread pool as an abstraction layer that
hides details of thread usage from a programmer, allowing us to concentrate on a program's
logic rather than on threading issues.

Using the Task Parallel Library

68

However, using a thread pool is complicated as well. There is no easy way to get a result from
a thread pool worker thread. We need to implement our own way to get a result back, and
in case of an exception, we have to propagate it to the original thread properly. Besides this,
there is no easy way to create a set of dependent asynchronous actions, where one action
runs after another finishes its work.

There were several attempts to work around these issues, which resulted in the creation of
the Asynchronous Programming Model and the Event-based Asynchronous Pattern, mentioned
in Chapter 3, Using a Thread Pool. These patterns made getting results easier and did a good
job of propagating exceptions, but combining asynchronous actions together still required a
lot of work and resulted in a large amount of code.

To resolve all these problems, a new API for asynchronous operations was introduced in .Net
Framework 4.0. It was called the Task Parallel Library (TPL). It was changed slightly in .Net
Framework 4.5 and to make it clear, we will work with the latest version of TPL using the 4.6
version of .Net Framework in our projects. TPL can be considered as one more abstraction
layer over a thread pool, hiding the lower-level code that will work with the thread pool from
a programmer and supplying a more convenient and fine-grained API.

The core concept of TPL is a task. A task represents an asynchronous operation that can be run
in a variety of ways, using a separate thread or not. We will look through all the possibilities in
detail in this chapter.

By default, a programmer is not aware of how exactly a task is being executed.
TPL raises the level of abstraction by hiding the task implementation details
from the user. Unfortunately, in some cases, this could lead to mysterious
errors, such as the application hanging while trying to get a result from the
task. This chapter will help you understand the mechanics under the hood of
TPL and how to avoid using it in improper ways.

A task can be combined with other tasks in different variations. For example, we are able to
start several tasks simultaneously, wait for all of them to complete, and then run a task that
will perform some calculations over all the previous tasks' results. Convenient APIs for task
combination are one of the key advantages of TPL compared to the previous patterns.

There are also several ways to deal with exceptions resulting from tasks. Since a task
may consist of several other tasks, and they in turn have their child tasks as well, there is
the concept of AggregateException. This type of exception holds all exceptions from
underlying tasks inside it, allowing us to handle them separately.

And, last but not least, C# has built-in support for TPL since version 5.0, allowing us to work
with tasks in a very smooth and comfortable way using the new await and async keywords.
We will discuss this topic in Chapter 5, Using C# 6.0.

Chapter 4

69

In this chapter, you will learn to use TPL to execute asynchronous operations. We will learn
what a task is, cover different ways to create tasks, and will learn how to combine tasks. We
will also discuss how to convert legacy APM and EAP patterns to use tasks, how to handle
exceptions properly, how to cancel tasks, and how to work with several tasks that are being
executed simultaneously. In addition, we will find out how to deal with tasks in Windows GUI
applications properly.

Creating a task
This recipe shows the basic concept of what a task is. You will learn how to create and
execute tasks.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe1.

How to do it...
To create and execute a task, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

This time, make sure that you are using .Net Framework 4.5 or
higher for every project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void TaskMethod(string name)
{
 WriteLine($"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread:
" +
 $"{CurrentThread.IsThreadPoolThread}");
}

Using the Task Parallel Library

70

4.	 Add the following code snippet inside the Main method:
var t1 = new Task(() => TaskMethod("Task 1"));
var t2 = new Task(() => TaskMethod("Task 2"));
t2.Start();
t1.Start();
Task.Run(() => TaskMethod("Task 3"));
Task.Factory.StartNew(() => TaskMethod("Task 4"));
Task.Factory.StartNew(() => TaskMethod("Task 5"),
TaskCreationOptions.LongRunning);
Sleep(TimeSpan.FromSeconds(1));

5.	 Run the program.

How it works...
When the program runs, it creates two tasks with its constructor. We pass the lambda
expression as the Action delegate; this allows us to provide a string parameter to
TaskMethod. Then, we run these tasks using the Start method.

Note that until we call the Start method on these tasks, they will not
start execution. It is very easy to forget to actually start the task.

Then, we run two more tasks using the Task.Run and Task.Factory.StartNew methods.
The difference is that both the created tasks immediately start working, so we do not need
to call the Start method on the tasks explicitly. All of the tasks, numbered Task 1 to Task
4, are placed on thread pool worker threads and run in an unspecified order. If you run the
program several times, you will find that the task execution order is not defined.

The Task.Run method is just a shortcut to Task.Factory.StartNew, but the latter
method has additional options. In general, use the former method unless you need to do
something special, as in the case of Task 5. We mark this task as long-running, and as a
result, this task will be run on a separate thread that does not use a thread pool. However,
this behavior could change, depending on the current task scheduler that runs the task.
You will learn what a task scheduler is in the last recipe of this chapter.

Performing basic operations with a task
This recipe will describe how to get the result value from a task. We will go through several
scenarios to understand the difference between running a task on a thread pool or on a
main thread.

Chapter 4

71

Getting ready
To start this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe2.

How to do it...
To perform basic operations with a task, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static Task<int> CreateTask(string name)
{
 return new Task<int>(() => TaskMethod(name));
}

static int TaskMethod(string name)
{
 WriteLine($"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}");
 Sleep(TimeSpan.FromSeconds(2));
 return 42;
}

4.	 Add the following code snippet inside the Main method:
TaskMethod("Main Thread Task");
Task<int> task = CreateTask("Task 1");
task.Start();
int result = task.Result;
WriteLine($"Result is: {result}");

task = CreateTask("Task 2");
task.RunSynchronously();
result = task.Result;
WriteLine($"Result is: {result}");

Using the Task Parallel Library

72

task = CreateTask("Task 3");
WriteLine(task.Status);
task.Start();

while (!task.IsCompleted)
{
 WriteLine(task.Status);
 Sleep(TimeSpan.FromSeconds(0.5));
}

WriteLine(task.Status);
result = task.Result;
WriteLine($"Result is: {result}");

5.	 Run the program.

How it works...
At first, we run TaskMethod without wrapping it into a task. As a result, it is executed
synchronously, providing us with information about the main thread. Obviously, it is not
a thread pool thread.

Then, we run Task 1, starting it with the Start method and waiting for the result. This
task will be placed on a thread pool, and the main thread waits and is blocked until the task
returns.

We do the same with Task 2, except that we run it using the RunSynchronously()
method. This task will run on the main thread, and we get exactly the same output as in the
very first case when we called TaskMethod synchronously. This is a very useful optimization
that allows us to avoid thread pool usage for very short-lived operations.

We run Task 3 in the same way we did Task 1, but instead of blocking the main thread,
we just spin, printing out the task status until the task is completed. This shows several task
statuses, which are Created, Running, and RanToCompletion, respectively.

Combining tasks
This recipe will show you how to set up tasks that are dependent on each other. We will
learn how to create a task that will run after the parent task is complete. In addition, we will
discover a way to save thread usage for very short-lived tasks.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe3.

Chapter 4

73

How to do it...
To combine tasks, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static int TaskMethod(string name, int seconds)
{
 WriteLine(
 $"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}");
 Sleep(TimeSpan.FromSeconds(seconds));
 return 42 * seconds;
}

4.	 Add the following code snippet inside the Main method:
var firstTask = new Task<int>(() => TaskMethod("First Task", 3));
var secondTask = new Task<int>(() => TaskMethod("Second Task",
2));

firstTask.ContinueWith(
 t => WriteLine(
 $"The first answer is {t.Result}. Thread id " +
 $"{CurrentThread.ManagedThreadId}, is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}"),
 TaskContinuationOptions.OnlyOnRanToCompletion);

firstTask.Start();
secondTask.Start();

Sleep(TimeSpan.FromSeconds(4));

Task continuation = secondTask.ContinueWith(
 t => WriteLine(
 $"The second answer is {t.Result}. Thread id " +

Using the Task Parallel Library

74

 $"{CurrentThread.ManagedThreadId}, is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}"),
 TaskContinuationOptions.OnlyOnRanToCompletion
 | TaskContinuationOptions.ExecuteSynchronously);

continuation.GetAwaiter().OnCompleted(
 () => WriteLine(
 $"Continuation Task Completed! Thread id " +
 $"{CurrentThread.ManagedThreadId}, is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}"));

Sleep(TimeSpan.FromSeconds(2));
WriteLine();

firstTask = new Task<int>(() =>
{
 var innerTask = Task.Factory.StartNew(() => TaskMethod("Second
Task", 5),TaskCreationOptions.AttachedToParent);

 innerTask.ContinueWith(t => TaskMethod("Third Task", 2),
 TaskContinuationOptions.AttachedToParent);

 return TaskMethod("First Task", 2);
});

firstTask.Start();

while (!firstTask.IsCompleted)
{
 WriteLine(firstTask.Status);
 Sleep(TimeSpan.FromSeconds(0.5));
}
WriteLine(firstTask.Status);

Sleep(TimeSpan.FromSeconds(10));

5.	 Run the program.

Chapter 4

75

How it works...
When the main program starts, we create two tasks, and for the first task, we set up a
continuation (a block of code that runs after the antecedent task is complete). Then, we start
both tasks and wait for 4 seconds, which is enough for both tasks to be complete. Then, we
run another continuation to the second task and try to execute it synchronously by specifying
a TaskContinuationOptions.ExecuteSynchronously option. This is a useful
technique when the continuation is very short lived, and it will be faster to run it on the main
thread than to put it on a thread pool. We are able to achieve this because the second task
is completed by that moment. If we comment out the 4-second Thread.Sleep method, we
will see that this code will be put on a thread pool because we do not have the result from the
antecedent task yet.

Finally, we define a continuation for the previous continuation, but in a slightly different
manner, using the new GetAwaiter and OnCompleted methods. These methods are
intended to be used along with C# language asynchronous mechanics. We will cover this
topic later in Chapter 5, Using C# 6.0.

The last part of the demo is about the parent-child task relationships. We create a
new task, and while running this task, we run a so-called child task by providing a
TaskCreationOptions.AttachedToParent option.

The child task must be created while running a parent task so that it is
attached to the parent properly!

This means that the parent task will not be complete until all child tasks finish their
work. We are also able to run continuations on those child tasks that provide a
TaskContinuationOptions.AttachedToParent option. These continuation tasks will
affect the parent task as well, and it will not be complete until the very last child task ends.

Converting the APM pattern to tasks
In this recipe, we will see how to convert an old-fashioned APM API to a task. There are
examples of different situations that could take place in the process of conversion.

Getting ready
To start this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe4.

Using the Task Parallel Library

76

How to do it...
To convert the APM pattern to tasks, carry out the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
delegate string AsynchronousTask(string threadName);
delegate string IncompatibleAsynchronousTask(out int threadId);

static void Callback(IAsyncResult ar)
{
 WriteLine("Starting a callback...");
 WriteLine($"State passed to a callbak: {ar.AsyncState}");
 WriteLine($"Is thread pool thread:
{CurrentThread.IsThreadPoolThread}");
 WriteLine($"Thread pool worker thread id:
{CurrentThread.ManagedThreadId}");
}

static string Test(string threadName)
{
 WriteLine("Starting...");
 WriteLine($"Is thread pool thread:
{CurrentThread.IsThreadPoolThread}");
 Sleep(TimeSpan.FromSeconds(2));
 CurrentThread.Name = threadName;
 return $"Thread name: {CurrentThread.Name}";
}

static string Test(out int threadId)
{
 WriteLine("Starting...");
 WriteLine($"Is thread pool thread:
{CurrentThread.IsThreadPoolThread}");
 Sleep(TimeSpan.FromSeconds(2));
 threadId = CurrentThread.ManagedThreadId;
 return $"Thread pool worker thread id was: {threadId}";
}

Chapter 4

77

4.	 Add the following code snippet inside the Main method:
int threadId;
AsynchronousTask d = Test;
IncompatibleAsynchronousTask e = Test;

WriteLine("Option 1");
Task<string> task = Task<string>.Factory.FromAsync(
 d.BeginInvoke("AsyncTaskThread", Callback,
 "a delegate asynchronous call"), d.EndInvoke);

task.ContinueWith(t => WriteLine(
 $"Callback is finished, now running a continuation! Result:
{t.Result}"));

while (!task.IsCompleted)
{
 WriteLine(task.Status);
 Sleep(TimeSpan.FromSeconds(0.5));
}
WriteLine(task.Status);
Sleep(TimeSpan.FromSeconds(1));

WriteLine("--");
WriteLine();
WriteLine("Option 2");

task = Task<string>.Factory.FromAsync(
 d.BeginInvoke, d.EndInvoke, "AsyncTaskThread",
"a delegate asynchronous call");

task.ContinueWith(t => WriteLine(
 $"Task is completed, now running a continuation! Result:
{t.Result}"));
while (!task.IsCompleted)
{
 WriteLine(task.Status);
 Sleep(TimeSpan.FromSeconds(0.5));
}
WriteLine(task.Status);
Sleep(TimeSpan.FromSeconds(1));

WriteLine("--");
WriteLine();

Using the Task Parallel Library

78

WriteLine("Option 3");

IAsyncResult ar = e.BeginInvoke(out threadId, Callback,
"a delegate asynchronous call");
task = Task<string>.Factory.FromAsync(ar, _ =>
e.EndInvoke(out threadId, ar));

task.ContinueWith(t =>
 WriteLine(
 $"Task is completed, now running a continuation! " +
 $"Result: {t.Result}, ThreadId: {threadId}"));

while (!task.IsCompleted)
{
 WriteLine(task.Status);
 Sleep(TimeSpan.FromSeconds(0.5));
}
WriteLine(task.Status);

Sleep(TimeSpan.FromSeconds(1));

5.	 Run the program.

How it works...
Here, we define two kinds of delegates; one of them uses the out parameter and therefore
is incompatible with the standard TPL API for converting the APM pattern to tasks. Then, we
have three examples of such a conversion.

The key point for converting APM to TPL is the Task<T>.Factory.FromAsync method,
where T is the asynchronous operation result type. There are several overloads of this
method; in the first case, we pass IAsyncResult and Func<IAsyncResult, string>,
which is a method that accepts the IAsyncResult implementation and returns a string.
Since the first delegate type provides EndMethod, which is compatible with this signature,
we have no problem converting this delegate asynchronous call to a task.

In the second example, we do almost the same, but use a different FromAsync method
overload, which does not allow specifying a callback that will be executed after the
asynchronous delegate call is completed. We are able to replace this with a continuation,
but if the callback is important, we can use the first example.

The last example shows a little trick. This time, EndMethod of the
IncompatibleAsynchronousTask delegate uses the out parameter and is not compatible
with any FromAsync method overload. However, it is very easy to wrap the EndMethod call
into a lambda expression that will be suitable for the task factory.

Chapter 4

79

To see what is going on with the underlying task, we are printing its status while
waiting for the asynchronous operation's result. We see that the first task's status is
WaitingForActivation, which means that the task has not actually been started
yet by the TPL infrastructure.

Converting the EAP pattern to tasks
This recipe will describe how to translate event-based asynchronous operations to tasks. In
this recipe, you will find a solid pattern that is suitable for every event-based asynchronous API
in the .NET Framework class library.

Getting ready
To begin this recipe, you will need Visual Studio 2015. There are no other prerequisites. The
source code for this recipe can be found at BookSamples\Chapter4\Recipe5.

How to do it...
To convert the EAP pattern to tasks, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.ComponentModel;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static int TaskMethod(string name, int seconds)
{
 WriteLine(
 $"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}");

 Sleep(TimeSpan.FromSeconds(seconds));
 return 42 * seconds;
}

Using the Task Parallel Library

80

4.	 Add the following code snippet inside the Main method:
var tcs = new TaskCompletionSource<int>();

var worker = new BackgroundWorker();
worker.DoWork += (sender, eventArgs) =>
{
 eventArgs.Result = TaskMethod("Background worker", 5);
};

worker.RunWorkerCompleted += (sender, eventArgs) =>
{
 if (eventArgs.Error != null)
 {
 tcs.SetException(eventArgs.Error);
 }
 else if (eventArgs.Cancelled)
 {
 tcs.SetCanceled();
 }
 else
 {
 tcs.SetResult((int)eventArgs.Result);
 }
};

worker.RunWorkerAsync();

int result = tcs.Task.Result;

WriteLine($"Result is: {result}");

5.	 Run the program.

How it works...
This is a very simple and elegant example of converting EAP patterns to tasks. The key point
is to use the TaskCompletionSource<T> type, where T is an asynchronous operation
result type.

It is also important not to forget to wrap the tcs.SetResult method call into the try/
catch block in order to guarantee that the error information is always set to the task
completion source object. It is also possible to use the TrySetResult method instead
of SetResult to make sure that the result has been set successfully.

Chapter 4

81

Implementing a cancelation option
This recipe is about implementing the cancelation process for task-based asynchronous
operations. You will learn how to use the cancelation token properly for tasks and how to find
out whether a task is canceled before it was actually run.

Getting ready
To start with this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe6.

How to do it...
To implement a cancelation option for task-based asynchronous operations, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static int TaskMethod(string name, int seconds,
CancellationToken token)
{
 WriteLine(
 $"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}");

 for (int i = 0; i < seconds; i ++)
 {
 Sleep(TimeSpan.FromSeconds(1));
 if (token.IsCancellationRequested) return -1;
 }
 return 42*seconds;
}

Using the Task Parallel Library

82

4.	 Add the following code snippet inside the Main method:
var cts = new CancellationTokenSource();
var longTask = new Task<int>(() =>
TaskMethod("Task 1", 10, cts.Token), cts.Token);
WriteLine(longTask.Status);
cts.Cancel();
WriteLine(longTask.Status);
WriteLine("First task has been cancelled before execution");

cts = new CancellationTokenSource();
longTask = new Task<int>(() =>
TaskMethod("Task 2", 10, cts.Token), cts.Token);
longTask.Start();
for (int i = 0; i < 5; i++)
{
 Sleep(TimeSpan.FromSeconds(0.5));
 WriteLine(longTask.Status);
}
cts.Cancel();
for (int i = 0; i < 5; i++)
{
 Sleep(TimeSpan.FromSeconds(0.5));
 WriteLine(longTask.Status);
}

WriteLine($"A task has been completed with result {longTask.
Result}.");

5.	 Run the program.

How it works...
This is another very simple example of how to implement the cancelation option for a TPL
task. You are already familiar with the cancelation token concept we discussed in Chapter 3,
Using a Thread Pool.

First, let's look closely at the longTask creation code. We're providing a cancelation token
to the underlying task once and then to the task constructor for the second time. Why do we
need to supply this token twice?

The answer is that if we cancel the task before it was actually started, its TPL infrastructure is
responsible for dealing with the cancelation because our code will not be executed at all. We
know that the first task was canceled by getting its status. If we try to call the Start method
on this task, we will get InvalidOperationException.

Chapter 4

83

Then, we deal with the cancelation process from our own code. This means that we are now
fully responsible for the cancelation process, and after we canceled the task, its status was
still RanToCompletion because from TPL's perspective, the task finished its job normally.
It is very important to distinguish these two situations and understand the responsibility
difference in each case.

Handling exceptions in tasks
This recipe describes the very important topic of handling exceptions in asynchronous tasks.
We will go through different aspects of what happens to exceptions thrown from tasks and
how to get to their information.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe7.

How to do it...
To handle exceptions in tasks, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static int TaskMethod(string name, int seconds)
{
 WriteLine(
 $"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}");

 Sleep(TimeSpan.FromSeconds(seconds));
 throw new Exception("Boom!");
 return 42 * seconds;
}

www.allitebooks.com

http://www.allitebooks.org

Using the Task Parallel Library

84

4.	 Add the following code snippet inside the Main method:
Task<int> task;
try
{
 task = Task.Run(() => TaskMethod("Task 1", 2));
 int result = task.Result;
 WriteLine($"Result: {result}");
}
catch (Exception ex)
{
 WriteLine($"Exception caught: {ex}");
}
WriteLine("--");
WriteLine();

try
{
 task = Task.Run(() => TaskMethod("Task 2", 2));
 int result = task.GetAwaiter().GetResult();
 WriteLine($"Result: {result}");
}
catch (Exception ex)
{
 WriteLine($"Exception caught: {ex}");
}
WriteLine("--");
WriteLine();

var t1 = new Task<int>(() => TaskMethod("Task 3", 3));
var t2 = new Task<int>(() => TaskMethod("Task 4", 2));
var complexTask = Task.WhenAll(t1, t2);
var exceptionHandler = complexTask.ContinueWith(t =>
 WriteLine($"Exception caught: {t.Exception}"),
 TaskContinuationOptions.OnlyOnFaulted
);
t1.Start();
t2.Start();

Sleep(TimeSpan.FromSeconds(5));

5.	 Run the program.

Chapter 4

85

How it works...
When the program starts, we create a task and try to get the task results synchronously.
The Get part of the Result property makes the current thread wait until the completion
of the task and propagates the exception to the current thread. In this case, we easily
catch the exception in a catch block, but this exception is a wrapper exception called
AggregateException. In this case, it holds only one exception inside because only one
task has thrown this exception, and it is possible to get the underlying exception by accessing
the InnerException property.

The second example is mostly the same, but to access the task result, we use the
GetAwaiter and GetResult methods. In this case, we do not have a wrapper exception
because it is unwrapped by the TPL infrastructure. We have an original exception at once,
which is quite comfortable if we have only one underlying task.

The last example shows the situation where we have two task-throwing exceptions.
To handle exceptions, we now use a continuation, which is executed only in case the
antecedent task finishes with an exception. This behavior is achieved by providing a
TaskContinuationOptions.OnlyOnFaulted option to a continuation. As a result, we
have AggregateException being printed out, and we have two inner exceptions from both
the tasks inside it.

There's more…
As tasks may be connected in a very different manner, the resulting AggregateException
exception might contain other aggregate exceptions inside along with the usual exceptions.
Those inner aggregate exceptions might themselves contain other aggregate exceptions
within them.

To get rid of those wrappers, we should use the root aggregate exception's Flatten method.
It will return a collection of all the inner exceptions of every child aggregate exception in
the hierarchy.

Running tasks in parallel
This recipe shows how to handle many asynchronous tasks that are running simultaneously.
You will learn how to be notified effectively when all tasks are complete or any of the running
tasks have to finish their work.

Getting ready
To start this recipe, you will need Visual Studio 2015. There are no other prerequisites. The
source code for this recipe can be found at BookSamples\Chapter4\Recipe8.

Using the Task Parallel Library

86

How to do it...
To run tasks in parallel, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static int TaskMethod(string name, int seconds)
{
 WriteLine(
 $"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread: " +
 $"{CurrentThread.IsThreadPoolThread}");

 Sleep(TimeSpan.FromSeconds(seconds));
 return 42 * seconds;
}

4.	 Add the following code snippet inside the Main method:
var firstTask = new Task<int>(() => TaskMethod("First Task", 3));
var secondTask = new Task<int>(() =>
TaskMethod("Second Task", 2));
var whenAllTask = Task.WhenAll(firstTask, secondTask);

whenAllTask.ContinueWith(t =>
 WriteLine($"The first answer is {t.Result[0]}, the second is
{t.Result[1]}"),
 TaskContinuationOptions.OnlyOnRanToCompletion);

firstTask.Start();
secondTask.Start();

Sleep(TimeSpan.FromSeconds(4));

var tasks = new List<Task<int>>();
for (int i = 1; i < 4; i++)
{
 int counter = i;

Chapter 4

87

 var task = new Task<int>(() =>
TaskMethod($"Task {counter}", counter));
 tasks.Add(task);
 task.Start();
}

while (tasks.Count > 0)
{
 var completedTask = Task.WhenAny(tasks).Result;
 tasks.Remove(completedTask);
 WriteLine
($"A task has been completed with result {completedTask.Result}.");
}

Sleep(TimeSpan.FromSeconds(1));

5.	 Run the program.

How it works...
When the program starts, we create two tasks, and then, with the help of the Task.WhenAll
method, we create a third task, which will be complete after all initial tasks are complete. The
resulting task provides us with an answer array, where the first element holds the first task's
result, the second element holds the second result, and so on.

Then, we create another list of tasks and wait for any of those tasks to be completed with
the Task.WhenAny method. After we have one finished task, we remove it from the list and
continue to wait for the other tasks to be complete until the list is empty. This method is useful
to get the task completion progress or to use a timeout while running the tasks. For example,
we wait for a number of tasks, and one of those tasks is counting a timeout. If this task is
completed first, we just cancel all other tasks that are not completed yet.

Tweaking the execution of tasks with
TaskScheduler

This recipe describes another very important aspect of dealing with tasks, which is a proper
way to work with a UI from the asynchronous code. You will learn what a task scheduler is,
why it is so important, how it can harm our application, and how to use it to avoid errors.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter4\Recipe9.

Using the Task Parallel Library

88

How to do it...
To tweak task execution with TaskScheduler, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# WPF Application project. This time, we will
need a UI thread with a message loop, which is not available in console applications.

2.	 In the MainWindow.xaml file, add the following markup inside a grid element (that
is, between the <Grid> and </Grid> tags):
<TextBlock Name="ContentTextBlock"
HorizontalAlignment="Left"
Margin="44,134,0,0"
VerticalAlignment="Top"
Width="425"
Height="40"/>
<Button Content="Sync"
HorizontalAlignment="Left"
Margin="45,190,0,0"
VerticalAlignment="Top"
Width="75"
Click="ButtonSync_Click"/>
<Button Content="Async"
HorizontalAlignment="Left"
Margin="165,190,0,0"
VerticalAlignment="Top"
Width="75"
Click="ButtonAsync_Click"/>
<Button Content="Async OK"
HorizontalAlignment="Left"
Margin="285,190,0,0"
VerticalAlignment="Top"
Width="75"
Click="ButtonAsyncOK_Click"/>

3.	 In the MainWindow.xaml.cs file, use the following using directives:
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Input;

4.	 Add the following code snippet below the MainWindow constructor:
void ButtonSync_Click(object sender, RoutedEventArgs e)
{
 ContentTextBlock.Text = string.Empty;

Chapter 4

89

 try
 {
 //string result = TaskMethod(
 // TaskScheduler.FromCurrentSynchronizationContext()).Result;
 string result = TaskMethod().Result;
 ContentTextBlock.Text = result;
 }
 catch (Exception ex)
 {
 ContentTextBlock.Text = ex.InnerException.Message;
 }
}

void ButtonAsync_Click(object sender, RoutedEventArgs e)
{
 ContentTextBlock.Text = string.Empty;
 Mouse.OverrideCursor = Cursors.Wait;
 Task<string> task = TaskMethod();
 task.ContinueWith(t =>
 {
 ContentTextBlock.Text = t.Exception.InnerException.Message;
 Mouse.OverrideCursor = null;
 },
 CancellationToken.None,
 TaskContinuationOptions.OnlyOnFaulted,
 TaskScheduler.FromCurrentSynchronizationContext());
}

void ButtonAsyncOK_Click(object sender, RoutedEventArgs e)
{
 ContentTextBlock.Text = string.Empty;
 Mouse.OverrideCursor = Cursors.Wait;
 Task<string> task = TaskMethod(
 TaskScheduler.FromCurrentSynchronizationContext());

 task.ContinueWith(t => Mouse.OverrideCursor = null,
 CancellationToken.None,
 TaskContinuationOptions.None,
 TaskScheduler.FromCurrentSynchronizationContext());
}

Task<string> TaskMethod()
{
 return TaskMethod(TaskScheduler.Default);

Using the Task Parallel Library

90

}

Task<string> TaskMethod(TaskScheduler scheduler)
{
 Task delay = Task.Delay(TimeSpan.FromSeconds(5));

 return delay.ContinueWith(t =>
 {
 string str =
 "Task is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. Is thread pool thread:
" +
 $"{CurrentThread.IsThreadPoolThread}";

 ContentTextBlock.Text = str;
 return str;
 }, scheduler);
}

5.	 Run the program.

How it works...
Here, we meet many new things. First, we created a WPF application instead of a console
application. It is necessary because we need a user interface thread with a message loop to
demonstrate the different options of running a task asynchronously.

