
M A N N I N G Mala Gupta

www.allitebooks.com

http://www.allitebooks.org

OCA Java SE 8 Programmer I Certification Guide
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

OCA Java SE 8
Programmer I

Certification Guide

MALA GUPTA

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Francesco Bianchi
PO Box 761 Copy editor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Jean-François Morin
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617293252
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To Dheeraj, my pillar of strength
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents
Introduction 1

1 ■ Java basics 22

2 ■ Working with Java data types 92

3 ■ Methods and encapsulation 147

4 ■ Selected classes from the Java API and arrays 221

5 ■ Flow control 322

6 ■ Working with inheritance 384

7 ■ Exception handling 469

8 ■ Full mock exam 539
vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
preface xvii
acknowledgments xix
about this book xxi
about the author xxix
about the cover illustration xxx

Introduction 1
1 Disclaimer 2
2 Introduction to OCA Java SE 8 Programmer I

Certification 2
3 The importance of OCA Java SE 8 Programmer I

Certification 2
4 Comparing OCA Java exam versions 4
5 Next step: OCP Java SE 8 Programmer II (1Z0-809)

exam 8
6 Complete exam objectives, mapped to book chapters, and

readiness checklist 8
7 FAQs 10

FAQs on exam preparation 10 ■ FAQs on taking the exam 18

8 The testing engine used in the exam 20
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
1 Java basics 22
1.1 The structures of a Java class and a source code file 23

Structure of a Java class 24 ■ Structure and components of
a Java source code file 32

1.2 Executable Java applications 36
Executable Java classes versus non-executable Java classes 36
The main method 37 ■ Run a Java program from the
command line 39

1.3 Java packages 41
The need for packages 42 ■ Defining classes in a package using
the package statement 42 ■ Using simple names with import
statements 45 ■ Using packaged classes without using the
import statement 47 ■ Importing a single member versus all
members of a package 48 ■ The import statement doesn’t import
the whole package tree 49 ■ Importing classes from the default
package 50 ■ Static imports 50

1.4 Java access modifiers 51
Access modifiers 52 ■ Public access modifier 53 ■ Protected
access modifier 54 ■ Default access (package access) 57
private access modifier 61 ■ Access modifiers and
Java entities 62

1.5 Nonaccess modifiers 64
abstract modifier 65 ■ final modifier 66 ■ static modifier 67

1.6 Features and components of Java 72
Valid features and components of Java 72 ■ Irrelevant features
and components of Java 74

1.7 Summary 74
1.8 Review notes 75
1.9 Sample exam questions 79

1.10 Answers to sample exam questions 84

2 Working with Java data types 92
2.1 Primitive variables 93

Category: Boolean 95 ■ Category: signed numeric 96
Category: character (unsigned integer) 102 ■ Confusion with
the names of the primitive data types 104

2.2 Identifiers 105
Valid and invalid identifiers 105

CONTENTS xi
2.3 Object reference variables 106
What are object reference variables? 107 ■ Differentiating between
object reference variables and primitive variables 109

2.4 Operators 111
Assignment operators 112 ■ Arithmetic operators 115
Relational operators 119 ■ Logical operators 121
Operator precedence 123

2.5 Wrapper classes 125
Class hierarchy of wrapper classes 125 ■ Creating objects of the
wrapper classes 125 ■ Retrieving primitive values from the
wrapper classes 126 ■ Parsing a string value to a
primitive type 127 ■ Difference between using the valueOf
method and constructors of wrapper classes 128 ■ Comparing
objects of wrapper classes 128 ■ Autoboxing and unboxing 130

2.6 Summary 132
2.7 Review notes 132
2.8 Sample exam questions 136
2.9 Answers to sample exam questions 140

3 Methods and encapsulation 147
3.1 Scope of variables 149

Local variables 149 ■ Method parameters 151
Instance variables 152 ■ Class variables 153
Overlapping variable scopes 155

3.2 Object’s life cycle 158
An object is born 159 ■ Object is accessible 160
Object is inaccessible 161 ■ Garbage collection 163

3.3 Create methods with arguments and return values 166
Return type of a method 168 ■ Method parameters 169
Return statement 172

3.4 Create an overloaded method 174
Argument list 175 ■ Return type 177 ■ Access level 177

3.5 Constructors of a class 178
User-defined constructors 178 ■ Default constructor 183
Overloaded constructors 185

3.6 Accessing object fields 188
What is an object field? 188 ■ Read and write object fields 189
Calling methods on objects 192

CONTENTSxii
3.7 Apply encapsulation principles to a class 194
Need for encapsulation 195 ■ Apply encapsulation 195

3.8 Passing objects and primitives to methods 197
Passing primitives to methods 198 ■ Passing object references
to methods 199

3.9 Summary 202
3.10 Review notes 203
3.11 Sample exam questions 207
3.12 Answers to sample exam questions 212

4 Selected classes from the Java API and arrays 221
4.1 Welcome to the world of the String class 223

Creating String objects 223 ■ The class String is immutable 227
Methods of the class String 230 ■ String objects and
operators 235 ■ Determining equality of Strings 236

4.2 Mutable strings: StringBuilder 239
The StringBuilder class is mutable 239 ■ Creating StringBuilder
objects 240 ■ Methods of class StringBuilder 241 ■ A quick
note on the class StringBuffer 247

4.3 Arrays 247
What is an array? 248 ■ Array declaration 249
Array allocation 250 ■ Array initialization 252
Combining array declaration, allocation, and initialization 254
Asymmetrical multidimensional arrays 255 ■ Arrays of type
interface, abstract class, and class Object 256 ■ Members of
an array 258

4.4 ArrayList 258
Creating an ArrayList 259 ■ Adding elements to an
ArrayList 261 ■ Accessing elements of an ArrayList 263
Modifying the elements of an ArrayList 265 ■ Deleting the
elements of an ArrayList 266 ■ Other methods of ArrayList 267

4.5 Comparing objects for equality 273
The method equals in the class java.lang.Object 273
Comparing objects of a user-defined class 273 ■ Incorrect
method signature of the equals method 275 ■ Contract of the
equals method 276

4.6 Working with calendar data 278
LocalDate 279 ■ LocalTime 282 ■ LocalDateTime 285
Period 286 ■ DateTimeFormatter 291

CONTENTS xiii
4.7 Summary 297
4.8 Review notes 299
4.9 Sample exam questions 309

4.10 Answers to sample exam questions 313

5 Flow control 322
5.1 The if, if-else, and ternary constructs 324

The if construct and its flavors 324 ■ Missing else blocks 328
Implications of the presence and absence of {} in if-else
constructs 328 ■ Appropriate versus inappropriate expressions
passed as arguments to an if statement 331 ■ Nested if
constructs 332 ■ Ternary construct 334

5.2 The switch statement 338
Create and use a switch statement 339 ■ Comparing a switch
statement with multiple if-else constructs 339 ■ Arguments
passed to a switch statement 341 ■ Values passed to the label
case of a switch statement 343 ■ Use of break statements within
a switch statement 345

5.3 The for loop 346
Initialization block 348 ■ Termination condition 349
The update clause 349 ■ Optional parts of a for statement 350
Nested for loop 351

5.4 The enhanced for loop 352
Iteration with enhanced for loop 352 ■ Limitations of the
enhanced for loop 355 ■ Nested enhanced for loop 356

5.5 The while and do-while loops 358
The while loop 358 ■ The do-while loop 360
while and do-while block, expression, and nesting rules 362

5.6 Comparing loop constructs 362
Comparing do-while and while loops 362 ■ Comparing for and
enhanced for loops 363 ■ Comparing for and while loops 364

5.7 Loop statements: break and continue 364
The break statement 364 ■ The continue statement 366
Labeled statements 367

5.8 Summary 368
5.9 Review notes 369

5.10 Sample exam questions 372
5.11 Answers to sample exam questions 377

CONTENTSxiv
6 Working with inheritance 384
6.1 Inheritance with classes 385

The need to inherit classes 385 ■ Benefits 387 ■ A derived class
contains within it an object of its base class 390 ■ Which base class
members are inherited by a derived class? 391 ■ Which base class
members aren’t inherited by a derived class? 391 ■ Derived classes
can define additional properties and behaviors 391 ■ Abstract base
class versus concrete base class 392

6.2 Use interfaces 394
Need for using interfaces 396 ■ Defining interfaces 398
Types of methods in an interface 401 ■ Implementing a single
interface 405 ■ A class can’t extend multiple classes 407
A class can implement multiple interfaces 408 ■ Extending
interfaces 411 ■ Modifying existing methods of an interface 414
Properties of members of an interface 417

6.3 Reference variable and object types 418
Using a variable of the derived class to access its own object 418
Using a variable of a superclass to access an object of a derived
class 419 ■ Using a variable of an implemented interface to access
a derived class object 420 ■ The need for accessing an object using
the variables of its base class or implemented interfaces 421

6.4 Casting 424
How to cast a variable to another type 424
Need for casting 426

6.5 Use this and super to access objects and constructors 427
Object reference: this 427 ■ Object reference: super 430

6.6 Polymorphism 434
Polymorphism with classes 434 ■ Binding of variables and
methods at compile time and runtime 439 ■ Polymorphism
with interfaces 441

6.7 Simple lambda expressions 446
Comparing passing values with passing code to methods 446
Syntax of lambda expressions 449 ■ Interface Predicate 450

6.8 Summary 452
6.9 Review notes 453

6.10 Sample exam questions 456
6.11 Answers to sample exam questions 461

CONTENTS xv
7 Exception handling 469
7.1 Exceptions in Java 470

A taste of exceptions 470 ■ Why handle exceptions
separately? 473 ■ Does exception handling offer any
other benefits? 474

7.2 Categories of exceptions 475
Identifying exception categories 476 ■ Class hierarchy of
exception classes 476 ■ Checked exceptions 477
Runtime exceptions 478 ■ Errors 478

7.3 Creating a method that throws an exception 479
Create a method that throws a checked exception 480
Handle-or-declare rule 481 ■ Creating a method that throws
runtime exceptions or errors 481 ■ A method can declare to throw
all types of exceptions, even if it doesn’t 482

7.4 What happens when an exception is thrown? 483
Creating try-catch-finally blocks 485 ■ Using a method that throws
a checked exception 490 ■ Using a method that throws a runtime
exception 491 ■ Using a method that throws an error 493
Will a finally block execute even if the catch block defines a return
statement? 493 ■ What happens if both a catch and a finally block
define return statements? 494 ■ What happens if a finally block
modifies the value returned from a catch block? 495 ■ Can a try
block be followed only by a finally block? 496 ■ Does the order of the
exceptions caught in the catch blocks matter? 497 ■ Can I rethrow
an exception or the error I catch? 499 ■ Can I declare my methods
to throw a checked exception instead of handling it? 500 ■ I can
create nested loops, so can I create nested try-catch blocks too? 500
Should I handle errors? 502

7.5 Common exception classes and categories 503
ArrayIndexOutOfBoundsException and
IndexOutOfBoundsException 504 ■ ClassCastException 505
IllegalArgumentException 507 ■ NullPointerException 508
ArithmeticException 511 ■ NumberFormatException 514
ExceptionInInitializerError 516 ■ StackOverflowError 518
NoClassDefFoundError 519 ■ OutOfMemoryError 519

7.6 Summary 520
7.7 Review notes 520
7.8 Sample exam questions 526
7.9 Answers to sample exam questions 530

CONTENTSxvi
8 Full mock exam 539
8.1 Mock exam 539
8.2 Answers to mock exam questions 574

appendix Answers to Twist in the Tale exercises 641

index 659

preface
Java programmer certifications are designed to tell would-be employers whether you
really know your stuff, and cracking the OCA Java SE 8 Programmer Certification is
not an easy task. Thorough preparation is crucial if you want to pass the exam the first
time with a score that you can be proud of. You need to know Java inside-out, and you
need to understand the certification process so that you’re ready for the challenging
questions you’ll face in the exam.

 This book is a comprehensive guide to the 1Z0-808 exam. You’ll explore a wide
range of important Java topics as you systematically learn how to pass the certification
exam. Each chapter starts with a list of the exam objectives covered in that chapter.
Throughout the book you’ll find sample questions and exercises designed to reinforce
key concepts and prepare you for what you’ll see in the real exam, along with numerous
tips, notes, and visual aids.

 Unlike many other exam guides, this book provides multiple ways to digest impor-
tant techniques and concepts, including comic conversations, analogies, pictorial rep-
resentations, flowcharts, UML diagrams, and, naturally, lots of well-commented code.
The book also gives insight into common mistakes people make when taking the
exam, and guides you in avoiding traps and pitfalls. It provides

■ Complete coverage of exam topics, all mapped to chapter and section numbers
■ Hands-on coding exercises, including particularly challenging ones that throw

in a twist
xvii

PREFACExviii
■ Instruction on what’s happening behind the scenes using the actual code from
the Java API source

■ Mastery of both the concepts and the exam

This book is written for developers with a working knowledge of Java. My hope is that
the book will deepen your knowledge and prepare you well for the exam and that you
will pass it with flying colors!

acknowledgments
First and foremost, I thank Dheeraj—my pillar of strength, my best friend, and my
husband. His constant guidance, encouragement, and love kept me going. He helped
me to get started with this book and got me over the goal line.

 My sincere gratitude goes to Marjan Bace, publisher at Manning, for giving me the
opportunity to author this book. The Manning team has been wonderful—Michael
Stephens ensured that it was worth it for Manning to have a book on this subject.
Cynthia Kane, my development editor, is like sunshine. Not only did she help me with
the organization of individual chapters and the overall book, but she pulled me through
whenever the task of writing a book became overwhelming. It’s always a pleasure to
work with her. Copyeditor Linda Recktenwald not only applied her magic to sentence
and language constructions but also supplemented her editing with valuable sugges-
tions on technical content.

 Technical development editor Francesco Bianchi suggested multiple additions and
modifications, improving the content of this book. Technical proofreader Jean-François
Morin was outstanding in his review. He not only pointed out existing errors but also
suggested multiple improvements to the organization of the contents. Proofreader
Katie Tennant was extremely capable and talented. She reviewed the final manuscript
with great precision.

 The technical reviewers on this book did an awesome job of reviewing the con-
tents and sharing their valuable feedback and comments: Andrea Barisone, Andrea
Consentino, Anutosh Ghosh, David Blau, Marty Henderson, Mirsad Vojnikovic, Nicola
Pedot, Sanjiv Kumar, Simona Russo, Travis Nelson, and Ursin Stauss. I would also like
xix

ACKNOWLEDGMENTSxx
to thank Nicole Butterfield and Donna Clements, review editors, for managing the
whole review process and meticulously funneling the feedback to make this book better.

 Dennis Dalinnik did an outstanding job of converting the black-and-white hand-
drawn illustrations into glorious images. It was amazing to scrutinize the page proofs.
I also thank Dennis for adjusting the images in the final page proofs, which was a lot
of work. Janet Vail and Mary Piergies were awesome in their expertise at turning all
text, code, and images into publishable form. I am also grateful to Candace Gillhoolley
for her efforts in promoting the book.

 I thank the MEAP readers for buying the book while it was being developed and
for their suggestions, corrections, and encouragement.

 I would also like to thank my former colleagues Harry Mantheakis, Paul Rosenthal,
and Selvan Rajan, whose names I use in coding examples throughout the book. I have
always looked up to them.

 I thank my daughters, Shreya and Pavni, who often advised me on the images that
I created for the book. I thank my family for their unconditional support. The book
would have been not been possible without their love and encouragement.

about this book
This book is written for developers with a working knowledge of Java who want to earn
the OCA Java SE 8 Programmer Certification. It uses powerful tools and features to
make reaching your goal of certification a quick, smooth, and enjoyable experience.
This section explains the features used in the book and tells you how to use the book
to get the most out of it as you prepare for the certification exam. More information
on the exam and on how the book is organized is available in the Introduction.

Start your preparation with the chapter-based exam
objective map
I strongly recommend a structured approach to preparing for this exam. To help you
with this task, I developed a chapter-based exam objective map, as shown in figure 1.
The full version is in the Introduction (table I.3).

Exam objectives
Covered in chapter/

section

1 Java basics Chapters 1 and 3

1.3noitceSselbairav foepocseht enifeD1.1

1.1noitceSssalcavaJ afoerutcurtseht enifeD2.1

1.3 Create executable Java applications with a main method; run a Java program from Section 1.2

Figure 1 The Introduction to this book provides a list of all exam objectives and the corresponding
chapter and section numbers where they are covered. See the full table in the Introduction (table I.3).
xxi

ABOUT THIS BOOKxxii
The map in the Introduction shows the complete exam objective list mapped to the
relevant chapter and section numbers. You can jump to the relevant section number
to work on a particular exam topic.

Chapter-based objectives
Each chapter starts with a list of the exam objectives covered in that chapter, as shown
in figure 2. This list is followed by a quick comparison of the major concepts and top-
ics covered in the chapter with real-world objects and scenarios.

Section-based objectives
Each main section in a chapter starts by identifying the exam objective(s) that it cov-
ers. Each listed exam topic starts with the exam objective and its subobjective number.

 In figure 3, the number “4.4” refers to section 4.4 in chapter 4 (the complete list of
chapters and sections can be found in the table of contents). The number “9.4” pre-
ceding the exam objective refers to the objective’s numbering in the list of exam
objectives on Oracle’s website (the complete numbered list of exam objectives is given
in table I.3 in the Introduction).

Exam objectives covered in this chapter What you need to know

[1.2] Define the structure of a Java class. Structure of a Java class, with its components:
package and import statements, class declara-
tions, comments, variables, and methods.
Difference between the components of a Java
class and that of a Java source code file.

[1.3] Create executable Java applications with a
main method; run a Java program from the
command line; including console output.

The right method signature for the main method
to create an executable Java application.
The arguments that are passed to the main
method.

Figure 2 An example of the list of exam objectives and brief explanations at the beginning of each
chapter

4.4 ArrayList

In this section, I’ll cover how to use ArrayList, its commonly used methods, and the
advantages it offers over an array.

 The OCA Java SE 8 Programmer I exam covers only one class from the Java Collec-
tion API: ArrayList. The rest of the classes from the Java Collection API are covered
in the OCP Java SE 8 Programmer II exam (exam number 1Z0-809). One of the reasons

[9.4] Declare and use an ArrayList of a given type

Figure 3 An example of the beginning of a section, identifying the exam objective that it covers

ABOUT THIS BOOK xxiii
Exam tips
Each chapter provides multiple exam tips to reemphasize the points that are the most
confusing, overlooked, or frequently answered incorrectly by candidates and that
therefore require special attention for the exam. Figure 4 shows an example.

Notes
All chapters also include multiple notes that draw your attention to points that should
be noted while you’re preparing for the exam. Figure 5 shows an example.

Sidebars
Sidebars contain information that may not be directly relevant to the exam but that is
related to it. Figure 6 shows an example.

EXAM TIP An ArrayList preserves the order of insertion of its elements.
Iterator, ListIterator, and the enhanced for loop will return the ele-
ments in the order in which they were added to the ArrayList. An iterator
(Iterator or ListIterator) lets you remove elements as you iterate an
ArrayList. It’s not possible to remove elements from an ArrayList while
iterating it using a for loop.

Figure 4 Example of an exam tip; they occur multiple times in a chapter

NOTE Although the terms method parameters and method arguments are not the
same, you may have noticed that many programmers use them interchange-
ably. Method parameters are the variables that appear in the definition of a
method. Method arguments are the actual values that are passed to a method
while executing it. In figure 3.15, the variables phNum and msg are method
parameters. If you execute this method as sendMsg("123456", "Hello"),
then the String values "123456" and "Hello" are method arguments. As you
know, you can pass literal values or variables to a method. Thus, method argu-
ments can be literal values or variables.

Figure 5 Example note

static classes and interfaces
Certification aspirants frequently ask questions about static classes and inter-
faces, so I’ll quickly cover these in this section to ward off any confusion related to
them. But note that static classes and interfaces are types of nested classes and
interfaces that aren’t covered by the OCA Java 8 Programmer I exam.

You can’t prefix the definition of a top-level class or an interface with the keyword
static. A top-level class or interface is one that isn’t defined within another class or
interface. The following code will fail to compile:

static class Person {}

Figure 6 Example sidebar

ABOUT THIS BOOKxxiv
Images
I use a lot of images in the chapters for an immersive learning experience. I believe
that a simple image can help you understand a concept quickly, and a little humor can
help you to retain information longer.

 Simple images are used to draw your attention to a particular line of code (as shown
in figure 7).

I use pictorial representation of data in arrays (figure 8) and other data types to aid
visualization and understanding.

To reinforce important points and help you retain them longer, a little humor has been
added using comic strips (as in figure 9).

public String replace(char oldChar, char newChar) {

if (oldChar != newChar) {

// code to create a new char array and

// replace the desired char with the new char

return new String(0, len, buf);

}

return this;

}

replace creates and

returns a new String

object. It doesn’t modify

the existing array value.

Figure 7 An example image that draws your attention to a particular line of code

multiStrArr

null

0

1

2

0

1

0

1

2

A

B

Jan

Feb

Mar
Figure 8 An example pictorial representation
of data in an array

Figure 9 An example of a little humor to help you remember that the finally block always executes

ABOUT THIS BOOK xxv
I also use images to group and represent information for quick reference. Figure 10
shows an example of the protected members that can be accessed by derived or unre-
lated classes in the same or separate packages. I strongly recommend that you try to
create a few of your own figures like these.

An image can also add more meaning to a sequence of steps explained in the text. For
example, figure 11 seems to bring the Java compiler to life by allowing it to talk with
you and convey what it does when it gets to compile a class that doesn’t define a con-
structor. Again, try a few of your own! It’ll be fun!

The exam requires that you know multiple methods from classes such as String,
StringBuilder, ArrayList, and others. The number of these methods can be over-
whelming, but grouping these methods according to their functionality can make this
task a lot more manageable. Figure 12 shows an example of an image that groups
methods of the String class according to their functionality.

Same package

Unrelated classes

Derived classes

Separate package

Figure 10 An example of grouping and
representing information for quick reference

class Employee {

String name;

int age;

}

class Employee {

String name;

int age;

Employee() {

super();

}

}

Poor class
Employee doesn’t
have a constructor.

Let me create
one for it.

Default

constructor

Java

compiler

In

Out

Figure 11 An example pictorial representation of steps executed by the Java
compiler when it compiles a class without a constructor

String methods

Query position of chars

substringindexOfcharAt replacetrim endsWithstartsWithlength

Seem to modify String Others

Figure 12 An example image used to group methods of the String class according to their functionality

ABOUT THIS BOOKxxvi
Expressions that involve multiple operands can be hard to comprehend. Figure 13 is
an example of an image that can save you from the mayhem of unary increment and
decrement operators used in prefix and postfix notation.

Code snippets that define multiple points and that may result in the nonlinear execu-
tion of code can be very difficult to comprehend. These may include selection state-
ments, loops, or exception-handling code. Figure 14 is an example of an image that
clearly outlines the lines of code that will execute.

Twist in the Tale exercises
Each chapter includes a few Twist in the Tale exercises. For these exercises, I try to use
modified code from the examples already covered in a chapter, and the “Twist in the
Tale” title refers to modified or tweaked code. These exercises highlight how even

a = a++ + a + a-- - a-- + ++a;

Value of will increment aftera
this current value is used.

Because this is again a postfix notation,

value is used before the decrement.11

The value of a decrements to

9 due to a-- here, but again

increments to 10 due to ++a.

Value of increments to duea 11
to postfix used prior to this.++

Value of decrements to due toa 10
postfix used prior to this.--

Figure 13 Example of values taken by the operands during execution of an expression

1> RiverRafting riverRafting = new RiverRafting();
2> try {
3> riverRafting.crossRapid(11);
4> riverRafting.rowRaft("happy");
5> System.out.println("Enjoy River Rafting");
6> }
7> catch (FallingRiverException e1) {
8> System.out.println("Get back in the raft");
9> }
10> catch (DropOarException e2) {
11> System.out.println("Do not panic");
12> }
13> finally {
14> System.out.println("Pay for the sport");
15> }
16> System.out.println("After the try block");

1. Execute code on line 3.

Code on lines 4 and 5 won't
execute if line 3 throws an
exception.

2. Combat exception thrown by

code on line 3. Execute exception

handler for

FallInRiverException.

3. block alwaysfinally
executes, whether line 3 throws any

exception or not.

4. Control transfers to the

statement following the

try catch finally- - block.

Figure 14 An example of flow of control in a code snippet that may define multiple points of
nonlinear execution of code

ABOUT THIS BOOK xxvii
small code modifications can change the behavior of your code. They should encour-
age you to carefully examine all the code in the exam.

 My main reason for including these exercises is that on the real exam, you may get
to answer more than one question that seems to define exactly the same question and
answer options. But on closer inspection, you’ll realize that these questions differ
slightly and that these differences change the behavior of the code and the correct
answer option.

 The answers to all the Twist in the Tale exercises are given in the appendix.

Code indentation
Some of the examples in this book show incorrect indentation of code. This has been
done on purpose because on the real exam you can’t expect to see perfectly indented
code. You should be able to comprehend incorrectly indented code to answer an
exam question correctly.

Review notes
When you’re ready to take your exam, don’t forget to reread the review notes a day
before or on the morning of the exam. These notes contain important points from
each chapter as a quick refresher.

Exam questions
Each chapter concludes with a set of 10 or 11 exam questions. These follow the
same pattern as the real exam questions. Attempt these exam questions after com-
pleting a chapter.

Answers to exam questions
The answers to all exam questions provide detailed explanations, including why options
are correct or incorrect. Mark your incorrect answers and identify the sections that
you need to reread. If possible, draw a few diagrams—you’ll be amazed at how much
they can help you retain the concepts. Give it a try—it’ll be fun!

Author Online
The purchase of OCA Java SE 8 Programmer I Certification Guide includes free access to a
private forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and other users. You
can access and subscribe to the forum at www.manning.com/books/oca-java-se-8-
programmer-i-certification-guide. This page provides information on how to get on
the forum once you’re registered, what kind of help is available, and the rules of con-
duct in the forum.

http://www.manning.com/books/oca-java-se-8-programmer-i-certification-guide
http://www.manning.com/books/oca-java-se-8-programmer-i-certification-guide

ABOUT THIS BOOKxxviii
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest her interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

NOTE This book uses code styles that you are likely to see on the exam. It
often includes practices that aren’t recommended on real projects, like
poorly indented code or skipping values for brevity, among others, but this is
not meant to encourage you to use obscure coding practices.

about the author

Mala is passionate about making people employable by bridg-
ing the gap between their existing and required skills. In her
quest to fulfill this mission, she is authoring books to help IT
professionals and students succeed on industry-recognized
Oracle Java certifications.
 She has master’s degrees in computer applications along
with multiple other certifications from Oracle. With over 15
years of experience in IT as a developer, architect, trainer, and
mentor, she has worked with international training and soft-
ware services organizations on various Java projects. She is

experienced in mentoring teams on technical and software development processes.
 She is the founder and lead mentor of a portal (www.ejavaguru.com) that has

offered Java courses for Oracle certification since 2006.
 Mala is a firm believer in creativity as an essential life skill. To popularize the

importance of creativity, innovation, and design in life, she and her daughter started
KaagZevar (www.KaagZevar.com)—a platform for nurturing these values.
xxix

www.allitebooks.com

http://www.ejavaguru.com
http://www.KaagZevar.com
http://www.allitebooks.org

about the cover illustration
The figure on the cover of OCA Java SE 8 Programmer I Certification Guide is captioned
“Morning Habit of a Lady of Quality in Barbary—1700.” The illustration is taken from
Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four
volumes), London, published between 1757 and 1772. The title page states that these
are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys
(1719–1771) was called “Geographer to King George III.” He was an English cartogra-
pher who was the leading map supplier of his day. He engraved and printed maps for
government and other official bodies and produced a wide range of commercial maps
and atlases, especially of North America. His work as a mapmaker sparked an interest
in local dress customs of the lands he surveyed and mapped, which are brilliantly dis-
played in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other countries.
The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and
individuality of the world’s nations some 200 years ago. Dress codes have changed since
then and the diversity by region and country, so rich at the time, has faded away. It’s now
hard to tell apart the inhabitants of different continents, let alone different towns or
regions. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates
the inventiveness and initiative of the computer business with book covers based on the
rich diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures.
xxx

Introduction
This book is intended specifically for individuals who wish to earn the OCA Java SE
8 Programmer I Certification (exam number 1Z0-808). It assumes that you are
familiar with Java and have some experience working with it. If you’re completely
new to the Java programming language, I suggest that you start your journey with
an entry-level book and then come back to this one.

This introduction covers
■ Introduction to the Oracle Certified Associate (OCA) Java SE

8 Programmer I Certification (exam number 1Z0-808)
■ Importance of the OCA Java SE 8 Programmer certification
■ Comparison of the OCA Java SE 8 Programmer I exam to the

OCA Java SE 7 Programmer I exam
■ Comparison of the OCA Java SE 8 Programmer I exam (1Z0-

808) to the OCP Java SE 8 Programmer II exam (1Z0-809)
■ Detailed exam objectives, mapped to book chapters
■ FAQs on exam preparation and on taking the exam
■ Introduction to the testing engine used for the exam
1

2 Introduction
1 Disclaimer
The information in this chapter is sourced from Oracle.com, public websites, and user
forums. Input has been taken from real people who have earned Java certification,
including the author. All efforts have been made to maintain the accuracy of the con-
tent, but the details of the exam—including the exam objectives, pricing, exam pass
score, total number of questions, maximum exam duration, and others—are subject
to change per Oracle’s policies. The author and publisher of the book shall not be
held responsible for any loss or damage accrued due to any information contained in
this book or due to any direct or indirect use of this information.

2 Introduction to OCA Java SE 8 Programmer I Certification
The Oracle Certified Associate (OCA) Java SE 8 Programmer I exam (1Z0-808) covers the
fundamentals of Java SE 8 programming, such as the structure of classes and interfaces,
variables of different data types, methods, operators, arrays, decision constructs, and
loops. The exam includes handling exceptions and a few commonly used classes from the
Java API like String, StringBuilder, and ArrayList. This exam doesn’t include a lot of
Java 8–specific language features. It includes an introduction to functional-style program-
ming with lambda expressions. It partially covers the new Date and Time API.

 This exam is one of two steps to earning the title of Oracle Certified Professional
(OCP) Java SE 8 Programmer. It certifies that an individual possesses a strong founda-
tion in the Java programming language. Table 1 lists the details of this exam.

3 The importance of OCA Java SE 8 Programmer I Certification
The OCA Java SE 8 Programmer I exam (1Z0-808) is an entry-level exam in your Java
certification roadmap, as shown in figure 1.

 This exam is one of two steps to earn the title of OCP Java SE 8 Programmer. The
dashed lines and arrows in figure 1 depict the prerequisites for certification. OCP Java
Programmer certification (any Java version) is a prerequisite to earn most of the other
higher-level certifications in Java.

Table 1 Details for the OCA Java SE 8 Programmer I exam (1Z0-808)

Exam number 1Z0-808

Java version Based on Java version 8

Number of questions 77

Passing score 65%

Time duration 150 minutes

Pricing US$300

Type of questions Multiple choice

3The importance of OCA Java SE 8 Programmer I Certification
To earn the OCP Java SE 8 Programmer title, you must pass the following two certifica-
tions (in any order):

■ OCA Java SE 8 Programmer I (1Z0-808)
■ OCP Java SE 8 Programmer II (1Z0-809)

NOTE At the time of writing, Oracle made this exam a prerequisite for pass-
ing the 1Z0-809 exam. Earlier, Oracle allowed passing the 1Z0-808 and 1Z0-809
exams in any order. Even when this exam wasn’t a prerequisite for passing the

Associate Professional Expert Master

Java SE 7 Java SE 7

Java SE 5/6

Java SE 6

Developer

Java EE 6

Enterprise

Architect

Java SE

Java EE

Java SE 5/6

Java EE 6 Web

Component

Developer

Java EE 6

Enterprise

JavaBeans

Developer

Java EE 6 Web

Services

Developer

Java EE 6 Java

Persistence API

Developer

Java EE 6

JavaServer

Faces

Developer

Increasing difficulty level

Java SE 8

Java Junior

Associate 8

Java SE 8

Figure 1 OCA Java SE 8 Programmer certification is an entry-level certification in the Java certification
roadmap.

4 Introduction
1Z0-809 exam, it was highly recommended to write it first. The 1Z0-808 exam
covers the basics of Java, and 1Z0-809 covers advanced Java concepts.

Java Junior Associate (1Z0-811) is a newer certification, launched by Oracle in 2016.
It’s a novice-level certification for students at secondary schools, two-year colleges, and
four-year colleges and universities. All the other Java certifications are career-level cer-
tifications. As shown in figure 1, the Java certification tracks are offered under the cat-
egories Associate, Professional, Expert, and Master.

4 Comparing OCA Java exam versions
This section will clear up any confusion surrounding the different versions of the OCA
Java exam. As of now, Oracle offers three versions of the OCA certification in Java:

■ OCA Java SE 8 Programmer I (exam number: 1Z0-808)
■ OCA Java SE 7 Programmer I (exam number: 1Z0-803)
■ OCA Java SE 5/SE 6 (exam number: 1Z0-850)

Table 2 compares these exams on their target audience, Java version, question count,
duration, and passing score.

The OCA Java SE 8 Programmer I Certification adds the following topics to the ones
covered by the OCA Java SE 7 Programmer I Certification:

■ Features and components of Java
■ Wrapper classes
■ Ternary constructs
■ Some classes from the new Java 8 Date and Time API
■ Creating and using lambda expressions
■ Predicate interface

Table 2 Comparing exams: OCA Java SE 8 Programmer I, OCA Java SE 7 Programmer I, and OCA Java
SE 5/6

OCA Java SE 8
Programmer I (1Z0-803)

OCA Java SE 7
Programmer I (1Z0-803)

OCA Java SE 5/SE 6
(1Z0-850)

Target audience Java programmers Java programmers Java programmers and IT
managers

Java version 8 7 6

Total number of
questions

77 70 51

Exam duration 150 minutes 120 minutes 115 minutes

Passing score 65% 63% 68%

5Comparing OCA Java exam versions
Figure 2 shows a detailed comparison of the exam objectives of the OCA Java SE 8 and
OCA Java SE 7 Programmer I exams. Here’s the legend to understand it:

■ Light gray background—Main exam objective.
■ Yellow background—Covered only in the OCA Java SE 8 exam.
■ Green background—Although the text or main exam objective of this subobjec-

tive differs, it is covered by the other exam.

Use Java operators, including
parentheses to override operator
precedence
Ternary constructs

Manipulate data using the
StringBuilder class and
its methods
Creating and manipulating
Strings

Use Java operators
Use parenthesis to override
operator precedence

Create methods with
arguments and return values
Create an overloaded method
Differentiate between default
and user defined constructors
Create and overload
constructors

Develop code that uses wrapper
classes such as , ,Boolean Double
and Integer

Java basics
Define the scope of variables
Define the structure of a Java class
Create executable Java applications with

Import other Java packages to make them
accessible in your code

Declare and initialize variables (including
casting of primitive data types)
Differentiate between object reference
variables and primitive variables
Know how to read or write to object fields
Explain an object s lifecycle’

Test equality between Strings and other
objects using == and equals()
Create if and if/else and ternary

Use a switch statement

Declare, instantiate, initialize and use
a one-dimensional array
Declare, instantiate, initialize and use a
multi-dimensional array

Create and use loopswhile
Create and use loops, includingfor
the enhanced loopfor
Create and use loops/do while
Compare loop constructs
Use andbreak continue

Apply the keyword tostatic
methods and fields
Apply access modifiers
Apply encapsulation principles to a
class
Determine the effect upon object
references and primitive values when
they are passed into methods that
change the values

Create methods with arguments
and return values; including
overloaded methods
Create and overload constructors;
including impact on default
constructors

Declare and use an
ArrayList

Run a Java program from the command
line; including console output
Compare and contrast the features and
components of Java, such as platform
independence, object orientation,
encapsulation, and so on

Objectives common to both exams

Working with Java data types

OCA Java SE 7OCA Java SE 8

Using operators and decision constructs

Creating and using arrays

Using loop constructs

Working with methods and encapsulation

a main method

constructs

Figure 2 Comparing exam objectives of the OCA Java SE 8 Programmer I and OCA Java SE 7 Programmer I
certifications

6 Introduction
Figure 3 shows a detailed comparison of the exam objectives of OCA Java SE 5/6
(1Z0-850) and OCA Java SE 7 Programmer I (1Z0-803). It shows objectives that are
exclusive to each of these exam versions and those that are common to both. The first
column shows the objectives that are included only in OCA Java SE 5/6 (1Z0-850), the
middle column shows common exam objectives, and the right column shows exam
objectives covered only in OCA Java SE 7 Programmer I (1Z0-803).

Determine when casting is necessary

Use and to access objectssuper this
and constructors

Use abstract classes and interfaces

Differentiate among checked exceptions,

unchecked exceptions, and errors

Create a block and determinetry catch-
how exceptions alter normal program flow

Manipulate data using the

StringBuilder class and its methods

Creating and manipulating Strings

Create and manipulate calendar data

using classes from

java.time.LocalDateTime,
java.time.LocalDate,
java.time.LocalTime,
java.time.format.DateTime
 Formatter, java.time.Period
Declare and use an of aArrayList
given type

Write a simple lambda expression that

consumes a lambda predicate expression

Describe the advantages of exception

handling

Create and invoke a method that throws

an exception

Recognize common exception classes

(such as ,NullPointerException
ArithmeticException,
ArrayIndexOutOfBoundsException,
ClassCastException)

Describe inheritance and its benefits

Develop code that demonstrates the use

of polymorphism; including overriding

and object type versus reference type

Implement inheritance

Develop code that

demonstrates the use of

polymorphism

Differentiate between the type

of a reference and the type of

an object

Describe what exceptions are

used for in Java

Invoke a method that throws

an exception

Recognize common exception

classes and categories

Working with Inheritance

Handling exceptions

Working with selected classes from the Java API

Figure 2 Comparing exam objectives of the OCA Java SE 8 Programmer I and OCA Java SE 7 Programmer I
certifications (continued)

7Comparing OCA Java exam versions
OCA Java SE 5/6
1Z0-850

OCA Java SE 7 Programmer I
1Z0-803

Algorithm design and

implementation

Common objectives

Java basics

Java development fundamentals

Java platforms and

integration technologies

Loop constructs

Client technologies

Server technologies

OOP concepts

Handling exceptions

• Algorithm

• Pseudocode

• Enums • StringBuilder

• Parentheses to override
operator precedence

• Test equality between andString
other objects using and== equals()

• ArrayList• One-dimensional arrays

• Multidimensional arrays

• and enhanced loopsfor for

• and - loopswhile do while

• and statementsbreak continue

• Create methods with arguments

and return types

• Apply access modifiers

• Effect on object references and primitives

when they are passed to methods

• Implement inheritance

• Polymorphism

• Differentiate between type of
a reference variable and object

• Use abstract classes and interfaces

• Determine when casting is necessary

• Use and to access objectssuper this
and constructors

• Apply keyword to methodsstatic
and fields

• Overloaded constructors and methods

• Default and user-defined constructors

• Use of commandjavac

• Use of commandjava

• Purpose and type of classes
in packages

java.awt
javax.swing
java.io
java.net
java.util

• Java operators

• and constructsif if-else

• statementswitch

• Variable scope

• Structure of Java class

• and statementsimport package

• methodmain

• Primitives, object references

• Read/write to object fields

• Call methods on objects

• sString

• UML diagrams

• Association

• Composition

• Association navigation

• Exceptions and errors

• - blockstry catch
• Use of exceptions

• Methods that throw exceptions

• Common exception classes and
categories

• EJB, servlets, JSP, JMS, SMTP,
JAX-RBC, WebServices, JavaMail

• Servlet and JSP for HTML

• EJB session, entity, and
message-driven beans

• Web tier, business tier, EIS tier

• HTML, JavaScript

• J2ME MIDlets

• Applets

• Swing

• Compare and contrast
J2SE, J2ME, J2EE

• RMI

• JDBC, SQL, RDMS

• JNDI, messaging, and JMS

Working with Java data types

Operators and decision constructs

Creating and using arrays

Methods and encapsulation

Inheritance

Figure 3 Comparing objectives of exams OCA Java SE 5/6 and OCA Java SE 7 Programmer I

8 Introduction
5 Next step: OCP Java SE 8 Programmer II (1Z0-809) exam
After successfully passing the OCA Java SE 8 Programmer I exam, the next step is to
take the OCP Java SE 8 Programmer II exam. The OCP Java SE 8 Programmer II certi-
fication is designed for individuals who possess advanced skills in the Java program-
ming language. It covers advanced Java features such as threads, concurrency,
collections, the Streams API, Java file I/O, inner classes, localization, and others.

6 Complete exam objectives, mapped to book chapters,
and readiness checklist
Table 3 includes a complete list of exam objectives for the OCA Java SE 8 Programmer
I exam, which was taken from Oracle’s website. All the objectives are mapped to the
book’s chapters and the section numbers that cover them.

Table 3 Exam objectives and subobjectives mapped to chapter and section numbers

Exam objectives
Covered in chapter/

section

1 Java basics Chapters 1 and 3

1.1 Define the scope of variables Section 3.1

1.2 Define the structure of a Java class Section 1.1

1.3 Create executable Java applications with a main method; run a Java program from
the command line, including console output

Section 1.2

1.4 Import other Java packages to make them accessible in your code Section 1.3

1.5 Compare and contrast the features and components of Java, such as platform inde-
pendence, object orientation, encapsulation, and so on

Section 1.6

2 Working with Java data types Chapters 2 and 3

2.1 Declare and initialize variables (including casting of primitive data types) Sections 2.1 and 2.3

2.2 Differentiate between object reference variables and primitive variables Sections 2.1 and 2.3

2.3 Know how to read and write to object fields Section 3.6

2.4 Explain an object's lifecycle (creation, "dereference by reassignment," and garbage
collection)

Section 3.2

2.5 Develop code that uses wrapper classes such as Boolean, Double, and Integer Section 2.5

3 Using 0perators and decision constructs Chapters 2, 4, and 5

3.1 Use Java operators, including parentheses to override operator precedence Section 2.4

3.2 Test equality between Strings and other objects using == and equals() Sections 4.1 and 4.5

3.3 Create if and if/else and ternary constructs Section 5.1

3.4 Use a switch statement Section 5.2

4 Creating and using arrays Chapter 4

4.1 Declare, instantiate, initialize, and use a one-dimensional array Section 4.3

4.2 Declare, instantiate, initialize, and use a multidimensional array Section 4.3

9Complete exam objectives, mapped to book chapters, and readiness checklist
5 Using loop constructs Chapter 5

5.1 Create and use while loops Section 5.5

5.2 Create and use for loops, including the enhanced for loop Sections 5.3 and 5.4

5.3 Create and use do-while loops Section 5.5

5.4 Compare loop constructs Section 5.6

5.5 Use break and continue Section 5.7

6 Working with methods and encapsulation Chapters 1 and 3

6.1 Create methods with arguments and return values, including overloaded methods Sections 3.3 and 3.4

6.2 Apply the static keyword to methods and fields Section 1.5

6.3 Create and overload constructors, including impact on default constructors Section 3.5

6.4 Apply access modifiers Section 1.4

6.5 Apply encapsulation principles to a class Section 3.7

6.6 Determine the effect on object references and primitive values when they are passed
into methods that change the values

Section 3.8

7 Working with inheritance Chapters 1 and 6

7.1 Describe inheritance and its benefits Sections 6.1 and 6.2

7.2 Develop code that demonstrates the use of polymorphism, including overriding and
object type versus reference type

Sections 6.3 and 6.6

7.3 Determine when casting is necessary Section 6.4

7.4 Use super and this to access objects and constructors Section 6.5

7.5 Use abstract classes and interfaces Sections 1.5, 6.1, 6.2,
and 6.6

8 Handling exceptions Chapter 7

8.1 Differentiate among checked exceptions, unchecked exceptions, and errors Section 7.2

8.2 Create a try-catch block and determine how exceptions alter normal program flow Section 7.4

8.3 Describe the advantages of exception handling Section 7.1

8.4 Create and invoke a method that throws an exception Sections 7.3 and 7.4

8.5 Recognize common exception classes (such as NullPointerException,
ArithmeticException, ArrayIndexOutOfBoundsException, ClassCastException)

Section 7.5

9 Working with selected classes from the Java API Chapters 4 and 6

9.1 Manipulate data using the StringBuilder class and its methods Section 4.2

9.2 Creating and manipulating Strings Section 4.1

9.3 Create and manipulate calendar data using classes from java.time.Local-
DateTime, java.time.LocalDate, java.time.LocalTime,
java.time.format.DateTimeFormatter, and java.time.Period

Section 4.6

9.4 Declare and use an ArrayList of a given type Section 4.4

9.5 Write a simple lambda expression that consumes a lambda predicate expression Section 6.7

Table 3 Exam objectives and subobjectives mapped to chapter and section numbers

Exam objectives
Covered in chapter/

section

10 Introduction
7 FAQs
You might be anxious when you start your exam preparation or even when you think
about getting certified. This section can help calm your nerves by answering fre-
quently asked questions on exam preparation and taking the exam.

7.1 FAQs on exam preparation

This sections answers frequently asked questions on how to prepare for the exam,
including the best approach, study material, preparation duration, types of questions
in the exam, and more.

WILL THE EXAM DETAILS EVER CHANGE FOR THE OCA JAVA SE 8 PROGRAMMER I EXAM?
Oracle can change the exam details for a certification even after the certification is
made live. The changes can be to the exam objectives, pricing, exam duration, exam
questions, and other parts. In the past, Oracle has made similar changes to certifica-
tion exams. Such changes may not be major, but it’s always advisable to check Oracle’s
website for the latest exam information when you start your exam preparation.

WHAT IS THE BEST WAY TO PREPARE FOR THIS EXAM?
Generally, candidates use a combination of resources, such as books, online study
materials, articles on the exam, free and paid mock exams, and training to prepare for
the exam. Different combinations work best for different people, and there’s no one
perfect formula for preparation. Depending on whether training or self-study works
best for you, you can select the method that’s most appropriate for you. Combine it
with a lot of code practice and mock exams.

HOW DO I KNOW WHEN I AM READY FOR THE EXAM?
You can be sure about your exam readiness by consistently getting a good score in the
mock exams. Generally, a score of 80% and above in approximately three to five mock
exams (the more the better) attempted consecutively will assure you of a similar score
in the real exam.

HOW MANY MOCK TESTS SHOULD I ATTEMPT BEFORE THE REAL EXAM?
Ideally, you should attempt at least five mock exams before you attempt the real exam.
The more the better!

I HAVE TWO YEARS’ EXPERIENCE WORKING WITH JAVA. DO I STILL NEED TO PREPARE FOR
THIS CERTIFICATION?
It’s important to understand that there’s a difference between the practical knowl-
edge of having worked with Java and the knowledge required to pass this certification
exam. The authors of the Java certification exams employ multiple tricks to test your
knowledge. Hence, you need a structured preparation and approach to succeed in
the certification exam.

11FAQs
WHAT IS THE IDEAL TIME REQUIRED TO PREPARE FOR THE EXAM?
The preparation time frame mainly depends on your experience with Java and the
amount of time that you can spend to prepare yourself. On average, you will require
approximately 150 hours of study over two or three months to prepare for this exam.
Again, the number of study hours required depends on individual learning curves
and backgrounds.

 It’s important to be consistent with your exam preparation. You can’t study for a
month and then restart after, say, a gap of a month or more.

DOES THIS EXAM INCLUDE ANY UNSCORED QUESTIONS?
A few of the questions that you write in any Oracle exam may be marked unscored.
Oracle’s policy states that while taking an exam, you won’t be informed as to
whether a question will be scored. You may be surprised to learn that as many as 7
questions out of the 77 questions in the OCA Java SE 8 Programmer I exam may be
unscored. Even if you answer a few questions incorrectly, you stand a chance of scor-
ing 100%.

 Oracle regularly updates its question bank for all its certification exams. These
unscored questions may be used for research and to evaluate new questions that can
be added to an exam.

CAN I START MY EXAM PREPARATION WITH THE MOCK EXAMS?
If you are quite comfortable with the Java language features, then yes, you can start
your exam preparation with the mock exams. This will also help you to understand
the types of questions to expect in the real certification exam. But if you have little
or no experience working with Java, or if you’re not quite comfortable with the lan-
guage features of Java, I don’t advise you to start with the mock exams. The exam
authors often use a lot of tricks to evaluate a candidate in the real certification
exam. Starting your exam preparation with mock exams will only leave you confused
about the Java concepts.

SHOULD I REALLY BOTHER GETTING CERTIFIED?
Yes, you should, for the simple reason that employers care about the certification of
employees. Organizations prefer a certified Java developer over a noncertified Java
developer with similar IT skills and experience. The certification can also get you a
higher paycheck than uncertified peers with comparable skills.

DO I NEED TO MAKE ANY ASSUMPTIONS?
Yes, Oracle has published the following assumptions for candidates on its website (as
mentioned previously, Oracle might change the exam details or assumptions, without
any prior notice):

■ Missing package and import statements—If sample code doesn’t include package
or import statements, and the question doesn’t explicitly refer to these missing
statements, then assume that all sample code is in the same package, and import
statements exist to support them.

12 Introduction
■ No file or directory path names for classes—If a question doesn’t state the filenames
or directory locations of classes, then assume one of the following, whichever
will enable the code to compile and run:
– All classes are in one file.
– Each class is contained in a separate file, and all files are in one directory.

■ Unintended line breaks—Sample code might have unintended line breaks. If you
see a line of code that looks like it has wrapped, and this creates a situation where
the wrapping is significant (for example, a quoted String literal has wrapped),
assume that the wrapping is an extension of the same line, and the line doesn’t
contain a hard carriage return that would cause a compilation failure.

■ Code fragments—A code fragment is a small section of source code that’s pre-
sented without its context. Assume that all necessary supporting code is present
and that the supporting environment fully supports the correct compilation
and execution of the code shown and its omitted environment.

■ Descriptive comments—Take descriptive comments, such as “setter and getters go
here,” at face value. Assume that correct code exists, compiles, and runs success-
fully to create the described effect.

WHAT ARE THE TYPES OR FORMATS OF QUESTIONS THAT I CAN EXPECT IN THE EXAM?
The exam uses different formats of multiple choice questions, illustrated in this sec-
tion by eight example questions with figures.

 The examples for all these types of questions show how the following set of topics
might be tested using a different question format:

■ Correct declaration of the main method
■ Passing command-line parameters
■ Overloaded methods
■ Significance of method parameter names
■ Declaration of variables of varargs

Exam question type 1 (figure 4)—Includes simple code, but tricky or confusing answer
options.

The answer options in the following example would confuse a reader on whether the
command-line values would be concatenated or added as integer values:

Exam

question

type #1

Simple
code

Tricky or

confusing

answer options

= +

Figure 4 Exam question type 1

13FAQs
NOTE In this book, the sample exam questions at the end of each chapter
and full mock exam at the end of the book show answer options as lettered
(for example, a–d) for ease on discussion. In the exam, however, the answer
options aren’t numbered or lettered. They’re preceded with either a radio
button or a check box. Radio buttons are for questions with only one correct
answer, and check boxes are for questions with multiple correct answers.

Exam question type 2 (figure 5)—Exam questions without code give you a much
needed break from reading code. But it isn’t always easy to answer them.

An example of exam question, type 2:

Given:

class JavaCertQType1 {

public static void main(String... cmd) {

main("private", cmd);

}

private static void main(String type, String[] args) {

System.out.println(args[0] + args[1]);

}

}

What is the output when class JavaCertQType1 is executed using

the following command (choose 1 option):

java JavaCertQType1 1 11 EJava Guru

1

1 11

111

12

1 11 EJava Guru

Compilation error

Runtime exception

Exam

question

type #2

No

code

Answer options

with only

text

= +

Figure 5 Exam question type 2

Question2) Assuming that the phrase 'the method main' refers to the method

main that starts an application, select the correct statements (choose 2

options).

A class can define multiple methods with the name main, but with

different signatures.

The method main can define its only method parameter of type varargs.

Accessibility of the method main can't be restricted to private.

A class with overloaded main methods won't compile.

14 Introduction
Exam question type 3 (figure 6)—Reading though and comprehending lots of code can
be difficult. The key is to eliminate wrong answers to find the correct answers quickly.

An example:

Exam question type 4 (figure 7)—This type of question is a classic example of “fill in
the blank.”

Exam

question

type #3

Lots of

code

Answer options

with probable

code output

= +

Figure 6 Exam question type 3

Given:

class JavaCertQuesType3 {

public static void main(String args[]) {

System.out.println("Spring");

}

public static void main(String... args) {

System.out.println("Summer");

}

public static void main(String[] cmd) {

System.out.println("Autumn");

}

public static void main() {

System.out.println("Winter");

}

}

What is the output (choose 1 option)?

Code outputs Spring

Code outputs Summer

Code outputs Autumn

Code outputs Winter

Compilation error

Runtime exception

Exam

question

type #4

Code

//INSERT CODE HERE

Answer options:
a) Code 1

b) Code 2
c) Code 3

= +

Figure 7 Exam question type 4

15FAQs
An example:

Exam question type 5 (figure 8)—This question type will include code, a condition,
or both. The answer options will include changes and their results, when applied to
the code in the question. Unless otherwise stated, changes in the answer options
that you choose are applied individually to the code or the specified situation.
Result of a correct answer option won’t involve changes suggested in other correct
answer options.

Given:

class JavaCertQType4 {

static int c, a = 10, b = 21/2;

static {

c = a;

}

// INSERT CODE HERE

}

Which options, when inserted individually at //INSERT CODE HERE will

enable class JavaCertQType4 to output value 10 (choose 2)?

public static void main(String... variables) {

System.out.println(b);

}

private static void main(String[] commandArgs) {

System.out.println(b);

}

public static void main(String args) {

System.out.println(b);

}

private static void main() {

System.out.println(b);

}

public static void main(String... method) {

System.out.println(b);

}

Exam

question

type #5

Code

Answer options

including suggested

changes to code
= +

Figure 8 Exam question type 5

16 Introduction
An example:

Exam question type 6 (figure 9)—Because your mind is programmed to select the cor-
rect options, answer this type of question very carefully. My personal tip: cross fingers
in one of your hands to remind you that you need to select the incorrect statements.

An example:

Given:

1. class JavaCertQType5 {

2. protected static void main() {

3. System.out.println("EJavaGuru.com");

4. }

5. public static void main(String... method) {

6. main();

7. System.out.println("MissionOCAJ8");

8. }

9. }

Select correct option (choose 2):

Code will compile successfully if code on line 6 is commented.

Code will output the same result if access modifier of main() is

changed to private at line 2.

Code won't compile if code on line 6 is placed after code on line 7.

The code compiles successfully, but throws a runtime exception.

Exam

question

type #6

Code

Select

incorrect

options
= +

Figure 9 Exam question type 6

Given:

1. class JavaCertQType6 {

2. public static void main(String... method) {

3. main();

4. main(method);

5. }

6. protected static void main() {

7. System.out.println("EJavaGuru");

8. }

9. }

Select incorrect options (choose 2):

Code will compile successfully only if code on line 3 is commented.

Code will output the same result if access modifier of main() is

changed to public at line 6.

Code will compile sucessfully and execute without any runtime

exceptions.

If the order of code on lines 3 and 4 is reversed, the code won't

output 'EJavaGuru'.

17FAQs
Exam question type 7 (figure 10)—This question won’t include any code in the text of
the question; it will state a condition that needs to be implemented using code given
in the answer options.

An example:

Exam question type 8 (figure 11)—This question includes a pictorial representation
of a single or multidimensional array, stating a situation and asking you to select code
as input to get the required array formation.

Exam

question

type #7

No

code

Answer options

with code
= +

Figure 10 Exam question type 7

Which of the following options can be used to define a main method that

outputs the value of the second and fourth command parameters (choose 2):

public static void main(String... method) {

for (int i = 1; i < method.size && i < 6; i = i + 2)

System.out.println(method[i]);

}

public static void main(String[] main) {

for (int i = 1; i < main.length && i < 6; i = i + 2)

System.out.println(main[i]);

}

public static void main(String... arguments) {

int ctr = 0;

while (ctr < arguments.length) {

if (ctr >= 4) break;

if (ctr %2 != 0)

System.out.println(arguments[ctr]);

++ctr;

}

}

public static void main(String[] arguments) {

int ctr = 1;

while (ctr < arguments.length) {

if (ctr >= 4) break;

if (ctr %2 == 0)

System.out.println(arguments[ctr]);

++ctr;

}

}

Exam

question

type #8

Diagram

representing

the code

Answer options

as code
= +

Figure 11 Exam question type 8

18 Introduction
An example:

7.2 FAQs on taking the exam

This section contains a list of frequently asked questions related to the exam registra-
tion, exam coupon, do’s and don’ts while taking the exam, and exam retakes.

WHERE AND HOW DO I TAKE THIS EXAM?
You can take this exam at an Oracle Testing Center or Pearson VUE Authorized Test-
ing Center. To sit for the exam, you must register for the exam and purchase an exam
voucher. The following options are available:

■ Register for the exam and pay Pearson VUE directly
■ Purchase an exam voucher from Oracle and register at Pearson VUE to take

the exam
■ Register at an Oracle Testing Center

Look for the nearest testing centers in your area, register yourself, and schedule an
exam date and time. Most of the popular computer training institutes also have a testing
center on their premises. You can locate a Pearson VUE testing site at www.pearsonvue
.com/oracle/, which contains detailed information on locating testing centers and

Assuming that the following array and image represents variation of

Connect4 game, where a player wins if she places same number in a row or

column:

char[][] grid = new char[][]{{'7',' ',' ',' '},{'5','7',' ','5'},

{'7','7','5','5'},{'5','7','7','5'}};

Which of the following assignments would enable a player with number 7

to win (choose 2 options)?

grid[0] = new char[]{'7','7',' ',' '};

grid[1] = new char[]{'7','7',' ',' '};

grid[0] = {'7','7',' ',' '};

grid[1] = {'7','7',' ',' '};

grid[0][1] = '7';

grid[1][2] = '7';

grid[0] = new char[4]{'7','7',' ',' '};

grid[1] = new char[4]{'7','7',' ',' '};

7

5 7 5

7 7 5 5

5 7 7 5

http://www.pearsonvue.com/oracle/
http://www.pearsonvue.com/oracle/

19FAQs
scheduling or rescheduling an exam. At the time of registration, you’ll need to pro-
vide the following details along with your name, address, and contact numbers:

■ Exam title and number (OCA Java SE 8 Programmer I, 1Z0-808)
■ Any discount code that should be applied during registration
■ Oracle Testing ID/Candidate ID, if you’ve taken any other Oracle/Sun certifi-

cation exam
■ Your OPN Company ID (if your employer is in the Oracle Partner Network, you

can find out the company ID and use any available discounts on the exam fee)

SHOULD I CARRY MY PHOTO ID PROOF OR ANY OTHER PROOF?
The examination center coordinator will ask you for at least two ID proofs, one of
which must include your photograph. If in doubt, please connect with your examina-
tion center using email or phone and inquire about the ID requirements.

HOW LONG IS THE EXAM COUPON VALID?
Each exam coupon is printed with an expiry date. Beware of any discounted coupons
that come with an assurance that they can be used past the expiration date.

CAN I REFER TO NOTES OR BOOKS WHILE TAKING THIS EXAM?
You can’t refer to any books or notes while taking this exam. You’re not allowed to
carry any blank paper for rough work or even your mobile phone inside the testing
cubicle.

WHAT IS THE PURPOSE OF MARKING A QUESTION WHILE TAKING THE EXAM?
By marking a question, you can manage your time efficiently. Don’t spend a lot of
time on a single question. You can mark a difficult question to defer answering it while
taking your exam. The exam gives you an option to review answers to the marked
questions at the end of the exam. Also, navigating from one question to another using
the Back and Next buttons is usually time consuming. If you’re unsure of an answer,
mark it and review it at the end.

CAN I WRITE DOWN THE EXAM QUESTIONS AND TAKE THEM WITH ME?
No. The exam centers no longer provide sheets of paper for the rough work that you
may need to do while taking the exam. The testing center will provide you with either
erasable or non-erasable boards. If you’re provided with a non-erasable board, you
may request another one if you need it.

 Oracle is quite particular about certification candidates distributing or circulating
the memorized questions in any form. If Oracle finds out that this is happening, it
may cancel a candidate’s certificate, bar that candidate forever from taking any Oracle
certification, inform the employer, or take legal action.

WHAT HAPPENS IF I COMPLETE THE EXAM BEFORE OR AFTER THE TOTAL TIME?
If you complete the exam before the total exam time has elapsed, revise your answers
and click the Submit or Finish button. If you have not clicked the Submit button and
you use up all the exam time, the exam engine will no longer allow you to modify any
of the exam answers and will present the screen with the Submit button.
www.allitebooks.com

http://www.allitebooks.org

20 Introduction
WILL I RECEIVE MY SCORE IMMEDIATELY AFTER THE EXAM?
No, you won’t. When you click the Submit button, the screen will request you to log in
to your Oracle account (CertView) after approximately half an hour to view your
score. It also includes the topics you answered incorrectly. The testing center won’t
give you any hard copies of your certification score. The certificate itself will arrive via
mail within six to eight weeks.

WHAT HAPPENS IF I FAIL? CAN I RETAKE THE EXAM?
It’s not the end of the world. Don’t worry if you fail. You can retake the exam after 14
days (and the world won’t know it’s a retake).

 But you can’t retake a passed exam to improve your score. Also, you can’t retake a
beta exam.

8 The testing engine used in the exam
The user interface of the testing engine used for the certification exam is quite sim-
ple. (You could even call it primitive, compared to today’s web, desktop, and smart-
phone applications.)

 Before you can start the exam, you will be required to accept the terms and condi-
tions of the Oracle Certification Candidate Agreement. Your computer screen will dis-
play all these conditions and give you an option to accept the conditions. You can
proceed with writing the exam only if you accept these conditions.