There is a very important abstraction called TaskScheduler. This component is actually
responsible for how the task will be executed. The default task scheduler puts tasks on a
thread pool worker thread. This is the most common scenario; unsurprisingly, it is the default
option in TPL. We also know how to run a task synchronously and how to attach them to the
parent tasks to run those tasks together. Now, let's see what else we can do with tasks.

When the program starts, we create a window with three buttons. The first button invokes
a synchronous task execution. The code is placed inside the ButtonSync_Click method.
While the task runs, we are not even able to move the application window. The user interface
gets totally frozen while the user interface thread is busy running the task and cannot respond
to any message loop until the task is complete. This is quite a common bad practice for GUI
Windows applications, and we need to find a way to work around this issue.

Chapter 4

91

The second problem is that we try to access the UI controls from another thread. Graphical
User Interface controls have never been designed to be used from multiple threads, and to
avoid possible errors, you are not allowed to access these components from a thread other
than the one on which it was created. When we try to do that, we get an exception, and the
exception message is printed on the main window in 5 seconds.

To resolve the first problem, we try to run the task asynchronously. This is what the second
button does; the code for this is placed inside the ButtonAsync_Click method. If you run
the task in a debugger, you will see that it is placed on a thread pool, and in the end, we will
get the same exception. However, the user interface remains responsive all the time the task
runs. This is a good thing, but we need to get rid of the exception.

And we already did that! To output the error message, a continuation was provided with
the TaskScheduler.FromCurrentSynchronizationContext option. If this wasn't
done, we would not see the error message because we would get the same exception that
took place inside the task. This option instructs the TPL infrastructure to put a code inside
the continuation on the UI thread and run it asynchronously with the help of the UI thread
message loop. This resolves the problem with accessing UI controls from another thread,
but still keeps our UI responsive.

To check whether this is true, we press the last button that runs the code inside the
ButtonAsyncOK_Click method. All that is different is that we provide the UI thread task
scheduler to our task. After the task is complete, you will see that it runs on the UI thread in
an asynchronous manner. The UI remains responsive, and it is even possible to press another
button despite the wait cursor being active.

However, there are some tricks to use the UI thread in order to run tasks. If we go back to
the synchronous task code and uncomment the line with getting the result with the UI thread
task scheduler provided, we will never get any result. This is a classical deadlock situation:
we are dispatching an operation in the queue of the UI thread, and the UI thread waits for
this operation to complete, but as it waits, it cannot run the operation, which will never
end (or even start). This will also happen if we call the Wait method on a task. To avoid
deadlock, never use synchronous operations on a task scheduled to the UI thread; just use
ContinueWith or async/await from C#.

93

5
Using C# 6.0

In this chapter, we will look through native asynchronous programming support in the C# 6.0
programming language. You will learn the following recipes:

ff Using the await operator to get asynchronous task results

ff Using the await operator in a lambda expression

ff Using the await operator with consequent asynchronous tasks

ff Using the await operator for the execution of parallel asynchronous tasks

ff Handling exceptions in asynchronous operations

ff Avoiding the use of the captured synchronization context

ff Working around the async void method

ff Designing a custom awaitable type

ff Using the dynamic type with await

Introduction
Until now, you learned about the Task Parallel Library, the latest asynchronous programming
infrastructure from Microsoft. It allows us to design our program in a modular manner,
combining different asynchronous operations together.

Unfortunately, it is still difficult to understand the actual program flow when reading such a
program. In a large program, there will be numerous tasks and continuations that depend
on each other, continuations that run other continuations, and continuations for exception
handling. They are all gathered together in the program code in very different places. Therefore,
understanding the sequence of which operation goes first and what happens next becomes a
very challenging problem.

Using C# 6.0

94

Another issue to watch out for is whether the proper synchronization context is propagated to
each asynchronous task that could touch user interface controls. It is only permitted to use
these controls from the UI thread; otherwise, we would get a multithreaded access exception.

Speaking about exceptions, we also have to use separate continuation tasks to handle errors
that occur inside antecedent asynchronous operation or operations. This in turn results
in complicated error-handling code that is spread through different parts of the code, not
logically related to each other.

To address these issues, the authors of C# introduced new language enhancements
called asynchronous functions along with C# version 5.0. They really make asynchronous
programming simple, but at the same time, it is a higher level abstraction over TPL. As
we mentioned in Chapter 4, Using the Task Parallel Library, abstraction hides important
implementation details and makes asynchronous programming easier at the cost of taking
away many important things from a programmer. It is very important to understand the
concept behind asynchronous functions to create robust and scalable applications.

To create an asynchronous function, you first mark a method with the async keyword.
It is not possible to have the async property or event accessor methods and constructors
without doing this first. The code will look as follows:

async Task<string> GetStringAsync()
{
 await Task.Delay(TimeSpan.FromSeconds(2));
 return "Hello, World!";
}

Another important fact is that asynchronous functions must return the Task or Task<T>
type. It is possible to have async void methods, but it is preferable to use the async
Task method instead. The only reasonable option to use async void functions is when
using top-level UI control event handlers in your application.

Inside a method marked with the async keyword, you can use the await operator. This
operator works with tasks from TPL and gets the result of the asynchronous operation inside
the task. The details will be covered later in the chapter. You cannot use the await operator
outside the async method; there will be a compilation error. In addition, asynchronous
functions should have at least one await operator inside their code. However, not having
an await operator will lead to just a compilation warning, not an error.

Chapter 5

95

It is important to note that this method returns immediately after the line with the await
call. In case of a synchronous execution, the executing thread will be blocked for 2 seconds
and then return a result. Here, we wait asynchronously while returning a worker thread to
a thread pool immediately after executing the await operator. After 2 seconds, we get the
worker thread from a thread pool once again and run the rest of the asynchronous method
on it. This allows us to reuse this worker thread to do some other work while these 2 seconds
pass, which is extremely important for application scalability. With the help of asynchronous
functions, we have a linear program control flow, but it is still asynchronous. This is both very
comfortable and very confusing. The recipes in this chapter will help you learn every important
aspect of asynchronous functions.

In my experience, there is a common misunderstanding about
how programs work if there are two consecutive await operators
in it. Many people think that if we use the await function on one
asynchronous operation after another, they run in parallel. However,
they actually run sequentially; the second one starts only when the
first operation completes. It is very important to remember this, and
later in the chapter, we will cover this topic in detail.

There are a number of limitations connected with using async and await operators. In C#
5.0, for example, it is not possible to mark the console application's Main method as async;
you cannot have the await operator inside a catch, finally, lock, or unsafe block. It is
not allowed to have ref and out parameters on an asynchronous function. There are more
subtleties, but these are the major points. In C# 6.0, some of these limitations have been
removed; you can use await inside catch and finally blocks due to compiler internal
enhancements.

Asynchronous functions are turned into complex program constructs by the C# compiler
behind the scenes. I intentionally will not describe this in detail; the resulting code is quite
similar to another C# construct, called iterators, and is implemented as a sort of state
machine. Since many developers have started using the async modifier almost on every
method, I would like to emphasize that there is no sense in marking a method async if it is
not intended to be used in an asynchronous or parallel manner. Calling the async method
includes a significant performance hit, and the usual method call is going to be about 40 to
50 times faster as compared to the same method marked with the async keyword. Please
be aware of that.

In this chapter, you will learn to use the C# async and await keywords to work with
asynchronous operations. We will cover how to await asynchronous operations sequentially
and parallelly. We will discuss how to use await in lambda expressions, how to handle
exceptions, and how to avoid pitfalls when using the async void methods. To conclude
the chapter, we will dive deep into synchronization context propagation and you will learn
how to create your own awaitable objects instead of using tasks.

Using C# 6.0

96

Using the await operator to get
asynchronous task results

This recipe walks you through the basic scenario of using asynchronous functions. We will
compare how to get an asynchronous operation result with TPL and with the await operator.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe1.

How to do it...
To use the await operator in order to get asynchronous task results, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static Task AsynchronyWithTPL()
{
 Task<string> t = GetInfoAsync("Task 1");
 Task t2 = t.ContinueWith(task => WriteLine(t.Result),
 TaskContinuationOptions.NotOnFaulted);
 Task t3 = t.ContinueWith(task =>
WriteLine(t.Exception.InnerException),
 TaskContinuationOptions.OnlyOnFaulted);

 return Task.WhenAny(t2, t3);
}

static async Task AsynchronyWithAwait()
{
 try
 {
 string result = await GetInfoAsync("Task 2");
 WriteLine(result);

Chapter 5

97

 }
 catch (Exception ex)
 {
 WriteLine(ex);
 }
}

static async Task<string> GetInfoAsync(string name)
{
 await Task.Delay(TimeSpan.FromSeconds(2));
 //throw new Exception("Boom!");
 return
 $"Task {name} is running on a thread id {CurrentThread.
ManagedThreadId}." +
$" Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
}

4.	 Add the following code snippet inside the Main method:
Task t = AsynchronyWithTPL();
t.Wait();

t = AsynchronyWithAwait();
t.Wait();

5.	 Run the program.

How it works...
When the program runs, we run two asynchronous operations. One of them is standard
TPL-powered code and the second one uses the new async and await C# features. The
AsynchronyWithTPL method starts a task that runs for 2 seconds and then returns a
string with information about the worker thread. Then, we define a continuation to print out
the asynchronous operation result after the operation is complete and another one to print
the exception details in case errors occur. Finally, we return a task representing one of the
continuation tasks and wait for its completion in the Main method.

In the AsynchronyWithAwait method, we achieve the same result by using await with the
task. It is as if we write just the usual synchronous code—we get the result from the task, print
out the result, and catch an exception if the task is completed with errors. The key difference
is that we actually have an asynchronous program. Immediately after using await, C# creates
a task that has a continuation task with all the remaining code after the await operator and
deals with exception propagation as well. Then, we return this task to the Main method and
wait until it gets completed.

Using C# 6.0

98

Note that depending on the nature of the underlying asynchronous
operation and the current synchronization context, the exact means
of executing asynchronous code may differ. We will explain this later
in the chapter.

Therefore, we can see that the first and the second parts of the program are conceptually
equivalent, but in the second part the C# compiler does the work of handling asynchronous
code implicitly. It is, in fact, even more complicated than the first part, and we will cover the
details in the next few recipes of this chapter.

Remember that it is not recommended to use the Task.Wait and Task.Result methods
in environments such as the Windows GUI or ASP.NET. This could lead to deadlocks if the
programmer is not 100% aware of what is really going on in the code. This was illustrated
in the Tweaking the execution of tasks with TaskScheduler recipe in Chapter 4, Using the
Task Parallel Library, when we used Task.Result in the WPF application.

To test how exception handling works, just uncomment the throw new Exception line
inside the GetInfoAsync method.

Using the await operator in a lambda
expression

This recipe will show you how to use await inside a lambda expression. We will write an
anonymous method that uses await and get a result of the method execution asynchronously.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe2.

How to do it...
To write an anonymous method that uses await and get a result of the method execution
asynchronously using the await operator in a lambda expression, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

Chapter 5

99

3.	 Add the following code snippet below the Main method:
static async Task AsynchronousProcessing()
{
 Func<string, Task<string>> asyncLambda = async name => {
 await Task.Delay(TimeSpan.FromSeconds(2));
 return
 $"Task {name} is running on a thread id {CurrentThread.
ManagedThreadId}." +
 $" Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
 };

 string result = await asyncLambda("async lambda");

 WriteLine(result);
}

4.	 Add the following code snippet inside the Main method:
Task t = AsynchronousProcessing();
t.Wait();

5.	 Run the program.

How it works...
First, we move out the asynchronous function into the AsynchronousProcessing method,
since we cannot use async with Main. Then, we describe a lambda expression using the
async keyword. As the type of any lambda expression cannot be inferred from lambda itself,
we have to specify its type to the C# compiler explicitly. In our case, the type means that our
lambda expression accepts one string parameter and returns a Task<string> object.

Then, we define the lambda expression body. One aberration is that the method is defined to
return a Task<string> object, but we actually return a string and get no compilation errors!
The C# compiler automatically generates a task and returns it for us.

The last step is to await the asynchronous lambda expression execution and print out the result.

Using C# 6.0

100

Using the await operator with consequent
asynchronous tasks

This recipe will show you how exactly the program flows when we have several consecutive
await methods in the code. You will learn how to read the code with the await method and
understand why the await call is an asynchronous operation.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe3.

How to do it...
To understand a program flow in the presence of consecutive await methods, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static Task AsynchronyWithTPL()
{
 var containerTask = new Task(() => {
 Task<string> t = GetInfoAsync("TPL 1");
 t.ContinueWith(task => {
 WriteLine(t.Result);
 Task<string> t2 = GetInfoAsync("TPL 2");
 t2.ContinueWith(innerTask => WriteLine(innerTask.Result),
 TaskContinuationOptions.NotOnFaulted |
TaskContinuationOptions.AttachedToParent);
 t2.ContinueWith(innerTask =>
WriteLine(innerTask.Exception.InnerException),
 TaskContinuationOptions.OnlyOnFaulted |
TaskContinuationOptions.AttachedToParent);
 },
 TaskContinuationOptions.NotOnFaulted |
TaskContinuationOptions.AttachedToParent);

Chapter 5

101

 t.ContinueWith(task => WriteLine(t.Exception.InnerException),
 TaskContinuationOptions.OnlyOnFaulted |
TaskContinuationOptions.AttachedToParent);
 });

 containerTask.Start();
 return containerTask;
}

static async Task AsynchronyWithAwait()
{
 try
 {
 string result = await GetInfoAsync("Async 1");
 WriteLine(result);
 result = await GetInfoAsync("Async 2");
 WriteLine(result);
 }
 catch (Exception ex)
 {
 WriteLine(ex);
 }
}

static async Task<string> GetInfoAsync(string name)
{
 WriteLine($"Task {name} started!");
 await Task.Delay(TimeSpan.FromSeconds(2));
 if(name == "TPL 2")
 throw new Exception("Boom!");
 return
 $"Task {name} is running on a thread id {CurrentThread.
ManagedThreadId}." +
 $" Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
}

4.	 Add the following code snippet inside the Main method:
Task t = AsynchronyWithTPL();
t.Wait();

t = AsynchronyWithAwait();
t.Wait();

5.	 Run the program.

Using C# 6.0

102

How it works...
When the program runs, we run two asynchronous operations just as we did in the first recipe.
However, this time, we shall start from the AsynchronyWithAwait method. It still looks
like the usual synchronous code; the only difference is the two await statements. The most
important point is that the code is still sequential, and the Async 2 task will start only after
the previous one is completed. When we read the code, the program flow is very clear: we see
what runs first and what goes after. Then, how is this program asynchronous? Well, first, it is
not always asynchronous. If a task is already complete when we use await, we will get its
result synchronously. Otherwise, the common approach when we see an await statement
inside the code is to note that at this point, the method will return immediately and the rest
of the code will be run in a continuation task. Since we do not block the execution, waiting
for the result of an operation, it is an asynchronous call. Instead of calling t.Wait in the
Main method, we can perform any other task while the code in the AsynchronyWithAwait
method is being executed. However, the main thread must wait until all the asynchronous
operations complete, or they will be stopped as they run on background threads.

The AsynchronyWithTPL method imitates the same program flow as the
AsynchronyWithAwait method does. We need a container task to handle all the
dependent tasks together. Then, we start the main task and add a set of continuations to
it. When the task is complete, we print out the result; we then start one more task, which in
turn has more continuations to continue work after the second task is complete. To test the
exception handling, we throw an exception on purpose when running the second task and get
its information printed out. This set of continuations creates the same program flow as in the
first method, and when we compare it to the code with the await methods, we can see that
it is much easier to read and understand. The only trick is to remember that asynchrony does
not always mean parallel execution.

Using the await operator for the execution
of parallel asynchronous tasks

In this recipe, you will learn how to use await to run asynchronous operations in parallel
instead of the usual sequential execution.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe4.

Chapter 5

103

How to do it...
To understand the use of the await operator for parallel asynchronous task execution,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code below the Main method:
static async Task AsynchronousProcessing()
{
 Task<string> t1 = GetInfoAsync("Task 1", 3);
 Task<string> t2 = GetInfoAsync("Task 2", 5);

 string[] results = await Task.WhenAll(t1, t2);
 foreach (string result in results)
 {
 WriteLine(result);
 }
}

static async Task<string> GetInfoAsync(string name, int seconds)
{
 await Task.Delay(TimeSpan.FromSeconds(seconds));
 //await Task.Run(() =>
 // Thread.Sleep(TimeSpan.FromSeconds(seconds)));
 return
 $"Task {name} is running on a thread id " +
 $"{CurrentThread.ManagedThreadId}. " +
 $"Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
}

4.	 Add the following code snippet inside the Main method:
Task t = AsynchronousProcessing();
t.Wait();

5.	 Run the program.

Using C# 6.0

104

How it works...
Here, we define two asynchronous tasks running for 3 and 5 seconds, respectively. Then,
we use a Task.WhenAll helper method to create another task that will be complete only
when all of the underlying tasks get completed. Then, we await the result of this combined
task. After 5 seconds, we get all the results, which means that the tasks were running
simultaneously.

However, there is one interesting observation. When you run the program, you might note
that both tasks are likely to be served by the same worker thread from a thread pool. How is
this possible when we have run the tasks in parallel? To make things even more interesting,
let's comment out the await Task.Delay line inside the GetIntroAsync method and
uncomment the await Task.Run line, and then run the program.

We will see that in this case, both the tasks will be served by different worker threads. The
difference is that Task.Delay uses a timer under the hood, and the processing goes as
follows: we get the worker thread from a thread pool, which awaits the Task.Delay method
to return a result. Then, the Task.Delay method starts the timer and specifies a piece of
code that will be called when the timer counts the number of seconds specified to the Task.
Delay method. Then, we immediately return the worker thread to a thread pool. When the
timer event runs, we get any available worker thread from a thread pool once again (which
could be the same thread that we used first) and run the code provided to the timer on it.

When we use the Task.Run method, we get a worker thread from a thread pool and make
it block for a number of seconds, provided to the Thread.Sleep method. Then, we get a
second worker thread and block it as well. In this scenario, we consume two worker threads
and they do absolutely nothing, as they are not able to perform any other task while waiting.

We will talk in detail about the first scenario in Chapter 9, Using Asynchronous I/O, where
we will discuss a large set of asynchronous operations working with data inputs and outputs.
Using the first approach whenever possible is the key to creating scalable server applications.

Handling exceptions in asynchronous
operations

This recipe will describe how to deal with exception handling using asynchronous functions in
C#. You will learn how to work with aggregate exceptions in case you use await with multiple
parallel asynchronous operations.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe5.

Chapter 5

105

How to do it...
To understand handling exceptions in asynchronous operations, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;

3.	 Add the following code snippet below the Main method:
static async Task AsynchronousProcessing()
{
 WriteLine("1. Single exception");

 try
 {
 string result = await GetInfoAsync("Task 1", 2);
 WriteLine(result);
 }
 catch (Exception ex)
 {
 WriteLine($"Exception details: {ex}");
 }

 WriteLine();
 WriteLine("2. Multiple exceptions");

 Task<string> t1 = GetInfoAsync("Task 1", 3);
 Task<string> t2 = GetInfoAsync("Task 2", 2);
 try
 {
 string[] results = await Task.WhenAll(t1, t2);
 WriteLine(results.Length);
 }
 catch (Exception ex)
 {
 WriteLine($"Exception details: {ex}");
 }

 WriteLine();
 WriteLine("3. Multiple exceptions with AggregateException");

Using C# 6.0

106

 t1 = GetInfoAsync("Task 1", 3);
 t2 = GetInfoAsync("Task 2", 2);
 Task<string[]> t3 = Task.WhenAll(t1, t2);
 try
 {
 string[] results = await t3;
 WriteLine(results.Length);
 }
 catch
 {
 var ae = t3.Exception.Flatten();
 var exceptions = ae.InnerExceptions;
 WriteLine($"Exceptions caught: {exceptions.Count}");
 foreach (var e in exceptions)
 {
 WriteLine($"Exception details: {e}");
 WriteLine();
 }
 }

 WriteLine();
 WriteLine("4. await in catch and finally blocks");

 try
 {
 string result = await GetInfoAsync("Task 1", 2);
 WriteLine(result);
 }
 catch (Exception ex)
 {
 await Task.Delay(TimeSpan.FromSeconds(1));
 WriteLine($"Catch block with await: Exception details: {ex}");
 }
 finally
 {
 await Task.Delay(TimeSpan.FromSeconds(1));
 WriteLine("Finally block");
 }
}

static async Task<string> GetInfoAsync(string name, int seconds)
{
 await Task.Delay(TimeSpan.FromSeconds(seconds));
 throw new Exception($"Boom from {name}!");
}

Chapter 5

107

4.	 Add the following code snippet inside the Main method:
Task t = AsynchronousProcessing();
t.Wait();

5.	 Run the program.

How it works...
We run four scenarios to illustrate the most common cases of error handling using async and
await in C#. The first case is very simple and almost identical to the usual synchronous code.
We just use the try/catch statement and get the exception's details.

A very common mistake is using the same approach when more than one asynchronous
operations are being awaited. If we use the catch block in the same way as we did before,
we will get only the first exception from the underlying AggregateException object.

To collect all the information, we have to use the awaited tasks' Exception property. In the
third scenario, we flatten the AggregateException hierarchy and then unwrap all the
underlying exceptions from it using the Flatten method of AggregateException.

To illustrate C# 6.0 changes, we use await inside catch and finally blocks of the
exception handling code. To verify that it was not possible to use await inside catch
and finally blocks in the previous version of C#, you can compile it against C# 5.0 by
specifying it in the project properties under the build section advanced settings.

Avoiding the use of the captured
synchronization context

This recipe discusses the details of the synchronization context behavior when await is
used to get asynchronous operation results. You will learn how and when to turn off the
synchronization context flow.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe6.

Using C# 6.0

108

How to do it...
To understand the details of the synchronization context behavior when await is used and to
learn how and when to turn off the synchronization context flow, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add references to the Windows Presentation Foundation Library by following
these steps:

1.	 Right-click on the References folder in the project, and select the Add
reference… menu option.

2.	 Add references to these libraries: PresentationCore, PresentationFramework,
System.Xaml, and WindowsBase. You can use the search function in the
reference manager dialog as follows:

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Diagnostics;
using System.Text;
using System.Threading.Tasks;

Chapter 5

109

using System.Windows;
using System.Windows.Controls;
using static System.Console;

4.	 Add the following code snippet below the Main method:
private static Label _label;

static async void Click(object sender, EventArgs e)
{
 _label.Content = new TextBlock {Text = "Calculating..."};
 TimeSpan resultWithContext = await Test();
 TimeSpan resultNoContext = await TestNoContext();
 //TimeSpan resultNoContext =
 // await TestNoContext().ConfigureAwait(false);
 var sb = new StringBuilder();
 sb.AppendLine($"With the context: {resultWithContext}");
 sb.AppendLine($"Without the context: {resultNoContext}");
 sb.AppendLine("Ratio: " +
 $"{resultWithContext.TotalMilliseconds/resultNoContext.
TotalMilliseconds:0.00}");
 _label.Content = new TextBlock {Text = sb.ToString()};
}

static async Task<TimeSpan> Test()
{
 const int iterationsNumber = 100000;
 var sw = new Stopwatch();
 sw.Start();
 for (int i = 0; i < iterationsNumber; i++)
 {
 var t = Task.Run(() => { });
 await t;
 }
 sw.Stop();
 return sw.Elapsed;
}

static async Task<TimeSpan> TestNoContext()
{
 const int iterationsNumber = 100000;
 var sw = new Stopwatch();
 sw.Start();
 for (int i = 0; i < iterationsNumber; i++)
 {

Using C# 6.0

110

 var t = Task.Run(() => { });
 await t.ConfigureAwait(
 continueOnCapturedContext: false);
 }
 sw.Stop();
 return sw.Elapsed;
}

5.	 Replace the Main method with the following code snippet:
[STAThread]
static void Main(string[] args)
{
 var app = new Application();
 var win = new Window();
 var panel = new StackPanel();
 var button = new Button();
 _label = new Label();
 _label.FontSize = 32;
 _label.Height = 200;
 button.Height = 100;
 button.FontSize = 32;
 button.Content = new TextBlock {
 Text = "Start asynchronous operations"};
 button.Click += Click;
 panel.Children.Add(_label);
 panel.Children.Add(button);
 win.Content = panel;
 app.Run(win);

 ReadLine();
}

6.	 Run the program.

How it works...
In this example, we studied one of the most important aspects of an asynchronous function's
default behavior. You already know about task schedulers and synchronization contexts
from Chapter 4, Using the Task Parallel Library. By default, the await operator tries to
capture synchronization contexts and executes the preceding code on it. As we already know,
this helps us write asynchronous code by working with user interface controls. In addition,
deadlock situations, such as those that were described in the previous chapter, will not
happen when using await, since we do not block the UI thread while waiting for the result.

Chapter 5

111

This is reasonable, but let's see what can potentially happen. In this example, we create
a Windows Presentation Foundation application programmatically and subscribe to its
button-click event. When clicking on the button, we run two asynchronous operations.
One of them uses a regular await operator, while the other uses the ConfigureAwait
method with false as a parameter value. It explicitly instructs that we should not use
captured synchronization contexts to run continuation code on it. Inside each operation,
we measure the time they take to complete, and then, we display the respective time and
ratios on the main screen.

As a result, we see that the regular await operator takes much more time to complete. This is
because we post 100,000 continuation tasks on the UI thread, which uses its message loop
to asynchronously work with those tasks. In this case, we do not need this code to run on the
UI thread, since we do not access the UI components from the asynchronous operation; using
ConfigureAwait with false will be a much more efficient solution.

There is one more thing worth noting. Try to run the program by just clicking on the button
and waiting for the results. Now, do the same thing again, but this time, click on the button
and try to drag the application window from side to side in a random manner. You will note
that the code on the captured synchronization context becomes slower! This funny side
effect perfectly illustrates how dangerous asynchronous programming is. It is very easy to
experience a situation like this, and it would be almost impossible to debug it if you have
never experienced such a behavior before.

To be fair, let's see the opposite scenario. In the preceding code snippet, inside the Click
method, uncomment the commented line and comment out the line immediately preceding it.
When running the application, we will get a multithreaded control access exception because
the code that sets the Label control text will not be posted on the captured context, but it will
be executed on a thread pool worker thread instead.

Working around the async void method
This recipe describes why async void methods are quite dangerous to use. You will learn in
what situations it is acceptable to use this method and what to use instead, when possible.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe7.

Using C# 6.0

112

How to do it...
To learn how to work with the async void method, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static async Task AsyncTaskWithErrors()
{
 string result = await GetInfoAsync("AsyncTaskException", 2);
 WriteLine(result);
}

static async void AsyncVoidWithErrors()
{
 string result = await GetInfoAsync("AsyncVoidException", 2);
 WriteLine(result);
}

static async Task AsyncTask()
{
 string result = await GetInfoAsync("AsyncTask", 2);
 WriteLine(result);
}

static async void AsyncVoid()
{
 string result = await GetInfoAsync("AsyncVoid", 2);
 WriteLine(result);
}

static async Task<string> GetInfoAsync(string name, int seconds)
{
 await Task.Delay(TimeSpan.FromSeconds(seconds));
 if(name.Contains("Exception"))
 throw new Exception($"Boom from {name}!");
 return

Chapter 5

113

 $"Task {name} is running on a thread id {CurrentThread.
ManagedThreadId}." +
 $" Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
}

4.	 Add the following code snippet inside the Main method:
Task t = AsyncTask();
t.Wait();

AsyncVoid();
Sleep(TimeSpan.FromSeconds(3));

t = AsyncTaskWithErrors();
while(!t.IsFaulted)
{
 Sleep(TimeSpan.FromSeconds(1));
}
WriteLine(t.Exception);

//try
//{
// AsyncVoidWithErrors();
// Thread.Sleep(TimeSpan.FromSeconds(3));
//}
//catch (Exception ex)
//{
// Console.WriteLine(ex);
//}

int[] numbers = {1, 2, 3, 4, 5};
Array.ForEach(numbers, async number => {
 await Task.Delay(TimeSpan.FromSeconds(1));
 if (number == 3) throw new Exception("Boom!");
 WriteLine(number);
});

ReadLine();

5.	 Run the program.

Using C# 6.0

114

How it works...
When the program starts, we start two asynchronous operations by calling the two methods,
AsyncTask and AsyncVoid. The first method returns a Task object, while the other returns
nothing since it is declared async void. They both return immediately since they are
asynchronous, but then, the first one can be easily monitored with the returned task status or
just by calling the Wait method on it. The only way to wait for the second method to complete
is to literally wait for some time because we have not declared any object that we can use to
monitor the state of the asynchronous operation. Of course, it is possible to use some kind
of shared state variable and set it from the async void method while checking it from the
calling method, but it is better to just return a Task object instead.

The most dangerous part is exception handling. In case of the async void method, an
exception will be posted to a current synchronization context; in our case, a thread pool.
An unhandled exception on a thread pool will terminate the whole process. It is possible to
intercept unhandled exceptions using the AppDomain.UnhandledException event, but
there is no way to recover the process from there. To experience this, we should uncomment
the try/catch block inside the Main method and then run the program.

Another fact about using async void lambda expressions is that they are compatible
with the Action type, which is widely used in the standard .NET Framework class library.
It is very easy to forget about exception handling inside this lambda expression, which will
crash the program again. To see an example of this, uncomment the second commented-out
block inside the Main method.

I strongly recommend using async void only in UI event handlers. In all other situations,
use the methods that return Task instead.

Designing a custom awaitable type
This recipe shows you how to design a very basic awaitable type that is compatible with the
await operator.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter5\Recipe8.

Chapter 5

115

How to do it...
To design a custom awaitable type, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static async Task AsynchronousProcessing()
{
 var sync = new CustomAwaitable(true);
 string result = await sync;
 WriteLine(result);

 var async = new CustomAwaitable(false);
 result = await async;

 WriteLine(result);
}

class CustomAwaitable
{
 public CustomAwaitable(bool completeSynchronously)
 {
 _completeSynchronously = completeSynchronously;
 }

 public CustomAwaiter GetAwaiter()
 {
 return new CustomAwaiter(_completeSynchronously);
 }

 private readonly bool _completeSynchronously;
}

Using C# 6.0

116

class CustomAwaiter : INotifyCompletion
{
 private string _result = "Completed synchronously";
 private readonly bool _completeSynchronously;

 public bool IsCompleted => _completeSynchronously;

 public CustomAwaiter(bool completeSynchronously)
 {
 _completeSynchronously = completeSynchronously;
 }

 public string GetResult()
 {
 return _result;
 }

 public void OnCompleted(Action continuation)
 {
 ThreadPool.QueueUserWorkItem(state => {
 Sleep(TimeSpan.FromSeconds(1));
 _result = GetInfo();
 continuation?.Invoke();
 });
 }

 private string GetInfo()
 {
 return
 $"Task is running on a thread id {CurrentThread.
ManagedThreadId}." +
 $" Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
 }
}

4.	 Add the following code snippet inside the Main method:
Task t = AsynchronousProcessing();
t.Wait();

5.	 Run the program.

Chapter 5

117

How it works...
To be compatible with the await operator, a type should comply with a number of requirements
that are stated in the C# language specification. If you have Visual Studio 2015 installed, you
may find the specifications document inside the C:\Program Files (x86)\Microsoft
Visual Studio 14.0\VC#\Specifications\1033 folder (assuming you have a 64-bit OS
and used the default installation path).

In paragraph 7.7.7.1, we find a definition of awaitable expressions:

The task of an await expression is required to be awaitable. An expression t is awaitable if
one of the following holds:

ff t is of compile time type dynamic

ff t has an accessible instance or extension method called GetAwaiter with
no parameters and no type parameters, and a return type A for which all of
the following hold:

1.	 A implements the interface System.Runtime.CompilerServices.
INotifyCompletion (hereafter known as INotifyCompletion
for brevity).

2.	 A has an accessible, readable instance property IsCompleted of type
bool.

3.	 A has an accessible instance method GetResult with no parameters
and no type parameters.

This information is enough to get started. First, we define an awaitable type CustomAwaitable
and implement the GetAwaiter method. This in turn returns an instance of the
CustomAwaiter type. CustomAwaiter implements the INotifyCompletion interface, has
the IsCompleted property of the type bool, and has the GetResult method, which returns a
string type. Finally, we write a piece of code that creates two CustomAwaitable objects and
awaits both of them.

Now, we should understand the way await expressions are evaluated. This time,
the specifications have not been quoted to avoid unnecessary details. Basically, if the
IsCompleted property returns true, we just call the GetResult method synchronously.
This prevents us from allocating resources for asynchronous task execution if the operation has
already been completed. We cover this scenario by providing the completeSynchronously
parameter to the constructor method of the CustomAwaitable object.

Otherwise, we register a callback action to the OnCompleted method of CustomAwaiter
and start the asynchronous operation. When it gets completed, it calls the provided callback,
which will get the result by calling the GetResult method on the CustomAwaiter object.

Using C# 6.0

118

This implementation has been used for educational purposes only.
Whenever you write asynchronous functions, the most natural approach
is to use the standard Task type. You should define your own awaitable
type only if you have a solid reason why you cannot use Task and you
know exactly what you are doing.

There are many other topics related to designing custom awaitable types, such as the
ICriticalNotifyCompletion interface implementation and synchronization context
propagation. After understanding the basics of how an awaitable type is designed, you will
be able to use the C# language specification and other information sources to find out the
details you need with ease. But I would like to emphasize that you should just use the Task
type, unless you have a really good reason not to.

Using the dynamic type with await
This recipe shows you how to design a very basic type that is compatible with the await
operator and the dynamic C# type.

Getting ready
To step through this recipe, you will need Visual Studio 2015. You will need Internet access
to download the NuGet package. There are no other prerequisites. The source code for this
recipe can be found at BookSamples\Chapter5\Recipe9.

How to do it...
To learn how to use the dynamic type with await, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add references to the ImpromptuInterface NuGet package by following these steps:

1.	 Right-click on the References folder in the project, and select the Manage
NuGet Packages… menu option.

2.	 Now, add your preferred references to the ImpromptuInterface NuGet
package. You can use the search function in the Manage NuGet Packages
dialog as follows:

Chapter 5

119

3.	 In the Program.cs file, use the following using directives:
using System;
using System.Dynamic;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
using ImpromptuInterface;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
static async Task AsynchronousProcessing()
{
 string result = await GetDynamicAwaitableObject(true);
 WriteLine(result);

 result = await GetDynamicAwaitableObject(false);
 WriteLine(result);

Using C# 6.0

120

}

static dynamic GetDynamicAwaitableObject(bool
completeSynchronously)
{
 dynamic result = new ExpandoObject();
 dynamic awaiter = new ExpandoObject();

 awaiter.Message = "Completed synchronously";
 awaiter.IsCompleted = completeSynchronously;
 awaiter.GetResult = (Func<string>)(() => awaiter.Message);

 awaiter.OnCompleted = (Action<Action>) (callback =>
 ThreadPool.QueueUserWorkItem(state => {
 Sleep(TimeSpan.FromSeconds(1));
 awaiter.Message = GetInfo();
 callback?.Invoke();
 })
);

 IAwaiter<string> proxy = Impromptu.ActLike(awaiter);

 result.GetAwaiter = (Func<dynamic>) (() => proxy);

 return result;
}

static string GetInfo()
{
 return
 $"Task is running on a thread id {CurrentThread.
ManagedThreadId}." +
 $" Is thread pool thread: {CurrentThread.IsThreadPoolThread}";
}

5.	 Add the following code below the Program class definition:
public interface IAwaiter<T> : INotifyCompletion
{
 bool IsCompleted { get; }

 T GetResult();
}

Chapter 5

121

6.	 Add the following code snippet inside the Main method:
Task t = AsynchronousProcessing();
t.Wait();

7.	 Run the program.

How it works...
Here, we repeat the trick from the previous recipe but this time, with the help of dynamic
expressions. We can achieve this goal with the help of NuGet—a package manager that
contains many useful libraries. This time, we use a library that dynamically creates wrappers,
implementing the interfaces we need.

To start with, we create two instances of the ExpandoObject type and assign them to
dynamic local variables. These variables will be our awaitable and awaiter objects.
Since an awaitable object just requires having the GetAwaiter method, there are no
problems with providing it. ExpandoObject (combined with the dynamic keyword) allows
us to customize itself and add properties and methods by assigning corresponding values.
It is in fact a dictionary-type collection with keys of the type string and values of the type
object. If you are familiar with the JavaScript programming language, you might note that
this is very similar to JavaScript objects.

Since dynamic allows us to skip compile-time checks in C#, ExpandoObject is written in
such a way that if you assign something to a property, it creates a dictionary entry, where
the key is the property name and a value is any value that is supplied. When you try to get
the property value, it goes into the dictionary and provides the value that is stored in the
corresponding dictionary entry. If the value is of the type Action or Func, we actually store a
delegate, which in turn can be used like a method. Therefore, a combination of the dynamic
type with ExpandoObject allows us to create an object and dynamically provide it with
properties and methods.

Now, we need to construct our awaiter and awaitable objects. Let's start with awaiter.
First, we provide a property called Message and an initial value to this property. Then, we
define the GetResult method using a Func<string> type. We assign a lambda expression,
which returns the Message property value. We then implement the IsCompleted property.
If it is set to true, we can skip the rest of the work and proceed to our awaitable object that
is stored in the result local variable. We just need to add a method returning the dynamic
object and return our awaiter object from it. Then, we can use result as the await
expression; however, it will run synchronously.

The main challenge is implementing asynchronous processing on our dynamic object.
The C# language specifications state that an awaiter object must implement the
INotifyCompletion or ICriticalNotifyCompletion interface, which ExpandoObject
does not. And even when we implement the OnCompleted method dynamically, adding it to
the awaiter object, we will not succeed because our object does not implement either of the
aforementioned interfaces.

Using C# 6.0

122

To work around this problem, we use the ImpromptuInterface library that we obtained
from NuGet. It allows us to use the Impromptu.ActLike method to dynamically create proxy
objects that will implement the required interface. If we try to create a proxy implementing the
INotifyCompletion interface, we will still fail because the proxy object is not dynamic
anymore, and this interface has the OnCompleted method only, but it does not have the
IsCompleted property or the GetResult method. As the last workaround, we define a
generic interface, IAwaiter<T>, which implements INotifyCompletion and adds all the
required properties and methods. Now, we use it for proxy generation and change the result
object to return a proxy instead of awaiter from the GetAwaiter method. The program
now works; we just constructed an awaitable object that is completely dynamic at runtime.

123

6
Using Concurrent

Collections

In this chapter, we will look through the different data structures for concurrent programming
included in the .NET Framework base class library. You will learn the following recipes:

ff Using ConcurrentDictionary

ff Implementing asynchronous processing using ConcurrentQueue

ff Changing the asynchronous processing order with ConcurrentStack

ff Creating a scalable crawler with ConcurrentBag

ff Generalizing asynchronous processing with BlockingCollection

Introduction
Programming requires understanding and knowledge of basic data structures and algorithms.
To choose the best-suited data structure for a concurrent situation, a programmer has to
know about many things, such as algorithm time, space complexity, and the big O notation.
In different, well-known scenarios, we always know which data structures are more efficient.

For concurrent computations, we need to have appropriate data structures. These data
structures have to be scalable, avoid locks when possible, and at the same time provide
thread-safe access. .NET Framework, since version 4, has the System.Collections.
Concurrent namespace with several data structures in it. In this chapter, we will cover
several data structures and show you very simple examples of how to use them.

Using Concurrent Collections

124

Let's start with ConcurrentQueue. This collection uses atomic Compare and Swap (CAS)
operations, which allow us to safely exchange values of two variables, and SpinWait to
ensure thread safety. It implements a First In, First Out (FIFO) collection, which means that
the items go out of the queue in the same order in which they were added to the queue. To
add an item to a queue, you call the Enqueue method. The TryDequeue method tries to
take the first item from the queue, and the TryPeek method tries to get the first item without
removing it from the queue.

The ConcurrentStack collection is also implemented without using any locks and only
with CAS operations. This is the Last In, First Out (LIFO) collection, which means that the
most recently added item will be returned first. To add items, you can use the Push and
PushRange methods; to retrieve, you use TryPop and TryPopRange, and to inspect,
you can use the TryPeek method.

The ConcurrentBag collection is an unordered collection that supports duplicate items. It is
optimized for a scenario where multiple threads partition their work in such a way that each
thread produces and consumes its own tasks, dealing with other threads' tasks very rarely
(in which case, it uses locks). You add items to a bag using the Add method; you inspect with
TryPeek, and take items from a bag with the TryTake method.

Avoid using the Count property on the collections mentioned. They are
implemented using linked lists, and therefore, Count is an O(N) operation.
If you need to check whether the collection is empty, use the IsEmpty
property, which is an O(1) operation.

ConcurrentDictionary is a thread-safe dictionary collection implementation. It is lock-
free for read operations. However, it requires locking for write operations. The concurrent
dictionary uses multiple locks, implementing a fine-grained locking model over the
dictionary buckets. The number of locks could be defined using a constructor with the
concurrencyLevel parameter, which means that an estimated number of threads will
update the dictionary concurrently.

Since a concurrent dictionary uses locking, there are a number of operations
that require acquiring all the locks inside the dictionary. These operations
are: Count, IsEmpty, Keys, Values, CopyTo, and ToArray. Avoid using
these operations without need.

BlockingCollection is an advanced wrapper over the IProducerConsumerCollection
generic interface implementation. It has many features that are more advanced and is very
useful for implementing pipeline scenarios when you have some steps that use the results from
processing the previous steps. The BlockingCollection class supports features such as
blocking, bounding inner collections capacity, canceling collection operations, and retrieving
values from multiple blocking collections.

Chapter 6

125

The concurrent algorithms can be very complicated, and covering all the concurrent
collections—whether more or less advanced—would require writing a separate book.
Here, we illustrate only the simplest examples of using concurrent collections.

Using ConcurrentDictionary
This recipe shows you a very simple scenario, comparing the performance of a usual
dictionary collection with the concurrent dictionary in a single-threaded environment.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter6\Recipe1.

How to do it...
To understand the difference between the performance of a usual dictionary collection and
the concurrent dictionary, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using static System.Console;

3.	 Add the following code snippet below the Main method:
const string Item = "Dictionary item";
const int Iterations = 1000000;
public static string CurrentItem;

4.	 Add the following code snippet inside the Main method:
var concurrentDictionary = new ConcurrentDictionary<int,
string>();
var dictionary = new Dictionary<int, string>();

var sw = new Stopwatch();

sw.Start();
for (int i = 0; i < Iterations; i++)
{
 lock (dictionary)

Using Concurrent Collections

126

 {
 dictionary[i] = Item;
 }
}
sw.Stop();
WriteLine($"Writing to dictionary with a lock: {sw.Elapsed}");

sw.Restart();
for (int i = 0; i < Iterations; i++)
{
 concurrentDictionary[i] = Item;
}
sw.Stop();
WriteLine($"Writing to a concurrent dictionary: {sw.Elapsed}");

sw.Restart();
for (int i = 0; i < Iterations; i++)
{
 lock (dictionary)
 {
 CurrentItem = dictionary[i];
 }
}
sw.Stop();
WriteLine($"Reading from dictionary with a lock: {sw.Elapsed}");

sw.Restart();
for (int i = 0; i < Iterations; i++)
{
 CurrentItem = concurrentDictionary[i];
}
sw.Stop();
WriteLine($"Reading from a concurrent dictionary: {sw.Elapsed}");

5.	 Run the program.

How it works...
When the program starts, we create two collections. One of them is a standard dictionary
collection, and the other is a new concurrent dictionary. Then, we start adding to them,
using a standard dictionary with a lock and measuring the time it takes for one million
iterations to complete. Then, we measure the ConcurrentDictionary collection's
performance in the same scenario, and we finally compare the performance of retrieving
values from both collections.

Chapter 6

127

In this very simple scenario, we find that ConcurrentDictionary is significantly
slower on write operations than a usual dictionary with a lock but is faster on retrieval
operations. Therefore, if we need many thread-safe reads from a dictionary, the
ConcurrentDictionary collection is the best choice.

If you need just read-only multithreaded access to the dictionary, it may not
be necessary to perform thread-safe reads. In this scenario, it is much better
to use just a regular dictionary or the ReadOnlyDictionary collections.

The ConcurrentDictionary collection is implemented using the fine-grained locking
technique, and this allows it to scale better on multiple writes than using a regular dictionary
with a lock (which is called coarse-grained locking). As we saw in this example, when we use
just one thread, a concurrent dictionary is much slower, but when we scale this up to five-six
threads (if we have enough CPU cores that could run them simultaneously), the concurrent
dictionary will actually perform better.

Implementing asynchronous processing
using ConcurrentQueue

This recipe will show you an example of creating a set of tasks to be processed
asynchronously by multiple workers.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter6\Recipe2.

How to do it...
To understand the working of creating a set of tasks to be processed asynchronously by
multiple workers, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;

Using Concurrent Collections

128

3.	 Add the following code snippet below the Main method:
static async Task RunProgram()
{
 var taskQueue = new ConcurrentQueue<CustomTask>();
 var cts = new CancellationTokenSource();

 var taskSource = Task.Run(() => TaskProducer(taskQueue));

 Task[] processors = new Task[4];
 for (int i = 1; i <= 4; i++)
 {
 string processorId = i.ToString();
 processors[i-1] = Task.Run(
 () => TaskProcessor(taskQueue, $"Processor {processorId}",
cts.Token));
 }

 await taskSource;
 cts.CancelAfter(TimeSpan.FromSeconds(2));

 await Task.WhenAll(processors);
}

static async Task TaskProducer(ConcurrentQueue<CustomTask> queue)
{
 for (int i = 1; i <= 20; i++)
 {
 await Task.Delay(50);
 var workItem = new CustomTask {Id = i};
 queue.Enqueue(workItem);
 WriteLine($"Task {workItem.Id} has been posted");
 }
}

static async Task TaskProcessor(
 ConcurrentQueue<CustomTask> queue, string name,
CancellationToken token)
{
 CustomTask workItem;
 bool dequeueSuccesful = false;

 await GetRandomDelay();
 do
 {

Chapter 6

129

 dequeueSuccesful = queue.TryDequeue(out workItem);
 if (dequeueSuccesful)
 {
 WriteLine($"Task {workItem.Id} has been processed by
{name}");
 }

 await GetRandomDelay();
 }
 while (!token.IsCancellationRequested);
}

static Task GetRandomDelay()
{
 int delay = new Random(DateTime.Now.Millisecond).Next(1, 500);
 return Task.Delay(delay);
}

class CustomTask
{
 public int Id { get; set; }
}

4.	 Add the following code snippet inside the Main method:
Task t = RunProgram();
t.Wait();

5.	 Run the program.

How it works...
When the program runs, we create a queue of tasks with an instance of the
ConcurrentQueue collection. Then, we create a cancelation token, which will be used to
stop work after we are done posting tasks to the queue. Next, we start a separate worker
thread that will post tasks to the tasks queue. This part produces a workload for our
asynchronous processing.

Now, let's define a task-consuming part of the program. We create four workers that will wait a
random time, get a task from the task queue, process it, and repeat the whole process until we
signal the cancelation token. Finally, we start the task-producing thread, wait for its completion,
and then signal the consumers that we've finished work with the cancelation token. The last
step will be to wait for all our consumers to complete, to finish processing all tasks.

Using Concurrent Collections

130

We see that we have tasks being processed from start to end, but it is possible that a
later task will be processed before an earlier one because we have four workers running
independently and the task processing time is not constant. We see that the access to the
queue is thread-safe; no work item was taken twice.

Changing asynchronous processing order
with ConcurrentStack

This recipe is a slight modification of the previous one. We will, once again, create a set
of tasks to be processed asynchronously by multiple workers, but this time, we implement
it with ConcurrentStack and see the differences.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter6\Recipe3.

How to do it...
To understand the processing of a set of tasks implemented with ConcurrentStack,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;

3.	 Add the following code snippet below the Main method:
static async Task RunProgram()
{
 var taskStack = new ConcurrentStack<CustomTask>();
 var cts = new CancellationTokenSource();

 var taskSource = Task.Run(() => TaskProducer(taskStack));

 Task[] processors = new Task[4];
 for (int i = 1; i <= 4; i++)
 {
 string processorId = i.ToString();

Chapter 6

131

 processors[i - 1] = Task.Run(
 () => TaskProcessor(taskStack, $"Processor {processorId}",
cts.Token));
 }

 await taskSource;
 cts.CancelAfter(TimeSpan.FromSeconds(2));

 await Task.WhenAll(processors);
}

static async Task TaskProducer(ConcurrentStack<CustomTask> stack)
{
 for (int i = 1; i <= 20; i++)
 {
 await Task.Delay(50);
 var workItem = new CustomTask { Id = i };
 stack.Push(workItem);
 WriteLine($"Task {workItem.Id} has been posted");
 }
}

static async Task TaskProcessor(
 ConcurrentStack<CustomTask> stack, string name,
CancellationToken token)
{
 await GetRandomDelay();
 do
 {
 CustomTask workItem;
 bool popSuccesful = stack.TryPop(out workItem);
 if (popSuccesful)
 {
 WriteLine($"Task {workItem.Id} has been processed by
{name}");
 }

 await GetRandomDelay();
 }
 while (!token.IsCancellationRequested);
}

static Task GetRandomDelay()
{

Using Concurrent Collections

132

 int delay = new Random(DateTime.Now.Millisecond).Next(1, 500);
 return Task.Delay(delay);
}

class CustomTask
{
 public int Id { get; set; }
}

4.	 Add the following code snippet inside the Main method:
Task t = RunProgram();
t.Wait();

5.	 Run the program.

How it works...
When the program runs, we now create an instance of the ConcurrentStack collection.
The rest is almost like in the previous recipe, except instead of using the Push and TryPop
methods on the concurrent stack, we use Enqueue and TryDequeue on a concurrent queue.

We now see that the task processing order has been changed. The stack is a LIFO collection,
and workers process the latter tasks first. In case of a concurrent queue, tasks were
processed in almost the same order in which they were added. This means that by depending
on the number of workers, we will surely process the task that was created first in a given time
frame. In the case of a stack, the tasks that were created earlier will have lower priority and
may be not processed until a producer stops giving more tasks to the stack. This behavior is
very specific and it is much better to use a queue in this scenario.

Creating a scalable crawler with
ConcurrentBag

This recipe shows you how to scale workload between a number of independent workers that
both produce work and process it.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter6\Recipe4.

Chapter 6

133

How to do it...
The following steps demonstrate how to scale workload between a number of independent
workers that both produce work and process it:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading.Tasks;
using static System.Console;

3.	 Add the following code snippet below the Main method:
static Dictionary<string, string[]> _contentEmulation = new
Dictionary<string, string[]>();

static async Task RunProgram()
{
 var bag = new ConcurrentBag<CrawlingTask>();

 string[] urls = {"http://microsoft.com/", "http://google.com/",
"http://facebook.com/", "http://twitter.com/"};

 var crawlers = new Task[4];
 for (int i = 1; i <= 4; i++)
 {
 string crawlerName = $"Crawler {i}";
 bag.Add(new CrawlingTask { UrlToCrawl = urls[i-1],
ProducerName = "root"});
 crawlers[i - 1] = Task.Run(() => Crawl(bag, crawlerName));
 }

 await Task.WhenAll(crawlers);
}

static async Task Crawl(ConcurrentBag<CrawlingTask> bag, string
crawlerName)
{
 CrawlingTask task;
 while (bag.TryTake(out task))
 {
 IEnumerable<string> urls = await GetLinksFromContent(task);
 if (urls != null)

Using Concurrent Collections

134

 {
 foreach (var url in urls)
 {
 var t = new CrawlingTask
 {
 UrlToCrawl = url,
 ProducerName = crawlerName
 };

 bag.Add(t);
 }
 }
 WriteLine($"Indexing url {task.UrlToCrawl} posted by " +
 $"{task.ProducerName} is completed by {crawlerName}!");
 }
}

static async Task<IEnumerable<string>> GetLinksFromContent(Crawlin
gTask task)
{
 await GetRandomDelay();

 if (_contentEmulation.ContainsKey(task.UrlToCrawl)) return _
contentEmulation[task.UrlToCrawl];

 return null;
}

static void CreateLinks()
{
 _contentEmulation["http://microsoft.com/"] = new [] { "http://
microsoft.com/a.html", "http://microsoft.com/b.html" };
 _contentEmulation["http://microsoft.com/a.html"] = new[] {
"http://microsoft.com/c.html", "http://microsoft.com/d.html" };
 _contentEmulation["http://microsoft.com/b.html"] = new[] {
"http://microsoft.com/e.html" };

 _contentEmulation["http://google.com/"] = new[] { "http://
google.com/a.html", "http://google.com/b.html" };
 _contentEmulation["http://google.com/a.html"] = new[] { "http://
google.com/c.html", "http://google.com/d.html" };
 _contentEmulation["http://google.com/b.html"] = new[] { "http://
google.com/e.html", "http://google.com/f.html" };
 _contentEmulation["http://google.com/c.html"] = new[] { "http://
google.com/h.html", "http://google.com/i.html" };

Chapter 6

135

 _contentEmulation["http://facebook.com/"] = new [] { "http://
facebook.com/a.html", "http://facebook.com/b.html" };
 _contentEmulation["http://facebook.com/a.html"] = new[] {
"http://facebook.com/c.html", "http://facebook.com/d.html" };
 _contentEmulation["http://facebook.com/b.html"] = new[] {
"http://facebook.com/e.html" };

 _contentEmulation["http://twitter.com/"] = new[] { "http://
twitter.com/a.html", "http://twitter.com/b.html" };
 _contentEmulation["http://twitter.com/a.html"] = new[] {
"http://twitter.com/c.html", "http://twitter.com/d.html" };
 _contentEmulation["http://twitter.com/b.html"] = new[] {
"http://twitter.com/e.html" };
 _contentEmulation["http://twitter.com/c.html"] = new[] {
"http://twitter.com/f.html", "http://twitter.com/g.html" };
 _contentEmulation["http://twitter.com/d.html"] = new[] {
"http://twitter.com/h.html" };
 _contentEmulation["http://twitter.com/e.html"] = new[] {
"http://twitter.com/i.html" };
}

static Task GetRandomDelay()
{
 int delay = new Random(DateTime.Now.Millisecond).Next(150, 200);
 return Task.Delay(delay);
}

class CrawlingTask
{
 public string UrlToCrawl { get; set; }

 public string ProducerName { get; set; }
}

4.	 Add the following code snippet inside the Main method:
CreateLinks();
Task t = RunProgram();
t.Wait();

5.	 Run the program.

Using Concurrent Collections

136

How it works...
The program simulates web page indexing with multiple web crawlers. A web crawler is a
program that opens a web page by its address, indexes the content, tries to visit all the links
that this page contains, and indexes these linked pages as well. At the beginning, we define a
dictionary containing different web-page URLs. This dictionary simulates web pages containing
links to other pages. The implementation is very naive; it does not care about indexing the
already visited pages, but it is simple and allows us to focus on the concurrent workload.

Then, we create a concurrent bag, containing crawling tasks. We create four crawlers and
provide a different site root URL to each of them. Then, we wait for all crawlers to compete.
Now, each crawler starts to index the site URL it was given. We simulate the network I/O
process by waiting for some random amount of time; then, if the page contains more URLs,
the crawler posts more crawling tasks to the bag. Then, it checks whether there are any tasks
left to crawl in the bag. If not, the crawler is complete.