 Here are the features of the testing engine used by Oracle:

■ Engine UI is divided into three sections—The UI of the testing engine is divided
into the following three segments:
– Static upper section—Displays question number, time remaining, and a check

box to mark a question for review
– Scrollable middle section—Displays the question text and the answer options
– Static bottom section—Displays buttons to display the previous question, display

the next question, end the exam, and review marked questions
■ Each question is displayed on a separate screen—The exam engine displays one ques-

tion on the screen at a time. It doesn’t display multiple questions on a single
screen, like a scrollable web page. All effort is made to display the complete
question and answer options without scrolling, or with little scrolling.

■ Code Exhibit button—Many questions include code. Such questions, together
with their answers, may require significant scrolling to be viewed. Because this
can be quite inconvenient, such questions include a Code Exhibit button that
displays the code in a separate window.

■ Mark questions to be reviewed—The question screen displays a check box with the
text “Mark for review” at the top-left corner. A question can be marked using this
option. The marked questions can be quickly reviewed at the end of the exam.

■ Buttons to display the previous and next questions—The test includes buttons to display
the previous and next questions within the bottom section of the testing engine.

21The testing engine used in the exam
■ Buttons to end the exam and review marked questions—The engine displays buttons
to end the exam and to review the marked questions in the bottom section of
the testing engine.

■ Remaining time—The engine displays the time remaining for the exam at the
top right of the screen.

■ Question number—Each question displays its serial number.
■ Correct number of answer options—Each question displays the correct number of

options that should be selected from multiple options.

On behalf of all at Manning Publications, I wish you good luck and hope that you
score very well on your exam.

Java basics
Exam objectives covered in this chapter What you need to know

[1.2] Define the structure of a Java class. Structure of a Java class, with its components:
package and import statements, class declara-
tions, comments, variables, and methods.
Difference between the components of a Java
class and that of a Java source code file.

[1.3] Create executable Java applications with a
main method; run a Java program from the
command line; including console output.

The right method signature for the main method
to create an executable Java application.
The arguments that are passed to the main
method.

[1.4] Import other Java packages to make them
accessible in your code.

Understand packages and import statements. Get
the right syntax and semantics to import classes
from packages and interfaces in your own classes.

[6.4] Apply access modifiers. Application of access modifiers (public,
protected, default, and private) to a class
and its members. Determine the accessibility of
code with these modifiers.

[7.5] Use abstract classes and interfaces. The implication of defining classes, interfaces,
and methods as abstract entities.

[6.2] Apply the static keyword to methods
and fields.

The implication of defining fields and methods as
static members.

[1.5] Compare and contrast the features and
components of Java such as: platform indepen-
dence, object orientation, encapsulation, etc.

The features and components that are relevant or
irrelevant to Java.
22

23The structures of a Java class and a source code file
Imagine you’re setting up a new IT organization that works with multiple developers.
To ensure smooth and efficient working, you’ll define a structure for your organiza-
tion and a set of departments with separate responsibilities. These departments will
interact with each other whenever required. Also, depending on confidentiality require-
ments, your organization’s data will be available to employees on an as-needed basis,
or you may assign special privileges to only some employees of the organization. This
is an example of how organizations might work with a well-defined structure and a set
of rules to deliver the best results.

 Similarly, Java has a well-defined structure and hierarchy. The organization’s struc-
ture and components can be compared with Java’s class structure and components,
and the organization’s departments can be compared with Java packages. Restricting
access to some data in the organization can be compared to Java’s access modifiers.
An organization’s special privileges can be compared to nonaccess modifiers in Java.

 In the OCA Java SE 8 Programmer I exam, you’ll be asked questions on the struc-
ture of a Java class, packages, importing classes, and applying access and nonaccess
modifiers and features and components of Java. Given that information, this chapter
will cover the following:

■ The structure and components of a Java class
■ Understanding executable Java applications
■ Understanding Java packages
■ Importing Java packages into your code
■ Applying access and nonaccess modifiers
■ Features and components of Java

1.1 The structures of a Java class and a source code file

NOTE When you see a certification objective callout such as the preceding one,
it means that in this section we’ll cover this objective. The same objective may
be covered in more than one section in this chapter or in other chapters.

This section covers the structures and components of both a Java source code file
(.java file) and a Java class (defined using the keyword class). It also covers the differ-
ences between a Java source code file and a Java class.

 First things first. Start your exam preparation with a clear understanding of what’s
required from you in the certification exam. For example, try to answer the following
query from a certification aspirant: “I come across the term ‘class’ with different
meanings: class Person, the Java source code file (Person.java), and Java bytecode
stored in Person.class. Which of these structures is on the exam?” To answer this ques-
tion, take a look at figure 1.1, which includes the class Person, the files Person.java
and Person.class, and the relationship between them.

[1.2] Define the structure of a Java class

24 CHAPTER 1 Java basics
As you can see in figure 1.1, a person can be defined as a class Person. This class
should reside in a Java source code file (Person.java). Using this Java source code file,
the Java compiler (javac.exe on Windows or javac on Mac OS X/Linux/UNIX) gener-
ates bytecode (compiled code for the Java Virtual Machine) and stores it in Person.class.
The scope of this exam objective is limited to Java classes (class Person) and Java source
code files (Person.java).

1.1.1 Structure of a Java class

The OCA Java SE 8 Programmer I exam will question you on the structure and com-
ponents of a Java source file and the classes or interfaces that you can define in it. Fig-
ure 1.2 shows the components of a Java class file (interfaces are covered in detail in
chapter 6).

 In this section, I’ll discuss all Java class file components. Let’s get started with the
package statement.

A person

class Person {

String name;

String getName() {

return name;

}

}

Person.java Person.class

class Person {

}

Java
compiler

In

Out

Java bytecode

Defined as

Resides in

Java source code fileClass Person

Figure 1.1 Relationship between the class file Person and the files Person.java and Person.class and
how one transforms into another

Package statement

Import statements

Comments

Class declaration {

Variables

Comments

Constructors

Methods

Nested classes

Nested interfaces

Enum

}

1
2
3a
4
5

6
3b

7

Not included in OCA Java SE 8
Programmer I exam

Java class components

Figure 1.2 Components
of a Java class

25The structures of a Java class and a source code file
NOTE The code in this book doesn’t include a lot of spaces—it imitates the
kind of code that you’ll see on the exam. But when you work on real projects,
I strongly recommend that you use spaces or comments to make your code
readable.

PACKAGE STATEMENT

All Java classes are part of a package. A Java class can be explicitly defined in a named
package; otherwise, it becomes part of a default package, which doesn’t have a name.

 A package statement is used to explicitly define which package a class is in. If a class
includes a package statement, it must be the first statement in the class definition:

package certification;
class Course {

}

NOTE Packages are covered in detail in section 1.3 of this chapter.

The package statement can’t appear within a class declaration or after the class decla-
ration. The following code will fail to compile:

class Course {

}
package certification;

The following code will also fail to compile, because it places the package statement
within the class definition:

class Course {
package com.cert;
}

Also, if present, the package statement must appear exactly once in a class. The follow-
ing code won’t compile:

package com.cert;
package com.exams;
class Course {
}

IMPORT STATEMENT

Classes and interfaces in the same package can use each other without prefixing their
names with the package name. But to use a class or an interface from another pack-
age, you must use its fully qualified name, that is, packageName.anySubpackageName

.ClassName. For example, the fully qualified name of class String is java.lang.String.

The package statement
should be the first
statement in a class.The rest of the code

for class Course

The rest of the code for class Course

If you place the package statement after the
class definition, the code won’t compile.

A package statement can’t be placed within
the curly braces that mark the start and
end of a class definition.

A class can’t define multiple
package statements.

26 CHAPTER 1 Java basics
Because using fully qualified names can be tedious and can make your code difficult
to read, you can use the import statement to use the simple name of a class or inter-
face in your code.

 Let’s look at this using an example class, AnnualExam, which is defined in the pack-
age university. Class AnnualExam is associated with the class certification.Exam-

Question, as shown using the Unified Modeling Language (UML) class diagram in
figure 1.3.

NOTE A UML class diagram represents the static view of an application. It
shows entities like packages, classes, interfaces, and their attributes (fields and
methods) and also depicts the relationships between them. It shows which
classes and interfaces are defined in a package. It depicts the inheritance rela-
tionship between classes and interfaces. It can also depict the associations
between them—when a class or an interface defines an attribute of another
type. All UML representations in this chapter are class diagrams. The exam
doesn’t cover UML diagrams. But using these quick and simple diagrams sim-
plifies the relationship between Java entities—both on the exam and in your
real-world projects.

NOTE Throughout this book, bold font will be used to indicate specific parts
of code that we’re discussing, or changes or modifications in code.

Here’s the code for class AnnualExam:

package university;
import certification.ExamQuestion;
class AnnualExam {
 ExamQuestion eq;
}

Note that the import statement follows the package statement but precedes the class

declaration. What happens if the class AnnualExam isn’t defined in a package? Will
there be any change in the code if the classes AnnualExam and ExamQuestion are
related, as depicted in figure 1.4?

university certification

AnnualExam ExamQuestion
Figure 1.3 UML representation of the
relationship between class AnnualExam
and ExamQuestion

Define a variable
of ExamQuestion

certification

AnnualExam ExamQuestion Figure 1.4 Relationship between the package-
less class AnnualExam and ExamQuestion

27The structures of a Java class and a source code file
In this case, the class AnnualExam isn’t part of an explicit package, but the class
ExamQuestion is part of the package certification. Here’s the code for the class
AnnualExam:

import certification.ExamQuestion;
class AnnualExam {
 ExamQuestion eq;
}

As you can see in the previous example code, the class AnnualExam doesn’t define the
package statement, but it defines the import statement to import the class certifi-

cation.ExamQuestion.
 If a package statement is present in a class, the import statement must follow

the package statement. It’s important to maintain the order of the occurrence of the
package and import statements. Reversing this order will result in your code failing
to compile:

import certification.ExamQuestion;
package university;
class AnnualExam {
 ExamQuestion eq;
}

We’ll discuss import statements in detail in section 1.3 of this chapter.

COMMENTS

You can also add comments to your Java code. Comments can appear at multiple
places in a class. A comment can appear before and after a package statement, before
and after the class definition, as well as before and within and after a method defini-
tion. Comments come in two flavors: multiline comments and end-of-line comments.

 Multiline comments span multiple lines of code. They start with /* and end with
*/. Here’s an example:

class MyClass {
 /*
 comments that span multiple
 lines of code
 */
}

Multiline comments can contain special characters. Here’s an example:

class MyClass {
 /*
 Multi-line comments with
 special characters &%^*{}|\|:;"'
 ?/>.<,!@#$%^&*()
 */
}

Define a variable
of ExamQuestion

The code won’t compile because an
import statement can’t be placed
before a package statement.

Multiline comments start
with /* and end with */.

Multiline comment with
special characters in it

28 CHAPTER 1 Java basics
In the preceding code, the comments don’t start with an asterisk on every line. But most
of the time when you see a multiline comment in a Java source code file (.java file),
you’ll notice that it uses an asterisk (*) to start the comment in the next line. Please note
that this isn’t required—it’s done more for aesthetic reasons. Here’s an example:

class MyClass {
 /*
 * comments that span multiple
 * lines of code
 */
}

End-of-line comments start with // and, as evident by their name, they’re placed at
the end of a line of code or on a blank line. The text between // and the end of the
line is treated as a comment, which you’d normally use to briefly describe the line of
code. Here’s an example:

class Person {
 String fName; // variable to store Person's first name
 String id; // a 6 letter id generated by the database
}

Though usage of multiline comments in the following code is uncommon, the exam
expects you to know that the code is valid:

String name = /* Harry */ "Paul";
System.out.println(name);

Here’s what happens if you include multiline comments within quotes while assigning
a string value:

String name = "/* Harry */ Paul";
System.out.println(name);

When included within double quotes, multiline comments are treated as regular char-
acters and not as comments. So the following code won’t compile because the value
assigned to variable name is an unclosed string literal value:

String name = "Shre /* ya
 */ Paul";
System.out.println(name);

In the earlier section on the package statement, you read that a package statement, if
present, should be the first line of code in a class. The only exception to this rule is

Multiline comments that start with * on a
new line—don’t they look well organized?
The usage of * isn’t mandatory; it’s done
for aesthetic reasons.

Brief comment to describe variable fName

Brief comment to describe variable id

Outputs Paul

Outputs /*
Harry */ Paul

Won’t
compile

29The structures of a Java class and a source code file
the presence of comments. A comment can precede a package statement. The follow-
ing code defines a package statement, with multiline and end-of-line comments:

/**
 * @author MGupta // first name initial + last name
 * @version 0.1
 *
 * Class to store the details of a monument
 */
package uni; // package uni
class Monument {
 int startYear;
 String builtBy; // individual/ architect
}
// another comment

Line B defines an end-of-line code comment within multiline code. This is accept-
able. The end-of-line code comment is treated as part of the multiline comment, not
as a separate end-of-line comment. Lines c and d define end-of-line code com-
ments. Line e defines an end-of-line code comment at the start of a line, after the
class definition.

 The multiline comment is placed before the package statement, which is accept-
able because comments can appear anywhere in your code.

CLASS DECLARATION

The class declaration marks the start of a class. It can be as simple as the keyword
class followed by the name of a class:

class Person {
//..
//..
}

The declaration of a class is composed of the following parts:

■ Access modifiers
■ Nonaccess modifiers
■ Class name

Javadoc comments
Javadoc comments are special comments that start with /** and end with */ in a
Java source file. These comments are processed by Javadoc, a JDK tool, to generate
API documentation for your Java source code files. To see it in action, compare the
API documentation of the class String and its source code file (String.java).

End-of-line
comment within a
multiline commentb

End-of-line commentc

End-of-line commentd

End-of-line comment at
the beginning of a linee

Simplest class declaration: keyword
class followed by the class name

A class can define a lot of things here, but we don’t
need these details to show the class declaration.

30 CHAPTER 1 Java basics
■ Name of the base class, if the class is extending another class
■ All implemented interfaces, if the class is implementing any interfaces
■ Class body (class fields, methods, constructors), included within a pair of curly

braces, {}

Don’t worry if you don’t understand this material at this point. We’ll go through these
details as we move through the exam preparation.

 Let’s look at the components of a class declaration using an example:

public final class Runner extends Person implements Athlete {}

The components of the preceding class declaration can be illustrated as shown in fig-
ure 1.5.

Table 1.1 summarizes the compulsory and optional components.

We’ll discuss the access and nonaccess modifiers in detail in sections 1.4 and 1.5 in
this chapter.

Table 1.1 Components of a class declaration

Mandatory Optional

Keyword class Access modifier, such as public

Name of the class Nonaccess modifier, such as final

Class body, marked by the opening and closing
curly braces, {}

Keyword extends together with the name of the
base class

Keyword implements together with the names of
the interfaces being implemented

public

Access

modifier

final class Runner extends Person implements Athlete {}

Nonaccess

modifier

Keyword

class
Name of

class
Keyword

extends

Keyword

implements
Base

class

name

Name of

implemented

interface

Curly

braces

Optional Optional Optional Optional Optional OptionalCompulsory Compulsory Compulsory

Class declaration components

Figure 1.5 Components of a class declaration

31The structures of a Java class and a source code file
CLASS DEFINITION

A class is a design used to specify the attributes and behavior of an object. The attri-
butes of an object are implemented using variables, and the behavior is implemented
using methods. For example, consider a class as being like the design or specification of
a mobile phone, and a mobile phone as being an object of that design. The same
design can be used to create multiple mobile phones, just as the Java Virtual Machine
(JVM) uses a class to create its objects. You can also consider a class as being like a
mold that you can use to create meaningful and useful objects. A class is a design from
which an object can be created.

 Let’s define a simple class to represent a mobile phone:

class Phone {
 String model;
 String company;
 Phone(String model) {
 this.model = model;
 }
 double weight;
 void makeCall(String number) {
 // code
 }
 void receiveCall() {
 // code
 }
}

Points to remember:

■ A class name starts with the keyword class. Watch out for the case of the key-
word class. Java is cAsE-sEnSiTivE. class (lowercase c) isn’t the same as Class

(uppercase C). You can’t use the word Class (uppercase C) to define a class.
■ The state of a class is defined using attributes or instance variables.
■ It isn’t compulsory to define all attributes of a class before defining its methods

(the variable weight is defined after Phone’s constructor). But this is far from
being optimal for readability.

■ The behavior is defined using methods, which may include method parameters.
■ A class definition may also include comments and constructors.

NOTE A class is a design from which an object can be created.

VARIABLES

Revisit the definition of the class Phone in the previous example. Because the variables
model, company, and weight are used to store the state of an object (also called an
instance), they’re called instance variables or instance attributes. Each object has its own
copy of the instance variables. If you change the value of an instance variable for an
object, the value for the same named instance variable won’t change for another object.
The instance variables are defined within a class but outside all methods in a class.

32 CHAPTER 1 Java basics
 A single copy of a class variable or static variable is shared by all the objects of a
class. The static variables are covered in section 1.5.3 with a detailed discussion of
the nonaccess modifier static.

METHODS
Again, revisit the previous example. The methods makeCall and receiveCall are
instance methods, which are generally used to manipulate the instance variables.

 A class method or static method can be used to manipulate the static variables, as dis-
cussed in detail in section 1.5.3.

CONSTRUCTORS

Class Phone in the previous example defines a single constructor. A class constructor is
used to create and initialize the objects of a class. A class can define multiple construc-
tors that accept different sets of method parameters.

1.1.2 Structure and components of a Java source code file

A Java source code file is used to define Java entities such as a class, interface, enum,
and annotation.

NOTE Java annotations are not on the exam and so won’t be discussed in
this book.

All your Java code should be defined in Java source code files (text files whose names
end with .java). The exam covers the following aspects of the structure of a Java source
code file:

■ Definition of a class and an interface in a Java source code file
■ Definition of single or multiple classes and interfaces within the same Java

source code file
■ Application of import and package statements to all the classes in a Java source

code file

We’ve already covered the detailed structure and definition of classes in section 1.1.1.
Let’s get started with the definition of an interface.

DEFINITION OF AN INTERFACE IN A JAVA SOURCE CODE FILE

An interface specifies a contract for the classes to implement. You can compare imple-
menting an interface to signing a contract. An interface is a grouping of related meth-
ods and constants. Prior to Java 8, interface methods were implicitly abstract. But
starting with Java version 8, the methods in an interface can define a default imple-
mentation. With Java 8, interfaces can also define static methods.

 Here’s a quick example to help you understand the essence of interfaces. No mat-
ter which brand of television each of us has, every television provides the common
functionality of changing the channel and adjusting the volume. You can compare the
controls of a television set to an interface and the design of a television set to a class
that implements the interface controls.

33The structures of a Java class and a source code file
 Let’s define this interface:

interface Controls {
 void changeChannel(int channelNumber);
 void increaseVolume();
 void decreaseVolume();
}

The definition of an interface starts with the keyword interface. Remember, Java is
case-sensitive, so you can’t use the word Interface (with a capital I) to define an inter-
face. This section provides a brief overview of interfaces. You’ll work with interfaces in
detail in chapter 6.

DEFINITION OF SINGLE AND MULTIPLE CLASSES IN A SINGLE JAVA SOURCE CODE FILE

You can define either a single class or an interface in a Java source code file or multi-
ple such entities. Let’s start with a simple example: a Java source code file called
SingleClass.java that defines a single class SingleClass:

class SingleClass {
 //.. we are not detailing this part
}

Here’s an example of a Java source code file, Multiple1.java, that defines multiple
interfaces:

interface Printable {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}

You can also define a combination of classes and interfaces in the same Java source
code file. Here’s an example:

interface Printable {
 //.. we are not detailing this part
}
class MyClass {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}
class Car {
 //.. we are not detailing this part
}

Contents of Java source
code file SingleClass.java

Contents of Java source
code file Multiple1.java

Contents of Java
source code file
Multiple2.java

34 CHAPTER 1 Java basics
No particular order is required to define multiple classes or interfaces in a single Java
source code file.

EXAM TIP The classes and interfaces can be defined in any order of occur-
rence in a Java source code file.

When you define a public class or an interface in a Java source file, the names of the
class or interface and Java source file must match. Also, a source code file can’t define
more than one public class or interface. If you try to do so, your code won’t compile,
which leads to a small hands-on exercise for you that I call Twist in the Tale, as men-
tioned in the preface. The answers to all these exercises are provided in the appendix.

Modify the contents of the Java source code file Multiple.java, and define a public
interface in it. Execute the code and see how this modification affects your code.

Question: Examine the following content of Java source code file Multiple.java and
select the correct options:

// Contents of Multiple.java
public interface Printable {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}

Options:

a A Java source code file can’t define multiple interfaces.
b A Java source code file can only define multiple classes.
c A Java source code file can define multiple interfaces and classes.
d The previous class will fail to compile.

About the Twist in the Tale exercises
For these exercises, I’ve tried to use modified code from the examples already cov-
ered in the chapter. The Twist in the Tale title refers to modified or tweaked code.

These exercises will help you understand how even small code modifications can
change the behavior of your code. They should also encourage you to carefully exam-
ine all the code in the exam. The reason for these exercises is that in the exam, you
may be asked more than one question that seems to require the same answer. But
on closer inspection, you’ll realize that the questions differ slightly, and this will
change the behavior of the code and the correct answer option!

Twist in the Tale 1.1

35The structures of a Java class and a source code file
If you need help getting your system set up to write Java, refer to Oracle’s “Getting
Started” tutorial, http://docs.oracle.com/javase/tutorial/getStarted/.

Question: Examine the content of the following Java source code file, Multiple2.java,
and select the correct option(s):

// contents of Multiple2.java
interface Printable {
 //.. we are not detailing this part
}
class MyClass {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}
public class Car {
 //.. we are not detailing this part
}
public interface Multiple2 {}

Options:

a The code fails to compile.
b The code compiles successfully.
c Removing the definition of class Car will compile the code.
d Changing class Car to a nonpublic class will compile the code.
e Changing interface Multiple2 to a nonpublic interface will compile the code.

APPLICATION OF PACKAGE AND IMPORT STATEMENTS IN JAVA SOURCE CODE FILES

In the previous section, I mentioned that you can define multiple classes and inter-
faces in the same Java source code file. When you use a package or import statement
within such Java files, both the package and import statements apply to all the classes
and interfaces defined in that source code file.

 For example, if you include a package and an import statement in Java source
code file Multiple.java (as in the following code), Car, Movable, and Printable will be
become part of the same package com.manning.code:

// contents of Multiple.java
package com.manning.code;
import com.manning.*;
interface Printable {}
interface Movable {}
class Car {}

Twist in the Tale 1.2

Printable, Movable, and Car are
part of package com.manning.code.

All classes and interfaces defined in
package com.manning are accessible
to Printable, Movable, and Car.

http://docs.oracle.com/javase/tutorial/getStarted/

36 CHAPTER 1 Java basics
EXAM TIP Classes and interfaces defined in the same Java source code file
can’t be defined in separate packages. Classes and interfaces imported using
the import statement are available to all the classes and interfaces defined in
the same Java source code file.

In the next section, you’ll create executable Java applications—classes that are used to
define an entry point of execution for a Java application.

1.2 Executable Java applications

The OCA Java SE 8 Programmer I exam requires that you understand the meaning of
an executable Java application and its requirements, that is, what makes a regular Java
class an executable Java class. You also need to know how to execute a Java program
from the command line.

1.2.1 Executable Java classes versus non-executable Java classes

Doesn’t the Java Virtual Machine execute all the Java classes when they are used? If so,
what is a non-executable Java class?

 An executable Java class, when handed over to the JVM, starts its execution at a
particular point in the class—the main method. The JVM starts executing the code
that’s defined in the main method. You can’t hand over a non-executable Java class
(class without a main method) to the JVM and ask it to execute it. In this case, the JVM
won’t know which method to execute because no entry point is marked.

 Typically, an application consists of a number of classes and interfaces that are
defined in multiple Java source code files. Of all these files, a programmer designates
one of the classes as an executable class. The programmer can define the steps that
the JVM should execute as soon as it launches the application. For example, a pro-
grammer can define an executable Java class that includes code to display the appro-
priate GUI window to a user and to open a database connection.

 In figure 1.6, the classes Window, UserData, ServerConnection, and UserPrefer-

ences don’t define a main method. Class LaunchApplication defines a main method
and is an executable class.

NOTE A Java application can define more than one executable class. We
choose one (and exactly one) when the time comes to start its execution by
the JVM.

[1.3] Create executable Java applications with a main method; run a Java
program from the command line; including console output.

37Executable Java applications
1.2.2 The main method

The first requirement in creating an executable Java application is to create a class
with a method whose signature (name and method arguments) matches the main

method, defined as follows:

public class HelloExam {
 public static void main(String args[]) {
 System.out.println("Hello exam");
 }
}

This main method should comply with the following rules:

■ The method must be marked as a public method.
■ The method must be marked as a static method.
■ The name of the method must be main.
■ The return type of this method must be void.
■ The method must accept a method argument of a String array or a variable

argument (varargs) of type String.

Figure 1.7 illustrates the previous code and its related set of rules.

Classes in an
application.

Executable Java class.

LaunchApplication

Window ServerConnection

UserPreferencesUserData

-

public static void main(String args[]){

displayGUI();

openDatabaseConnection();

-

-
}

b

c

d
The methodmain

makes a Java class
executable.

Figure 1.6 Class LaunchApplication is an executable Java class, but the rest of the classes—
Window, UserData, ServerConnection, and UserPreferences—aren’t.

public class HelloExam {

public static void main(String args[]) {

System.out.println("Hello exam");

}

}

The nonaccess modifier
must be .static

The
access
modifier
must be
public.

The method should not
return a value; its return
type must be .void

The method must accept an

The name of the method
must be .main

method parameter
can be any valid
identifier name.

String. The name of the
array or varargs of type

Figure 1.7 Ingredients of a correct main method

38 CHAPTER 1 Java basics
It’s valid to define the method parameter passed to the main method as a variable
argument (varargs) of type String:

public static void main(String... args)

To define a variable argument variable, the ellipsis (...) must follow the type of the
variable and not the variable itself (a mistake made by a lot of new programmers):

public static void main(String args...)

As mentioned previously, the name of the String array passed to the main method
need not be args to qualify it as the correct main method. The following examples are
also correct definitions of the main method:

public static void main(String[] arguments)
public static void main(String[] HelloWorld)

To define an array, the square brackets [] can follow either the variable name or its
type. The following is a correct method declaration of the main method:

public static void main(String[] args)
public static void main(String minnieMouse[])

It’s interesting to note that the placement of the keywords public and static can be
interchanged, which means that the following are both correct method declarations
of the main method:

public static void main(String[] args)
static public void main(String[] args)

NOTE Though both public static and static public are the valid order of
keywords to declare the main method, public static is more common and
thus more readable.

On execution, the code shown in figure 1.7 outputs the following:

Hello exam

If a class defines a main method that doesn’t match the signature of the main method,
it’s referred to as an overloaded method (overloaded methods are discussed in detail
in chapter 3). Overloaded methods are methods with the same name but different

It’s valid to define args as
a variable argument.

This won’t compile. Ellipsis must
follow the data type, String.

The names of the method
arguments are arguments and
HelloWorld, which is acceptable.

The square brackets [] can follow
either the variable name or its type.

The placements of the keywords
public and static are interchangeable.

39Executable Java applications
signatures. For a quick example, class HelloExam can define multiple methods with
the method name main:

public class HelloExam {
 public static void main(String args) {
 System.out.println("Hello exam 2");
 }
 public static void main(String args[]) {
 System.out.println("Hello exam");
 }
 public static void main(int number) {
 System.out.println("Hello exam 3");
 }
}

On execution, JVM will execute the main method, resulting in the output Hello exam.

1.2.3 Run a Java program from the command line

Almost all Java developers work with an Integrated Development Environment (IDE).
This exam, however, expects you to understand how to execute a Java application, or
an executable Java class, using the command prompt. For this reason, I suggest you
work with a simple text editor and command line (even if this might never be the
approach you use in the real world).

NOTE If you need help getting your system set up to compile or execute Java
applications using the command prompt, refer to Oracle’s detailed instructions
at http://docs.oracle.com/javase/tutorial/getStarted/cupojava/index.html.

Let’s revisit the code shown in figure 1.7:

public class HelloExam {
 public static void main(String args[]) {
 System.out.println("Hello exam");
 }
}

To execute the preceding code using a command prompt, issue the command java
HelloExam, as shown in figure 1.8.

JVM will
execute this
main method.

Figure 1.8 Using the command prompt to execute a Java application

http://docs.oracle.com/javase/tutorial/getStarted/cupojava/index.html

40 CHAPTER 1 Java basics
I mentioned that the main method accepts an array of String as the method parame-
ter. But how and where do you pass the array to the main method? Let’s modify the
previous code to access and output values from this array:

public class HelloExamWithParameters {
 public static void main(String args[]) {
 System.out.println(args[0]);
 System.out.println(args[1]);
 }
}

Now let’s execute the preceding code using the command prompt, as shown in fig-
ure 1.9.

As you can see from the output shown in figure 1.9, the keyword java and the name
of the class aren’t passed as command parameters to the main method. The OCA Java
SE 8 Programmer I exam will test you on your knowledge of whether the keyword
java and the class name are passed on to the main method.

EXAM TIP The method parameters that are passed to the main method are
also called command-line parameters or command-line values. As the name
implies, these values are passed to a method from the command line.

If you weren’t able to follow the code with respect to the arrays and the class String,
don’t worry; we’ll cover the class String and arrays in detail in chapter 4.

 Here’s the next Twist in the Tale exercise for you. In this exercise, and in the rest
of the book, you’ll see the names Shreya, Harry, Paul, and Selvan, who are hypotheti-
cal programmers also studying for this certification exam. The answer is provided in
the appendix, as usual.

One of the programmers, Harry, executed a program that gave the output java one.
Now he’s trying to figure out which of the following classes outputs these results.

Twist in the Tale 1.3

Figure 1.9 Passing command parameters to a main method

41Java packages
Given that he executed the class using the command java EJava java one one, can
you help him figure out the correct option(s)?

a class EJava {
 public static void main(String sun[]) {
 System.out.println(sun[0] + " " + sun[2]);
 }
}

b class EJava {
 static public void main(String phone[]) {
 System.out.println(phone[0] + " " + phone[1]);
 }
}

c class EJava {

 static public void main(String[] arguments[]) {
 System.out.println(arguments[0] + " " + arguments[1]);
 }
}

d class EJava {
 static void public main(String args[]) {
 System.out.println(args[0] + " " + args[1]);
 }
}

1.3 Java packages

This exam covers importing packages into other classes. But with more than a decade
and a half of experience, I’ve learned that before starting to import other packages
into your own code, it’s important to understand what packages are, the difference
between classes that are defined in a package and the classes that aren’t defined in a
package, and why you need to import packages in your code.

 In this section, you’ll learn what Java packages are and how to create them. You’ll
use the import statement, which enables you to use simple names for classes and inter-
faces defined in separate packages.

Confusion with command-line parameters
If you’ve programmed in languages like C, you might get confused by the command-
line parameters. Programming languages like C pass the name of a program as a
command-line argument to the main method. But Java doesn’t pass the name of the
class as an argument to the main method.

[1.4] Import other Java packages to make them accessible in your code

42 CHAPTER 1 Java basics
1.3.1 The need for packages

Why do you think we need packages? First, answer this question: do you remember hav-
ing known more than one Amit, Paul, Anu, or John in your life? Harry knows more than
one Paul (six, to be precise), whom he categorizes as managers, friends, and cousins.
These are subcategorized by their location and relation, as shown in figure 1.10.

Similarly, you can use a package to group together a related set of classes and inter-
faces (I won’t discuss enums here because they aren’t covered on this exam). Packages
also provide access protection and namespace management. You can create separate
packages to define classes for separate projects, such as Android games and online
healthcare systems. Further, you can create subpackages within these packages, such
as separate subpackages for GUIs, database access, networking, and so on.

NOTE In real-life projects, you’ll rarely work with a package-less class or inter-
face. Almost all organizations that develop software have strict package-
naming rules, which are often documented.

All classes and interfaces are defined in a package. If you don’t include an explicit
package statement in a class or an interface, it’s part of a default package.

1.3.2 Defining classes in a package using the package statement

You can indicate that a class or an interface is defined in a package by using the
package statement as the first statement in code. Here’s an example:

package certification;
class ExamQuestion {
 //..code
}

The class in the preceding code defines an ExamQuestion class in the certification

package. You can define an interface, MultipleChoice, in a similar manner:

package certification;
interface MultipleChoice {
 void choice1();

Paul

Manager,
Germany

Friend,
school Friend,

college

Manager,
USA

Cousin,
maternal

Cousin,
paternal

Paul

Paul

Paul

Paul

Paul

Harry

Figure 1.10 Harry
knows six Pauls!

Variables and
methods

43Java packages
 void choice2();
}

Figure 1.11 shows a UML class diagram depicting the relationship of the package
certification to the class ExamQuestion and the interface MultipleChoice.

The name of the package in the previous examples is certification. You may use
such names for small projects that contain only a few classes and interfaces, but it’s
common for organizations to use subpackages to define all their classes. For exam-
ple, if the folks at Oracle were to define a class to store exam questions for a Java
Associate exam, they might use the package name com.oracle.javacert.associate.
Figure 1.12 shows its UML representation, together with the corresponding class
definition.

A package is made of multiple sections that go from the more-generic (left) to the
more-specific (right). The package name com.oracle.javacert.associate follows a
package-naming convention recommended by Oracle and shown in table 1.2.

Table 1.2 Package-naming conventions used in the package name com.oracle.javacert.associate

Package or subpackage name Its meaning

com Commercial. A couple of the commonly used three-letter package
abbreviations are
■ gov—for government bodies
■ edu—for educational institutions

oracle Name of the organization

javacert Further categorization of the project at Oracle

associate Further subcategorization of Java certification

MultipleChoice

certification

ExamQuestion

Figure 1.11 A UML class diagram showing the
relationship shared by package certification, class
ExamQuestion, and interface MultipleChoice

com.oracle.javacert.associate

ExamQuestion

package com.oracle.javacert.associate;

class ExamQuestion {

// variables and methods

}

Figure 1.12 A subpackage and its corresponding class definition

44 CHAPTER 1 Java basics
RULES TO REMEMBER

Here are a few of important rules about packages:

■ Per Java naming conventions, package names should all be in lowercase.
■ The package and subpackage names are separated using a dot (.).
■ Package names follow the rules defined for valid identifiers in Java.
■ For classes and interfaces defined in a package, the package statement is the

first statement in a Java source file (a .java file). The exception is that comments
can appear before or after a package statement.

■ There can be a maximum of one package statement per Java source code file
(.java file).

■ All the classes and interfaces defined in a Java source code file are defined in
the same package. They can’t be defined in separate packages.

NOTE A fully qualified name for a class or interface is formed by prefixing its
package name with its name (separated by a dot). The fully qualified name of
the class ExamQuestion is certification.ExamQuestion in figure 1.11 and
com.oracle.javacert.associate.ExamQuestion in figure 1.12.

DIRECTORY STRUCTURE AND PACKAGE HIERARCHY

The hierarchy of classes and interfaces defined in packages must match the hierarchy
of the directories in which these classes and interfaces are defined in the code. For
example, the class ExamQuestion in the certification package should be defined in
a directory with the name “certification.” The name of the directory “certification”
and its location are governed by the rules shown in figure 1.13.

For the package example shown in figure 1.13, note that there isn’t any constraint on
the location of the base directory in which the directory structure is defined, as shown
in figure 1.14.

Figure 1.13 Matching directory structure and package hierarchy

Figure 1.14 There’s no constraint on the location of the base directory to
define directories corresponding to package hierarchy.

45Java packages
SETTING THE CLASSPATH FOR PACKAGED CLASSES

To enable the Java Runtime Environment (JRE) to find your classes, add the base
directory that contains your packaged Java code to the classpath.

 For example, to enable the JRE to locate the certification.ExamQuestion class
from the previous examples, add the directory C:\MyCode to the classpath. To enable
the JRE to locate the class com.oracle.javacert.associate.ExamQuestion, add the
directory C:\ProjectCode to the classpath.

NOTE You needn’t bother setting the classpath if you’re working with an
IDE. But I strongly encourage you to learn how to work with a simple text edi-
tor and how to set a classpath. This can be helpful with your projects at work.
The exam expects you to spot code with compilation errors, which isn’t easy
to do if you didn’t learn how to do it without an IDE (IDEs usually include
code autocorrection or autocompletion features).

1.3.3 Using simple names with import statements

The import statement enables you to use simple names instead of using fully qualified
names for classes and interfaces defined in separate packages.

 Let’s work with a real-life example. Imagine your home and your office. Living-
Room and Kitchen within your home can refer to each other without mentioning that
they exist within the same home. Similarly, in an office, a Cubicle and a Conference-
Hall can reference each other without explicitly mentioning that they exist within the
same office. But Home and Office can’t access each other’s rooms or cubicles without
stating that they exist in a separate home or office. This situation is represented in fig-
ure 1.15.

To refer to the LivingRoom in Cubicle, you must specify its complete location, as
shown in the left part of the figure 1.16. As you can see in this figure, repeated refer-
ences to the location of LivingRoom make the description of LivingRoom look

Home Office

LivingRoom
and Kitchen
can access
each other
without
specifying that
they are part of
the same Home.

To access each other’s
members, Home and Office

should specify that they exist in
a separate Home or Office.

Cubicle and
ConferenceHall

can use each
other without

specifying that
they are part of
the same Office.

LivingRoom Cubicle

Kitchen ConferenceHall

Figure 1.15 To refer to each other’s members, Home and Office should specify that they exist in
separate places.

46 CHAPTER 1 Java basics
tedious and redundant. To avoid this, you can display a notice in Cubicle that all
occurrences of LivingRoom refer to LivingRoom in Home and thereafter use its sim-
ple name. Home and Office are like Java packages, and this notice is the equivalent of
the import statement. Figure 1.16 shows the difference in using fully qualified names
and simple names for LivingRoom in Cubicle.

Let’s implement the preceding example in code, where classes LivingRoom and
Kitchen are defined in the package home and classes Cubicle and ConferenceHall

are defined in the package office. Class Cubicle uses (is associated to) class Living-

Room in the package home, as shown in figure 1.17.

Class Cubicle can refer to class LivingRoom without using an import statement:

package office;
class Cubicle {
 home.LivingRoom livingRoom;
}

Office

Cubicle

ConferenceHall

LivingRoom is small

LivingRoom is blue

Home

LivingRoom Kitchen

No import = use fully qualified names Import = use simple names

Home

LivingRoom Kitchen

Office

Cubicle

ConferenceHall

LivingRoom in Home is small

LivingRoom in Home is blue

LivingRoom is still in

Home. It is not

embedded in

Cubicle.

Import LivingRoom

in Cubicle.

Figure 1.16 LivingRoom can be accessed in Cubicle by using its fully qualified name. It can also
be accessed using its simple name if you also use the import statement.

ConferenceHall

office

Cubicle

Kitchen

home

LivingRoom

Figure 1.17 A UML representation of
classes LivingRoom and Cubicle, defined
in separate packages, with their associations

In the absence of an import
statement, use the fully qualified
name to access class LivingRoom.

47Java packages
Class Cubicle can use the simple name for class LivingRoom by using the import

statement:

package office;
import home.LivingRoom;
class Cubicle {
 LivingRoom livingRoom;
}

NOTE The import statement doesn’t embed the contents of the imported
class in your class, which means that importing more classes doesn’t increase
the size of your own class.

1.3.4 Using packaged classes without using the import statement

It’s possible to use a packaged class or interface without using the import statement,
by using its fully qualified name:

class AnnualExam {
 certification.ExamQuestion eq;
}

But using a fully qualified class name can clutter your code if you create multiple vari-
ables of interfaces and classes defined in other packages. Don’t use this approach in
real projects.

EXAM TIP You don’t need an explicit import statement to use members from
the java.lang package. Classes and interfaces in this package are automati-
cally imported in all other Java classes, interfaces, or enums.

For the exam, it’s important to note that you can’t use the import statement to access
multiple classes or interfaces with the same names from different packages. For exam-
ple, the Java API defines class Date in two commonly used packages: java.util and
java.sql. To define variables of these classes in a class, use their fully qualified names
with the variable declaration:

class AnnualExam {
 java.util.Date date1;
 java.sql.Date date2;
}

import
statement

No need to use the fully qualified
name of class LivingRoom

Missing import
statement

Define a variable of ExamQuestion
by using its fully qualified name.

import statement
not required

Variable of type java.util.Date

Variable of type
java.sql.Date

48 CHAPTER 1 Java basics
An attempt to use an import statement to import both these classes in the same class
will not compile:

import java.util.Date;
import java.sql.Date;
class AnnualExam { }

An alternate approach (which works well in real projects) is to use the import defini-
tion with the class or interface that you use more often and fully reference the one
that you use just from time to time:

import java.util.Date;
class AnnualExam {
 Date date1;
 java.sql.Date date2;
}

1.3.5 Importing a single member versus all members of a package

You can import either a single member or all members (classes and interfaces) of a pack-
age using the import statement. First, revisit the UML notation of the certification

package, as shown in figure 1.18.

Examine the following code for the class AnnualExam:

import certification.ExamQuestion;
class AnnualExam {
 ExamQuestion eq;
 MultipleChoice mc;
}

Code to import classes with the same name
from different packages won’t compile.

import class you
use often

Use simple class name for java.util.Date

Use fully qualified
name for java.sql.Date

MultipleChoice

certification

ExamQuestion

Figure 1.18 A UML representation of
the certification package

Imports only the
class ExamQuestion

Compiles OK

Will not compile

49Java packages
By using the wildcard character, an asterisk (*), you can import all the public mem-
bers, classes, and interfaces of a package. Compare the previous class definition with
the following definition of the class AnnualExam:

import certification.*;
class AnnualExam {
 ExamQuestion eq;
 MultipleChoice mc;
}

NOTE When overused, using an asterisk to import all members of a package
has a drawback. It may be harder to figure out which imported class or inter-
face comes from which package.

When you work with an IDE, it may automatically add import statements for classes
and interfaces that you reference in your code.

1.3.6 The import statement doesn’t import the whole package tree

You can’t import classes from a subpackage by using an asterisk in the import state-
ment. For example, the UML notation in figure 1.19 depicts the package com.oracle

.javacert with the class Schedule and two subpackages, associate and webdeveloper.
Package associate contains class ExamQuestion, and package webdeveloper contains
class MarkSheet.

The following import statement will import only the class Schedule. It won’t import
the classes ExamQuestion and MarkSheet:

import com.oracle.javacert.*;

Imports all classes and
interfaces from certification

Compiles OK

Also compiles OK

com.oracle.javacert

associate

ExamQuestion

webdeveloper

MarkSheet

Schedule

Figure 1.19 A UML representation of
package com.oracle.javacert and
its subpackages

Imports the class
Schedule only

50 CHAPTER 1 Java basics
Similarly, the following import statement will import all the classes from the packages
associate and webdeveloper:

import com.oracle.javacert.associate.*;
import com.oracle.javacert.webdeveloper.*;

1.3.7 Importing classes from the default package

What happens if you don’t include a package statement in your classes or interfaces?
In that case, they become part of a default, no-name package. This default package is
automatically imported in the Java classes and interfaces defined within the same
directory on your system.

 For example, the classes Person and Office, which aren’t defined in an explicit
package, can use each other if they’re defined in the same directory:

class Person {
 // code
}
class Office {
 Person p;
}

A class from a default package can’t be used in any named packaged class, regardless
of whether they’re defined within the same directory or not.

EXAM TIP Members of a named package can’t access classes and interfaces
defined in the default package.

1.3.8 Static imports

You can import an individual static member of a class or all its static members by
using the import static statement. Although accessible using an instance, the static

members are better accessed by prefixing their name with the class or interface
names. By using static import, you can drop the prefix and just use the name of the
static variable or method. In the following code, class ExamQuestion defines a pub-
lic static variable marks and a public static method print:

package certification;
public class ExamQuestion {
 static public int marks;
 public static void print() {
 System.out.println(100);
 }
}

Imports class
ExamQuestion only

Imports class
MarkSheet only

Not defined in an
explicit package

Class Person accessible
in class Office

public static
variable marks

public static
method print

51Java access modifiers
The marks variable can be accessed in the class AnnualExam using the import static

statement. The order of the keywords import and static can’t be reversed:

package university;
import static certification.ExamQuestion.marks;
class AnnualExam {
 AnnualExam() {
 marks = 20;
 }
}

EXAM TIP This feature is called static imports, but the syntax is import static.

To access all public and static members of class ExamQuestion in class AnnualExam
without importing each of them individually, you can use an asterisk with the import

static statement:

package university;
import static certification.ExamQuestion.*;
class AnnualExam {
 AnnualExam() {
 marks = 20;
 print();
 }
}

Because the variable marks and method print are defined as public members,
they’re accessible to the class AnnualExam. By using the import static statement, you
don’t have to prefix them with their class name.

NOTE On real projects, avoid overusing static imports; otherwise, the code
might become a bit confusing about which imported component comes from
which class.

The accessibility of a class, an interface, and their methods and variables is deter-
mined by their access modifiers, which are covered in the next section.

1.4 Java access modifiers

In this section, we’ll cover all the access modifiers—public, protected, and private—
as well as default access, which is the result when you don’t use an access modifier. We’ll
also look at how you can use access modifiers to restrict the accessibility of a class and
its members in the same and separate packages.

Correct statement
is import static, not
static import

Access variable marks
without prefixing it
with its class name

Imports all static
members of class
ExamQuestion

Accesses variable marks and method print
without prefixing them with their class names

[6.4] Apply access modifiers

52 CHAPTER 1 Java basics
1.4.1 Access modifiers

Let’s start with an example. Examine the definitions of the classes House and Book in
the following code and the UML representation shown in figure 1.20.

package building;
class House {}
package library;
class Book {}

With the current class definitions, the class House can’t access the class Book. Can you
make the necessary changes (in terms of the access modifiers) to make the class Book
accessible to the class House?

 This one shouldn’t be difficult. From the discussion of class declarations in sec-
tion 1.1, you know that a top-level class can be defined only by using the public or
default access modifiers. If you declare the class Book using the access modifier public,
it’ll be accessible outside the package in which it is defined.

NOTE A top-level class is a class that isn’t defined within any other class. A
class that is defined within another class is called a nested or inner class. Nested
and inner classes aren’t on the OCA Java SE 8 Programmer I exam.

WHAT DO THEY CONTROL?
Access modifiers control the accessibility of a class or an interface, including its mem-
bers (methods and variables), by other classes and interfaces within the same or sepa-
rate packages. By using the appropriate access modifiers, you can limit access to your
class or interface and their members.

CAN ACCESS MODIFIERS BE APPLIED TO ALL TYPES OF JAVA ENTITIES?
Access modifiers can be applied to classes, interfaces, and their members (instance and
class variables and methods). Local variables and method parameters can’t be defined
using access modifiers. An attempt to do so will prevent the code from compiling.

HOW MANY ACCESS MODIFIERS ARE THERE: THREE OR FOUR?
Programmers are frequently confused about the number of access modifiers in Java
because the default access isn’t defined using an explicit keyword. If a Java class, inter-
face, method, or variable isn’t defined using an explicit access modifier, it is said to be
defined using the default access, also called package access.

 Java has four access levels:

■ public (least restrictive)
■ protected

library

Book

building

House

Access not
allowed

Figure 1.20 The nonpublic class
Book can’t be accessed outside the
package library.

53Java access modifiers
■ default
■ private (most restrictive)

To understand all of these access levels, we’ll use the same set of classes: Book, CourseBook,
Librarian, StoryBook, and House. Figure 1.21 depicts these classes using UML notation.

Classes Book, CourseBook, and Librarian are defined in the package library. The
classes StoryBook and House are defined in the package building. Further, classes
StoryBook and CourseBook (defined in separate packages) extend class Book. Using
these classes, I’ll show how the accessibility of a class and its members varies with dif-
ferent access modifiers, from unrelated to derived classes, across packages.

 As I cover each of the access modifiers, I’ll add a set of instance variables and a
method to the class Book with the relevant access modifier. I’ll then define code in
other classes to access class Book and its members.

1.4.2 Public access modifier

This is the least restrictive access modifier. Classes and interfaces defined using the pub-
lic access modifier are accessible across all packages, from derived to unrelated classes.

 To understand the public access modifier, let’s define the class Book as a public

class and add a public instance variable (isbn) and a public method (printBook) to
it. Figure 1.22 shows the UML notation.

library building

Book

«extends»

«extends»

CourseBook

Librarian

StoryBook

House

Figure 1.21 A set of classes and their relationships to help you
understand access modifiers

library building

StoryBook

House

CourseBook

Librarian

Book

+isbn:String

+printBook()

«extends»

«extends»

Figure 1.22 Understanding the public access modifier

54 CHAPTER 1 Java basics
Definition of class Book:

package library;
public class Book {
 public String isbn;
 public void printBook() {}
}

The public access modifier is said to be the least restrictive, so let’s try to access the
public class Book and its public members from class House. We’ll use class House

because House and Book are defined in separate packages and they’re unrelated.

NOTE The term unrelated classes in this chapter refers to classes that don’t
share inheritance relation. For instance, classes House and Book are unre-
lated, if neither House derives from Book nor Book derives from House.

Class House doesn’t enjoy any advantages by being defined in the same package or
being a derived class.

 Here’s the code for class House:

package building;
import library.Book;
public class House {
 House() {
 Book book = new Book();
 String value = book.isbn;
 book.printBook();
 }
}

In the preceding example, class Book and its public members—instance variable isbn

and method printBook—are accessible to class House. They are also accessible to
the other classes: StoryBook, Librarian, House, and CourseBook. Figure 1.23 shows
the classes that can access a public class and its members.

1.4.3 Protected access modifier

The members of a class defined using the protected access modifier are accessible to

■ Classes and interfaces defined in the same package
■ All derived classes, even if they’re defined in separate packages

public class
Book

public variable isbn

public method
printBook

Class Book is accessible
to class House.

Variable isbn is
accessible in House.

Method printBook is
accessible in House.

Same package

Unrelated classes

Derived classes

Separate package

Figure 1.23 Classes that can access
a public class and its members

55Java access modifiers
Let’s add a protected instance variable author and a method modifyTemplate to the
class Book. Figure 1.24 shows the class representation.

Here’s the code for the class Book (I’ve deliberately left out its public members because
they aren’t required in this section):

package library;
public class Book {
 protected String author;
 protected void modifyTemplate() {}
}

Figure 1.25 illustrates how classes from the same and separate packages, derived classes,
and unrelated classes access the class Book and its protected members.

 Class House fails compilation for trying to access the method modifyTemplate and
the variable author. Following is the compilation error message:

House.java:8: modifyTemplate() has protected access in library.Book
 book.modifyTemplate();
 ^

NOTE Java code fails compilation because of syntax errors. In such a case, the
Java compiler notifies the offending code with its line number and a short
description of the error. The preceding code is output from the compilation
process. This book uses the command prompt to compile all Java code.

A derived class inherits the protected members of its base class, irrespective of the
packages in which they’re defined.

 Notice that the derived classes CourseBook and StoryBook inherit class Book’s pro-
tected member variable author and method modifyTemplate(). If class StoryBook

library building

StoryBook

House

CourseBook

Librarian

Book

#author:String

#modifyTemplate()

«extends»

«extends»

Figure 1.24 Understanding the protected access modifier

Protected
variable author

Protected method
modifyTemplate

56 CHAPTER 1 Java basics
tries to instantiate Book using a reference variable and then tries to access its pro-
tected variable author and method modifyTemplate(), it won’t compile:

package building;
import library.Book;
class StoryBook extends Book {
 StoryBook() {
 Book book = new Book();
 String v = book.author;
 book.modifyTemplate();
 }
}

package library;

public class Book {

protected string author;

protected void modifyTemplate(){}

}

package library;

public class CourseBook extends Book {

public CourseBook(){

author="ABC";

modifyTemplate();

}

}

extends

extends

package library;

public class Librarian {

}

package building;

import library.Book;

public class StoryBook extends Book{

public StoryBook(){

author="ABC";

modifyTemplate();

}

}

package building;

import library.Book;

public class House{

public House(){

Book book=new Book();

book.author="ABC";

book.modifyTemplate();

}

}

public Librarian(){

Book book = new Book();

book.author = "ABC";

book.modifyTemplate();

}

C
a
n
n
o
t a

c
c
e
s
s

Can access

Can access

Can access

library building

Figure 1.25 Access of protected members of the class Book in unrelated and derived classes,
from the same and separate packages

Classes Book and StoryBook
defined in separate packages

Protected members of class Book are not
accessible in derived class StoryBook, if
accessed using a new object of class Book.

57Java access modifiers
EXAM TIP A concise but not too simple way of stating the previous rule is this:
A derived class can inherit and access protected members of its base class,
regardless of the package in which it’s defined. A derived class in a separate
package can’t access protected members of its base class using reference
variables.

Figure 1.26 shows the classes that can access protected members of a class or interface.

1.4.4 Default access (package access)

The members of a class defined without using any explicit access modifier are defined
with package accessibility (also called default accessibility). The members with package
access are only accessible to classes and interfaces defined in the same package. The
default access is also referred to as package-private. Think of a package as your home,
classes as rooms, and things in rooms as variables with default access. These things
aren’t limited to one room—they can be accessed across all the rooms in your home.
But they’re still private to your home—you wouldn’t want them to be accessed outside
your home. Similarly, when you define a package, you might want to make members
of classes accessible to all the other classes across the same package.

NOTE Although the package-private access is as valid as the other access lev-
els, in real projects it often appears as the result of inexperienced developers
forgetting to specify the access mode of Java components.

Let’s define an instance variable issueCount and a method issueHistory with default
access in class Book. Figure 1.27 shows the class representation with these new members.

Same package

Unrelated classes

Derived classes

Separate package

Using

inheritance

Using

reference

variable

Figure 1.26 Classes that can
access protected members

library building

StoryBook

House

CourseBook

Librarian

Book

~issueCount:int

~issueHistory()

«extends»

«extends»

Figure 1.27 Understanding class representation for default access

58 CHAPTER 1 Java basics
Here’s the code for the class Book (I’ve deliberately left out its public and protected

members because they aren’t required in this section):

package library;
public class Book {
 int issueCount;
 void issueHistory() {}
}

You can see how classes from the same package and separate packages, derived classes,
and unrelated classes access the class Book and its members (the variable issueCount

and the method issueHistory) in figure 1.28.

Public class Book
Variable issueCount
with default access

Method issueHistory
with default access

package library;

public class Book {

int issueCount;

void issueHistory(){}

}

package library;

public class CourseBook extends Book {

public CourseBook(){

int c = issueCount;

issueHistory();

}

}

extends

extends

package library;

public class Librarian {

public Librarian(){

Book b = new Book();

int c = b.issueCount;

b.issueHistory();

}

}

package building;

import library.Book;

public class StoryBook extends Book{

public StoryBook(){

int c = issueCount;

issueHistory();

}

}

package building;

import library.Book;

public class House{

public House(){

Book b = new Book();

int c = b.issueCount;

b.issueHistory();

}

}

C
a
n
n
o
t a

c
c
e
s
s

Cannot access

Can access

Can access

library building

Figure 1.28 Access of members with default access to the class Book in unrelated and derived
classes from the same and separate packages

59Java access modifiers
Because the classes CourseBook and Librarian are defined in the same package as
the class Book, they can access the variables issueCount and issueHistory. Because the
classes House and StoryBook don’t reside in the same package as the class Book, they
can’t access the variables issueCount and issueHistory. The class StoryBook throws
the following compilation error message:

StoryBook.java:6: issueHistory() is not public in library.Book; cannot be
accessed from outside package

 book.issueHistory();
 ^

Class House is unaware of the existence of issueHistory()—it fails compilation with
the following error message:

House.java:9: cannot find symbol
symbol : method issueHistory()
location: class building.House
 issueHistory();

DEFINING A CLASS BOOK WITH DEFAULT ACCESS

What happens if we define a class with default access? What will happen to the accessi-
bility of its members if the class itself has default (package) accessibility?

 Consider this situation: Assume that Superfast Burgers opens a new outlet on a
beautiful island and offers free meals to people from all over the world, which obvi-
ously includes inhabitants of the island. But the island is inaccessible by all means (air
and water). Would awareness of the existence of this particular Superfast Burgers out-
let make any sense to people who don’t inhabit the island? An illustration of this
example is shown in figure 1.29.

Can be accessed only
by the inhabitants
of the island

Faraway island
inaccessible
by air/water

Figure 1.29 This Superfast Burgers can’t be accessed from outside the
island because the island is inaccessible by air and water.

60 CHAPTER 1 Java basics
The island is like a package in Java, and Superfast Burgers is like a class defined with
default access. In the same way that Superfast Burgers can’t be accessed from outside
the island in which it exists, a class defined with default (package) access is visible and
accessible only from within the package in which it’s defined. It can’t be accessed from
outside the package in which it resides.

 Let’s redefine the class Book with default (package) access, as follows:

package library;
class Book {
 //.. class members
}

The behavior of class Book remains the same for the classes CourseBook and Librarian,
which are defined in the same package. But class Book can’t be accessed by classes
House and StoryBook, which reside in a separate package.

 Let’s start with the class House. Examine the following code:

package building;
import library.Book;
public class House {}

Class House generates the following compilation error message:

House.java:2: library.Book is not public in library; cannot be accessed from
outside package

import library.Book;

Here’s the code of class StoryBook:

package building;
import library.Book;
class StoryBook extends Book {}

Figure 1.30 shows which classes can access members of a class or interface with default
(package) access.

Because a lot of programmers are confused about which members are made accessi-
ble by using the protected and default access modifiers, the exam tip offers a simple
and interesting rule to help you remember their differences.

Class Book now
has default access.

Class Book isn’t accessible
in class House.

Book isn’t accessible
in StoryBook.

StoryBook can’t
extend Book.

Same package

Unrelated classes

Derived classes

Separate package

Figure 1.30 The classes that
can access members with default
(package) access

61Java access modifiers
EXAM TIP Default access can be compared to package-private (accessible
only within a package), and protected access can be compared to package-
private + kids (“kids” refer to derived classes). Kids can access protected
methods only by inheritance and not by reference (accessing members by
using the dot operator on an object).

1.4.5 private access modifier

The private access modifier is the most restrictive access modifier. The members of a
class defined using the private access modifier are accessible only to themselves. It
doesn’t matter whether the class or interface in question is from another package or
has extended the class—private members are not accessible outside the class in which
they’re defined. private members are accessible only to the classes and interfaces in
which they’re defined.

 Let’s see this in action by adding a private method countPages to the class Book.
Figure 1.31 depicts the class representation using UML.

Examine the following definition of the class Book:

package library;
class Book {
 private void countPages() {}
 protected void modifyTemplate() {
 countPages();
 }
}

None of the classes defined in any of the packages (whether derived or not) can
access the private method countPages. But let’s try to access it from the class
CourseBook. I chose CourseBook because both of these classes are defined in the same
package, and CourseBook extends the class Book. Here’s the code of CourseBook:

library building

StoryBook

House

CourseBook

Librarian

Book

~countPages()

#modifyTemplate()

«extends»

«extends»

Figure 1.31 Understanding the private access modifier

private
method

Only Book can access its own
private method countPages.

62 CHAPTER 1 Java basics
package library;
class CourseBook extends Book {
 CourseBook() {
 countPages();
 }
}

Because the class CourseBook tries to access private members of the class Book, it won’t
compile. Similarly, if any of the other classes (StoryBook, Librarian, House, or Course-

Book) tries to access the private method countPages() of class Book, it won’t compile.
 Here’s an interesting situation: do you think a Book instance can access its private

members using a reference variable? The following code won’t compile—even though
variable b1 is of type Book, it’s trying to access its private method countPages outside
Book:

class TestBook {
 public static void main(String args[]) {
 Book b1 = new Book();
 b1.countPages();
 }
}

Figure 1.32 shows the classes that can access the private members of a class.

NOTE For your real projects, it is possible to access private members of a class
outside them, using Java reflection. But Java reflection isn’t on the exam. So don’t
consider it when answering questions on the accessibility of private members.

1.4.6 Access modifiers and Java entities

Can every access modifier be applied to all the Java entities? The simple answer is no.
Table 1.3 lists the Java entities and the access modifiers that can be used with them.

Table 1.3 Java entities and the access modifiers that can be applied to them

Entity name public protected private

Top-level class, interface, enum ✓ ✗ ✗

Class variables and methods ✓ ✓ ✓

Instance variables and methods ✓ ✓ ✓

Method parameter and local variables ✗ ✗ ✗

CourseBook
extends Book.

CourseBook can’t access
private method countPages.

Won’t compile

Same package

Unrelated classes

Derived classes

Separate package

Figure 1.32 No classes can access
private members of another class

63Java access modifiers
What happens if you try to code the combinations for an X in table 1.3? None of these
combinations will compile. Here’s the code:

protected class MyTopLevelClass {}
private class MyTopLevelClass {}
protected interface TopLevelInterface {}

void myMethod(private int param) {}
void myMethod(int param) {
 public int localVariable = 10;
}

Watch out for these combinations on the exam. It’s simple to insert these small and
invalid combinations in any code snippet and still make you believe that you’re being
tested on a rather complex topic like threads or concurrency.

EXAM TIP Watch out for invalid combinations of a Java entity and an access
modifier. Such code won’t compile.

The following task was assigned to a group of programmers: “How can you declare a class
Curtain in a package building so that it isn’t visible outside the package building?”

 These are the answers submitted by Paul, Shreya, Harry, and Selvan. Which of
these do you think is correct and why? (You can check your Twist in the Tale answers
in the appendix.)

Your job title may assign special privileges or responsibilities to you. For example, if
you work as a Java developer, you may be responsible for updating your programming
skills or earning professional certifications in Java. Similarly, you can assign special
privileges, responsibilities, and behaviors to your Java entities by using nonaccess modifi-
ers, which are covered in the next section.

Twist in the Tale 1.4

Programmer name Submitted code

Paul package building;
public class Curtain {}

Shreya package building;
protected class Curtain {}

Harry package building;
class Curtain {}

Selvan package building;
private class Curtain {}

Won’t compile—top-level class and
interfaces can’t be defined with
protected and private access.

Won’t compile—method parameters
and local variables can’t be defined
using any explicit access modifiers.

64 CHAPTER 1 Java basics
1.5 Nonaccess modifiers

This section discusses the nonaccess modifiers abstract, final, and static. Access
modifiers control the accessibility of your class and its members outside the class
and the package. Nonaccess modifiers change the default behavior of a Java class and
its members.

 For example, if you add the keyword abstract to the definition of a class, it can’t
be instantiated. Such is the magic of the nonaccess modifiers.

 You can characterize your classes, interfaces, methods, and variables with the fol-
lowing nonaccess modifiers (though not all are applicable to each Java entity):

■ abstract

■ static
■ final
■ synchronized
■ native

■ strictfp

■ transient
■ volatile

The OCA Java SE 8 Programmer I exam covers only three of these nonaccess modifi-
ers: abstract, final, and static, which I’ll cover in detail. To ward off any confusion
about the rest of the modifiers, I’ll describe them briefly here:

■ synchronized—A synchronized method can’t be accessed by multiple threads
concurrently. You can’t mark classes, interfaces, or variables with this modifier.

■ native—A native method calls and makes use of libraries and methods imple-
mented in other programming languages such as C or C++. You can’t mark
classes, interfaces, or variables with this modifier.

■ transient—A transient variable isn’t serialized when the corresponding object
is serialized. The transient modifier can’t be applied to classes, interfaces, or
methods.

■ volatile—A volatile variable’s value can be safely modified by different
threads. Classes, interfaces, and methods can’t use this modifier.

■ strictfp—Classes, interfaces, and methods defined using this keyword ensure
that calculations using floating-point numbers are identical on all platforms.
This modifier can’t be used with variables.

Now let’s look at the three nonaccess modifiers that are on the exam.

[7.5] Use abstract classes and interfaces

[6.2] Apply the static keyword to methods and fields

65Nonaccess modifiers
1.5.1 abstract modifier

When added to the definition of a class, interface, or method, the abstract modifier
changes its default behavior. Because it is a nonaccess modifier, abstract doesn’t
change the accessibility of a class, interface, or method.

 Let’s examine the behavior of each of these with the abstract modifier.

ABSTRACT CLASS

When the abstract keyword is prefixed to the definition of a concrete class, it
changes it to an abstract class, even if the class doesn’t define any abstract meth-
ods. The following code is a valid example of an abstract class:

abstract class Person {
 private String name;
 public void displayName() { }
}

An abstract class can’t be instantiated, which means that the following code will fail
to compile:

class University {
 Person p = new Person();
}

Here’s the compilation error thrown by the previous class:

University.java:4: Person is abstract; cannot be instantiated
 Person p = new Person();
 ^
1 error

EXAM TIP An abstract class may or may not define an abstract method.
But a concrete class can’t define an abstract method.

ABSTRACT INTERFACE

An interface is an abstract entity by default. The Java compiler automatically adds the
keyword abstract to the definition of an interface. Thus, adding the keyword abstract

to the definition of an interface is redundant. The following definitions of interfaces
are the same:

interface Movable {}
abstract interface Movable {}

This line of code
won’t compile.

Interface defined without the
explicit use of keyword abstract

Interface defined with the
explicit use of keyword abstract

66 CHAPTER 1 Java basics
ABSTRACT METHOD

An abstract method doesn’t have a body. Usually, an abstract method is imple-
mented by a derived class. Here’s an example:

abstract class Person {
 private String name;
 public void displayName() { }
 public abstract void perform();
}

EXAM TIP A method with an empty body isn’t an abstract method.

ABSTRACT VARIABLES

None of the different types of variables (instance, static, local, and method parame-
ters) can be defined as abstract.

EXAM TIP Don’t be tricked by code that tries to apply the nonaccess modifier
abstract to a variable. Such code won’t compile.

1.5.2 final modifier

The keyword final can be used with the declaration of a class, variable, or method. It
can’t be used with the declaration of an interface.

FINAL CLASS

A class that’s marked final can’t be extended by another class. The class Professor

won’t compile if the class Person is marked as final, as follows:

final class Person {}
class Professor extends Person {}

FINAL INTERFACE

An interface can’t be marked as final. An interface is abstract by default and mark-
ing it with final will prevent your interface from compiling:

final interface MyInterface{}

FINAL VARIABLE

A final variable can’t be reassigned a value. It can be assigned a value only once. See
the following code:

class Person {
 final long MAX_AGE;
 Person() {
 MAX_AGE = 99;
 }
}

This isn’t an abstract method.
It has an empty body: {}.

This is an abstract method.
It isn’t followed by {}.

Won’t compile

Won’t compile

Compiles successfully: value
assigned once to final variable

67Nonaccess modifiers
Compare the previous example with the following code, which tries to reassign a value
to a final variable:

class Person {
 final long MAX_AGE = 90;
 Person() {
 MAX_AGE = 99;
 }
}

It’s easy to confuse reassigning a value to a final variable with calling a method on a
final variable, which might change the state of the object that it refers to. If a refer-
ence variable is defined as a final variable, you can’t reassign another object to it, but
you can call methods on this variable (that modify its state):

class Person {
 final StringBuilder name = new StringBuilder("Sh");
 Person() {
 name.append("reya");
 name = new StringBuilder();
 }
}

FINAL METHOD

A final method defined in a base class can’t be overridden by a derived class. Exam-
ine the following code:

class Person {
 final void sing() {
 System.out.println("la..la..la..");
 }
}
class Professor extends Person {
 void sing() {
 System.out.println("Alpha.. beta.. gamma");
 }
}

If a method in a derived class has the same method signature as its base class’s
method, it’s referred to as an overridden method. Overridden methods are discussed
along with polymorphism in chapter 6.

1.5.3 static modifier

The nonaccess modifier static can be applied to the declarations of variables, meth-
ods, classes, and interfaces. We’ll examine each of them in following sections.

Won’t compile;
reassignment not allowed

Can call methods on
a final variable that
change its state

Won’t compile. You can’t reassign
another object to a final variable.

Won’t compile

68 CHAPTER 1 Java basics
STATIC VARIABLES

static variables belong to a class. They’re common to all instances of a class and
aren’t unique to any instance of a class. static attributes exist independently of any
instances of a class and may be accessed even when no instances of the class have been
created. You can compare a static variable with a shared variable. A static variable
is shared by all the objects of a class.

NOTE A class and an interface can declare static variables. This section cov-
ers declaration and usage of static variables that are defined in a class.
Chapter 6 covers interfaces and their static variables in detail.

Think of a static variable as being like a common bank vault that’s shared by the
employees of an organization. Each of the employees accesses the same bank vault, so
any change made by one employee is visible to all the other employees, as illustrated
in figure 1.33.

Figure 1.34 defines a class Emp that defines a non-static variable name and a static

variable bankVault.

Bank vault

Harry

All employess
share the same
bank vault.

Paul

Shreya

Figure 1.33 Comparing a shared bank vault with a static variable

class Emp {

String name;

static int bankVault;

}

We want this value to be
shared by all the objects of
class .Emp

Figure 1.34 Definition of the class Emp with a static variable
bankVault and non-static variable name

69Nonaccess modifiers

v

It’s time to test what we’ve been discussing up to this point. The following TestEmp

class creates two objects of the class Emp (from figure 1.34) and modifies the value of
the variable bankVault using these separate objects:

class TestEmp {
 public static void main(String[] args) {
 Emp emp1 = new Emp();
 Emp emp2 = new Emp();
 emp1.bankVault = 10;
 emp2.bankVault = 20;
 System.out.println(emp1.bankVault);
 System.out.println(emp2.bankVault);
 System.out.println(Emp.bankVault);
 }
}

In the preceding code example, emp1.bankVault, emp2.bankVault, and Emp.bank-
Vault all refer to the same static attribute: bankVault.

EXAM TIP Even though you can use an object reference variable to access
static members, it’s not advisable to do so. Because static members belong
to a class and not to individual objects, using object reference variables to
access static members may make them appear to belong to an object. The
preferred way to access them is by using the class name. The static and
final nonaccess modifiers can be used together to define constants (variables
whose value can’t change).

In the following code, the class Emp defines the constants MIN_AGE and MAX_AGE:

class Emp {
 public static final int MIN_AGE = 20;
 static final int MAX_AGE = 70;
}

Although you can define a constant as a non-static member, it’s common practice
to define constants as static members, because doing so allows the constant values to
be used across objects and classes.

STATIC METHODS

static methods aren’t associated with objects and can’t use any of the instance variables
of a class. You can define static methods to access or manipulate static variables:

class Emp {
 String name;
 static int bankVault;
 static int getBankVaultValue() {
 return bankVault;
 }
}

Reference variables emp1 and emp2
refer to separate objects of class Emp.

Variable
bankVault
of variable

emp1 is
assigned a
alue of 10.

Variable bankVault of variable
emp2 is assigned a value of 20.

This will print 20.

This will also print 20.This will print 20 as well.

Constant
MIN_AGE

Constant MAX_AGE

static method getBankVaultValue
returns the value of static
variable bankVault.
www.allitebooks.com

http://www.allitebooks.org

70 CHAPTER 1 Java basics
It’s a common practice to use static methods to define utility methods, which are
methods that usually manipulate the method parameters to compute and return an
appropriate value:

static double interest(double num1, double num2, double num3) {
 return(num1+num2+num3)/3;
}

The following utility (static) method doesn’t define input parameters. The method
averageOfFirst100Integers computes and returns the average of numbers 1 to 100:

static double averageOfFirst100Integers() {
 int sum = 0;
 for (int i=1; i <= 100; ++i) {
 sum += i;
 }
 return (sum)/100;
}

The nonprivate static variables and methods are inherited by derived classes. The
static members aren’t involved in runtime polymorphism. You can’t override the
static members in a derived class, but you can redefine them.

 Any discussion of static methods and their behavior can be quite confusing if you
aren’t aware of inheritance and derived classes. But don’t worry if you don’t under-
stand all of it. I’ll cover derived classes and inheritance in chapter 6. For now, note
that a static method can be accessed using the name of the object reference vari-
ables and the class in a manner similar to static variables.

WHAT CAN A STATIC METHOD ACCESS?
Neither static methods nor static variables can access the non-static variables and
methods of a class. But the reverse is true: non-static variables and methods can access
static variables and methods because the static members of a class exist even if no
instances of the class exist. static members are forbidden from accessing instance
methods and variables, which can exist only if an instance of the class is created.

 Examine the following code:

class MyClass {
 static int x = count();
 int count() { return 10; }
}

This is the compilation error thrown by the previous class:

MyClass.java:3: nonstatic method count() cannot be referenced from a static
context

 static int x = count();
 ^
1 error

Method averageOfFirst100Integers
doesn’t define method parameters.

Compilation
error

71Nonaccess modifiers
The following code is valid:

class MyClass {
 static int x = result();
 static int result() { return 20; }
 int nonStaticResult() { return result(); }
}

EXAM TIP static methods and variables can’t access the instance members
of a class.

Table 1.4 summarizes the access capabilities of static and non-static members.

ACCESSING STATIC MEMBERS FROM A NULL REFERENCE

Because static variables and methods belong to a class and not to an instance, you
can access them using variables, which are initialized to null. Watch out for such
questions in the exam. Such code won’t throw a runtime exception (NullPointer-

Exception to be precise). In the following example, the reference variable emp is ini-
tialized to null:

class Emp {
 String name;
 static int bankVault;
 static int getBankVaultValue() {
 return bankVault;
 }
}
class Office {
 public static void main(String[] args) {
 Emp emp = null;
 System.out.println(emp.bankVault);
 System.out.println(emp.getBankVaultValue());
 }
}

EXAM TIP You can access static variables and methods using a null reference.

Table 1.4 Access capabilities of static and non-static members

Member type
Can access static attribute

or method?
Can access non-static attribute

or method?

static Yes No

Non-static Yes Yes

static variable referencing
a static method

Non-static method
using static method

Outputs 0

72 CHAPTER 1 Java basics
The next section covers features of Java that led to its popularity two decades ago, and
which still hold strong.

1.6 Features and components of Java

The Java programming language was released in 1995. It was developed mainly to
work with consumer appliances. But it soon became very popular with web browsers,
to deliver dynamic content (using applets), which didn’t require it to be recompiled
for separate platforms. Let’s get started with the distinctive features and components
of Java, which still make it a popular programming language.

NOTE The exam will question you on the features and components of Java
that are relevant or irrelevant to it.

1.6.1 Valid features and components of Java

Java offers multiple advantages over other languages and platforms.

PLATFORM INDEPENDENCE

This feature is one of main reasons of Java’s phenomenal rise since its release. It’s also
referred to as “write once, run anywhere” (WORA)—a slogan created by Sun Micro-
systemsTM to highlight Java’s platform independence.

static classes and interfaces
Certification aspirants frequently ask questions about static classes and inter-
faces, so I’ll quickly cover these in this section to ward off any confusion related to
them. But note that static classes and interfaces are types of nested classes and
interfaces that aren’t covered by the OCA Java 8 Programmer I exam.

You can’t prefix the definition of a top-level class or an interface with the keyword
static. A top-level class or interface is one that isn’t defined within another class or
interface. The following code will fail to compile:

static class Person {}
static interface MyInterface {}

But you can define a class and an interface as a static member of another class.
The following code is valid:

class Person {
 static class Address {}
 static interface MyInterface {}
}

Also known as a
static nested class

[1.5] Compare and contrast the features and components of Java such as:
platform independence, object orientation, encapsulation, etc.

73Features and components of Java
 Java code can be executed on multiple systems without recompilation. Java code is
compiled into bytecode, to be executed by a virtual machine—the Java Virtual Machine
(JVM). A JVM is installed on platforms with different OSs like Windows, Mac, or
Linux. A JVM interprets bytecodes to machine-specific instructions for execution. The
implementation details of a JVM are machine-dependent and might differ across plat-
forms, but all of them interpret the same bytecode in a similar manner. Bytecode gen-
erated by a Java compiler is supported by all platforms with a JVM.

 Other popular programming languages like C and C++ compile their code to a
host system. So the code must be recompiled for separate platforms.

OBJECT ORIENTATION

Java emulates real-life object definition and behavior. In real life, state and behavior
are tied to an object. Similarly, all Java code is defined within classes, interfaces, or
enums. You need to create their objects to use them.

ABSTRACTION

Java lets you abstract objects and include only the required properties and behavior in
your code. For example, if you’re developing an application that tracks the popula-
tion of a country, you’ll record a person’s name, address, and contact details. But for a
health-tracking system, you might want to include health-related details and behavior
as well.

ENCAPSULATION

With Java classes, you can encapsulate the state and behavior of an object. The state or
the fields of a class are protected from unwanted access and manipulation. You can
control the level of access and modifications to your objects.

INHERITANCE

Java enables its classes to inherit other classes and implement interfaces. The inter-
faces can inherit other interfaces. This saves you from redefining common code.

POLYMORPHISM

The literal meaning of polymorphism is “many forms.” Java enables instances of its
classes to exhibit multiple behaviors for the same method calls. You’ll learn about this
in detail in chapter 6.

TYPE SAFETY

In Java, you must declare a variable with its data type before you can use it. This means
that you have compile-time checks that ensure you never assign to a variable a value of
the wrong type.

AUTOMATIC MEMORY MANAGEMENT

Unlike other programming languages like C or C++, Java uses garbage collectors for
automatic memory management. They reclaim memory from objects that are no lon-
ger in use. This frees developers from explicitly managing the memory themselves. It
also prevents memory leaks.

74 CHAPTER 1 Java basics
MULTITHREADING AND CONCURRENCY

Java has supported multithreading and concurrency since it was first released—sup-
ported by classes and interfaces defined in its core API.

SECURITY

Java includes multiple built-in security features (though not all are covered in this
exam) to control access to your resources and execution of your programs.

 Java is type safe and includes garbage collection. It provides secure class loading,
and verification ensures execution of legitimate Java code.

 The Java platform defines multiple APIs, including cryptography and public key
infrastructure. Java applications that execute under a security manager control access to
your resources, like reading or writing to file. Access to a resource can be controlled
using a policy file. Java enables you to define digital signatures, certificates, and key-
stores to secure code and file exchanges. Signed code is distributed for execution.

 With features like encapsulation and data hiding, Java secures the state of its objects.
Java applets execute in browsers and don’t allow code to be downloaded to a system,
thus enabling security for browsers and the systems that run them.

1.6.2 Irrelevant features and components of Java

The exam might also include some terms that are irrelevant.

SINGLE-THREADED

Java supports multithreading programming with inbuilt classes and interfaces. You
can create and use single threads, but the Java language isn’t single-threaded. Even
when you create single threads of execution, Java executes its own processes like gar-
bage collection in separate threads. Java isn’t a single-threaded language.

RELATED TO JAVASCRIPT

Java isn’t related to JavaScript (except for the similarity in their name). JavaScript is a
programming language used in web pages to make them interactive.

1.7 Summary
This chapter started with a look at the structure of a Java class. Although you should
know how to work with Java classes, Java source code files (.java files), and Java byte-
code files (.class files), the OCA Java SE 8 Programmer I exam will question you only
on the structure and components of the first two—classes and source code—not on
Java bytecode.

 We discussed the components of a Java class and of Java source code files. A class
can define multiple components, namely, import and package statements, variables,
constructors, methods, comments, nested classes, nested interfaces, annotations, and
enums. A Java source code file (.java) can define multiple classes and interfaces.

 We then covered the differences and similarities between executable and non-
executable Java classes. An executable Java class defines the entry point (main method)
for the JVM to start its execution. The main method should be defined with the

75Review notes
required method signature; otherwise, the class will fail to be categorized as an execut-
able Java class.

 Packages are used to group together related classes and interfaces. They also pro-
vide access protection and namespace management. The import statement is used to
import classes and interfaces from other packages. In the absence of an import state-
ment, classes and interfaces should be referred to by their fully qualified names (com-
plete package name plus class or interface name).

 Access modifiers control the access of classes and their members within a package
and across packages. Java defines four access modifiers: public, protected, default,
and private. When default access is assigned to a class or its member, no access mod-
ifier is prefixed to it. The absence of an access modifier is equal to assigning the class
or its members with default access. The least restrictive access modifier is public, and
private is the most restrictive. protected access sits between public and default
access, allowing access to derived classes outside a package.

 We covered the abstract and static nonaccess modifiers. A class or a method
can be defined as an abstract member. abstract classes can’t be instantiated. Meth-
ods and variables can be defined as static members. All the objects of a class share
the same copy of static variables, which are also known as class-level variables.

 Finally, we covered the features and components of Java that make it a popular
choice.

1.8 Review notes
This section lists the main points covered in this chapter.

 The structure of a Java class and source code file:

■ The OCA Java SE 8 Programmer I exam covers the structure and components
of a Java class and Java source code file (.java file). It doesn’t cover the structure
and components of Java bytecode files (.class files).

■ A class can define multiple components. All the Java components you’ve heard
of can be defined within a Java class: import and package statements, variables,
constructors, methods, comments, nested classes, nested interfaces, annotations,
and enums.

■ This exam doesn’t cover the definitions of nested classes, nested interfaces,
annotations, and enums.

■ If a class defines a package statement, it should be the first statement in the
class definition.

■ The package statement can’t appear within a class declaration or after the class
declaration.

■ If present, the package statement should appear exactly once in a class.
■ The import statement allows usage of simple names, nonqualified names of

classes, and interfaces.

76 CHAPTER 1 Java basics
■ The import statement can’t be used to import multiple classes or interfaces
with the same name.

■ A class can include multiple import statements.
■ If a class includes a package statement, all the import statements should follow

the package statement.
■ If present, an import statement must be placed before any class or interface

definition.
■ Comments are another component of a class. Comments are used to annotate

Java code and can appear at multiple places within a class.
■ A comment can appear before or after a package statement, before or after the

class definition, and before, within, or after a method definition.
■ Comments come in two flavors: multiline and end-of-line comments.
■ Comments can contain any special characters (including characters from the

Unicode charset).
■ Multiline comments span multiple lines of code. They start with /* and end

with */.
■ End-of-line comments start with // and, as the name suggests, are placed at the

end of a line of code or a blank line. The text between // and the end of the
line is treated as a comment.

■ Class declarations and class definitions are components of a Java class.
■ A Java class may define zero or more instance variables, methods, and constructors.
■ The order of the definition of instance variables, constructors, and methods

doesn’t matter in a class.
■ A class may define an instance variable before or after the definition of a

method and still use it.
■ A Java source code file (.java file) can define multiple classes and interfaces.
■ A public class can be defined only in a source code file with the same name.
■ package and import statements apply to all the classes and interfaces defined in

the same source code file (.java file).

Executable Java applications:

■ An executable Java class is a class that, when handed over to the Java Virtual
Machine (JVM), starts its execution at a particular point in the class. This point
of execution is the main method.

■ For a class to be executable, the class should define a main method with the
signature public static void main(String args[]) or public static void

main(String... args). The positions of static and public can be inter-
changed, and the method parameter can use any valid name.

■ A class can define multiple methods with the name main, provided that the sig-
nature of these methods doesn’t match the signature of the main method

77Review notes
defined in the previous point. These overloaded versions aren’t considered the
main method.

■ The main method accepts an array of type String containing the method
parameters passed to it by the JVM.

■ The keyword java and the name of the class aren’t passed on as command
parameters to the main method.

Java packages:

■ You can use packages to group together a related set of classes and interfaces.
■ By default, all classes and interfaces in separate packages and subpackages

aren’t visible to each other.
■ The package and subpackage names are separated using a dot.
■ All classes and interfaces in the same package are visible to each other.
■ An import statement allows the use of simple names for packaged classes and

interfaces defined in other packages.
■ You can’t use the import statement to access multiple classes or interfaces with

the same names from different packages.
■ You can import either a single member or all members (classes and interfaces)

of a package using the import statement.
■ You can’t import classes from a subpackage by using the wildcard character, an

asterisk (*), in the import statement.
■ A class from a default package can’t be used in any named packaged class,

regardless of whether it’s defined within the same directory or not.
■ You can import an individual static member of a class or all its static mem-

bers by using a static import statement.
■ An import statement can’t be placed before a package statement in a class. Any

attempt to do so will cause the compilation of the class to fail.
■ The members of default packages are accessible only to classes or interfaces

defined in the same directory on your system.

Java access modifiers:

■ The access modifiers control the accessibility of your class and its members out-
side the class and package.

■ Java defines four access levels: public, protected, default, and private.
■ Java defines three access modifiers: public, protected, and private.
■ The public access modifier is the least restrictive access modifier.
■ Classes and interfaces defined using the public access modifier are accessible

to related and unrelated classes outside the package in which they’re defined.
■ The members of a class defined using the protected access modifier are acces-

sible to classes and interfaces defined in the same package and to all derived
classes, even if they’re defined in separate packages.

78 CHAPTER 1 Java basics
■ The members of a class defined without using an explicit access modifier are
defined with package accessibility (also called default accessibility).

■ The members with package access are accessible only to classes and interfaces
defined in the same package.

■ A class defined using default access can’t be accessed outside its package.
■ The members of a class defined using a private access modifier are accessible

only to the class in which they’re defined. It doesn’t matter whether the class or
interface in question is from another package or has extended the class. Private
members are not accessible outside the class in which they’re defined.

■ The private access modifier is the most restrictive access modifier.

Nonaccess modifiers:

■ The nonaccess modifiers change the default properties of a Java class and its
members.

■ The nonaccess modifiers covered by this exam are abstract, final, and static.
■ The abstract keyword, when prefixed to the definition of a concrete class, can

change it to an abstract class, even if it doesn’t define any abstract methods.
■ An abstract class can’t be instantiated.
■ An interface is implicitly abstract. The Java compiler automatically adds the

keyword abstract to the definition of an interface (which means that adding
the keyword abstract to the definition of an interface is redundant).

■ An abstract method doesn’t have a body. When a non-abstract class extends a
class with an abstract method, it must implement the method.

■ A variable can’t be defined as an abstract variable.
■ The static modifier can be applied to inner classes, inner interfaces, variables,

and methods. Inner classes and interfaces aren’t covered in this exam.
■ A method can’t be defined as both abstract and static.
■ static attributes (fields and methods) are common to all instances of a class

and aren’t unique to any instance of a class.
■ static attributes exist independently of any instances of a class and may be

accessed even when no instances of the class have been created.
■ static attributes are also known as class fields or class methods because they’re

said to belong to their class, not to any instance of that class.
■ A static variable or method can be accessed using the name of a reference

object variable or the name of a class.
■ A static method or variable can’t access non-static variables or methods of a

class. But the reverse is true: non-static variables and methods can access
static variables and methods.

■ static classes and interfaces are a type of nested classes and interfaces, but
they aren’t covered in this exam.

79Sample exam questions
■ You can’t prefix the definition of a top-level class or an interface with the key-
word static. A top-level class or interface is one that isn’t defined within another
class or interface.

Features and components of Java:

■ Object orientation—Java emulates real-life object definition and behavior. It uses
classes, interfaces, or enums to define all its code.

■ Abstraction—Java lets you abstract objects and include only the required proper-
ties and behavior in your code.

■ Encapsulation—The state or the fields of a class are protected from unwanted
access and manipulation.

■ Inheritance—Java enables its classes to inherit other classes and implement inter-
faces. The interfaces can inherit other interfaces.

■ Polymorphism—Java enables instances of its classes to exhibit multiple behaviors
for the same method calls.

■ Type safety—In Java, you must declare a variable with its data type before you can
use it.

■ Automatic memory management—Java uses garbage collectors for automatic mem-
ory management. They reclaim memory from objects that are no longer in use.

■ Multithreading and concurrency—Java defines classes and interfaces to enable
developers to develop multithreaded code.

■ Java isn’t a single-threaded language.

1.9 Sample exam questions
Q1-1. Given:

class EJava {
 //..code
}

Which of the following options will compile?

a package java.oca.associate;
class Guru {
 EJava eJava = new EJava();
}

b package java.oca;
import EJava;
class Guru {
 EJava eJava;
}

c package java.oca.*;
import java.default.*;
class Guru {
 EJava eJava;
}

80 CHAPTER 1 Java basics
d package java.oca.associate;
import default.*;
class Guru {
 default.EJava eJava;
}

e None of the above

Q1-2. The following numbered list of Java class components is not in any particular
order. Select the acceptable order of their occurrence in any Java class (choose all
that apply):

1 comments
2 import statement
3 package statement
4 methods
5 class declaration
6 variables

a 1, 3, 2, 5, 6, 4
b 3, 1, 2, 5, 4, 6
c 3, 2, 1, 4, 5, 6
d 3, 2, 1, 5, 6, 4

Q1-3. Which of the following examples defines a correct Java class structure?

a #connect java compiler;
#connect java virtual machine;
class EJavaGuru {}

b package java compiler;
import java virtual machine;
class EJavaGuru {}

c import javavirtualmachine.*;
package javacompiler;
class EJavaGuru {
 void method1() {}
 int count;
}

d package javacompiler;
import javavirtualmachine.*;
class EJavaGuru {
 void method1() {}
 int count;
}

e #package javacompiler;
$import javavirtualmachine;
class EJavaGuru {
 void method1() {}
 int count;
}

81Sample exam questions
f package javacompiler;
import javavirtualmachine;
Class EJavaGuru {
 void method1() {}
 int count;
}

Q1-4. Given the following contents of the Java source code file MyClass.java, select the
correct options:

// contents of MyClass.java
package com.ejavaguru;
import java.util.Date;
class Student {}
class Course {}

a The imported class, java.util.Date, can be accessed only in the class Student.
b The imported class, java.util.Date, can be accessed by both the Student and

Course classes.
c Both of the classes Student and Course are defined in the package com

.ejavaguru.
d Only the class Student is defined in the package com.ejavaguru. The class

Course is defined in the default Java package.

Q1-5. Given the following definition of the class EJavaGuru,

class EJavaGuru {
 public static void main(String[] args) {
 System.out.println(args[1]+":"+ args[2]+":"+ args[3]);
 }
}

what is the output of EJavaGuru, if it is executed using the following command?

java EJavaGuru one two three four

a one:two:three
b EJavaGuru:one:two

c java:EJavaGuru:one
d two:three:four

Q1-6. Which of the following options, when inserted at //INSERT CODE HERE, will print
out EJavaGuru?

public class EJavaGuru {
 // INSERT CODE HERE
 {
 System.out.println("EJavaGuru");
 }
}

82 CHAPTER 1 Java basics
a public void main (String[] args)
b public void main(String args[])

c static public void main (String[] array)

d public static void main (String args)
e static public main (String args[])

Q1-7. What is the meaning of “write once, run anywhere”? Select the correct options:

a Java code can be written by one team member and executed by other team
members.

b It is for marketing purposes only.
c It enables Java programs to be compiled once and can be executed by any JVM

without recompilation.
d Old Java code doesn’t need recompilation when newer versions of JVMs are

released.

Q1-8. A class Course is defined in a package com.ejavaguru. Given that the physical
location of the corresponding class file is /mycode/com/ejavaguru/Course.class and
execution takes place within the mycode directory, which of the following lines of
code, when inserted at // INSERT CODE HERE, will import the Course class into the
class MyCourse?

// INSERT CODE HERE
class MyCourse {
 Course c;
}

a import mycode.com.ejavaguru.Course;

b import com.ejavaguru.Course;

c import mycode.com.ejavaguru;

d import com.ejavaguru;

e import mycode.com.ejavaguru*;

f import com.ejavaguru*;

Q1-9. Examine the following code:

class Course {
 String courseName;
}
class EJavaGuru {
 public static void main(String args[]) {
 Course c = new Course();
 c.courseName = "Java";
 System.out.println(c.courseName);
 }
}

83Sample exam questions
Which of the following statements will be true if the variable courseName is defined as
a private variable?

a The class EJavaGuru will print Java.
b The class EJavaGuru will print null.
c The class EJavaGuru won’t compile.
d The class EJavaGuru will throw an exception at runtime.

Q1-10. Given the following definition of the class Course,

package com.ejavaguru.courses;
class Course {
 public String courseName;
}

what’s the output of the following code?

package com.ejavaguru;
import com.ejavaguru.courses.Course;
class EJavaGuru {
 public static void main(String args[]) {
 Course c = new Course();
 c.courseName = "Java";
 System.out.println(c.courseName);
 }
}

a The class EJavaGuru will print Java.
b The class EJavaGuru will print null.
c The class EJavaGuru won’t compile.
d The class EJavaGuru will throw an exception at runtime.

Q1-11. Given the following code, select the correct options:

package com.ejavaguru.courses;
class Course {
 public String courseName;
 public void setCourseName(private String name) {
 courseName = name;
 }
}

a You can’t define a method argument as a private variable.
b A method argument should be defined with either public or default accessibility.
c For overridden methods, method arguments should be defined with protected

accessibility.
d None of the above.

84 CHAPTER 1 Java basics
1.10 Answers to sample exam questions

Q1-1. Given:

class EJava {
 //..code
}

Which of the following options will compile?

a package java.oca.associate;
class Guru {
 EJava eJava = new EJava();
}

b package java.oca;

import EJava;
class Guru {
 EJava eJava;
}

c package java.oca.*;

import java.default.*;
class Guru {
 EJava eJava;
}

d package java.oca.associate;

import default.*;
class Guru {
 default.EJava eJava;
}

e None of the above

Answer: e

Explanation: A class that isn’t defined in a package gets implicitly defined in Java’s
default package. But such classes can’t be accessed by classes or interfaces, which are
explicitly defined in a package.

 Option a is incorrect. The EJava class isn’t defined in a package, so it can’t be
accessed by the Guru class, which is defined in the java.oca.associate package.

 Options b, c, and d won’t compile. Option b uses invalid syntax in the import state-
ment. Options c and d try to import classes from nonexistent packages—java.default
and default.

Q1-2. The following numbered list of Java class components is not in any particular
order. Select the correct order of their occurrence in a Java class (choose all that apply):

1 comments
2 import statement

85Answers to sample exam questions
3 package statement
4 methods
5 class declaration
6 variables

a 1, 3, 2, 5, 6, 4
b 3, 1, 2, 5, 4, 6
c 3, 2, 1, 4, 5, 6
d 3, 2, 1, 5, 6, 4

Answer: a, b, d

Explanation: The comments can appear anywhere in a class. They can appear before
and after package and import statements. They can appear before or after a class,
method, or variable declaration.

 The first statement (if present) in a class should be a package statement. It can’t be
placed after an import statement or a declaration of a class.

 The import statement should follow a package statement and be followed by a
class declaration.

 The class declaration follows the import statements, if present. It’s followed by the
declaration of the methods and variables.

 Answer c is incorrect. None of the variables or methods can be defined before the
definition of a class or interface.

Q1-3. Which of the following examples defines a correct Java class structure?

a #connect java compiler;
#connect java virtual machine;
class EJavaGuru {}

b package java compiler;
import java virtual machine;
class EJavaGuru {}

c import javavirtualmachine.*;
package javacompiler;
class EJavaGuru {
 void method1() {}
 int count;
}

d package javacompiler;
import javavirtualmachine.*;
class EJavaGuru {
 void method1() {}
 int count;
}

86 CHAPTER 1 Java basics
e #package javacompiler;
$import javavirtualmachine;
class EJavaGuru {
 void method1() {}
 int count;
}

f package javacompiler;
import javavirtualmachine;
Class EJavaGuru {
 void method1() {}
 int count;
}

Answer: d

Explanation: Option a is incorrect because #connect isn’t a statement in Java. # is
used to add comments in UNIX.

 Option b is incorrect because a package name (Java compiler) can’t contain
spaces. Also, java virtual machine isn’t a valid package name to be imported in a
class. The package name to be imported can’t contain spaces.

 Option c is incorrect because a package statement (if present) must be placed
before an import statement.

 Option e is incorrect. #package and $import aren’t valid statements or directives
in Java.

 Option f is incorrect. Java is case-sensitive, so the word class is not the same as the
word Class. The correct keyword to define a class is class.

Q1-4. Given the following contents of the Java source code file MyClass.java, select the
correct options:

// contents of MyClass.java
package com.ejavaguru;
import java.util.Date;
class Student {}
class Course {}

a The imported class, java.util.Date, can be accessed only in the class Student.
b The imported class, java.util.Date, can be accessed by both the Student and

Course classes.
c Both of the classes Student and Course are defined in the package com.ejava-

guru.
d Only the class Student is defined in the package com.ejavaguru. The class

Course is defined in the default Java package.

Answer: b, c

87Answers to sample exam questions
Explanation: You can define multiple classes, interfaces, and enums in a Java source
code file.

 Option a is incorrect. The import statement applies to all the classes, interfaces,
and enums defined within the same Java source code file.

 Option d is incorrect. If a package statement is defined in the source code file, all
the classes, interfaces, and enums defined within it will exist in the same Java package.

Q1-5. Given the following definition of the class EJavaGuru,

class EJavaGuru {
 public static void main(String[] args) {
 System.out.println(args[1]+":"+ args[2]+":"+ args[3]);
 }
}

what is the output of the previous class, if it is executed using the following command?

java EJavaGuru one two three four

a one:two:three

b EJavaGuru:one:two

c java:EJavaGuru:one
d two:three:four

Answer: d

Explanation: The command-line arguments passed to the main method of a class do
not contain the word Java and the name of the class.

 Because the position of an array is zero-based, the method argument is assigned
the following values:

args[0] -> one
args[1] -> two
args[2] -> three
args[3] -> four

The class prints two:three:four.

Q1-6. Which of the following options, when inserted at //INSERT CODE HERE, will print
out EJavaGuru?

public class EJavaGuru {
 // INSERT CODE HERE
 {
 System.out.println("EJavaGuru");
 }
}

88 CHAPTER 1 Java basics
a public void main (String[] args)
b public void main(String args[])

c static public void main (String[] array)
d public static void main (String args)

e static public main (String args[])

Answer: c

Explanation: Option a is incorrect. This option defines a valid method but not a valid
main method. The main method should be defined as a static method, which is miss-
ing from the method declaration in option a.

 Option b is incorrect. This option is similar to the method defined in option a,
with one difference. In this option, the square brackets are placed after the name of
the method argument. The main method accepts an array as a method argument, and
to define an array, the square brackets can be placed after either the data type or the
method argument name.

 Option c is correct. Extra spaces in a class are ignored by the Java compiler.
 Option d is incorrect. The main method accepts an array of String as a method

argument. The method in this option accepts a single String object.
 Option e is incorrect. It isn’t a valid method definition and doesn’t specify the

return type of the method. This line of code will not compile.

Q1-7. What is the meaning of “write once, run anywhere”? Select the correct options:

a Java code can be written by one team member and executed by other team
members.

b It is for marketing purposes only.
c It enables Java programs to be compiled once and can be executed by any JVM

without recompilation.
d Old Java code doesn’t need recompilation when newer versions of JVMs are

released.

Answer: c

Explanation: Platform independence, or “write once, run anywhere,” enables Java
code to be compiled once and run on any system with a JVM. It isn’t for marketing
purposes only.

Q1-8. A class Course is defined in a package com.ejavaguru. Given that the physical
location of the corresponding class file is /mycode/com/ejavaguru/Course.class
and execution takes place within the mycode directory, which of the following lines

89Answers to sample exam questions
of code, when inserted at // INSERT CODE HERE, will import the Course class into the
class MyCourse?

// INSERT CODE HERE
class MyCourse {
 Course c;
}

a import mycode.com.ejavaguru.Course;

b import com.ejavaguru.Course;
c import mycode.com.ejavaguru;

d import com.ejavaguru;

e import mycode.com.ejavaguru*;

f import com.ejavaguru*;

Answer: b

Explanation: Option a is incorrect. The base directory, mycode, in which package
com.ejavaguru is defined, must not be included in the import statement.

 Options c and e are incorrect. The class’s physical location isn’t specified in the
import statement.

 Options d and f are incorrect. ejavaguru is a package. To import a package and its
members, the package name should be followed by .*, as follows:

import com.ejavaguru.*;

Q1-9. Examine the following code:

class Course {
 String courseName;
}
class EJavaGuru {
 public static void main(String args[]) {
 Course c = new Course();
 c.courseName = "Java";
 System.out.println(c.courseName);
 }
}

Which of the following statements will be true if the variable courseName is defined as
a private variable?

a The class EJavaGuru will print Java.
b The class EJavaGuru will print null.
c The class EJavaGuru won’t compile.
d The class EJavaGuru will throw an exception at runtime.

Answer: c

90 CHAPTER 1 Java basics
Explanation: If the variable courseName is defined as a private member, it won’t be
accessible from the class EJavaGuru. An attempt to do so will cause it to fail at compile
time. Because the code won’t compile, it can’t execute.

Q1-10. Given the following definition of the class Course,

package com.ejavaguru.courses;
class Course {
 public String courseName;
}

what’s the output of the following code?

package com.ejavaguru;
import com.ejavaguru.courses.Course;
class EJavaGuru {
 public static void main(String args[]) {
 Course c = new Course();
 c.courseName = "Java";
 System.out.println(c.courseName);
 }
}

a The class EJavaGuru will print Java.
b The class EJavaGuru will print null.
c The class EJavaGuru will not compile.
d The class EJavaGuru will throw an exception at runtime.

Answer: c

Explanation: The class will fail to compile because a nonpublic class can’t be accessed
outside a package in which it’s defined. The class Course therefore can’t be accessed
from within the class EJavaGuru, even if it’s explicitly imported into it. If the class itself
isn’t accessible, there’s no point in accessing a public member of a class.

Q1-11. Given the following code, select the correct options:

package com.ejavaguru.courses;
class Course {
 public String courseName;
 public void setCourseName(private String name) {
 courseName = name;
 }
}

a You can’t define a method argument as a private variable.
b A method argument should be defined with either public or default accessibility.

91Answers to sample exam questions
c For overridden methods, method arguments should be defined with protected

accessibility.
d None of the above.

Answer: a

Explanation: You can’t add an explicit accessibility keyword to the method parame-
ters. If you do, the code won’t compile.

Working with
Java data types
Imagine that you’ve just purchased a new home. You’ll likely need to buy different-
sized containers to store different types of food items, because one size can’t fit all.

Exam objectives covered in this chapter What you need to know

[2.2] Differentiate between object reference
variables and primitive variables.

The primitive data types in Java, including scenar-
ios when a particular primitive data type should or
can’t be used. Similarities and differences between
the primitive data types.
Similarities and differences between primitive and
object reference variables.

[2.1] Declare and initialize variables (including
casting of primitive data types).

Declaration and initialization of primitives and
object reference variables.
Literal values for primitive and object reference
variables.

[2.5] Develop code that uses wrapper classes
such as Boolean, Double, and Integer.

How and when values are boxed and unboxed when
used with wrapper classes.

[3.1] Use Java operators; including parenthe-
ses to override operator precedence.

Use of assignment, arithmetic, relational, and logi-
cal operators with primitives and object reference
variables.
Valid operands for an operator. Output of an arith-
metic expression.
Determine the equality of two primitives.
How to override the default operator precedence by
using parentheses.
92

93Primitive variables
Also, you might move around food items in your home—perhaps because of a change
in the requirements over time (you wish to eat it or you wish to store it).

 Your new kitchen is an analogy for how Java stores its data using different data
types, and manipulates the data using operators. The food items are like data types in
Java, and the containers used to store the food are like variables in Java. The change
in the requirements that triggers a change in the state of food items can be compared
to the processing logic. The agents of change (fire, heat, or cooling) that change the
state of the food items can be compared to Java operators. You need these agents of
change so that you can process the raw food items to create delicacies.

 In the OCA Java SE 8 Programmer I exam, you’ll be asked questions on the various
data types in Java, such as how to create and initialize them and what their similarities
and differences are. The exam will also question you on using the Java operators. This
chapter covers the following:

■ Primitive data types in Java
■ Literal values of primitive Java data types
■ Object reference variables in Java
■ Valid and invalid identifiers
■ Usage of Java operators
■ Modification of default operator precedence via parentheses

2.1 Primitive variables

In this section, you’ll learn all the primitive data types in Java, their literal values, and
the process of creating and initializing primitive variables. A variable defined as one of
the primitive data types is a primitive variable.

 Primitive data types, as the name suggests, are the simplest data types in a program-
ming language. In the Java language, they’re predefined. The names of the primitive
types are quite descriptive of the values that they can store. Java defines the following
eight primitive data types:

■ char

■ byte

■ short

■ int

■ long

■ float

■ double

■ boolean

[2.1] Declare and initialize variables (including casting of primitive data types)

[2.2] Differentiate between object reference variables and primitive variables

94 CHAPTER 2 Working with Java data types
Examine figure 2.1 and try to match the given value with the corresponding type.
 This should be a simple exercise. Table 2.1 provides the answers.

In the preceding exercise, I categorized the data that you need to store as follows:
character, integer, decimal, and Boolean values. This categorization will make your
life simpler when confronted with selecting the most appropriate primitive data type
to store a value. For example, to store an integer value, you need a primitive data
type that’s capable of storing integer values; to store decimal numbers, you need a
primitive data type that can store decimal numbers. Simple, isn’t it?

 Let’s map the types of data that the primitive data types can store, because it’s
always easy to group and remember information.

NOTE The category Boolean is not the same as the primitive data type boolean
or wrapper class Boolean. Java primitive data types and class names are dis-
played using code font.

The primitive data types can be categorized as follows: Boolean, character, and numeric
(further categorized as integral and floating-point) types. Take a look at this categori-
zation in figure 2.2.

 As shown in figure 2.2, the char primitive data type is an unsigned numeric data
type. It can only store positive integers. The rest of the numeric data types (byte,
short, int, long, float, and double) are signed numeric data types (they can store
both negative and positive values). The categorization in figure 2.2 will help you fur-
ther associate each data type with the value that it can store. Let’s start with the Bool-
ean category.

Table 2.1 Matching a value with its corresponding data type

Character values Integer values Decimal values Boolean

a 100 7.3 true

4573

Character

Decimal

Integer

Boolean

Actual

values

Types of

values

a

100 7.3
4573

True

? ? ? ? ?

Figure 2.1 Matching a value
with its corresponding type

95Primitive variables
2.1.1 Category: Boolean

The Boolean category has only one data type: boolean. A boolean variable can store
one of two values: true or false. It’s used in scenarios where only two states can exist.
See table 2.2 for a list of questions and their probable answers.

EXAM TIP In this exam, the questions test your ability to select the best suit-
able data type for a condition that can only have two states: yes/no or true/
false. The correct answer here is the boolean type.

Here’s some code that defines boolean primitive variables:

boolean voucherPurchased = true;
boolean examPrepStarted = false;

In some languages, such as JavaScript, you don’t need to define the type of a variable
before you use it. In JavaScript, the compiler defines the type of the variable according

Table 2.2 Suitable data that can be stored using a boolean data type

Question Probable answers

Did you purchase the exam voucher? Yes/No

Did you log in to your email account? Yes/No

Did you tweet about your passion today? Yes/No

Tax collected in financial year 2001–2002 Good question! But it can’t be answered as yes/no.

Numeric

Character

Boolean

Integers Floating-point

byte short int long float double char boolean

Primitive data types

UnsignedSigned

Figure 2.2 Categorization of primitive data types

96 CHAPTER 2 Working with Java data types
to the value that you assign to it. Java, in contrast, is a strongly typed language. You
must declare a variable and define its type before you can assign a value to it. Figure 2.3
illustrates defining a boolean variable and assigning a value to it.

Another point to note here is the value that’s assigned to a boolean variable. I used
the literals true and false to initialize the boolean variables. A literal is a fixed value
that doesn’t need further calculations in order for it to be assigned to any variable.
true and false are the only two boolean literals.

NOTE There are only two boolean literal values: true and false.

2.1.2 Category: signed numeric

The numeric category defines two subcategories: integers and floating point (also
called decimals). Let’s start with the integers.

INTEGERS: BYTE, INT, SHORT, LONG

When you can count a value in whole numbers, the result is an integer. It includes
both negative and positive numbers. Table 2.3 lists probable scenarios in which the
data can be stored as integers.

You can use the byte, short, int, and long data types to store integer values. Wait a
minute: why do you need so many types to store integers?

 Each one of these can store a different range of values. The benefits of the smaller
ones are obvious: they need less space in memory and are faster to work with. Table 2.4

Table 2.3 Data that can be categorized as numeric (nondecimal numbers) data type

Situation Can be stored as integers?

Number of friends on Facebook Yes

Number of tweets posted today Yes

Number of photographs uploaded for printing Yes

Your body temperature Not always

boolean result = false;

Type of variable boolean literal

Variable name

Figure 2.3 Defining and
assigning a primitive variable

97Primitive variables
lists all these data types, along with their sizes and the ranges of the values that they
can store.

The OCA Java SE 8 Programmer I exam may ask you questions about the range of
integers that can be assigned to a byte data type, but it won’t include questions on the
ranges of integer values that can be stored by short, int, or long data types. Don’t
worry—you don’t have to memorize the ranges for all these data types!

 Here’s some code that assigns literal values to primitive numeric variables within
their acceptable ranges:

byte num = 100;
short sum = 1240;
int total = 48764;
long population = 214748368;

The default type of a nondecimal number is int. To designate an integer literal value
as a long value, add the suffix L or l (L in lowercase), as follows:

long fishInSea = 764398609800L;

Integer literal values come in four flavors: binary, decimal, octal, and hexadecimal:

■ Binary number system—A base-2 system, which uses only 2 digits, 0 and 1.
■ Octal number system—A base-8 system, which uses digits 0 through 7 (a total of 8

digits). Here the decimal number 8 is represented as octal 10, decimal 9 as 11,
and so on.

■ Decimal number system—The base-10 number system that you use every day. It’s
based on 10 digits, from 0 through 9 (a total of 10 digits).

■ Hexadecimal number system—A base-16 system, which uses digits 0 through 9 and
the letters A through F (a total of 16 digits and letters). Here the number 10 is
represented as A or a, 11 as B or b, 12 as C or c, 13 as D or d, 14 as E or e, and 15
as F or f.

Let’s take quick look at how you can convert integers in the decimal number system to
the other number systems. Figures 2.4, 2.5, and 2.6 show how to convert the decimal
number 267 to the octal, hexadecimal, and binary number systems.

Table 2.4 Ranges of values stored by the signed numeric Java primitive data types

Data type Size Range of values

byte 8 bits –128 to 127, inclusive

short 16 bits –32,768 to 32,767, inclusive

int 32 bits –2,147,483,648 to 2,147,483,647, inclusive

long 64 bits –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, inclusive

98 CHAPTER 2 Working with Java data types

2
dec
num
sy
EXAM TIP In the exam, you won’t be asked to convert a number from the
decimal number system to the octal and hexadecimal number systems and
vice versa. But you can expect questions that ask you to select valid literals for
integers. The figures 2.4–2.6 will help you understand these number systems
better and retain this information longer, which will in turn enable you to
answer questions correctly during the exam.

You can assign integer literals in base decimal, binary, octal, and hexadecimal. For
octal literals, use the prefix 0; for binary, use the prefix 0B or 0b; and for hexadecimal,
use the prefix 0X or 0x. Here’s an example of each of these:

int baseDecimal = 267;
int octVal = 0413;
int hexVal = 0x10B;
int binVal = 0b100001011;

8 8 4 8 033267

-264

¯¯¯

3

33

-32

¯¯¯

1

4

-0

¯¯¯

4

Ans = 4 1 3

Figure 2.4 Converting an
integer from decimal to octal

16 16 1 16 016267

-256

¯¯¯

11

16

-16

¯¯¯

0

1

-0

¯¯¯

1

Ans = 1 0 B (11 is B in hex)

Figure 2.5 Converting an integer
from decimal to hexadecimal

2 267

2 133-1

2 66-1

2 33-0

2 16-1

2 8-0

2 4-0

Ans = 1 0 0 0 0 1 0 1 1

2 2-0

2 1-0

0-1
Figure 2.6 Converting an
integer from decimal to binary

67 in
imal
ber

stem

267 in decimal number system is
equal to 413 in octal number system 267 in decimal number

system is equal to 10B
in hexadecimal
number system267 in decimal number system

is equal to 100001011 in
binary number system

99Primitive variables
Java 7 introduced the use of underscores as part of the literal values. Grouping indi-
vidual digits or letters of literal values makes them more readable. The underscores
have no effect on the values. The following is valid code:

long baseDecimal = 100_267_760;
long octVal = 04_13;
long hexVal = 0x10_BA_75;
long binVal = 0b1_0000_10_11;

RULES TO REMEMBER

Here’s a quick list of rules for usage of underscores in the numeric literal values:

■ You can place an underscore right after the prefix 0, which is used to define an
octal literal value.

■ You can’t start or end a literal value with an underscore.
■ You can’t place an underscore right after the prefixes 0b, 0B, 0x, and 0X, which

are used to define binary and hexadecimal literal values.
■ You can’t place an underscore prior to an L suffix (the L suffix is used to mark a

literal value as long).
■ You can’t use an underscore in positions where a string of digits is expected

(see the following example).

Because you’re likely to be questioned on valid and invalid uses of underscores in lit-
eral values on the exam, let’s look at some invalid examples:

int intLiteral = _100;
int intLiteral2 = 100_999_;
long longLiteral = 100_L;

The following line of code will compile successfully but will fail at runtime:

int i = Integer.parseInt("45_98");

Because a String value can accept underscores, the compiler will compile the previ-
ous code. But the runtime will throw an exception stating that an invalid format of
value was passed to the method parseInt.

 Here’s the first Twist in the Tale exercise of this chapter for you to attempt. It uses
multiple combinations of underscores in numeric literal values. See if you can get all
of them right (answers in the appendix).

More-readable literal values in binary,
decimal, octal, and hexadecimal that use
underscores to group digits and letters

Can’t start or end a literal
value with an underscore

Can’t place an underscore
prior to suffix L

Invalid use of underscore where
a string of digits is expected

100 CHAPTER 2 Working with Java data types
Let’s use the primitive variables baseDecimal, octVal, hexVal, and binVal defined
earlier in this section and introduce additional code for printing the values of all these
variables. Determine the output of the following code:

class TwistInTaleNumberSystems {
public static void main (String args[]) {
 int baseDecimal = 267;
 int octVal = 0413;
 int hexVal = 0x10B;
 int binVal = 0b100001011;
 System.out.println (baseDecimal + octVal);
 System.out.println (hexVal + binVal);
 }
}

Here’s another quick exercise—let’s define and initialize some long primitive vari-
ables that use underscores in the literal values assigned to them. Determine which of
these does this job correctly:

long var1 = 0_100_267_760;
long var2 = 0_x_4_13;
long var3 = 0b_x10_BA_75;
long var4 = 0b_10000_10_11;
long var5 = 0xa10_AG_75;
long var6 = 0x1_0000_10;
long var7 = 100__12_12;

FLOATING-POINT NUMBERS: FLOAT AND DOUBLE

You need floating-point numbers where you expect decimal numbers. For example,
can you define the probability of an event occurring as an integer? Table 2.5 lists prob-
able scenarios in which the corresponding data is stored as a floating-point number.

Twist in the Tale 2.1

Table 2.5 Data that’s stored as floating-point numbers

Situation Is the answer a floating-point number?

Orbital mechanics of a spacecraft Yes (very precise values are required)

Probability of your friend request being accepted Yes; probability is between 0.0 (none) and 1.0 (sure)

Speed of Earth revolving around the sun Yes

Magnitude of an earthquake on the Richter scale Yes

101Primitive variables
In Java, you can use the float and double primitive data types to store decimal num-
bers. float requires less space than double, but it can store a smaller range of values
than double. float is less precise than double. float can’t represent accurately some
numbers even if they’re in range. The same limitation applies to double—even if it’s a
data type that offer more precision. Table 2.6 lists the sizes and ranges of values for
float and double.

Here’s some code in action:

float average = 20.129F;
float orbit = 1765.65f;
double inclination = 120.1762;

Did you notice the use of the suffixes F and f while initializing the variables average

and orbit in the preceding code? The default type of a decimal literal is double, but
by suffixing a decimal literal value with F or f, you tell the compiler that the literal
value should be treated like a float and not a double.

 You can also assign a literal decimal value in scientific notation as follows:

double inclination2 = 1.201762e2;

You can also add the suffix D or d to a decimal number value to specify that it’s a
double value. Because the default type of a decimal number is double, the use of the
suffix D or d is redundant. Examine the following line of code:

double inclination = 120.1762D;

Starting with Java version 7, you can also use underscores with the floating-point literal
values. The rules are generally the same as previously mentioned for numeric literal val-
ues; the following rules are specific to floating-point literals:

■ You can’t place an underscore prior to a D, d, F, or f suffix (these suffixes are
used to mark a floating-point literal as double or float).

■ You can’t place an underscore adjacent to a decimal point.

Let’s look at some examples that demonstrate the invalid use of underscores in floating-
point literal values:

float floatLiteral = 100._48F;
double doubleLiteral = 100_.87;

Table 2.6 Range of values for decimal numbers

Data type Size Range of values

float 32 bits +/–1.4E–45 to +/–3.4028235E+38, +/–infinity, +/–0, NaN

double 64 bits +/–4.9E–324 to +/–1.7976931348623157E+308, +/–infinity, +/–0, NaN

120.1762 is same as 1.201762e2 (the
latter is expressed in scientific notation)

120.1762D is same as 120.1762

Can’t use underscore
adjacent to a decimal point

102 CHAPTER 2 Working with Java data types
float floatLiteral2 = 100.48_F;
double doubleLiteral2 = 100.87_d;

2.1.3 Category: character (unsigned integer)

The character category defines only one data type: char. A char is an unsigned inte-
ger. It can store a single 16-bit Unicode character; that is, it can store characters from
virtually all the existing scripts and languages, including Japanese, Korean, Chinese,
Devanagari, French, German, and Spanish. Because your keyboard may not have keys
to represent all these characters, you can use a value from \u0000 (or 0) to a maxi-
mum value of \uffff (or 65,535) inclusive. The following code shows the assignment
of a value to a char variable:

char c1 = 'D';

A very common mistake is using double quotes to assign a value to a char. The correct
option is single quotes. Figure 2.7 shows a conversation between two (hypothetical)
programmers, Paul and Harry.

What happens if you try to assign a char using double quotes? The code will fail to
compile, with this message:

Type mismatch: cannot convert from String to char

EXAM TIP Never use double quotes to assign a letter to a char variable. Dou-
ble quotes are used to assign a value to a variable of type String.

Internally, Java stores char data as an unsigned integer value (positive integer). It’s
therefore acceptable to assign a positive integer value to a char, as follows:

char c1 = 122;

Can’t use underscore
prior to suffix F, f, D, or d

Use single quotes to assign
a char, not double quotes.

Figure 2.7 Never use double quotes to assign a letter as a char value.

Assign z to c1

103Primitive variables
NOTE The exam will test you on multiple (obscure) techniques like assigning
an unsigned integer value to a char data type. But I don’t recommend using
these on real projects. Please write code that’s readable and easy to maintain.

The integer value 122 is equivalent to the letter z, but the integer value 122 is not
equal to the Unicode value \u0122. The former is a number in base 10 (uses digits 0–9)
and the latter is a number in base 16 (uses digits 0–9 and letters a–f—lower- or upper-
case). \u is used to mark the value as a Unicode value. You must use quotes to assign
Unicode values to char variables. Here’s an example:

char c2 = '\u0122';
System.out.println("c1 = " + c1);
System.out.println("c2 = " + c2);

Figure 2.8 shows the output of the preceding code on a system that supports Unicode
characters.

As mentioned earlier, char values are unsigned integer values, so if you try to assign a
negative number to one, the code won’t compile. Here’s an example:

char c3 = -122;

But you can forcefully assign a negative number to a char type by casting it to char,
as follows:

char c3 = (char)-122;
System.out.println("c3 = " + c3);

In the previous code, note how the literal value –122 is prefixed by (char). This practice
is called casting. Casting is the forceful conversion of one data type to another data type.

 You can cast only compatible data types. For example, you can cast a char to an int
and vice versa. But you can’t cast an int to a boolean value or vice versa. When you
cast a bigger value to a data type that has a smaller range, you tell the compiler that
you know what you’re doing, so the compiler proceeds by chopping off any extra bits
that may not fit into the smaller variable. Use casting with caution—it may not always
give you the correct converted values.

 Figure 2.9 shows the output of the preceding code that cast a value to c3 (the value
looks weird!).

c1 = z
c2 = Ģ

Figure 2.8 The output of assigning a character using the
integer value 122 versus the Unicode value \u0122

Fails to compile

Compiles successfully

c3 =
Figure 2.9 The output of assigning a negative
value to a character variable

104 CHAPTER 2 Working with Java data types
The char data type in Java doesn’t allocate space to store the sign of an integer. If you
try to forcefully assign a negative integer to char, the sign bit is stored as the part of
the integer value, which results in the storage of unexpected values.

EXAM TIP The exam will test your understanding of the possible values that
can be assigned to a variable of type char, including whether an assignment
will result in a compilation error. Don’t worry—it won’t test you on the value
that’s actually displayed after assigning arbitrary integer values to a char!

2.1.4 Confusion with the names of the primitive data types

If you’ve previously worked in another programming language, there’s a good chance
that you might get confused with the names of the primitive data types in Java and other
languages. For example, C defines a primitive short int data type. But short and int
are two separate primitive data types in Java. The OCA Java SE 8 Programmer I exam
will test you on your ability to recognize the names of the primitive data types, and the
answers to these questions may not be immediately obvious. An example follows:

Question: What is the output of the following code?

public class MyChar {
 public static void main(String[] args) {
 int myInt = 7;
 bool result = true;
 if (result == true)
 do
 System.out.println(myInt);
 while (myInt > 10);
 }
}

a It prints 7 once.
b It prints nothing.
c Compilation error.
d Runtime error.

The correct answer is (c). This question tries to trick you with complex code that
doesn’t use any if constructs or do-while loops! As you can see, it uses an incorrect
data type name, bool, to declare and initialize the variable result. Therefore, the
code will fail to compile.

EXAM TIP Watch out for questions that use incorrect names for the primitive
data types. For example, there isn’t any bool primitive data type in Java. The
correct data type is boolean. If you’ve worked with other programming lan-
guages, you might get confused trying to remember the exact names of all the
primitive data types used in Java. Remember that just two of the primitive data
types—int and char—are shortened; the rest of the primitive data types
(byte, short, long, float, and double) are not.

105Identifiers
2.2 Identifiers
Identifiers are names of packages, classes, interfaces, methods, and variables. Though
identifying a valid identifier is not explicitly included in the exam objectives, there’s a
good chance that you’ll encounter a question similar to the following that will require
you to identify valid and invalid identifiers:

Question: Which of the following lines of code will compile successfully?

a byte exam_total = 7;
b int exam-Total = 1090;

The correct answer is (a). Option (b) is incorrect because hyphens aren’t allowed in
the name of a Java identifier. Underscores are allowed.

2.2.1 Valid and invalid identifiers

Table 2.7 contains a list of rules that will enable you to correctly define valid (and
invalid) identifiers, along with some examples.

You can’t define a variable with the same name as Java keywords or reserved words. As
these names suggest, they’re reserved for specific purposes. Table 2.8 lists Java key-
words, reserved words, and literals that you can’t use as identifier names.