If we check the output below the first four lines, which are root URLs, we will see that usually,
which were root URLs, we will see that usually a task posted by the crawler number N is
processed by the same crawler. However, the later lines will be different. This happens
because internally, ConcurrentBag is optimized for exactly this scenario where there are
multiple threads that both add items and remove them. This is achieved by letting each thread
work with its own local queue of items, and thus, we do not need any locks while this queue
is occupied. Only when we have no items left in the local queue will we perform some locking
and try to steal the work from another thread's local queue. This behavior helps to distribute
the work between all workers and avoid locking.

Generalizing asynchronous processing with
BlockingCollection

This recipe will describe how to use BlockingCollection to simplify implementation of
workload asynchronous processing.

Getting ready
To work through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter6\Recipe5.

Chapter 6

137

How to do it...
To understand how BlockingCollection simplifies the implementation of workload
asynchronous processing, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Threading.Tasks;
using static System.Console;

3.	 Add the following code snippet below the Main method:
static async Task RunProgram(IProducerConsumerCollection<CustomTa
sk> collection = null)
{
 var taskCollection = new BlockingCollection<CustomTask>();
 if(collection != null)
 taskCollection= new BlockingCollection<CustomTask>(collecti
on);

 var taskSource = Task.Run(() => TaskProducer(taskCollection));

 Task[] processors = new Task[4];
 for (int i = 1; i <= 4; i++)
 {
 string processorId = $"Processor {i}";
 processors[i - 1] = Task.Run(
 () => TaskProcessor(taskCollection, processorId));
 }

 await taskSource;

 await Task.WhenAll(processors);
}

static async Task TaskProducer(BlockingCollection<CustomTask>
collection)
{
 for (int i = 1; i <= 20; i++)
 {
 await Task.Delay(20);
 var workItem = new CustomTask { Id = i };

Using Concurrent Collections

138

 collection.Add(workItem);
 WriteLine($"Task {workItem.Id} has been posted");
 }
 collection.CompleteAdding();
}

static async Task TaskProcessor(
 BlockingCollection<CustomTask> collection, string name)
{
 await GetRandomDelay();
 foreach (CustomTask item in collection.GetConsumingEnumerable())
 {
 WriteLine($"Task {item.Id} has been processed by {name}");
 await GetRandomDelay();
 }
}

static Task GetRandomDelay()
{
 int delay = new Random(DateTime.Now.Millisecond).Next(1, 500);
 return Task.Delay(delay);
}

class CustomTask
{
 public int Id { get; set; }
}

4.	 Add the following code snippet inside the Main method:
WriteLine("Using a Queue inside of BlockingCollection");
WriteLine();
Task t = RunProgram();
t.Wait();

WriteLine();
WriteLine("Using a Stack inside of BlockingCollection");
WriteLine();
t = RunProgram(new ConcurrentStack<CustomTask>());
t.Wait();

5.	 Run the program.

Chapter 6

139

How it works...
Here, we take exactly the first scenario, but now, we use a BlockingCollection class that
provides many useful benefits. First of all, we are able to change the way the tasks are stored
inside the blocking collection. By default, it uses a ConcurrentQueue container, but we are
able to use any collection that implements the IProducerConsumerCollection generic
interface. To illustrate this, we run the program twice, using ConcurrentStack as the
underlying collection the second time.

Workers get work items by iterating the GetConsumingEnumerable method call result on
a blocking collection. If there are no items inside the collection, the iterator will just block the
worker thread until an item is posted to the collection. The cycle ends when the producer calls
the CompleteAdding method on the collection. It signals that the work is done.

It is very easy to make a mistake and just iterate BlockingCollection
as it implements IEnumerable itself. Do not forget to use
GetConsumingEnumerable, or else, you will just iterate a "snapshot"
of a collection and get completely unexpected program behavior.

The workload producer inserts the tasks into BlockingCollection and then calls
the CompleteAdding method, which causes all the workers to get completed. Now, in
the program output, we see two result sequences illustrating the difference between the
concurrent queue and stack collections.

141

7
Using PLINQ

In this chapter, we will review different parallel programming paradigms, such as task
and data parallelism, and cover the basics of data parallelism and parallel LINQ queries.
You will learn the following recipes:

ff Using the Parallel class

ff Parallelizing a LINQ query

ff Tweaking the parameters of a PLINQ query

ff Handling exceptions in a PLINQ query

ff Managing data partitioning in a PLINQ query

ff Creating a custom aggregator for a PLINQ query

Introduction
In .NET Framework, there is a subset of libraries that is called Parallel Framework, often
referred to as Parallel Framework Extensions (PFX), which was the name of the very first
version of these libraries. Parallel Framework was released with .NET Framework 4.0 and
consists of three major parts:

ff The Task Parallel Library (TPL)

ff Concurrent collections

ff Parallel LINQ or PLINQ

Until now, you have learned how to run several tasks in parallel and synchronize them with
one another. In fact, we partitioned our program into a set of tasks and had different threads
running different tasks. This approach is called task parallelism, and you have only been
learning about task parallelism so far.

Using PLINQ

142

Imagine that we have a program that performs some heavy calculations over a big set of data.
The easiest way to parallelize this program is to partition this set of data into smaller chunks,
run the calculations needed over these chunks of data in parallel, and then aggregate the
results of these calculations. This programming model is called data parallelism.

Task parallelism has the lowest abstraction level. We define a program as a combination of
tasks, explicitly defining how they are combined. A program composed in this way could be
very complex and detailed. Parallel operations are defined in different places in this program,
and as it grows, the program becomes harder to understand and maintain. This way of making
the program parallel is called unstructured parallelism. It is the price we have to pay if we
have complex parallelization logic.

However, when we have simpler program logic, we can try to offload more parallelization
details to the PFX libraries and the C# compiler. For example, we could say, "I would like to run
those three methods in parallel, and I do not care how exactly this parallelization happens;
let the .NET infrastructure decide the details". This raises the abstraction level as we do not
have to provide a detailed description of how exactly we are parallelizing this. This approach is
referred to as structured parallelism since the parallelization is usually a sort of declaration
and each case of parallelization is defined in exactly one place in the program.

There could be an impression that unstructured parallelism is bad practice
and structured parallelism should be always used instead. I would like
to emphasize that this is not true. Structured parallelism is indeed more
maintainable, and preferred when possible, but it is a much less universal
approach. In general, there are many situations when we simply are not
able to use it, and it is perfectly OK to use TPL task parallelism in an
unstructured manner.

TPL has a Parallel class, which provides APIs for structured parallelism. This is still a part
of TPL, but we will review it in this chapter because it is a perfect example of transition from
a lower abstraction level to a higher one. When we use the Parallel class APIs, we do not
need to provide the details of how we partition our work. However, we still need to explicitly
define how we make one single result from partitioned results.

PLINQ has the highest abstraction level. It automatically partitions data in to chunks and
decides whether we really need to parallelize the query or whether it will be more effective
to use usual sequential query processing. Then, the PLINQ infrastructure takes care of
combining the partitioned results. There are many options that programmers may tweak
to optimize the query and achieve the best possible performance and result.

In this chapter, we will cover the Parallel class API usage and many different PLINQ
options, such as making a LINQ query parallel, setting up an execution mode and tweaking
the parallelism degree of a PLINQ query, dealing with a query item order, and handling PLINQ
exceptions. You will also learn how to manage data partitioning for PLINQ queries.

Chapter 7

143

Using the Parallel class
This recipe shows you how to use the Parallel class APIs. You will learn how to invoke
methods in parallel, how to perform parallel loops, and tweak parallelization mechanics.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter7\Recipe1.

How to do it...
To invoke methods in parallel, perform parallel loops, and tweak parallelization mechanics
using the Parallel class, perform the given steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static string EmulateProcessing(string taskName)
{
 Sleep(TimeSpan.FromMilliseconds(
 new Random(DateTime.Now.Millisecond).Next(250, 350)));
 WriteLine($"{taskName} task was processed on a " +
 $"thread id {CurrentThread.ManagedThreadId}");
 return taskName;
}

4.	 Add the following code snippet inside the Main method:
Parallel.Invoke(
 () => EmulateProcessing("Task1"),
 () => EmulateProcessing("Task2"),
 () => EmulateProcessing("Task3")
);

var cts = new CancellationTokenSource();

Using PLINQ

144

var result = Parallel.ForEach(
 Enumerable.Range(1, 30),
 new ParallelOptions
 {
 CancellationToken = cts.Token,
 MaxDegreeOfParallelism = Environment.ProcessorCount,
 TaskScheduler = TaskScheduler.Default
 },
 (i, state) =>
 {
 WriteLine(i);
 if (i == 20)
 {
 state.Break();
 WriteLine($"Loop is stopped: {state.IsStopped}");
 }
 });

WriteLine("---");
WriteLine($"IsCompleted: {result.IsCompleted}");
WriteLine($"Lowest break iteration: {result.
LowestBreakIteration}");

5.	 Run the program.

How it works...
This program demonstrates different features of the Parallel class. The Invoke method
allows us to run several actions in parallel without much trouble as compared to defining
tasks in TPL. The Invoke method blocks the other thread until all actions are complete,
which is quite a common and convenient scenario.

The next feature is parallel loops, which are defined with the For and ForEach methods.
We will look closely at ForEach since it is very similar to For. With the ForEach parallel
loop, you can process any IEnumerable collection in parallel by applying an action delegate
to each collection item. We are able to provide several options, customizing parallelization
behavior, and get a result that shows whether the loop completed successfully.

To tweak our parallel loop, we provide an instance of the ParallelOptions class to the
ForEach method. This allows us to cancel the loop with CancellationToken, restrict the
maximum parallelism degree (how many maximum operations can be run in parallel), and
provide a custom TaskScheduler class to schedule action tasks with it. Actions can accept
an additional ParallelLoopState parameter, which is useful for breaking the loop or for
checking what happens with the loop at this moment.

Chapter 7

145

There are two ways of stopping the parallel loop with this state. We could use either the
Break or Stop methods. The Stop method tells the loop to stop processing any more work
and sets the IsStopped property of the parallel loop state to true. The Break method
stops the iterations after it, but the initial ones will continue to work. In that case, the
LowestBreakIteration property of the loop result will contain the number of lowest
loop iteration where the Break method was called.

Parallelizing a LINQ query
This recipe will describe how to use PLINQ to make a query parallel and how to go back from
a parallel query to sequential processing.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter7\Recipe2.

How to do it...
To use PLINQ in order to make a query parallel and to go back from a parallel query to
sequential processing, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void PrintInfo(string typeName)
{
 Sleep(TimeSpan.FromMilliseconds(150));
 WriteLine($"{typeName} type was printed on a thread " +
 $"id {CurrentThread.ManagedThreadId}");
}

static string EmulateProcessing(string typeName)
{
 Sleep(TimeSpan.FromMilliseconds(150));

Using PLINQ

146

 WriteLine($"{typeName} type was processed on a thread " +
 $"id {CurrentThread.ManagedThreadId}");
 return typeName;
}

static IEnumerable<string> GetTypes()
{
 return from assembly in AppDomain.CurrentDomain.GetAssemblies()
 from type in assembly.GetExportedTypes()
 where type.Name.StartsWith("Web")
 select type.Name;

}

4.	 Add the following code snippet inside the Main method:
var sw = new Stopwatch();
sw.Start();
var query = from t in GetTypes()
 select EmulateProcessing(t);

foreach (string typeName in query)
{
 PrintInfo(typeName);
}
sw.Stop();
WriteLine("---");
WriteLine("Sequential LINQ query.");
WriteLine($"Time elapsed: {sw.Elapsed}");
WriteLine("Press ENTER to continue....");
ReadLine();
Clear();
sw.Reset();

sw.Start();
var parallelQuery = from t in GetTypes().AsParallel()
 select EmulateProcessing(t);

foreach (var typeName in parallelQuery)
{
 PrintInfo(typeName);
}
sw.Stop();
WriteLine("---");

Chapter 7

147

WriteLine("Parallel LINQ query. The results are being merged on a
single thread");
WriteLine($"Time elapsed: {sw.Elapsed}");
WriteLine("Press ENTER to continue....");
ReadLine();
Clear();
sw.Reset();

sw.Start();
parallelQuery = from t in GetTypes().AsParallel()
 select EmulateProcessing(t);

parallelQuery.ForAll(PrintInfo);

sw.Stop();
WriteLine("---");
WriteLine("Parallel LINQ query. The results are being processed in
parallel");
WriteLine($"Time elapsed: {sw.Elapsed}");
WriteLine("Press ENTER to continue....");
ReadLine();
Clear();
sw.Reset();

sw.Start();
query = from t in GetTypes().AsParallel().AsSequential()
 select EmulateProcessing(t);

foreach (string typeName in query)
{
 PrintInfo(typeName);
}

sw.Stop();
WriteLine("---");
WriteLine("Parallel LINQ query, transformed into sequential.");
WriteLine($"Time elapsed: {sw.Elapsed}");
WriteLine("Press ENTER to continue....");
ReadLine();
Clear();

5.	 Run the program.

Using PLINQ

148

How it works...
When the program runs, we create a LINQ query that uses the reflection API to get all types
whose names start with Web from the assemblies loaded in the current application domain.
We emulate delays for processing each item and for printing it with the EmulateProcessing
and PrintInfo methods. We also use the Stopwatch class to measure each query's
execution time.

First, we run a usual sequential LINQ query. There is no parallelization here, so everything
runs on the current thread. The second version of the query uses the ParallelEnumerable
class explicitly. ParallelEnumerable contains the PLINQ logic implementation and is
organized as a number of extension methods to the IEnumerable collection's functionality.
Normally, we do not use this class explicitly; we are using it here to illustrate how PLINQ
actually works. The second version runs EmulateProcessing in parallel; however, by
default, the results are merged on a single thread, so the query execution time should be
a couple of seconds less than the first version.

The third version shows how to use the AsParallel method to run the LINQ query in parallel
in a declarative manner. We do not care about implementation details here but just state that
we want to run this in parallel. However, the key difference in this version is that we use the
ForAll method to print out the query results. It runs the action to all items in the query on
the same thread they were processed in, skipping the results-merging step. It allows us to run
PrintInfo in parallel as well, and this version runs even faster than the previous one.

The last sample shows how to turn a PLINQ query back to sequential with the AsSequential
method. We can see that this query runs exactly like the first one.

Tweaking the parameters of a PLINQ query
This recipe shows how we can manage parallel processing options using a PLINQ query and
what these options could affect during a query's execution.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter7\Recipe3.

Chapter 7

149

How to do it...
To understand how to manage parallel processing options using a PLINQ query and their
effects, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static string EmulateProcessing(string typeName)
{
 Sleep(TimeSpan.FromMilliseconds(
 new Random(DateTime.Now.Millisecond).Next(250,350)));
 WriteLine($"{typeName} type was processed on a thread " +
 $"id {CurrentThread.ManagedThreadId}");
 return typeName;
}

static IEnumerable<string> GetTypes()
{
 return from assembly in AppDomain.CurrentDomain.GetAssemblies()
 from type in assembly.GetExportedTypes()
 where type.Name.StartsWith("Web")
 orderby type.Name.Length
 select type.Name;
}

4.	 Add the following code snippet inside the Main method:
var parallelQuery = from t in GetTypes().AsParallel()
 select EmulateProcessing(t);

var cts = new CancellationTokenSource();
cts.CancelAfter(TimeSpan.FromSeconds(3));

try
{
 parallelQuery

Using PLINQ

150

 .WithDegreeOfParallelism(Environment.ProcessorCount)
 .WithExecutionMode(ParallelExecutionMode.ForceParallelism)
 .WithMergeOptions(ParallelMergeOptions.Default)
 .WithCancellation(cts.Token)
 .ForAll(WriteLine);
}
catch (OperationCanceledException)
{
 WriteLine("---");
 WriteLine("Operation has been canceled!");
}

WriteLine("---");
WriteLine("Unordered PLINQ query execution");
var unorderedQuery = from i in ParallelEnumerable.Range(1, 30)
 select i;

foreach (var i in unorderedQuery)
{
 WriteLine(i);
}

WriteLine("---");
WriteLine("Ordered PLINQ query execution");
var orderedQuery = from i in ParallelEnumerable.Range(1, 30).
AsOrdered()
 select i;

foreach (var i in orderedQuery)
{
 WriteLine(i);
}

5.	 Run the program.

How it works...
The program demonstrates different useful PLINQ options that programmers can use. We start
with creating a PLINQ query, and then we create another query providing PLINQ tweaking.

Let's start with cancelation first. To be able to cancel a PLINQ query, there is a
WithCancellation method that accepts a cancelation token object. Here, we signal the
cancelation token after 3 seconds, which leads to OperationCanceledException in
the query and cancelation of the rest of the work.

Chapter 7

151

Then, we are able to specify a parallelism degree for the query. It is the exact number of
parallel partitions that will be used to execute the query. In the first recipe, we used the
Parallel.ForEach loop, which has the maximum parallelism degree option. It is different
because it specifies a maximum partitions value, but there could be fewer partitions if the
infrastructure decides that it is better to use less parallelism to save resources and achieve
optimal performance.

Another interesting option is overriding the query execution mode with the
WithExecutionMode method. The PLINQ infrastructure can process some queries in
sequential mode if it decides that parallelizing the query will only add more overhead and it
actually will run slower. Using WithExecutionMode, we can force the query to run in parallel.

To tune up query result processing, we have the WithMergeOptions method. The default
mode is used to buffer a number of results selected by the PLINQ infrastructure before
returning them from the query. If the query takes a significant amount of time, it is more
reasonable to turn off result buffering to get the results as soon as possible.

The last option is the AsOrdered method. It is possible that when we use parallel execution,
the item order in the collection is not preserved. Later items in the collection could be
processed before earlier ones. To prevent this, we need to call AsOrdered on a parallel
query to explicitly tell the PLINQ infrastructure that we intend to preserve the item order
for processing.

Handling exceptions in a PLINQ query
This recipe will describe how to handle exceptions in a PLINQ query.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter7\Recipe4.

How to do it...
To understand how to handle exceptions in a PLINQ query, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Linq;
using static System.Console;

Using PLINQ

152

3.	 Add the following code snippet inside the Main method:
IEnumerable<int> numbers = Enumerable.Range(-5, 10);

var query = from number in numbers
 select 100 / number;

try
{
 foreach(var n in query)
 WriteLine(n);
}
catch (DivideByZeroException)
{
 WriteLine("Divided by zero!");
}

WriteLine("---");
WriteLine("Sequential LINQ query processing");
WriteLine();

var parallelQuery = from number in numbers.AsParallel()
 select 100 / number;

try
{
 parallelQuery.ForAll(WriteLine);
}
catch (DivideByZeroException)
{
 WriteLine("Divided by zero - usual exception handler!");
}
catch (AggregateException e)
{
 e.Flatten().Handle(ex =>
 {
 if (ex is DivideByZeroException)
 {
 WriteLine("Divided by zero - aggregate exception handler!");
 return true;
 }

Chapter 7

153

 return false;
 });
}

WriteLine("---");
WriteLine("Parallel LINQ query processing and results merging");

4.	 Run the program.

How it works...
First, we run a usual LINQ query over a range of numbers from -5 to 4. When we divide by 0,
we get DivideByZeroException, and we handle it as usual in a try/catch block.

However, when we use AsParallel, we get AggregateException instead because
we are now running in parallel, leveraging the task infrastructure behind the scenes.
AggregateException will contain all the exceptions that occurred while running the
PLINQ query. To handle the inner DivideByZeroException class, we use the Flatten
and Handle methods, which were explained in the Handling exceptions in asynchronous
operations recipe in Chapter 5, Using C# 6.0.

It is very easy to forget that when we handle aggregate exceptions, having
more than one inner exception inside is a very common situation. If you
forget to handle all of them, the exception will bubble up and the application
will stop working.

Managing data partitioning in a PLINQ query
This recipe shows you how to create a very basic custom partitioning strategy to parallelize a
LINQ query in a specific way.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter7\Recipe5.

Using PLINQ

154

How to do it...
To learn how to create a very basic custom partitioning strategy to parallelize a LINQ query,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static void PrintInfo(string typeName)
{
 Sleep(TimeSpan.FromMilliseconds(150));
 WriteLine($"{typeName} type was printed on a thread " +
$"id {CurrentThread.ManagedThreadId}");
}

static string EmulateProcessing(string typeName)
{
 Sleep(TimeSpan.FromMilliseconds(150));
 WriteLine($"{typeName} type was processed on a thread " +
 $"id { CurrentThread.ManagedThreadId}. Has " +
 $"{(typeName.Length % 2 == 0 ? "even" : "odd")} length.");

 return typeName;
}

static IEnumerable<string> GetTypes()
{
 var types = AppDomain.CurrentDomain
 .GetAssemblies()
 .SelectMany(a => a.GetExportedTypes());

 return from type in types
 where type.Name.StartsWith("Web")
 select type.Name;
}

Chapter 7

155

public class StringPartitioner : Partitioner<string>
{
 private readonly IEnumerable<string> _data;

 public StringPartitioner(IEnumerable<string> data)
 {
 _data = data;
 }

 public override bool SupportsDynamicPartitions => false;

 public override IList<IEnumerator<string>>GetPartitions(
int partitionCount)
 {
 var result = new List<IEnumerator<string>>(
partitionCount);

 for (int i = 1; i <= partitionCount; i++)
 {
 result.Add(CreateEnumerator(i, partitionCount));
 }

 return result;
 }

 IEnumerator<string> CreateEnumerator(int partitionNumber, int
partitionCount)
 {
 int evenPartitions = partitionCount / 2;
 bool isEven = partitionNumber % 2 == 0;
 int step = isEven ? evenPartitions :
partitionCount - evenPartitions;

 int startIndex = partitionNumber / 2 +
 partitionNumber % 2;

 var q = _data
 .Where(v => !(v.Length % 2 == 0 ^ isEven)
|| partitionCount == 1)
 .Skip(startIndex - 1);

Using PLINQ

156

 return q
 .Where((x, i) => i % step == 0)
 .GetEnumerator();

 }
}

4.	 Add the following code snippet inside the Main method:
var timer = Stopwatch.StartNew();
var partitioner = new StringPartitioner(GetTypes());
var parallelQuery = from t in partitioner.AsParallel()
// .WithDegreeOfParallelism(1)
 select EmulateProcessing(t);

parallelQuery.ForAll(PrintInfo);
int count = parallelQuery.Count();
timer.Stop();
WriteLine(" ----------------------- ");
WriteLine($"Total items processed: {count}");
WriteLine($"Time elapsesd: {timer.Elapsed}");

5.	 Run the program.

How it works...
To illustrate that we are able to choose custom partitioning strategies for the PLINQ query, we
created a very simple partitioner that processes strings of odd and even lengths in parallel. To
achieve this, we derive our custom StringPartitioner class from a standard base class
Partitioner<T> using string as a type parameter.

We declare that we only support static partitioning by overriding the
SupportsDynamicPartitions property and setting it to false. This means that we
predefine our partitioning strategy. This is an easy way to partition the initial collection but
could be inefficient depending on what data we have inside the collection. For example, in our
case, if we had many strings with odd lengths and only one string with even length, one of the
threads would have finished early and would not have helped to process odd-length strings.
On the other hand, dynamic partitioning means that we partition the initial collection on the
fly, balancing the work load between the worker threads.

Then, we implement the GetPartitions method, where we define the following logic: if
there is only one partition, we simply process everything on it. However, if we have more than
one partition, then we process strings with odd length on odd partitions and even-length
strings on even-numbered partitions.

Chapter 7

157

Please note that we need to create as many partitions as is stated in the
partitionCount parameter, or else we will get the Partitioner
returned a wrong number of partitions error.

Finally, we create an instance of our partitioner and perform a PLINQ query with it. We can see
that different threads process the odd-length and even-length strings. Also, we can experiment
with uncommenting the WithDegreeOfParallelism method and changing its parameter
value. In the case of 1, there will be a sequential work items processing, and when increasing
the value, we can see that more work gets done in parallel.

Creating a custom aggregator for
a PLINQ query

This recipe shows you how to create a custom aggregation function for a PLINQ query.

Getting ready
To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter7\Recipe6.

How to do it...
To understand the workings of a custom aggregation function for a PLINQ query, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Linq;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static ConcurrentDictionary<char, int>
AccumulateLettersInformation(
 ConcurrentDictionary<char, int> taskTotal , string item)
{
 foreach (var c in item)

Using PLINQ

158

 {
 if (taskTotal.ContainsKey(c))
 {
 taskTotal[c] = taskTotal[c] + 1;
 }
 else
 {
 taskTotal[c] = 1;
 }
 }
 WriteLine($"{item} type was aggregated on a thread " +
 $"id {CurrentThread.ManagedThreadId}");
 return taskTotal;
}

static ConcurrentDictionary<char, int> MergeAccumulators(
 ConcurrentDictionary<char, int> total,
ConcurrentDictionary<char, int> taskTotal)
{
 foreach (var key in taskTotal.Keys)
 {
 if (total.ContainsKey(key))
 {
 total[key] = total[key] + taskTotal[key];
 }
 else
 {
 total[key] = taskTotal[key];
 }
 }
 WriteLine("---");
 WriteLine($"Total aggregate value was calculated on a thread " +
 $"id {CurrentThread.ManagedThreadId}");
 return total;
}

static IEnumerable<string> GetTypes()
{
 var types = AppDomain.CurrentDomain
 .GetAssemblies()
 .SelectMany(a => a.GetExportedTypes());

 return from type in types
 where type.Name.StartsWith("Web")
 select type.Name;
}

Chapter 7

159

4.	 Add the following code snippet inside the Main method:
var parallelQuery = from t in GetTypes().AsParallel()
 select t;

var parallelAggregator = parallelQuery.Aggregate(
 () => new ConcurrentDictionary<char, int>(),
 (taskTotal, item) => AccumulateLettersInformation(taskTotal,
item),
 (total, taskTotal) => MergeAccumulators(total, taskTotal),
 total => total);

WriteLine();
WriteLine("There were the following letters in type names:");
var orderedKeys = from k in parallelAggregator.Keys
 orderby parallelAggregator[k] descending
 select k;

foreach (var c in orderedKeys)
{
 WriteLine($"Letter '{c}' ---- {parallelAggregator[c]} times");
}

5.	 Run the program.

How it works...
Here, we implement custom aggregation mechanics that are able to work with the
PLINQ queries. To implement this, we have to understand that since a query is being
processed in parallel by several tasks simultaneously, we need to provide mechanics to
aggregate each task's result in parallel and then combine those aggregated values into
one single result value.

In this recipe, we wrote an aggregating function that counts letters in a PLINQ query, which
returns the IEnumerable<string> collection. It counts all the letters in each collection
item. To illustrate the parallel aggregation process, we print out information about which
thread processes each part of the aggregation.

We aggregate the PLINQ query results using the Aggregate extension method defined in the
ParallelEnumerable class. It accepts four parameters, each of which is a function that
performs different parts of the aggregation process. The first one is a factory that constructs
the empty initial value of the aggregator. It is also called the seed value.

Using PLINQ

160

Note that the first value provided to the Aggregate method is actually not
an initial seed value for the aggregator function but a factory method that
constructs this initial seed value. If you provide just an instance, it will be
used in all partitions that run in parallel, which will lead to an incorrect result.

The second function aggregates each collection item into the partition aggregation object.
We implement this function with the AccumulateLettersInformation method. It iterates
the string and counts the letters inside it. Here, the aggregation objects are different for each
query partition running in parallel, which is why we called them taskTotal.

The third function is a higher level aggregation function that takes an aggregator object
from a partition and merges it into a global aggregator object. We implement it with the
MergeAccumulators method. The last function is a selector function that specifies
what exact data we need from the global aggregator object.

Finally, we print out the aggregation result, ordering it by the letters used most often in the
collection items.

161

8
Reactive Extensions

In this chapter, we will look at another interesting .NET library that helps us create asynchronous
programs, Reactive Extensions (Rx). We will cover the following recipes:

ff Converting a collection to asynchronous Observable

ff Writing a custom Observable

ff Using the Subject type

ff Creating an Observable object

ff Using LINQ queries against an Observable collection

ff Creating asynchronous operations with Rx

Introduction
As you have already learned, there are several approaches to creating asynchronous programs
in .NET and C#. One of them is event-based asynchronous pattern, which has already been
mentioned in the previous chapters. The initial goal of introducing events was to simplify the
implementation of the Observer design pattern. This pattern is common for implementing
notifications between objects.