Table 2.7 Ingredients of valid and invalid identifiers

Properties of valid identifiers Properties of invalid identifiers

Unlimited length Same spelling as a Java reserved word or keyword
(see table 2.8)

Starts with a letter (a–z, upper- or lowercase), a
currency sign, or an underscore

Uses special characters: !, @, #, %, ^, &, *, (,),
', :, ;, [, /, \, }

Can use a digit (not at the starting position) Starts with a Java digit (0–9)

Can use an underscore (at any position)

Can use a currency sign (at any position): ¤, $, £,
¢, ¥, and others

Examples of valid identifiers Examples of invalid identifiers

customerValueObject 7world (identifier can’t start with a digit)

$rate, £Value, _sine %value (identifier can’t use special char %)

happy2Help, nullValue Digital!, books@manning (identifier can’t
use special char ! or @)

Constant null, true, false, goto (identifier can’t have
the same name as a Java keyword or reserved
word)

106 CHAPTER 2 Working with Java data types
Let’s combat some of the common mistakes when determining correct and incorrect
variables using the following variable declarations:

int falsetrue;
int javaseminar, javaSeminar;
int DATA-COUNT;
int DATA_COUNT;
int car.count;
int %ctr;
int ¥to£And$¢;

Next, let’s look at the object reference variables and how they differ from the primi-
tive variables.

2.3 Object reference variables

The variables in Java can be categorized into two types: primitive variables and reference
variables. In this section, along with a quick introduction to reference variables, we’ll
cover the basic differences between reference variables and primitive variables.

 Reference variables are also known as object reference variables or object references. I use
these terms interchangeably in this text.

Table 2.8 Java keywords and reserved words that can’t be used as names for Java variables

abstract default goto package this

assert do if private throw

boolean double implements protected throws

break else import public transient

byte enum instanceof return true

case extends int short try

catch false interface static void

char final long strictfp volatile

class finally native super while

const float new switch

continue for null synchronized

Valid: combination of
two or more keywords Valid (but using both of these

together can be very confusing)

Invalid: hyphen
isn’t allowed

Valid: underscore
is allowed

Invalid: a dot in
a variable name
is not allowedInvalid: % sign

isn’t allowedValid (though
strange)

[2.1] Declare and initialize variables (including casting of primitive data types)

[2.2] Differentiate between object reference variables and primitive variables

107Object reference variables
2.3.1 What are object reference variables?
Objects are instances of classes, including both predefined and user-defined classes. For
a reference type in Java, the variable name evaluates to the address of the location in
memory where the object referenced by the variable is stored. An object reference is, in
fact, a memory address that points to a memory area where an object’s data is located.

 Let’s quickly define a barebones class, Person, as follows:

class Person {}

When an object is instantiated with the new operator, a memory address value to that
object is returned. That address is usually assigned to the reference variable. Figure 2.10
shows a line of code that creates a reference variable person of type Person and assigns
an object to it.

When the statement shown in figure 2.10 executes, three things happen:

■ A new Person object is created.
■ A variable named person is created in the stack with an empty (null) value.
■ The variable person is assigned the memory address value where the object

is located.

Figure 2.11 contains an illustration of a reference variable and the object it refers to
in memory.

Person person = new Person();

Type of object
reference variable

Operator used to
create a new object

Name of object
reference variable

Object referred to by
variable person

Figure 2.10 The creation
and assignment of a
reference variable

Stack

memory

Heap
memory

B1050Object reference,

variable person
Person object

located at

address B1050

Person person = new Person();

Figure 2.11 An object reference variable and the referenced object in memory

108 CHAPTER 2 Working with Java data types
You can think of an object reference variable as a handle to an object that allows you
access to that object’s attributes. The following analogy will help you understand
object reference variables, the objects that they refer to, and their relationship. Think
of objects as analogous to dogs, and think of object references as analogous to leashes.
Although this analogy won’t bear too much analysis, the following comparisons are valid:

■ A leash not attached to a dog is a reference object variable with a null value.
■ A dog without a leash is a Java object that’s not referred to by any object refer-

ence variable.
■ Just as an unleashed dog might be picked up by animal control, an object that

isn’t referred to by a reference variable is liable to be garbage collected (removed
from memory by the JVM).

■ Several leashes may be tethered to a single dog. Similarly, a Java object may be
referenced by multiple object reference variables.

Figure 2.12 illustrates this analogy.

The default value of all types of object reference variables is null. You can also assign
a null value to a reference variable explicitly. Here’s an example:

Person person = null;

In this case, the reference variable person can be compared to a leash without a dog.

NOTE The literal value for all types of object reference variables is null.

A leash without a dog. A dog without a leash.

Several leashes may be tethered to one dog.

Figure 2.12 Dog leash analogy for understanding objects

109Object reference variables
2.3.2 Differentiating between object reference variables and
primitive variables

Just as men and women are fundamentally different (according to John Gray, author
of Men Are from Mars, Women Are from Venus), primitive variables and object reference
variables differ from each other in multiple ways. The basic difference is that primitive
variables store the actual values, whereas reference variables store the addresses of the
objects they refer to.

 Let’s assume that a class Person is already defined. If you create an int variable a
and an object reference variable person, they will store their values in memory, as
shown in figure 2.13.

int a = 77;
Person person = new Person();

Other important differences between primitive variables and object reference vari-
ables are shown in figure 2.14 as a conversation between a girl and a boy. The girl rep-
resents an object reference variable and the boy represents a primitive variable.
(Don’t worry if you don’t understand all of these analogies. They’ll make much more
sense after you read related topics in later chapters.)

 In the next section, you’ll start manipulating these variables using operators.

Stack

memory

Heap
memory

77

B10

Primitive

int avariable

Object reference

variable person

Object stored at

address B10

Figure 2.13 Primitive variables store the actual values, whereas object reference
variables store the addresses of the objects they refer to.

110 CHAPTER 2 Working with Java data types
Figure 2.14 Differences between object reference variables and primitive variables

111Operators
2.4 Operators

In this section, you’ll use different types of operators—assignment, arithmetic, rela-
tional, and logical—to manipulate the values of variables. You’ll write code to deter-
mine the equality of two primitive data types. You’ll also learn how to modify the

Figure 2.14 Differences between object reference variables and primitive variables (continued)

[3.1] Use Java operators; including parentheses to override operator
precedence

112 CHAPTER 2 Working with Java data types

O
as

varia
of s
default precedence of an operator by using parentheses. For the OCA Java SE 8 Pro-
grammer I exam, you should be able to work with the operators listed in table 2.9.

NOTE Not all operators can be used with all types of operands. For example,
you can determine whether a number is greater than another number, but
you can’t determine whether true is greater than false or a number is
greater than true. Take note of this as you learn the usage of all the operators
on this exam.

2.4.1 Assignment operators

The assignment operators that you need to know for the exam are =, +=, -=, *=,
and /=.

 The simple assignment operator, =, is the most frequently used operator. It’s used
to initialize variables with values and to reassign new values to them.

 The +=, -=, *=, and /= operators are short forms of addition, subtraction, multipli-
cation, and division with assignment. The += operator can be read as “first add and
then assign,” and -= can be read as “first subtract and then assign.” Similarly, *= can be
read as “first multiply and then assign,” /= can be read as “first divide and then
assign,” and %= can be read as “first modulus and then assign.” If you apply these oper-
ators to two operands, a and b, they can be represented as follows:

a -= b is equal to a = a – b
a += b is equal to a = a + b
a *= b is equal to a = a * b
a /= b is equal to a = a / b
a %= b is equal to a = a % b

Let’s have a look at some valid lines of code:

double myDouble2 = 10.2;
int a = 10;
int b = a;
float float1 = 10.2F;
float float2 = float1;

Table 2.9 Operator types and the relevant operators

Operator type Operators Purpose

Assignment =, +=, -=, *=, /= Assign value to a variable

Arithmetic +, -, *, /, %, ++, -- Add, subtract, multiply, divide, and modulus primitives

Relational <, <=, >, >=, ==, != Compare primitives

Logical !, &&, || Apply NOT, AND, and OR logic to primitives

OK to assign literal 10.2
to variable of type double

OK to assign literal 10 to
variable of type int

K to
sign
bles
ame
type OK to assign literal

10.2F to variable of
type float

OK to assign variables
of same type

113Operators

Reas
a valu

10 to b
varia
a an
b += a;
a = b = 10;
b -= a;
a = b = 10;
b *= a;
a = b = 10;
b /= a;

Next let’s look at some invalid lines of code:

double myDouble2 = true;
boolean b = 'c';
boolean b1 = 0;
boolean b2 -= b1;

Now let’s try to squeeze the variables that can store a larger range of values into vari-
ables with a shorter range. Try the following assignments:

long num = 100976543356L;
int val = num;

It’s similar to what’s shown in figure 2.15, where someone is forcefully trying to squeeze
a bigger value (long) into a smaller container (int).

You can still assign a bigger value to a variable that can only store smaller ranges by
explicitly casting the bigger value to a smaller value. By doing so, you tell the compiler
that you know what you’re doing. In that case, the compiler proceeds by chopping off
any extra bits that may not fit into the smaller variable. Beware! Though chopping off
extra bits will make a bigger value fit in a smaller data type, the remaining bits won’t
represent the original value and can produce unexpected results.

OK; b is assigned a value
of 20. b = 10 + 10.sign

e of
oth
bles
d b.

OK; b is assigned a value
of 0. b = 10 – 10.

b is assigned a value of
100. b = 10 * 10.

b is assigned a value of
1. b = 10 / 10.

Ouch! boolean can’t
be assigned to double. Ouch! char can’t

be assigned to
boolean.

Ouch! boolean can’t be
assigned a literal value
other than true or false.Ouch! You can’t add or

subtract boolean values.

Compiler won’t
allow this

Small container ()int

long

Ouch!
That hurts!

Figure 2.15 Assigning a bigger value
(long) to a variable (int) that’s only
capable of storing a smaller value range

114 CHAPTER 2 Working with Java data types

Define
init
vari

o
same
 Compare the previous assignment example (assigning a long to an int) with the
following example that assigns a smaller value (int) to a variable (long) that’s capable
of storing bigger value ranges:

int intVal = 1009;
long longVal = intVal;

An int can easily fit into a long because there’s enough room for it (as shown in fig-
ure 2.16).

EXAM TIP You can’t use the assignment operators to assign a boolean value
to variables of type char, byte, int, short, long, float, or double, or vice versa.

You can also assign multiple values on the same line using the assignment operator.
Examine the following lines of code:

int a = 7, b = 10, c = 8;
a = b = c;
System.out.println(a);

On the line tagged B, the assignment starts from right to left. The value of variable c
is assigned to the variable b, and the value of variable b (which is already equal to c) is
assigned to the variable a. This is proved by the fact that line 3 prints 8, and not 7!

 The next Twist in the Tale throws in a few twists with variable assignment and ini-
tialization. Let’s see if you can identify the incorrect ones (answers in the appendix).

Let’s modify the assignment and initialization of the boolean variables used in previous
sections. Examine the following code initializations and select the incorrect answers:

public class Foo {
 public static void main (String args[]) {
 boolean b1, b2, b3, b4, b5, b6; // line 1
 b1 = b2 = b3 = true; // line 2
 b4 = 0; // line 3
 b5 = 'false'; // line 4
 b6 = yes; // line 5
 }
}

Twist in the Tale 2.2

Allowed

Big container ()long
int

I can
easily fit

here!
Figure 2.16 Assigning a smaller value (int) to
a variable (long) that’s capable of storing a
larger value range

 and
ialize
ables
n the
 line

Assignment starts from right; the
value of c is assigned to b and
the value of b is assigned to a

b

Prints 8

115Operators
a The code on line 1 will fail to compile.
b Can’t initialize multiple variables like the code on line 2.
c The code on line 3 is correct.
d Can’t assign 'false' to a boolean variable.
e The code on line 5 is correct.

2.4.2 Arithmetic operators

Let’s take a quick look at each of these operators, together with a simple example, in
table 2.10.

EXAM TIP You can use unary increment and decrement operators with vari-
ables but not with literal values. If you do, the code won’t compile.

When you apply the addition operator to char values, their corresponding ASCII val-
ues are added and subtracted. Here’s a quick example (the ASCII value of character
a is 97):

char char1 = 'a';
System.out.println(char1);
System.out.print(char1 + char1);

And the following code outputs 0:

char char1 = 'a';
System.out.print(char1 - char1);

Table 2.10 Use of arithmetic operators with examples

Operator Purpose Usage Answer

+ Addition 12 + 10 22

- Subtraction 19 – 29 -10

* Multiplication 101 * 45 4545

/ Division (quotient) 10 / 6
10.0 / 6.0

1
1.6666666666666667

% Modulus (remainder in division) 10 % 6
10.0 % 6.0

4
4.0

++ Unary increment operator; incre-
ments value by 1

++var or var++ 11 (assuming value of
var is 10)

-- Unary decrement operator; decre-
ments value by 1

--var or var-- 9 (assuming value of var
is 10)

Outputs a

Outputs 194

Outputs 0

116 CHAPTER 2 Working with Java data types
EXAM TIP You can use all arithmetic operators with the char primitive data
type, including unary increment and decrement operators.

IMPLICIT WIDENING OF DATA TYPES IN AN ARITHMETIC OPERATION

All byte, short, and char values are automatically widened to int when used as oper-
ands for arithmetic operations. If a long value is involved somewhere, then every-
thing, including int values, is widened to long. This explains why you can’t assign the
sum of two byte values to a short type:

byte age1 = 10;
byte age2 = 20;
short sum = age1 + age2;

The preceding code fails with the following error message:

incompatible types: possible lossy conversion from int to short
short sum = age1 + age2;
 ^
1 error

EXAM TIP For arithmetic operations with data types char, byte, short, or
int, all operand values are widened to int. If an arithmetic operation
includes the data type long, all operand values are widened to long. If an
arithmetic operation includes a data type of float or double, all operand val-
ues are widened to double.

But if you modify the preceding example and define variables age1 and age2 as final

variables, then the compiler is assured that their sum, value 30, can be assigned to a
variable of type short, without any loss of precision. In this case, the compiler is good
to assign the sum of age1 and age2 to sum. Here’s the modified code:

final byte age1 = 10;
final byte age2 = 20;
short sum = age1 + age2;

++ AND - - (UNARY INCREMENT AND DECREMENT OPERATORS)
The operators ++ and -- are unary operators; they work with a single operand. They’re
used to increment or decrement the value of a variable by 1.

 Unary operators can also be used in prefix and postfix notation. In prefix notation,
the operator appears before its operand:

int a = 10;
++a;

In postfix notation, the operator appears after its operand:

int a = 10;
a++;

Fails to
compile

Compiles
successfully

Operator ++ in
prefix notation

Operator ++ in
postfix notation

117Operators
When these operators aren’t part of an expression, the postfix and prefix notations
behave in exactly the same manner:

int a = 20;
int b = 10;
++a;
b++;
System.out.println(a);
System.out.println(b);

When a unary operator is used in an expression, its placement with respect to its oper-
and decides whether its value will increment or decrement before the evaluation of
the expression or after the evaluation of the expression. See the following code,
where the operator ++ is used in prefix notation:

int a = 20;
int b = 10;
int c = a - ++b;
System.out.println(c);
System.out.println(b);

In the preceding example, the expression a - ++b uses the increment operator (++) in
prefix notation. Therefore, the value of variable b increments to 11 before it’s sub-
tracted from 20, assigning the result 9 to the variable c.

 When ++ is used in postfix notation with an operand, its value increments after it’s
been used in the expression:

int a = 50;
int b = 10;
int c = a - b++;
System.out.println(c);
System.out.println(b);

The interesting part here is that the value of b is printed as 11 in both cases because
the value of the variable increments (or decrements) as soon as the expression in
which it’s used is evaluated.

 The same logic applies to the unary operator, --. Here’s an example:

double d = 20.0;
double e = 10.0;
double f = d * --e;
System.out.println(f);
System.out.println(e);

Assign 20 to a

Assign 10 to b

Prints 21

Prints 11

Assign 20 to a

Assign 10 to b Assign 20 – (++10), that
is, 20–11, or 9, to c

Prints 9
Prints 11

Assign 50 to a

Assign 10 to b Assign 50 – (10++), that
is, 50–10, or 40, to c

Prints 40
Prints 11

Assign 20.0 to d

Assign 10.0 to e Assign 20.0 * (--10.0), that
is, 20.0 * 9.0, or 180.0, to f

Prints 180.0
Prints 9.0

118 CHAPTER 2 Working with Java data types
Let’s use the unary decrement operator (--) in postfix notation and see what happens:

double d = 20.0;
double e = 10.0;
double f = d * e--;
System.out.println(f);
System.out.println(e);

Let’s check out some example code that uses unary increment and decrement opera-
tors in both prefix and postfix notation in the same line of code. What do you think
the output of the following code will be?

int a = 10;
a = a++ + a + a-- - a-- + ++a;
System.out.println(a);

The output of this code is 32. The expression on the right-hand side evaluates from
left to right, with the following values, which evaluate to 32:

a = 10 + 11 + 11 - 10 + 10;

The evaluation of an expression starts from left to right. For a prefix unary operator,
the value of its operand increments or decrements just before its value is used in an
expression. For a postfix unary operator, the value of its operand increments or decre-
ments just after its value is used in an expression. Figure 2.17 illustrates what’s hap-
pening in the preceding expression.

For the exam, it’s important for you to have a good understanding of, and practice in,
using postfix and prefix operators. In addition to the expressions shown in the previous

Assign 20.0 to d

Assign 10.0 to e Assign 20.0 * (10.0--), that is,
20.0 * 10.0, or 200.0, to f

Prints 200.0
Prints 9.0

a = a++ + a + a-- - a-- + ++a;

Value of will increment aftera
this current value is used.

Because this is again a postfix notation,

value is used before the decrement.11

The value of a decrements to

9 due to a-- here, but again

increments to 10 due to ++a.

Value of increments to duea 11
to postfix used prior to this.++

Value of decrements to due toa 10
postfix used prior to this.--

Figure 2.17 Evaluation of an expression that has multiple occurrences of unary operators in postfix
and prefix notation

119Operators
examples, you can also find them in use as conditions in if statements, for loops, and
do-while and while loops.

 The next Twist in the Tale exercise will give you practice with unary operators used
in prefix and postfix notation (answer in the appendix).

Let’s modify the expression used in figure 2.17 by replacing all occurrences of unary
operators in prefix notation with postfix notations and vice versa. So ++a changes to
a++, and vice versa. Similarly, --a changes to a--, and vice versa. Your task is to evalu-
ate the modified expression and determine the output of the following code:

int a = 10;
a = ++a + a + --a - --a + a++;
System.out.println (a);

Try to form the expression by replacing the values of variable a in the expression and
explain each of them, the way it was done for you in figure 2.17.

2.4.3 Relational operators

Relational operators are used to check one condition. You can use these operators to
determine whether a primitive value is equal to another value or whether it is less than
or greater than the other value.

 These relational operators can be divided into two categories:

■ Comparing greater (>, >=) and lesser values (<, <=)
■ Comparing values for equality (==) and inequality (!=)

The operators <, <=, >, and >= work with all types of numbers, both integers (includ-
ing char) and floating point, that can be added and subtracted. Examine the follow-
ing code:

int i1 = 10;
int i2 = 20;
System.out.println(i1 >= i2);
long long1 = 10;
long long2 = 20;
System.out.println(long1 <= long2);

The second category of operators is covered in the following section.

EXAM TIP You can’t compare incomparable values. For example, you can’t
compare a boolean with an int, a char, or a floating-point number. If you try
to do so, your code will not compile.

Twist in the Tale 2.3

Prints false

Prints true

120 CHAPTER 2 Working with Java data types
COMPARING PRIMITIVES FOR EQUALITY (USING == AND !=)
The operators == (equal to) and != (not equal to) can be used to compare all types of
primitives: char, byte, short, int, long, float, double, and boolean. The operator
== returns the boolean value true if the primitive values that you’re comparing are
equal, and false otherwise. The operator != returns true if the primitive values that
you’re comparing are not equal, and false otherwise. For the same set of values, if ==
returns true, != will return false. Sounds interesting!

 Examine the following code:

int a = 10;
int b = 20;
System.out.println(a == b);
System.out.println(a != b);
boolean b1 = false;
System.out.println(b1 == true);
System.out.println(b1 != true);
System.out.println(b1 == false);
System.out.println(b1 != false);

Remember that you can’t apply these operators to incomparable types. In the follow-
ing code snippet, the code that compares an int variable to a boolean variable will fail
to compile:

int a = 10;
boolean b1 = false;
System.out.println(a == b1);

Here’s the compilation error:

incomparable types: int and boolean
System.out.println(a == b1);
 ^

EXAM TIP The result of the relational operation is always a boolean value.
You can’t assign the result of a relational operation to a variable of type char,
int, byte, short, long, float, or double.

COMPARING PRIMITIVES USING THE ASSIGNMENT OPERATOR (=)
It’s a very common mistake to use the assignment operator, =, in place of the equality
operator, ==, to compare primitive values. Before reading any further, check out the
following code:

int a = 10;
int b = 20;
System.out.println(a = b);
boolean b1 = false;
System.out.println(b1 = true);
System.out.println(b1 = false);

Prints false

Prints true

Prints false

Prints true

Prints true

Prints false

Causes
compilation error

Prints 20 (this is not
a boolean value!)

b

Prints truec

Prints false

121Operators
In the previous example, B isn’t comparing the variables a and b. It’s assigning the
value of the variable b to a and then printing out the value of the variable a, which is
20. Similarly, c isn’t comparing the variable b1 with the boolean literal true. It’s
assigning the boolean literal true to variable b1 and printing out the value of the vari-
able b1.

NOTE You can’t compare primitive values by using the assignment opera-
tor, =.

2.4.4 Logical operators

Logical operators are used to evaluate one or more expressions. These expressions
should return a boolean value. You can use the logical operators AND, OR, and NOT to
check multiple conditions and proceed accordingly. Here are a few real-life examples:

■ Case 1 (for managers)—Request promotion if customer is extremely happy with
the delivered project AND you think you deserve to be in your boss’s seat!

■ Case 2 (for students)—Accept job proposal if handsome pay and perks OR awe-
some work profile.

■ Case 3 (for entry-level Java programmers)—If NOT happy with current job, change it.

In each of these example cases, you’re making a decision (request promotion, accept
job proposal, or change job) only if a set of conditions is satisfied. In case 1, a manager
may request a promotion only if both the specified conditions are met. In case 2, a stu-
dent may accept a new job if either of the conditions is true. In case 3, an entry-level
Java programmer may change their current job if not happy with the current job, that
is, if the specified condition (being happy with the current job) is false.

 As illustrated in these examples, if you wish to proceed with a task when both the
conditions are true, use the logical AND operator, &&. If you wish to proceed with a task
when either of the conditions is true, use the logical OR operator, ||. If you wish to
reverse the outcome of a boolean value, use the negation operator, !.

 Time to look at some code in action:

int a = 10;
int b = 20;
System.out.println(a > 20 && b > 10);
System.out.println(a > 20 || b > 10);
System.out.println(! (b > 10));
System.out.println(! (a > 20));

B prints false because both of the conditions, a > 20 and b > 10, are not true. The
first one (a > 20) is false. c prints true because one of these conditions (b > 10) is
true. d prints false because the specified condition, b > 10, is true. e prints true

because the specified condition, a > 20, is false.
 Table 2.11 will help you understand the result of using these logical operators.

Prints falseb

Prints truec

Prints falsed

Prints truee

122 CHAPTER 2 Working with Java data types
Here’s a summary of this table:

■ Logical AND (&&)—Evaluates to true if all operands are true; false otherwise.
■ Logical OR (||)—Evaluates to true if any or all the operands are true.
■ Logical negation (!)—Negates the boolean value. Evaluates to true for false

and vice versa.

The operators | and & can also be used to manipulate individual bits of a number
value, but I won’t cover this usage here, because it’s not on this exam.

&& AND || ARE SHORT-CIRCUIT OPERATORS

Another interesting point to note with respect to the logical operators && and || is
that they’re also called short-circuit operators because of the way they evaluate their
operands to determine the result. Let’s start with the operator &&.

 The && operator returns true only if both the operands are true. If the first oper-
and to this operator evaluates to false, the result can never be true. Therefore, &&
does not evaluate the second operand. Similarly, the || operator does not evaluate the
second operator if the first operand evaluates to true.

int marks = 8;
int total = 10;
System.out.println(total < marks && ++marks > 5);
System.out.println(marks);
System.out.println(total == 10 || ++marks > 10);
System.out.println(marks);

In the first print statement B, because the first condition, total < marks, evaluates to
false, the next condition, ++marks > 5, isn’t even evaluated. As you can see c, the
output value of marks is still 8 (the value to which it was initialized on line 1)! Simi-
larly, in the next comparison d, because total == 10 evaluates to true, the second
condition, ++marks > 10, isn’t evaluated. Again, this can be verified when the value of
marks is printed again e, and the output is 8.

NOTE All the relational and logical operators return a boolean value, which
can be assigned to a primitive boolean variable.

Table 2.11 Outcome of using boolean literal values with the logical operators AND, OR, and NOT

Operators && (AND) Operator || (OR) Operator ! (NOT)

true && true  true
true && false  false
false && true  false
false && false  false
true && true && false 
false

true || true  true
true || false  true
false || true  true
false || false  false
false || false || true 
true

!true  false
!false  true

Prints falseb

Prints 8c

Prints trued

Prints 8e

123Operators
The purpose of the next Twist in the Tale is to encourage you to play with code that
uses short-circuit operators. To determine whether a boolean expression passed as an
operand to the short-circuit operators evaluates, you can apply a unary increment
operator (in postfix notation) to the variable used in the expression. Compare the
new variable value with the old value to verify whether the expression was evaluated
(answers in the appendix).

As you know, the short-circuit operators && and || may not evaluate both their oper-
ands if they can determine the result of the expression by evaluating just the first
operand. Examine the following code and circle the expressions that you think will
evaluate. Draw a square around the expressions that you think may not execute. (For
example, on line 1, both a++ > 10 and ++b < 30 will evaluate.)

class TwistInTaleLLogicalOperators {
 public static void main (String args[]) {
 int a = 10;
 int b = 20;
 int c = 40;
 System.out.println(a++ > 10 || ++b < 30); // line1
 System.out.println(a > 90 && ++b < 30);
 System.out.println(!(c>20) && a==10);
 System.out.println(a >= 99 || a <= 33 && b == 10);
 System.out.println(a >= 99 && a <= 33 || b == 10);
 }
}

2.4.5 Operator precedence

What happens if you use multiple operators within a single line of code with multi-
ple operands? Which one should be treated like the king and given preference over
the others?

 Don’t worry. Java already has a rule in place for just such a situation. Table 2.12 lists
the precedence of operators: the operator on top has the highest precedence, and
operators within the same group have the same precedence and are evaluated from
left to right.

Twist in the Tale 2.4

Example use of the short-circuit operator && in real projects
The logical operator && is often used in code to check whether an object reference
variable has been assigned a value before invoking a method on it:

String name = "hello";
if (name != null && name.length() > 0)
 System.out.println(name.toUpperCase());

124 CHAPTER 2 Working with Java data types
NOTE Table 2.12 is limited to the operators that are part of the OCA exam.
You can access the complete list at https://docs.oracle.com/javase/tutorial/
java/nutsandbolts/operators.html.

Let’s execute an expression that uses multiple operators (with different precedence)
in an expression:

int int1 = 10, int2 = 20, int3 = 30;
System.out.println(int1 % int2 * int3 + int1 / int2);

Because this expression B defines multiple operators with different precedence, it’s
evaluated as follows:

(((int1 % int2) * int3)) + (int1 / int2)
(((10 % 20) * 30)) + (10 / 20)
((10 * 30)) + (0)
(300)

What if you don’t want to evaluate the expression in this way? The remedy is simple:
use parentheses to override the default operator precedence. Here’s an example that
adds int3 and int1 before multiplying by int2:

int int1 = 10, int2 = 20, int3 = 30;
System.out.println(int1 % int2 * (int3 + int1) / int2);

NOTE You can use parentheses to override the default operator precedence.
If your expression defines multiple operators and you’re unsure how your
expression will be evaluated, use parentheses to evaluate in your preferred
order. The inner parentheses are evaluated prior to the outer ones, following
the same rules of classic algebra.

Table 2.12 Precedence of operators

Operator Precedence

Postfix Expression++, expression--

Unary ++expression, --expression, +expression, -expression, !

Multiplication * (multiply), / (divide), % (remainder)

Addition + (add), - (subtract)

Relational <, >, <=, >=

Equality ==, !=

Logical AND &&

Logical OR ||

Assignment =, +=, -=, *=, /=, %=

Prints 300b

Prints 20!

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

125Wrapper classes
2.5 Wrapper classes

Java defines a wrapper class for each of its primitive data types. The wrapper classes
are used to wrap primitives in an object, so they can be added to a collection object.
They enable all types to be treated like object instances. Wrapper classes help you
write cleaner code, which is easy to read. For this exam, you should be able to write
code that uses these wrapper classes.

2.5.1 Class hierarchy of wrapper classes

All the wrapper classes are immutable—classes that don’t allow changes to the state of
their instances after initialization. They share multiple usage details and methods. Fig-
ure 2.18 shows their hierarchy.

All the numeric wrapper classes extend the class java.lang.Number. Classes Boolean
and Character directly extend the class Object. All the wrapper classes implement
the interfaces java.io.Serializable and java.lang.Comparable. All these classes
can be serialized to a stream, and their objects define a natural sort order.

2.5.2 Creating objects of the wrapper classes

You can create objects of all the wrapper classes in multiple ways:

■ Assignment—By assigning a primitive to a wrapper class variable (autoboxing)
■ Constructor—By using wrapper class constructors
■ Static methods—By calling static method of wrapper classes, like, valueOf()

For example:

Boolean bool1 = true;
Character char1 = 'a';
Byte byte1 = 10;
Double double1 = 10.98;

[2.5] Develop code that uses wrapper classes such as Boolean, Double,
and Integer.

Object Serializable Comparable

Boolean Character Number

Byte Short Integer Long Float Double

Figure 2.18 Hierarchy of wrapper classes

Autoboxing

126 CHAPTER 2 Working with Java data types
Boolean bool2 = new Boolean(true);
Character char2 = new Character('a');
Byte byte2 = new Byte((byte)10);
Double double2 = new Double(10.98);

//Character char3 = new Character("a");
Boolean bool3 = new Boolean("true");
Byte byte3 = new Byte("10");
Double double3 = new Double("10.98");

Boolean bool4 = Boolean.valueOf(true);
Boolean bool5 = Boolean.valueOf(true);
Boolean bool6 = Boolean.valueOf("TrUE");
Double double4 = Double.valueOf(10);

You can create objects of the rest of the wrapper classes (Short, Integer, Long, and
Float) in a similar manner. All the wrapper classes define constructors to create an
object using a corresponding primitive value or as a String.

 Another interesting point to note is that neither of these classes defines a default
no-argument constructor. The wrapper classes are immutable. So it doesn’t make
sense to initialize the wrapper objects with the default primitive values if they can’t be
modified later.

EXAM TIP All wrapper classes (except Character) define a constructor that
accepts a String argument representing the primitive value that needs to be
wrapped. Watch out for exam questions that include a call to a no-argument
constructor of a wrapper class. None of these classes define a no-argument
constructor.

You can assign a primitive value directly to a reference variable of its wrapper class
type—thanks to autoboxing. The reverse is unboxing, when an object of a primitive
wrapper class is converted to its corresponding primitive value. I’ll discuss autoboxing
and auto-unboxing, in detail, in the next section.

2.5.3 Retrieving primitive values from the wrapper classes

All wrapper classes define methods of the format primitiveValue(), where the term
primitive refers to the exact primitive data type name. Table 2.13 shows a list of the
classes and their methods to retrieve corresponding primitive values.

Table 2.13 Methods to retrieve primitive values from wrapper classes

Boolean Character Byte, Short, Integer, Long, Float, Double

booleanValue() charValue() byteValue(), shortValue(), intValue(),

longValue(), floatValue(), doubleValue()

Constructors that
accept primitive value

Won’t compile
(if uncommented)

Constructor that
accepts String

Using static
method valueOf()

127Wrapper classes
It’s interesting to note that all numeric wrapper classes define methods to retrieve the
value of the primitive value they store, as a byte, short, int, long, float, or double.

EXAM TIP All six numeric wrapper classes inherit all six ***Value() methods
from their common superclass, Number.

2.5.4 Parsing a string value to a primitive type

To get a primitive data type value corresponding to a string value, you can use the
static utility method parseDataType, where DataType refers to the type of the return
value. Each wrapper class (except Character) defines a method to parse a String to
the corresponding primitive value, as listed in table 2.14.

All these parsing methods throw NumberFormatExceptions for invalid values. Here are
some examples:

Long.parseLong("12.34");

Byte.parseByte("1234");

Boolean.parseBoolean("true");

Boolean.parseBoolean("TrUe");

EXAM TIP All parse methods (listed in table 2.14) throw NumberFormat-
Exception except Boolean.parseBoolean(). This method returns false when-
ever the string it parses is not equal to “true” (case-insensitive comparison).

Table 2.14 List of parseDataType methods in wrapper classes

Class name Method

Boolean public static boolean parseBoolean(String s)

Character no corresponding parsing method

Byte public static byte parseByte(String s)

Short public static short parseShort (String s)

Integer public static int parseInt(String s)

Long public static long parseLong(String s)

Float public static float parseFloat(String s)

Double public static double parseDouble(String s)

Throws NumberFormatException:
12.34 isn’t a valid long

Throws NumberFormatException:
1234 is out of range for byte

Returns boolean true

No exceptions; the String
argument isn’t case-sensitive

128 CHAPTER 2 Working with Java data types
2.5.5 Difference between using the valueOf method and constructors
of wrapper classes

The valueOf() method returns an object of the corresponding wrapper class when
it’s passed an argument of a primitive type or String. So what is the difference
between the valueOf() method and constructors of these classes, which also accept
method arguments of a primitive type and String?

 Wrapper classes Byte, Short, Integer, and Long cache objects with values in the
range of -128 to 127. The Character class caches objects with values 0 to 127. These
classes define inner static classes that store objects for the primitive values -128 to 127
or 0 to 127 in an array. If you request an object of any of these classes, from this range,
the valueOf() method returns a reference to a predefined object; otherwise, it cre-
ates a new object and returns its reference:

Long var1 = Long.valueOf(123);
Long var2 = Long.valueOf("123");
System.out.println(var1 == var2);

Long var3 = Long.valueOf(223);
Long var4 = Long.valueOf(223);
System.out.println(var3 == var4);

EXAM TIP Wrapper classes Float and Double don’t cache objects for any
range of values.

In the case of the Boolean class, the cached instances are accessible directly because
only two exist: static constants Boolean.TRUE and Boolean.FALSE.

2.5.6 Comparing objects of wrapper classes

You can compare objects of wrapper classes for equality by using the method equals

or the comparison operator, that is, ==. Method equals() always compares the primi-
tive value stored by a wrapper instance, and == compares object references. The oper-
ator == returns true if the variables being compared to refer to the same instance.

 Refer to the preceding section on valueOf(). Wrapper classes like Character,
Byte, Short, Integer, and Long cache wrapper objects for values 0 to 127 or -128 to
127. Depending on how you initialize wrapper instances, they might or might not
refer to the same instances. The following example initializes Integer variables using
constructors, the static method valueOf, and autoboxing (covered in the next sec-
tion). Let’s compare these references using ==:

Integer i1 = new Integer(10);
Integer i2 = new Integer(10);

Integer i3 = Integer.valueOf(10);
Integer i4 = Integer.valueOf(10);

Integer i5 = 10;
Integer i6 = 10;

Prints true; var1 and var2 refer
to the same cached object.

Prints false; var3 and var4
refer to different objects.

Constructors always
create new instances.

valueOf returns a cached
copy for int value 10.

Autoboxing returns a cached
copy for applicable values.

129Wrapper classes
System.out.println(i1 == i2);
System.out.println(i3 == i4);
System.out.println(i4 == i5);
System.out.println(i5 == i6);

Here’s the output of the preceding code:

false
true
true
true

As evident from the output of the preceding code, Integer instances created using
the method valueOf and autoboxing for int value 10 refer to the same instance. If
you replace == with equals() in the preceding lines of code, they will output true:

System.out.println(i1.equals(i2));
System.out.println(i3.equals(i4));
System.out.println(i4.equals(i5));
System.out.println(i5.equals(i6));

But the same isn’t applicable for Integer instances created for int value 200 and com-
pared using == (because they aren’t stored in the Integer cache):

Integer i1 = new Integer(200);
Integer i2 = new Integer(200);

Integer i3 = Integer.valueOf(200);
Integer i4 = Integer.valueOf(200);

Integer i5 = 200;
Integer i6 = 200;

System.out.println(i1 == i2);
System.out.println(i3 == i4);
System.out.println(i4 == i5);
System.out.println(i5 == i6);

Again, if you replace == with equals() in the preceding code, the code will output
true for all comparisons.

EXAM TIP Cached instances exist for the wrapper Boolean class for the values
true and false. The Character class caches instances with values from 0 to
127. Classes Byte, Short, Integer, and Long cache instances for values -127 to
128. No cached instances exist for the Float and Double wrapper classes.

The method equals compares the values stored by wrapper instances. The
comparison operator == compares reference variables—checking whether
they refer to the same instance.

Output
true

Return false—no
cached copies for
int value 200

130 CHAPTER 2 Working with Java data types
You can’t compare wrapper instances for equality using equals() or ==, if they aren’t
of the same class. The code won’t compile for instances that are compared using ==.
When compared using equals(), the output will be false:

Integer obj1 = 100;
Short obj2 = 100;

System.out.println(obj1.equals(obj2));
System.out.println(obj1 == obj2);

EXAM TIP Objects of different wrapper classes with same values are not
equal. Using equals() with such instances will return false. If you use ==
with such instances, the code won’t compile.

The next section covers autoboxing and unboxing, used by the compiler to convert
primitive values to wrapper objects and vice versa.

2.5.7 Autoboxing and unboxing

Autoboxing is the automatic conversion of a primitive data type to an object of the cor-
responding wrapper class (you box the primitive value). Unboxing is the reverse process
(you unbox the primitive value), as shown in figure 2.19.

The wrapper classes use autoboxing and unboxing features quite frequently:

Double d1 = new Double(12.67);
System.out.println(d1.compareTo(21.68));

Using hashCode() and equals() to determine equality of wrapper class
instances
Instances of wrapper classes can be used with the Java collection framework, as
keys, with classes that support key-value pairs (like HashMap). These classes use
hashCode() and equals() to determine the equality of instances. Because the col-
lection framework classes (apart from ArrayList) aren’t on this exam, I don’t cover
them in this book.

Outputs false

Doesn’t compile

Autoboxing

Primitive

value

Unboxing

Object of

wrapper

class

Figure 2.19 Autoboxing and unboxing

Prints -1, since
12.67 < 21.68

131Wrapper classes
Compare the use of the preceding method against the following method defined by
the class Double:

public int compareTo(Double anotherDouble)

Wait—did I just mention that the compareTo() method defined in the class Double
accepts an object of the class Double and not a double primitive data type? Then why
does the preceding code compile? The answer is autoboxing. Java converted the prim-
itive double to an object of the class Double (by using the valueOf() method), so it
works correctly. The Java compiler converted it to the following at runtime:

Double d1 = new Double(12.67D);
System.out.println(d1.compareTo(Double.valueOf(21.68D)));

Now examine the following code (an example of unboxing with autoboxing):

public class Unboxing {
 public static void main (String args[]) {
 ArrayList<Double> list = new ArrayList<Double>();
 list.add(12.12);
 list.add(11.24);
 Double total = 0.0;
 for (Double d : list)
 total += d;
 }
}

In the preceding code, at the end of execution of the for loop, total will be assigned
a Double value of 23.36. The arithmetic operators like += can’t be used with objects.
So why do you think the code compiles? In this example, the Java compiler converted
the preceding code to the following at runtime:

public class Unbox {
 public static void main(String args[]) {
 ArrayList list = new ArrayList();
 list.add(new Double(12.12D));
 list.add(new Double(11.24D));
 Double total = Double.valueOf(0.0D);
 for(Iterator iterator = list.iterator(); iterator.hasNext();) {
 Double d = (Double)iterator.next();
 total = total.doubleValue() + d.doubleValue();
 }
 }

In the previous section, I mentioned that wrapper classes are immutable. So what hap-
pens when you add a value to the variable total, a Double object? In this case, the vari-
able total refers to a new Double object.

EXAM TIP Wrapper classes are immutable. Adding a primitive value to a
wrapper class variable doesn’t modify the value of the object it refers to. The
wrapper class variable is assigned a new object.

List of
Double

Autoboxing—add double

Unbox to use operator
+= with total

132 CHAPTER 2 Working with Java data types
Here’s another interesting question. What happens if you pass null as an argument to
the following method?

public int increment(Integer obj) {
 return ++i;
}

Because the Java compiler would call obj.intValue() to get obj’s int value, passing
null to the increment() method will throw a NullPointerException.

EXAM TIP Unboxing a wrapper reference variable, which refers to null, will
throw a NullPointerException.

2.6 Summary
In this chapter, we started with the primitive data types in Java, including examples of
where to use each of the kinds and their literal values. We also categorized the primi-
tives into character type, integer type, and floating type. Then we covered the ingredi-
ents of valid and invalid Java identifiers. We covered the differences between primitive
and reference types.

 We discussed the operators used to manipulate primitives (limited to the ones
required for the OCA Java SE 8 Programmer I exam). We also covered the conditions
in which a particular operator can be used. For example, if you wish to check whether
a set of conditions is true, you can use the logical operators. It’s also important to
understand the operand types that can be used for each of these operators. For exam-
ple, you can’t use boolean operands with the operators >, >=, =<, and <.

 We discussed the wrapper classes, including their class hierarchy, creating their
instances, retrieving primitive values stored by wrapper class instance, parsing string
values to primitive types, and comparing instances of wrapper classes. At the end of
the chapter, we covered autoboxing and unboxing.

2.7 Review notes
Primitive data types:

■ Java defines eight primitive data types: char, byte, short, int, long, float, dou-
ble, and boolean.

■ Primitive data types are the simplest data types.
■ Primitive data types are predefined by the programming language. A user can’t

define a primitive data type in Java.
■ It’s helpful to categorize the primitive data types as Boolean, numeric, and char-

acter data types.

The boolean data type:

■ The boolean data type is used to store data with only two possible values. These
two possible values may be thought of as yes/no, 0/1, true/false, or any other
combination. The actual values that a boolean can store are true and false.

133Review notes
■ true and false are literal values.
■ A literal is a fixed value that doesn’t need further calculations to be assigned to

any variable.

Numeric data types:

■ Numeric values can be stored as either integers or decimal numbers.
■ byte, short, int, and long can be used to store integers.
■ The byte, short, int, and long data types use 8, 16, 32, and 64 bits, respectively,

to store their values.
■ float and double can be used to store decimal numbers.
■ The float and double data types use 32 and 64 bits, respectively, to store their

values.
■ The default type of integers—that is, nondecimal numbers—is int.
■ To designate an integer literal value as a long value, add the suffix L or l to the

literal value.
■ Numeric values can be stored in binary, octal, decimal, and hexadecimal num-

ber formats. This exam won’t ask you to convert a number from one number
system to another.

■ Literal values in the decimal number system use digits from 0 to 9 (a total of
10 digits).

■ Literal values in the octal number system use digits from 0 to 7 (a total of
8 digits).

■ Literal values in the hexadecimal number system use digits from 0 to 9 and let-
ters from A to F (a total of 16 digits and letters).

■ Literal values in the binary number system use digits 0 and 1 (a total of 2 digits).
■ The literal values in the octal number system start with the prefix 0. For exam-

ple, 0413 in the octal number system is 267 in the decimal number system.
■ The literal values in the hexadecimal number system start with the prefix 0x.

For example, 0x10B in the hexadecimal number system is 267 in the decimal
number system.

■ The literal values in the binary number system start with the prefix 0b or 0B. For
example, the decimal value 267 is 0B100001011 in the binary system.

■ Starting with Java 7, you can use underscores within the Java literal values to
make them more readable. 0B1_0000_10_11, 0_413, and 0x10_B are valid
binary, octal, and hexadecimal literal values.

■ The default type of a decimal number is double.
■ To designate a decimal literal value as a float value, add the suffix F or f to the

literal value.
■ The suffixes D and d can be used to mark a literal value as a double value.

Though it’s allowed, doing so is not required because the default value of deci-
mal literals is double.

134 CHAPTER 2 Working with Java data types
Character primitive data types:

■ A char data type can store a single 16-bit Unicode character; that is, it can store
characters from virtually all the world’s existing scripts and languages.

■ You can use values from \u0000 (or 0) to a maximum of \uffff (or 65,535
inclusive) to store a char. Unicode values are defined in the hexadecimal num-
ber system.

■ Internally, the char data type is stored as an unsigned integer value (only posi-
tive integers).

■ When you assign a letter to a char, Java stores its integer equivalent value. You
may assign a positive integer value to a char instead of a letter, such as 122.

■ The literal value 122 is not the same as the Unicode value \u0122. The former is
a decimal number and the latter is a hexadecimal number.

■ Single quotes, not double quotes, are used to assign a letter to a char variable.

Valid identifiers:

■ A valid identifier starts with a letter (a–z, upper- or lowercase), a currency sign,
or an underscore. There is no limit to its length.

■ A valid identifier can contain digits but not in the starting place.
■ A valid identifier can use the underscore and currency sign at any position of

the identifier.
■ A valid identifier can’t have the same spelling as a Java keyword, such as switch.
■ A valid identifier can’t use any special characters, including !, @, #, %, ^, &, *, (,

), ', :, ;, [, /, \, and }.

Assignment operators:

■ Assignment operators can be used to assign or reassign values to all types of
variables.

■ A variable can’t be assigned to an incompatible value. For example, character
and numeric values can’t be assigned to a boolean variable and vice versa.

■ += and -= are short forms of addition/subtraction and assignment.
■ += can be read as “first add and then assign” and -= can be read as “first subtract

and then assign.”

Arithmetic operators:

■ Arithmetic operators can’t be used with the boolean data type. Attempting to
do so will make the code fail to compile.

■ ++ and –- are unary increment and decrement operators. These operators work
with single operands.

■ Unary operators can be used in prefix or postfix notation.
■ When the unary operators ++ and -- are used in prefix notation, the value of the

variable increments/decrements just before the variable is used in an expression.

135Review notes
■ When the unary operators ++ and -- are used in postfix notation, the value
of the variable increments/decrements just after the variable is used in an
expression.

■ By default, unary operators have a higher precedence than multiplication oper-
ators and addition operators.

Relational operators:

■ Relational operators are used to compare values for equality (==) and inequal-
ity (!=). They’re also used to determine whether two numeric values are greater
than (>, >=) or less than (<, <=) each other.

■ You can’t compare incomparable values. For example, you can’t compare a
boolean with an int, a char, or a floating-point number. If you try to do so,
your code will not compile.

■ The operators equal to (==) and not equal to (!=) can be used to compare all
types of primitives: char, byte, short, int, long, float, double, and boolean.

■ The operator == returns true if the primitive values being compared are equal.
■ The operator != returns true if the primitive values being compared are not

equal.
■ The result of the relational operator is always a boolean value.

Logical operators:

■ You can use the logical operators to determine whether a set of conditions is
true or false and proceed accordingly.

■ Logical AND (&&) evaluates to true if all operands are true and false otherwise.
■ Logical OR (||) evaluates to true if any or all the operands are true.
■ Logical negation (!) negates the boolean value. It evaluates to true for false

and vice versa.
■ The result of a logical operation is always a boolean value.
■ The logical operators && and || are also called short-circuit operators. If these

operators can determine the output of the expression with the evaluation of the
first operand, they don’t evaluate the second operand.

■ The && operator returns true only if both of the operands are true. If the first
operand to this operator evaluates to false, the result can never be true.
Therefore, && does not evaluate the second operand.

■ Similarly, the || operator returns true if any of the operands is true. If the first
operand to this operator evaluates to true, the result can never be false.
Therefore, || does not evaluate the second operator.

Wrapper classes:

■ The wrapper classes are used to wrap primitives in an object, so they can be
added to a collection object.

■ All the wrapper classes are immutable.

136 CHAPTER 2 Working with Java data types
■ You can create objects of all the wrapper classes in multiple ways:
– Assignment—By assigning a primitive to a wrapper class variable (autoboxing)
– Constructor—By using wrapper class constructors
– Static methods—By calling the static method of wrapper classes, like valueOf()

■ All wrapper classes (except Character) define a constructor that accepts a
String argument representing the primitive value that needs to be wrapped.

■ None of the wrapper class defines a no-argument constructor.
■ You can assign a primitive value directly to a reference variable of its wrapper

class type, called autoboxing. The reverse is unboxing, when an object of a
primitive wrapper class is converted to its corresponding primitive value.

■ All wrapper classes define methods of the format primitive Value(), where the
term primitive refers to the exact primitive data type name.

■ To get a primitive data type value corresponding to a string value, you can use
the static utility method parseDataType, where DataType refers to the type of the
return value.

■ The valueOf() method returns an object of the corresponding wrapper class
when it’s passed an argument of a primitive type or String.

■ You can compare objects of wrapper classes for equality by using the method
equals or the comparison operator, ==.

■ The method equals always compares the primitive value stored by a wrapper
instance and == compares object references. The operator == returns true if
the variables being compared refer to the same instance.

■ In the case of the Boolean class, the cached instances are accessible directly
because only two exist: the static constants Boolean.TRUE and Boolean.FALSE.

■ The Character class caches instances with values from 0 to 127. Classes Byte,
Short, Integer, and Long cache instances for values -128 to 127. No cached
instances exist for the Float and Double wrapper classes.

■ Wrapper classes are immutable. Adding a primitive value to a wrapper class vari-
able doesn’t modify the value of the object it refers to. The wrapper class vari-
able is assigned a new object.

■ Unboxing a wrapper reference variable, which refers to null, will throw a Null-
PointerException.

2.8 Sample exam questions
Q2-1. Given:

int myChar = 97;
int yourChar = 98;
System.out.print((char)myChar + (char)yourChar);

int age = 20;
System.out.print(" ");
System.out.print((float)age);

137Sample exam questions
What is the output?

a 195 20.0

b 195 20

c ab 20.0

d ab 20

e Compilation error
f Runtime exception

Q2-2. Which of the options are correct for the following code?

public class Prim { // line 1
 public static void main(String[] args) { // line 2
 char a = 'a'; // line 3
 char b = -10; // line 4
 char c = '1'; // line 5
 integer d = 1000; // line 6
 System.out.println(++a + b++ * c - d); // line 7
 } // line 8
} // line 9

a Code at line 4 fails to compile.
b Code at line 5 fails to compile.
c Code at line 6 fails to compile.
d Code at line 7 fails to compile.

Q2-3. What is the output of the following code?

public class Foo {
 public static void main(String[] args) {
 int a = 10;
 long b = 20;
 short c = 30;
 System.out.println(++a + b++ * c);
 }
}

a 611

b 641

c 930

d 960

Q2-4. Given:

Boolean buy = new Boolean(true);
Boolean sell = new Boolean(true);
System.out.print(buy == sell);

138 CHAPTER 2 Working with Java data types
boolean buyPrim = buy.booleanValue();
System.out.print(!buyPrim);

System.out.print(buy && sell);

What is the output?

a falsefalsefalse

b truefalsetrue

c falsetruetrue

d falsefalsetrue

e Compilation error
f Runtime exception

Q2-5. Which of the following options contain correct code to declare and initialize
variables to store whole numbers?

a bit a = 0;
b integer a2 = 7;
c long a3 = 0x10C;
d short a4 = 0512;
e double a5 = 10;

f byte a7 = -0;

g long a8 = 123456789;

Q2-6. Select the options that, when inserted at // INSERT CODE HERE, will make the fol-
lowing code output a value of 11:

public class IncrementNum {
 public static void main(String[] args) {
 int ctr = 50;
 // INSERT CODE HERE
 System.out.println(ctr % 20);
 }
}

a ctr += 1;
b ctr =+ 1;
c ++ctr;
d ctr = 1;

Q2-7. What is the output of the following code?

int a = 10;
int b = 20;
int c = (a * (b + 2)) - 10-4 * ((2*2) - 6;
System.out.println(c);

139Sample exam questions
a 218
b 232
c 246

d Compilation error

Q2-8. What is true about the following lines of code?

boolean b = false;
int i = 90;
System.out.println(i >= b);

a Code prints true

b Code prints false

c Code prints 90 >= false

d Compilation error

Q2-9. Examine the following code and select the correct options:

public class Prim { // line 1
 public static void main(String[] args) { // line 2
 int num1 = 12; // line 3
 float num2 = 17.8f; // line 4
 boolean eJavaResult = true; // line 5
 boolean returnVal = num1 >= 12 && num2 < 4.567 // line 6
 || eJavaResult == true;
 System.out.println(returnVal); // line 7
 } // line 8
} // line 9

a Code prints false

b Code prints true

c Code will print true if code on line 6 is modified to the following:

boolean returnVal = (num1 >= 12 && num2 < 4.567) || eJavaResult == true;

d Code will print true if code on line 6 is modified to the following:

boolean returnVal = num1 >= 12 && (num2 < 4.567 || eJavaResult == false);

Q2-10. Given:

boolean myBool = false; // line 1
int yourInt = 10; // line 2
float hisFloat = 19.54f; // line 3
System.out.println(hisFloat = yourInt); // line 4
System.out.println(yourInt > 10); // line 5
System.out.println(myBool = false); // line 6

140 CHAPTER 2 Working with Java data types
What is the result?
a true

true
false

b 10.0
false
false

c false
false
false

d Compilation error

2.9 Answers to sample exam questions
Q2-1. Given:

int myChar = 97;
int yourChar = 98;
System.out.print((char)myChar + (char)yourChar);

int age = 20;
System.out.print(" ");
System.out.print((float)age);

What is the output?

a 195 20.0

b 195 20

c ab 20.0

d ab 20

e Compilation error
f Runtime exception

Answer: a

Explanation: When a char primitive data type is used as an operand to arithmetic
operators, its corresponding ASCII value is used in the arithmetic operation. Though
(char)myChar explicitly casts int variable myChar to char type, its value 97 is used in
the arithmetic operation. When literal value 20 is explicitly cast to a float type, it out-
puts its value as a decimal number, that is, 20.0.

Q2-2. Which of the options are correct for the following code?

public class Prim { // line 1
 public static void main(String[] args) { // line 2
 char a = 'a'; // line 3
 char b = -10; // line 4
 char c = '1'; // line 5

141Answers to sample exam questions
 integer d = 1000; // line 6
 System.out.println(++a + b++ * c - d); // line 7
 } // line 8
} // line 9

a Code at line 4 fails to compile.
b Code at line 5 fails to compile.
c Code at line 6 fails to compile.
d Code at line 7 fails to compile.

Answer: a, c, d

Explanation: Option (a) is correct. The code at line 4 fails to compile because you
can’t assign a negative value to a primitive char data type without casting.

 Option (c) is correct. There is no primitive data type with the name “integer.” The
valid data types are int and Integer (a wrapper class with I in uppercase).

 Option (d) is correct. The variable d remains undefined on line 7 because its dec-
laration fails to compile on line 6. So the arithmetic expression (++a + b++ * c - d)
that uses variable d fails to compile. There are no issues with using the variable c of
the char data type in an arithmetic expression. The char data types are internally
stored as unsigned integer values and can be used in arithmetic expressions.

Q2-3. What is the output of the following code?

public class Foo {
 public static void main(String[] args) {
 int a = 10;
 long b = 20;
 short c = 30;
 System.out.println(++a + b++ * c);
 }
}

a 611

b 641

c 930

d 960

Answer: a

Explanation: The prefix increment operator (++) used with the variable a will incre-
ment its value before it’s used in the expression ++a + b++ * c. The postfix increment
operator (++) used with the variable b will increment its value after its initial value is
used in the expression ++a + b++ * c.

 Therefore, the expression ++a + b++ * c evaluates with the following values:

11 + 20 * 30

142 CHAPTER 2 Working with Java data types
Because the multiplication operator has a higher precedence than the addition oper-
ator, the values 20 and 30 are multiplied before the result is added to the value 11.
The example expression evaluates as follows:

(++a + b++ * c)
= 11 + 20 * 30
= 11 + 600
= 611

EXAM TIP Although questions 2-2 and 2-3 seemed to test you on your under-
standing of operators, they actually tested you on different topics. Question 2-2
tested you on the name of the primitive data types. Beware! The real exam
has many such questions. A question that may seem to test you on threads
may actually be testing you on the use of a do-while loop!

Q2-4. Given:

Boolean buy = new Boolean(true);
Boolean sell = new Boolean(true);
System.out.print(buy == sell);

boolean buyPrim = buy.booleanValue();
System.out.print(!buyPrim);

System.out.print(buy && sell);

What is the output?

a falsefalsefalse

b truefalsetrue

c falsetruetrue

d falsefalsetrue

e Compilation error
f Runtime exception

Answer: d

Explanation: The Boolean instances buy and sell are created using constructors.
Constructors don’t refer to existing instances in cache; they create new instances.
Because the comparison operator == compares object references and not the primi-
tive value stored by a wrapper instance, buy == sell returns false.

 The method booleanValue() can be used to get the primitive boolean value
stored by a Boolean wrapper instance. So buy.booleanValue() returns false. Because
wrapper instances can be used with arithmetic and logical operators, buy && sell com-
piles, returning true.

143Answers to sample exam questions
Q2-5. Which of the following options contain correct code to declare and initialize
variables to store whole numbers?

a bit a = 0;

b integer a2 = 7;

c long a3 = 0x10C;
d short a4 = 0512;
e double a5 = 10;

f byte a7 = -0;

g long a8 = 123456789;

Answer: c, d, f, g

Explanation: Options (a) and (b) are incorrect. There are no primitive data types in
Java with the names bit and integer. The correct names are byte and int.

 Option (c) is correct. It assigns a hexadecimal literal value to the variable a3.
 Option (d) is correct. It assigns an octal literal value to the variable a4.
 Option (e) is incorrect. It defines a variable of type double, which is used to store

decimal numbers, not integers.
 Option (f) is correct. -0 is a valid literal value.
 Option (g) is correct. 123456789 is a valid integer literal value that can be assigned

to a variable of type long.

Q2-6. Select the options that, when inserted at // INSERT CODE HERE, will make the fol-
lowing code output a value of 11:

public class IncrementNum {
 public static void main(String[] args) {
 int ctr = 50;
 // INSERT CODE HERE
 System.out.println(ctr % 20);
 }
}

a ctr += 1;
b ctr =+ 1;

c ++ctr;

d ctr = 1;

Answer: a, c

Explanation: To output a value of 11, the value of the variable ctr should be 51
because 51%20 is 11. Operator % outputs the remainder from a division operation. The
current value of the variable ctr is 50. It can be incremented by 1 using the correct
assignment or increment operator.

 Option (b) is incorrect. Java does not define a =+ operator. The correct operator
is +=.

144 CHAPTER 2 Working with Java data types
 Option (d) is incorrect because it’s assigning a value of 1 to the variable result,
not incrementing it by 1.

Q2-7. What is the output of the following code?

int a = 10;
int b = 20;
int c = (a * (b + 2)) - 10-4 * ((2*2) - 6;
System.out.println(c);

a 218

b 232

c 246

d Compilation error

Answer: d

Explanation: First of all, whenever you answer any question that uses parentheses to
override operator precedence, check whether the number of opening parentheses
matches the number of closing parentheses. This code won’t compile because the
number of opening parentheses doesn’t match the number of closing parentheses.

 Second, you may not have to answer complex expressions in the real exam. When-
ever you see overly complex code, look for other possible issues in the code. Complex
code may be used to distract your attention from the real issue.

Q2-8. What is true about the following lines of code?

boolean b = false;
int i = 90;
System.out.println(i >= b);

a Code prints true

b Code prints false

c Code prints 90 >= false

d Compilation error

Answer: d

Explanation: The code will fail to compile; hence, it can’t execute. You can’t compare
incomparable types, such as a boolean value with a number.

Q2-9. Examine the following code and select the correct options:

public class Prim { // line 1
 public static void main(String[] args) { // line 2
 int num1 = 12; // line 3
 float num2 = 17.8f; // line 4

145Answers to sample exam questions
 boolean eJavaResult = true; // line 5
 boolean returnVal = num1 >= 12 && num2 < 4.567 // line 6
 || eJavaResult == true;
 System.out.println(returnVal); // line 7
 } // line 8
} // line 9

a Code prints false

b Code prints true
c Code will print true if code on line 6 is modified to the following:

boolean returnVal = (num1 >= 12 && num2 < 4.567) || eJavaResult == true;

d Code will print true if code on line 6 is modified to the following:

boolean returnVal = num1 >= 12 && (num2 < 4.567 || eJavaResult == false);

Answer: b, c

Explanation: Option (a) is incorrect because the code prints true.
 Option (d) is incorrect because the code prints false.
 The code in option (c) uses parentheses to indicate which expression should eval-

uate prior to the rest. Here are the steps of execution:

boolean returnVal = (num1 >= 12 && num2 < 4.567) || eJavaResult == true;
returnVal = false || eJavaResult == true;
returnVal = true;

The original code in the question doesn’t use parentheses to group the expressions.
In this case, because the operator && has a higher operator precedence than ||, the
expression 'num1 >= 12 && num2 < 4.567' will be the first expression to execute. Here
are the steps of execution:

boolean returnVal = num1 >= 12 && num2 < 4.567 || eJavaResult == true;
returnVal = false || eJavaResult == true;
returnVal = true;

Q2-10. Given:

boolean myBool = false; // line 1
int yourInt = 10; // line 2
float hisFloat = 19.54f; // line 3
System.out.println(hisFloat = yourInt); // line 4
System.out.println(yourInt > 10); // line 5
System.out.println(myBool = false); // line 6

What is the result?
a true

true
false

146 CHAPTER 2 Working with Java data types
b 10.0
false
false

c false
false
false

d Compilation error

Answer: b

Explanation: The expression myBool = false uses the assignment operator (=) and
not a comparison operator (==). This expression assigns the boolean literal false to
myBool; it doesn’t compare false with myBool. Watch out for similar (trick) assign-
ments in the exam, which may seem to be comparing values.

Methods and encapsulation
Exam objectives covered in this chapter What you need to know

[1.1] Define the scope of variables. Variables can have multiple scopes: class, instance,
method, and local.
Accessibility of a variable in a given scope.

[2.3] Know how to read or write to
object fields.

Object fields can be read from and written to by
directly accessing instance variables and calling
methods.
The correct notation to call methods on an object.
Methods may or may not change the value of instance
variables.
Access modifiers affect access to instance variables
and methods that can be called using a reference
variable.
Nonstatic methods can’t be called on uninitialized
objects.

[2.4] Explain an Object's Lifecycle
(creation, “dereference by reassignment”
and garbage collection).

Differences between when an object is declared, ini-
tialized, accessible, and eligible to be collected by
Java’s garbage collection.
Garbage collection in Java.

[6.1] Create methods with arguments
and return values; including overloaded
methods.

Creation of methods with correct return types and
method argument lists.
Creation of methods with the same names, but a
different set of argument lists.
147

148 CHAPTER 3 Methods and encapsulation
Look around, and you’ll find multiple examples of well-encapsulated objects. For instance,
most of us use the services of a bank, which applies a set of well-defined processes that
enable us to secure our money and valuables (a bank vault). The bank may require
input from us to execute some of its processes, such as depositing money into our
accounts. But the bank may or may not inform us about the results of other processes;
for example, it may inform us about an account balance after a transaction, but it
likely won’t inform us about its recruitment plans for new employees.

 In Java, you can compare a bank to a well-encapsulated class and the bank pro-
cesses to Java methods. In this analogy, your money and valuables are like object fields
in Java. You can also compare inputs that a bank process requires to Java’s method
parameters and compare the bank process result to a Java method’s return value.
Finally, you can compare the set of steps that a bank executes when it opens a bank
account to constructors in Java.

 In the exam, you must answer questions about methods and encapsulation. This
chapter will help you get the correct answers by covering the following:

■ Defining the scope of variables
■ Explaining an object’s life cycle
■ Creating methods with primitive and object arguments and return values
■ Creating overloaded methods and constructors
■ Reading and writing to object fields
■ Calling methods on objects
■ Applying encapsulation principles to a class

Let’s get started with the scope of variables.

Exam objectives covered in this chapter What you need to know

[6.3] Create and overload constructors;
including impact on default constructors.

Like regular methods, constructors can be overloaded.
A default constructor isn’t the same as a no-argument
constructor.
Java defines a no-argument constructor when no user-
defined constructors are created. User-defined construc-
tors can be overloaded.

[6.5] Apply encapsulation principles to
a class.

Need for and benefits of encapsulation.
Definition of classes that correctly implement the encap-
sulation principle.

[6.6] Determine the effect upon object ref-
erences and primitive values when they
are passed into methods that change
the values.

Object references and primitives are treated in a different
manner when passed to methods.
Unlike reference variables, the values of primitives are
never changed in the calling method when they’re passed
to methods.

149Scope of variables
3.1 Scope of variables

The scope of a variable specifies its life span and its visibility. In this section, we’ll cover
the scopes of variables, including the domains in which they’re accessible. Here are
the available scopes of variables:

■ Local variables (also known as method-local variables)
■ Method parameters (also known as method arguments)
■ Instance variables (also known as attributes, fields, and nonstatic variables)
■ Class variables (also known as static variables)

As a rule of a thumb, the scope of a variable ends when the brackets of the block of
code it’s defined in get closed. This might be hard to understand now, but it will
become clearer when you go through the examples. Let’s get started by defining
local variables.

3.1.1 Local variables

Local variables are defined within a method. They may or may not be defined within
code constructs such as if-else constructs, looping constructs, or switch statements.
Typically, you’d use local variables to store the intermediate results of a calculation.
Compared to the other three variable scopes listed previously, they have the shortest
scope (life span).

 In the following code, a local variable avg is defined within the method getAverage():

class Student {
 private double marks1, marks2, marks3;
 private double maxMarks = 100;
 public double getAverage() {
 double avg = 0;
 avg = ((marks1 + marks2 + marks3) / (maxMarks*3)) * 100;
 return avg;
 }
 public void setAverage(double val) {
 avg = val;
 }
}

As you can see, the variable avg, defined locally in the method getAverage, can’t be
accessed outside it, in the method setAverage. The scope of this local variable, avg, is
depicted in figure 3.1. The unshaded area marks where avg is accessible, and the
shaded area is where it won’t be available.

NOTE The life span of a variable is determined by its scope. If the scope of a
variable is limited to a method, its life span is also limited to that method. You
may notice that these terms are used interchangeably.

[1.1] Define the scope of variables

Instance variables

Local variable avg

This code won’t compile
because avg is inaccessible
outside the method getAverage.

150 CHAPTER 3 Methods and encapsulation
Let’s define another variable, avg, local to the if block of an if statement (code that
executes when the if condition evaluates to true):

public double getAverage() {
 if (maxMarks > 0) {
 double avg = 0;
 avg = (marks1 + marks2 + marks3)/(maxMarks*3) * 100;
 return avg;
 }
 else {
 avg = 0;
 return avg;
 }
}

In this case, the scope of the local variable avg is reduced to the if block of the if-else

statement defined within the getAverage method. The scope of this local variable avg
is depicted in figure 3.2, where the unshaded area marks where avg is accessible, and
the shaded part marks the area where it won’t be available.

Similarly, loop variables aren’t accessible outside the loop body:

public void localVariableInLoop() {
 for (int ctr = 0; ctr < 5; ++ctr) {
 System.out.println(ctr);
 }
 System.out.println(ctr);
}

Instance

variables

Object of class

Student

Local

variable

Method

parameter

marks1, marks2, marks3
maxMarks

Method getAverage

Method setAverage

avg

val

{

Figure 3.1 You can access the
local variable avg only within the
method getAverage.

Variable avg is
local to if block

Variable avg can’t be accessed because it’s
local to the if block. Variables local to the if
block can’t be accessed in the else block.

Local

variable

Method getAverage

avg
if block

else block Figure 3.2 The scope of
local variable avg is part of
the if statement.

Variable ctr is defined
within the for loop

Variable ctr isn’t accessible outside
the for loop; this line won’t compile.

151Scope of variables
EXAM TIP The local variables topic is a favorite of OCA Java SE 8 Program-
mer I exam authors. You’re likely to be asked a question that seems to be
about a rather complex topic, such as inheritance or exception handling, but
instead it’ll be testing your knowledge on the scope of a local variable.

Can a local variable be accessed in a method, before its declaration? No. A forward ref-
erence to local variables isn’t allowed:

public void forwardReference() {
 int a = b;
 int b = 20;
}

If you reverse the declaration of the variables in the preceding example, the code
will compile:

public void noForwardReference() {
 int b = 20;
 int a = b;
}

The scope of a local variable depends on the location of its declaration within a method.
The scope of local variables defined within a loop, if-else, or switch construct or
within a code block (marked with {}) is limited to these constructs. Local variables
defined outside any of these constructs are accessible across the complete method.

 The next section discusses the scope of method parameters.

3.1.2 Method parameters

The variables that accept values in a method signature are called method parameters.
They’re accessible only in the method that defines them. In the following example, a
method parameter val is defined for the method setTested:

class Phone {
 private boolean tested;
 public void setTested(boolean val) {
 tested = val;
 }
 public boolean isTested() {
 val = false;
 return tested;
 }
}

In the preceding code, you can access the method parameter val only within the
method setTested. It can’t be accessed in any other method.

 The scope of the method parameter val is depicted in figure 3.3. The unshaded
area marks where the variable is accessible, and the shaded part marks where it won’t
be available.

Won’t
compile

No forward reference;
code compiles

Method parameter val is accessible
only in method setTested

Variable val can’t be accessed
in method isTested

This line of code
won’t compile.

152 CHAPTER 3 Methods and encapsulation
The scope of a method parameter may be as long as that of a local variable or longer,
but it can never be shorter. The following method, isPrime, defines a method param-
eter, num, and two local variables, result and ctr:

boolean isPrime(int num) {
 if (num <= 1) return false;
 boolean result = true;
 for (int ctr = num-1; ctr > 1; ctr--) {
 if (num%ctr == 0) result = false;
 }
 return result;
}

The scope of the method parameter num is as long as the scope of the local variable
result. Because the scope of the local variable ctr is limited to the for block, it’s
shorter than the method parameter num. The comparison of the scope of all of these
three variables is shown in figure 3.4, where the scope of each variable (defined in an
oval) is shown by the rectangle enclosing it.

Let’s move on to instance variables, which have a larger scope than method parameters.

3.1.3 Instance variables

Instance is another name for an object. Hence, an instance variable is available for the
life of an object. An instance variable is declared within a class, outside all the meth-
ods. It’s accessible to all the instance (or nonstatic) methods defined in a class.

tested

val

Instance

variable

Method

parameter

Object of class

Phone

Method setTested

Method isTested Figure 3.3 The scope of the
method parameter val, which is
defined in the method setTested

Method
parameter num

Local variable
result

Local
variable ctr

Method

parameter

Local

variables

Method

isPrime

for block

result

ctr

num

Figure 3.4 Comparison of the scope of
method parameters and local variables

153Scope of variables
 In the following example, the variable tested is an instance variable—it’s defined
within the class Phone, outside all the methods. It can be accessed by all the methods
of class Phone:

class Phone {
 private boolean tested;
 public void setTested(boolean val) {
 tested = val;
 }
 public boolean isTested() {
 return tested;
 }
}

The scope of the instance variable tested is depicted in figure 3.5. As you can see, the
variable tested is accessible across the object of class Phone, represented by the
unshaded area. It’s accessible in the methods setTested and isTested.

EXAM TIP The scope of an instance variable is longer than that of a local vari-
able or a method parameter.

Class variables, covered in the next section, have the largest scope of all types of variables.

3.1.4 Class variables

A class variable is defined by using the keyword static. A class variable belongs to a
class, not to individual objects of the class. A class variable is shared across all objects—
objects don’t have a separate copy of the class variables.

 You don’t even need an object to access a class variable. It can be accessed by using
the name of the class in which it’s defined:

package com.mobile;
class Phone {
 static boolean softKeyboard = true;
}

Instance variable
tested

Variable tested is accessible
in method setTested

Variable tested is also
accessible in method isTested

Instance

variable

Object of class

Phone

Local

variable
Method setTested

Method isTested

val

tested

Figure 3.5 The instance variable
tested is accessible across the
object of class Phone.

Class variable
softKeyboard

154 CHAPTER 3 Methods and encapsulation
Let’s try to access this variable in another class:

package com.mobile;
class TestPhone {
 public static void main(String[] args) {
 Phone.softKeyboard = false;
 Phone p1 = new Phone();
 Phone p2 = new Phone();
 System.out.println(p1.softKeyboard);
 System.out.println(p2.softKeyboard);
 p1.softKeyboard = true;
 System.out.println(p1.softKeyboard);
 System.out.println(p2.softKeyboard);
 System.out.println(Phone.softKeyboard);
 }
}

As you can see in the preceding code, the class variable softKeyboard is accessible using
all the following:

■ Phone.softKeyboard

■ p1.softKeyboard

■ p2.softKeyboard

It doesn’t matter whether you use the name of the class (Phone) or reference to an
object (p1) to access a class variable. You can change the value of a class variable using
either of them because they all refer to a single shared copy. When you access static
variable softKeyboard, Java refers to the type of reference variables p1 and p2 (which
is Phone) and not to the objects referred to by them. So accessing a static variable
using a null reference won’t throw an exception:

Phone p1 = null;
System.out.println(p1.softKeyboard);

The scope of the class variable softKeyboard is depicted in figure 3.6. As you can see,
a single copy of this variable is accessible to all the objects of the class Phone. The vari-
able softKeyboard is accessible even without the existence of any Phone instance. The
class variable softKeyboard is made accessible by the JVM when it loads the Phone
class into memory. The scope of the class variable softKeyboard depends on its access
modifier and that of the Phone class. Because the class Phone and the class variable
softKeyboard are defined using default access, they’re accessible only within the
package com.mobile.

Accesses the class variable by
using the name of the class. It
can be accessed even before any
of the class’s objects exist.

Prints false. A class
variable can be read by
using objects of the class.

Prints
false A change in the

value of this variable
will be reflected
when the variable is
accessed via objects
or class name.

Prints
true

Won’t throw an exception,
even though p1 is set to null

155Scope of variables
COMPARING THE USE OF VARIABLES IN DIFFERENT SCOPES

Here’s a quick comparison of the use of the local variables, method parameters,
instance variables, and class variables:

■ Local variables are defined within a method and are normally used to store the
intermediate results of a calculation.

■ Method parameters are used to pass values to a method. These values can be
manipulated and may also be assigned to instance variables.

■ Instance variables are used to store the state of an object. These are the values
that need to be accessed by multiple methods.

■ Class variables are used to store values that should be shared by all the objects
of a class.

3.1.5 Overlapping variable scopes

In the previous sections on local variables, method parameters, instance variables, and
class variables, did you notice that some of the variables are accessible in multiple
places within an object? For example, all four variables will be accessible in a loop
within a method.

 This overlapping scope is shown in figure 3.7. The variables are defined in ovals and
are accessible within all methods and blocks, as illustrated by their enclosing rectangles.

com.mobile

Class

variable
softKeyboard

Object of class

Phone (p1)

Object of class

Phone (p2)

Class
Phone

Figure 3.6 The scope of the class
variable softKeyboard is limited to
the package com.mobile because it’s
defined in the class Phone, which is
defined with default access. The class
variable softKeyboard is shared and
accessible across all objects of the
class Phone.

classVariable

instanceVariable

localVariable

methodParameter

method1

object1

localVariable

method2

instanceVariable

localVariable

methodParameter

method1

object2

localVariable

method2

Figure 3.7 The scopes of variables can overlap.

156 CHAPTER 3 Methods and encapsulation
As shown in figure 3.7, an individual copy of classVariable can be accessed and
shared by multiple objects (object1 and object2) of a class. Both object1 and object2
have their own copy of the instance variable instanceVariable, so instanceVariable

is accessible across all the methods of object1. The methods method1 and method2
have their own copies of localVariable and methodParameter when used with object1
and object2.

NOTE The scope of instanceVariable overlaps with the scope of local-
Variable and methodParameter, defined in method1. Hence, all three of
these variables (instanceVariable, localVariable, and methodParameter)
can access each other in this overlapped area. But instanceVariable can’t
access localVariable and methodParameter outside method1.

COMPARING THE SCOPE OF VARIABLES

Figure 3.8 compares the life spans of local variables, method parameters, instance
variables, and class variables.

As you can see in figure 3.8, local variables have the shortest scope or life span, and
class variables have the longest scope or life span.

EXAM TIP Different local variables can have different scopes. The scope of
local variables may be shorter than or as long as the scope of method parame-
ters. The scope of local variables is less than the scope of a method if they’re
declared in a sub-block (within braces {}) in a method. This sub-block can be
an if statement, a switch construct, a loop, or a try-catch block (discussed
in chapter 7).

Variable scope or life span

Different local variables

can have different

scopes

V
a
ri
a
b
le

 t
y
p
e
s

block

method

object life

application/

class life

Class variables

Instance variables

Method parameters

Local variables

Local variables

Figure 3.8 Comparing the scope,
or life span, of all four variables

157Scope of variables
VARIABLES WITH THE SAME NAME IN DIFFERENT SCOPES

The fact that the scopes of variables overlap results in interesting combinations of vari-
ables within different scopes but with the same names. Some rules are necessary to
prevent conflicts. In particular, you can’t define a static variable and an instance
variable with the same name in a class:

class MyPhone {
 static boolean softKeyboard = true;
 boolean softKeyboard = true;
}

Similarly, local variables and method parameters can’t be defined with the same name.
The following code defines a method parameter and a local variable with the same
name, so it won’t compile:

void myMethod(int weight) {
 int weight = 10;
}

A class can define local variables with the same name as the instance or class variables,
also referred to as shadowing. The following code defines a class variable and a local vari-
able, softKeyboard, with the same name, and an instance variable and a local variable,
phoneNumber, with the same name, which is acceptable:

class MyPhone {
 static boolean softKeyboard = true;
 String phoneNumber;
 void myMethod() {
 boolean softKeyboard = true;
 String phoneNumber;
 }
}

NOTE Defining variables with the same name in overlapping scopes can be a
dangerous coding practice. It’s usually accepted only in very specific situa-
tions, like constructors and setters. Please write code that’s easy to read, com-
prehend, and maintain.

What happens when you assign a value to a local variable that has the same name as
an instance variable? Does the instance variable reflect this modified value? This
question provides the food for thought in this chapter’s first Twist in the Tale exercise.
It should help you remember what happens when you assign a value to a local variable
when an instance variable already exists with the same name in the class (answer in
the appendix).

Won’t compile. Class variable and
instance variable can’t be defined
using the same name in a class.

Won’t compile. Method parameter and local variable
can’t be defined using the same name in a method.

Class variable
softKeyboard Instance variable

phoneNumber

Local variable softKeyboard can coexist
with class variable softKeyboard

Local variable phoneNumber can coexist
with instance variable phoneNumber

158 CHAPTER 3 Methods and encapsulation
The class Phone defines a local variable and an instance variable, phoneNumber, with the
same name. Examine the definition of the method setNumber. Execute the class on your
system and select the correct output of the class TestPhone from the given options:

class Phone {
 String phoneNumber = "123456789";
 void setNumber () {
 String phoneNumber;
 phoneNumber = "987654321";
 }
}
class TestPhone {
 public static void main(String[] args) {
 Phone p1 = new Phone();
 p1.setNumber();
 System.out.println (p1.phoneNumber);
 }
}

a 123456789
b 987654321
c No output
d The class Phone will not compile.

In this section, you worked with variables in different scopes. When variables go out of
scope, they’re no longer accessible by the remaining code. In the next section, you’ll
see how an object is created and made accessible and then inaccessible.

3.2 Object’s life cycle

The OCA Java SE 8 Programmer I exam will test your understanding of when an
object is created, when it can be accessed, and when it can be dereferenced. The
exam also tests your ability to determine the total number of objects that are accessi-
ble at a particular line of code. Primitives aren’t objects, so they’re not relevant in
this section.

 Unlike some other programming languages, such as C, Java doesn’t allow you to
allocate or deallocate memory yourself when you create or destroy objects. Java man-
ages the memory for allocating objects and reclaiming the memory occupied by
unused objects.

Twist in the Tale 3.1

[2.4] Explain an Object’s Lifecycle (creation, “dereference by reassignment”
and garbage collection)

159Object’s life cycle
 The task of reclaiming unused memory is taken care of by Java’s garbage collector,
which is a low-priority thread. It runs periodically and frees up space occupied by
unused objects.

 Java also provides a method called finalize, which is accessible to all the classes.
The method finalize is defined in the class java.lang.Object, which is the base
class of all Java classes. All Java classes can override the method finalize, which exe-
cutes just before an object is garbage collected. In theory, you can use this method to
free up resources being used by an object, although doing so isn’t recommended
because its execution isn’t guaranteed to happen.

 An object’s life cycle starts when it’s created and lasts until it goes out of scope or is
no longer referenced by a variable. When an object is accessible, it can be referenced
by a variable and other classes can use it by calling its methods and accessing its vari-
ables. I’ll discuss these stages in detail in the following subsections.

3.2.1 An object is born

An object comes into the picture when you use the keyword operator new. You can ini-
tialize a reference variable with this object. Note the difference between declaring a
variable and initializing it. The following is an example of a class Person and a class
ObjectLifeCycle:

class Person {}
class ObjectLifeCycle {
 Person person;
}

In the preceding code, no objects of class Person are created in the class ObjectLife-

Cycle; it declares only a variable of type Person. An object is created when a reference
variable is initialized:

class ObjectLifeCycle2 {
 Person person = new Person();
}

The difference in variable declaration and object creation is illustrated in figure 3.9,
where you can compare a baby name to a reference variable and a real baby to an
object. The left box in figure 3.9 represents variable declaration, because the baby
hasn’t been born yet. The right box in figure 3.9 represents object creation.

 Syntactically, an object comes into being by using the new operator. But the String

class is an exceptional case here. String reference variables can also be initialized by
using string literal values:

class ObjectLifeCycle3 {
 String obj1 = new String("eJava");
 String obj2 = "Guru";
}

Class Person

Declaring a reference
variable of type Person

Declaring and initializing
a variable of type Person

String object
referenced by obj1

Another String object
referenced by obj2

160 CHAPTER 3 Methods and encapsulation
NOTE Initializing a reference variable and an instance is not same. Initializ-
ing a reference variable might not always result in the creation of a new
instance. In chapter 4, we’ll cover in detail how String literal values are
pooled in a String pool by JVM. Although using the new operator always creates
a new String object, using a String literal value to initialize a String refer-
ence variable might not always create a new String object.

What happens when you create a new object without assigning it to any reference vari-
able? Let’s create a new object of class Person in class ObjectLifeCycle2 without
assigning it to any reference variable (modifications in bold):

class ObjectLifeCycle2 {
 Person person = new Person();
 ObjectLifeCycle2() {
 new Person();
 }
}

In the preceding example, an object of the class Person is created, but it can’t be
accessed using any reference variable. Creating an object in this manner will execute
the relevant constructors of the class.

EXAM TIP Watch out for a count of instances created in a given code—the
ones that are eligible for garbage collection and the ones that aren’t.

In the next section, you’ll learn what happens after an object is created.

3.2.2 Object is accessible

Once an object is created, it can be accessed using its reference variable. It remains
accessible until it goes out of scope or its reference variable is explicitly set to null.
Also, if you reassign another object to an initialized reference variable, the previous
object becomes inaccessible from that variable. You can access and use an object within
other classes and methods.

Only variable declaration Object creation

I have a name, ‘Mia’,

for my baby, but the

baby hasn’t been

born yet.

Mia No baby!

The baby is born!

I have a name and

a baby too!

Mia

Figure 3.9 The
difference between
declaring a reference
variable and initializing
a reference variable

An unreferenced
object

161Object’s life cycle
 Look at the following definition of the class Exam:

class Exam {
 String name;
 public void setName(String newName) {
 name = newName;
 }
}

The class ObjectLife1 declares a variable of type Exam, creates its object, calls its
method, sets it to null, and then reinitializes it:

class ObjectLife1 {
 public static void main(String args[]) {
 Exam myExam = new Exam();
 myExam.setName("OCA Java Programmer 1");
 myExam = null;
 myExam = new Exam();
 myExam.setName("PHP");
 }
}

The preceding example creates two objects of the class Exam using the same reference
variable myExam. Let’s walk through what’s happening in the example:

■ B creates a reference variable myExam and initializes it with an object of
class Exam.

■ c calls method setName on the object referenced by the variable myExam.
■ d assigns a value null to the reference variable myExam such that the object ref-

erenced by this variable is no longer accessible through myExam.
■ e creates a new object of class Exam and assigns it to the reference variable

myExam.
■ f calls method setName on the second Exam object, created in method main.

When e creates another object of class Exam and assigns it to the variable myExam,
what happens to the first object created by B? Because the first object can no longer
be accessed using any variable, it’s considered garbage by Java and deemed eligible to
be sent to the garbage bin by Java’s garbage collector. As mentioned earlier, the gar-
bage collector is a low-priority thread that reclaims the space used by unused or unref-
erenced objects in Java.

 What happens when an object become inaccessible? You’ll find out in the next
section.

3.2.3 Object is inaccessible

An object can become inaccessible if it goes out of scope or is dereferenced by
reassignment.

Object
creation

b
Access
method

c

Set reference
variable to nulld

Another
object
creatione

Access
methodf

162 CHAPTER 3 Methods and encapsulation
VARIABLE GOES OUT OF SCOPE

An object can become inaccessible if it goes out of scope:

public void myMethod() {
 int result = 88;
 if (result > 78) {
 Exam myExam1 = new Exam();
 myExam1.setName("Android");
 }
 else {
 Exam myExam2 = new Exam();
 myExam2.setName("MySQL");
 }
}

In the preceding code, the variable myExam1 is a local variable defined within the if
block. Its scope starts from the line where it’s declared until the end of the if block,
marked with a closing brace B. After this closing brace, the object referred by the
variable myExam1 is no longer accessible. It goes out of scope and is marked as eligible
for garbage collection by Java’s garbage collector. Similarly, the object referred to by
the variable myExam2 becomes inaccessible at the end of the else block, marked with a
closing brace d.

EXAM TIP When an object goes out of scope, it can no longer be referenced
and is marked for garbage collection.

DEREFERENCING BY REASSIGNMENT

A variable that already refers to an instance can be assigned another instance. In this
case, the earlier instance is dereferenced and becomes eligible for garbage collection.
Let’s work with a modified version of a previous code example:

class Exam {
 String name;
 public Exam(String name) {
 this.name = name;
 }
}
class ObjectLife2 {
 public static void main(String args[]) {
 Exam myExam = new Exam("PHP");
 myExam = null;
 myExam = new Exam("SQL");
 myExam = new Exam("Java");

 Exam yourExam = new Exam("PMP");
 yourExam = myExam;
 }
}

In the preceding code, an Exam instance is created and assigned to the variable
myExam B. At c myExam is set to null before being assigned another Exam instance d.

Scope of local
variable myExam1

b

Start of else blockc

End of else blockd

b
c

d

e

f
g

163Object’s life cycle
The code at e reassigns yet another Exam instance to myExam, without explicitly set-
ting it to null. Again, the instance created at d is dereferenced. After the execution
of e, two MyExam instances are dereferenced by reassignment and are eligible for gar-
bage collection.

 At f, another variable, yourExam, is initialized using an Exam instance. At g, the
variable myExam is assigned to the variable yourExam. This dereferences the Exam
instance, which was assigned to yourExam earlier.

 Figure 3.10 shows how Exam instances are referred to by the variables myExam
and yourExam. The Exam instances highlighted using gray boxes represent unrefer-
enced objects.

EXAM TIP An instance is dereferenced by reassignment when a variable is either
explicitly set to null or is assigned another instance or reference variable.

3.2.4 Garbage collection

In the OCA Java SE 8 Programmer I exam, you’re likely to answer questions on gar-
bage collection for code that has multiple variable declarations and initializations.
The exam may query you on the total number of objects that are eligible for garbage
collection after a particular line of code.

myExam

myExam

myExam

myExam

myExam

myExam

yourExam

yourExam

PHP

PHP

PHP

PHP

PHP

PHP

SQL

SQL

SQL

SQL

Java

Java

PMP

Java

PMP

1

2

3

4

5

6 Figure 3.10 Objects can be
dereferenced by reassignment
of variables.

164 CHAPTER 3 Methods and encapsulation
AUTOMATIC MEMORY MANAGEMENT

The garbage collector is a low-priority thread that marks the objects eligible for gar-
bage collection in the JVM and then clears the memory of these objects. It enables
automatic memory management because programmers aren’t required to mark these
instances themselves.

WHEN IS AN OBJECT GARBAGE COLLECTED?
You can determine only which objects are eligible to be garbage collected. You can
never determine when a particular object will be garbage collected. A user can’t con-
trol or determine the execution of a garbage collector. It’s controlled by the JVM.

EXAM TIP Watch out for questions with wordings such as “which objects are
sure to be collected during the next GC cycle,” for which the real answer can
never be known.

Let’s revisit the dog and leash analogy I used in chapter 2 to define object reference
variables. In figure 3.11, you can compare an object reference variable with a leash
and an object with a dog. Review the following comparisons, which will help you to
understand the life cycle of an object and garbage collection:

■ An uninitialized reference variable can be compared to a dog leash without a dog.
■ An initialized reference variable can be compared to a leashed dog.
■ An unreferenced object can be compared to an unleashed dog.

A leash without a dog. A dog without a leash.

Several leashes may be tethered to one dog.

Figure 3.11 Comparing object reference variables and objects to dog leashes
and leashed and unleashed dogs

165Object’s life cycle
You can compare Java’s garbage collector to animal control. The way animal control
picks up untethered dogs is like the way Java’s garbage collector reclaims the memory
used by unreferenced objects.

USING SYSTEM.GC() OR RUNTIME.GETRUNTIME().GC()
As a programmer, you can’t start execution of Java’s garbage collector. You can only
request it to be started by calling System.gc() or Runtime.getRuntime().gc(). But
calling this method doesn’t guarantee when the garbage collector would start (the call
can even be ignored by the JVM). Watch out for exam questions that query you on the
number of instances that have been garbage collected after calling System.gc(). It
won’t guarantee any count, at any line of code.

GARBAGE COLLECTING REFERENCED OBJECTS

The garbage collector can also reclaim memory from a group of referenced objects.
This group of variables is referred to as an island of isolation.

 An instance can be referred to by multiple variables. So when you assign null to
one of these variables, the instances can still be referenced using other variable(s).
But a group of instances with no external reference becomes eligible for garbage collec-
tion. Let’s work with an example:

class Exam {
 private String name;
 private Exam other;
 public Exam(String name) {
 this.name = name;
 }
 public void setExam(Exam exam) {
 other = exam;
 }
}
class IslandOfIsolation {
 public static void main(String args[]) {
 Exam php = new Exam("PHP");
 Exam java = new Exam("Java");

 php.setExam(java);
 java.setExam(php);

 php = null;
 java = null;
 }
}

In the preceding example, an Exam instance can refer to an object of its own type,
using its field other. At B and c, two variables, php and java, are created and initial-
ized using Exam instances. At d, java is assigned to php.other. At e, php is assigned
to java.other. At f, when php is set to null, the instance referred to by it isn’t eligi-
ble for garbage collection because it can still be referenced using java.other. At g,
when java is also set to null, both the objects referred to by java and php become

Initialize
variable php

b

Initialize
variable java

c

Assign object referred
by java to php.examd

Assign object referred
by php to java.exame

Assign null
to phpfAssign null

to javag

166 CHAPTER 3 Methods and encapsulation
eligible for garbage collection. As shown in figure 3.12, even though both these objects
can be referred to by each other, they can no longer be referenced in the method
main. They form an island of isolation. Java’s garbage collector can determine such
groups of instances.

Now that you’re familiar with an object’s life cycle, you can create methods that accept
primitive data types and objects as method arguments; these methods return a value,
which can be either a primitive data type or an object.

3.3 Create methods with arguments and return values

In this section, you’ll work with the definitions of methods, which may or may not
accept input parameters and may or may not return any values.

 A method is a group of statements identified with a name. Methods are used to
define the behavior of an object. A method can perform different operations, as
shown in figure 3.13.

php

java

Java

other

PHP

other

1

2

3

4

5

6

Java

other

Java

other

Java

other

PHP

other

PHP

other

PHP

other

Java

other

PHP

other

php

java

php

java

php

java

php

java

null

null

null

null

null

null

Figure 3.12 A group of instances with
no external references forms an island of
isolation, which is eligible for garbage
collection.

[6.1] Create methods with arguments and return values; including
overloaded methods

167Create methods with arguments and return values
a The method setModel can access and modify the state of a Phone instance.
b The method printVal uses only the method parameter passed to it.
c The method todaysDate initializes a java.util.Date instance and returns its

String presentation.

In the following subsections, you’ll learn about the components of a method:

■ Return type
■ Method parameters
■ return statement
■ Access modifiers (covered in chapter 1)
■ Nonaccess modifiers (covered in chapter 1)

Figure 3.14 shows the code of a method accepting method parameters and defining a
return type and a return statement.

 Let’s get started with a discussion of the return type of a method.

class Phone{

String model;

void setModel(String val)

model = val;

}

}

Method that modifies

an instance variable

class Phone{

String model;

void printVal(String val) {

System.out.print(val);

}

}

Method that only uses

a method parameter

class Phone{

String model;

String todaysDate() {

return new java.util.Date().toString();

}

}

Method that doesn’t use

a method parameter or instance variable

Figure 3.13 Different types of methods

class Phone {

public sendSMS(,) {boolean String phNum String msg
boolean msgSentStatus = false;

if (send (phNum, msg)){

msgSentStatus = true;

}

return msgSentStatus;
}

//. . rest of code of class Phone

}

Method’s

return type

Return

statement

Details of this

method not

discussed here

Method parameters

Figure 3.14 An example of a method that accepts method parameters and defines a
return type and a return statement

168 CHAPTER 3 Methods and encapsulation
3.3.1 Return type of a method

The return type of a method states the type of value that a method will return. A
method may or may not return a value. One that doesn’t return a value has a return
type of void. A method can return a primitive value or an object of any class. The
name of the return type can be any of the eight primitive types defined in Java, a class,
or an interface.

 In the following code, the method setWeight doesn’t return any value, and the
method getWeight returns a value:

class Phone {
 double weight;
 void setWeight(double val) {
 weight =val;
 }
 double getWeight() {
 return weight;
 }
}

If a method doesn’t return a value, you can’t assign the result of that method to a vari-
able. What do you think is the output of the following class TestMethods, which uses
the preceding class Phone?

class TestMethods {
 public static void main(String args[]) {
 Phone p = new Phone();
 double newWeight = p.setWeight(20.0);
 }
}

The preceding code won’t compile because the method setWeight doesn’t return a
value. Its return type is void. Because the method setWeight doesn’t return a value,
there’s nothing to be assigned to the variable newWeight, so the code fails to compile.

 If a method returns a value, the calling method may or may not bother to store the
returned value from a method in a variable. Look at the following code:

class TestMethods2 {
 public static void main(String args[]) {
 Phone p = new Phone();
 p.getWeight();
 }
}

In the preceding example, the value returned by the method getWeight isn’t assigned
to any variable, which isn’t an issue for the Java compiler. The compiler will happily
compile the code for you.

EXAM TIP You can optionally assign the value returned by a method to a vari-
able. If you don’t assign the returned value from a method, it’s neither a com-
pilation error nor a runtime exception.

Method with
return type void

Method with
return type double

Because the method
setWeight doesn’t
return any value, this
line won’t compile.

Method getWeight returns a
double value, but this value
isn’t assigned to any variable.

169Create methods with arguments and return values
The value that you return from a method must be assignable to the variable to which
it’s being assigned. For instance, the return value of getWeight() in Phone is double.
You can assign the return value of getWeight() to a variable of type double but not to
a variable of type int (without an explicit cast). Here’s the code:

class EJavaTestMethods2 {
 public static void main(String args[]) {
 Phone p = new Phone();
 double newWeight = p.getWeight();
 int newWeight2 = p.getWeight();
 }
}

In the preceding code, B will compile successfully because the return type of the
method getWeight is double and the type of the variable newWeight is also double.
But c won’t compile because the double value returned from method getWeight

can’t be assigned to variable newWeight2, which is of type int. You can make it happen
by an explicit cast:

class EJavaTestMethods2 {
 public static void main(String args[]) {
 Phone p = new Phone();
 double newWeight = p.getWeight();
 int newWeight2 = (int)p.getWeight();
 }
}

But an explicit cast won’t work with data types that aren’t compatible:

class EJavaTestMethods2 {
 public static void main(String args[]) {
 Phone p = new Phone();
 double newWeight = p.getWeight();
 boolean newWeight2 = (boolean)p.getWeight();
 }
}

We’ve discussed how to transfer a value out from a method. To transfer a value into a
method, you can use method arguments.

3.3.2 Method parameters

Method parameters are the variables that appear in the definition of a method and spec-
ify the type and number of values that a method can accept. In figure 3.15, the vari-
ables phNum and msg are the method parameters.

 You can pass multiple values to a method as input. Theoretically, no limit exists on
the number of method parameters that can be defined by a method, but practically
it’s not a good idea to define more than three method parameters. It’s cumbersome to

Will compileb

Won’t compilec

Will compile

Will compile with
an explicit cast

Will compile

Won’t compile;
double can’t be
casted to boolean

170 CHAPTER 3 Methods and encapsulation
use a method with too many method parameters because you have to cross-check their
types and purposes multiple times to ensure that you’re passing the right values at the
right positions.

NOTE Although the terms method parameters and method arguments are not the
same, you may have noticed that many programmers use them interchange-
ably. Method parameters are the variables that appear in the definition of a
method. Method arguments are the actual values that are passed to a method
while executing it. In figure 3.15, the variables phNum and msg are method
parameters. If you execute this method as sendMsg("123456", "Hello"),
then the String values "123456" and "Hello" are method arguments. As you
know, you can pass literal values or variables to a method. Thus, method argu-
ments can be literal values or variables.

A method may accept zero or multiple method arguments. The following example
accepts two int values and returns their average as a double value:

double calcAverage(int marks1, int marks2) {
 double avg = 0;
 avg = (marks1 + marks2)/2.0;
 return avg;
}

The following example shows a method that doesn’t accept any method parameters:

void printHello() {
 System.out.println("Hello");
}

In this

section

class Phone {

public sendSMS(,) {boolean String phNum String msg
boolean msgSentStatus = false;

if ((phNum, msg)){send
msgSentStatus = true;

}

return msgSentStatus;
}

//. . rest of code of class Phone

}

Method’s

return type

Return

statement

Method parameters

Details of this

method not

discussed here

Figure 3.15 An example of a method that accepts method parameters and defines a return
type and a return statement

Multiple method
parameters: marks1
and marks2

171Create methods with arguments and return values
If a method doesn’t accept any parameters, the parentheses that follow the name of
the method are empty. Because the keyword void is used to specify that a method
doesn’t return a value, you may think it’s correct to use the keyword void to specify
that a method doesn’t accept any method parameters, but this is incorrect. The fol-
lowing is an invalid definition of a method that accepts no parameters:

void printHello(void) {
 System.out.println("Hello");
}

You can define a parameter that can accept variable arguments (varargs) in your
methods. Following is an example of the class Employee, which defines a method days-

OffWork that accepts variable arguments:

class Employee {
 public int daysOffWork(int... days) {
 int daysOff = 0;
 for (int i = 0; i < days.length; i++)
 daysOff += days[i];
 return daysOff;
 }
}

The ellipsis (...) that follows the data type indicates that the method parameter days

may be passed an array or multiple comma-separated values. Reexamine the preced-
ing code example and note the usage of the variable days in the method daysOff-

Work—it works like an array. When you define a variable-length argument for a method,
Java creates an array behind the scenes to implement it.

 You can define only one variable argument in a parameter list, and it must be the
last variable in the parameter list. If you don’t comply with these two rules, your code
won’t compile:

class Employee {
 public int daysOffWork(String... months, int... days) {
 int daysOff = 0;
 for (int i = 0; i < days.length; i++)
 daysOff += days[i];
 return daysOff;
 }
}

If your method defines multiple method parameters, the variable that accepts variable
arguments must be the last one in the parameter list:

class Employee {
 public int daysOffWork(int... days, String year) {
 int daysOff = 0;
 for (int i = 0; i < days.length; i++)
 daysOff += days[i];
 return daysOff;
 }
}

Won’t compile

Won’t compile.
You can’t define
multiple variables
that can accept
variable
arguments.

Won’t compile; if
multiple parameters
are defined, the
variable argument
must be the last in
the list.

172 CHAPTER 3 Methods and encapsulation
EXAM TIP In the OCA exam, you may be questioned on the valid return types
for a method that doesn’t accept any method parameters. Note that there are
no valid or invalid combinations of the number and type of method parame-
ters that can be passed to a method and the value that it can return. They’re
independent of each other.

You can pass any type and number of parameters to a method, including primitives,
objects of a class, or objects referenced by an interface.

RULES TO REMEMBER

Here are some points to note with respect to defining method parameters:

■ You can define multiple parameters for a method.
■ The method parameter can be a primitive type or object.
■ The method’s parameters are separated by commas.
■ Each method parameter is preceded by the name of its type. Each method

parameter must have an explicit type declared with its name. You can’t declare
the type once and then list the parameters separated by commas, as you can
for variables.

3.3.3 Return statement

A return statement is used to exit from a method, with or without a value. For meth-
ods that define a return type, the return statement must be immediately followed by
a return value. For methods that don’t return a value, the return statement can be
used without a return value to exit a method. Figure 3.16 illustrates the use of a
return statement.

In this

section

class Phone {

public sendSMS(,) {

boolean msgSentStatus = false;

if ((phNum, msg)){send
msgSentStatus = true;

}

return msgSentStatus;
}

//. . rest of code of class Phone

}

Method’s

return type

Return

statement

Method parameters

Details of this

method not

discussed here

boolean String phNum String msg

Figure 3.16 An example of a method that accepts method parameters and defines a
return type and a return statement

173Create methods with arguments and return values
In this example, we’ll revisit the previous example of method calcAverage, which
returns a value of type double, using a return statement:

double calcAverage(int marks1, int marks2) {
 double avg = 0;
 avg = (marks1 + marks2)/2.0;
 return avg;
}

The methods that don’t return a value (the return type is void) aren’t required to
define a return statement:

void setWeight(double val) {
 weight = val;
}

But you can use the return statement in a method even if it doesn’t return a value.
Usually this statement is used to define an early exit from a method:

void setWeight(double val) {
 if (val < -1) return;
 weight = val;
}

Also, the return statement must be the last statement to execute in a method, if present.
The return statement transfers control out of the method, which means that there’s no
point in defining any code after it. The compiler will fail to compile such code:

void setWeight(double val) {
 return;
 weight = val;
}

Note that there’s a difference in the return statement being the last statement in a
method and being the last statement to execute in a method. The return statement
need not be the last statement in a method, but it must be the last statement to execute
in a method:

void setWeight(double val) {
 if (val < 0)
 return;
 else
 weight = val;
}

In the preceding example, the return statement isn’t the last statement in this method.
But it’s the last statement to execute for method parameter values of less than zero.

return
statement

return statement not required for
methods with return type void

Method with return
type void can use
return statement

This code compiles successfully;
control exits the method if this
condition is true.

The return statement
must be the last statement
to execute in a method. This code can’t execute

due to the presence of the
return statement before it.

174 CHAPTER 3 Methods and encapsulation
RULES TO REMEMBER WHEN DEFINING A RETURN STATEMENT

Here are some items to note when defining a return statement:

■ For a method that returns a value, the return statement must be followed
immediately by a value.

■ For a method that doesn’t return a value (return type is void), the return state-
ment must not be followed by a return value.

■ If the compiler determines that a return statement isn’t the last statement to
execute in a method, the method will fail to compile.

Do you think we’ve covered all the rules for defining a method? Not yet! Do you think
you can define multiple methods in a class with the same name? You can, but you
need to be aware of some additional rules, which are discussed in the next section.

3.4 Create an overloaded method

Overloaded methods are methods with the same name but different method parameter
lists. In this section, you’ll learn how to create and use overloaded methods.

 Imagine that you’re delivering a lecture and need to instruct the audience to take
notes using paper, a smartphone, or a laptop—whichever is available to them for the
day. One way to do this is give the audience a list of instructions as follows:

■ Take notes using paper.
■ Take notes using a smartphone.
■ Take notes using a laptop.

Another method is to instruct them to “take notes” and then provide them with the
paper, a smartphone, or a laptop they’re supposed to use. Apart from the simplicity of
the latter method, it also gives you the flexibility to add other media on which to take
notes (such as one’s hand, some cloth, or the wall) without needing to remember the
list of all the instructions.

 This second approach, providing one set of instructions (with the same name) but
a different set of input values can be compared to using overloaded methods in Java,
as shown in figure 3.17.

 Again, overloaded methods are methods that are defined in the same class with
the same name, but with different method argument lists. As shown in figure 3.17,
overloaded methods make it easier to add methods with similar functionality that
work with different sets of input values.

[6.1] Create methods with arguments and return values; including
overloaded methods

175Create an overloaded method
Let’s work with an example from the Java API classes that we all use frequently: System

.out.println(). The println method accepts multiple types of method parameters:

int intVal = 10;
System.out.println(intVal);

boolean boolVal = false;
System.out.println(boolVal);

String name = "eJava";
System.out.println(name);

When you use the method println, you know that whatever you pass to it as a method
argument will be printed to the console. Wouldn’t it be crazy to use methods like
printlnInt, printlnBool, and printlnString for the same functionality? I think so,
too. But opinions change across different conditions. At times, you might use specific
methods instead of overloading because it reads well and avoids confusion. As you
work with more code, you’ll be able to judge these situations for yourself.

RULES TO REMEMBER FOR DEFINING OVERLOADED METHODS

Here are a few rules for defining overloaded methods:

■ Overloaded methods must have method parameters different from one another.
■ Overloaded methods may or may not define a different return type.
■ Overloaded methods may or may not define different access levels.
■ Overloaded methods can’t be defined by only changing their return type or

access modifiers or both.

Next, I’ll describe in detail the preceding rules—valid argument list, return types, and
access level to define overloaded methods.

3.4.1 Argument list

Overloaded methods accept different lists of arguments. The argument lists can differ
in terms of any of the following:

■ Change in the number of parameters that are accepted
■ Change in the types of parameters that are accepted

takeNotesUsingPaper()

takeNotesUsingSmartPhone()

takeNotesUsingLaptop()

takeNotes(paper)

takeNotes(smart phone)

takeNotes(laptop)

Unrelated methods,

different names

Overloaded methods,

same name

Figure 3.17 Real-life
examples of overloaded
methods

Prints an
int value

Prints a
boolean value

Prints a
string value

176 CHAPTER 3 Methods and encapsulation
■ Change in the positions of the parameters that are accepted (based on parame-
ter type, not variable names)

Following is an example of the overloaded method calcAverage, which accepts differ-
ent numbers of method parameters:

double calcAverage(int marks1, double marks2) {
 return (marks1 + marks2)/2.0;
}
double calcAverage(int marks1, int marks2, int marks3) {
 return (marks1 + marks2 + marks3)/3.0;
}

The preceding code is an example of the simplest flavor of overloaded methods. You
can also define overloaded methods in which the difference in the argument list is in
the types of the parameters that are accepted:

double calcAverage(int marks1, double marks2) {
 return (marks1 + marks2)/2.0;
}
double calcAverage(char marks1, char marks2) {
 return (marks1 + marks2)/2.0;
}

But you can’t define overloaded methods by just switching an array parameter into a
vararg or vice versa (unless the vararg or array item type doesn’t remain the same).
Behind the scenes, varargs are implemented as arrays. So the following overloaded
methods won’t compile:

double calcAverage(int[] marks) {
 //return a double value
}
double calcAverage(int... marks) {
 //return a double value
}

The methods are also correctly overloaded if they change only the positions of the
parameters that are passed to them:

double calcAverage(double marks1, int marks2) {
 return (marks1 + marks2)/2.0;
}
double calcAverage(int marks1, double marks2) {
 return (marks1 + marks2)/2.0;
}

Although you might argue that the arguments being accepted are one and the same,
with only their positions differing, the Java compiler treats them as different argument
lists. The compiler can understand which method implementation you want to call by

Two method
arguments

Three method
arguments

Arguments:
int, double

Arguments:
char, char

Arguments:
array

Arguments:
int… (varags)

Arguments:
double, int

Arguments:
int, double

177Create an overloaded method
looking at the sequence of arguments you specified in your code. Hence, the preceding
code is a valid example of overloaded methods.

 But an issue arises when you try to execute this method using values that can be
passed to both versions of the overloaded methods. In this case, the code will fail
to compile:

class MyClass {
 double calcAverage(double marks1, int marks2) {
 return (marks1 + marks2)/2.0;
 }
 double calcAverage(int marks1, double marks2) {
 return (marks1 + marks2)/2.0;
 }
 public static void main(String args[]) {
 MyClass myClass = new MyClass();
 myClass.calcAverage(2, 3);
 }
}

In the preceding code, B defines the method calcAverage, which accepts two method
parameters: a double and an int. c defines the overloaded method calcAverage,
which accepts two method parameters: an int and a double. Because an int literal
value can be passed to a variable of type double, literal values 2 and 3 can be passed to
both of the overloaded methods declared at B and c. Because this method call is
dubious, d fails to compile.

3.4.2 Return type

Methods can’t be defined as overloaded methods if they differ only in their return
types, because return type is not part of a method signature:

double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2.0;
}
int calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
}

Methods in the preceding code can’t be termed overloaded methods.

3.4.3 Access level

Methods can’t be defined as overloaded methods if they differ only in their access levels:

public double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2.0;
}
private double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2.0;
}

Method parameters:
double and int

b

Method parameters:
int and double

c

Compiler can’t determine
which overloaded method
calcAverage should be called

d

Return type of method
calcAverage is double

Return type
is int

Access—public

Access—private

178 CHAPTER 3 Methods and encapsulation
If you define overloaded calcAverage methods as shown in the preceding code, the
code won’t compile.

 In the next section, you’ll create special methods called constructors, which are
used to create objects of a class.

3.5 Constructors of a class

In this section, you’ll create constructors, learn the differences between default and
user-defined constructors, and create overloaded constructors.

 What happens when you open a new bank account? Depending on the services your
bank provides, you may be assigned a new bank account number, provided with a check-
book, and given access to a new online account the bank has created for you. These
details are created and returned to you as part of setting up your new bank account.

 Compare these steps with what a constructor does in Java, as illustrated in figure 3.18.

Constructors are special methods that create and return an object of the class in which
they’re defined. Constructors have the same name as the class in which they’re
defined, and they don’t specify a return type—not even void.

 A constructor can accomplish the following tasks:

■ Call the superclass’s constructor; this can be an implicit or explicit call.
■ Initialize all the instance variables of a class with their default values.

Constructors come in two flavors: user-defined constructors and default constructors,
which we’ll cover in detail in the next sections.

3.5.1 User-defined constructors

The author of a class has full control over the definition of the class. An author may or
may not define a constructor in a class. If the author defines a constructor in a class,
it’s known as a user-defined constructor. Here the word user doesn’t refer to another per-
son or class that uses this class but instead refers to the person who created the class.
It’s called “user-defined” because it’s not created by the Java compiler.

 Figure 3.19 shows a class Employee that defines a constructor.

[6.3] Create and overload constructors; including impact on default
constructors

Create new Bank Account

1. Assign an account number

2. Issue a checkbook

3. Create online web account

Figure 3.18 The series of steps that may
be executed when you create a new bank
account. These steps can be compared
with what a constructor does in Java.

179Constructors of a class
Here’s a class, Office, that creates an object of class Employee:

class Office {
 public static void main(String args[]) {
 Employee emp = new Employee();
 }
}

In the preceding example, B creates an object of class Employee using the keyword
new, which triggers the execution of the Employee class constructor. The output of the
class Office is as follows:

Constructor

Because a constructor is called as soon as an object is created, you can use it to assign
default values to the instance variable of your class, as follows (modified and additional
code is highlighted in bold):

class Employee {
 String name;
 int age;
 Employee() {
 age = 20;
 System.out.println("Constructor");
 }
}

Let’s create an object of the class Employee in the class Office and see if there’s any
difference:

class Office {
 public static void main(String args[]) {
 Employee emp = new Employee();
 System.out.println(emp.age);
 }
}

class Employee {

Employee () {

System.out.println("Constructor");

}

}

I wrote this
class.

Paul

I created this
constructor.

Hence, it is a
user-defined
constructor.

Figure 3.19 A class, Employee, with a constructor defined by the user Paul

Constructor is called
on object creation

b

Instance variable

Initialize age

Access and print the
value of variable age

180 CHAPTER 3 Methods and encapsulation
The output of the preceding code is as follows:

Constructor
20

Because a constructor is a method, you can also pass method parameters to it, as fol-
lows (changes are highlighted in bold):

class Employee {
 String name;
 int age;
 Employee(int newAge, String newName) {
 name = newName;
 age = newAge;
 System.out.println("Constructor");
 }
}

You can use this constructor in the class Office by passing to it the required method
arguments, as follows:

class Office {
 public static void main(String args[]) {
 Employee emp = new Employee(30, "Pavni Gupta");
 }
}

Revisit the use and declaration of the previously mentioned constructors. Note that a
constructor is called when you create an object of a class. A constructor does have an
implicit return type, which is the class in which it’s defined. It creates and returns an
object of its class, which is why you can’t define a return type for a constructor. Also
note that you can define constructors using any of the four access levels.

EXAM TIP You can define a constructor using all four access levels: public,
protected, default, and private.

What happens if you define a return type for a constructor? Java will treat it as another
method, not a constructor, which also implies that it won’t be called implicitly when
you create an object of its class:

class Employee {
 void Employee() {
 System.out.println("Constructor");
 }
}
class Office {
 public static void main(String args[]) {
 Employee emp = new Employee();
 }
}

Doesn’t call method
Employee with
return type void

b

181Constructors of a class
In the preceding example, B won’t call the method Employee with the return type
void defined in the class Employee. Because the method Employee defines its return
type as void, it’s no longer treated as a constructor.

 If the class Employee defines the return type of the method Employee as void, how
can Java use it to create an object? The method (with the return type void) is treated as
any other method in the class Employee. This logic applies to all the other data types: if
you define the return type of a constructor to be any data type—such as char, int,
String, long, double, or any other class—it’ll no longer be treated as a constructor.

 How do you execute such a method? By calling it explicitly, as in the following
code (modified code is in bold):

class Employee {
 void Employee() {
 System.out.println("not a Constructor now");
 }
}
class Office {
 public static void main(String args[]) {
 Employee emp = new Employee();
 emp.Employee();
 }
}

Note that the Employee method in the preceding code is called like any other method
defined in the class Employee. It doesn’t get called automatically when you create an
object of the class Employee. As you can see in the preceding code, it’s allowed to
define a method that’s not a constructor in a class with the same name. Interesting.

 But note that the authors of the OCA exam also found this interesting, and you’re
likely to get a few tricky questions regarding this concept. Don’t worry: with the right
information under your belt, you’re sure to answer them correctly.

EXAM TIP A constructor must not define any return type. Instead, it creates
and returns an object of the class in which it’s defined. If you define a
return type for a constructor, it’ll no longer be treated as a constructor.
Instead, it’ll be treated as a regular method, even though it shares the same
name as its class.

INITIALIZER BLOCKS VERSUS CONSTRUCTORS

An initializer block is defined within a class, not as a part of a method. It executes for
every object that’s created for a class. In the following example, the class Employee
defines an initializer block:

class Employee {
 {
 System.out.println("Employee:initializer");
 }
}

Prints “not a
Constructor now”

Initializer block

182 CHAPTER 3 Methods and encapsulation
In the following code, the class TestEmp creates an object of the class Employee:

class TestEmp {
 public static void main(String args[]) {
 Employee e = new Employee();
 }
}

If you define both an initializer and a constructor for a class, both of these will exe-
cute. The initializer block will execute prior to the constructor:

class Employee {
 Employee() {
 System.out.println("Employee:constructor");
 }
 {
 System.out.println("Employee:initializer");
 }
}
class TestEmp {
 public static void main(String args[]) {
 Employee e = new Employee();
 }
}

The output of the class TestEmp is as follows:

Employee:initializer
Employee:constructor

If a class defines multiple initializer blocks, their order of execution depends on their
placement in a class. But all of them execute before the class’s constructor:

class Employee {
 {
 System.out.println("Employee:initializer 1");
 }
 Employee() {
 System.out.println("Employee:constructor");
 }
 {
 System.out.println("Employee:initializer 2");
 }
}
class TestEmp {
 public static void main(String args[]) {
 Employee e = new Employee();
 }
}

Prints
Employee:initializer

Constructor

Initializer block

Creates an object of class
Employee; calls both the
initializer block and the
constructor

Initializer block 1

Constructor

Initializer block 2

183Constructors of a class
Here’s the output of the preceding code:

Employee:initializer 1
Employee:initializer 2
Employee:constructor

Does the preceding code example leave you wondering why you need both an initial-
izer block and a constructor, if both of these execute upon the creation of an object?
Initializer blocks are used to initialize the variables of anonymous classes. An anony-
mous class is a type of inner class. In the absence of a name, anonymous classes can’t
define a constructor and rely on an initializer block to initialize their variables upon
the creation of an object of their class. Because inner classes aren’t on this exam, I
won’t discuss how to use an initializer block with an anonymous inner class.

 A lot of action can happen within an initializer block: It can create local variables.
It can access and assign values to instance and static variables. It can call methods and
define loops, conditional statements, and try-catch-finally blocks. Unlike construc-
tors, an initializer block can’t accept method parameters.

NOTE Loops and conditional statements are covered in chapter 5, and try-
catch-finally blocks are covered in chapter 7.

3.5.2 Default constructor

In the previous section on user-defined constructors, I discussed how a constructor is
used to create an object. What happens if you don’t define any constructor in a class?

 The following code is an example of the class Employee that doesn’t define a
constructor:

class Employee {
 String name;
 int age;
}

You can create objects of this class in another class (Office), as follows:

class Office {
 public static void main(String args[]) {
 Employee emp = new Employee();
 }
}

In this case, which method creates the object of the class Employee? Figure 3.20 shows
what happens when a class (Employee) is compiled that doesn’t define any construc-
tor. In the absence of a user-defined constructor, Java inserts a default constructor. This
constructor doesn’t accept any method arguments. It calls the constructor of the
super (parent) class and assigns default values to all the instance variables.

No constructor is defined
in class Employee.

Class Employee doesn’t
define a constructor,
but this code compiles
successfully.

184 CHAPTER 3 Methods and encapsulation
EXAM TIP The accessibility of a default constructor matches the accessibility of
its class. Java creates a public default constructor for a public class. It creates a
default constructor with package access for a class with package-level access.

What happens if you add another constructor to the class Employee, as in the follow-
ing example?

class Employee {
 String name;
 int age;
 Employee(int newAge, String newName) {
 name = newName;
 age = newAge;
 System.out.println("User defined Constructor");
 }
}

In this case, upon recompilation, the Java compiler will notice that you’ve defined a
constructor in the class Employee. It won’t add a default constructor to it, as shown in
figure 3.21.

 In the absence of a no-argument constructor, the following code will fail to compile:

class Office {
 public static void main(String args[]) {
 Employee emp = new Employee();
 }
}

EXAM TIP Java defines a default constructor if and only if you don’t define a
constructor. If a class doesn’t define a constructor, the compiler will add a
default, no-argument constructor to the class. But if you modify the class later
by adding a constructor to it, the Java compiler will remove the default, no-
argument constructor that it initially added to the class.

class Employee {

String name;

int age;

}

class Employee {

String name;

int age;

Employee() {

super();

}

}

Poor class
Employee doesn’t
have a constructor.

Let me create
one for it.

Default

constructor

Java

compiler

In

Out

Figure 3.20 When the Java compiler compiles a class that doesn’t define a
constructor, the compiler creates one for it.

User-defined
constructor

Won’t compile

185Constructors of a class
3.5.3 Overloaded constructors

In the same way in which you can overload methods in a class, you can also overload
the constructors in a class. Overloaded constructors follow the same rules as discussed in
the previous section for overloaded methods. Here’s a quick recap:

■ Overloaded constructors must be defined using different argument lists.
■ Overloaded constructors can’t be defined by just a change in the access levels.

Because constructors don’t define a return type, there’s no point in defining invalid
overloaded constructors with different return types.

 The following is an example of an Employee class that defines four overloaded
constructors:

class Employee {
 String name;
 int age;
 Employee() {
 name = "John";
 age = 25;
 }
 Employee(String newName) {
 name = newName;
 age = 25;
 }
 Employee(int newAge, String newName) {
 name = newName;
 age = newAge;
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

class Employee {

String name;

int age;

Employee(int age, String name){

...code

}

}

class Employee {

String name;

int age;

Employee(int age, String name){

...code

}

}

No default constructor

added

Java

compiler

In

Out

Class Employee
already has a

constructor. No
need to define

one for it.

Figure 3.21 When a class with a constructor is compiled, the Java compiler doesn’t add a default
constructor to it.

No-argument
constructor

b

Constructor with one
String argument

c

Constructor with two
arguments—int and String

d

Constructor with two
arguments—String and int

e

186 CHAPTER 3 Methods and encapsulation
In the preceding code, B defines a constructor that doesn’t accept any method argu-
ments. c defines another constructor that accepts a single method argument. Note
the constructors defined at d and e. Both of these accept two method arguments,
String and int. But the placement of these two method arguments is different in d
and e, which is acceptable and valid for overloaded constructors and methods.

INVOKING AN OVERLOADED CONSTRUCTOR FROM ANOTHER CONSTRUCTOR

It’s common to define multiple constructors in a class and reuse their functionality
across constructors. Unlike overloaded methods, which can be invoked using the name
of a method, overloaded constructors are invoked by using the keyword this—an
implicit reference that’s accessible to all objects that refer to an object itself:

class Employee {
 String name;
 int age;
 Employee() {
 this(null, 0);
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

The code at B creates a no-argument constructor. At c, this constructor calls the
overloaded constructor by passing to it values null and 0. d defines an overloaded
constructor that accepts two method arguments.

 Because a constructor is defined using the name of its class, it’s a common mistake
to try to invoke a constructor from another constructor using the class’s name:

class Employee {
 String name;
 int age;
 Employee() {
 Employee(null, 0);
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

Also, when you invoke an overloaded constructor using the keyword this, it must be
the first statement in your constructor:

class Employee {
 String name;
 int age;
 Employee() {
 System.out.println("No-argument constructor");

No-argument
constructor

b Invokes constructor
that accepts two
method arguments

c

Constructor that
accepts two method
arguments

d

Won’t compile—you can’t
invoke a constructor within a
class by using the class’s name.

187Constructors of a class
 this(null, 0);
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

You can’t call two (or more) constructors within a constructor because the call to a
constructor must be the first statement in a constructor:

class Employee {
 String name;
 int age;
 Employee() {
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
 Employee(String newName, int newAge, boolean create) {
 this();
 this(newName, newAge);
 if (create)
 System.out.println(10);
 }
}

That’s not all: you can’t call a constructor from any other method in your class. None
of the other methods of the class Employee can invoke its constructor.

RULES TO REMEMBER
Here’s a quick list of rules to remember for the exam for defining and using over-
loaded constructors:

■ Overloaded constructors must be defined using different argument lists.
■ Overloaded constructors can’t be defined by just a change in the access levels.
■ Overloaded constructors may be defined using different access levels.
■ A constructor can call another overloaded constructor by using the keyword this.
■ A constructor can’t invoke a constructor by using its class’s name.
■ If present, the call to another constructor must be the first statement in a

constructor.
■ You can’t call multiple constructors from a constructor.
■ A constructor can’t be invoked from a method (except by instantiating a class

using the new keyword).