When we discussed the Task Parallel Library, we noted that the event's main shortcoming was
their inability to be effectively composed with each other. The other drawback was that the
Event-based Asynchronous Pattern was not supposed to be used to deal with the sequence
of notifications. Imagine that we have IEnumerable<string> that gives us string values.
However, when we iterate it, we do not know how much time one iteration will take. It could
be slow, and if we use the regular foreach loop or other synchronous iteration constructs,
we will block our thread until we have the next value. This situation is called the pull-based
approach, when we as a client pull values from the producer.

Reactive Extensions

162

The opposite approach is the push-based approach, when the producer notifies the client
about new values. This allows to offload work to the producer, while the client is free to do
anything else in the time it waits for another value. Therefore, the goal is to get something
like the asynchronous version of IEnumerable, which produces a sequence of values and
notifies the consumer about each item in the sequence, when the sequence is complete or
when an exception is thrown.

.NET Framework starting from version 4.0 contains the definition of the IObservable<out
T> and IObserver<in T> interfaces that together represent the asynchronous push-based
collection and its client. They come from the library called Reactive Extensions (or simply
Rx) that was created inside Microsoft to help us effectively compose the sequence of events
and all other types of asynchronous programs using observable collections. The interfaces
were included in .NET Framework, but their implementations and all other mechanics are still
distributed separately in the Rx library.

Rx globally is a cross-platform library. There are libraries for
.NET 3.5, Silverlight, and Windows Phone. It is also available in
JavaScript, Ruby, and Python. It is also open source; you can find
Reactive Extensions' source code for .NET on the CodePlex website
and other implementations on GitHub.

The most amazing thing is that the observable collections are compatible with LINQ, and
therefore, we are able to use declarative queries to transform and compose those collections
in an asynchronous manner. This also makes it possible for us to use the extension methods
to add functionalities to the Rx programs in the same way it is used in the usual LINQ
providers. Reactive Extensions also supports transition from all asynchronous programming
patterns (including the Asynchronous Programming Model, the Event-based Asynchronous
Pattern, and the Task Parallel Library) to observable collections, and it supports its own way
of running asynchronous operations, which is still quite similar to TPL.

The Reactive Extensions library is a very powerful and complex instrument, which is worthy
of writing a separate book. In this chapter, I would like to review the most useful scenario,
that is, how to work with asynchronous event sequences effectively. We will observe key types
of the Reactive Extensions framework, learn to create sequences and manipulate them in
different ways, and finally, check how we could use Reactive Extensions to run asynchronous
operations and manage their options.

Converting a collection to an asynchronous
Observable

This recipe walks you through the process of creating an observable collection from an
Enumerable class and how to process it asynchronously.

Chapter 8

163

Getting ready
To work through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter8\Recipe1.

How to do it...
To understand how to create an observable collection from an Enumerable class and
process it asynchronously, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the Reactive Extensions Main Library NuGet package by following
these steps:

1.	 Right-click on the References folder in the project, and select the Manage
NuGet Packages… menu option.

2.	 Now, add the Reactive Extensions - Main Library NuGet package. You can
search for rx-main in the Manage NuGet Packages dialog, as shown in the
following screenshot:

Reactive Extensions

164

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Reactive.Concurrency;
using System.Reactive.Linq;
using System.Threading;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
static IEnumerable<int> EnumerableEventSequence()
{
 for (int i = 0; i < 10; i++)
 {
 Sleep(TimeSpan.FromSeconds(0.5));
 yield return i;
 }
}

5.	 Add the following code snippet inside the Main method:
foreach (int i in EnumerableEventSequence())
{
 Write(i);
}

WriteLine();
WriteLine("IEnumerable");

IObservable<int> o = EnumerableEventSequence().().ToObservable();
using (IDisposable subscription = o.Subscribe(Write))
{
 WriteLine();
 WriteLine("IObservable");
}

o = EnumerableEventSequence().ToObservable()
 .SubscribeOn(TaskPoolScheduler.Default);
using (IDisposable subscription = o.Subscribe(Write))
{
 WriteLine();
 WriteLine("IObservable async");
 ReadLine();
}

6.	 Run the program.

Chapter 8

165

How it works...
Here, we simulate a slow enumerable collection with the EnumerableEventSequence
method. Then, we iterate it with the usual foreach cycle, and we can see that it is actually
slow; we wait for each iteration to complete.

We then convert this enumerable collection to Observable with the help of the ToObservable
extension method from the Reactive Extensions library. Next, we subscribe to the updates of
this observable collection, providing the Console.Write method as the action, which will be
executed on each update of the collection. As a result, we get exactly the same behavior as
before; we wait for each iteration to complete because we use the main thread to subscribe
to the updates.

We wrap the subscription objects into using statements. Although it is not
always necessary, disposing off the subscriptions is a good practice that will
help you avoid lifetime-related bugs.

To make the program asynchronous, we use the SubscribeOn method, providing it with
the TPL task pool scheduler. This scheduler will place the subscription to the TPL task pool,
offloading the work from the main thread. This allows us to keep the UI responsive and do
something else while the collection gets updated. To check this behavior, you could remove
the last Console.ReadLine call from the code. When doing so, we finish our main thread
immediately, which forces all background threads (including the TPL task pool worker threads)
to end as well, and we will get no output from the asynchronous collection.

If we are using a UI framework, we have to interact with the UI controls only from within the
UI thread. To achieve this, we should use the ObserveOn method with the corresponding
scheduler. For Windows Presentation Foundation, we have the DispatcherScheduler
class and the ObserveOnDispatcher extension method defined in a separate NuGet
package named Rx-XAML or Reactive Extensions XAML support library. For other platforms,
there are corresponding separate NuGet packages as well.

Writing custom Observable
This recipe will describe how to implement the IObservable<in T> and IObserver<out
T> interfaces to get the custom Observable sequence and properly consume it.

Getting ready
To step through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter8\
Recipe2.

Reactive Extensions

166

How to do it...
To understand how to implement the IObservable<in T> and IObserver<out T>
interfaces to get the custom Observable sequence and consume it, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the Reactive Extensions Main Library NuGet package. Refer to
the Converting a collection to asynchronous observable recipe for more details on
how to do this.

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.Reactive.Concurrency;
using System.Reactive.Disposables;
using System.Reactive.Linq;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
class CustomObserver : IObserver<int>
{
 public void OnNext(int value)
 {
 WriteLine($"Next value: {value}; Thread Id: {CurrentThread.
ManagedThreadId}");
 }

 public void OnError(Exception error)
 {
 WriteLine($"Error: {error.Message}");
 }

 public void OnCompleted()
 {
 WriteLine("Completed");
 }
}

class CustomSequence : IObservable<int>
{
 private readonly IEnumerable<int> _numbers;

Chapter 8

167

 public CustomSequence(IEnumerable<int> numbers)
 {
 _numbers = numbers;
 }
 public IDisposable Subscribe(IObserver<int> observer)
 {
 foreach (var number in _numbers)
 {
 observer.OnNext(number);
 }
 observer.OnCompleted();
 return Disposable.Empty;
 }
}

5.	 Add the following code snippet inside the Main method:
var observer = new CustomObserver();

var goodObservable = new CustomSequence(new[] {1, 2, 3, 4, 5});
var badObservable = new CustomSequence(null);

using (IDisposable subscription = goodObservable.
Subscribe(observer))
{
}

using (IDisposable subscription = goodObservable
 .SubscribeOn(TaskPoolScheduler.Default).Subscribe(observer))
{
 Sleep(TimeSpan.FromMilliseconds(100));
 WriteLine("Press ENTER to continue");
 ReadLine();
}

using (IDisposable subscription = badObservable
 .SubscribeOn(TaskPoolScheduler.Default).Subscribe(observer))
{
 Sleep(TimeSpan.FromMilliseconds(100));
 WriteLine("Press ENTER to continue");
 ReadLine();
}

6.	 Run the program.

Reactive Extensions

168

How it works...
Here, we implement our observer first by simply printing out to the console the information
about the next item from the observable collection, error, or sequence completion. This is a
very simple consumer code and there is nothing special about it.

The interesting part is our observable collection implementation. We accept an enumeration of
numbers into a constructor and do not check it for null on purpose. When we have a subscribing
observer, we iterate this collection and notify the observer about each item in the enumeration.

Then, we demonstrate the actual subscription. As we can see, the asynchrony is achieved
by calling the SubscribeOn method, which is an extension method to IObservable and
contains asynchronous subscription logic. We do not care about asynchrony in our observable
collection; we use standard implementation from the Reactive Extensions library.

When we subscribe to the normal observable collection, we just get all the items from it.
It is now asynchronous, so we need to wait for some time for the asynchronous operation
to complete and only then print the message and wait for the user input.

Finally, we try to subscribe to the next observable collection, where we are iterating a null
enumeration and therefore getting a null reference exception. We see that the exception has
been properly handled and the OnError method was executed to print out the error details.

Using the Subject type family
This recipe shows you how to use the Subject type family from the Reactive Extensions library.

Getting ready
To work through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter8\Recipe3.

How to do it...
To understand the use of the Subject type family from the Reactive Extensions library,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the Reactive Extensions Main Library NuGet package. Refer to
the Converting a collection to asynchronous observable recipe for details on how to
do this.

Chapter 8

169

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Reactive.Subjects;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
static IDisposable OutputToConsole<T>(IObservable<T> sequence)
{
 return sequence.Subscribe(
 obj => WriteLine($"{obj}")
 , ex => WriteLine($"Error: {ex.Message}")
 , () => WriteLine("Completed")
);
}

5.	 Add the following code snippet inside the Main method:
WriteLine("Subject");
var subject = new Subject<string>();

subject.OnNext("A");
using (var subscription = OutputToConsole(subject))
{
 subject.OnNext("B");
 subject.OnNext("C");
 subject.OnNext("D");
 subject.OnCompleted();
 subject.OnNext("Will not be printed out");
}

WriteLine("ReplaySubject");
var replaySubject = new ReplaySubject<string>();

replaySubject.OnNext("A");
using (var subscription = OutputToConsole(replaySubject))
{
 replaySubject.OnNext("B");
 replaySubject.OnNext("C");
 replaySubject.OnNext("D");
 replaySubject.OnCompleted();
}

Reactive Extensions

170

WriteLine("Buffered ReplaySubject");
var bufferedSubject = new ReplaySubject<string>(2);

bufferedSubject.OnNext("A");
bufferedSubject.OnNext("B");
bufferedSubject.OnNext("C");
using (var subscription = OutputToConsole(bufferedSubject))
{
 bufferedSubject.OnNext("D");
 bufferedSubject.OnCompleted();
}

WriteLine("Time window ReplaySubject");
var timeSubject = new ReplaySubject<string>(TimeSpan.
FromMilliseconds(200));

timeSubject.OnNext("A");
Sleep(TimeSpan.FromMilliseconds(100));
timeSubject.OnNext("B");
Sleep(TimeSpan.FromMilliseconds(100));
timeSubject.OnNext("C");
Sleep(TimeSpan.FromMilliseconds(100));
using (var subscription = OutputToConsole(timeSubject))
{
 Sleep(TimeSpan.FromMilliseconds(300));
 timeSubject.OnNext("D");
 timeSubject.OnCompleted();
}

WriteLine("AsyncSubject");
var asyncSubject = new AsyncSubject<string>();

asyncSubject.OnNext("A");
using (var subscription = OutputToConsole(asyncSubject))
{
 asyncSubject.OnNext("B");
 asyncSubject.OnNext("C");
 asyncSubject.OnNext("D");
 asyncSubject.OnCompleted();
}

WriteLine("BehaviorSubject");
var behaviorSubject = new BehaviorSubject<string>("Default");
using (var subscription = OutputToConsole(behaviorSubject))
{
 behaviorSubject.OnNext("B");

Chapter 8

171

 behaviorSubject.OnNext("C");
 behaviorSubject.OnNext("D");
 behaviorSubject.OnCompleted();
}

6.	 Run the program.

How it works...
In this program, we look through different variants of the Subject type family. The Subject
type represents both the IObservable and IObserver implementations. This is useful
in different proxy scenarios when we want to translate events from multiple sources to one
stream, or vice versa, to broadcast an event sequence to multiple subscribers. Subjects are
also very convenient for experimenting with Reactive Extensions.

Let's start with the basic Subject type. It retranslates an event sequence to subscribers
as soon as they subscribe to it. In our case, the A string will not be printed out because the
subscription happened after it was transmitted. Besides that, when we call the OnCompleted
or OnError methods on Observable, it stops further translation of the event sequence,
so the last string will also not be printed out.

The next type, ReplaySubject, is quite flexible and allows us to implement three additional
scenarios. First, it can cache all the events from the beginning of their broadcasting, and if
we subscribe later, we will get all the preceding events first. This behavior is illustrated in the
second example. Here, we will have all four strings on the console because the first event will
be cached and translated to the latter subscriber.

Then, we can specify the buffer size and the time window size for ReplaySubject. In the next
example, we set the subject to have a buffer for two events. If more events are broadcasted,
only the last two will be retranslated to the subscriber. So here, we will not see the first string
because we have B and C in the subject buffer when subscribing to it. The same is the case with
a time window. We can specify that the Subject type only caches events that took place less
than a certain time ago, discarding the older ones. Therefore, in the fourth example, we will only
see the last two events; the older events do not fit into the time window.

The AsyncSubject type is something like a Task type from the TPL globally. It represents
a single asynchronous operation. If there are several events published, it waits for the event
sequence completion and provides only the last event to the subscriber.

The BehaviorSubject type is quite similar to the ReplaySubject type, but it caches only
one value and allows us to specify a default value in case we did not send any notifications. In
our last example, we will see all the strings printed out because we provided a default value,
and all other events take place after the subscription. If we move the behaviorSubject.
OnNext("B"); line upwards below the Default event, it will replace the default value in
the output.

Reactive Extensions

172

Creating an Observable object
This recipe will describe different ways to create an Observable object.

Getting ready
To work through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe could be found at BookSamples\Chapter8\
Recipe4.

How to do it...
To understand different ways of creating an Observable object, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the Reactive Extensions Main Library NuGet package. Refer to
the Converting a collection to asynchronous Observable recipe for details on how to
do this.

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Reactive.Disposables;
using System.Reactive.Linq;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
static IDisposable OutputToConsole<T>(IObservable<T> sequence)
{
 return sequence.Subscribe(
 obj => WriteLine("{0}", obj)
 , ex => WriteLine("Error: {0}", ex.Message)
 , () => WriteLine("Completed")
);
}

5.	 Add the following code snippet inside the Main method:
IObservable<int> o = Observable.Return(0);
using (var sub = OutputToConsole(o));
WriteLine(" ---------------- ");

o = Observable.Empty<int>();
using (var sub = OutputToConsole(o));

Chapter 8

173

WriteLine(" ---------------- ");

o = Observable.Throw<int>(new Exception());
using (var sub = OutputToConsole(o));
WriteLine(" ---------------- ");

o = Observable.Repeat(42);
using (var sub = OutputToConsole(o.Take(5)));
WriteLine(" ---------------- ");

o = Observable.Range(0, 10);
using (var sub = OutputToConsole(o));
WriteLine(" ---------------- ");

o = Observable.Create<int>(ob => {
 for (int i = 0; i < 10; i++)
 {
 ob.OnNext(i);
 }
 return Disposable.Empty;
});
using (var sub = OutputToConsole(o)) ;
WriteLine(" ---------------- ");

o = Observable.Generate(
 0 // initial state
 , i => i < 5 // while this is true we continue the sequence
 , i => ++i // iteration
 , i => i*2 // selecting result
);
using (var sub = OutputToConsole(o));
WriteLine(" ---------------- ");

IObservable<long> ol = Observable.Interval(TimeSpan.
FromSeconds(1));
using (var sub = OutputToConsole(ol))
{
 Sleep(TimeSpan.FromSeconds(3));
};
WriteLine(" ---------------- ");

ol = Observable.Timer(DateTimeOffset.Now.AddSeconds(2));
using (var sub = OutputToConsole(ol))
{
 Sleep(TimeSpan.FromSeconds(3));
};
WriteLine(" ---------------- ");

6.	 Run the program.

Reactive Extensions

174

How it works...
Here, we walk through different scenarios of creating observable objects. Most of this
functionality is provided as static factory methods of the Observable type. The first two
samples show how we can create an Observable method that produces a single value and
one that produces no value. In the next example, we use Observable.Throw to construct
an Observable class that triggers the OnError handler of its observers.

The Observable.Repeat method represents an endless sequence. There are different
overloads of this method; here, we construct an endless sequence by repeating 42 values.
Then, we use LINQ's Take method to take five elements from this sequence. Observable.
Range represents a range of values, pretty much like Enumerable.Range.

The Observable.Create method supports more custom scenarios. There are a lot of
overloads that allow us to use cancellation tokens and tasks, but let's look at the simplest one. It
accepts a function, which accepts an instance of observer and returns an IDisposable object
representing a subscription. If we had any resources to clean up, we would be able to provide
the cleanup logic here, but we just return an empty disposable as we actually do not need it.

The Observable.Generate method is another way to create a custom sequence. We must
provide an initial value for a sequence and then a predicate that determines whether we
should generate more items or complete the sequence. Then, we provide an iteration logic,
which increments a counter in our case. The last parameter is a selector function that allows
us to customize the results.

The last two methods deal with timers. Observable.Interval starts producing timer tick
events with the TimeSpan period, and Observable.Timer specifies the startup time as well.

Using LINQ queries against an observable
collection

This recipe shows you how to use LINQ to query an asynchronous sequence of events.

Getting ready
To work through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter8\Recipe5.

Chapter 8

175

How to do it...
To understand the use of LINQ queries against the observable collection, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the Reactive Extensions Main Library NuGet package. Refer to
the Converting a collection to asynchronous observable recipe for details on how to
do this.

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Reactive.Linq;
using static System.Console;

4.	 Add the following code snippet below the Main method:
static IDisposable OutputToConsole<T>(IObservable<T> sequence, int
innerLevel)
{
 string delimiter = innerLevel == 0
 ? string.Empty
 : new string('-', innerLevel*3);

 return sequence.Subscribe(
 obj => WriteLine($"{delimiter}{obj}")
 , ex => WriteLine($"Error: {ex.Message}")
 , () => WriteLine($"{delimiter}Completed")
);
}

5.	 Add the following code snippet inside the Main method:
IObservable<long> sequence = Observable.Interval(
 TimeSpan.FromMilliseconds(50)).Take(21);

var evenNumbers = from n in sequence
 where n % 2 == 0
 select n;

var oddNumbers = from n in sequence
 where n % 2 != 0
 select n;

var combine = from n in evenNumbers.Concat(oddNumbers)
 select n;

Reactive Extensions

176

var nums = (from n in combine
 where n % 5 == 0
 select n)
 .Do(n => WriteLine($"------Number {n} is processed in Do
method"));

using (var sub = OutputToConsole(sequence, 0))
using (var sub2 = OutputToConsole(combine, 1))
using (var sub3 = OutputToConsole(nums, 2))
{
 WriteLine("Press enter to finish the demo");
 ReadLine();
}

6.	 Run the program.

How it works...
The ability to use LINQ against the Observable event sequences is the main advantage
of the Reactive Extensions framework. There are many different useful scenarios as well;
unfortunately, it is impossible to show all of them here. I tried to provide a simple, yet very
illustrative example, which does not have many complex details and shows the very essence
of how a LINQ query could work when applied to asynchronous observable collections.

First, we create an Observable event that generates a sequence of numbers, one number
every 50 milliseconds, and we start from the initial value of zero, taking 21 of those events.
Then, we compose LINQ queries to this sequence. First, we select only the even numbers from
the sequence, and then only the odd numbers. Then, we concatenate these two sequences.

The final query shows us how to use a very useful method, Do, which allows us to introduce side
effects and, for example, logging each value from the resulting sequence. To run all queries,
we create nested subscriptions, and because the sequences are initially asynchronous, we have
to be very careful about the subscription's lifetime. The outer scope represents a subscription
to the timer, and the inner subscriptions deal with the combined sequence query and the side
effects query, respectively. If we press Enter too early, we just unsubscribe from the timer and
thus stop the demo.

When we run the demo, we see the actual process of how different queries interact in real time.
We can see that our queries are lazy, and they start running only when we subscribe to their
results. The timer event's sequence is printed in the first column. When the even numbers query
gets an even number, it prints it out as well using the --- prefix to distinguish this sequence
result from the first one. The final query results are printed in the right-hand column.

Chapter 8

177

When the program runs, we can see that the timer sequence, the even-number sequence, and
the side effect sequence run in parallel. Only the concatenation waits until the even-number
sequence is complete. If we do not concatenate those sequences, we will have four parallel
sequences of events interacting with each other in the most effective way! This shows the
real power of Reactive Extensions and could be a good start to learn this library in depth.

Creating asynchronous operations with Rx
This recipe shows you how to create an Observable from the asynchronous operations
defined in other programming patterns.

Getting ready
To work through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter8\Recipe6.

How to do it...
To understand how to create asynchronous operations with Rx, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the Reactive Extensions Main Library NuGet package. Refer to
the Converting a collection to asynchronous observable recipe for details on how to
do this.

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Reactive;
using System.Reactive.Linq;
using System.Reactive.Threading.Tasks;
using System.Threading.Tasks;
using System.Timers;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
static async Task<T> AwaitOnObservable<T>(IObservable<T>
observable)
{
 T obj = await observable;
 WriteLine($"{obj}");
 return obj;
}

Reactive Extensions

178

static Task<string> LongRunningOperationTaskAsync(string name)
{
 return Task.Run(() => LongRunningOperation(name));
}

static IObservable<string> LongRunningOperationAsync(string name)
{
 return Observable.Start(() => LongRunningOperation(name));
}

static string LongRunningOperation(string name)
{
 Sleep(TimeSpan.FromSeconds(1));
 return $"Task {name} is completed. Thread Id {CurrentThread.
ManagedThreadId}";
}

static IDisposable OutputToConsole(IObservable<EventPattern<Elapse
dEventArgs>> sequence)
{
 return sequence.Subscribe(
 obj => WriteLine($"{obj.EventArgs.SignalTime}")
 , ex => WriteLine($"Error: {ex.Message}")
 , () => WriteLine("Completed")
);
}

static IDisposable OutputToConsole<T>(IObservable<T> sequence)
{
 return sequence.Subscribe(
 obj => WriteLine("{0}", obj)
 , ex => WriteLine("Error: {0}", ex.Message)
 , () => WriteLine("Completed")
);
}

5.	 Replace the Main method with the following code snippet:
delegate string AsyncDelegate(string name);

static void Main(string[] args)
{
IObservable<string> o = LongRunningOperationAsync("Task1");
using (var sub = OutputToConsole(o))
{
 Sleep(TimeSpan.FromSeconds(2));
};

Chapter 8

179

WriteLine(" ---------------- ");

Task<string> t = LongRunningOperationTaskAsync("Task2");
using (var sub = OutputToConsole(t.ToObservable()))
{
 Sleep(TimeSpan.FromSeconds(2));
};
WriteLine(" ---------------- ");

AsyncDelegate asyncMethod = LongRunningOperation;

// marked as obsolete, use tasks instead
Func<string, IObservable<string>> observableFactory =
 Observable.FromAsyncPattern<string, string>(
 asyncMethod.BeginInvoke, asyncMethod.EndInvoke);

o = observableFactory("Task3");
using (var sub = OutputToConsole(o))
{
 Sleep(TimeSpan.FromSeconds(2));
};
WriteLine(" ---------------- ");

o = observableFactory("Task4");
AwaitOnObservable(o).Wait();
WriteLine(" ---------------- ");

using (var timer = new Timer(1000))
{
 var ot = Observable.
 FromEventPattern<ElapsedEventHandler,
ElapsedEventArgs>(
 h => timer.Elapsed += h,
 h => timer.Elapsed -= h);
 timer.Start();

 using (var sub = OutputToConsole(ot))
 {
 Sleep(TimeSpan.FromSeconds(5));
 }
 WriteLine(" ---------------- ");
 timer.Stop();
}

6.	 Run the program.

Reactive Extensions

180

How it works...
This recipe shows you how to convert different types of asynchronous operations to an
Observable class. The first code snippet uses the Observable.Start method, which
is quite similar to Task.Run from TPL. It starts an asynchronous operation that gives out
a string result and then gets completed.

I would strongly suggest that you use the Task Parallel Library
for asynchronous operations. Reactive Extensions supports this
scenario as well, but to avoid ambiguity, it is much better to
stick with tasks when speaking about separate asynchronous
operations and to go with Rx only when we need to work with
sequences of events. Another suggestion is to convert every
type of separate asynchronous operation to tasks and only then
convert a task to an observable class, if you need it.

Then, we do the same with tasks and convert a task to an Observable method by simply
calling the ToObservable extension method. The next code snippet is about converting
the Asynchronous Programming Model pattern to Observable. Normally, you would convert
APM to a task and then a task to Observable. However, there is a direct conversion,
and this example illustrates how to run an asynchronous delegate and wrap it into an
Observable operation.

The next part of the code snippet shows that we are able to use the await operator in an
Observable operation. As we are not able to use the async modifier on an entry method
such as Main, we introduce a separate method that returns a task and waits for this resulting
task to be complete inside the Main method.

The last part of this code snippet is the same as the code which converts APM pattern
to Observable, but now, we convert the Event-based Asynchronous Pattern directly to an
Observable class. We create a timer and consume its events for 5 seconds. We then
dispose the timer to clean up the resources.

181

9
Using Asynchronous I/O

In this chapter, we will review asynchronous I/O operations in detail. You will learn the
following recipes:

ff Working with files asynchronously

ff Writing an asynchronous HTTP server and client

ff Working with a database asynchronously

ff Calling a WCF service asynchronously

Introduction
In the previous chapters, we already discussed how important it is to use asynchronous
I/O operations properly. Why does it matter so much? To have a solid understanding,
let's consider two kinds of applications.

When we run an application on a client, one of the most important things is to have a
responsive user interface. This means that no matter what is happening with the application,
all user interface elements, such as buttons and progress bars, keep running fast, and the
user gets an immediate reaction from the application. This is not easy to achieve! If you try
to open the Notepad text editor in Windows and try to load a text document that is several
megabytes in size, the application window will be frozen for a significant amount of time
because the whole text is being loaded from the disk first, and only then does the program
start to process user input.

Using Asynchronous I/O

182

This is an extremely important issue, and in this situation, the only solution is to avoid blocking
the UI thread at all costs. This in turn means that to prevent the blocking of the UI thread, every
UI-related API must allow only asynchronous calls. This is the key reason behind redesigning
APIs in the Windows 8 operating system by replacing almost every method with asynchronous
analogs. But does it affect the performance if our application uses multiple threads to achieve
this goal? Of course, it does! However, we could pay the price considering that we have only one
user. It is good to have the application using all the power of the computer to be more effective,
as all this power is intended for the single user who runs the application.

Let's look at the second case, then. If we run the application on a server, we have a completely
different situation. We have scalability as a top priority, which means that a single user should
consume as little resource as possible. If we start to create many threads for each user, we
simply cannot scale well. It is a very complex problem to balance our application resource
consumption in an efficient way. For example, in ASP.NET, which is a web application platform
from Microsoft, we use a pool of worker threads to serve client requests. This pool has a limited
number of worker threads, and we have to minimize the use time for each worker thread to
achieve scalability. This means that we have to return it to the pool as soon as possible so that
it can serve another request. If we start an asynchronous operation that requires computation,
we will have a very inefficient workflow. First, we take a worker thread from the thread pool
to serve a client request. Then, we take another worker thread and start an asynchronous
operation on it. Now, we have two worker threads serving our request, but we really need the
first thread to be doing something useful! Unfortunately, the common situation is that we
simply wait for the asynchronous operation to complete, and we consume two worker threads
instead of one. In this scenario, asynchrony is actually worse than synchronous execution!
We do not need to load all the CPU cores as we are already serving many clients and thus are
using all the CPU computing power. We do not need to keep the first thread responsive as we
have no user interface. Then, why should we use asynchrony in server applications?