The next Twist in the Tale exercise hides an important concept within its code, which
you can get to know only if you execute the modified code (answer in the appendix).

Won’t compile—the call to
the overloaded constructor
must be the first statement
in a constructor.

Won’t compile; can’t include
calls to multiple constructors
in a constructor

188 CHAPTER 3 Methods and encapsulation
Let’s modify the definition of the class Employee that I used in the section on over-
loaded constructors, as follows:

class Employee {
 String name;
 int age;
 Employee() {
 this ();
 }
 Employee (String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

Question: What is the output of this modified code, and why?

Now that you’ve seen how to create methods and constructors, and their overloaded
variants, we’ll turn to how all of these can be used to access and modify object fields in
the next section.

3.6 Accessing object fields

 In this section, you’ll learn what object fields are and how to read, initialize, and mod-
ify them. You’ll also learn the correct notation used to call methods on objects. Access
modifiers also determine whether you can call a method on an object.

3.6.1 What is an object field?

An object field is another name for an instance variable defined in a class. I’ve often
seen certification aspirants who are confused over whether the object fields are the
same as instance variables of a class.

 Here’s an example of the class Star:

class Star {
 double starAge;
 public void setAge(double newAge) {
 starAge = newAge;
 }
 public double getAge() {
 return starAge;
 }
}

Twist in the Tale 3.2

[2.3] Know how to read or write to object fields

Instance variable—
starAge

b

Setter method—
setAgec

Getter method—
getAged

189Accessing object fields
In the preceding example, B defines an instance variable, starAge. c defines a setter
method, setAge. A setter (or mutator) method is used to set the value of a variable. d
defines a getter (or accessor) method, getAge. A getter method is used to retrieve the
value of a variable. In this example, the object field is starAge, not age or newAge. The
name of an object field is not determined by the name of its getter or setter methods.

3.6.2 Read and write object fields

The OCA Java SE 8 Programmer I exam will test you on how to read values from and
write them to fields of an object, which can be accomplished by any of following:

■ Using methods to read and write object fields
■ Using constructors to write values to object fields
■ Directly accessing instance variables to read and write object fields

EXAM TIP Although object fields can be manipulated by direct access, it isn’t
a recommended practice. It makes an object vulnerable to invalid data. Such
a class isn’t well encapsulated.

This exam objective (2.3) will also test your understanding of how to assign different
values to the same object fields for multiple objects. Let’s start with an example:

class Employee {
 String name;
 int age;
 Employee() {
 age = 22;
 }
 public void setName(String val) {
 name = val;
 }
 public void printEmp() {
 System.out.println("name = " + name + " age = " + age);
 }
}

JavaBeans properties and object fields
The reason for the confusion over the name of the object field is that Java classes
can also be used to define visual or nonvisual components called JavaBeans, which
are used in visual and nonvisual environments like Spring, Hibernate, and others.
These classes are supposed to define getter and setter methods to retrieve and set
the properties of the visual components. If a visual JavaBean component defines a
property such as age, then the name of its getter and setter methods will be getAge
and setAge. For a JavaBean, you don’t have to worry about the name of the vari-
able that’s used to store the value of this property. In a JavaBean, an object field
thisIsMyAge can be used to store the value of its property age.

Note that the JavaBeans I mentioned aren’t Enterprise JavaBeans. Enterprise Java-
Beans are used in enterprise applications written in Java, which run on servers.

Object fieldsb

Assign value
to agec

Assign val
to named

190 CHAPTER 3 Methods and encapsulation
In the class Employee, B defines two object fields: name and age. It defines a (no-argu-
ment) constructor. And c assigns a value of 22 to its field age. This class also defines
a method setName, where d assigns the value passed to it to the object field name. The
method printEmp is used to print the values of object fields name and age.

 The following is the definition of a class, Office, which creates two instances, e1
and e2, of the class Employee and assigns values to its fields. Let’s look at the definition
of the class Office:

class Office {
 public static void main(String args[]) {
 Employee e1 = new Employee();
 Employee e2 = new Employee();
 e1.name = "Selvan";
 e2.setName("Harry");
 e1.printEmp();
 e2.printEmp();
 }
}

This is the output of the preceding code:

name = Selvan age = 22
name = Harry age = 22

Figure 3.22 defines object diagrams (a diagram with the name and type of an object,
the name of the object’s fields, and their corresponding values), which will help you
to better understand the preceding output.

You can access the object field name of the object of the class Employee either by using
its variable name or by using the method setName. The following line of code assigns a
value Selvan to the field name of object e1:

e1.name = "Selvan";

The following line of code uses the method setName to assign a value of Harry to the
field name of object e2:

e2.setName("Harry");

Because the constructor of the class Employee assigns a value of 22 to the variable age,
objects e1 and e2 both contain the same value, 22.

e1:Employee

name = Selvan

age = 22

name = Harry

age = 22

e2:Employee

Figure 3.22 Two objects of the class Employee

191Accessing object fields

No
ob
 What happens if you don’t assign any value to an object field and try to print out its
value? All the instance variables (object fields) are assigned their default values if you
try to access or read their values before writing any values to them:

class Employee {
 String name;
 int age;
 public void printEmp() {
 System.out.println("name = " + name + " age = " + age);
 }
}
class Office {
 public static void main(String args[]) {
 Employee e1 = new Employee();
 e1.printEmp();
 }
}

The output of the preceding code is as follows (the default value of an object is null
and int is 0):

name = null age = 0

What happens if you change the access modifier of the variable name to private, as
shown here (modified code in bold)?

class Employee {
 private String name;
 int age;
 Employee() {
 age = 22;
 }
 public void setName(String val) {
 name = val;
 }
 public void printEmp() {
 System.out.println("name = " + name + " age = " + age);
 }
}

You won’t be able to set the value of the object field name as follows:

e1.name = "Selvan";

This line of code won’t compile. Instead, it complains that the variable name has pri-
vate access in the class Employee and can’t be accessed from any other class:

Office.java:6: name has private access in Employee
 e1.name = "Selvan";

Object field:
name Object field:

age

Object field with
private access

nprivate
ject field Assign value

to age

Assign val
to name

192 CHAPTER 3 Methods and encapsulation
When you answer questions on reading values from and writing them to an object
field, watch out for the following points in the exam:

■ Access modifier of the object field
■ Access modifiers of methods used to read and write the value of the object field
■ Constructors that assign values to object fields

3.6.3 Calling methods on objects

You can call methods defined in a class using an object reference variable. In this
exam objective, this exam will specifically test you on the following:

■ The correct notation used to call a method on an object reference variable
■ The right number of method parameters that must be passed to a method
■ The return value of a method that’s assigned to a variable

Java uses the dot notation (.) to execute a method on a reference variable. Suppose
the class Employee is defined as follows:

class Employee {
 private String name;
 public void setName(String val) {
 name = val;
 }
}

You can create an object of class Employee and call the method setName on it like this:

Employee e1 = new Employee();
e1.setName("Java");

The following method invocations aren’t valid in Java:

e1->setName("Java");
e1->.setName("Java");
e1-setName("Java");

When you call a method, you must pass to it the exact number of method parameters
that are defined by it. In the previous definition of the Employee class, the method set-
Name defines a method parameter of type String. You can pass a literal value or a vari-
able to a method, as a method parameter. The following code invocations are correct:

Employee e1 = new Employee();
String anotherVal = "Harry";
e1.setName("Shreya");
e1.setName(anotherVal);

Class Employee

Method setName

Invalid method
invocations

Passing literal value
as method parameter

Passing variable as
method parameter

193Accessing object fields
EXAM TIP A call to a method must be followed by passing values to all its
method parameters. For a method that defines one or more method parame-
ters, you can’t call the method followed by () to indicate it doesn’t need to be
passed values.

If the parameter list of the called method defines a variable argument at the rightmost
position, you can call the method with a variable number of arguments. Let’s add a
method daysOffWork in the class Employee that accepts a variable list of arguments
(modifications in bold):

class Employee {
 private String name;
 public void setName(String val) {
 name = val;
 }
 public int daysOffWork(int... days) {
 int daysOff = 0;
 for (int i = 0; i < days.length; i++)
 daysOff += days[i];
 return daysOff;
 }

You can call this method using a variable list of arguments:

Class Test {
 public static void main(String args[]) {
 Employee e = new Employee();
 System.out.println(e.daysOffWork(1, 2, 3, 4));
 System.out.println(e.daysOffWork(1, 2, 3));
 }
}

The output of the preceding code is as follows:

10
6

EXAM TIP Methods that accept varargs parameters can be called with a differ-
ent count of actual arguments. Also, a method that accepts a vararg can be
invoked with an array in place of the vararg.

Let’s add the method getName to the class Employee that returns a String value
(changes in bold):

class Employee {
 private String name;
 public void setName(String val) {
 name = val;
 }

Call method
daysOffWork with four
method arguments

Call method daysOffWork
with three method
arguments

194 CHAPTER 3 Methods and encapsulation
 public String getName() {
 return name;
 }
}

You can assign the String value returned from the method getName to a String vari-
able or pass it on to another method, as follows:

Employee e1 = new Employee();
Employee e2 = new Employee();
String name = e1.getName();
e2.setName(e1.getName());

In the preceding code, the return type of the method setName is void; therefore, you
can’t use it to assign a value to a variable:

Employee e1 = new Employee();
String name = e1.setName();

Also, you can’t assign a return value of a method to an incompatible variable, as follows:

Employee e1 = new Employee();
int val = e1.getName();

You can read and write object fields either by using methods or by directly accessing
the instance variables of a class. But it’s not a good idea to enable access to the instance
variables outside a class.

 In the next section, you’ll see the risks of exposing instance variables outside a
class and the benefits of a well-encapsulated class.

3.7 Apply encapsulation principles to a class

As the heading of this section suggests, we’ll apply the encapsulation principle to a
class. A well-encapsulated object doesn’t expose its internal parts to the outside world.
It defines a set of methods that enables the users of the class to interact with it.

 As an example from the real world, you can compare a bank to a well-encapsulated
class. A bank doesn’t expose its internal parts—for example, its vaults and bank
accounts—to the outside world, just as a well-encapsulated class in Java shouldn’t
expose the variables that it uses to store the state of an object outside that object. The
way a bank defines a set of procedures (such as key access to vaults and verification
before money withdrawals) to protect its internal parts is much like the way a well-
encapsulated class defines methods to access its variables.

Assign method’s return
value to a variable

Pass method’s return
value to another method

Won’t compile

You can’t assign the String returned from
method getName to an int variable.

[6.5] Apply encapsulation principles to a class

195Apply encapsulation principles to a class
3.7.1 Need for encapsulation

The private members of a class—its variables and methods—are used to hide informa-
tion about a class. Why would you need to hide class information? Compare a class
with yourself. Do you want everyone else to know about all of your weaknesses? Do you
want everyone else to be able to control your mind? The same applies to a class that
you define in Java. A class may need a number of variables and methods to store an
object’s state and define its behavior. But it wouldn’t like all the other classes to know
about it. Here’s a quick list of reasons to encapsulate the state of a Java object:

■ To prevent an external object from performing dangerous operations
■ To hide implementation details, so that the implementation can change a sec-

ond time without impacting other objects
■ To minimize the chance of coupling

Let’s work with an example. Here’s the definition of the class Phone:

class Phone {
 String model;
 String company;
 double weight;
 void makeCall(String number) {
 }
 void receiveCall() {
 }
}

Because the variable weight isn’t defined as a private member, any other class (in the
same package) can access it and write any value to it, as follows:

class Home {
 public static void main() {
 Phone ph = new Phone();
 ph.weight = -12.23;
 }
}

3.7.2 Apply encapsulation

In the previous section, you might have noticed that the object fields of a class that
isn’t well encapsulated are exposed outside the class. This approach enables the users
of the class to assign arbitrary values to the object fields.

 Should this be allowed? For example, going back to the example of the Phone class
discussed in section 3.7.1, how can the weight of a phone be a negative value?

 Let’s resolve this issue by defining the variable weight as a private variable in the
class Phone, as follows (irrelevant changes have been omitted):

class Phone {
 private double weight;
}

Instance variables that store
the state of an object of Phone

Methods; details not
relevant at this point

Assign a negative
weight to Phone

196 CHAPTER 3 Methods and encapsulation
But now this variable won’t be accessible in the class Home. Let’s define methods using
this variable, which can be accessible outside the class Phone (changes in bold):

class Phone {
 private double weight;
 public void setWeight(double val) {
 if (val >= 0 && val <= 1000) {
 weight =val;
 }
 }
 public double getWeight() {
 return weight;
 }
}

The method setWeight doesn’t assign the value passed to it as a method parameter to
the instance variable weight if it’s a negative value or a value greater than 1,000. This
behavior is known as exposing object functionality using public methods.

 Let’s see how this method is used to assign a value to the variable weight in the
class Home:

class Home {
 public static void main(String[] args) {
 Phone ph = new Phone();
 ph.setWeight(-12.23);
 System.out.println(ph.getWeight());
 ph.setWeight(77712.23);
 System.out.println(ph.getWeight());
 ph.setWeight(12.23);
 System.out.println(ph.getWeight());
 }
}

Note that when the class Home tries to set the value of the variable to -12.23 or 77712.23
(out-of-range values), those values aren’t assigned to the Phone’s private variable weight.
It accepts the value 12.23, which is within the defined range.

 On the OCA Java SE 8 Programmer I exam, you may also find the term information
hiding. Encapsulation is the concept of defining variables and the methods together in
a class. Information hiding originated from the application and purpose of the concept
of encapsulation. These terms are also used interchangeably.

EXAM TIP The terms encapsulation and information hiding are used inter-
changeably. By exposing object functionality only through methods, you can
prevent your private variables from being assigned any values that don’t fit
your requirements. One of the best ways to create a well-encapsulated class is
to define its instance variables as private variables and allow access to these
variables using public methods.

Negative and weight
over 1,000 not allowed

Assign a negative
weight to Phone object

Prints 0.0
Assign weight > 1,000
to Phone object

Prints 0.0 Assign weight in
allowed range

Prints 12.23

197Passing objects and primitives to methods
The next Twist in the Tale exercise has a little hidden trick about determining a cor-
rectly encapsulated class. Let’s see if you can find it (answer in the appendix).

Let’s modify the definition of the class Phone that I previously used to demonstrate the
encapsulation principle in this section. Given the following definition of class Phone,
which of the options, when replacing the code on lines 1–3, makes it a well-encapsu-
lated class?

class Phone {
 public String model;
 double weight; //LINE1
 public void setWeight(double w) {weight = w;} //LINE2
 public double getWeight() {return weight;} //LINE3
}

Options:
a public double weight;

private void setWeight(double w) { weight = w; }
private double getWeight() { return weight; }

b public double weight;
void setWeight(double w) { weight = w; }
double getWeight() { return weight; }

c public double weight;
protected void setWeight(double w) { weight = w; }
protected double getWeight() { return weight; }

d public double weight;
public void setWeight(double w) { weight = w; }
public double getWeight() { return weight; }

e None of the above

Well-encapsulated classes don’t expose their instance variables outside their class.
What happens when the methods of these classes modify the state of the method argu-
ments that are passed to them? Is this acceptable behavior? I’ll discuss what happens
in the next section.

3.8 Passing objects and primitives to methods

In this section, you’ll learn the difference between passing object references and
primitives to a method. You’ll determine the effect on object references and primitive
values when they’re passed into methods that change the values.

Twist in the Tale 3.3

[6.6] Determine the effect upon object references and primitive values
when they are passed into methods that change the values

198 CHAPTER 3 Methods and encapsulation
 Object references and primitives behave in a different manner when they’re
passed to a method because of the differences in how these two data types are inter-
nally stored by Java. Let’s start with passing primitives to methods.

3.8.1 Passing primitives to methods

The value of a primitive data type is copied and passed to a method. Hence, the vari-
able whose value was copied doesn’t change:

class Employee {
 int age;
 void modifyVal(int a) {
 a = a + 1;
 System.out.println(a);
 }
}
class Office {
 public static void main(String args[]) {
 Employee e = new Employee();
 System.out.println(e.age);
 e.modifyVal(e.age);
 System.out.println(e.age);
 }
}

The output of the preceding code is as follows:

0
1
0

NOTE In the preceding code, method modifyVal seems to accept and mod-
ify the argument passed to it. This book includes such code because you
might see similar code on the exam, which doesn’t follow coding or naming
conventions. But please follow the coding conventions when you write code
on real projects.

The method modifyVal B accepts a method argument a of type int. In this method,
the variable a is a method parameter and holds a copy of the value that’s passed to it.
The method increments the value of the method parameter a and prints its value.

 When the class Office calls the method modifyVal c, it passes a copy of the value
of the object field age to it. The method modifyVal never accesses the object field
age. Hence, after the execution of this method, the value of the method field age
prints as 0 again.

 What happens if the definition of the class Employee is modified as follows (modifi-
cations in bold):

class Employee {
 int age;
 void modifyVal(int age) {
 age = age + 1;

Method modifyVal
accepts method
argument of type int

b

Prints 0

Calls method
modifyVal on an object
of class EmployeecPrints 0

199Passing objects and primitives to methods
 System.out.println(age);
 }
}

The class Office will still print the same answer because the method modifyVal

defines a method parameter with the name age (do you remember the topic on vari-
able scopes covered earlier in this chapter?). Note the following important points
related to passing a method parameter to a method:

■ It’s OK to define a method parameter with the same name as an instance vari-
able (or object field). But this is not a recommended practice.

■ Within a method, a method parameter takes precedence over an object field.
When the method modifyVal refers to the variable age, it refers to the method
parameter age, not the instance variable age. To access the instance variable
age within the method modifyVal, the variable name age needs to be prefixed
with the keyword this (this is a keyword that refers to the object itself).

The keyword this is discussed in detail in chapter 6.

EXAM TIP When you pass a primitive variable to a method, its value remains
the same after the execution of the method. The value doesn’t change,
regardless of whether the method reassigns the primitive to another variable
or modifies it.

3.8.2 Passing object references to methods

There are two main cases:

■ When a method reassigns the object reference passed to it to another variable
■ When a method modifies the state of the object reference passed to it

WHEN METHODS REASSIGN THE OBJECT REFERENCES PASSED TO THEM
When you pass an object reference to a method, the method can assign it to another
variable. In this case, the state of the object, which was passed on to the method,
remains intact. When a method is passed a reference value, a copy of the reference (that
is, the memory address) is passed to the invoked method. The callee can do whatever it
wants with its copy without ever altering the original reference held by the caller.

 The following code example explains this concept. Suppose you have the follow-
ing definition of the class Person:

class Person {
 private String name;
 Person(String newName) {
 name = newName;
 }
 public String getName() {
 return name;
 }

200 CHAPTER 3 Methods and encapsulation
 public void setName(String val) {
 name = val;
 }
}

What do you think is the output of the following code?

class Test {
 public static void swap(Person p1, Person p2) {
 Person temp = p1;
 p1 = p2;
 p2 = temp;
 }
 public static void main(String args[]) {
 Person person1 = new Person("John");
 Person person2 = new Person("Paul");
 System.out.println(person1.getName()
 + ":" + person2.getName());
 swap(person1, person2);
 System.out.println(person1.getName()
 + ":" + person2.getName());
 }
}

In the preceding code, B creates two object references, person1 and person2, illus-
trated in step 1 of figure 3.23. The boxed values represent objects of the class Person.

c prints John:Paul—the value of person1.name and person2.name.
 The code then calls the method swap and passes to it the objects referred to by

person1 and person2. When these objects are passed as arguments to the method
swap, the method arguments p1 and p2 also refer to these objects. This behavior is
illustrated in step 2 in figure 3.23.

The method swap defines three lines of code:

■ Person temp = p1: makes temp refer to the object referred to by p1
■ p1 = p: makes p1 refer to the object referred to by p2
■ p2 = temp: makes p2 refer to the object referred to by temp

These three steps are represented in figure 3.24.

Method to swap two
object references

Creates
object

 b

Prints John:Paul
before passing
objects referred by
variable person1
and person2 to
method swap

c

Executes
method

swap
Prints John:Paul
after method swap
completes execution

d

Step1

person1 John

person2 Paul

Step2

person1 John

person2 Paul

p1

p2 Figure 3.23 Objects of class
Person, referred to by variables
person1, person2, p1, and p2

201Passing objects and primitives to methods
As you can see in figure 3.24, the reference variables person1 and person2 are still
referring to the objects that they passed to the method swap. Because no change was
made to the values of the objects referred to by variables person1 and person2, line d
from the previous page prints John:Paul again.

 The output of the preceding code is as follows:

John:Paul
John:Paul

WHEN METHODS MODIFY THE STATE OF THE OBJECT REFERENCES PASSED TO THEM

Let’s see how a method can change the state of an object so that the modified state is
accessible in the calling method. Assume the same definition of the class Person, listed
again for your convenience:

class Person {
 private String name;
 Person(String newName) {
 name = newName;
 }
 public String getName() {
 return name;
 }
 public void setName(String val) {
 name = val;
 }
}

What’s the output of the following code?

class Test {
 public static void resetValueOfMemberVariable(Person p1) {
 p1.setName("Rodrigue");
 }
 public static void main(String args[]) {
 Person person1 = new Person("John");
 System.out.println(person1.getName());

temp

Person temp = p1;

person1 John

person2 Paul

p1

p2

temp

p1 = p2;

person1 John

person2 Paul

p1

p2

temp

p2 = temp;

person1 John

person2 Paul

p1

p2

Figure 3.24 The change in the objects referred to by variables during the execution of the method swap

Create an
object

reference
person1

Print person1.name
before passing it to
resetValueOfMemberVariable

202 CHAPTER 3 Methods and encapsulation
 resetValueOfMemberVariable(person1);
 System.out.println(person1.getName());
 }
}

The output of the preceding code is as follows:

John
Rodrigue

The method resetValueOfMemberVariable accepts the object referred to by person1

and assigns it to the method parameter p1. Now both variables, person1 and p1, refer
to the same object. p1.setName("Rodrigue") modifies the value of the object referred
to by the variable p1. Because the variable person1 also refers to the same object,
person1.getName() returns the new name, Rodrigue, in the method main. This
sequence of actions is represented in figure 3.25.

3.9 Summary
I started this chapter by discussing the scope of these variables: local, method parame-
ter, instance, and class. Often these variables’ scopes overlap each other.

 I also covered the constructors of a class: the user-defined and default construc-
tors. Java inserts a default constructor in a class that doesn’t define any constructor.
You can modify the source code of such a class, add a constructor, and recompile the
class. Upon recompilation, the Java compiler removes the automatically generated
constructor.

 I then covered the subobjective of reading from and writing to object fields. The
terms object fields and instance variables have the same meaning and are used inter-
changeably. You can read from and write to object fields by directly accessing them or
by using accessor methods. I also showed you how to apply encapsulation principles to
a class and explained why doing so is useful.

 Finally, I explained the effect on references and primitives when they’re passed
into methods that change their values. When you pass a primitive value to a method,
its value never changes for the calling method. When you pass an object reference
variable to a method, a change in its value may be reflected in the calling method—if

Pass person1 to method
resetValueOfMemberVariable

Print person1.name after passing
it to resetValueOfMemberVariable

Person person1 = new Person("John"); p1.setName("Rodrigue");

person1 John person1 Rodrigue p1person1 John p1

Within resetValueOfMemberVariable, p1

refers to passed to it by methodperson1, main.

Figure 3.25 Modification of the state of an object passed to the method resetValueOfMember-
Variable

203Review notes
the called method modifies an object field of the object passed to it. If the called
method assigns a new object reference to the method argument before modifying the
value of its fields, these changes aren’t visible in the calling method.

3.10 Review notes
This section lists the main points covered in this chapter.

 Scope of variables:

■ Variables can have multiple scopes: class, instance, local, and method parameters.
■ Local variables are defined within a method. Loop variables are local to the

loop within which they’re defined.
■ The scope of local variables is less than the scope of a method if they’re

declared in a sub-block (within braces, {}) in a method. This sub-block can be
an if statement, a switch construct, a loop, or a try-catch block (discussed in
chapter 7).

■ Local variables can’t be accessed outside the method in which they’re defined.
■ In a method, a local variable can’t be accessed before its declaration.
■ Instance variables are defined and accessible within an object. They’re accessi-

ble to all the instance methods of a class.
■ Class variables are shared by all the objects of a class—they can be accessed even

if there are no objects of the class.
■ Method parameters are used to accept arguments in a method. Their scope is

limited to the method where they’re defined.
■ A method parameter and a local variable can’t be defined using the same name.
■ Class and instance variables can’t be defined using the same name.
■ Local and instance variables can be defined using the same name. In a method,

if a local variable exists with the same name as an instance variable, the local
variable takes precedence.

Object’s life cycle:

■ An object’s life cycle starts when it’s initialized and lasts until it goes out of
scope or is no longer referenced by a variable.

■ When an object is alive, it can be referenced by a variable, and other classes can
use it by calling its methods and accessing its variables.

■ Declaring a reference object variable isn’t the same as creating an object.
■ An object is created using the operator new. Strings have special shorthand built

into the compiler. Strings can be created by using double quotes, as in "Hello".
■ An object is marked as eligible for garbage collection when it can no longer be

accessed.
■ An object can become inaccessible if it can no longer be referenced by any vari-

able, which happens when a reference variable is explicitly set to null or when
it goes out of scope.

204 CHAPTER 3 Methods and encapsulation
■ The garbage collector can also reclaim memory from a group of referenced
objects. This group of variables is referred to as island of isolation.

■ You can be sure only about whether objects are marked for garbage collection.
You can never be sure about whether an object has been garbage collected.

Creating methods with arguments and return values:

■ The return type of a method states the type of value that a method will return.
■ You can define multiple method parameters for a method.
■ The method parameter can be of a primitive type or an object of a class or interface.
■ The method parameters are separated by commas.
■ Unlike the declaration of a local variable, or instance and class fields, each

method parameter must be preceded by its type. This isn’t allowed: void

description(String name, age) {}.
■ You can define only one variable argument in a parameter list, and it must be

the final variable in the parameter list. If these two rules aren’t followed, your
code won’t compile.

■ For a method that returns a value, the return statement must be followed
immediately by a compatible value.

■ For a method that doesn’t return a value (return type is void), the return state-
ment must not be followed by a return value.

■ If there’s code that can be executed only after a return statement, the class will
fail to compile.

■ A method can optionally accept method arguments.
■ A method may optionally return a value.
■ A method returns a value by using the keyword return followed by the name of

a variable, whose value is passed back to the calling method.
■ The returned value from a method may or may not be assigned to a variable. If

the value is assigned to a variable, the variable type should be compatible with
the type of the return value.

■ A return statement should be the last statement in a method. Statements
placed after the return statement aren’t accessible and fail to compile.

■ A method can take zero or more parameters but can return only zero or one value.

Creating an overloaded method:

■ Overloaded methods accept different lists of arguments. The argument lists can
differ by
– Changes in the number of parameters that are accepted
– Changes in the types of parameters that are accepted
– Changes in the positions of parameters that are accepted

■ Methods can’t be defined as overloaded methods if they differ only in their
return types or access levels.

205Review notes
Constructors of a class:

■ Constructors are special methods defined in a class that create and return an
object of the class in which they’re defined.

■ Constructors have the same name as the class, and they don’t specify a return
type—not even void.

■ User-defined constructors are defined by the developer.
■ If a class defines multiple initializer blocks, their order of execution depends on

their placement in a class. But all of them execute before a class’s constructor.
■ Default constructors are defined by Java, but only if the developer doesn’t

define any constructor in a class.
■ You can define a constructor using the four access levels: public, protected,

default, and private.
■ Accessibility of a default constructor matches the accessibility of its class. Java

creates a public default constructor for a public class. It creates a default con-
structor with package access for a class with package-level access.

■ If you define a return type for a constructor, it’ll no longer be treated like a con-
structor. It’ll be treated like a regular method, even though it shares the same
name as its class.

■ An initializer block is defined within a class, not as a part of a method. It executes
for every object that’s created for a class.

■ If you define both an initializer and a constructor for a class, both of these will
execute. The initializer block will execute prior to the constructor.

■ Unlike constructors, an initializer block can’t accept method parameters.
■ An initializer block can create local variables. It can access and assign values to

instance and static variables. It can call methods and define loops, conditional
statements, and try-catch-finally blocks.

Overloaded constructors:

■ A class can also define overloaded constructors.
■ Overloaded constructors must be defined using different argument lists.
■ Overloaded constructors can’t be defined by just a change in the access levels.
■ Overloaded constructors may be defined using different access levels.
■ A constructor can call another overloaded constructor by using the keyword this.
■ A constructor can’t invoke a constructor by using its class’s name.
■ If present, a call to another constructor must be the first statement in a constructor.

Accessing object fields:

■ An object field is another name for an instance variable defined in a class.
■ An object field can be read either by directly accessing the variable (if its access

level permits) or by using a method that returns its value.

206 CHAPTER 3 Methods and encapsulation
■ Although object fields can be manipulated by direct access, it isn’t a recom-
mended practice. It makes the object vulnerable to invalid data. Such a class
isn’t well encapsulated.

■ An object field can be written either by directly accessing the variable (if its
access level permits) or by using constructors and methods that accept a value
and assign it to the instance variable.

■ You can call methods defined in a class using an object reference variable.
■ You can’t call two (or more) constructors within a constructor because the call

to a constructor must be the first statement in a constructor.
■ When calling a method, it must be passed the correct number and type of

method arguments.
■ A call to a method must be followed by passing values to all its method parame-

ters. For a method that defines one or more method parameters, you can’t call
the method followed by () to indicate it doesn’t need to be passed values.

■ Methods that accept varargs can be called with different counts of actual
arguments.

Applying encapsulation principles to a class:

■ A well-encapsulated object doesn’t expose the internal parts of an object out-
side it. It defines a set of well-defined interfaces (methods), which enables the
users of the class to interact with it.

■ A class that isn’t well encapsulated is at risk of being assigned undesired values
for its variables by the callers of the class, which can make the state of an object
unstable.

■ The terms encapsulation and information hiding are used interchangeably.
■ To define a well-encapsulated class, define its instance variables as private vari-

ables. Allow access or manipulation to these variables using methods.

Passing objects and primitives to methods:

■ Objects and primitives behave in different manners when they’re passed to a
method, because of differences in the way these two data types are internally
stored by Java.

■ When you pass a primitive variable to a method, its value remains the same after
the execution of the method. This doesn’t change, regardless of whether the
method reassigns the primitive to another variable or modifies it.

■ When you pass an object to a method, the method can modify the object’s state
by executing its methods. In this case, the modified state of the object is reflected
in the calling method.

207Sample exam questions
3.11 Sample exam questions
Q3-1. Which option defines a well-encapsulated class?

a class Template {
 public String font;
}

b class Template2 {
 public String font;
 public void setFont(String font) {
 this.font = font;
 }
 public String getFont() {
 return font;
 }
}

c class Template3 {
 private String font;
 public String author;
 public void setFont(String font) {
 this.font = font;
 }
 public String getFont() {
 return font;
 }
 public void setAuthor(String author) {
 this.author = author;
 }
 public String getAuthor() {
 return author;
 }

}

d None of the above

Q3-2. Examine the following code and select the correct option(s):

public class Person {
 public int height;
 public void setHeight(int newHeight) {
 if (newHeight <= 300)
 height = newHeight;
 }
}

a The height of a Person can never be set to more than 300.
b The preceding code is an example of a well-encapsulated class.
c The class would be better encapsulated if the height validation weren’t set

to 300.
d Even though the class isn’t well encapsulated, it can be inherited by other classes.

208 CHAPTER 3 Methods and encapsulation
Q3-3. Which of the following methods correctly accepts three integers as method
arguments and returns their sum as a floating-point number?

a public void addNumbers(byte arg1, int arg2, int arg3) {
 double sum = arg1 + arg2 + arg3;
}

b public double subtractNumbers(byte arg1, int arg2, int arg3) {
 double sum = arg1 + arg2 + arg3;
 return sum;
}

c public double numbers(long arg1, byte arg2, double arg3) {
 return arg1 + arg2 + arg3;
}

d public float wakaWakaAfrica(long a1, long a2, short a977) {
 double sum = a1 + a2 + a977;
 return (float)sum;
}

Q3-4. Which of the following statements are true?

a If the return type of a method is int, the method can return a value of type
byte.

b A method may or may not return a value.
c If the return type of a method is void, it can define a return statement without

a value, as follows:

return;

d A method may or may not accept any method arguments.
e A method must accept at least one method argument or define its return type.
f A method whose return type is String can’t return null.

Q3-5. Given the following definition of class Person,

class Person {
 public String name;
 public int height;
}

what is the output of the following code?

class EJavaGuruPassObjects1 {
 public static void main(String args[]) {
 Person p = new Person();
 p.name = "EJava";
 anotherMethod(p);
 System.out.println(p.name);
 someMethod(p);
 System.out.println(p.name);
 }

209Sample exam questions
 static void someMethod(Person p) {
 p.name = "someMethod";
 System.out.println(p.name);
 }
 static void anotherMethod(Person p) {
 p = new Person();
 p.name = "anotherMethod";
 System.out.println(p.name);
 }
}

a anotherMethod
anotherMethod
someMethod
someMethod

b anotherMethod
EJava
someMethod
someMethod

c anotherMethod
EJava
someMethod
EJava

d Compilation error

Q3-6. What is the output of the following code?

class EJavaGuruPassPrim {
 public static void main(String args[]) {
 int ejg = 10;
 anotherMethod(ejg);
 System.out.println(ejg);
 someMethod(ejg);
 System.out.println(ejg);
 }
 static void someMethod(int val) {
 ++val;
 System.out.println(val);
 }
 static void anotherMethod(int val) {
 val = 20;
 System.out.println(val);
 }
}

a 20
10
11
11

b 20
20
11
10

210 CHAPTER 3 Methods and encapsulation
c 20
10
11
10

d Compilation error

Q3-7. Given the following signature of method eJava, choose the options that cor-
rectly overload this method:

public String eJava(int age, String name, double duration)

a private String eJava(int val, String firstName, double dur)

b public void eJava(int val1, String val2, double val3)

c String eJava(String name, int age, double duration)

d float eJava(double name, String age, byte duration)

e ArrayList<String> eJava()

f char[] eJava(double numbers)

g String eJava()

Q3-8. Given the following code,

class Course {
 void enroll(long duration) {
 System.out.println("long");
 }
 void enroll(int duration) {
 System.out.println("int");
 }
 void enroll(String s) {
 System.out.println("String");
 }
 void enroll(Object o) {
 System.out.println("Object");
 }
}

what is the output of the following code?

class EJavaGuru {
 public static void main(String args[]) {
 Course course = new Course();
 char c = 10;
 course.enroll(c);
 course.enroll("Object");
 }
}

a Compilation error
b Runtime exception

211Sample exam questions
c int
String

d long
Object

Q3-9. Examine the following code and select the correct options:

class EJava {
 public EJava() {
 this(7);
 System.out.println("public");
 }
 private EJava(int val) {
 this("Sunday");
 System.out.println("private");
 }
 protected EJava(String val) {
 System.out.println("protected");
 }
}
class TestEJava {
 public static void main(String[] args) {
 EJava eJava = new EJava();
 }
}

a The class EJava defines three overloaded constructors.
b The class EJava defines two overloaded constructors. The private constructor

isn’t counted as an overloaded constructor.
c Constructors with different access modifiers can’t call each other.
d The code prints the following:

protected
private
public

e The code prints the following:

public
private
protected

Q3-10. Select the incorrect options:

a If a user defines a private constructor for a public class, Java creates a public

default constructor for the class.
b A class that gets a default constructor doesn’t have overloaded constructors.
c A user can overload the default constructor of a class.
d The following class is eligible for a default constructor:

class EJava {}

212 CHAPTER 3 Methods and encapsulation
e The following class is also eligible for a default constructor:

class EJava {
 void EJava() {}
}

3.12 Answers to sample exam questions

Q3-1. Which option defines a well-encapsulated class?

a class Template {
 public String font;
}

b class Template2 {
 public String font;
 public void setFont(String font) {
 this.font = font;
 }
 public String getFont() {
 return font;
 }
}

c class Template3 {
 private String font;
 public String author;
 public void setFont(String font) {
 this.font = font;
 }
 public String getFont() {
 return font;
 }
 public void setAuthor(String author) {
 this.author = author;
 }
 public String getAuthor() {
 return author;
 }

}

d None of the above

Answer: d

Explanation: Options (a), (b), and (c) are incorrect because they all define a public
instance variable. A well-encapsulated class should be like a capsule, hiding its instance
variables from the outside world. The only way you should access and modify instance
variables is through the public methods of a class to ensure that the outside world
can access only the variables the class allows it to. By defining methods to assign val-
ues to its instance variables, a class can control the range of values that can be assigned
to them.

213Answers to sample exam questions
Q3-2. Examine the following code and select the correct option(s):

public class Person {
 public int height;
 public void setHeight(int newHeight) {
 if (newHeight <= 300)
 height = newHeight;
 }
}

a The height of a Person can never be set to more than 300.
b The preceding code is an example of a well-encapsulated class.
c The class would be better encapsulated if the height validation weren’t set

to 300.
d Even though the class isn’t well encapsulated, it can be inherited by other classes.

Answer: d

Explanation: This class isn’t well encapsulated because its instance variable height is
defined as a public member. Because the instance variable can be directly accessed
by other classes, the variable doesn’t always use the method setHeight to set its
height. The class Person can’t control the values that can be assigned to its public
variable height.

Q3-3. Which of the following methods correctly accepts three integers as method
arguments and returns their sum as a floating-point number?

a public void addNumbers(byte arg1, int arg2, int arg3) {
 double sum = arg1 + arg2 + arg3;
}

b public double subtractNumbers(byte arg1, int arg2, int arg3) {
 double sum = arg1 + arg2 + arg3;
 return sum;
}

c public double numbers(long arg1, byte arg2, double arg3) {
 return arg1 + arg2 + arg3;
}

d public float wakaWakaAfrica(long a1, long a2, short a977) {
 double sum = a1 + a2 + a977;
 return (float)sum;
}

Answer: b, d

Explanation: Option (a) is incorrect. The question specifies the method should return a
decimal number (type double or float), but this method doesn’t return any value.

 Option (b) is correct. This method accepts three integer values that can be auto-
matically converted to an integer: byte, int, and int. It computes the sum of these

214 CHAPTER 3 Methods and encapsulation
integer values and returns it as a decimal number (data type double). Note that the
name of the method is subtractNumbers, which doesn’t make it an invalid option.
Practically, you wouldn’t name a method subtractNumbers if it’s adding them. But
syntactically and technically, this option meets the question’s requirements and is a
correct option.

 Option (c) is incorrect. This method doesn’t accept integers as the method argu-
ments. The type of the method argument arg3 is double, which isn’t an integer.

 Option (d) is correct. Even though the name of the method seems weird, it
accepts the correct argument list (all integers) and returns the result in the correct
data type (float).

Q3-4. Which of the following statements are true?

a If the return type of a method is int, the method can return a value of type
byte.

b A method may or may not return a value.
c If the return type of a method is void, it can define a return statement without

a value, as follows:

return;

d A method may or may not accept any method arguments.
e A method should accept at least one method argument or define its return type.
f A method whose return type is String can’t return null.

Answer: a, b, c, d

Explanation: Option (e) is incorrect. There’s no constraint on the number of argu-
ments that can be passed to a method, regardless of whether the method returns a
value.

 Option (f) is incorrect. You can’t return the value null for methods that return
primitive data types. You can return null for methods that return objects (String is a
class and not a primitive data type).

Q3-5. Given the following definition of class Person,

class Person {
 public String name;
 public int height;
}

what is the output of the following code?

class EJavaGuruPassObjects1 {
 public static void main(String args[]) {
 Person p = new Person();
 p.name = "EJava";

215Answers to sample exam questions
 anotherMethod(p);
 System.out.println(p.name);
 someMethod(p);
 System.out.println(p.name);
 }
 static void someMethod(Person p) {
 p.name = "someMethod";
 System.out.println(p.name);
 }
 static void anotherMethod(Person p) {
 p = new Person();
 p.name = "anotherMethod";
 System.out.println(p.name);
 }
}

a anotherMethod
anotherMethod
someMethod
someMethod

b anotherMethod
EJava
someMethod
someMethod

c anotherMethod
EJava
someMethod
EJava

d Compilation error

Answer: b

Explanation: The class EJavaGuruPassObject1 defines two methods, someMethod and
anotherMethod. The method someMethod modifies the value of the object parameter
passed to it. Hence, the changes are visible within this method and in the calling
method (method main). But the method anotherMethod reassigns the reference vari-
able passed to it. Changes to any of the values of this object are limited to this method.
They aren’t reflected in the calling method (the main method).

Q3-6. What is the output of the following code?

class EJavaGuruPassPrim {
 public static void main(String args[]) {
 int ejg = 10;
 anotherMethod(ejg);
 System.out.println(ejg);
 someMethod(ejg);
 System.out.println(ejg);
 }

216 CHAPTER 3 Methods and encapsulation
 static void someMethod(int val) {
 ++val;
 System.out.println(val);
 }
 static void anotherMethod(int val) {
 val = 20;
 System.out.println(val);
 }
}

a 20
10
11
11

b 20
20
11
10

c 20
10
11
10

d Compilation error

Answer: c

Explanation: When primitive data types are passed to a method, the values of the vari-
ables in the calling method remain the same. This behavior doesn’t depend on
whether the primitive values are reassigned other values or modified by addition, sub-
traction, or multiplication—or any other operation.

Q3-7. Given the following signature of method eJava, choose the options that cor-
rectly overload this method:

public String eJava(int age, String name, double duration)

a private String eJava(int val, String firstName, double dur)

b public void eJava(int val1, String val2, double val3)

c String eJava(String name, int age, double duration)

d float eJava(double name, String age, byte duration)

e ArrayList<String> eJava()

f char[] eJava(double numbers)

g String eJava()

Answer: c, d, e, f, g

Explanation: Option (a) is incorrect. Overloaded methods can change the access modi-
fiers, but changing the access modifier alone won’t make it an overloaded method. This

217Answers to sample exam questions
option also changes the names of the method parameters, but that doesn’t make any
difference to a method signature.

 Option (b) is incorrect. Overloaded methods can change the return type of the
method, but changing the return type won’t make it an overloaded method.

 Option (c) is correct. Changing the placement of the types of the method parame-
ters overloads it.

 Option (d) is correct. Changing the return type of a method and the placement of
the types of the method parameters overloads it.

 Option (e) is correct. Changing the return type of a method and making a change
in the parameter list overloads it.

 Option (f) is correct. Changing the return type of a method and making a change
in the parameter list overloads it.

 Option (g) is correct. Changing the parameter list also overloads a method.

Q3-8. Given the following code,

class Course {
 void enroll(long duration) {
 System.out.println("long");
 }
 void enroll(int duration) {
 System.out.println("int");
 }
 void enroll(String s) {
 System.out.println("String");
 }
 void enroll(Object o) {
 System.out.println("Object");
 }
}

what is the output of the following code?

class EJavaGuru {
 public static void main(String args[]) {
 Course course = new Course();
 char c = 10;
 course.enroll(c);
 course.enroll("Object");
 }
}

a Compilation error
b Runtime exception

c int
String

d long
Object

218 CHAPTER 3 Methods and encapsulation
Answer: c

Explanation: No compilation issues exist with the code. You can overload methods by
changing the type of the method arguments in the list. Using method arguments with
data types having a base-derived class relationship (Object and String classes) is
acceptable. Using method arguments with data types for which one can be automati-
cally converted to the other (int and long) is also acceptable.

 When the code executes course.enroll(c), char can be passed to two overloaded
enroll methods that accept int and long. The char gets expanded to its nearest
type—int—so course.enroll(c) calls the overloaded method that accepts int, print-
ing int. The code course.enroll("Object") is passed a String value. Although
String is also an Object, this method calls the specific (not general) type of the argu-
ment passed to it. So course.enroll("Object") calls the overloaded method that
accepts String, printing String.

Q3-9. Examine the following code and select the correct options:

class EJava {
 public EJava() {
 this(7);
 System.out.println("public");
 }
 private EJava(int val) {
 this("Sunday");
 System.out.println("private");
 }
 protected EJava(String val) {
 System.out.println("protected");
 }
}
class TestEJava {
 public static void main(String[] args) {
 EJava eJava = new EJava();
 }
}

a The class EJava defines three overloaded constructors.
b The class EJava defines two overloaded constructors. The private constructor

isn’t counted as an overloaded constructor.
c Constructors with different access modifiers can’t call each other.
d The code prints the following:

protected
private
public

e The code prints the following:

public
private
protected

219Answers to sample exam questions
Answer: a, d

Explanation: You can define overloaded constructors with different access modifiers
in the same way that you define overloaded methods with different access modifiers.
But a change in only the access modifier can’t be used to define overloaded methods
or constructors. private methods and constructors are also counted as overloaded
methods.

 The following line of code calls EJava’s constructor, which doesn’t accept any
method argument:

EJava eJava = new EJava();

The no-argument constructor of this class calls the constructor that accepts an int

argument, which in turn calls the constructor with the String argument. Because the
constructor with the String constructor doesn’t call any other methods, it prints
protected and returns control to the constructor that accepts an int argument.
This constructor prints private and returns control to the constructor that doesn’t
accept any method argument. This constructor prints public and returns control to
the main method.

Q 3-10. Select the incorrect options:

a If a user defines a private constructor for a public class, Java creates a public
default constructor for the class.

b A class that gets a default constructor doesn’t have overloaded constructors.
c A user can overload the default constructor of a class.
d The following class is eligible for default constructor:

class EJava {}

e The following class is also eligible for a default constructor:

class EJava {
 void EJava() {}
}

Answer: a, c

Explanation: Option (a) is incorrect. If a user defines a constructor for a class with
any access modifier, it’s no longer an eligible candidate to be provided with a default
constructor.

 Option (b) is correct. A class gets a default constructor only when it doesn’t have any
constructor. A default or an automatic constructor can’t exist with other constructors.

 Option (c) is incorrect. A default constructor can’t coexist with other constructors.
A default constructor is automatically created by the Java compiler if the user doesn’t
define any constructor in a class. If the user reopens the source code file and adds a

220 CHAPTER 3 Methods and encapsulation
constructor to the class, upon recompilation no default constructor will be created for
the class.

 Option (d) is correct. Because this class doesn’t have a constructor, Java will create
a default constructor for it.

 Option (e) is also correct. This class also doesn’t have a constructor, so it’s eligible
for the creation of a default constructor. The following isn’t a constructor because the
return type of a constructor isn’t void:

void EJava() {}

It’s a regular and valid method, with the same name as its class.

Selected classes from
the Java API and arrays
Exam objectives covered in this chapter What you need to know

[9.2] Creating and manipulating Strings How to initialize String variables using = (assign-
ment) and new operators. Use of the operators =,
+=, !=, and == with String objects. Pooling of
string literal values. Literal value for class String.
Use of methods from class String. Immutable
String values. All the String methods manipu-
late and return a new String object.

[3.2] Test equality between Strings and
other objects using == and equals().

How to determine the equality of two String
objects.
Differences between using operator == and method
equals() to determine equality of String
objects.

[9.1] Manipulate data using the
StringBuilder class and its methods.

How to create StringBuilder classes and how
to use their commonly used methods.
Difference between StringBuilder and
String classes. Difference between methods with
similar names defined in both of these classes.

[4.1] Declare, instantiate, initialize, and use a
one-dimensional array.

How to declare, instantiate, and initialize one-
dimensional arrays using single and multiple steps.
The do’s and don’ts of each of these steps.

[4.2] Declare, instantiate, initialize, and use a
multidimensional array.

How to declare, instantiate, and initialize multidi-
mensional arrays using single and multiple steps,
with do’s and don’ts for each of these steps.
Accessing elements in asymmetric multidimen-
sional arrays.
221

222 CHAPTER 4 Selected classes from the Java API and arrays
In the OCA Java SE 8 Programmer I exam, you’ll be asked many questions about how
to create, modify, and delete String objects, StringBuilder objects, arrays, Array-

List objects, and date/time objects. To prepare you for such questions, in this chap-
ter I’ll provide insight into the variables you’ll use to store these objects’ values, along
with definitions for some of their methods. This information should help you apply all
the methods correctly.

 In this chapter, we’ll cover the following:

■ Creating and manipulating String and StringBuilder objects
■ Using common methods from classes String and StringBuilder

■ Creating and using one-dimensional and multidimensional arrays in single and
multiple steps

■ Accessing elements in asymmetric multidimensional arrays
■ Declaring, creating, and using an ArrayList and understanding the advantages

of an ArrayList over arrays
■ Using methods that add, modify, and delete elements of an ArrayList

■ Creating date and time objects using the classes LocalDate, LocalTime, and
LocalDateTime

■ Manipulating date objects using the class Period

■ Formatting and parsing date and time objects using DateTimeFormatter

Let’s get started with the class String.

Exam objectives covered in this chapter What you need to know

[9.4] Declare and use an ArrayList of a given
type.

How to declare, create, and use an ArrayList.
Advantages of using an ArrayList over arrays.
Use of methods that add, modify, and delete ele-
ments of an ArrayList.

[9.3] Create and manipulate calendar data using
classes from java.time.LocalDateTime,
java.time.LocalDate,
java.time.LocalTime,
java.time.format.DateTimeFormatter,
java.time.Period.

How to store dates and times using classes
LocalDate, LocalTime, and
LocalDateTime.
Identify the factory methods to instantiate date
and time objects. Use instance methods of date
and time classes.
Use Period to add or subtract duration (days,
months, or years) to and from date objects.
Use DateTimeFormatter to format or parse
date and time objects.

223Welcome to the world of the String class
4.1 Welcome to the world of the String class

In this section, we’ll cover the class String defined in the Java API in the java.lang
package. The String class represents character strings. We’ll create objects of the
class String and work with its commonly used methods, including indexOf(), sub-
string(), replace(), charAt(), and others. You’ll also learn how to determine the
equality of two String objects.

 The String class is perhaps the most-used class in the Java API. You’ll find
instances of this class being used by every other class in the Java API. How many times
do you think you’ve used the class String? Don’t answer that question—it’s like trying
to count your hair.

 Although many developers find the String class to be one of the simplest to work
with, this perception can be deceptive. For example, in the String value "Shreya", at
which index do you think r is stored—second or third? The correct answer is second
because the first letter of a String is stored at index 0 and not index 1. You’ll learn
many other facts about the String class in this section.

 Let’s start by creating new objects of this class.

4.1.1 Creating String objects

You can create objects of the class String by using the new operator or by using String

literal values (values within double quotes). You can assign a String literal value to a
String reference variable by using the assignment operator (=). But you may have
noticed a big difference in how these objects are stored and referred to by Java.

 Let’s create two String objects with the value "Paul" using the operator new:

String str1 = new String("Paul");
String str2 = new String("Paul");
System.out.println(str1 == str2);

Figure 4.1 illustrates the previous code.

In the previous code, a comparison of the String reference variables str1 and str2

prints false. The operator == compares the addresses of the objects referred to by the

[9.2] Create and manipulate strings

[3.2] Test equality between Strings and other objects using == and equals()

Create two String objects by
using the operator new

Comparing the objects
referred to by the
variables str1 and
str2 prints false.

str1
Separate

objects

Paul

str2 Paul

Figure 4.1 String objects created using the operator
new always refer to separate objects, even if they store
the same sequence of characters.

224 CHAPTER 4 Selected classes from the Java API and arrays
variables str1 and str2. Even though these String objects store the same sequence of
characters, they refer to separate objects stored at separate locations.

 Let’s initialize two String variables with the value "Harry" using the assignment
operator (=). Figure 4.2 illustrates the variables str3 and str4 and the objects referred
to by these variables.

String str3 = "Harry";
String str4 = "Harry";
System.out.println(str3 == str4);

In the preceding example, the variables str1 and str2 referred to different String

objects, even if they were created using the same sequence of characters. In the case of
variables str3 and str4, the objects are created and stored in a pool of String objects.
Before creating a new object in the pool, Java searches for an object with similar con-
tents. When the following line of code executes, no String object with the value
"Harry" is found in the pool of String objects:

String str3 = "Harry";

As a result, Java creates a String object with the value "Harry" in the pool of String

objects referred to by the variable str3. This action is depicted in figure 4.3.

When the following line of code executes, Java is able to find a String object with the
value "Harry" in the pool of String objects:

String str4 = "Harry";

Initialize two String
variables by using
assignment operator = Prints true because

str3 and str4 refer
to the same object

Harry

Hi

Bye

str3

String pool

str4
Figure 4.2 String objects created using the assignment
operator (=) may refer to the same object if they store the
same sequence of characters.

Figure 4.3 The sequence of steps that executes when Java is unable to locate a String in a pool of
String objects

225Welcome to the world of the String class
Java doesn’t create a new String object in this case, and the variable str4 refers to the
existing String object "Harry". As shown in figure 4.4, both variables str3 and str4

refer to the same String object in the pool of String objects.

You can also create a String object by enclosing a value within double quotes ("):

System.out.println("Morning");

These values are reused from the String constant pool if a matching value is found. If
a matching value isn’t found, the JVM creates a String object with the specified value
and places it in the String constant pool:

String morning1 = "Morning";
System.out.println("Morning" == morning1);

Compare the preceding example with the following example, which creates a String

object using the operator new and (only) double quotes and then compares their
references:

String morning2 = new String("Morning");
System.out.println("Morning" == morning2);

The preceding code shows that object references of String objects that exist in the
String constant pool and object references of String objects that don’t exist in
the String constant pool don’t refer to the same String object, even if they define
the same String value.

NOTE The terms String constant pool and String pool are used interchange-
ably and refer to the same pool of String objects. Because String objects are
immutable, the pool of String objects is also called the String constant pool.
You may see either of these terms on the exam.

Figure 4.4 The sequence of actions that executes when Java locates a String in the pool of String
objects

Creates a new String object with value
Morning in the String constant pool

This String object is not placed
in the String constant pool.

226 CHAPTER 4 Selected classes from the Java API and arrays
You can also invoke other overloaded constructors of the class String to create its
objects by using the operator new:

String girl = new String("Shreya");
char[] name = new char[]{'P','a','u','l'};
String boy = new String(name);

You can also create objects of String using the classes StringBuilder and String-

Buffer:

StringBuilder sd1 = new StringBuilder("String Builder");
String str5 = new String(sd1);
StringBuffer sb2 = new StringBuffer("String Buffer");
String str6 = new String(sb2);

Because String is a class, you can assign null to it, as shown in the next example:

String empName = null;

EXAM TIP The default value for String is null.

COUNTING STRING OBJECTS

To test your understanding of the various ways in which a String object can be cre-
ated, the exam may question you on the total number of String objects created in
a given piece of code. Count the total number of String objects created in the fol-
lowing code, assuming that the String constant pool doesn’t define any matching
String values:

class ContString {
 public static void main(String... args) {
 String summer = new String("Summer");
 String summer2 = "Summer";
 System.out.println("Summer");
 System.out.println("autumn");
 System.out.println("autumn" == "summer");
 String autumn = new String("Summer");
 }
}

I’ll walk through the code with you step by step to calculate the total number of
String objects created:

■ The code at B creates a new String object with the value "Summer". This object
is not placed in the String constant pool.

■ The code at c creates a new String object with the value "Summer" and places
it in the String constant pool.

String constructor
that accepts a String

String constructor that
accepts a char array

String constructor
that accepts object
of StringBuilder

String constructor that
accepts object of StringBuffer

null is a literal
value for objects.

b
 c

 d
e

 f
 g

227Welcome to the world of the String class
■ The code at d doesn’t need to create any new String object. It reuses the
String object with the value "Summer" that already existed in the String con-
stant pool.

■ The code at e creates a new String object with the value "autumn" and places
it in the String constant pool.

■ The code at f reuses the String value "autumn" from the String constant
pool. It creates a String object with the value "summer" in the String con-
stant pool (note the difference in the case of letters—Java is case-sensitive and
"Summer" is not the same as "summer").

■ The code at g creates a new String object with the value "Summer".

The previous code creates a total of five String objects.

EXAM TIP If a String object is created using the keyword new, it always results
in the creation of a new String object. String objects created this way are
never pooled. When a variable is assigned a String literal using the assign-
ment operator, a new String object is created only if a String object with the
same value isn’t found in the String constant pool.

4.1.2 The class String is immutable

The concept that the class String is immutable is an important point to remember.
Once created, the contents of an object of the class String can never be modified.
The immutability of String objects helps the JVM reuse String objects, reducing
memory overhead and increasing performance.

 As shown previously in figure 4.4, the JVM creates a pool of String objects that
can be referenced by multiple variables across the JVM. The JVM can make this opti-
mization only because String is immutable. String objects can be shared across
multiple reference variables without any fear of changes in their values. If the refer-
ence variables str1 and str2 refer to the same String object value "Java", str1

need not worry for its lifetime that the value "Java" might be changed through the
variable str2.

 Let’s take a quick look at how the immutability of the class String is implemented
by the authors of this class:

■ The class String stores its values in a private variable of the type char array
(char value[]). Arrays are fixed in size and don’t grow once initialized.

■ This value variable is marked as final in the class String. Note that final is a
nonaccess modifier, and a final variable can be initialized only once.

■ None of the methods defined in the class String manipulate the individual ele-
ments of the array value.

I’ll discuss each of these points in detail in the following sections.

228 CHAPTER 4 Selected classes from the Java API and arrays
STRING USES A CHAR ARRAY TO STORE ITS VALUE

Here’s a partial definition of the class String from the Java source code file (String.java)
that includes the array used to store the characters of a String value (the relevant
code is in bold):

public final class String
 implements java.io.Serializable, Comparable<String>, CharSequence
{
 private final char value[];

}

The arrays are fixed in size—they can’t grow once they’re initialized.
 Let’s create a variable name of type String and see how it’s stored internally:

String name = "Selvan";

Figure 4.5 shows a UML representation (class diagram on the left and object diagram
on the right) of the class String and its object name, with only one relevant variable,
value, which is an array of the type char and is used to store the sequence of charac-
ters assigned to a String.

As you can see in figure 4.5, the String value Selvan is stored in an array of type char.
In this chapter, I’ll cover arrays in detail, as well as how an array stores its first value at
position 0.

Code from Java API classes
To give you a better understanding of how the classes String, StringBuilder, and
ArrayList work, I’ll explain the variables used to store these objects’ values, along
with definitions for some of their methods. My purpose is not to overwhelm you but
to prepare you. The exam won’t question you on this subject, but these details will
help you retain relevant information for the exam and implement similar requirements
in code for practical projects.

The source code of the classes defined in the Java API is shipped with the Java Devel-
opment Kit (JDK). You can access it by unzipping the src.zip archive from your JDK’s
installation folder.

The rest of this section discusses how the authors of the Java API have implemented
immutability in the class String.

The value array is used
for character storage.The rest of the code

of the class String

String

– :value char[]

.
.
.

name String:

value = {'S', 'e', 'l', 'v', 'a', 'n'}

.
.
.

Figure 4.5 UML representations
of the class String and a
String object with String’s
instance attribute value

229Welcome to the world of the String class
Figure 4.6 shows how Selvan is stored as a char array.
 What do you think you’ll get when you request that this String return the charac-

ter at position 4? If you said a and not v, you got the right answer (as in figure 4.6).

STRING USES FINAL VARIABLE TO STORE ITS VALUE

The variable value, which is used to store the value of a String object, is marked as
final. Review the following code snippet from the class String.java:

private final char value[];

The basic characteristic of a final variable is that it can initialize a value only once. By
marking the variable value as final, the class String makes sure that it can’t be reas-
signed a value.

METHODS OF STRING DON’T MODIFY THE CHAR ARRAY

Although we can’t reassign a value to a final char array (as mentioned in the previ-
ous section), we can reassign its individual characters. Wow—does this mean that the
statement “Strings are immutable” isn’t completely true?

 No, that statement is still true. The char array used by the class String is marked
private, which means that it isn’t accessible outside the class for modification. The
class String itself doesn’t modify the value of this variable either.

 All the methods defined in the class String, such as substring, concat, toLower-

Case, toUpperCase, trim, and so on, which seem to modify the contents of the String

object on which they’re called, create and return a new String object rather than modify
the existing value. Figure 4.7 illustrates the partial definition of String’s replace method.

Characters of String

Position at which each is storedchar

S e l v a n

0 1 2 3 4 5

Figure 4.6 Mapping characters stored by a String with the
positions at which they’re stored

value is used for
character storage.

public String replace(char oldChar, char newChar) {

if (oldChar != newChar) {

// code to create a new char array and

// replace the desired char with the new char

return new String(0, len, buf);

}

return this;

}

replace creates and

returns a new String

object. It doesn’t modify

the existing array value.

Figure 4.7 The partial definition of the method replace from the class String
shows that this method creates and returns a new String object rather than
modifies the value of the String object on which it’s called.

230 CHAPTER 4 Selected classes from the Java API and arrays
I reiterate that the previous code from the class String will help you relate the theory
to the code and understand how and why a particular concept works. If you under-
stand a particular concept well in terms of how and why it works, you’ll be able to
retain that information longer.

EXAM TIP Strings are immutable. Once initialized, a String value can’t be
modified. All the String methods that return a modified String value return
a new String object with the modified value. The original String value
always remains the same.

4.1.3 Methods of the class String

Figure 4.8 categorizes the methods that are on the exam into groups: ones that query
the positions of characters, ones that seem to modify String, and others.

Categorizing the methods in this way will help you better understand these methods.
For example, the methods charAt(), indexOf(), and substring() query the position
of individual characters in a String. The methods substring(), trim(), and replace()
seem to be modifying the value of a String.

CHARAT()
You can use the method charAt(int index) to retrieve a character at a specified
index of a String:

String name = new String("Paul");
System.out.println(name.charAt(0));
System.out.println(name.charAt(2));

Figure 4.9 illustrates the previous string, Paul.

String methods

Query position of chars

substringindexOfcharAt replacetrim endsWithstartsWithlength

Seem to modify String Others

Figure 4.8 Categorization of the String methods

Prints P

Prints u

P a u l

0 1 2 3

Char at position 2

Char at position 0
Figure 4.9 The sequence of characters of "Paul" stored
by String and the corresponding array index positions

231Welcome to the world of the String class
Because the last character is placed at index 3, the following code will throw an excep-
tion at runtime:

System.out.println(name.charAt(4));

NOTE As a quick introduction, a runtime exception is a programming error
determined by the Java Runtime Environment (JRE) during the execution of
code. These errors occur because of the inappropriate use of another piece
of code (exceptions are covered in detail in chapter 7). The previous code
tries to access a nonexistent index position, so it causes an exception.

INDEXOF()
You can search a String for the occurrence of a char or a String. If the specified
char or String is found in the target String, this method returns the first matching
position; otherwise, it returns -1:

String letters = "ABCAB";
System.out.println(letters.indexOf('B'));
System.out.println(letters.indexOf("S"));
System.out.println(letters.indexOf("CA"));

Figure 4.10 illustrates the previous string ABCAB.

By default, the indexOf() method starts its search from the first char of the target
String. If you wish, you can also set the starting position, as in the following example:

String letters = "ABCAB";
System.out.println(letters.indexOf('B', 2));

SUBSTRING()
The substring() method is shipped in two flavors. The first returns a substring of a
String from the position you specify to the end of the String, as in the following
example:

String exam = "Oracle";
String sub = exam.substring(2);
System.out.println(sub);

Figure 4.11 illustrates the previous example.

Prints 1

Prints –1
Prints 2

Start position of CA

Start position of B

A B C A

0 1 2 3

B

4 Figure 4.10 The characters "ABCAB"
stored by String

Prints 4

Prints acle

232 CHAPTER 4 Selected classes from the Java API and arrays
You can also specify the end position with this method:

String exam = "Oracle";
String result = exam.substring(2, 4);
System.out.println(result);

Figure 4.12 illustrates the String value "Oracle", including both a start point and an
end point for the method substring.

An interesting point is that the substring method doesn’t include the character at
the end position. In the previous example, result is assigned the value ac (characters
at positions 2 and 3), not the value acl (characters at positions 2, 3, and 4). Here’s a
simple way to remember this rule:

 Length of String returned by substring() = end - start

EXAM TIP The substring method doesn’t include the character at the end
position in its return value.

TRIM()
The trim() method returns a new String by removing all the leading and trailing
white space in a String. White spaces are blanks (new lines, spaces, or tabs).

 Let’s define and print a String with leading and trailing white space. (The colons
printed before and after the String determine the start and end of the String.)

String varWithSpaces = " AB CB ";
System.out.print(":");
System.out.print(varWithSpaces);
System.out.print(":");

Here’s another example that trims the leading and trailing white space:

System.out.print(":");
System.out.print(varWithSpaces.trim());
System.out.print(":");

substring(2) = acleO r a c

0 1 2 3

l

4

e

5
Figure 4.11 The String "Oracle"

Prints ac

substring(2,4) = ac

Char at position 4

not included

O r a c

0 1 2 3

l

4

e

5 Figure 4.12 How the method substring
looks for the specified characters from the
start until the end position

String with
white space

Prints : AB CB :

Prints :AB CB:

233Welcome to the world of the String class
Note that this method doesn’t remove the space within a String.

REPLACE()
This method will return a new String by replacing all the occurrences of a char with
another char. Instead of specifying a char to be replaced by another char, you can
also specify a sequence of characters—a String to be replaced by another String:

String letters = "ABCAB";
System.out.println(letters.replace('B', 'b'));
System.out.println(letters.replace("CA", "12"));

Notice the type of the method parameters passed on this method: either char or
String. You can’t mix these parameter types, as the following code shows:

String letters = "ABCAB";
System.out.println(letters.replace('B', "b"));
System.out.println(letters.replace("B", 'b'));

Again, notice that this method doesn’t—or can’t—change the value of the variable
letters. Examine the following line of code and its output:

System.out.println(letters);

LENGTH()
You can use the length() method to retrieve the length of a String. Here’s an exam-
ple showing its use:

System.out.println("Shreya".length());

EXAM TIP The length of a String is one number greater than the position
that stores its last character. The length of String "Shreya" is 6, but its last
character, a, is stored at position 5 because the positions start at 0, not 1.

STARTSWITH() AND ENDSWITH()
The method startsWith() determines whether a String starts with a specified prefix,
specified as a String. You can also specify whether you wish to search from the start of
a String or from a particular position. This method returns true if a match is found
and false otherwise:

String letters = "ABCAB";
System.out.println(letters.startsWith("AB"));
System.out.println(letters.startsWith("a"));
System.out.println(letters.startsWith("A", 3));

Prints AbCAb

Prints AB12B

Won’t compile

Prints ABCAB because previous replace() method
calls don’t affect the char[] array within letters

Prints 6

Prints true

Prints false

Prints true

234 CHAPTER 4 Selected classes from the Java API and arrays

P

The method endsWith() tests whether a String ends with a particular suffix. It returns
true for a matching value and false otherwise:

System.out.println(letters.endsWith("CAB"));
System.out.println(letters.endsWith("B"));
System.out.println(letters.endsWith("b"));

METHOD CHAINING

It’s common practice to use multiple String methods in a single line of code, as follows:

String result = "Sunday ".replace(' ', 'Z').trim().concat("M n");
System.out.println(result);

The methods are evaluated from left to right. The first method to execute in this
example is replace, not concat.

 Method chaining is one of the favorite topics of the exam authors. You’re sure to
encounter a question on method chaining in the OCA Java SE 8 Programmer I exam.

EXAM TIP When chained, the methods are evaluated from left to right.

Note that there’s a difference between calling a chain of methods on a String object
versus doing the same and then reassigning the return value to the same variable:

String day = "SunDday";
day.replace('D', 'Z').substring(3);
System.out.println(day);
day = day.replace('D', 'Z').substring(3);
System.out.println(day);

Because String objects are immutable, their values won’t change if you execute meth-
ods on them. You can, of course, reassign a value to a reference variable of type
String. Watch out for related questions in the exam.

 Although the next Twist in the Tale exercise may seem simple, with only two lines
of code, appearances can be deceptive (answers in the appendix).

Let’s modify some of the code used in the previous section. Execute this code on your
system. Which answer correctly shows its output?

String letters = "ABCAB";
System.out.println(letters.substring(0, 2).startsWith('A'));

a true

b false

Twist in the Tale 4.1

Prints true

Prints true

Prints false

Prints SundayZZM n

Calls methods
replace and
substring on day

String is immutable—
no change in the value
variable day; prints
SunDday

Calls methods replace and
substring on day, and assigns
the result back to variable day

rints
Zday

235Welcome to the world of the String class
c AB

d ABC
e Compilation error

4.1.4 String objects and operators

Of all the operators that are on this exam, you can use just a handful with the String

objects:

■ Concatenation: + and +=
■ Equality: == and !=

In this section, we’ll cover the concatenation operators. We’ll cover the equality oper-
ators in the next section (4.1.5).

 Concatenation operators (+ and +=) have a special meaning for Strings. The Java
language has additional functionality defined for these operators for String. You can
use the operators + and += to concatenate two String values. Behind the scenes,
string concatenation is implemented by using the StringBuilder (covered in the
next section) or StringBuffer (similar to StringBuilder) classes.

 But remember that a String is immutable. You can’t modify the value of any exist-
ing object of String. The + operator enables you to create a new object of the class
String with a value equal to the concatenated values of multiple Strings. Examine
the following code:

String aString = "OCJA"+"Cert"+"Exam";

Here’s another example:

int num = 10;
int val = 12;
String aStr = "OCJA";
String anotherStr = num + val + aStr;
System.out.println(anotherStr);

Why do you think the value of the variable anotherStr is 22OCJA and not 1012OCJA?
The + operator can be used with the primitive values, and the expression num + val +
aStr is evaluated from left to right. Here’s the sequence of steps executed by Java to
evaluate the expression:

■ Add operands num and val to get 22.
■ Concatenate 22 with OCJA to get 22OCJA.

If you wish to treat the numbers stored in variables num and val as String values, mod-
ify the expression as follows:

anotherStr = "" + num + val + aStr;

aString contains
OCJACertExam

Prints 22OCJA

Evaluates to
1012OCJA

236 CHAPTER 4 Selected classes from the Java API and arrays
When you use += to concatenate String values, ensure that the variable you’re using
has been initialized (and doesn’t contain null). Look at the following code:

String lang = "Java";
lang += " is everywhere!";
String initializedToNull = null;
initializedToNull += "Java";
System.out.println(initializedToNull);

4.1.5 Determining equality of Strings

The correct way to compare two String values for equality is to use the equals

method defined in the String class. This method returns a true value if the object
being compared to it isn’t null, is a String object, and represents the same sequence
of characters as the object to which it’s being compared.

EQUALS METHOD

The following listing shows the method definitions of the equals method defined in
class String in the Java API.

public boolean equals(Object anObject) {
 if (this == anObject) {
 return true;
 }
 if (anObject instanceof String) {
 String anotherString = (String)anObject;
 int n = count;
 if (n == anotherString.count) {
 char v1[] = value;
 char v2[] = anotherString.value;
 int i = offset;
 int j = anotherString.offset;

A practical tip on String concatenation
During my preparation for my Java Programmer certification, I learned how the output
changes in String concatenation when the order of values being concatenated is
changed. At work, it helped me to quickly debug a Java application that was logging
incorrect values to a log file. It didn’t take me long to discover that the offending line
of code was logToFile("Shipped:" + numReceived() + inTransit());. The
methods were returning correct values individually, but the return values of these
methods were not being added. They were being concatenated as String values,
resulting in the unexpected output.

One solution is to enclose the int addition within parentheses, as in logTo-
File("Shipped:"+ (numReceived() + inTransit()));. This code will log the text
"Shipped" with the sum of the numeric values returned by the methods num-
Received() and inTransit().

Listing 4.1 Method definition of the equals method from the class String

lang is assigned
“Java is everywhere”

Prints nullJava

Returns true if
the object being
compared to is
the same object

b Executes
statements in
if construct if
anObject is of
type String

c

Continues comparison if
the length of String values
being compared is equald

237Welcome to the world of the String class
 while (n-- != 0) {
 if (v1[i++] != v2[j++])
 return false;
 }
 return true;
 }
 }
 return false;
}

In listing 4.1, the equals method accepts a method parameter of type Object and
returns a boolean value. Let’s walk through the equals method defined by the class
String:

■ B compares the object reference variables. If the reference variables are the
same, they refer to the same object.

■ c compares the type of the method parameter to this object. If the method
parameter passed to this method is not of type String, g returns false.

■ d checks whether the lengths of the String values being compared are equal.
■ e compares the individual characters of the String values. It returns false if a

mismatch is found at any position. If no mismatch is found, f returns true.

COMPARING REFERENCE VARIABLES TO INSTANCE VALUES
Examine the following code:

String var1 = new String("Java");
String var2 = new String("Java");
System.out.println(var1.equals(var2));
System.out.println(var1 == var2);

The operator == compares the reference variables, that is, whether the variables refer
to the same object. Hence, var1 == var2 in the previous code prints false. Now exam-
ine the following code:

String var3 = "code";
String var4 = "code";
System.out.println(var3.equals(var4));
System.out.println(var3 == var4);

Even though comparing var3 and var4 using the operator == prints true, you should
never use this operator for comparing String values. The variables var3 and var4

refer to the same String object created and shared in the pool of String objects. (We
discussed the pool of String objects in section 4.1.1 earlier in this chapter.) The ==
operator won’t always return the value true, even if the two objects store the same
String values.

Compares individual String characters;
returns false if there’s a mismatch with
any individual String character

e

Returns true if all characters of String anObject
successfully matched with this objectf

Returns false if the object being compared
to is not of type String or the lengths of
the compared Strings don’t matchg

Prints true

Prints false

Prints true

Prints true

238 CHAPTER 4 Selected classes from the Java API and arrays
EXAM TIP The operator == compares whether the reference variables refer to
the same objects, and the method equals compares the String values for
equality. Always use the equals method to compare two Strings for equality.
Never use the == operator for this purpose.

You can use the operator != to compare the inequality of objects referred to by String

variables. It’s the inverse of the operator ==. Let’s compare the usage of the operator
!= with the operator == and the method equals():

String var1 = new String("Java");
String var2 = new String("Java");
System.out.println(var1.equals(var2));
System.out.println(var1 == var2);
System.out.println(var1 != var2);

The following example uses the operators != and == and the method equals to com-
pare String variables that refer to the same object in the String constant pool:

String var3 = "code";
String var4 = "code";
System.out.println(var3.equals(var4));
System.out.println(var3 == var4);
System.out.println(var3 != var4);

As you can see, in both of the previous examples the operator != returns the inverse
of the value returned by the operator ==.

EQUALITY OF VALUES RETURNED BY STRING METHODS

Do you think the String values returned by methods are stored in the String pool?
Will they return true when their variable references are compared using the == oper-
ator? Let’s find out:

String lang1 = "Java";
String lang2 = "JaScala";

String returnValue1 = lang1.substring(0,1);
String returnValue2 = lang2.substring(0,1);

System.out.println(returnValue1 == returnValue2);
System.out.println(returnValue1.equals(returnValue2));

In the preceding code, the call to lang1.substring() and lang2.subtring() will
return "Ja". But these string values aren’t stored in the String pool. This is because
these substrings are created using the new operator in String’s method substring

(and other String methods). This is confirmed by comparing their reference vari-
ables using the == operator, which returns false.

Prints true

Prints false

Prints true

Prints true

Prints true

Prints false

Outputs false

Outputs true

239Mutable strings: StringBuilder
EXAM TIP Watch out for the exam questions that test you on using the ==
operator with String values returned by methods of the class String. Because
these values are created using the new operator, they aren’t placed in the
String pool.

Because Strings are immutable, we also need a mutable sequence of characters that
can be manipulated. Let’s work with the other type of string on the OCA Java SE 8
Programmer I exam: StringBuilder.

4.2 Mutable strings: StringBuilder

The class StringBuilder is defined in the package java.lang, and it has a mutable
sequence of characters. You should use the class StringBuilder when you’re deal-
ing with larger strings or modifying the contents of a string often. Doing so will
improve the performance of your code. Unlike StringBuilder, the String class has
an immutable sequence of characters. Every time you modify a string that’s repre-
sented by the String class, your code creates new String objects instead of modify-
ing the existing one.

EXAM TIP You can expect questions on the need for the StringBuilder class
and its comparison with the String class.

Let’s work with the methods of the class StringBuilder. Because StringBuilder rep-
resents a mutable sequence of characters, the main operations on StringBuilder are
related to the modification of its value by adding another value at the end or at a par-
ticular position, deleting characters, or changing characters at a particular position.

4.2.1 The StringBuilder class is mutable

In contrast to the class String, the class StringBuilder uses a non–final char array
to store its value. Following is a partial definition of the class AbstractStringBuilder

(the superclass of the class StringBuilder). It includes the declaration of the vari-
ables value and count, which are used to store the value of StringBuilder and its
length, respectively (the relevant code is in bold):

abstract class AbstractStringBuilder implements Appendable, CharSequence {
 /**
 * The value is used for character storage.
 */
 char value[];
 /**
 * The count is the number of characters used.
 */
 int count;
//.. rest of the code
}

[9.1] Manipulate data using the StringBuilder class and its methods

240 CHAPTER 4 Selected classes from the Java API and arrays

Co
th
This information will come in handy when we discuss the methods of class String-

Builder in the following sections.

4.2.2 Creating StringBuilder objects

You can create objects of the class StringBuilder using multiple overloaded construc-
tors, as follows:

class CreateStringBuilderObjects {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder();
 StringBuilder sb2 = new StringBuilder(sb1);
 StringBuilder sb3 = new StringBuilder(50);
 StringBuilder sb4 = new StringBuilder("Shreya Gupta");
 }
}

B constructs a StringBuilder object with no characters in it and an initial capacity of
16 characters. c constructs a StringBuilder object that contains the same set of char-
acters as contained by the StringBuilder object passed to it. d constructs a String-

Builder object with no characters and an initial capacity of 50 characters. e
constructs a StringBuilder object with an initial value as contained by the String

object. Figure 4.13 illustrates StringBuilder object sb4 with the value Shreya Gupta.

When you create a StringBuilder object using its default constructor, the following
code executes behind the scenes to initialize the array value defined in the class
StringBuilder itself:

StringBuilder() {
 value = new char[16];
}

When you create a StringBuilder object by passing it a String, the following code
executes behind the scenes to initialize the array value:

public StringBuilder(String str) {
 value = new char[str.length() + 16];
 append(str);
}

No-argument
constructor

b

Constructor that accepts
a StringBuilder object

c

Constructor that accepts an int
value specifying initial capacity

of StringBuilder object d

nstructor
at accepts

a String

e

Characters of

StringBuilder

Position at which

each character is

stored

S h r e

0 1 2 3

y

4

a

5 6

G

7

u

8

p

9

t

10

a

11

Figure 4.13 The
StringBuilder object
with character values and
their corresponding
storage positions

Creates an array
of length 16

Creates an array of
length 16+ str.length

241Mutable strings: StringBuilder
The creation of objects for the class StringBuilder is the basis for the next Twist in
the Tale exercise. Your task in this exercise is to look up the Java API documentation
or the Java source code to answer the question. You can access the Java API documen-
tation in a couple of ways:

■ View it online at http://docs.oracle.com/javase/8/docs/api/.
■ Download it to your system from http://www.oracle.com/technetwork/java/

javase/documentation/jdk8-doc-downloads-2133158.html. Accept the license
agreement and click the link for jdk-8u66-docs-all.zip to download it. (These
links may change eventually as Oracle updates its website.)

The answer to the following Twist in the Tale exercise is given in the appendix.

Take a look at the Java API documentation or the Java source code files and answer
the following question:

 Which of the following options (there’s just one correct answer) correctly creates
an object of the class StringBuilder with a default capacity of 16 characters?

a StringBuilder name = StringBuilder.getInstance();
b StringBuilder name = StringBuilder.createInstance();
c StringBuilder name = StringBuilder.buildInstance();
d None of the above

4.2.3 Methods of class StringBuilder

You’ll be pleased to learn that many of the methods defined in the class String-

Builder work exactly like the versions in the class String—for example, methods
such as charAt, indexOf, substring, and length. We won’t discuss these again for the
class StringBuilder. In this section, we’ll discuss the other main methods of the class
StringBuilder: append, insert, and delete.

 Figure 4.14 shows the categorization of this class’s methods.

Twist in the Tale 4.2

StringBuilder methods

Query position of chars

substringindexOfcharAt deleteinsertappend setLengthtrimToSizelength

Modify StringBuilder Others

Figure 4.14 Categorization of StringBuilder methods

http://docs.oracle.com/javase/8/docs/api/
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html

242 CHAPTER 4 Selected classes from the Java API and arrays
APPEND()
The append method adds the specified value at the end of the existing value of a
StringBuilder object. Because you may want to add data from multiple data types to
a StringBuilder object, this method has been overloaded so that it can accept data of
any type.

 This method accepts all the primitives, String, char array, and Object, as method
parameters, as shown in the following example:

class AppendStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder();
 sb1.append(true);
 sb1.append(10);
 sb1.append('a');
 sb1.append(20.99);
 sb1.append("Hi");
 System.out.println(sb1);
 }
}

You can append a complete char array, StringBuilder, or String or its subset as follows:

StringBuilder sb1 = new StringBuilder();
char[] name = {'J', 'a', 'v', 'a', '8'};
sb1.append(name, 1, 3);
System.out.println(sb1);

Because the method append also accepts a method parameter of type Object, you can
pass it any object from the Java API or your own user-defined object:

class AppendStringBuilder2 {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder();
 sb1.append("Java");
 sb1.append(new Person("Oracle"));
 System.out.println(sb1);
 }
}
class Person {
 String name;
 Person(String str) { name = str; }
}

The output of the previous code is

JavaPerson@126b249

In this output, the hex value (126b249) that follows the @ sign may differ on your system.

Appends boolean

Appends int

Appends char

Appends double

Appends String
Prints
true10a20.99Hi

Starting with position 1
append 3 characters,
position 1 inclusive

Prints ava

Append String

Append object
of class Person

Doesn’t print
JavaOracle

243Mutable strings: StringBuilder
 When you append an object’s value to a StringBuilder, the method append calls
the static String.valueOf() method. The version taking an Object parameter returns
the four-letter string “null” if the parameter is null; otherwise, it calls its toString

method. If the toString method has been overridden by the class, then the method
append adds the String value returned by it to the target StringBuilder object. In
the absence of the overridden toString method, the toString method defined in the
class Object executes. For your information, the default implementation of the method
toString in the class Object returns the name of the class followed by the @ char and
unsigned hexadecimal representation of the hash code of the object (the value
returned by the object’s hashCode method).

EXAM TIP For classes that haven’t overridden the toString method, the
append method results in appending the output from the default imple-
mentation of method toString defined in the class Object (if the parame-
ter isn’t null).

It’s interesting to take a quick look at how the append method works for the class
StringBuilder. Following is a partial code listing of the method append that accepts a
boolean parameter (as explained in the comments):

public AbstractStringBuilder append(boolean b) {
 if (b) {
 int newCount = count + 4;
 if (newCount > value.length)
 expandCapacity(newCount);
 value[count++] = 't';
 value[count++] = 'r';
 value[count++] = 'u';
 value[count++] = 'e';
 } else {
 ...
 }
 return this;
}

B and c determine whether the array value can accommodate four additional char-
acters corresponding to the boolean literal value true. At c, the call to expand-
Capacity() increases the capacity of the array value (used to store the characters of a
StringBuilder object) if it isn’t big enough. d adds individual characters of the
boolean value true to the array value.

INSERT()
The insert method is as powerful as the append method. It also exists in multiple fla-
vors (read: overloaded methods) that accept any data type. The main difference
between the append and insert methods is that the insert method enables you to

Adds 4 (length of "true")
to count, which holds the
number of characters in
the StringBuilder

b

Checks if value array is long
enough and expands if requiredc

Adds the text "true",
letter by letter

d

Code to
append false

244 CHAPTER 4 Selected classes from the Java API and arrays
insert the requested data at a particular position, but the append method allows you to
add the requested data only at the end of the StringBuilder object:

class InsertStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("Bon");
 sb1.insert(2, 'r');
 System.out.println(sb1);
 }
}

Figure 4.15 illustrates the previous code.

As with String objects, the first character of StringBuilder is stored at position 0.
Hence, the previous code inserts the letter r at position 2, which is occupied by the
letter n. You can also insert a complete char array, StringBuffer, or String or its sub-
set, as follows:

StringBuilder sb1 = new StringBuilder("123");
char[] name = {'J', 'a', 'v', 'a'};
sb1.insert(1, name, 1, 3);
System.out.println(sb1);

Figure 4.16 illustrates the previous code.

Inserts r at
position 2

Prints Born

B o

10 2

B

0

o

1

r

2

Insert 'r' at

position 2

insert(2, 'r')

n n

3

Figure 4.15 Inserting a char using the
method insert in StringBuilder

Insert at sb1 position 1,
values ava from String name

Prints 1ava23

1

0

2

1

3

2

J

0

a

1

v

2

a

3

1

0

a

1

v

2

a

3

2

4

3

5

insert(1,

Insert 'a', 'v', 'a' at

position 1

)

sb1

Figure 4.16 Inserting a substring of String in StringBuilder

245Mutable strings: StringBuilder
EXAM TIP Take note of the start and end positions when inserting a value in
a StringBuilder. Multiple flavors of the insert method defined in String-
Builder may confuse you because they can be used to insert either single or
multiple characters.

DELETE() AND DELETECHARAT()
The method delete removes the characters in a substring of the specified String-

Builder. The method deleteCharAt removes the char at the specified position.
Here’s an example showing the method delete:

class DeleteStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("0123456");
 sb1.delete(2, 4);
 System.out.println(sb1);
 }
}

B removes characters at positions 2 and 3. The delete method doesn’t remove the
letter at position 4. Figure 4.17 illustrates the previous code.

The method deleteCharAt is simple. It removes a single character, as follows:

class DeleteStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("0123456");
 sb1.deleteCharAt(2);
 System.out.println(sb1);
 }
}

EXAM TIP Combinations of the deleteCharAt and insert methods can be
quite confusing.

Removes characters
at positions starting
from 2 to 4,
excluding 4

b

Prints 01456

2

2

1

1

0

0

3

3

4

4

4

2

1

1

0

0

5

3

6

4

5

5

6

6

Does not delete

character at

position 4

delete(2, 4)

Figure 4.17 The method delete(2,4) doesn’t delete the character
at position 4.

Deletes character
at position 2

Prints 013456

246 CHAPTER 4 Selected classes from the Java API and arrays
TRIM()
Unlike the class String, the class StringBuilder doesn’t define the method trim. An
attempt to use it with this class will prevent your code from compiling. The only rea-
son I’m describing a nonexistent method here is to ward off any confusion.

REVERSE()
As the name suggests, the reverse method reverses the sequence of characters of a
StringBuilder:

class ReverseStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("0123456");
 sb1.reverse();
 System.out.println(sb1);
 }
}

EXAM TIP You can’t use the method reverse to reverse a substring of String-
Builder.

REPLACE()
Unlike the replace method defined in the class String, the replace method in the
class StringBuilder replaces a sequence of characters, identified by their positions,
with another String, as in the following example:

class ReplaceStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("0123456");
 sb1.replace(2, 4, "ABCD");
 System.out.println(sb1);
 }
}

Figure 4.18 shows a comparison of the replace methods defined in the classes String

and StringBuilder.

Prints
6543210

Prints
01ABCD456

N

2

E

1

P

0

C

3

I

4

L

5 210 3 4

NEP A A L

5

N

2

E

1

P

0

C

3

I

4

L

5 210 3 4 5

replace("CI", "AA") replace(3, 5, "AA")

Search string "CI"
and replace with "AA"

Replace characters at

position 3,4 with "AA"

NEP A A L

Figure 4.18 Comparing the replace methods in String (left) and StringBuilder (right). The
method replace in String accepts the characters to be replaced. The method replace in
StringBuilder accepts a position to be replaced.

247Arrays
SUBSEQUENCE()
Apart from using the method substring, you can also use the method subSequence

to retrieve a subsequence of a StringBuilder object. This method returns objects of
type CharSequence:

class SubSequenceStringBuilder {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("0123456");
 System.out.println(sb1.subSequence(2, 4));
 System.out.println(sb1);
 }
}

The method subsequence doesn’t modify the existing value of a StringBuilder object.

4.2.4 A quick note on the class StringBuffer

Although the OCA Java SE 8 Programmer I exam objectives don’t mention the class
StringBuffer, you may see it in the list of (incorrect) answers in the OCA exam.

 The classes StringBuffer and StringBuilder offer the same functionality, with
one difference: the methods of the class StringBuffer are synchronized where neces-
sary, whereas the methods of the class StringBuilder aren’t. What does this mean?
When you work with the class StringBuffer, only one thread out of multiple threads
can execute your method. This arrangement prevents any inconsistencies in the val-
ues of the instance variables that are modified by these (synchronized) methods. But
it introduces additional overhead, so working with synchronized methods and the
StringBuffer class affects the performance of your code.

 The class StringBuilder offers the same functionality as offered by StringBuffer,
minus the additional feature of synchronized methods. Often your code won’t be
accessed by multiple threads, so it won’t need the overhead of thread synchronization.
If you need to access your code from multiple threads, use StringBuffer; otherwise
use StringBuilder.

4.3 Arrays

 In this section, I’ll cover declaration, allocation, and initialization of one-dimensional
and multidimensional arrays. You’ll learn about the differences between arrays of
primitive data types and arrays of objects.

Prints 23

Prints 0123456

[4.1] Declare, instantiate, initialize, and use a one-dimensional array

[4.2] Declare, instantiate, initialize, and use a multidimensional array

248 CHAPTER 4 Selected classes from the Java API and arrays
4.3.1 What is an array?

An array is an object that stores a collection of values. The fact that an array itself is an
object is often overlooked. I’ll reiterate: an array is an object itself; it stores references
to the data it stores. Arrays can store two types of data:

■ A collection of primitive data types
■ A collection of objects

An array of primitives stores a collection of values that constitute the primitive values
themselves. (With primitives, there are no objects to reference.) An array of objects
stores a collection of values, which are in fact heap-memory addresses or pointers.
The addresses point to (reference) the object instances that your array is said to store,
which means that object arrays store references (to objects) and primitive arrays store
primitive values.

 The members of an array are defined in contiguous (continuous) memory loca-
tions and hence offer improved access speed. (You should be able to quickly access all
the students of a class if they all can be found next to each other.)

 The following code creates an array of primitive data and an array of objects:

class CreateArray {
 public static void main(String args[]) {
 int intArray[] = new int[] {4, 8, 107};
 String objArray[] = new String[] {"Harry", "Shreya",
 "Paul", "Selvan"};
 }
}

I’ll discuss the details of creating arrays shortly. The previous example shows one of
the ways to create arrays. Figure 4.19 illustrates the arrays intArray and objArray.
Unlike intArray, objArray stores references to String objects.

NOTE Arrays are objects and refer to a collection of primitive data types or
other objects.

In Java, you can define one-dimensional and multidimensional arrays. A one-dimen-
sional array is an object that refers to a collection of scalar values. A two-dimensional
(or more) array is referred to as a multidimensional array. A two-dimensional array

Array of
primitive data

Array of
objects

4

8

107

intArray

Array of primitive data Array of objects

objArray String
objects

Harry

Shreya

Paul

Selvan
Figure 4.19 An array of int
primitive data type and another
of String objects

249Arrays
refers to a collection of objects in which each of the objects is a one-dimensional array.
Similarly, a three-dimensional array refers to a collection of two-dimensional arrays,
and so on. Figure 4.20 depicts a one-dimensional array and multidimensional arrays
(two-dimensional and three-dimensional).

Note that multidimensional arrays may or may not contain the same number of ele-
ments in each row or column, as shown in the two-dimensional array in figure 4.20.

 Creating an array involves three steps, as follows:

■ Declaring the array
■ Allocating the array
■ Initializing the array elements

You can create an array by executing the previous steps using separate lines of code or
you can combine these steps on the same line of code. Let’s start with the first
approach: completing each step on a separate line of code.

4.3.2 Array declaration

An array declaration includes the array type and array variable, as shown in figure 4.21.
The type of objects that an array can store depends on its type. An array type is fol-
lowed by one or more empty pairs of square brackets [].

To declare an array, specify its type, followed by the name of the array variable. Here’s
an example of declaring arrays of int and String values:

int intArray[];
String[] strArray;
int[] multiArray[];

Array element

One-dimensional array Two-dimensional array Three-dimensional array

Array element

Array element

Figure 4.20 One-dimensional and multidimensional (two- and three-dimensional) arrays

int[] anArray;

Type of array Variable name

Square brackets
Figure 4.21 Array declaration includes the array type
and array variable

One-dimensional
array Multidimensional

array

250 CHAPTER 4 Selected classes from the Java API and arrays
The number of bracket pairs indicates the depth of array nesting. Java doesn’t impose
any theoretical limit on the level of array nesting. The square brackets can follow the
array type or its name, as shown in figure 4.22.

NOTE In an array declaration, placing the square brackets next to the type
(as in int[] or int[][]) is preferred because it makes the code easier to read
by showing the array types in use.

The array declaration only creates a variable that refers to null, as shown in figure 4.23.

Because no elements of an array are created when it’s declared, it’s invalid to define
the size of an array with its declaration. The following code won’t compile:

int intArray[2];
String[5] strArray;
int[2] multiArray[3];

An array type can be any of the following:

■ Primitive data type
■ Interface
■ Abstract class
■ Concrete class

We declared an array of an int primitive type and a concrete class String previously. I’ll
discuss some complex examples with abstract classes and interfaces in section 4.3.7.

NOTE Arrays can be of any data type other than null.

4.3.3 Array allocation

As the name suggests, array allocation will allocate memory for the elements of an
array. When you allocate memory for an array, you should specify its dimensions, such

int[] multiArr[];

int[][] multiArr;

int[] anArr;

int anArr[];

int multiArr[][];

Is same as

is same as

Is same as

Figure 4.22 Square brackets can follow either the variable name or its type. In the case of
multidimensional arrays, it can follow both of them.

null

anArray
Figure 4.23 Array declaration creates a variable
that refers to null.

Array size can’t be defined with the array
declaration. This code won’t compile.

251Arrays
as the number of elements the array should store. Note that the size of an array can’t
expand or reduce once it is allocated. Here are a few examples:

int intArray[];
String[] strArray;
int[] multiArr[];
intArray = new int[2];
strArray = new String[4];
multiArr = new int[2][3];

Because an array is an object, it’s allocated using the keyword new, followed by the type
of value that it stores, and then its size. The code won’t compile if you don’t specify
the size of the array or if you place the array size on the left of the = sign, as follows:

intArray = new int[];
intArray[2] = new int;

The size of the array must evaluate to an int value. You can’t create an array with its
size specified as a floating-point number. The following line of code won’t compile:

intArray = new int[2.4];

Java accepts an expression to specify the size of an array, as long as it evaluates to an
int value. The following are valid array allocations:

strArray = new String[2*5];
int x = 10, y = 4;
strArray = new String[x*y];
strArray = new String[Math.max(2, 3)];

Let’s allocate the multidimensional array multiArr, as follows:

int[] multiArr[];
multiArr = new int[2][3];

You can also allocate the multidimensional array multiArr by defining size in only the
first square brackets:

multiArr = new int[2][];

Array
declaration

Note use of keyword new
to allocate an array

Won’t compile; array
size missing

Won’t compile; array
size placed incorrectly

Won’t compile; can’t define size of
an array as a floating-point number

2*5 evaluates to
an integer value.

This is acceptable; expression x*y
evaluates to an integer value.

This is acceptable; Math.max(2,3)
returns an int value.

Array declaration
OK to define size in
both square brackets

OK to define the size in only
the first square bracket

252 CHAPTER 4 Selected classes from the Java API and arrays
It’s interesting to note the difference between what happens when the multidimen-
sional array multiArr is allocated by defining sizes for a single dimension or for both
of its dimensions. This difference is shown in figure 4.24.

You can’t allocate a multidimensional array as follows:

int[] multiArr[];
multiArr = new int[];
multiArr = new int[][3];

B won’t compile because there’s a mismatch in the number of square brackets on
both sides of the assignment operator (=). The compiler required [][] on the right
side of the assignment operator, but it finds only []. c won’t compile because you
can’t allocate a multidimensional array without including a size in the first square
bracket and defining a size in the second square bracket.

 Once allocated, the array elements store their default values. For arrays that store
objects, all the allocated array elements store null. For arrays that store primitive val-
ues, the default values depend on the exact data types stored by them.

EXAM TIP Once allocated, all the array elements store their default values.
Elements in an array that store objects default to null. Elements of an array
that store primitive data types store 0 for integer types (byte, short, int,
long); 0.0 for decimal types (float and double); false for boolean; or
\u0000 for char data.

4.3.4 Array initialization

You can initialize an array as follows:

int intArray[];
intArray = new int[2];
for (int i=0; i<intArray.length; i++) {
 intArray[i] = i + 5;
}

multiArr

multiArr = new int[2][3] multiArr = new int[2][]

null

nullmultiArr

Figure 4.24 The difference in array allocation of a two-dimensional
array when it’s allocated using values for only one of its dimensions
and for both of its dimensions

Multidimensional
array declaration

Nonmatching
square bracketsbSize in first square

bracket missingc

Array declaration

Array allocation

Initializes array
using a for loop

b

253Arrays
intArray[0] = 10;
intArray[1] = 1870;

In the preceding code, B uses a for loop to initialize the array intArray with the
required values. c initializes the individual array elements without using a for

loop. Note that all array objects use their public immutable field length to access
their array size.

 Similarly, a String array can be declared, allocated, and initialized as follows:

String[] strArray;
strArray = new String[4];
for (int i=0; i<strArray.length; i++) {
 strArray[i] = new String("Hello" + i);
}
strArray[1] = "Summer";
strArray[3] = "Winter";
strArray[0] = "Autumn";
strArray[2] = "Spring";

When you initialize a two-dimensional array, you can use nested for loops to initialize
its array elements. Also notice that to access an element in a two-dimensional array,
you should use two array position values, as follows:

int[] multiArr[];
multiArr = new int[2][3];
for (int i=0; i<multiArr.length; i++) {
 for (int j=0; j<multiArr[i].length; j++) {
 multiArr[i][j] = i + j;
 }
}
multiArr[0][0] = 10;
multiArr[1][2] = 1210;
multiArr[0][1] = 110;
multiArr[0][2] = 1087;

What happens when you try to access a nonexistent array index position? The follow-
ing code creates an array of size 2 but tries to access its array element at index 3:

int intArray[] = new int[2];
System.out.println(intArray[3]);

The previous code will throw a runtime exception, ArrayIndexOutOfBoundsException.
For an array of size 2, the only valid index positions are 0 and 1. All the rest of the
array index positions will throw the exception ArrayIndexOutOfBoundsException

at runtime.

Reinitializes individual
array elements

c

Array declaration

Array allocation

Initializes array
using a for loop

Initializes array without
using a for loop

Array declaration

Array allocation

Initializes array
using a for loop

Initializes array without
using a for loop

Length of
intArray is 2 3 isn’t a valid index

position for intArray.

254 CHAPTER 4 Selected classes from the Java API and arrays
NOTE Don’t worry if you can’t immediately absorb all the information related
to exceptions here. Exceptions are covered in detail in chapter 7.

The Java compiler doesn’t check the range of the index positions at which you try to
access an array element. You may be surprised to learn that the following line of code
will compile successfully even though it uses a negative array index value:

int intArray[] = new int[2];
System.out.println(intArray[-10]);

Although the previous code compiles successfully, it will throw the exception Array-

IndexOutOfBoundsException at runtime. Code to access an array element will fail to
compile if you don’t pass it a char, byte, short, or int data type (wrapper classes are
not on this exam, and I don’t include them in this discussion):

int intArray[] = new int[2];
System.out.println(intArray[1.2]);

EXAM TIP Code to access an array index will throw a runtime exception if
you pass it an invalid array index value. Code to access an array index will fail
to compile if you don’t use a char, byte, short, or int.

Also, you can’t remove array positions. For an array of objects, you can set a position
to the value null, but it doesn’t remove the array position:

String[] strArray = new String[] {"Autumn", "Summer",
 "Spring", "Winter"};
strArray[2] = null;
for (String val : strArray)
 System.out.println(val);

B creates an array of String and initializes it with four String values. c sets the
value at array index 2 to null. d iterates over all the array elements. As shown in the fol-
lowing output, four (not three) values are printed:

Autumn
Summer
null
Winter

4.3.5 Combining array declaration, allocation, and initialization

You can combine all the previously mentioned steps of array declaration, allocation,
and initialization into one step, as follows:

int intArray[] = {0, 1};
String[] strArray = {"Summer", "Winter"};
int multiArray[][] = { {0, 1}, {3, 4, 5} };

Length of
intArray is 2 Will compile successfully even

though it tries to access array
element at negative index

Won’t compile; can’t specify array
index using floating-point number

Define an array
of String objects

b

Can you remove an
array position like this?c

Outputs
four values

d

255Arrays
Notice that the previous code

■ Doesn’t use the keyword new to initialize an array
■ Doesn’t specify the size of the array
■ Uses a single pair of braces to define values for a one-dimensional array and

multiple pairs of braces to define a multidimensional array

All the previous steps of array declaration, allocation, and initialization can be com-
bined in the following way, as well:

int intArray2[] = new int[]{0, 1};
String[] strArray2 = new String[]{"Summer", "Winter"};
int multiArray2[][] = new int[][]{ {0, 1}, {3, 4, 5}};

Unlike the first approach, the preceding code uses the keyword new to initialize an array.
 If you try to specify the size of an array with the preceding approach, the code

won’t compile. Here are a few examples:

int intArray2[] = new int[2]{0, 1};
String[] strArray2 = new String[2]{"Summer", "Winter"};
int multiArray2[][] = new int[2][]{ {0, 1}, {3, 4, 5}};

EXAM TIP When you combine an array declaration, allocation, and initializa-
tion in a single step, you can’t specify the size of the array. The size of the
array is calculated by the number of values that are assigned to the array.

Another important point to note is that if you declare and initialize an array using two
separate lines of code, you’ll use the keyword new to initialize the values. The follow-
ing lines of code are correct:

int intArray[];
intArray = new int[]{0, 1};

But you can’t miss the keyword new and initialize your array as follows:

int intArray[];
intArray = {0, 1};

4.3.6 Asymmetrical multidimensional arrays

At the beginning of this section, I mentioned that a multidimensional array can be
asymmetrical. An array can define a different number of columns for each of its rows.

 The following example is an asymmetrical two-dimensional array:

String multiStrArr[][] = new String[][]{
 {"A", "B"},
 null,
 {"Jan", "Feb", "Mar"},
 };

256 CHAPTER 4 Selected classes from the Java API and arrays
Figure 4.25 shows this asymmetrical array.

As you might have noticed, multiStrArr[1] refers to a null value. An attempt to
access any element of this array, such as multiStrArr[1][0], will throw an exception.
This brings us to the next Twist in the Tale exercise (answers are in the appendix).

Modify some of the code used in the previous example as follows:

Line1> String multiStrArr[][] = new String[][]{
Line2> {"A", "B"},
Line3> null,
Line4> {"Jan", "Feb", null},
Line5> };

Which of the following individual options are true for the previous code?

a Code on line 4 is the same as {"Jan", "Feb", null, null},.
b No value is stored at multiStrArr[2][2].
c No value is stored at multiStrArr[1][1].
d Array multiStrArr is asymmetric.

4.3.7 Arrays of type interface, abstract class, and class Object

In the section on array declaration, I mentioned that the type of an array can also be
an interface or an abstract class. What values do elements of these arrays store? Let’s
look at some examples.

INTERFACE TYPE

If the type of an array is an interface, its elements are either null or objects that
implement the relevant interface type. For example, for the interface MyInterface,
the array interfaceArray can store references to objects of either the class MyClass1

or MyClass2:

interface MyInterface {}
class MyClass1 implements MyInterface {}

Twist in the Tale 4.3

multiStrArr
null

0

1

2

0

1

0

1

2

A

B

Jan

Feb

Mar Figure 4.25 An asymmetrical array

257Arrays
class MyClass2 implements MyInterface {}
class Test {
MyInterface[] interfaceArray = new MyInterface[]
 {
 new MyClass1(),
 null,
 new MyClass2()
 };
}

ABSTRACT CLASS TYPE

If the type of an array is an abstract class, its elements are either null or objects of
concrete classes that extend the relevant abstract class:

abstract class Vehicle{}
class Car extends Vehicle {}
class Bus extends Vehicle {}
class Test {
 Vehicle[] vehicleArray = { new Car(),
 new Bus(),
 null};
}

Next, I’ll discuss a special case in which the type of an array is Object.

OBJECT

Because all classes extend the class java.lang.Object, elements of an array whose
type is java.lang.Object can refer to any object. Here’s an example:

interface MyInterface {}
class MyClass1 implements MyInterface {}
abstract class Vehicle{}
class Car extends Vehicle {}
class Test {
Object[] objArray = new Object[] {
 new MyClass1(),
 null,
 new Car(),
 new java.util.Date(),
 new String("name"),
 new Integer [7]
 };
 }

B is valid code. Because an array is an object, the element of the array of java.lang
.Object can refer to another array. Figure 4.26 illustrates the previously created array,
objArray.

null is a valid
element.

null is a valid
element.

Array element of type Object
can refer to another arrayb

258 CHAPTER 4 Selected classes from the Java API and arrays
4.3.8 Members of an array

Array objects have the following public members:

■ length—The public variable length stores the number of elements of the array.
■ clone()—This method overrides the method clone defined in the class Object

but doesn’t throw checked exceptions. The return type of this method is the
same as the array’s type. For example, for an array of type Type[], this method
returns Type[].

■ Inherited methods—Methods inherited from the class Object, except the method
clone.

As mentioned in the earlier section on the String class, a String uses the method
length() to retrieve its length. With an array, you can use the array’s variable length
to determine the number of the array’s elements. In the exam, you may be tricked by
code that tries to access the length of a String using the variable length. Note the cor-
rect combination of class and member used to access its length:

■ String—Retrieve length using the method length()
■ Array—Determine element count using the variable length

I have an interesting way to remember this rule. As opposed to an array, you’ll invoke
a lot of methods on String objects. So you use the method length() to retrieve the
length of String and the variable length to retrieve the length of an array.

4.4 ArrayList

In this section, I’ll cover how to use ArrayList, its commonly used methods, and the
advantages it offers over an array.

 The OCA Java SE 8 Programmer I exam covers only one class from the Java Collec-
tion API: ArrayList. The rest of the classes from the Java Collection API are covered
in the OCP Java SE 8 Programmer II exam (exam number 1Z0-809). One of the reasons

0

1

2

3

4

5

objArray

Object of Class1

null

null
null
null
null

null
null

null

Object of Car

Object of Date

Object of String

An array of Integer

2050-5-10

John

Figure 4.26 An array of class Object

[9.4] Declare and use an ArrayList of a given type

259ArrayList
to include this class in the Java Associate exam could be how frequently this class is
used by all Java programmers.

ArrayList is one of the most widely used classes from the Collections framework.
It offers the best combination of features offered by an array and the List data struc-
ture. The most commonly used operations with a list are add items to a list, modify items
in a list, delete items from a list, and iterate over the items.

 One frequently asked question by Java developers is, “Why should I bother with an
ArrayList when I can already store objects of the same type in an array?” The answer
lies in the ease of use of an ArrayList. This is an important question, and this exam
contains explicit questions on the practical reasons for using an ArrayList.

 You can compare an ArrayList with a resizable array. As you know, once it’s created,
you can’t increase or decrease the size of an array. On the other hand, an ArrayList

automatically increases and decreases in size as elements are added to or removed from
it. Also, unlike arrays, you don’t need to specify an initial size to create an ArrayList.

 Let’s compare an ArrayList and an array with real-world objects. Just as a balloon
can increase and decrease in size when it’s inflated or deflated, an ArrayList can
increase or decrease in size as values are added to it or removed from it. One compar-
ison is a cricket ball, because it has a predefined size. Once created, like an array, it
can’t increase or decrease in size.

 Here are a few more important properties of an ArrayList:

■ It implements the interface List.
■ It allows null values to be added to it.
■ It implements all list operations (add, modify, and delete values).
■ It allows duplicate values to be added to it.
■ It maintains its insertion order.
■ You can use either Iterator or ListIterator to iterate over the items of an

ArrayList.
■ It supports generics, making it type safe. (You have to declare the type of the

elements that should be added to an ArrayList with its declaration.)

4.4.1 Creating an ArrayList

The following example shows you how to create an ArrayList:

import java.util.ArrayList;
public class CreateArrayList {
 public static void main(String args[]) {
 ArrayList<String> myArrList = new ArrayList<String>();
 }
}

Package java.util isn’t implicitly imported into your class, which means that B
imports the class ArrayList in the class CreateArrayList defined previously. To create

Import
java.util.ArrayList

b

Declare an
ArrayList object c

260 CHAPTER 4 Selected classes from the Java API and arrays
an ArrayList, you need to inform Java about the type of the objects that you want to
store in this collection of objects. c declares an ArrayList called myArrList, which
can store String objects specified by the name of the class String between the angle
brackets (<>). Note that the name String appears twice in the code at c, once on the
left side of the equal sign and once on the right. Do you think the second one seems
redundant? Congratulations, Oracle agrees with you. Starting with Java version 7,
you can omit the object type on the right side of the equal sign and create an Array-

List as follows:

ArrayList<String> myArrList = new ArrayList<>();

Many developers still work with Java SE versions prior to version 7, so you’re likely to
see some developers still using the older way of creating an ArrayList.

 Take a look at what happens behind the scenes (in the Java source code) when you
execute the previous statement to create an ArrayList. Because you didn’t pass any
arguments to the constructor of class ArrayList, its no-argument constructor will exe-
cute. Examine the definition of the following no-argument constructor defined in the
class ArrayList.java:

/**
 * Constructs an empty list with an initial capacity of ten.
 */
public ArrayList() {
 this(10);
}

Because you can use an ArrayList to store any type of Object, ArrayList defines an
instance variable elementData of type Object[] to store all its individual elements.
Following is a partial code listing from class ArrayList:

/**
 * The array buffer into which the elements of the ArrayList are stored.
 * The capacity of the ArrayList is the length of this array buffer.
 */
private transient Object[] elementData;

Figure 4.27 illustrates the variable elementData shown within an object of ArrayList.

Missing object type on
right of = works in Java
version 7 and above

Object of ArrayList

Object[] elementData;

I am an array and I store

data for ArrayList

Figure 4.27 Variable elementData shown
within an object of ArrayList

261ArrayList
Here’s the definition of the constructor from the class ArrayList (ArrayList.java),
which initializes the previously defined instance variable, elementData:

/**
 * Constructs an empty list with the specified initial capacity.
 *
 * @param initialCapacity the initial capacity of the list
 * @exception IllegalArgumentException if the specified initial capacity
 * is negative
 */
public ArrayList(int initialCapacity) {
 super();
 if (initialCapacity < 0)
 throw new IllegalArgumentException("Illegal Capacity: "+
 initialCapacity);
 this.elementData = new Object[initialCapacity];
}

Wait a minute. Did you notice that an ArrayList uses an array to store its individual
elements? Does that make you wonder why on earth you would need another class if it
uses a type (array, to be precise) that you already know how to work with? The simple
answer is that you wouldn’t want to reinvent the wheel.

 For an example, answer this question: to decode an image, which of the following
options would you prefer?

■ Creating your own class using characters to decode the image
■ Using an existing class that offers the same functionality

Obviously, it makes sense to go with the second option. If you use an existing class that
offers the same functionality, you get more benefits with less work. The same logic
applies to ArrayList. It offers you all the benefits of using an array with none of the
disadvantages. It looks and behaves like an expandable array that’s modifiable.

NOTE An ArrayList uses an array to store its elements. It provides you with
the functionality of a dynamic array.

I’ll cover how to add, modify, delete, and access the elements of an ArrayList in the
following sections. Let’s start with adding elements to an ArrayList.

4.4.2 Adding elements to an ArrayList
Let’s begin by adding String objects to an ArrayList, as follows:

import java.util.ArrayList;
public class AddToArrayList {
 public static void main(String args[]) {
 ArrayList<String> list = new ArrayList<>();
 list.add("one");
 list.add("two");
 list.add("four");
 list.add(2, "three");
 }
 }

Add element
at the end

b

Add element at
specified positionc

262 CHAPTER 4 Selected classes from the Java API and arrays
You can add a value to an ArrayList either at its end or at a specified position. B
adds elements at the end of list. c adds an element to list at position 2. Please
note that the first element of an ArrayList is stored at position 0. Hence, at c the
String literal value "three" will be inserted at position 2, which was occupied by the
literal value "four". When a value is added to a place that’s already occupied by
another element, the values shift by a place to accommodate the newly added value.
In this case, the literal value "four" shifted to position 3 to make way for the literal
value "three" (see figure 4.28).

Let’s see what happens behind the scenes in an ArrayList when you add an element
to it. Here’s the definition of the method add from the class ArrayList:

/**
 * Appends the specified element to the end of this list.
 *
 * @param e element to be appended to this list
 * @return <tt>true</tt> (as specified by {@link Collection#add})
 */
public boolean add(E e) {
 ensureCapacity(size + 1); // Create another array with
 // the increased capacity
 // and copy existing elements to it.

list.add("one");

"three" is not added to end of

ArrayList. It is added to

position 2.

list.add("two");

list.add("four");

list.add(2, "three");

list

0

list

list

list

elementData one

0
elementData one

1
two

0
elementData one

1
two

2
four

0
elementData one

1
two

2
three

3
four

Figure 4.28 Code that adds elements to the end of an ArrayList and at a specified position

263ArrayList
 elementData[size++] = e; // Store the newly added variable
 // reference at the
 // end of the list.
 return true;
}

When you add an element to the end of the list, the ArrayList first checks whether
its instance variable elementData has an empty slot at the end. If there’s an empty
slot at its end, it stores the element at the first available empty slot. If no empty slots
exist, the method ensureCapacity creates another array with a higher capacity and
copies the existing values to this newly created array. It then copies the newly added
value at the first available empty slot in the array.

 When you add an element at a particular position, an ArrayList creates a new
array (only if there’s not enough room left) and inserts all its elements at positions
other than the position you specified. If there are any subsequent elements to the
right of the position that you specified, it shifts them by one position. Then it adds
the new element at the requested position.

PRACTICAL TIP Understanding how and why a class works in a particular
manner will take you a long way in regard to both the certification exam and
your career. This understanding should help you retain the information for a
longer time and help you answer questions in the certification exam that are
designed to verify your practical knowledge of using this class. Finally, the
internal workings of a class will enable you to make informed decisions on
using a particular class at your workplace and writing efficient code.

4.4.3 Accessing elements of an ArrayList

Before we modify or delete the elements of an ArrayList, let’s see how to access
them. To access the elements of an ArrayList, you can use get(), an enhanced for

loop, Iterator, or ListIterator.
 The following code accesses and prints all the elements of an ArrayList using the

enhanced for loop (code to access elements is in bold):

import java.util.ArrayList;
public class AccessArrayList {
 public static void main(String args[]) {
 ArrayList<String> myArrList = new ArrayList<>();
 myArrList.add("One");
 myArrList.add("Two");
 myArrList.add("Four");
 myArrList.add(2, "Three");
 for (String element : myArrList) {
 System.out.println(element);
 }
 }
}

Code to access
ArrayList elements

b

264 CHAPTER 4 Selected classes from the Java API and arrays

t()

ore
xist
The output of the previous code is as follows:

One
Two
Three
Four

B defines the enhanced for loop to access all the elements of the myArrList.
 Let’s look at how to use a ListIterator to loop through all the values of an

ArrayList:

import java.util.ArrayList;
import java.util.ListIterator;
public class AccessArrayListUsingListIterator {
 public static void main(String args[]) {
 ArrayList<String> myArrList = new ArrayList<String>();
 myArrList.add("One");
 myArrList.add("Two");
 myArrList.add("Four");
 myArrList.add(2, "Three");
 ListIterator<String> iterator = myArrList.listIterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

B gets the iterator associated with ArrayList myArrList. c calls the method has-

Next on iterator to check whether more elements of myArrList exist. The method
hasNext returns a boolean true value if more of its elements exist and false other-
wise. d calls the method next on iterator to get the next item from myArrList.

 The previous code prints out the same results as the code that preceded it, the
code that used an enhanced for loop to access ArrayList’s elements. A ListIterator

doesn’t contain any reference to the current element of an ArrayList. ListIterator

provides you with a method (hasNext) to check whether more elements exist for an
ArrayList. If true, you can extract its next element using the method next().

 Note that an ArrayList preserves the insertion order of its elements. ListItera-

tor and the enhanced for loop will return to you the elements in the order in which
you added them.

EXAM TIP An ArrayList preserves the order of insertion of its elements.
Iterator, ListIterator, and the enhanced for loop will return the ele-
ments in the order in which they were added to the ArrayList. An iterator
(Iterator or ListIterator) lets you remove elements as you iterate an
ArrayList. It’s not possible to remove elements from an ArrayList while
iterating it using a for loop.

Get the
iterator

b

Use hasNex
to check
whether m
elements ec

Call next() to get
the next item
from iteratord

265ArrayList
4.4.4 Modifying the elements of an ArrayList

You can modify an ArrayList by either replacing an existing element in the Array-

List or modifying all of its existing values. The following code uses the set method to
replace an element in an ArrayList:

import java.util.ArrayList;
public class ReplaceElementInArrayList {
 public static void main(String args[]) {
 ArrayList<String> myArrList = new ArrayList<String>();
 myArrList.add("One");
 myArrList.add("Two");
 myArrList.add("Three");
 myArrList.set(1, "One and Half");
 for (String element:myArrList)
 System.out.println(element);
 }
}

The output of the previous code is as follows:

One
One and Half
Three

You can also modify the existing values of an ArrayList by accessing its individual
elements. Because Strings are immutable, let’s try this with StringBuilder. Here’s
the code:

import java.util.ArrayList;
public class ModifyArrayListWithStringBuilder {
 public static void main(String args[]) {
 ArrayList<StringBuilder> myArrList =
 new ArrayList<StringBuilder>();
 myArrList.add(new StringBuilder("One"));
 myArrList.add(new StringBuilder("Two"));
 myArrList.add(new StringBuilder("Three"));
 for (StringBuilder element : myArrList)
 element.append(element.length());
 for (StringBuilder element : myArrList)
 System.out.println(element);
 }
}

The output of this code is as follows:

One3
Two3
Three5

B accesses all the elements of myArrList and modifies the element value by appending
its length to it. The modified value is printed by accessing myArrList elements again.

Replace ArrayList element
at position 1 ("Two") with
"One and Half"

Access ArrayList elements
and modify them

b

266 CHAPTER 4 Selected classes from the Java API and arrays
4.4.5 Deleting the elements of an ArrayList

ArrayList defines two methods to remove its elements, as follows:

■ remove(int index)—This method removes the element at the specified posi-
tion in this list.

■ remove(Object o)—This method removes the first occurrence of the specified
element from this list, if it’s present.

Let’s take a look at some code that uses these removal methods:

import java.util.ArrayList;
public class DeleteElementsFromArrayList {
 public static void main(String args[]) {
 ArrayList<StringBuilder> myArrList = new ArrayList<>();
 StringBuilder sb1 = new StringBuilder("One");
 StringBuilder sb2 = new StringBuilder("Two");
 StringBuilder sb3 = new StringBuilder("Three");
 StringBuilder sb4 = new StringBuilder("Four");
 myArrList.add(sb1);
 myArrList.add(sb2);
 myArrList.add(sb3);
 myArrList.add(sb4);
 myArrList.remove(1);
 for (StringBuilder element:myArrList)
 System.out.println(element);
 myArrList.remove(sb3);
 myArrList.remove(new StringBuilder("Four"));
 System.out.println();
 for (StringBuilder element : myArrList)
 System.out.println(element);
 }
}

The output of the previous code is as follows:

One
Three
Four
One
Four

B tries to remove the StringBuilder with the value "Four" from myArrList. The
removal of the specified element fails because of the manner in which the object
references are compared for equality. Objects are compared for equality using
their equals() method, which isn’t overridden by the class StringBuilder. So two
StringBuilder objects are equal if their object references (the variables that store
them) point to the same object. You can always override the equals method in your
own class to change this default behavior. The following is an example using the class
MyPerson:

import java.util.ArrayList;
class MyPerson {

Removes element
at position 1

Prints One,
Three, and Four

Removes
Three from list

Doesn’t
remove

Four

b

Prints One
and Four

267ArrayList
 String name;
 MyPerson(String name) { this.name = name; }
 @Override
 public boolean equals(Object obj) {
 if (obj instanceof MyPerson) {
 MyPerson p = (MyPerson)obj;
 boolean isEqual = p.name.equals(this.name);
 return isEqual;
 }
 else
 return false;
 }
}
public class DeleteElementsFromArrayList2 {
 public static void main(String args[]) {
 ArrayList<MyPerson> myArrList = new ArrayList<MyPerson>();
 MyPerson p1 = new MyPerson("Shreya");
 MyPerson p2 = new MyPerson("Paul");
 MyPerson p3 = new MyPerson("Harry");
 myArrList.add(p1);
 myArrList.add(p2);
 myArrList.add(p3);
 myArrList.remove(new MyPerson("Paul"));
 for (MyPerson element:myArrList)
 System.out.println(element.name);
 }
}

At B, the method equals in the class MyPerson overrides the method equals in the
class Object. It returns false if a null value is passed to this method. It returns
true if an object of MyPerson is passed to it with a matching value for its instance
variable name.

 At C, the method remove removes the element with the name Paul from myArr-

List. As mentioned earlier, the method remove compares the objects for equality
before removing it from ArrayList by calling the method equals.

 When elements of an ArrayList are removed, the remaining elements are rear-
ranged at their correct positions. This change is required to retrieve all the remaining
elements at their correct new positions.

4.4.6 Other methods of ArrayList

Let’s briefly discuss the other important methods defined in ArrayList.

ADDING MULTIPLE ELEMENTS TO AN ARRAYLIST

You can add multiple elements to an ArrayList from another ArrayList or any other
class that’s a subclass of Collection by using the following overloaded versions of
method addAll:

■ addAll(Collection<? extends E> c)

■ addAll(int index, Collection<? extends E> c)

Method
equals

b
null and objects of
type other than
MyPerson can’t be
equal to this object.

Cast obj to
MyPerson Compare name of

method parameter
to that of this
object’s name

Removes
Paul

c

Prints Shreya
and Harry

268 CHAPTER 4 Selected classes from the Java API and arrays
The method addAll(Collection<? extends E> c) appends all the elements in the
specified collection to the end of this list in the order in which they’re returned by
the specified collection’s Iterator. If you aren’t familiar with generics, and the parame-
ters of this method look scary to you, don’t worry—other classes from the Collection
API aren’t on this exam.

 Method addAll(int index, Collection<? extends E> c) inserts all the elements
in the specified collection into this list, starting at the specified position.

 In the following code example, all elements of ArrayList yourArrList are
inserted into ArrayList myArrList, starting at position 1:

ArrayList<String> myArrList = new ArrayList<String>();
myArrList.add("One");
myArrList.add("Two");
ArrayList<String> yourArrList = new ArrayList<String>();
yourArrList.add("Three");
yourArrList.add("Four");
myArrList.addAll(1, yourArrList);
for (String val : myArrList)
 System.out.println(val);

The output of the previous code is as follows:

One
Three
Four
Two

The elements of yourArrList aren’t removed from it. The objects that are stored in
yourArrList can now be referred to from myArrList.