The answer is that we should use asynchrony when there is an asynchronous I/O operation.
Today, modern computers usually have a hard disk drive that stores files and a network
card that sends and receives data over the network. Both of these devices have their own
microcomputers that manage I/O operations on a very low level and signal the operating
system about the results. This is again quite a complicated topic; but to keep the concept
clear, we could say that there is a way for programmers to start an I/O operation and provide
the operating system with code to callback when the operation is completed. Between starting
an I/O task and its completion, there is no CPU work involved; it is done in the corresponding
disk and network controller microcomputers. This way of executing an I/O task is called an
I/O thread; they are implemented using the .NET thread pool and in turn use an infrastructure
from the operating system called I/O completion ports.

In ASP.NET, as soon as an asynchronous I/O operation is started from a worker thread, it can
be returned immediately to the thread pool! While the operation is going on, this thread can
serve other clients. Finally, when the operation signals completion, the ASP.NET infrastructure
gets a free worker thread from the thread pool (which could be different from the one that
started the operation), and it finishes the operation.

Chapter 9

183

All right; we now understand how important I/O threads are for server applications.
Unfortunately, it is very hard to check whether any given API uses I/O threads under the hood.
The only way (besides studying the source code) is simply to know which .NET Framework class
library leverages I/O threads. In this chapter, we will see how to use some of those APIs. You will
learn how to work with files asynchronously, how to use network I/O to create an HTTP server
and call the Windows Communication Foundation (WCF) service, and how to work with an
asynchronous API to query a database.

Another important issue to consider is parallelism. For a number of
reasons, an intensive parallel disk operation might have very poor
performance. Be aware that parallel I/O operations are often very
ineffective, and it might be reasonable to work with I/O sequentially,
but in an asynchronous manner.

Working with files asynchronously
This recipe walks us through how to create a file and how to read and write data asynchronously.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter9\Recipe1.

How to do it...
To understand how to work with files asynchronously, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static System.Console;
using static System.Text.Encoding;

3.	 Add the following code snippet below the Main method:
const int BUFFER_SIZE = 4096;

static async Task ProcessAsynchronousIO()
{

Using Asynchronous I/O

184

 using (var stream = new FileStream(
 "test1.txt", FileMode.Create, FileAccess.ReadWrite,
FileShare.None, BUFFER_SIZE))
 {
 WriteLine($"1. Uses I/O Threads: {stream.IsAsync}");

 byte[] buffer = UTF8.GetBytes(CreateFileContent());
 var writeTask = Task.Factory.FromAsync(
 stream.BeginWrite, stream.EndWrite, buffer, 0,
buffer.Length, null);

 await writeTask;
 }

 using (var stream = new FileStream("test2.txt",
FileMode.Create, FileAccess.ReadWrite,FileShare.None,
BUFFER_SIZE, FileOptions.Asynchronous))
 {
 WriteLine($"2. Uses I/O Threads: {stream.IsAsync}");

 byte[] buffer = UTF8.GetBytes(CreateFileContent());
 var writeTask = Task.Factory.FromAsync(
 stream.BeginWrite, stream.EndWrite, buffer, 0,
buffer.Length, null);

 await writeTask;
 }

 using (var stream = File.Create("test3.txt", BUFFER_SIZE,
FileOptions.Asynchronous))
 using (var sw = new StreamWriter(stream))
 {
 WriteLine($"3. Uses I/O Threads: {stream.IsAsync}");
 await sw.WriteAsync(CreateFileContent());
 }

 using (var sw = new StreamWriter("test4.txt", true))
 {
 WriteLine($"4. Uses I/O Threads:
{((FileStream)sw.BaseStream).IsAsync}");
 await sw.WriteAsync(CreateFileContent());
 }

 WriteLine("Starting parsing files in parallel");

Chapter 9

185

 var readTasks = new Task<long>[4];
 for (int i = 0; i < 4; i++)
 {
 string fileName = $"test{i + 1}.txt";
 readTasks[i] = SumFileContent(fileName);
 }

 long[] sums = await Task.WhenAll(readTasks);

 WriteLine($"Sum in all files: {sums.Sum()}");

 WriteLine("Deleting files...");

 Task[] deleteTasks = new Task[4];
 for (int i = 0; i < 4; i++)
 {
 string fileName = $"test{i + 1}.txt";
 deleteTasks[i] = SimulateAsynchronousDelete(fileName);
 }

 await Task.WhenAll(deleteTasks);

 WriteLine("Deleting complete.");
}

static string CreateFileContent()
{
 var sb = new StringBuilder();
 for (int i = 0; i < 100000; i++)
 {
 sb.Append($"{new Random(i).Next(0, 99999)}");
 sb.AppendLine();
 }
 return sb.ToString();
}

static async Task<long> SumFileContent(string fileName)
{
 using (var stream = new FileStream(fileName,
FileMode.Open, FileAccess.Read,FileShare.None, BUFFER_SIZE,
FileOptions.Asynchronous))
 using (var sr = new StreamReader(stream))
 {
 long sum = 0;

Using Asynchronous I/O

186

 while (sr.Peek() > -1)
 {
 string line = await sr.ReadLineAsync();
 sum += long.Parse(line);
 }

 return sum;
 }
}

static Task SimulateAsynchronousDelete(string fileName)
{
 return Task.Run(() => File.Delete(fileName));
}

4.	 Add the following code snippet inside the Main method:
var t = ProcessAsynchronousIO();
t.GetAwaiter().GetResult();

5.	 Run the program.

How it works...
When the program runs, we create four files in different ways and fill them up with random
data. In the first case, we use the FileStream class and its methods, converting an
Asynchronous Programming Model API to a task; in the second case, we do the same,
but we provide FileOptions.Asynchronous to the FileStream constructor.

It is very important to use the FileOptions.Asynchronous option.
If we omit this option, we can still work with the file in an asynchronous
manner, but this is just an asynchronous delegate invocation on a thread
pool! We use the I/O asynchrony with the FileStream class only if we
provide this option (or bool useAsync in another constructor overload).

The third case uses some simplifying APIs, such as the File.Create method and the
StreamWriter class. It still uses I/O threads, which we are able to check using the stream.
IsAsync property. The last case illustrates that oversimplifying is also bad. Here, we do not
leverage the I/O asynchrony by imitating it with the help of asynchronous delegate invocation.

Now, we perform parallel asynchronous reading from files, sum up their content, and then
sum it with each other. Finally, we delete all the files. As there is no asynchronous delete file
in any non-Windows store application, we simulate the asynchrony using the Task.Run
factory method.

Chapter 9

187

Writing an asynchronous HTTP server
and client

This recipe shows you how to create a simple asynchronous HTTP server.

Getting ready
To step through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter9\Recipe2.

How to do it...
The following steps demonstrate how to create a simple asynchronous HTTP server:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add a reference to the System.Net.Http framework library.

3.	 In the Program.cs file, add the following using directives:
using System;
using System.IO;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using static System.Console;

4.	 Add the following code snippet below the Main method:
static async Task GetResponseAsync(string url)
{
 using (var client = new HttpClient())
 {
 HttpResponseMessage responseMessage =
await client.GetAsync(url);
 string responseHeaders = responseMessage.Headers.ToString();
 string response =
await responseMessage.Content.ReadAsStringAsync();

 WriteLine("Response headers:");
 WriteLine(responseHeaders);
 WriteLine("Response body:");
 WriteLine(response);
 }
}

Using Asynchronous I/O

188

class AsyncHttpServer
{
 readonly HttpListener _listener;
 const string RESPONSE_TEMPLATE =
 "<html><head><title>Test</title></
head><body><h2>Testpage</h2>" +
"<h4>Today is: {0}</h4></body></html>";

 public AsyncHttpServer(int portNumber)
 {
 _listener = new HttpListener();
 _listener.Prefixes.Add($"http://localhost:{portNumber}/");
 }

 public async Task Start()
 {
 _listener.Start();

 while (true)
 {
 var ctx = await _listener.GetContextAsync();
 WriteLine("Client connected...");
 var response = string.Format(RESPONSE_TEMPLATE,
DateTime.Now);

 using (var sw = new StreamWriter(ctx.Response.OutputStream))
 {
 await sw.WriteAsync(response);
 await sw.FlushAsync();
 }
 }
 }

 public async Task Stop()
 {
 _listener.Abort();
 }
}

5.	 Add the following code snippet inside the Main method:
var server = new AsyncHttpServer(1234);
var t = Task.Run(() => server.Start());
WriteLine("Listening on port 1234. Open http://localhost:1234 in
your browser.");

Chapter 9

189

WriteLine("Trying to connect:");
WriteLine();

GetResponseAsync("http://localhost:1234").GetAwaiter().
GetResult();

WriteLine();
WriteLine("Press Enter to stop the server.");
ReadLine();

server.Stop().GetAwaiter().GetResult();

6.	 Run the program.

How it works...
Here, we implement a very simple web server using the HttpListener class. There is also
a TcpListener class for the TCP socket I/O operations. We configure our listener to accept
connections from any host to the local machine on port 1234. Then, we start the listener in a
separate worker thread so that we can control it from the main thread.

The asynchronous I/O operation happens when we use the GetContextAsync method.
Unfortunately, it does not accept CancellationToken for cancelation scenarios; so, when
we want to stop the server, we just call the _listener.Abort method, which abandons the
connection and stops the server.

To perform an asynchronous request on this server, we use the HttpClient class located in
the System.Net.Http assembly and the same namespace. We use the GetAsync method
to issue an asynchronous HTTP GET request. There are methods for other HTTP requests such
as POST, DELETE, and PUT as well. HttpClient has many other options such as serializing
and deserializing an object using different formats, such as XML and JSON, specifying a proxy
server address, credentials, and so on.

When you run the program, you can see that the server has been started up. In the server
code, we use the GetContextAsync method to accept new client connections. This method
returns when a new client connects, and we simply output a very basic HTML language
with the current date and time to the response. Then, we request the server and print the
response headers and content. You can also open your browser and browse to http://
localhost:1234/. Here, you will see the same response displayed in the browser window.

Using Asynchronous I/O

190

Working with a database asynchronously
This recipe walks us through the process of creating a database, populating it with data, and
reading data asynchronously.

Getting ready
To step through this recipe, you will need Visual Studio 2015. No other prerequisites are
required. The source code for this recipe can be found at BookSamples\Chapter9\Recipe3.

How to do it...
To understand the process of creating a database, populating it with data, and reading data
asynchronously, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Data;
using System.Data.SqlClient;
using System.IO;
using System.Reflection;
using System.Threading.Tasks;
using static System.Console;

3.	 Add the following code snippet below the Main method:
static async Task ProcessAsynchronousIO(string dbName)
{
 try
 {
 const string connectionString =
 @"Data Source=(LocalDB)\MSSQLLocalDB;Initial
Catalog=master;" +
 "Integrated Security=True";

 string outputFolder = Path.GetDirectoryName(
 Assembly.GetExecutingAssembly().Location);

 string dbFileName = Path.Combine(outputFolder,
$"{dbName}.mdf");
 string dbLogFileName = Path.Combine(outputFolder,
$"{dbName}_log.ldf");

Chapter 9

191

 string dbConnectionString =
 @"Data Source=(LocalDB)\MSSQLLocalDB;" +
 $"AttachDBFileName={dbFileName};Integrated Security=True;";

 using (var connection = new SqlConnection(connectionString))
 {
 await connection.OpenAsync();

 if (File.Exists(dbFileName))
 {
 WriteLine("Detaching the database...");

 var detachCommand = new SqlCommand("sp_detach_db",
connection);
 detachCommand.CommandType = CommandType.StoredProcedure;
 detachCommand.Parameters.AddWithValue("@dbname", dbName);

 await detachCommand.ExecuteNonQueryAsync();

 WriteLine("The database was detached succesfully.");
 WriteLine("Deleting the database...");

 if(File.Exists(dbLogFileName)) File.Delete(dbLogFileName);
 File.Delete(dbFileName);

 WriteLine("The database was deleted succesfully.");
 }

 WriteLine("Creating the database...");
 string createCommand =
 $"CREATE DATABASE {dbName} ON (NAME = N'{dbName}',
FILENAME = " +
 $"'{dbFileName}')";
 var cmd = new SqlCommand(createCommand, connection);

 await cmd.ExecuteNonQueryAsync();
 WriteLine("The database was created succesfully");
 }

 using (var connection = new SqlConnection(dbConnectionString))
 {
 await connection.OpenAsync();

Using Asynchronous I/O

192

 var cmd = new SqlCommand("SELECT newid()", connection);
 var result = await cmd.ExecuteScalarAsync();

 WriteLine($"New GUID from DataBase: {result}");

 cmd = new SqlCommand(
@"CREATE TABLE [dbo].[CustomTable]([ID] [int] IDENTITY(1,1) NOT
NULL, " +
"[Name] [nvarchar](50) NOT NULL, CONSTRAINT [PK_ID] PRIMARY KEY
CLUSTERED " +
" ([ID] ASC) ON [PRIMARY]) ON [PRIMARY]", connection);

 await cmd.ExecuteNonQueryAsync();

 WriteLine("Table was created succesfully.");

 cmd = new SqlCommand(
@"INSERT INTO [dbo].[CustomTable] (Name) VALUES ('John');
INSERT INTO [dbo].[CustomTable] (Name) VALUES ('Peter');
INSERT INTO [dbo].[CustomTable] (Name) VALUES ('James');
INSERT INTO [dbo].[CustomTable] (Name) VALUES ('Eugene');",
connection);
 await cmd.ExecuteNonQueryAsync();

 WriteLine("Inserted data succesfully");
 WriteLine("Reading data from table...");

 cmd = new SqlCommand(@"SELECT * FROM [dbo].[CustomTable]",
connection);
 using (SqlDataReader reader = await cmd.
ExecuteReaderAsync())
 {
 while (await reader.ReadAsync())
 {
 var id = reader.GetFieldValue<int>(0);
 var name = reader.GetFieldValue<string>(1);

 WriteLine("Table row: Id {0}, Name {1}", id, name);
 }
 }

Chapter 9

193

 }
 }
 catch(Exception ex)
 {
 WriteLine("Error: {0}", ex.Message);
 }
}

4.	 Add the following code snippet inside the Main method:
const string dataBaseName = "CustomDatabase";
var t = ProcessAsynchronousIO(dataBaseName);
t.GetAwaiter().GetResult();
Console.WriteLine("Press Enter to exit");
Console.ReadLine();

5.	 Run the program.

How it works...
This program works with software called SQL Server 2014 LocalDb. It is installed with Visual
Studio 2015 and should work fine. However, in case of errors, you might want to repair this
component from the installation wizard.

We start with configuring paths to our database files. We place database files in the program-
execution folder. There will be two files: one for the database itself and another for the
transaction log file. We also configure two connection strings that define how we connect to our
databases. The first one is to connect to the LocalDb engine to detach our database; if it already
exists, delete and then recreate it. We leverage the I/O asynchrony while opening the connection
and while executing the SQL commands using the OpenAsync and ExecuteNonQueryAsync
methods, respectively.

After this task is completed, we attach a newly created database. Here, we create a new
table and insert some data in it. In addition to the previously mentioned methods, we use
ExecuteScalarAsync to asynchronously get a scalar value from the database engine, and
we use the SqlDataReader.ReadAsync method to read a data row from the database
table asynchronously.

If we had a large table with large binary values in its rows in our database, then we would use
the CommandBehavior.SequentialAcess enumeration to create the data reader and the
GetFieldValueAsync method to get large field values from the reader asynchronously.

Using Asynchronous I/O

194

Calling a WCF service asynchronously
This recipe will describe how to create a WCF service, how to host it in a console
application, how to make service metadata available to clients, and how to consume
it in an asynchronous way.

Getting ready
To step through this recipe, you will need Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter9\Recipe4.

How to do it...
To understand how to work with a WCF service, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add references to the System.ServiceModel library. Right-click on the
References folder in the project and select the Add reference… menu option.
Add references to the System.ServiceModel library. You can use the search
function in the reference manager dialog, as shown in the following screenshot:

Chapter 9

195

3.	 In the Program.cs file, add the following using directives:
using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using System.Threading.Tasks;
using static System.Console;

4.	 Add the following code snippet below the Main method:
const string SERVICE_URL = "http://localhost:1234/HelloWorld";

static async Task RunServiceClient()
{
 var endpoint = new EndpointAddress(SERVICE_URL);
 var channel = ChannelFactory<IHelloWorldServiceClient>
 .CreateChannel(new BasicHttpBinding(), endpoint);

 var greeting = await channel.GreetAsync("Eugene");
 WriteLine(greeting);
}

[ServiceContract(Namespace = "Packt", Name =
"HelloWorldServiceContract")]
public interface IHelloWorldService
{
 [OperationContract]
 string Greet(string name);
}

[ServiceContract(Namespace = "Packt", Name =
"HelloWorldServiceContract")]
public interface IHelloWorldServiceClient
{
 [OperationContract]
 string Greet(string name);

 [OperationContract]
 Task<string> GreetAsync(string name);
}

public class HelloWorldService : IHelloWorldService
{
 public string Greet(string name)
 {
 return $"Greetings, {name}!";
 }
}

Using Asynchronous I/O

196

5.	 Add the following code snippet inside the Main method:
ServiceHost host = null;

try
{
 host = new ServiceHost(typeof (HelloWorldService), new
Uri(SERVICE_URL));
 var metadata =
host.Description.Behaviors.Find<ServiceMetadataBehavior>()
 ?? new ServiceMetadataBehavior();

 metadata.HttpGetEnabled = true;
 metadata.MetadataExporter.PolicyVersion =
PolicyVersion.Policy15;
 host.Description.Behaviors.Add(metadata);

 host.AddServiceEndpoint(ServiceMetadataBehavior.MexContractName,
 MetadataExchangeBindings.CreateMexHttpBinding(), "mex");

 var endpoint = host.AddServiceEndpoint(typeof
(IHelloWorldService),new BasicHttpBinding(), SERVICE_URL);

 host.Faulted += (sender, e) => WriteLine("Error!");

 host.Open();

 WriteLine("Greeting service is running and listening on:");
 WriteLine($"{endpoint.Address} ({endpoint.Binding.Name})");

 var client = RunServiceClient();
 client.GetAwaiter().GetResult();

 WriteLine("Press Enter to exit");
 ReadLine();
}
catch (Exception ex)
{
 WriteLine($"Error in catch block: {ex}");
}
finally
{
 if (null != host)
 {

Chapter 9

197

 if (host.State == CommunicationState.Faulted)
 {
 host.Abort();
 }
 else
 {
 host.Close();
 }
 }
}

6.	 Run the program.

How it works...
WCF is a framework that allows us to call remote services in different ways. One of them,
which was very popular some time ago, was used to call remote services via HTTP using an
XML-based protocol called the Simple Object Access Protocol (SOAP). It is quite common
when a server application calls another remote service, and this could be done using I/O
threads as well.

Visual Studio 2015 has rich support for WCF services; for example, you can add references
to such services with the Add Service Reference menu option. You could do this with our
service as well because we provide service metadata.

To create such a service, we need to use a ServiceHost class that will host our service.
We describe what service we will be hosting by providing a service implementation type
and the base URI by which the service will be addressed. Then, we configure the metadata
endpoint and the service endpoint. Finally, we handle the Faulted event in case of errors
and run the host service.

Be aware that we need to have administrator privileges to run the
service, since it uses HTTP bindings, which in turn use http.sys
and thus require special permissions to be created. You can run Visual
Studio under an administrator or run the following command in the
elevated command prompt to add the necessary permissions:

netsh http add urlacl url=http://+:1234/HelloWorld
user=machine\user

Using Asynchronous I/O

198

To consume this service, we create a client, and here is where the main trick happens. On the
server side, we have a service with the usual synchronous method called Greet. This method
is defined in the service contract, IHelloWorldService. However, if we want to leverage
an asynchronous network I/O, we have to call this method asynchronously. We can do that
by creating a new service contract with a matching namespace and service name, where we
define both the synchronous and task-based asynchronous methods. In spite of the fact that
we do not have an asynchronous method definition on the server side, we follow the naming
convention, and the WCF infrastructure understands that we want to create an asynchronous
proxy method.

Therefore, when we create an IHelloWorldServiceClient proxy channel, and WCF
correctly routes an asynchronous call to the server-side synchronous method, if you leave the
application running, you can open the browser and access the service using its URL, that is,
http://localhost:1234/HelloWorld. A service description will be opened, and you
can browse to the XML metadata that allows us to add a service reference from Visual Studio
2012. If you try to generate the reference, you will see slightly more complicated code, but it
is autogenerated and easy to use.

199

10
Parallel Programming

Patterns

In this chapter, we will review the common problems that a programmer often faces while
trying to implement a parallel workflow. You will learn the following recipes:

ff Implementing Lazy-evaluated shared states

ff Implementing Parallel Pipeline with BlockingCollection

ff Implementing Parallel Pipeline with TPL DataFlow

ff Implementing Map/Reduce with PLINQ

Introduction
Patterns in programming means a concrete and standard solution to a given problem. Usually,
programming patterns are the result of people gathering experience, analyzing the common
problems, and providing solutions to these problems.

Since parallel programming has existed for quite a long time, there are many different patterns
that are used to program parallel applications. There are even special programming languages
to make programming of specific parallel algorithms easier. However, this is where things start
to become increasingly complicated. In this chapter, I will provide you with a starting point from
where you will be able to study parallel programming further. We will review very basic, yet very
useful, patterns that are quite helpful for many common situations in parallel programming.

First, we will be using a shared-state object from multiple threads. I would like to emphasize
that you should avoid it as much as possible. As we discussed in previous chapters, a shared
state is really bad when you write parallel algorithms, but on many occasions, it is inevitable.
We will find out how to delay the actual computation of an object until it is needed and how to
implement different scenarios to achieve thread safety.

Parallel Programming Patterns

200

Then, we will show you how to create a structured parallel data flow. We will review a concrete
case of a producer/consumer pattern, which is called Parallel Pipeline. We are going to
implement it by just blocking the collection first, and then we will see how helpful another
library from Microsoft is for parallel programming—TPL DataFlow.

The last pattern that we will study is the Map/Reduce pattern. In the modern world,
this name could mean very different things. Some people consider Map/Reduce not as a
common approach to any problem, but as a concrete implementation for large, distributed
cluster computations. We will find out the meaning behind the name of this pattern and
review some examples of how it might work in cases of small parallel applications.

Implementing Lazy-evaluated shared states
This recipe shows how to program a Lazy-evaluated, thread-safe shared state object.

Getting ready
To start this recipe, you will need to run Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter10\Recipe1.

How to do it...
To implement Lazy-evaluated shared states, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
static async Task ProcessAsynchronously()
{
 var unsafeState = new UnsafeState();
 Task[] tasks = new Task[4];

 for (int i = 0; i < 4; i++)
 {
 tasks[i] = Task.Run(() => Worker(unsafeState));
 }

Chapter 10

201

 await Task.WhenAll(tasks);
 WriteLine(" --------------------------- ");

 var firstState = new DoubleCheckedLocking();
 for (int i = 0; i < 4; i++)
 {
 tasks[i] = Task.Run(() => Worker(firstState));
 }

 await Task.WhenAll(tasks);
 WriteLine(" --------------------------- ");

 var secondState = new BCLDoubleChecked();
 for (int i = 0; i < 4; i++)
 {
 tasks[i] = Task.Run(() => Worker(secondState));
 }

 await Task.WhenAll(tasks);
 WriteLine(" --------------------------- ");

 var lazy = new Lazy<ValueToAccess>(Compute);
 var thirdState = new LazyWrapper(lazy);
 for (int i = 0; i < 4; i++)
 {
 tasks[i] = Task.Run(() => Worker(thirdState));
 }

 await Task.WhenAll(tasks);
 WriteLine(" --------------------------- ");

 var fourthState = new BCLThreadSafeFactory();
 for (int i = 0; i < 4; i++)
 {
 tasks[i] = Task.Run(() => Worker(fourthState));
 }

 await Task.WhenAll(tasks);
 WriteLine(" --------------------------- ");

}

static void Worker(IHasValue state)
{

Parallel Programming Patterns

202

 WriteLine($"Worker runs on thread id {CurrentThread.
ManagedThreadId}");
 WriteLine($"State value: {state.Value.Text}");
}

static ValueToAccess Compute()
{
 WriteLine("The value is being constructed on a thread " +
 $"id {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromSeconds(1));
 return new ValueToAccess(
 $"Constructed on thread id {CurrentThread.
ManagedThreadId}");
}

class ValueToAccess
{
 private readonly string _text;
 public ValueToAccess(string text)
 {
 _text = text;
 }

 public string Text => _text;
}

class UnsafeState : IHasValue
{
 private ValueToAccess _value;

 public ValueToAccess Value =>_value ?? (_value = Compute());
}

class DoubleCheckedLocking : IHasValue
{
 private readonly object _syncRoot = new object();
 private volatile ValueToAccess _value;

 public ValueToAccess Value
 {
 get
 {
 if (_value == null)
 {

Chapter 10

203

 lock (_syncRoot)
 {
 if (_value == null) _value = Compute();
 }
 }
 return _value;
 }
 }
}

class BCLDoubleChecked : IHasValue
{
 private object _syncRoot = new object();
 private ValueToAccess _value;
 private bool _initialized;

 public ValueToAccess Value => LazyInitializer.EnsureInitialized(
 ref _value, ref _initialized, ref _syncRoot, Compute);
}

class BCLThreadSafeFactory : IHasValue
{
 private ValueToAccess _value;

 public ValueToAccess Value => LazyInitializer.
EnsureInitialized(ref _value, Compute);
}

class LazyWrapper : IHasValue
{
 private readonly Lazy<ValueToAccess> _value;

 public LazyWrapper(Lazy<ValueToAccess> value)
 {
 _value = value;
 }

 public ValueToAccess Value => _value.Value;
}

interface IHasValue
{
 ValueToAccess Value { get; }
}

Parallel Programming Patterns

204

4.	 Add the following code snippet inside the Main method:
var t = ProcessAsynchronously();
t.GetAwaiter().GetResult();

5.	 Run the program.

How it works...
The first example shows why it is not safe to use the UnsafeState object with multiple
accessing threads. We see that the Construct method was called several times, and
different threads use different values, which is obviously not right. To fix this, we can use a
lock when reading the value, and if it is not initialized, create it first. This will work, but using
a lock with every read operation is not efficient. To avoid using locks every time, we can use
a traditional approach called the double-checked locking pattern. We check the value for
the first time, and if is not null, we avoid unnecessary locking and just use the shared object.
However, if it was not constructed, we use the lock and then check the value for the second
time because it could be initialized between our first check and the lock operation. If it is
still not initialized, only then do we compute the value. We can clearly see that this approach
works with the second example—there is only one call to the Construct method, and the
first-called thread defines the shared object state.

Note that if the Lazy-evaluated object implementation is thread-safe,
it does not automatically mean that all its properties are thread-safe
as well.
If you add, for example, an int public property to the
ValueToAccess object, it will not be thread-safe; you still have to
use interlocked constructs or locking to ensure thread safety.

This pattern is very common, and that is why there are several classes in the Base Class
Library to help us. First, we can use the LazyInitializer.EnsureInitialized method,
which implements the double-checked locking pattern inside. However, the most comfortable
option is to use the Lazy<T> class, which allows us to have thread-safe, Lazy-evaluated,
shared state, out of the box. The next two examples show us that they are equivalent to the
second one, and the program behaves in the same way. The only difference is that since
LazyInitializer is a static class, we do not have to create a new instance of a class, as
we do in the case of Lazy<T>, and therefore, the performance in the first case can be better
in some rare scenarios.

The last option is to avoid locking at all if we do not care about the Construct method. If it is
thread-safe and has no side effects/serious performance impacts, we can just run it several
times but use only the first constructed value. The last example shows the described behavior,
and we can achieve this result using another LazyInitializer.EnsureInitialized
method overload.

Chapter 10

205

Implementing Parallel Pipeline with
BlockingCollection

This recipe will describe how to implement a specific scenario of a producer/consumer pattern,
which is called Parallel Pipeline, using the standard BlockingCollection data structure.

Getting ready
To begin this recipe, you will need to run Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter10\Recipe2.

How to do it...
To understand how to implement Parallel Pipeline using BlockingCollection, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Concurrent;
using System.Globalization;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;
using static System.Threading.Thread;

3.	 Add the following code snippet below the Main method:
private const int CollectionsNumber = 4;
private const int Count = 5;

static void CreateInitialValues(BlockingCollection<int>[]
sourceArrays, CancellationTokenSource cts)
{
 Parallel.For(0, sourceArrays.Length*Count, (j, state) =>
 {
 if (cts.Token.IsCancellationRequested)
 {
 state.Stop();
 }

Parallel Programming Patterns

206

 int number = GetRandomNumber(j);
 int k = BlockingCollection<int>.TryAddToAny(sourceArrays,
j);
 if (k >= 0)
 {
 WriteLine(
 $"added {j} to source data on thread " +
 $"id {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromMilliseconds(number));
 }
 });
 foreach (var arr in sourceArrays)
 {
 arr.CompleteAdding();
 }
}

static int GetRandomNumber(int seed)
{
 return new Random(seed).Next(500);
}

class PipelineWorker<TInput, TOutput>
{
 Func<TInput, TOutput> _processor;
 Action<TInput> _outputProcessor;
 BlockingCollection<TInput>[] _input;
 CancellationToken _token;
 Random _rnd;

 public PipelineWorker(
 BlockingCollection<TInput>[] input,
 Func<TInput, TOutput> processor,
 CancellationToken token,
 string name)
 {
 _input = input;
 Output = new BlockingCollection<TOutput>[_input.Length];
 for (int i = 0; i < Output.Length; i++)
 Output[i] = null == input[i] ? null
 : new BlockingCollection<TOutput>(Count);

 _processor = processor;
 _token = token;

Chapter 10

207

 Name = name;
 _rnd = new Random(DateTime.Now.Millisecond);
 }

 public PipelineWorker(
 BlockingCollection<TInput>[] input,
 Action<TInput> renderer,
 CancellationToken token,
 string name)
 {
 _input = input;
 _outputProcessor = renderer;
 _token = token;
 Name = name;
 Output = null;
 _rnd = new Random(DateTime.Now.Millisecond);
 }

 public BlockingCollection<TOutput>[] Output { get; private set;
}

 public string Name { get; private set; }

 public void Run()
 {
 WriteLine($"{Name} is running");
 while (!_input.All(bc => bc.IsCompleted) &&
 !_token.IsCancellationRequested)
 {
 TInput receivedItem;
 int i = BlockingCollection<TInput>.TryTakeFromAny(
 _input, out receivedItem, 50, _token);
 if (i >= 0)
 {
 if (Output != null)
 {
 TOutput outputItem = _processor(receivedItem);
 BlockingCollection<TOutput>.AddToAny(
 Output, outputItem);
 WriteLine($"{Name} sent {outputItem} to next, on " +
 $"thread id {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromMilliseconds(_rnd.Next(200)));
 }
 else

Parallel Programming Patterns

208

 {
 _outputProcessor(receivedItem);
 }
 }
 else
 {
 Sleep(TimeSpan.FromMilliseconds(50));
 }
 }
 if (Output != null)
 {
 foreach (var bc in Output) bc.CompleteAdding();
 }
 }
}

4.	 Add the following code snippet inside the Main method:
var cts = new CancellationTokenSource();

Task.Run(() =>
{
 if (ReadKey().KeyChar == 'c') cts.Cancel();
},
cts.Token);

var sourceArrays = new BlockingCollection<int>[CollectionsNumber];

for (int i = 0; i < sourceArrays.Length; i++)
{
 sourceArrays[i] = new BlockingCollection<int>(Count);
}

var convertToDecimal = new PipelineWorker<int, decimal>
(
 sourceArrays,
 n => Convert.ToDecimal(n*100),
 cts.Token,
 "Decimal Converter"
);

var stringifyNumber = new PipelineWorker<decimal, string>
(
 convertToDecimal.Output,

Chapter 10

209

 s => $"--{s.ToString("C", CultureInfo.GetCultureInfo("en-
us"))}--",
 cts.Token,
 "String Formatter"
);

var outputResultToConsole = new PipelineWorker<string, string>
(
 stringifyNumber.Output,
 s => WriteLine($"The final result is {s} on thread " +
 $"id {CurrentThread.ManagedThreadId}"),
 cts.Token,
 "Console Output"
);

try
{
 Parallel.Invoke(
 () =>
 CreateInitialValues(sourceArrays, cts),
 () => convertToDecimal.Run(),
 () => stringifyNumber.Run(),
 () => outputResultToConsole.Run()
);
}
catch (AggregateException ae)
{
 foreach (var ex in ae.InnerExceptions)
 WriteLine(ex.Message + ex.StackTrace);
}

if (cts.Token.IsCancellationRequested)
{
 WriteLine("Operation has been canceled! Press ENTER to exit.");
}
else
{
 WriteLine("Press ENTER to exit.");
}
ReadLine();

5.	 Run the program.

Parallel Programming Patterns

210

How it works...
In the preceding example, we implement one of the most common parallel programming
scenarios. Imagine that we have some data that has to pass through several computation
stages, which takes a significant amount of time. The latter computation requires the results
of the former, so we cannot run them in parallel.

If we had only one item to process, there would not be many possibilities to enhance the
performance. However, if we run many items through the same set of computation stages,
we can use a Parallel Pipeline technique. This means that we do not have to wait until all
items pass through the first computation stage to go to the next one. It is enough to have
just one item that finishes the stage; we move it to the next stage, and meanwhile, the next
item is being by the previous stage, and so on. As a result, we almost have parallel processing
shifted by the time required for the first item to pass through the first computation stage.

Here, we use four collections for each processing stage, illustrating that we can process
every stage in parallel as well. The first step that we do is to provide the possibility to cancel
the whole process by pressing the C key. We create a cancelation token and run a separate
task to monitor the C key. Then, we define our pipeline. It consists of three main stages.
The first stage is where we put the initial numbers on the first four collections that serve
as the item source to the latter pipeline. This code is inside the Parallel.For loop of
the CreateInitialValues method, which in turn is inside the Parallel.Invoke
statement, as we run all the stages in parallel; the initial stage runs in parallel as well.

The next stage is defining our pipeline elements. The logic is defined inside the
PipelineWorker class. We initialize the worker with the input collection, provide a
transformation function, and then run the worker in parallel with the other workers. This
way, we define two workers, or filters, because they filter the initial sequence. One of them
turns an integer into a decimal value, and the second one turns a decimal to a string.
Finally, the last worker just prints every incoming string to the console. In all the places, we
provide a running thread ID to see how everything works. Besides this, we added artificial
delays, so the item's processing will be more natural, as we really use heavy computations.

As a result, we see the exact expected behavior. First, some items are created on the initial
collections. Then, we see that the first filter starts to process them, and as they are being
processed, the second filter starts to work. Finally, the item goes to the last worker that prints
it to the console.

Implementing Parallel Pipeline with TPL
DataFlow

This recipe shows how to implement a Parallel Pipeline pattern with the help of the TPL
DataFlow library.

Chapter 10

211

Getting ready
To start this recipe, you will need to run Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter10\Recipe3.

How to do it...
To understand how to implement Parallel Pipeline with TPL DataFlow, perform the
following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Add references to the Microsoft TPL DataFlow NuGet package. Follow these steps to
do so:

1.	 Right-click on the References folder in the project and select the Manage
NuGet Packages... menu option.

2.	 Now, add your preferred references to the Microsoft TPL DataFlow NuGet
package. You can use the search option in the Manage NuGet Packages
dialog as follows:

Parallel Programming Patterns

212

3.	 In the Program.cs file, add the following using directives:
using System;
using System.Globalization;
using System.Threading;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;
using static System.Console;
using static System.Threading.Thread;

4.	 Add the following code snippet below the Main method:
async static Task ProcessAsynchronously()
{
 var cts = new CancellationTokenSource();
 Random _rnd = new Random(DateTime.Now.Millisecond);

 Task.Run(() =>
 {
 if (ReadKey().KeyChar == 'c')
 cts.Cancel();
 }, cts.Token);

 var inputBlock = new BufferBlock<int>(
 new DataflowBlockOptions { BoundedCapacity = 5,
CancellationToken = cts.Token });

 var convertToDecimalBlock = new TransformBlock<int, decimal>(
 n =>
 {
 decimal result = Convert.ToDecimal(n * 100);
 WriteLine($"Decimal Converter sent {result} to the next
stage on " +
 $"thread id {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromMilliseconds(_rnd.Next(200)));
 return result;
 }
 , new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism =
4, CancellationToken = cts.Token });

 var stringifyBlock = new TransformBlock<decimal, string>(
 n =>
 {
 string result = $"--{n.ToString("C", CultureInfo.
GetCultureInfo("en-us"))}--";

Chapter 10

213

 WriteLine($"String Formatter sent {result} to the next stage
on thread id {CurrentThread.ManagedThreadId}");
 Sleep(TimeSpan.FromMilliseconds(_rnd.Next(200)));
 return result;
 }
 , new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism =
4, CancellationToken = cts.Token });

 var outputBlock = new ActionBlock<string>(
 s =>
 {
 WriteLine($"The final result is {s} on thread id
{CurrentThread.ManagedThreadId}");
 }
 , new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism =
4, CancellationToken = cts.Token });

 inputBlock.LinkTo(convertToDecimalBlock, new DataflowLinkOptions
{ PropagateCompletion = true });
 convertToDecimalBlock.LinkTo(stringifyBlock, new
DataflowLinkOptions { PropagateCompletion = true });
 stringifyBlock.LinkTo(outputBlock, new DataflowLinkOptions {
PropagateCompletion = true });

 try
 {
 Parallel.For(0, 20, new ParallelOptions {
MaxDegreeOfParallelism = 4, CancellationToken = cts.Token }
 , i =>
 {
 WriteLine($"added {i} to source data on thread id
{CurrentThread.ManagedThreadId}");
 inputBlock.SendAsync(i).GetAwaiter().GetResult();
 });
 inputBlock.Complete();
 await outputBlock.Completion;
 WriteLine("Press ENTER to exit.");
 }
 catch (OperationCanceledException)
 {
 WriteLine("Operation has been canceled! Press ENTER to
exit.");
 }

 ReadLine();
}

Parallel Programming Patterns

214

5.	 Add the following code snippet inside the Main method:
var t = ProcessAsynchronously();
t.GetAwaiter().GetResult();

6.	 Run the program.

How it works...
In the previous recipe, we implemented a Parallel Pipeline pattern to process items through
sequential stages. It is quite a common problem, and one of the proposed ways to program
such algorithms is using a TPL DataFlow library from Microsoft. It is distributed via NuGet
and is easy to install and use in your application.

The TPL DataFlow library contains different types of blocks that can be connected with
each other in different ways and form complicated processes that can be partially parallel
and sequential where needed. To see some of the available infrastructure, let's implement
the previous scenario with the help of the TPL DataFlow library.

First, we define the different blocks that will be processing our data. Note that these
blocks have different options that can be specified during their construction; they can be
very important. For example, we pass the cancelation token into every block we define,
and when we signal the cancelation, all of them stop working.

We start our process with BufferBlock, we bound its capacity to 5 items maximum. This
block holds items to pass them to the next blocks in the flow. We restrict it to the five-item
capacity, specifying the BoundedCapacity option value. This means that when there will
be five items in this block, it will stop accepting new items until one of the existing items
passes to the next blocks.

The next block type is TransformBlock. This block is intended for a data transformation step.
Here, we define two transformation blocks; one of them creates decimals from integers, and the
second one creates a string from a decimal value. We can use the MaxDegreeOfParallelism
option for this block, specifying the maximum simultaneous worker threads.

The last block is of the ActionBlock type. This block will run a specified action on every
incoming item. We use this block to print our items to the console.

Now, we link these blocks together with the help of the LinkTo methods. Here, we have an
easy sequential data flow, but it is possible to create schemes that are more complicated.
Here, we also provide DataflowLinkOptions with the PropagateCompletion property
set to true. This means that when the step is complete, it will automatically propagate
its results and exceptions to the next stage. Then, we start adding items to the buffer
block in parallel, calling the block's Complete method, when we finish adding new items.
Then, we wait for the last block to get completed. In the case of a cancelation, we handle
OperationCancelledException and cancel the whole process.

Chapter 10

215

Implementing Map/Reduce with PLINQ
This recipe will describe how to implement the Map/Reduce pattern while using PLINQ.

Getting ready
To begin this recipe, you will need to run Visual Studio 2015. There are no other prerequisites.
The source code for this recipe can be found at BookSamples\Chapter10\Recipe4.

How to do it...
To understand how to implement Map/Reduce with PLINQ, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 In the Program.cs file, add the following using directives:
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;

using Newtonsoft.Json;

using static System.Console;

3.	 Add references to the Newtonsoft.Json NuGet package and the System.Net.
Http assembly.

4.	 Add the following code snippet below the Main method:
static char[] delimiters = { ' ', ',', ';', ':', '\"', '.' };

async static Task<string> ProcessBookAsync(
 string bookContent, string title, HashSet<string> stopwords)
{
 using (var reader = new StringReader(bookContent))
 {
 var query = reader.EnumLines()
 .AsParallel()
 .SelectMany(line => line.Split(delimiters))
 .MapReduce(

Parallel Programming Patterns

216

 word => new[] { word.ToLower() },
 key => key,
 g => new[] { new { Word = g.Key, Count = g.Count()
} }
)
 .ToList();

 var words = query
 .Where(element =>
 !string.IsNullOrWhiteSpace(element.Word)
 && !stopwords.Contains(element.Word))
 .OrderByDescending(element => element.Count);

 var sb = new StringBuilder();

 sb.AppendLine($"'{title}' book stats");
 sb.AppendLine("Top ten words used in this book: ");
 foreach (var w in words.Take(10))
 {
 sb.AppendLine($"Word: '{w.Word}', times used: '{w.
Count}'");
 }

 sb.AppendLine($"Unique Words used: {query.Count()}");

 return sb.ToString();
 }
}

async static Task<string> DownloadBookAsync(string bookUrl)
{
 using (var client = new HttpClient())
 {
 return await client.GetStringAsync(bookUrl);
 }
}

async static Task<HashSet<string>> DownloadStopWordsAsync()
{
 string url =
 "https://raw.githubusercontent.com/6/stopwords/master/
stopwords-all.json";

 using (var client = new HttpClient())

Chapter 10

217

 {
 try
 {
 var content = await client.GetStringAsync(url);
 var words =
 JsonConvert.DeserializeObject
 <Dictionary<string, string[]>>(content);
 return new HashSet<string>(words["en"]);
 }
 catch
 {
 return new HashSet<string>();
 }

 }
}

5.	 Add the following code snippet inside the Main method:
var booksList = new Dictionary<string, string>()
{
 ["Moby Dick; Or, The Whale by Herman Melville"]
 = "http://www.gutenberg.org/cache/epub/2701/pg2701.txt",

 ["The Adventures of Tom Sawyer by Mark Twain"]
 = "http://www.gutenberg.org/cache/epub/74/pg74.txt",

 ["Treasure Island by Robert Louis Stevenson"]
 = "http://www.gutenberg.org/cache/epub/120/pg120.txt",

 ["The Picture of Dorian Gray by Oscar Wilde"]
 = "http://www.gutenberg.org/cache/epub/174/pg174.txt"
};

HashSet<string> stopwords = DownloadStopWordsAsync().GetAwaiter().
GetResult();

var output = new StringBuilder();

Parallel.ForEach(booksList.Keys, key =>
{
 var bookContent = DownloadBookAsync(booksList[key])
 .GetAwaiter().GetResult();

Parallel Programming Patterns

218

 string result = ProcessBookAsync(bookContent, key, stopwords)
 .GetAwaiter().GetResult();

 output.Append(result);
 output.AppendLine();
});

Write(output.ToString());
ReadLine();

6.	 Add the following code snippet after the Program class definition:
static class Extensions
{
 public static ParallelQuery<TResult> MapReduce<TSource, TMapped,
TKey, TResult>(
 this ParallelQuery<TSource> source,
 Func<TSource, IEnumerable<TMapped>> map,
 Func<TMapped, TKey> keySelector,
 Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce)
 {
 return source.SelectMany(map)
 .GroupBy(keySelector)
 .SelectMany(reduce);
 }

 public static IEnumerable<string> EnumLines(this StringReader
reader)
 {
 while (true)
 {
 string line = reader.ReadLine();
 if (null == line) yield break;

 yield return line;
 }
 }
}

7.	 Run the program.

Chapter 10

219

How it works...
The Map/Reduce functions are another important parallel programming pattern. They are
suitable for a small program and large multiserver computations. The meaning of this pattern
is that you have two special functions to apply to your data. The first of them is the Map
function. It takes a set of initial data in a key/value list form and produces another key/value
sequence, transforming the data to a comfortable format for further processing. Then, we use
another function, called Reduce. The Reduce function takes the result of the Map function
and transforms it to the smallest possible set of data that we actually need. To understand
how this algorithm works, let's look through the preceding recipe.

Here, we are going to analyze four classic books' text. We are going to download the books
from the project Gutenberg's site (www.gutenberg.org), which can ask for a captcha if
you issue many network requests and thus break the program logic of this sample. If you
see HTML elements in the program's output, open one of the book URLs in the browser and
complete the captcha. The next thing to do is to load a list of English words that we are going
to skip when analyzing the text. In this sample, we try to load a JSON-encoded word list from
GitHub, and in case of failure, we just get an empty list.

Now, let's pay attention to our Map/Reduce implementation as a PLINQ extension method in
the PLINQExtensions class. We use SelectMany to transform the initial sequence to the
sequence we need by applying the Map function. This function produces several new elements
from one sequence element. Then, we choose how we group the new sequence with the
keySelector function, and we use GroupBy with this key to produce an intermediate
key/value sequence. The last thing we do is apply Reduce to the resulting grouped sequence
to get the result.

Then, we run all our books processing in parallel. Each processing worker thread outputs the
resulting information into a string, and after all workers are complete, we print this information
to the console. We do this to avoid concurrent console output, when each worker text overlaps
and makes the resulting information unreadable. In each worker process, we split the book
text into a text lines sequence, chop each line into word sequences, and apply our MapReduce
function to it. We use the Map function to transform each word into lowercase and use it as the
grouping key. Then, we define the Reduce function as a transformation of the grouping element
into a key value pair, which has the Word element that contains one unique word found in the
text and the Count element, which has information about how many times this word has been
used. The final step is our query materialization with the ToList method call, since we need to
process this query twice. Then, we use our list of stop words to remove common words from our
statistics and create a string result with the book's title, top 10 words used in the book, and a
unique word's frequency in the book.

www.gutenberg.org

221

11
There's More

In this chapter, we will look through a new programming paradigm in the Windows
10 operating system. Also, you will learn how to run .NET programs on OS X and Linux.
You will learn the following recipes in this chapter:

ff Using a timer in a Universal Windows Platform application

ff Using WinRT from usual applications

ff Using BackgroundTask in Universal Windows Platform applications

ff Running a .NET Core application on OS X

ff Running a .NET Core application on Ubuntu Linux

Introduction
Microsoft released the first public beta build of Windows 8 at the Build conference on
September 13, 2011. The new OS tried to address almost every problem that Windows had
by introducing features such as a responsive UI suitable for tablet devices with touch, lower
power consumption, a new application model, new asynchronous APIs, and tighter security.

The core of Windows API improvements was a new multiplatform component system,
WinRT, which is a logical development of COM. With WinRT, a programmer can use native
C++ code, C# and .NET, and even JavaScript and HTML to develop applications. Another
change is the introduction of a centralized application store, which did not exist on the
Windows platform before.

Being a new application platform, Windows 8 had backward compatibility and allowed us
to run the usual Windows applications. This lead to a situation where there were two major
classes of applications: the Windows Store applications, where new programs are distributed
via the Windows Store, and the usual classic applications that had not changed since the
previous version of Windows.

There's More

222

However, Windows 8 was only the first step toward the new application model. Microsoft got
a lot of feedback from the users, and it became clear that Windows Store applications were
too different from what people were used to. Besides that, there was a separate smartphone
OS, Windows 8 Phone, that had a different application store and a slightly different set of
APIs. This made an application developer create two separate applications for desktop and
smartphone platforms.

To improve the situation, the new Windows 10 OS was introduced as a unified platform for
all Windows-powered devices. There is a single application store that supports every device
family, and now, it is possible to create an application that works on phones, tablets, and
desktops. Thus, Windows Store applications are now called Universal Windows Platform
applications (UWP apps). This, of course, means a lot of limitations for your application—it
should not use any platform-specific APIs, and as a programmer, you have to comply with
specific rules. The program has to respond in a limited time to start up or to finish, keeping
the whole operating system and other applications responsive. To save the battery, your
applications are no longer running in the background by default; instead of that, they get
suspended and actually stop executing.

New Windows APIs are asynchronous, and you can only use whitelisted API functions in
your application. For example, you are not allowed to create a new Thread class instance
anymore. You have to use a system-managed thread pool instead. A lot of usual APIs cannot
be used anymore, and you have to study new ways to achieve the same goals as before.

But this is not all. Microsoft began to understand that supporting operating systems other
than Windows is also important. And now, you can write cross-platform applications using
a new subset of .NET that is called .NET Core. Its source can be found on GitHub, and it is
supported on platforms such as OS X and Linux. You can use any text editor, but I would
suggest you take a look at Visual Studio Code—a new lightweight, cross-platform code editor,
which runs on OS X and Linux and understands the C# syntax well.

In this chapter, we will see how a Universal Windows Platform application is different from the
usual Windows application and how we can use some of the WinRT benefits from the usual
applications. We will also go through a simplified scenario of a Universal Windows Platform
application with background notifications. You will also learn to run a .NET program on OS X
and Linux.

Chapter 11

223

Using a timer in a Universal Windows
Platform application

This recipe shows you how to use a simple timer in Universal Windows Platform applications.

Getting ready
To go through this recipe, you will need Visual Studio 2015 and the Windows 10 operating
system. No other prerequisites are required. The source code for this recipe can be found
at BookSamples\Chapter11\Recipe1.

How to do it...
To understand how to use a timer in a Windows Store application, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# Blank App (Universal Windows) project in
the Windows\Universal folder.

There's More

224

2.	 If you are asked to enable developer mode for Windows 10, you have to enable it in
the control panel.

3.	 Then, confirm that you are sure you want to turn on developer mode.

4.	 In the MainPage.xaml file, add the Name attribute to the Grid element:
<Grid Name="Grid" Background="{StaticResource
ApplicationPageBackgroundThemeBrush}">

5.	 In the MainPage.xaml.cs file, add the following using directives:
using System;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

6.	 Add the following code snippet above the MainPage constructor definition:
private readonly DispatcherTimer _timer;
private int _ticks;

Chapter 11

225

7.	 Replace the MainPage() constructor with the following code snippet:
public MainPage()
{
 InitializeComponent();
 _timer = new DispatcherTimer();
 _ticks = 0;
}

8.	 Add the OnNavigatedTo() method under the MainPage constructor definition:
protected override void OnNavigatedTo(NavigationEventArgs e)
{
}

9.	 Add the following code snippet inside the OnNavigatedTo method:
base.OnNavigatedTo(e);
Grid.Children.Clear();
var commonPanel = new StackPanel
{
 Orientation = Orientation.Vertical,
 HorizontalAlignment = HorizontalAlignment.Center
};

var buttonPanel = new StackPanel
{
 Orientation = Orientation.Horizontal,
 HorizontalAlignment = HorizontalAlignment.Center
};

var textBlock = new TextBlock
{
 Text = "Sample timer application",
 FontSize = 32,
 HorizontalAlignment = HorizontalAlignment.Center,
 Margin = new Thickness(40)
};

var timerTextBlock = new TextBlock
{
 Text = "0",
 FontSize = 32,
 HorizontalAlignment = HorizontalAlignment.Center,
 Margin = new Thickness(40)
};

There's More

226

var timerStateTextBlock = new TextBlock
{
 Text = "Timer is enabled",
 FontSize = 32,
 HorizontalAlignment = HorizontalAlignment.Center,
 Margin = new Thickness(40)
};

var startButton = new Button { Content = "Start",
 FontSize = 32};
var stopButton = new Button { Content = "Stop",
 FontSize = 32};

buttonPanel.Children.Add(startButton);
buttonPanel.Children.Add(stopButton);

commonPanel.Children.Add(textBlock);
commonPanel.Children.Add(timerTextBlock);
commonPanel.Children.Add(timerStateTextBlock);
commonPanel.Children.Add(buttonPanel);

_timer.Interval = TimeSpan.FromSeconds(1);
_timer.Tick += (sender, eventArgs) =>
{
 timerTextBlock.Text = _ticks.ToString(); _ticks++;
};
_timer.Start();

startButton.Click += (sender, eventArgs) =>
{
 timerTextBlock.Text = "0";
 _timer.Start();
 _ticks = 1;
 timerStateTextBlock.Text = "Timer is enabled";
};

stopButton.Click += (sender, eventArgs) =>
{
 _timer.Stop();
 timerStateTextBlock.Text = "Timer is disabled";
};

Grid.Children.Add(commonPanel);

Chapter 11

227

10.	 Right-click on the project in Visual Studio Solution Explorer and choose Deploy.

11.	 Run the program.

How it works...
When the program runs, it creates an instance of a MainPage class. Here, we instantiate
DispatcherTimer in the constructor and initialize the ticks counter to 0. Then, in the
OnNavigatedTo event handler, we create our UI controls and bind the start and stop buttons
to the corresponding lambda expressions, which contain the start and stop logics.

As you can see, the timer event handler works directly with the UI controls. This is okay
because DispatcherTimer is implemented in such a way that the handlers of the Tick
event of timer are run by the UI thread. However, if you run the program and then switch to
something else and then switch to the program after a couple of minutes, you may notice that
the seconds counter is far behind the real amount of time that passed. This happens because
Universal Windows Platform applications have completely different life cycles.

Be aware that Universal Windows Platform applications behave much like
the applications on smartphone and tablet platforms. Instead of running
in the background, they become suspended after some time, and this
means that they are actually frozen until the user switches back to them.
You have a limited time to save the current application state before it
becomes suspended, and you are able to restore the state when the
applications run again.

While this behavior could save power and CPU resources, it creates significant difficulties for
program applications that are supposed to do some processing in the background. Windows
10 has a set of special APIs to program such applications. We will go through such a scenario
later in this chapter.

Using WinRT from usual applications
This recipe shows you how to create a console application that will be able to use the
WinRT API.

Getting ready
To go through this recipe, you will need Visual Studio 2015 and the Windows 10 operating
system. There are no other prerequisites. The source code for this recipe can be found at
BookSamples\Chapter11\Recipe2.

There's More

228

How to do it...
To understand how to use WinRT from usual applications, perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# console application project.

2.	 Right-click on the created project in Visual Studio Solution Explorer and select the
Unload Project… menu option.

3.	 Right-click on the unloaded project and select the Edit ProjectName.csproj menu
option.

4.	 Add the following XML code below the <TargetFrameworkVersion> element:
<TargetPlatformVersion>10.0</TargetPlatformVersion>

5.	 Save the .csproj file, right-click on the unloaded project in Visual Studio Solution
Explorer, and select the Reload Project menu option.

6.	 Right-click on the project and select Add Reference from the Core library under
Windows. Then, click on the Browse button.

7.	 Navigate to C:\Program Files (x86)\Windows Kits\10\UnionMetadata
and click on Windows.winmd.

8.	 Navigate to C:\Program Files\Reference Assemblies\Microsoft\
Framework\.NETCore\v4.5 and click on the System.Runtime.
WindowsRuntime.dll file.

9.	 In the Program.cs file, add the following using directives:
using System;
using System.IO;
using System.Threading.Tasks;
using Windows.Storage;

10.	 Add the following code snippet below the Main method:
async static Task AsynchronousProcessing()
{
 StorageFolder folder = KnownFolders.DocumentsLibrary;

 if (await folder.DoesFileExistAsync("test.txt"))
 {
 var fileToDelete = await folder.GetFileAsync(
 "test.txt");
 await fileToDelete.DeleteAsync(
 StorageDeleteOption.PermanentDelete);
 }

 var file = await folder.CreateFileAsync("test.txt",
 CreationCollisionOption.ReplaceExisting);

Chapter 11

229

 using (var stream = await file.OpenAsync(FileAccessMode.
ReadWrite))
 using (var writer = new StreamWriter(stream.AsStreamForWrite()))
 {
 await writer.WriteLineAsync("Test content");
 await writer.FlushAsync();
 }

 using (var stream = await file.OpenAsync(FileAccessMode.Read))
 using (var reader = new StreamReader(stream.AsStreamForRead()))
 {
 string content = await reader.ReadToEndAsync();
 Console.WriteLine(content);
 }

 Console.WriteLine("Enumerating Folder Structure:");

 var itemsList = await folder.GetItemsAsync();
 foreach (var item in itemsList)
 {
 if (item is StorageFolder)
 {
 Console.WriteLine("{0} folder", item.Name);
 }
 else
 {
 Console.WriteLine(item.Name);
 }
 }
}

11.	 Add the following code snippet to the Main method:
var t = AsynchronousProcessing();
t.GetAwaiter().GetResult();
Console.WriteLine();
Console.WriteLine("Press ENTER to continue");
Console.ReadLine();

12.	 Add the following code snippet below the Program class definition:
static class Extensions
{
 public static async Task<bool> DoesFileExistAsync(this
 StorageFolder folder, string fileName)
 {
 try
 {

There's More

230

 await folder.GetFileAsync(fileName);
 return true;
 }
 catch (FileNotFoundException)
 {
 return false;
 }
 }
}

13.	 Run the program.

How it works...
Here, we used quite a tricky way to consume the WinRT API from a common .NET console
application. Unfortunately, not all available APIs will work in this scenario, but still, it could be
useful to work with movement sensors, GPS location services, and so on.

To reference WinRT in Visual Studio, we manually edit the .csproj file, specifying the target
platform for the application as Windows 10. Then, we manually reference Windows.winmd to
get access to Windows 10 APIs and System.Runtime.WindowsRuntime.dll to leverage
the GetAwaiter extension method implementation for WinRT asynchronous operations. This
allows us to use await on WinRT APIs directly. There is a backward conversion as well. When
we create a WinRT library, we have to expose the WinRT native IAsyncOperation interfaces
family for asynchronous operations, so they could be consumed from JavaScript and C++ in a
language-agnostic manner.

File operations in WinRT are quite self-descriptive; here, we have asynchronous file create and
delete operations. Still, file operations in WinRT contain security restrictions, encouraging you
to use special Windows folders for your application and not allowing you to work with just any
file path on your disk drive.

Using BackgroundTask in Universal
Windows Platform applications

This recipe walks you through the process of creating a background task in a Universal
Windows Platform application, which updates the application's live tile on a desktop.

Getting ready
To go through this recipe, you will need Visual Studio 2015 and the Windows 10 operating
system. There are no other prerequisites. The source code for this recipe can be found at
BookSamples\Chapter11\Recipe3.

Chapter 11

231

How to do it...
To understand how to use BackgroundTask in Universal Windows Platform applications,
perform the following steps:

1.	 Start Visual Studio 2015. Create a new C# Blank App (Universal Windows) project
under Windows\Universal folder. If you need to enable the Windows 10 developer
mode, refer to the Using a timer in a Windows Store application recipe for detailed
instructions.

2.	 Open the Package.appxmanifest file. In the Declarations tab, add Background
Tasks to Supported Declarations. Under Properties, check the supported
properties System event and Timer and set the name of Entry point to
YourNamespace.TileSchedulerTask. YourNamespace should be the
namespace of your application.

There's More

232

3.	 In the MainPage.xaml file, insert the following XAML code into the Grid element:
<StackPanel Margin="50">
 <TextBlock Name="Clock"
 Text="HH:mm"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Style="{StaticResource HeaderTextBlockStyle}"/>
</StackPanel>

4.	 In the MainPage.xaml.cs file, add the following using directives:
using System;
using System.Diagnostics;
using System.Globalization;
using System.Linq;
using System.Xml.Linq;
using Windows.ApplicationModel.Background;
using Windows.Data.Xml.Dom;
using Windows.System.UserProfile;
using Windows.UI.Notifications;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;

5.	 Add the following code snippet above the MainPage constructor definition:
private const string TASK_NAME_USERPRESENT =
 "TileSchedulerTask_UserPresent";
private const string TASK_NAME_TIMER =
 "TileSchedulerTask_Timer";

private readonly CultureInfo _cultureInfo;
private readonly DispatcherTimer _timer;

6.	 Replace the MainPage constructor with the following code snippet:
public MainPage()
{
InitializeComponent();

string language = GlobalizationPreferences.Languages.First();
_cultureInfo = new CultureInfo(language);

_timer = new DispatcherTimer();
_timer.Interval = TimeSpan.FromSeconds(1);
_timer.Tick += (sender, e) => UpdateClockText();
}

Chapter 11

233

7.	 Add the following code snippet above the OnNavigatedTo method:
private void UpdateClockText()
{
 Clock.Text = DateTime.Now.ToString(
 _cultureInfo.DateTimeFormat.FullDateTimePattern);
}

private static async void CreateClockTask()
{
 BackgroundAccessStatus result = await
 BackgroundExecutionManager.RequestAccessAsync();
 if (result == BackgroundAccessStatus.
 AllowedMayUseActiveRealTimeConnectivity ||
 result == BackgroundAccessStatus.
 AllowedWithAlwaysOnRealTimeConnectivity)
 {
 TileSchedulerTask.CreateSchedule();

 EnsureUserPresentTask();
 EnsureTimerTask();
 }
}

private static void EnsureUserPresentTask()
{
 foreach (var task in BackgroundTaskRegistration.AllTasks)
 if (task.Value.Name == TASK_NAME_USERPRESENT)
 return;

 var builder = new BackgroundTaskBuilder();
 builder.Name = TASK_NAME_USERPRESENT;
 builder.TaskEntryPoint =
 (typeof(TileSchedulerTask)).FullName;
 builder.SetTrigger(new SystemTrigger(
 SystemTriggerType.UserPresent, false));
 builder.Register();
}

private static void EnsureTimerTask()
{
 foreach (var task in BackgroundTaskRegistration.AllTasks)
 if (task.Value.Name == TASK_NAME_TIMER)
 return;

There's More

234

 var builder = new BackgroundTaskBuilder();
 builder.Name = TASK_NAME_TIMER;
 builder.TaskEntryPoint = (typeof(
 TileSchedulerTask)).FullName;
 builder.SetTrigger(new TimeTrigger(180, false));
 builder.Register();
}

8.	 Add the following code snippet to the OnNavigatedTo method:
_timer.Start();
UpdateClockText();
CreateClockTask();

9.	 Add the following code snippet below the MainPage class definition:
public sealed class TileSchedulerTask : IBackgroundTask
{
 public void Run(IBackgroundTaskInstance taskInstance)
 {
 var deferral = taskInstance.GetDeferral();
 CreateSchedule();
 deferral.Complete();
 }

 public static void CreateSchedule()
 {
 var tileUpdater = TileUpdateManager.
CreateTileUpdaterForApplication();
 var plannedUpdated = tileUpdater.
GetScheduledTileNotifications();

 DateTime now = DateTime.Now;
 DateTime planTill = now.AddHours(4);

 DateTime updateTime = new DateTime(now.Year, now.Month,
 now.Day, now.Hour, now.Minute, 0).AddMinutes(1);
 if (plannedUpdated.Count > 0)
 updateTime = plannedUpdated.Select(x =>
 x.DeliveryTime.DateTime).Union(new[] { updateTime
 }).Max();
 XmlDocument documentNow = GetTilenotificationXml(now);

 tileUpdater.Update(new TileNotification(documentNow) {
 ExpirationTime = now.AddMinutes(1) });

Chapter 11

235

 for (var startPlanning = updateTime;
 startPlanning < planTill; startPlanning =
 startPlanning.AddMinutes(1))
 {
 Debug.WriteLine(startPlanning);
 Debug.WriteLine(planTill);

 try
 {
 XmlDocument document = GetTilenotificationXml(
 startPlanning);

 var scheduledNotification = new
 ScheduledTileNotification(document,
 new DateTimeOffset(startPlanning))
 {
 ExpirationTime = startPlanning.AddMinutes(1)
 };

 tileUpdater.AddToSchedule(scheduledNotification);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Error: " + ex.Message);
 }
 }
 }

 private static XmlDocument GetTilenotificationXml(
 DateTime dateTime)
 {
 string language =
 GlobalizationPreferences.Languages.First();
 var cultureInfo = new CultureInfo(language);

 string shortDate = dateTime.ToString(
 cultureInfo.DateTimeFormat.ShortTimePattern);
 string longDate = dateTime.ToString(
 cultureInfo.DateTimeFormat.LongDatePattern);

 var document = XElement.Parse(string.Format(@"<tile>
 <visual>
 <binding template=""TileSquareText02"">
 <text id=""1"">{0}</text>
 <text id=""2"">{1}</text>

There's More

236

 </binding>
 <binding template=""TileWideText01"">
 <text id=""1"">{0}</text>
 <text id=""2"">{1}</text>
 <text id=""3""></text>
 <text id=""4""></text>
 </binding>
 </visual>
 </tile>", shortDate, longDate));

 return document.ToXmlDocument();
 }
}

public static class DocumentExtensions
{
 public static XmlDocument ToXmlDocument(this
 XElement xDocument)
 {
 var xmlDocument = new XmlDocument();
 xmlDocument.LoadXml(xDocument.ToString());
 return xmlDocument;
 }
}

10.	 Run the program.

How it works...
The preceding program shows how to create a background time-based task and how to
show the updates from this task on a live tile on the Windows 10 start menu. Programming
Universal Windows Platform applications is quite a challenging task itself—you have to care
about an application suspending/restoring its state and many other things. Here, we are
going to concentrate on our main task, leaving behind the secondary issues.

Our main goal is to run some code when the application itself is not in the foreground. First,
we create an implementation of the IBackgroundTask interface. This is our code, and the
Run method will be called when we get a trigger signal. It is important that if the Run method
contains asynchronous code with await in it, we have to use a special deferral object as
shown in the recipe to explicitly specify when we begin and end the Run method execution. In
our case, the method call is synchronous, but to illustrate this requirement, we work with the
deferral object.

Chapter 11

237

Inside our task in the Run method, we create a set of tile updates each minute for 4 hours
and register it in TileUpdateManager with the help of the ScheduledTaskNotification
class. A tile uses a special XML format to specify exactly how the text should be positioned in
it. When we trigger our task from the system, it schedules one-minute tile updates for the next
4 hours. Then, we need to register our background task. We do this twice; one registration
provides a UserPresent trigger, which means that this task will be triggered when a user is
logged in. The next trigger is a time trigger, which runs the task once every 3 hours.

When the program runs, it creates a timer, which runs when the application is in the
foreground. At the same time, it tries to register background tasks; to register these tasks,
the program needs user permission, and it will show a dialog requesting permissions from
the user. Now, we have scheduled live tile updates for the next 4 hours. If we close our
application, the live tile will continue to show the new time every minute. In the next 3 hours,
the time trigger will run our background task once again, and we will schedule another live
tile update.

Running a .NET Core application on OS X
This recipe shows how to install a .NET Core application on OS X and how to build and run a
.NET console application.

Getting ready
To go through this recipe, you will need a Mac OS X operating system. There are no other
prerequisites. The source code for this recipe can be found at BookSamples\Chapter11\
Recipe4.

How to do it...
To understand how to run .NET Core applications, perform the following steps:

1.	 Install .NET Core on your OS X machine. You can visit http://dotnet.github.
io/getting-started/ and follow the installation instructions there. Since .NET
Core is in the pre-release stage, the installation and usage scenarios could change
before this book is published. Refer to the site instructions in that case.

2.	 After you have downloaded the .pkg file, hold the Control key while opening it. It will
unblock the file and will allow you to install it.

3.	 After you have installed the package, you will need to install OpenSSL. The easiest
way is to install the homebrew package manager first. Open the terminal window
and run the following command:
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

http://dotnet.github.io/getting-started/
http://dotnet.github.io/getting-started/

There's More

238

4.	 Then, you can install OpenSSL by typing the following in it:
brew install openssl

5.	 There is also the small catch that .NET Core at the time of writing needs to increase
the open files limit. This can be achieved by typing the following:
sudo sysctl -w kern.maxfiles=20480

sudo sysctl -w kern.maxfilesperproc=18000

sudo ulimit -S -n 2048

6.	 Now you have installed .NET Core and are ready to go. To create a sample Hello World
application, you can create a directory and create an empty application:
mkdir HelloWorld

cd HelloWorld

dotnet new

7.	 Let's check whether the default application works. To run the code, we have to
restore dependencies and build and run the application. To achieve this, type the
following commands:
dotnet restore

dotnet run

8.	 Now, let's try to run some asynchronous code. In the Program.cs file, change
the code to the following:
using System;
using System.Threading.Tasks;
using static System.Console;
namespace OSXConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine(".NET Core app on OS X");
 RunCodeAsync().GetAwaiter().GetResult();
 }
 static async Task RunCodeAsync()
 {
 try
 {
 string result = await GetInfoAsync("Async 1");
 WriteLine(result);
 result = await GetInfoAsync("Async 2");
 WriteLine(result);

Chapter 11

239

 }
 catch (Exception ex)
 {
 WriteLine(ex);
 }
 }
 static async Task<string> GetInfoAsync(string name)
 {
 WriteLine($"Task {name} started!");
 await Task.Delay(TimeSpan.FromSeconds(2));
 if(name == "Async 2")
 throw new Exception("Boom!");
 return
 $"Task {name} completed successfully!"
// + $"Thread id {System.Threading.Thread.CurrentThread.
ManagedThreadId}."
 ;
 }
 }
}

9.	 Run the program with the dotnet run command.

How it works...
Here, we download a .pkg file with the .NET Core installation package from the site and
install it. We also install the OpenSSL library using the homebrew package manager (which
also gets installed). Besides that, we increase the open files limit in OS X to be able to restore
.NET Core dependencies.

Then, we create a separate folder for the .NET Core application, create a blank console
application, and check whether everything works fine with restoring dependencies and
running the code.

Finally, we create a simple asynchronous code and try to run it. It should run well, showing the
messages that the first task completed successfully. The second task caused an exception,
which was correctly handled. But if you try to uncomment a line that is intended to show the
thread-specific information, the code will not be compiled, since .NET Core has no support for
Thread APIs.

There's More

240

Running a .NET Core application on Ubuntu
Linux

This recipe shows how to install a .NET Core application on Ubuntu and how to build and run a
.NET console application.

Getting ready
To go through this recipe, you will need an Ubuntu Linux 14.04 operating system. There are
no other prerequisites. The source code for this recipe can be found at BookSamples\
Chapter11\Recipe5.

How to do it...
To understand how to run .NET Core applications, perform the following steps:

1.	 Install .NET Core on your Ubuntu machine. You can visit http://dotnet.github.
io/getting-started/ and follow the installation instructions there. Since .NET
Core is in the pre-release stage, the installation and usage scenarios could change
by the time this book is published. Refer to the site instructions in that case.

2.	 First, open a terminal window and run the following commands:
sudo sh -c 'echo "deb [arch=amd64] http://apt-mo.trafficmanager.
net/repos/dotnet/ trusty main" > /etc/apt/sources.list.d/
dotnetdev.list'

sudo apt-key adv --keyserver apt-mo.trafficmanager.net --recv-keys
417A0893

sudo apt-get update

3.	 Then, you can install .NET Core by typing the following in the terminal window:
sudo apt-get install dotnet=1.0.0.001331-1

4.	 Now, you have installed .NET Core and are ready to go. To create a sample Hello
World application, you can create a directory and create an empty application:
mkdir HelloWorld

cd HelloWorld

dotnet new

5.	 Let's check whether the default application works. To run the code, we have to
restore dependencies and build and run the application. To achieve this, type the
following commands:
dotnet restore

dotnet run

http://dotnet.github.io/getting-started/
http://dotnet.github.io/getting-started/

Chapter 11

241

6.	 Now, let's try to run some asynchronous code. In the Program.cs file, change the
code to the following:
using System;
using System.Threading.Tasks;
using static System.Console;
namespace OSXConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine(".NET Core app on Ubuntu");
 RunCodeAsync().GetAwaiter().GetResult();
 }
 static async Task RunCodeAsync()
 {
 try
 {
 string result = await GetInfoAsync("Async 1");
 WriteLine(result);
 result = await GetInfoAsync("Async 2");
 WriteLine(result);
 }
 catch (Exception ex)
 {
 WriteLine(ex);
 }
 }
 static async Task<string> GetInfoAsync(string name)
 {
 WriteLine($"Task {name} started!");
 await Task.Delay(TimeSpan.FromSeconds(2));
 if(name == "Async 2")
 throw new Exception("Boom!");
 return
 $"Task {name} completed successfully!"
// + $"Thread id {System.Threading.Thread.CurrentThread.
ManagedThreadId}."
 ;
 }
 }
}

7.	 Run the program with dotnet run command.

There's More

242

How it works...
Here, we start with setting up the apt-get feed that hosts the .NET Core packages that we
need. This is necessary since at the time of writing, .NET Core for Linux may not have been
released. For sure, when the release happens, it will get into normal apt-get feeds and you
won't have to add custom feeds to it. After completing this, we use apt-get to install the
currently working version of .NET Core.

Then, we create a separate folder for the .NET Core application, create a blank console
application, and check whether everything works fine with restoring dependencies and
running the code.

Finally, we create a simple asynchronous code and try to run it. It should run well, showing
messages that the first task completed successfully, and the second task caused an
exception, which was correctly handled. But if you try to uncomment a line that is intended
to show the thread-specific information, the code will not be compiled, since .NET Core has
no support for Thread APIs.

243

Index
Symbols
.NET Core application

running, on OS X 237-239
running, on Ubuntu Linux 240-242

.NET thread pool 48

A
abstraction layer 67
APM pattern

converting, to task 75-78
AsOrdered method 151
asynchronous functions

about 94, 95
creating 94

asynchronous HTTP server and client
writing 187-189

asynchronous I/O operations
applications 181-183

asynchronous Observable
collection, converting to 162-165

asynchronous operations
creating, Rx used 177-180
exceptions, handling 104-107
posting, on thread pool 52, 53

asynchronous processing
generalizing, BlockingCollection

used 136-139
implementing, ConcurrentQueue

used 127-129
order, changing, ConcurrentStack

used 130-132
Asynchronous Programming Model (APM) 49

asynchronous task results
obtaining, with await operator 96-98

async operators
disadvantages 95

async void method
working with 111-114

atomic operations
about 28
performing 28-31

AutoResetEvent construct
using 34-36

await operator
disadvantages 95
dynamic type, using with 118-122
used, for obtaining asynchronous task

results 96-98
used, for parallel asynchronous tasks

execution 102-104
using, in lambda expression 98, 99
using, with consequent asynchronous

tasks 100-102

B
BackgroundTask

using, in Universal Windows Platform
applications 230-236

BackgroundWorker component
using 63-66

Barrier construct
using 39-41

basic operations
performing, with task 70-72

244

BlockingCollection
about 124
used, for generalizing asynchronous

processing 136-139
used, for implementing Parallel

Pipeline 205-210

C
C#

thread, creating 2-6
callback

registering 58
cancellation option

implementing 56-58
captured synchronization context

use, avoiding 107-111
C# lock keyword

used, for locking 19-21
closure mechanics 53
coarse-grained locking 127
collection

converting, to asynchronous
Observable 162-165

Common Language Runtime (CLR) 48
Compare and Swap (CAS) 124
ConcurrentBag

used, for creating scalable crawler 132-136
ConcurrentDictionary

about 124
using 125-127

ConcurrentQueue
used, for implementing asynchronous

processing 127-129
ConcurrentStack

used, for changing asynchronous processing
order 130-132

consequent asynchronous tasks
await operator, using with 100-102

context switch 28
continuation 75
CountDownEvent construct

using 38, 39
custom aggregator

creating, for PLINQ query 157-159

custom awaitable type
designing 114-117

custom Observable
writing 165-168

D
database

working with, asynchronously 190-193
data parallelism 142
data partitioning

managing in PLINQ query 153-157
degree of parallelism

and thread pool 54-56
delegate

about 48
invoking, on thread pool 49-51

double-checked locking pattern 204
dynamic type

using, with await operator 118-121

E
EAP pattern

converting, to task 79, 80
Enqueue method 124
Event-based Asynchronous Pattern (EAP) 65
event handlers 65
events 65
exceptions

handling 24-26
handling, in asynchronous

operations 104-107
handling, in PLINQ query 151-153

F
files

working with, asynchronously 183-186
fine-grained locking technique 127
First In, First Out (FIFO) 124

G
Gutenberg

website link 219

245

H
hybrid constructs 28

I
I/O threads 48
iterators 95

K
kernel-mode constructs 28

L
lambda expression

about 50
await operator, using 98, 99

Last In, First Out (LIFO) 124
Lazy-evaluated shared states

implementing 200-204
LazyInitializer.EnsureInitialized method 204
LINQ queries

using, against observable
collection 174-176

LINQ query
parallelizing 145-148

M
ManualResetEventSlim construct

using 36-38
Map/Reduce pattern

about 200
implementing, with PLINQ 215-219

monitor construct
locking with 22-24

Mutex construct
using 31, 32

O
observable collection

LINQ queries, using against 174-176
Observable object

creating 172-174
OS X

.NET Core application, running 237-239

P
parallel asynchronous tasks

executing, await operator used 102-104
Parallel class

using 143-145
Parallel Framework Extensions (PFX) 141
Parallel Pipeline

about 200
implementing, with

BlockingCollection 205-210
implementing, with TPL DataFlow 210-214

parameters
passing, to thread 16-18

PLINQ
used, for implementing

Map/Reduce 215-219
PLINQ query

custom aggregator, creating 157-160
data partitioning, managing 153-157
exceptions, handling 151-153
parameters, tweaking 148-151

pooling 47
pull-based approach 161
push-based approach 162

R
Reactive Extensions (Rx)

about 161, 162
used, for creating asynchronous

operations 177-180
ReaderWriterLockSlim construct

using 41-43

S
scalable crawler

creating, ConcurrentBag used 132-136
SemaphoreSlim construct

using 32-34
shared-state object 199
Simple Object Access Protocol (SOAP) 197
SpinWait construct

using 44, 45
structured parallelism 142
Subjects type

using 168-171

246

T
task

about 68
APM pattern, converting to 75-78
basic operations, performing with 70-72
combining 72-75
creating 69, 70
EAP pattern, converting to 79, 80
exception handling 83, 85
running, in parallel 85-87

task execution
tweaking, with TaskScheduler 87-91

task parallelism 141
Task Parallel Library (TPL) 51
task scheduler 70
thread

aborting 8-10
background 14, 15
cancellation option, implementing 56-58
creating, in C# 2-5
foreground 14, 15
making, wait 7, 8
parameters, passing 16-18
pausing 6, 7
priority 12-14
state, determining 10, 11

thread pool
and degree of parallelism 54-56
asynchronous operation, posting 52, 53
delegate, invoking 49-51
timeout, using 59-61
wait handle, using 59-61

thread synchronization
about 27
AutoResetEvent construct 34-36
Barrier construct 39-41
CountDownEvent construct 38, 39
ManualResetEventSlim construct 36-38
Mutex construct 31, 32
ReaderWriterLockSlim construct 41-43
SemaphoreSlim construct 32-34
SpinWait construct 44, 45

timeout
using, with thread pool 59-61

timer
using 61-63
using, in Universal Windows Platform

application 223-227
TPL DataFlow

about 200
used, for implementing, Parallel

Pipeline 210-214
TryDequeue method 124
TryPeek method 124

U
Ubuntu Linux

.NET Core application, running 240-242
Universal Windows Platform application

BackgroundTask, using 230-236
timer, using 223-227

unstructured parallelism 142
user-mode constructs 28

W
wait handle

using, with thread pool 59-61
Windows Communication Foundation

(WCF) service
about 183
calling, asynchronously 194-198

WinRT
about 221
using, from usual applications 227-230

WithExecutionMode method 151
WithMergeOptions method 151
worker thread 48

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Threading Basics
	Introduction
	Creating a thread in C#
	Pausing a thread
	Making a thread wait
	Aborting a thread
	Determining a thread state
	Thread priority
	Foreground and background threads
	Passing parameters to a thread
	Locking with a C# lock keyword
	Locking with a Monitor construct
	Handling exceptions

	Chapter 2: Thread Synchronization
	Introduction
	Performing basic atomic operations
	Using the Mutex construct
	Using the SemaphoreSlim construct
	Using the AutoResetEvent construct
	Using the ManualResetEventSlim construct
	Using the CountDownEvent construct
	Using the Barrier construct
	Using the ReaderWriterLockSlim construct
	Using the SpinWait construct

	Chapter 3: Using a Thread Pool
	Introduction
	Invoking a delegate on a thread pool
	Posting an asynchronous operation on a thread pool
	A thread pool and the degree of parallelism
	Implementing a cancellation option
	Using a wait handle and timeout with a thread pool
	Using a timer
	Using the BackgroundWorker component

	Chapter 4: Using the Task
Parallel Library
	Introduction
	Creating a task
	Performing basic operations with a task
	Combining tasks
	Converting the APM pattern to tasks
	Converting the EAP pattern to tasks
	Implementing a cancelation option
	Handling exceptions in tasks
	Running tasks in parallel
	Tweaking the execution of tasks with TaskScheduler

	Chapter 5: Using C# 6.0
	Introduction
	Using the await operator to get asynchronous task results
	Using the await operator in a lambda expression
	Using the await operator with consequent asynchronous tasks
	Using the await operator for the execution of parallel asynchronous tasks
	Handling exceptions in asynchronous operations
	Avoiding the use of the captured synchronization context
	Working around the async void method
	Designing a custom awaitable type
	Using the dynamic type with await

	Chapter 6: Using Concurrent Collections
	Introduction
	Using ConcurrentDictionary
	Implementing asynchronous processing using ConcurrentQueue
	Changing asynchronous processing order with ConcurrentStack
	Creating a scalable crawler with ConcurrentBag
	Generalizing asynchronous processing with BlockingCollection

	Chapter 7: Using PLINQ
	Introduction
	Using the Parallel class
	Parallelizing a LINQ query
	Tweaking the parameters of a PLINQ query
	Handling exceptions in a PLINQ query
	Managing data partitioning in a PLINQ query
	Creating a custom aggregator for
a PLINQ query

	Chapter 8: Reactive Extensions
	Introduction
	Converting a collection to an asynchronous Observable
	Writing custom Observable
	Using the Subjects type
	Creating an Observable object
	Using LINQ queries against an observable collection
	Creating asynchronous operations with Rx

	Chapter 9: Using Asynchronous I/O
	Introduction
	Working with files asynchronously
	Writing an asynchronous HTTP server
and client
	Working with a database asynchronously
	Calling a WCF service asynchronously

	Chapter 10: Parallel Programming Patterns
	Introduction
	Implementing Lazy-evaluated shared states
	Implementing Parallel Pipeline with BlockingCollection
	Implementing Parallel Pipeline with TPL DataFlow
	Implementing Map/Reduce with PLINQ

	Chapter 11: There's More
	Introduction
	Using a timer in a Universal Windows Platform application
	Using WinRT from usual applications
	Using BackgroundTask in Universal Windows Platform applications
	Running a .NET Core application on OS X
	Running a .NET Core application on Ubuntu Linux

	Index