 What happens if you modify the common object references in these lists, myArrList

and yourArrList? We have two cases here: in the first one, you reassign the object ref-
erence using either of the lists. In this case, the value in the second list will remain
unchanged. In the second case, you modify the internals of any of the common list ele-
ments—in this case, the change will be reflected in both of the lists.

EXAM TIP This is also one of the favorite topics of the exam authors. In the
exam, you’re likely to encounter a question that adds the same object refer-
ence to multiple lists and then tests you on your understanding of the state of
the same object and reference variable in all the lists. If you have any questions
on this issue, please refer to the section on reference variables (section 2.3).

It’s time for our next Twist in the Tale exercise. Let’s modify some of the code that
we’ve used in our previous examples and see how it affects the output (answers in the
appendix).

Add elements of
yourArrList to
myArrList

269ArrayList
What is the output of the following code?

ArrayList<String> myArrList = new ArrayList<String>();
String one = "One";
String two = new String("Two");
myArrList.add(one);
myArrList.add(two);
ArrayList<String> yourArrList = myArrList;
one.replace("O", "B");
for (String val : myArrList)
 System.out.print(val + ":");
for (String val : yourArrList)
 System.out.print(val + ":");

a One:Two:One:Two:

b Bne:Two:Bne:Two:

c One:Two:Bne:Two:

d Bne:Two:One:Two:

CLEARING ARRAYLIST ELEMENTS

You can remove all the ArrayList elements by calling clear on it. Here’s an example:

ArrayList<String> myArrList = new ArrayList<String>();
myArrList.add("One");
myArrList.add("Two");
myArrList.clear();
for (String val:myArrList)
 System.out.println(val);

The previous code won’t print out anything because there are no more elements in
myArrList.

ACCESSING INDIVIDUAL ARRAYLIST ELEMENTS

In this section, we’ll cover the following methods for accessing elements of an
ArrayList:

■ get(int index)—This method returns the element at the specified position in
this list.

■ size()—This method returns the number of elements in this list.
■ contains(Object o)—This method returns true if this list contains the speci-

fied element.
■ indexOf(Object o)—This method returns the index of the first occurrence of

the specified element in this list, or –1 if this list doesn’t contain the element.
■ lastIndexOf(Object o)—This method returns the index of the last occurrence

of the specified element in this list, or –1 if this list doesn’t contain the element.

Twist in the Tale 4.4

270 CHAPTER 4 Selected classes from the Java API and arrays

t

ts
e

s 1
You can retrieve an object at a particular position in ArrayList and determine its size
as follows:

ArrayList<String> myArrList = new ArrayList<String>();
myArrList.add("One");
myArrList.add("Two");
String valFromList = myArrList.get(1);
System.out.println(valFromList);
System.out.println(myArrList.size());

Behind the scenes, the method get will check whether the requested position exists in
the ArrayList by comparing it with the array’s size. If the requested element isn’t
within the range, the get method throws a java.lang.IndexOutOfBoundsException

error at runtime.
 All the remaining three methods—contains, indexOf, and lastIndexOf—require

you to have an unambiguous and strong understanding of how to determine the
equality of objects. ArrayList stores objects, and these three methods will compare
the values that you pass to these methods with all the elements of the ArrayList.

 By default, objects are considered equal if they are referred to by the same vari-
able (the String class is an exception with its pool of String objects). If you want to
compare objects by their state (values of the instance variable), override the equals

method in that class. I’ve already demonstrated the difference in how equality of
objects of a class is determined, when the class overrides its equals method and
when it doesn’t, in section 4.4.5 with an overridden equals method in the class
MyPerson.

 Let’s see the usage of all these methods:

public class MiscMethodsArrayList3 {
 public static void main(String args[]) {
 ArrayList<StringBuilder> myArrList =
 new ArrayList<StringBuilder>();
 StringBuilder sb1 = new StringBuilder("Jan");
 StringBuilder sb2 = new StringBuilder("Feb");
 myArrList.add(sb1);
 myArrList.add(sb2);
 myArrList.add(sb2);
 System.out.println(myArrList.contains(new StringBuilder("Jan")));
 System.out.println(myArrList.contains(sb1));
 System.out.println(myArrList.indexOf(new StringBuilder("Feb")));
 System.out.println(myArrList.indexOf(sb2));
 System.out.println(myArrList.lastIndexOf(
 new StringBuilder("Feb")));
 System.out.println(myArrList.lastIndexOf(sb2));
 }
}

Prints Two—element
at position 1

Prints 2

Adds sb1 to
the ArrayLis

Adds sb2
to the
ArrayList

Adds sb2
to the

ArrayList
again

Prints
false

Prin
tru

Prints –1
Print

Prints –1

Prints 2

271ArrayList
The output of the previous code is as follows:

false
true
-1
1
-1
2

Take a look at the output of the same code using a list of MyPerson objects that has
overridden the equals method. First, here’s the definition of the class MyPerson:

class MyPerson {
 String name;
 MyPerson(String name) { this.name = name; }
 @Override
 public boolean equals(Object obj) {
 if (obj instanceof MyPerson) {
 MyPerson p = (MyPerson)obj;
 boolean isEqual = p.name.equals(this.name);
 return isEqual;
 }
 else
 return false;
 }
}

The definition of the class MiscMethodsArrayList4 follows:

public class MiscMethodsArrayList4 {
 public static void main(String args[]) {
 ArrayList<MyPerson> myArrList = new ArrayList<MyPerson>();
 MyPerson p1 = new MyPerson("Shreya");
 MyPerson p2 = new MyPerson("Paul");
 myArrList.add(p1);
 myArrList.add(p2);
 myArrList.add(p2);
 System.out.println(myArrList.contains(new MyPerson("Shreya")));
 System.out.println(myArrList.contains(p1));
 System.out.println(myArrList.indexOf(new MyPerson("Paul")));
 System.out.println(myArrList.indexOf(p2));
 System.out.println(myArrList.lastIndexOf(new MyPerson("Paul")));
 System.out.println(myArrList.lastIndexOf(p2));
 }
}

As you can see from the output of the preceding code, equality of the objects of the
class MyPerson is determined by the rules defined in its equals method. Two objects
of the class MyPerson with the same value for its instance variable name are considered
to be equal. myArrList stores objects of the class MyPerson. To find a target object,
myArrList will rely on the output given by the equals method of the class MyPerson; it
won’t compare the object references of the stored and target objects.

Overridden equals
method in class
MyPerson; it returns
true for same String
values for instance
variable name

Adds p1 to
ArrayList Adds p2 to

ArrayList Adds p2 to
ArrayList againPrints

true

Prints true

Prints 1
Prints 1

Prints 2
Prints 2

272 CHAPTER 4 Selected classes from the Java API and arrays

EXAM TIP An ArrayList can store duplicate object values.

CLONING AN ARRAYLIST

The method clone defined in the class ArrayList returns a shallow copy of this Array-

List instance. “Shallow copy” means that this method creates a new instance of the
ArrayList object to be cloned. Its element references are copied, but the objects
themselves are not.

 Here’s an example:

public class MiscMethodsArrayList5 {
 public static void main(String args[]) {
 ArrayList<StringBuilder> myArrList = new ArrayList<StringBuilder>();
 StringBuilder sb1 = new StringBuilder("Jan");
 StringBuilder sb2 = new StringBuilder("Feb");
 myArrList.add(sb1);
 myArrList.add(sb2);
 myArrList.add(sb2);
 ArrayList<StringBuilder> assignedArrList = myArrList;
 ArrayList<StringBuilder> clonedArrList =
 (ArrayList<StringBuilder>)myArrList.clone();
 System.out.println(myArrList == assignedArrList);
 System.out.println(myArrList == clonedArrList);
 StringBuilder myArrVal = myArrList.get(0);
 StringBuilder assignedArrVal = assignedArrList.get(0);
 StringBuilder clonedArrVal = clonedArrList.get(0);
 System.out.println(myArrVal == assignedArrVal);
 System.out.println(myArrVal == clonedArrVal);
 }
}

Let’s go through the previous code:

■ B assigns the object referred to by myArrList to assignedArrList. The vari-
ables myArrList and assignedArrList now refer to the same object.

■ C assigns a copy of the object referred to by myArrList to clonedArrList. The
variables myArrList and clonedArrList refer to different objects. Because the
method clone returns a value of the type Object, it’s cast to ArrayList<String-

Builder> to assign it to clonedArrList (don’t worry if you can’t follow this
line—casting is covered in chapter 6).

■ D prints true because myArrList and assignedArrList refer to the same object.
■ E prints false because myArrList and clonedArrList refer to separate objects,

because the method clone creates and returns a new object of ArrayList (but
with the same list members).

■ F proves that the method clone didn’t copy the elements of myArrList. All the
variable references myArrVal, AssignedArrVal, and clonedArrVal refer to the
same objects.

■ Hence, both G and H print true.

Assigns object
referred to by
myArrList to
assignedArrList

b

Clones myArrList
and assigns it to
clonedArrList

cPrints
true

 d

Prints
false e All of these

reference
variables refer to
the same object.

f

Prints
true g

Prints trueh

273Comparing objects for equality
CREATING AN ARRAY FROM AN ARRAYLIST

You can use the method toArray to return an array containing all the elements in an
ArrayList in sequence from the first to the last element. As mentioned earlier in this
chapter (refer to figure 4.27 in section 4.4.1), an ArrayList uses a private variable,
elementData (an array), to store its own values. Method toArray doesn’t return a ref-
erence to this array. It creates a new array, copies the elements of the ArrayList to it,
and then returns it.

 Now comes the tricky part. No references to the returned array, which is itself an
object, are maintained by the ArrayList. But the references to the individual ArrayList

elements are copied to the returned array and are still referred to by the ArrayList.
 This implies that if you modify the returned array by, say, swapping the position of

its elements or by assigning new objects to its elements, the elements of ArrayList

won’t be affected. But if you modify the state of (mutable) elements of the returned
array, then the modified state of elements will be reflected in the ArrayList.

4.5 Comparing objects for equality

In section 4.1, you saw how the class String defined a set of rules to determine
whether two String values are equal and how these rules were coded in the method
equals. Similarly, any Java class can define a set of rules to determine whether its two
objects should be considered equal. This comparison is accomplished using the
method equals, which is described in the next section.

4.5.1 The method equals in the class java.lang.Object

The method equals is defined in class java.lang.Object. All the Java classes directly
or indirectly inherit this class. Listing 4.2 contains the default implementation of the
method equals from the class java.lang.Object.

public boolean equals(Object obj) {
 return (this == obj);
}

As you can see, the default implementation of the equals method only compares
whether two object variables refer to the same object. Because instance variables are
used to store the state of an object, it’s common to compare the values of the instance
variables to determine whether two objects should be considered equal.

4.5.2 Comparing objects of a user-defined class

Let’s work with an example of the class BankAccount, which defines two instance
variables: acctNumber of type String, and acctType of type int. The equals method

Listing 4.2 Implementation of equals method from class java.lang.Object

[3.2] Test equality between Strings and other objects using == and equals()

274 CHAPTER 4 Selected classes from the Java API and arrays
compares the values of these instance variables to determine the equality of two objects
of the class BankAccount.

 Here’s the relevant code:

class BankAccount {
 String acctNumber;
 int acctType;
 public boolean equals(Object anObject) {
 if (anObject instanceof BankAccount) {
 BankAccount b = (BankAccount)anObject;
 return (acctNumber.equals(b.acctNumber) &&
 acctType == b.acctType);
 }
 else
 return false;
 }
}

Let’s verify the working of this equals method in the following code:

class Test {
 public static void main(String args[]) {
 BankAccount b1 = new BankAccount();
 b1.acctNumber = "0023490";
 b1.acctType = 4;
 BankAccount b2 = new BankAccount();
 b2.acctNumber = "11223344";
 b2.acctType = 3;
 BankAccount b3 = new BankAccount();
 b3.acctNumber = "11223344";
 b3.acctType = 3;
 System.out.println(b1.equals(b2));
 System.out.println(b2.equals(b3));
 System.out.println(b1.equals(new String("abc")));
 }
}

B prints false because the value of the reference variables b1 and b2 don’t match. C
prints true because the values of the reference variables b2 and b3 match each other.

D passes an object of type String to the method equals defined in the class Bank-
Account. This method returns false if the method parameter passed to it is not of
type BankAccount. Hence, D prints false.

 Even though the following implementation is unacceptable for classes used in the
real world, it’s still correct syntactically:

class BankAccount {
 String acctNumber;
 int acctType;
 public boolean equals(Object anObject) {
 return true;
 }
}

Check whether you’re
comparing the same
type of objects

Two bank objects are
considered equal if
they have the same
values, for instance
variables acctNumber
and acctType.

Prints falseb

Prints truec

Prints falsed

275Comparing objects for equality
The previous definition of the equals method will return true for any object that’s
compared to an object of the class BankAccount because it doesn’t compare any val-
ues. Let’s see what happens when you compare an object of the class String with an
object of class BankAccount and vice versa using equals():

class TestBank {
 public static void main(String args[]) {
 BankAccount acct = new BankAccount();
 String str = "Bank";
 System.out.println(acct.equals(str));
 System.out.println(str.equals(acct));
 }
}

In the preceding code, B prints true, but C prints false. The equals method in the
class String returns true only if the object that’s being compared to is a String with
the same sequence of characters.

EXAM TIP In the exam, watch out for questions about the correct implemen-
tation of the equals method (refer to section 4.5.4) to compare two objects
versus questions about the equals methods that simply compile correctly. If
you’d been asked whether equals() in the previous example code would
compile correctly, the correct answer would be yes.

4.5.3 Incorrect method signature of the equals method

It’s a common mistake to write an equals method that accepts an instance of the class
itself. In the following code, the class BankAccount doesn’t override equals(); it over-
loads it:

class BankAccount {
 String acctNumber;
 int acctType;
 public boolean equals(BankAccount obj) {
 if (obj != null) {
 return (acctNumber.equals(obj.acctNumber) &&
 acctType == obj.acctType);
 }
 else
 return false;
 }
}

Although the previous definition of equals() may seem to be flawless, what happens
when you try to add and retrieve an object of the class BankAccount (as shown in the
preceding code) from an ArrayList? The method contains defined in the class
ArrayList compares two objects by calling the object’s equals method. It does not
compare object references.

 In the following code, see what happens when you add an object of the class Bank-
Account to an ArrayList and then try to verify whether the list contains a BankAccount

Prints trueb

Prints falsec

Type of method parameter
is BankAccount, not Object

276 CHAPTER 4 Selected classes from the Java API and arrays
object with the same instance variable’s values for acctNumber and acctType as the
object being searched for:

class TestMethodEquals {
 public static void main(String args[]) {
 BankAccount b1 = new BankAccount();
 b1.acctNumber = "0023490"; b1.acctType = 4;
 ArrayList <BankAccount> list = new ArrayList<BankAccount>();
 list.add(b1);
 BankAccount b2 = new BankAccount();
 b2.acctNumber = "0023490"; b2.acctType = 4;
 System.out.println(list.contains(b2));
 }
}

B and D define objects b1 and b2 of the class BankAccount with the same state. C
adds b1 to the list. E compares the object b2 with the objects added to the list.

 An ArrayList uses the method equals to compare two objects. Because the class
BankAccount didn’t follow the rules for correctly defining (overriding) the method
equals, ArrayList uses the method equals from the base class Object, which com-
pares object references. Because the code didn’t add b2 to list, it prints false.

 What do you think will be the output of the previous code if you change the defini-
tion of the method equals in the class BankAccount so that it accepts a method
parameter of type Object? Try it for yourself!

EXAM TIP The method equals defines a method parameter of type Object,
and its return type is boolean. Don’t change the name of the method, its
return type, or the type of method parameter when you define (override) this
method in your class to compare two objects.

4.5.4 Contract of the equals method

The Java API defines a contract for the equals method, which should be taken care of
when you implement it in any of your classes. I’ve pulled the following contract expla-
nation directly from the Java API documentation:1

The equals method implements an equivalence relation on non-null object references:

■ It is reflexive: for any non-null reference value x, x.equals(x) should return true.
■ It is symmetric: for any non-null reference values x and y, x.equals(y) should return

true if and only if y.equals(x) returns true.
■ It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns

true and y.equals(z) returns true, then x.equals(z) should return true.

1 The Java API documentation for equals can be found on the Oracle site: http://docs.oracle.com/javase/8/
docs/api/java/lang/Object.html#equals(java.lang.Object).

Object b1b
Adds

object
b1 to

list

c

Creates b2 with
same state as b1

d

Prints falsee

http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals(java.lang.Object)

277Comparing objects for equality
■ It is consistent: for any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no infor-
mation used in equals() comparisons on the objects is modified.

■ For any non-null reference value x, x.equals(null) should return false.

As per the contract, the definition of the equals method that we defined for the class
BankAccount in an earlier example violates the contract for the equals method. Take
a look at the definition again:

public boolean equals(Object anObject) {
 return true;
}

This code returns true, even for null values passed to this method. According to
the contract of the method equals, if a null value is passed to the equals method, the
method should return false.

EXAM TIP You may get to answer explicit questions on the contract of the
equals method. An equals method that returns true for a null object passed
to it will violate the contract. Also, if the equals method modifies the value of
any of the instance variables of the method parameter passed to it, or of the
object on which it is called, it will violate the equals contract.

The hashCode() method
A lot of programmers are confused about the role of the method hashCode in determin-
ing the equality of objects. The method hashCode is not called by the equals method
to determine the equality of two objects. Because the hashCode method is not on the
exam, I’ll discuss it quickly here to ward off any confusion about this method.

The method hashCode is used by the collection classes (such as HashMap) that store
key-value pairs, where a key is an object. These collection classes use the hashCode
of a key to search efficiently for the corresponding value. The hashCode of the key
(an object) is used to specify a bucket number, which should store its corresponding
value. The hashCode values of two distinct objects can be the same. When these col-
lection classes find the right bucket, they call the equals method to select the cor-
rect value object (that shares the same key values). The equals method is called
even if a bucket contains only one object. After all, it might be the same hash but a
different equals, and there is no match to get!

According to the Java documentation, when you override the equals method in your
class, you should also override the hashCode method. If you don’t, objects of your
classes won’t behave as required if they’re used as keys by collection classes that
store key-value pairs. This method is not discussed in detail in this chapter because
it isn’t on the exam. But don’t forget to override it with the method equals in your
real-world projects.

278 CHAPTER 4 Selected classes from the Java API and arrays
4.6 Working with calendar data

The new Date and Time API in Java 8 simplifies working with date and time objects. It
includes classes and interfaces with simple and informative method names. As you
work with the classes LocalDate, LocalTime, LocalDateTime, Period, and DateTime-

Formatter in this section, you’ll notice that these classes define methods with similar
names (which have similar purposes). Table 4.1 lists the method prefix, its type, and
its use (from Oracle Java documentation).

NOTE The preceding table might not seem to add a lot of value at this point.
But as you go through the following sections, you’ll realize the similarity in
the names of the methods that are defined in the date and time classes.

Let’s get started with the class LocalDate.

Table 4.1 Method prefixes, types, and their uses in the Date and Time API in Java 8

Prefix Method type Use

of static Creates an instance where the factory is primarily validating the input
parameters, not converting them.

from static Converts the input parameters to an instance of the target class, which
may involve losing information from the input.

parse static Parses the input string to produce an instance of the target class.

format instance Uses the specified formatter to format the values in the temporal object
to produce a string.

get instance Returns a part of the state of the target object.

is instance Queries the state of the target object.

with instance Returns a copy of the target object with one element changed; this is
the immutable equivalent to a set method on a JavaBean.

plus instance Returns a copy of the target object with an amount of time added.

minus instance Returns a copy of the target object with an amount of time subtracted.

to instance Converts this object to another type.

at instance Combines this object with another.

[9.3] Create and manipulate calendar data using classes from
java.time.LocalDateTime, java.time.LocalDate, java.time.LocalTime,
java.time.format.DateTimeFormatter, java.time.Period

279Working with calendar data
4.6.1 LocalDate

To store dates like a birthday or anniversary, visiting a place, or starting a job, school,
or college, you don’t need to store the time. LocalDate will work perfectly in this case.

LocalDate can be used to store dates like 2015-12-27 without time or time zones.
LocalDate instances are immutable and hence safe to be used in a multithreaded
environment.

CREATING LOCALDATE

The LocalDate constructor is marked private, so you must use one of the factory meth-
ods to instantiate it. The static method of() accepts year, month, and day of month:

LocalDate date1 = LocalDate.of(2015, 12, 27);
LocalDate date2 = LocalDate.of(2015, Month.DECEMBER, 27);

NOTE In the new Date and Time API, introduced with Java 8, January is rep-
resented by int value 1 and not 0. The old Calendar-based API hasn’t changed
in Java 8 and still uses 0-based month numbering.

To get the current date from the system clock, use the static method now():

LocalDate date3 = LocalDate.now();

You can also parse a string in the format 2016-02-27 to instantiate LocalDate. Here’s
an example:

LocalDate date2 = LocalDate.parse("2025-08-09");

EXAM TIP If you pass invalid values to parse() or of(), you’ll get Date-
TimeParseException. The format of the string passed to parse() must be
exactly of the format 9999-99-99. The month and date values passed to
parse() must be of two digits; a single digit is considered an invalid value. For
days and months with values 1–9, pass 01–09.

QUERYING LOCALDATE

You can use instance methods like getXX() to query LocalDate on its year, month,
and date values. The date can be queried as day-of-month, day-of-week, and day-of-
year. The month value can be retrieved as the enum constant Month or as an int value:

LocalDate date = LocalDate.parse("2020-08-30");
System.out.println(date.getDayOfMonth());
System.out.println(date.getDayOfWeek());
System.out.println(date.getDayOfYear());
System.out.println(date.getMonth());
System.out.println(date.getMonthValue());
System.out.println(date.getYear());

Accept month
as int value

Accept month as
enum constant

280 CHAPTER 4 Selected classes from the Java API and arrays
The output of the preceding code looks like this:

30
SUNDAY
243
AUGUST
8
2020

You can use the instance methods isAfter() or isBefore() to determine whether a
date is chronologically before or after another date:

LocalDate shreyaBday = LocalDate.parse("2002-08-30");
LocalDate paulBday = LocalDate.parse("2002-07-29");

System.out.println(shreyaBday.isAfter(paulBday));
System.out.println(shreyaBday.isBefore(paulBday));
System.out.println(shreyaBday.isBefore(shreyaBday));

MANIPULATING LOCALDATE

The LocalDate class defines methods with the names minusXX(), plusXX(), and
withXX() to manipulate the date values. The API architects have used the names that
make their purpose explicit. Because LocalDate is an immutable class, all the meth-
ods create and return a copy. The minusXX() methods return a copy of the date with
the specified days, months, or years subtracted from it:

LocalDate bday = LocalDate.of(2052,03,10);
System.out.println(bday.minusDays(10));
System.out.println(bday.minusMonths(2));
System.out.println(bday.minusWeeks(30));
System.out.println(bday.minusYears(1));

Here’s the output of the preceding code:

2052-02-29
2052-01-10
2051-08-13
2051-03-10

EXAM TIP LocalDate is immutable. All the methods that seem to manipulate
its value return a copy of the LocalDate instance on which it’s called.

The plusXX() methods return a copy of the date instance after adding the specified
days, months, or years to it:

LocalDate launchCompany = LocalDate.of(2016,02,29);
System.out.println(launchCompany.plusDays(1));
System.out.println(launchCompany.plusMonths(1));
System.out.println(launchCompany.plusWeeks(7));
System.out.println(launchCompany.plusYears(1));

Outputs true

Outputs false

281Working with calendar data
Here’s the output of the preceding code:

2016-03-01
2016-03-29
2016-04-18
2017-02-28

EXAM TIP All additions, subtractions, or replacements to LocalDate consider
leap years.

The withXX() methods return a copy of the date instance replacing the specified day,
month, or year in it:

LocalDate firstSex = LocalDate.of(2036,02,28);
System.out.println(firstSex.withDayOfMonth(1));
System.out.println(firstSex.withDayOfYear(1));
System.out.println(firstSex.withMonth(7));
System.out.println(firstSex.withYear(1));

The output of the preceding code looks like this:

2036-02-01
2036-01-01
2036-07-28
0001-02-28

CONVERTING TO ANOTHER TYPE

The LocalDate class defines methods to convert it to LocalDateTime and long (repre-
senting the epoch date).

 The LocalDate class defines overloaded atTime() instance methods. These meth-
ods combine LocalDate with time to create and return LocalDateTime, which stores
both the date and time (the LocalDateTime class is covered in the next section):

LocalDate interviewDate = LocalDate.of(2016,02,28);
System.out.println(interviewDate.atTime(16, 30));
System.out.println(interviewDate.atTime(16, 30, 20));
System.out.println(interviewDate.atTime(16, 30, 20, 300));
System.out.println(interviewDate.atTime(LocalTime.of(16, 30)));

Here’s the output of the preceding code:

2016-02-28T16:30
2016-02-28T16:30:20
2016-02-28T16:30:20.000000300
2016-02-28T16:30

EXAM TIP If you pass any invalid hours, minutes, or seconds value to the
method atTime, it will throw a DateTimeException at runtime.

282 CHAPTER 4 Selected classes from the Java API and arrays
You can use the method toEpochDay() to convert LocalDate to the epoch date—the
count of days from January 1, 1970:

LocalDate launchBook = LocalDate.of(2016,2,8);
LocalDate aDate = LocalDate.of(1970,1,8);
System.out.println(launchBook.toEpochDay());
System.out.println(aDate.toEpochDay());

Here’s the output of the preceding code:

16839
7

NOTE In standard date and time, the epoch date refers to January 1, 1970,
00:00:00 GMT.

4.6.2 LocalTime

To store times like breakfast, conference talk start time, or in-store sale end time, you
can use LocalTime. It stores time in the format hours-minutes-seconds (without a time
zone) and to nanosecond precision. So you’re sure to see methods that accept nanosec-
onds as method arguments or methods that return this value. Like LocalDate, Local-
Time is also immutable and hence safe to be used in a multithreaded environment.

CREATING LOCALTIME

The LocalTime constructor is private, so you must use one of the factory methods to
instantiate it. The static method of() accepts hours, minutes, seconds, and nanoseconds:

LocalTime timeHrsMin = LocalTime.of(12, 12);
LocalTime timeHrsMinSec = LocalTime.of(0, 12, 6);
LocalTime timeHrsMinSecNano = LocalTime.of(14, 7, 10, 998654578);

The of() method uses a 24-hour clock to specify the hour value. What happens if you
pass out-of-range values for hours, minutes, or seconds to of()? In this case, you’ll get
a runtime exception, DateTimeException. You’ll get a compiler error if the range of
values passed to a method doesn’t comply with the method’s argument type. Here’s
an example:

LocalTime timeHrsMin = LocalTime.of(120, 12);
LocalTime timeHrsMin2 = LocalTime.of(9986545781, 12);

EXAM TIP LocalTime doesn’t define a method to pass a.m. or p.m. Use values
0–23 to define hours. If you pass out-of-range values to either hours, minutes,
or seconds, you’ll get a runtime exception.

Hours and
minutes

Hours,
minutes, and
seconds

Hours, minutes, seconds,
and nanoseconds

Runtime
exception

Compilation
error

283Working with calendar data
To get the current time from the system clock, use the static method now():

LocalDate date3 = LocalTime.now();

You can parse a string to instantiate LocalTime by using its static method parse(). You
can either pass a string in the format 15:08:23 (hours:minutes:seconds) or parse any
text using DateTimeFormatter (covered in the next section):

LocalTime time = LocalTime.parse("15:08:23");

EXAM TIP If you pass invalid string values to parse(), the code will compile
but will throw a runtime exception. If you don’t pass a DateTimeFormatter,
the format of the string passed to parse() must be exactly of the format
99:99:99. The hours and minutes values passed to parse() must be two digits;
a single digit is considered an invalid value. For hours and minutes with the
value 0–9, pass 00–09.

USING LOCALTIME CONSTANTS

You can use constants from the LocalTime class to work with predefined times:

■ LocalTime.MIN—Minimum supported time, that is, 00:00
■ LocalTime.MAX—Maximum supported time, that is, 23:59:59.999999999
■ LocalTime.MIDNIGHT—Time when the day starts, that is, 00:00
■ LocalTime.NOON—Noontime, that is, 12:00

Does that make you wonder whether the minimum and midnight times are equal? See
for yourself; the following code outputs true:

System.out.println(LocalTime.MIN.equals(LocalTime.MIDNIGHT));

QUERYING LOCALTIME

You can use instance methods like getXX() to query LocalTime on its hour, minutes,
seconds, and nanoseconds. All these methods return an int value:

LocalTime time = LocalTime.of(16, 20, 12, 98547);
System.out.println(time.getHour());
System.out.println(time.getMinute());
System.out.println(time.getSecond());
System.out.println(time.getNano());

Here’s the output:

16
20
12
98547

Outputs true

284 CHAPTER 4 Selected classes from the Java API and arrays
EXAM TIP The correct method names for querying LocalTime are get-
Hour(), getMinute(), getSecond(), and getNano(). Watch out for exam ques-
tions that use invalid method names like getHours(), getMinutes(), getSeconds(),
or getNanoSeconds().

You can use the instance methods isAfter() and isBefore() to check whether a
time is after or before the specified time. The following code outputs true:

LocalTime shreyaFinishTime = LocalTime.parse("17:09:04");
LocalTime paulFinishTime = LocalTime.parse("17:09:12");
if(shreyaFinishTime.isBefore(paulFinishTime))
 System.out.println("Shreya wins");
else
 System.out.println("Paul wins");

MANIPULATING LOCALTIME

You can use the instance methods minusHours(), minusMinutes(), minusSeconds(),
and minusNanos() to create and return a copy of LocalTime instances with the speci-
fied period subtracted. The method names are self-explanatory. For example, minus-

Hours(int) returns a copy of a LocalTime instance with the specified period in hours
subtracted. The following example calculates and outputs the time when Shreya
should leave from her office to watch a movie, given that the movie starts at 21:00
hours and it takes 35 minutes to commute to the movie theater:

LocalTime movieStartTime = LocalTime.parse("21:00:00");
int commuteMin = 35;
LocalTime shreyaStartTime = movieStartTime.minusMinutes(commuteMin);
System.out.println("Start by " + shreyaStartTime + " from office");

Here’s the output of the preceding code:

Start by 20:25 from office

EXAM TIP Unlike the getXXX() methods, minusXXX() methods use the plural
form: getHour() versus minusHours(), getMinute() versus minusMinutes(),
getSecond() versus minusSeconds(), and getNano() versus minusNanos().

The plusHours(), plusMinutes(), plusSeconds(), and plusNanos() methods accept
long values and add the specified hours, minutes, seconds, or nanoseconds to time,
returning its copy as LocalTime. The following example uses the addSeconds() and
isAfter() methods to add seconds to a time and compares it with another time:

int worldRecord = 10;
LocalTime raceStartTime = LocalTime.of(8, 10, 55);
LocalTime raceEndTime = LocalTime.of(8, 11, 11);
if (raceStartTime.plusSeconds(worldRecord).isAfter(raceEndTime))
 System.out.println("New world record");
else
 System.out.println("Try harder");

Outputs
Shreya wins

285Working with calendar data
The output of the preceding code looks like this:

Try harder

EXAM TIP LocalTime is immutable. Calling any method on its instance won’t
modify its value.

The withHour(), withMinute(), withSecond(), and withNano() methods accept an
int value and return a copy of LocalTime with the specified value altered. In the fol-
lowing example, a new LocalTime instance with the minute value 00 is created:

LocalTime startTime = LocalTime.of(5, 7, 9);
if (startTime.getMinute() < 30)
 startTime = startTime.withMinute(0);
System.out.println(startTime);

Here’s the output:

05:00:09

COMBINING WITH ANOTHER TYPE

The LocalTime class defines the atDate() method to combine a LocalDate with itself
to create LocalDateTime:

LocalTime time = LocalTime.of(14, 10, 0);
LocalDate date = LocalDate.of(2016,02,28);
LocalDateTime dateTime = time.atDate(date);
System.out.println(dateTime);

Here’s the output:

2016-02-28T14:10

EXAM TIP The class LocalTime defines the method atDate(), which can be
passed a LocalDate instance to create a LocalDateTime instance.

4.6.3 LocalDateTime

If you want to store both date and time (without the time zone), use the class Local-
DateTime. It stores a value like 2050-06-18T14:20:30:908765 (year-month-dayThours
:minutes:seconds:nanoseconds).

NOTE The LocalDateTime class uses the letter T to separate date and time
values in its printed value.

You can consider this class to offer the functionality of both the LocalDate and Local-
Time classes. This class defines similar methods as those defined by the LocalDate and

286 CHAPTER 4 Selected classes from the Java API and arrays
LocalTime classes. So instead of discussing individual methods of this class, here’s an
example that covers the important methods of this class:

LocalDateTime prizeCeremony = LocalDateTime.parse("2050-06-05T14:00:00");
LocalDateTime dateTimeNow = LocalDateTime.now();

if (prizeCeremony.getMonthValue() == 6)
 System.out.println("Can't invite president");
else
 System.out.println("President invited");

LocalDateTime chiefGuestDeparture =
 LocalDateTime.parse("2050-06-05T14:30:00");

if (prizeCeremony.plusHours(2).isAfter(chiefGuestDeparture))
 System.out.println("Chief Guest will leave before ceremony completes");

LocalDateTime eventMgrArrival = LocalDateTime.of(2050, 6, 5, 14, 30, 0);
if (eventMgrArrival.isAfter(prizeCeremony.minusHours(3)))
 System.out.println("Manager is supposed to arrive 3 hrs earlier");

In the next section, you’ll discover how you can perform calculations with date and
time using the Period class.

4.6.4 Period

People often talk about periods of years, months, or days. With the Java 8 Date API,
you can use the Period class to do so. The Period class represents a date-based
amount in years, months, and days, like 2 years, 5 months, and 10 days. To work with a
time-based amount in seconds and nanoseconds, you can use the Duration class.

NOTE The Duration class can be used to store amounts of time like 1 hour,
36 minutes, or 29.4 seconds. But this class isn’t explicitly covered in this exam
(and this book). It’s covered in the OCP Java SE 8 Programmer II exam.

You can add or subtract Period instances from the LocalDate and LocalDateTime

classes. Period is also an immutable class and hence safe to use in a multithreaded
environment. Let’s get started by instantiating Period.

INSTANTIATING PERIOD

With a private constructor, the Period class defines multiple factory methods to create
its instances. The static methods of(), ofYears(), ofMonths(), ofWeeks(), and ofDays()

accept int values to create periods of years, months, weeks, or days:

Period period1 = Period.of(1, 2, 7);
Period period2 = Period.ofYears(2);

Parse String to
LocalDateTime

Get current
date and time

Retrieve month
as integer value

Check whether a LocalDateTime instance
is before another LocalDateTime instance

Instantiate LocalDateTime
using separate int values

1 year, 2 months,
and 7 days

2 years

287Working with calendar data
Period period3 = Period.ofMonths(5);
Period period4 = Period.ofWeeks(10);
Period period5 = Period.ofDays(15);

EXAM TIP A period of 35 days is not stored as 1 month and 5 days. Its individ-
ual elements, that is, days, months, and years, are stored the way it is initialized.

You can also define negative periods by passing negative integer values to all the pre-
ceding methods. Here’s a quick example:

Period period6 = Period.ofDays(-15);

EXAM TIP You can define positive or negative periods of time. For example,
you can define Period instances representing 15 or -15 days.

You can also parse a string to instantiate Period by using its static method parse. This
method parses string values of the format PnYnMnD or PnW, where n represents a
number and the letters (P, Y, M, D, and W) represent parse, year, month, day, and
week. These letters can exist in lower- or uppercase. Each string must start with the
letter p or P and must include at least one of the four sections, that is, year, month,
week, or day. For the string format PnW, the count of weeks is multiplied by 7 to get
the number of days. You can also define negative periods using parse(). If you pre-
cede the complete string value passed to parse() with a negative sign (-), it’s applied
to all values. If you place a negative sign just before an individual number, it applies
only to that section. Here are some examples to instantiate a period of five years (notice
the use of uppercase and lowercase letters and + and – signs):

Period p5Yrs1 = Period.parse("P5y");
Period p5Yrs2 = Period.parse("p5y");
Period p5Yrs3 = Period.parse("P5Y");
Period p5Yrs4 = Period.parse("+P5Y");
Period p5Yrs5 = Period.parse("P+5Y");
Period p5Yrs6 = Period.parse("-P-5Y");
System.out.println(p5Yrs1 + ":" + p5Yrs2);

The following examples define periods of separate durations:

Period p5Yrs7 = Period.parse("P5y1m2d");
Period p5Yrs8 = Period.parse("p9m");
Period p5Yrs9 = Period.parse("P60d");
Period p5Yrs10 = Period.parse("-P5W");

5 months

10 weeks

15 days

Period of -15 days

Period of
5 years

Outputs P5Y:P5Y

288 CHAPTER 4 Selected classes from the Java API and arrays
When passed to System.out.println(), the variables in the preceding code will result
in the following output:

P5Y1M2D
P9M
P60D
P-35D

EXAM TIP If you pass invalid string values to parse(), the code will compile
but will throw a runtime exception.

You can also use the static method between(LocalDate dateInclusive, LocalDate
dateExclusive) to instantiate Period:

LocalDate carnivalStart = LocalDate.of(2050, 12, 31);
LocalDate carnivalEnd = LocalDate.of(2051, 1, 2);

Period periodBetween = Period.between(carnivalStart, carnivalEnd);
System.out.println(periodBetween);

EXAM TIP The static method between accepts two LocalDate instances and
returns a Period instance representing the number of years, days, and
months between the two dates. The first date is included, but the second date
is excluded in the returned Period. Here’s a quick way to remember it: period
= end date – start date.

MANIPULATING LOCALDATE AND LOCALDATETIME USING PERIOD

In everyday life, it’s common to add or subtract periods of days, months, or years from
a date. The Period class implements the interface TemporalAmount, so it can be used
with the methods plus() and minus() defined in the classes LocalDateTime and
LocalDate. The following example adds a period of a day to a LocalDate instance:

LocalDate date = LocalDate.of(2052, 01, 31);
System.out.println(date.plus(Period.ofDays(1)));

Here’s the output of the preceding code:

2052-02-01

What happens when you add a period of a month to January 31 of any year? Do you
get the last day of February or the first day of March? The following example adds a
period of a month to a LocalDateTime instance:

LocalDateTime dateTime = LocalDateTime.parse("2052-01-31T14:18:36");
System.out.println(dateTime.plus(Period.ofMonths(1)));

The output of the preceding code looks like this:

2052-02-29T14:18:36

Outputs P2D

289Working with calendar data
EXAM TIP Because Period instances can represent positive or negative peri-
ods (like 15 days or -15 days), you can subtract days from a LocalDate or
LocalDateTime by calling the method plus.

Similarly, you can use the method minus() with the classes LocalDate and LocalDate-
Time to subtract a period of years, months, weeks, or days:

LocalDateTime dateTime = LocalDateTime.parse("2020-01-31T14:18:36");
System.out.println(dateTime.minus(Period.ofYears(2)));

LocalDate date = LocalDate.of(2052, 01, 31);
System.out.println(date.minus(Period.ofWeeks(4)));

Here’s the output:

2018-01-31T14:18:36
2052-01-03

QUERYING PERIOD INSTANCES

You can use the instance methods getYears(), getMonths(), and getDays() to query a
Period instance on its years, months, and days. All these methods return an int value:

Period period = Period.of(2,4,40);
System.out.println(period.getYears());
System.out.println(period.getMonths());
System.out.println(period.getDays());

The preceding code outputs the following:

2
4
40

EXAM TIP When you initialize a Period instance with days more than 31 or
months more than 12, it doesn’t recalculate its years, months, or days
components.

You can query whether any of three units of a Period is negative using the methods
isNegative and isZero. A Period instance is zero if all three units are zero. The
isNegative method returns true if at least one of its three components is strictly neg-
ative (<0):

Period days5 = Period.of(0,0,5);
System.out.println(days5.isZero());

Period daysMinus5 = Period.of(0,0,-5);
System.out.println(daysMinus5.isNegative());

MANIPULATING PERIOD

You can use the instance methods minus(TemporalAmount), minusDays(long), minus-

Weeks(long), minusMonths(long), minusYears(long), and multipliedBy(int) to cre-
ate and return a copy of Period instances with the specified period subtracted or

Outputs false

Outputs true

290 CHAPTER 4 Selected classes from the Java API and arrays
modified. The method names are self-explanatory. For an example, minusDays(long)

returns a copy of a Period instance with the specified days subtracted. You can use the
following example to send out reminders to your friends (limited to printing a mes-
sage) for an event, say a birthday celebration, if it’s due in 10 days:

LocalDate bday = LocalDate.of(2020, 10, 29);
LocalDate today = LocalDate.now();
Period period10Days = Period.of(0, 0, 10);

if (bday.minus(period10Days).isBefore(today))
 System.out.println("Time to send out reminders to friends");

EXAM TIP In the class Period, both the getXXX() methods and minusXXX()
methods use the plural form: getYears(), minusHours().

What happens when you subtract a Period representing one month (P1M) from a
Period representing 10 days (P10D)? Would you get a Period representing 20 days or
a Period representing -1 month and 10 days? Let’s find out using the following code,
which also includes quick sample code on the usage of all the minusXXX methods:

Period period10Days = Period.of(0, 0, 10);
Period period1Month = Period.of(0, 1, 0);

System.out.println(period10Days.minus(period1Month));
System.out.println(period10Days.minusDays(5));
System.out.println(period10Days.minusMonths(5));
System.out.println(period10Days.minusYears(5));

Here’s the output:

P-1M10D
P5D
P-5M10D
P-5Y10D

EXAM TIP When you subtract Period instances using the minusXXX() meth-
ods, the individual elements are subtracted. Subtracting P10D from P1M
returns P1M-10D and not P20D.

The Period class defines multipliedBy(int), which multiplies each element in the
period by the integer value:

Period year1Month9Day20 = Period.of(1, 9, 20);
System.out.println(year1Month9Day20.multipliedBy(2));
System.out.println(year1Month9Day20.multipliedBy(-2));

EXAM TIP The method multipliedBy(int) in the class Period is used to
modify all elements of a Period instance. Period doesn’t define a “divideBy()”
method. Both the getXXX() methods and minusXXX() methods use the plural
form getYears(), minusHours().

Outputs
P2Y18M40D

Outputs
P-2Y-18M-40D

291Working with calendar data
The plus(TemporalAmount), plusDays(long), plusWeeks(long), plusMonths(long),
and plusYears(long) methods add to Period instances and return the modified
value as a Period. Like the minusXXX() methods, all the plusXXX() methods add indi-
vidual elements:

Period period5Month = Period.of(0, 5, 0);
Period period10Month = Period.of(0, 10, 0);
Period period10Days = Period.of(0, 0, 10);

System.out.println(period5Month.plus(period10Month));
System.out.println(period10Days.plusDays(35));
System.out.println(period10Days.plusMonths(5));
System.out.println(period10Days.plusYears(5));

The output of the preceding code is as follows:

P15M
P45D
P5M10D
P5Y10D

EXAM TIP Adding a Period of 10 months to a Period of 5 months gives 15
months, not 1 year and 3 months.

The withDays(), withMonths(), and withYears() methods accept an int value and
return a copy of Period with the specified value altered.

CONVERTING TO ANOTHER TYPE

The method toTotalMonths() returns the total number of months in the period by
multiplying the number of years by 12 and adding the number of months:

System.out.println(Period.of(10,5,40).toTotalMonths());

A Period can be used as an argument to the LocalDate one-parameter plus() and
minus() methods. What happens when you want to add 3 months and 10 days to a
given date? The number of months per year is constant but the number of days per
month isn’t. A glimpse at the plus() and minus() methods in the LocalDate source
code shows that years are converted to months and months are always handled
before days.

 In the next section, you’ll work with the class DateTimeFormatter.

4.6.5 DateTimeFormatter

Defined in the package java.time.format, the class DateTimeFormatter can be used
to format and parse date and time objects. In this section, you’ll use this class to for-
mat or parse date and time objects using predefined constants (like ISO_LOCAL_DATE),
using patterns (like yyyy-MM-dd) or localized styles like long or short.

 The first step to format or parse a date or time object is to access a DateTime-

Formatter and then call format or parse methods on either date or time objects or

Outputs 125

292 CHAPTER 4 Selected classes from the Java API and arrays
DateTimeFormatter. Let’s work in detail with these steps, starting with multiple ways
to instantiate or access a DateTimeFormatter object.

INSTANTIATE OR ACCESS DATETIMEFORMATTER
You can instantiate or access a DateTimeFormatter object in multiple ways:

■ By calling a static ofXXX method, passing it a FormatStyle value
■ By access public static fields of DateTimeFormatter

■ By using the static method ofPattern and passing it a string value

Starting with the first option, you can instantiate a DateTimeFormatter to work with
date, time, or date/time objects by calling its ofXXX static method and passing it a
FormatStyle value (FormatStyle.FULL, FormatStyle.LONG, FormatStyle.MEDIUM, or
FormatStyle.SHORT):

DateTimeFormatter formatter1 =
 DateTimeFormatter.ofLocalizedDate(FormatStyle.MEDIUM);
DateTimeFormatter formatter2 =
 DateTimeFormatter.ofLocalizedTime(FormatStyle.FULL);
DateTimeFormatter formatter3 =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.LONG);
DateTimeFormatter formatter4 =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT,
 FormatStyle.SHORT);

NOTE The methods ofLocalizedDate, ofLocalizedTime, and ofLocalized-
DateTime format date and time objects according to the locale (language,
region, or country) of the system on which your code executes. So the output
might vary slightly across systems.

Table 4.2 shows how a date or time object will be formatted by using the different
FormatStyle values.

Table 4.2 Examples of how FormatStyle affects formatting of a date (say, August 11, 2057) or time
(say, 14 hours, 30 minutes, and 15 seconds) object

FormatStyle Example

FormatStyle.FULL Saturday, August 11, 2057

FormatStyle.LONG August 11, 2057

FormatStyle.MEDIUM Aug 11, 2057

FormatStyle.SHORT 8/11/57

FormatStyle.FULL

FormatStyle.LONG

FormatStyle.MEDIUM 2:30:15 PM

FormatStyle.SHORT 2:30 PM

293Working with calendar data
You can access a DateTimeFormatter object by using the public and static fields of
this class:

DateTimeFormatter formatter5 = DateTimeFormatter.ISO_DATE;

Table 4.3 lists a few predefined formatters that are relevant for this exam.

You can instantiate a DateTimeFormatter using a pattern (of letters and symbols) by
using the static method ofPattern and passing it a string value:

DateTimeFormatter formatter6= DateTimeFormatter.ofPattern("yyyy MM dd");

You can use the preceding code to format a date, say August 11, 2057, as 2057 08 11.
Table 4.4 lists the letters that can be used to define such patterns.

Table 4.3 Predefined formatters in the class DateTimeFormatter and an example of how they format
a date (say, August 11, 2057) or time (say, 14 hours 30 minutes, and 15 seconds) object

Predefined formatter Example

BASIC_ISO_DATE 20570811

ISO_DATE/ISO_LOCAL_DATE 2057-08-11

ISO_TIME/ISO_LOCAL_TIME 14:30:15.312

ISO_DATE_TIME/ISO_LOCAL_DATE_TIME 2057-08-11T14:30:15.312

Table 4.4 Letters used to define patterns for DateTimeFormatter and examples of how they would
format a date (say, August 11, 2057) or time (say, 14 hours, 30 minutes, and 15 seconds) object

Symbol Meaning Example

y, Y year 2057; 57

M month of year 8; 08; Aug; August

D day of year 223

d day of month 11

E day of week Sat

e localized day of week 7; Sat

a a.m. or p.m. of day pm

h clock hour of a.m./p.m. 03

H hour of day 14

m minute of hour 30

s second of minute 15

‘ escape for text

294 CHAPTER 4 Selected classes from the Java API and arrays
EXAM TIP A DateTimeFormatter can define rules to format or parse a date
object, time object, or both.

FORMAT DATE OR TIME OBJECTS USING DATETIMEFORMATTER

To format a date or time object, you can use either the instance format method in
date/time objects or the instance format method in the DateTimeFormatter class.
Behind the scenes, the format method in date and time objects simply calls the format

method in DateTimeFormatter. Table 4.5 lists the available format methods.

NOTE TemporalAccessor is an interface, implemented by the classes Local-
Date, LocalTime, and LocalDateTime. You won’t get explicit questions on this
interface on the exam.

EXAM TIP Watch out for the count and type of arguments passed to the
instance method format. When calling format on a LocalDate, LocalTime, or
LocalDateTime instance, pass a DateTimeFormatter instance as a method
parameter. When calling format on DateTimeFormatter, pass a LocalDate,
LocalTime, or LocalDateTime instance as a method argument.

The method format in DateTimeFormatter formats a date or time object to a String

using the rules of the formatter. The following example formats a LocalDate object
using the style FormatStyle (styles are listed in table 4.2):

DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDate(FormatStyle.LONG);
LocalDate date = LocalDate.of(2057,8,11);
System.out.println(formatter.format(date));

Table 4.5 format methods in the classes LocalDate, LocalTime, LocalDateTime, and Date-
TimeFormatter

Defined in Return type Method signature and description

LocalDate String format(DateTimeFormatter)
Formats this date object using the specified
DateTimeFormatter

LocalTime String format(DateTimeFormatter)
Formats this time object using the specified
DateTimeFormatter

LocalDateTime String format(DateTimeFormatter)
Formats this date/time object using the specified
DateTimeFormatter

DateTimeFormatter String format(TemporalAccessor)
Formats a date/time object using this formatter

Outputs August 11,
2057

295Working with calendar data
What happens if you pass a time object (LocalTime) instead of a date object (Local-
Date) in the preceding code? Will it compile or execute successfully (changes are
shown in bold)?

DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDate(FormatStyle.LONG);
LocalTime time = LocalTime.now();
System.out.println(formatter.format(time));

The preceding code will compile successfully but won’t execute. It will throw a run-
time exception because the formatter defines rules to format a date object (created
using ofLocalizedDate()), but its format() is passed a time object.

EXAM TIP If you pass a date object to the method format on a DateTimeFor-
matter instance that defines rules to format a time object, it will throw a run-
time exception.

Formatting date and time objects using DateTimeFormatter, which are created using
string patterns, is interesting (and confusing). Take note of the case of the letters used
in the patterns. M and m or D and d are not the same. Also, using a pattern letter doesn’t
specify the count of digits or texts. For an example, using Y or YYYY to format a date
object returns the same results. Following are examples that use different patterns:

LocalDate date = LocalDate.of(2057,8,11);
LocalTime time = LocalTime.of(14,30,15);

DateTimeFormatter d1 = DateTimeFormatter.ofPattern("y");
DateTimeFormatter d2 = DateTimeFormatter.ofPattern("YYYY");
DateTimeFormatter d3 = DateTimeFormatter.ofPattern("Y M D");
DateTimeFormatter d4 = DateTimeFormatter.ofPattern("e");

DateTimeFormatter t1 = DateTimeFormatter.ofPattern("H h m s");
DateTimeFormatter t2 = DateTimeFormatter.ofPattern("'Time now:'HH mm a");

System.out.println(d1.format(date));
System.out.println(d2.format(date));
System.out.println(d3.format(date));
System.out.println(d4.format(date));

System.out.println(t1.format(time));
System.out.println(t2.format(time));

Here’s the output of the preceding code:

2057
2057
2057 8 223
7
14 2 30 15
Time now:14 30 PM

Throws runtime
exception

296 CHAPTER 4 Selected classes from the Java API and arrays
EXAM TIP If you're confused between M, m, D, and d, remember that an upper-
case letter represents a bigger duration period. So M is for month and m is for
minutes. Similarly, D represents day of year; d represents day of month.

You can also format date and time objects by calling the format method in date or
time objects and passing it a DateTimeFormatter instance.

NOTE If you access Java’s source code, you’ll notice that the format and
parse methods in date and time classes simply call the format and parse
methods on a DateTimeFormatter instance.

PARSE DATE OR TIME OBJECTS USING DATETIMEFORMATTER

To parse a date or time object, you can use either the static parse method in date/
time objects or the instance parse method in the DateTimeFormatter class. Behind
the scenes, the parse method in date/time objects simply calls the parse method in
DateTimeFormatter. Table 4.6 lists the available parse methods.

EXAM TIP The parse methods are defined as static methods in the classes
LocalDate, LocalTime, and LocalDateTime. The class DateTimeFormatter
defines the parse method as an instance method.

Table 4.6 parse methods in the classes LocalDate, LocalTime, LocalDateTime, and Date-
TimeFormatter

Defined in Return type Method signature and description

LocalDate LocalDate parse(CharSequence)
Creates a LocalDate instance using a text
string such as 2057-08-11, parsed using
DateTimeFormatter.ISO_LOCAL_DATE

LocalDate LocalDate parse(CharSequence,
DateTimeFormatter)
Creates a LocalDate instance, parsing text
using the specified formatter

LocalTime LocalTime parse(CharSequence)
Creates a LocalTime instance using a text
string such as 14:40, parsed using Date-
TimeFormatter.ISO_LOCAL_TIME

LocalTime LocalTime parse(CharSequence,
DateTimeFormatter)
Creates a LocalTime instance, parsing text
using the specified formatter

LocalDateTime LocalDateTime parse(CharSequence)
Creates a LocalDateTime instance using a
text string such as 2057-08-11T14:40, parsed
using DateTimeFormatter.ISO_LOCAL
_DATE_TIME

297Summary
EXAM TIP When calling parse on LocalDate, LocalTime, or LocalDateTime
instances, you might not specify a formatter. In this case DateTimeFormat-
ter.ISO_LOCAL_DATE, DateTimeFormatter.ISO_LOCAL_TIME, and DateTime-
Formatter.ISO_LOCAL_DATE_TIME are used to parse text, respectively.

Let’s work with the method parse of LocalDate, LocalTime, or LocalDateTime to
parse a string value using a DateTimeFormatter, producing a date or time object:

DateTimeFormatter d1 = DateTimeFormatter.ofPattern("yyyy-MM-dd");
LocalDate date = LocalDate.parse("2057-01-29", d1);

The following line throws a DateTimeParseException because this mechanism works
only if all components are present. For example, the pattern yyyy-MM-dd with “2057-
01-29” works fine. The component order doesn’t matter; hence, using dd-yyyy-MM to
parse “29-2057-01” works too and yields January 29, 2057 as well:

DateTimeFormatter d1 = DateTimeFormatter.ofPattern("yyyy");
LocalDate date = LocalDate.parse("2057", d1);

Similarly, you can call the parse method to create instances of LocalTime and Local-
DateTime.

4.7 Summary
In this chapter, you learned about the String class, its properties, and its methods.
Because this is one of the most frequently used classes in Java, I’ll reiterate that a good
understanding of this class in terms of why its methods behave in a particular manner
will go a long way toward helping you successfully complete the OCA Java SE 8 Pro-
grammer I exam.

 You learned how to initialize String variables using the operator new and the
assignment operator (=) with String literals. You also learned the differences between
how String objects are stored using these two approaches. If you use the assignment
operator to initialize your String variables, they’re stored in a common pool of
String objects (also known as the String constant pool) that can be used by others.

LocalDateTime LocalDateTime parse(CharSequence,
DateTimeFormatter)
Creates a LocalDateTime instance, pars-
ing text using the specified formatter

DateTimeFormatter TemporalAccessor parse(CharSequence)
Parses text using the rules of DateTime-
Formatter, returning a temporal object

Table 4.6 parse methods in the classes LocalDate, LocalTime, LocalDateTime, and Date-
TimeFormatter

Defined in Return type Method signature and description

298 CHAPTER 4 Selected classes from the Java API and arrays
This storage is possible because String objects are immutable—that is, their values
can’t be changed.

 You learned how a char array is used to store the value of a String object. This
helps explain why the methods charAt(), indexOf(), and substring() search for the
first character of a String at position 0, not position 1. We also reviewed the methods
replace(), trim(), and substring(), which seem to modify the value of a String but
will never be able to do so because String objects are immutable. You also learned the
methods length(), startsWith(), and endsWith().

 Because not all operators can be used with Strings, you learned about the ones
that can be used with String: +, +=, ==, and !=. You also learned that the equality of
Strings can be determined using the method equals. By using the operator ==, you
can only determine whether both of the variables are referring to the same object; it
doesn’t compare the values stored by Strings. As with all the other object types, you
can assign null to a String variable.

 You worked with the class StringBuilder, which is defined in the package
java.lang and is used to store a mutable sequence of characters. The class String-

Builder is usually used to store a sequence of characters that needs to be modified
often—such as when you’re building a query for database applications. Like the String

class, StringBuilder also uses a char array to store its characters. Many of the meth-
ods defined in the class StringBuilder work exactly as defined by the class String,
such as the methods charAt, indexOf, substring, and length. The append method is
used to add characters to the end of a StringBuilder object. The insert method is
another important StringBuilder method that’s used to insert either single or multi-
ple characters at a specified position in a StringBuilder object. The class String-

Builder offers the same functionality as offered by the class StringBuffer, minus the
additional feature of methods that are synchronized where needed.

 An array is an object that stores a collection of values. An array can store a collec-
tion of primitive data types or a collection of objects. You can define one-dimensional
and multidimensional arrays. A one-dimensional array is an object that refers to a col-
lection of scalar values. A two-dimensional (or more) array is referred to as a multidi-
mensional array. A two-dimensional array refers to a collection of objects, where each
of the objects is a one-dimensional array. Similarly, a three-dimensional array refers to
a collection of two-dimensional arrays, and so on. Arrays can be declared, allocated,
and initialized in a single step or in multiple steps. A two-dimensional array doesn’t
need to be symmetrical, and each of its rows can define different numbers of mem-
bers. You can define arrays of primitives, interfaces, abstract classes, and concrete
classes. All arrays are objects and can access the variable length and methods inher-
ited from the class java.lang.Object.

ArrayList is a resizable array that offers the best combination of features offered
by an array and the List data structure. You can add objects to an ArrayList using the
method add. You can access the objects of an ArrayList by using an enhanced for

loop or by using the get() method or an iterator. An ArrayList preserves the order

299Review notes
of insertion of its elements. ListIterator, Iterator, and the enhanced for loop will
return the elements in the order in which they were added to the ArrayList. You can
modify the elements of an ArrayList using the method set. You can remove the ele-
ments of an ArrayList by using the method remove, which accepts the element posi-
tion or an object. You can also add multiple elements to an ArrayList by using the
method addAll. The method clone defined in the class ArrayList returns a shallow
copy of this ArrayList instance. Shallow copy means that the method creates a new
instance of the ArrayList to be cloned, but the ArrayList elements aren’t copied.

 You can compare the objects of your class by overriding the equals method. The
equals method is defined in the class java.lang.Object, which is the base class of all
classes in Java. The default implementation of the method equals only compares the
object references for equality. Because instance variables are used to store the state of
an object, it’s common to compare the values of these variables to determine whether
two objects should be considered equal in the equals method. The Java API docu-
mentation defines a contract for the equals method. In the exam, for a given defini-
tion of the method equals, it is important to note the differences between an equals

method that compiles successfully, one that fails compilation, and one that doesn’t fol-
low the contract.

 The Date and Time API in Java 8 simplifies how you work with the date and time
classes. You worked with LocalDate, which is used to store only dates of the format
2016-08-14. LocalTime stores time in the format 14:09:65:23 (hours:minutes:seconds
:nanoseconds). The class LocalDateTime stores both date and time. The class Period

is used to work with a duration of, say, a period of 4 months or 4 days. The class Date-
TimeFormatter is used to format date and time using a predefined or custom format.

4.8 Review notes
This section lists the main points covered in this chapter.

 The class String:

■ The class String represents an immutable sequence of characters.
■ A String variable can be initialized by using the operator new or by using the

assignment operator with String literal values.
■ String objects created using a String literal without the new operator are

placed in a pool of String objects. Whenever the JRE receives a new request to
initialize a String variable using the assignment operator, it checks whether a
String object with the same value already exists in the pool. If one is found, it
returns the object reference for the existing String object from the pool.

■ String objects created using the operator new are never placed in the pool of
String objects.

■ The comparison operator (==) compares String references, whereas the equals

method compares the String values.
■ None of the methods defined in the class String can modify its value.

300 CHAPTER 4 Selected classes from the Java API and arrays
■ The method charAt(int index) retrieves a character at a specified index of a
String.

■ The method indexOf can be used to search a String for the occurrence of a
char or a String, starting from the first position or a specified position.

■ The method substring can be used to retrieve a portion of a String object.
The substring method doesn’t include the character at the end position.

■ The trim method will return a new String by removing all the leading and
trailing white spaces from a String. This method doesn’t remove any white
space within a String.

■ You can use the method length to retrieve the length of a String.
■ The method startsWith determines whether a String starts with a specified

String.
■ The method endsWith determines whether a String ends with a specified

String.
■ It’s a common practice to use multiple String methods in a single line of code.

When chained, the methods are evaluated from left to right.
■ You can use the concatenation operators + and += and comparison operators !=

and == with String objects.
■ The Java language provides special support for concatenating String objects by

using the operators + and +=.
■ The right technique for comparing two String values for equality is to use the

method equals defined in the String class. This method returns a true value if
the object being compared isn’t null and is a String object that represents the
same sequence of characters as the object to which it’s being compared.

■ The comparison operator == determines whether both of the reference vari-
ables are referring to the same String objects. Hence, it’s not the right opera-
tor for comparing String values.

The class StringBuilder:

■ The class StringBuilder is defined in the package java.lang and represents a
mutable sequence of characters.

■ The StringBuilder class is very efficient when a user needs to modify a
sequence of characters often. Because it’s mutable, the value of a String-

Builder object can be modified without the need to create a new String-

Builder object.
■ A StringBuilder object can be created using its constructors, which can accept

either a String object, another StringBuilder object, an int value to specify
the capacity of StringBuilder, or nothing.

■ The methods charAt, indexOf, substring, and length defined in the class
StringBuilder work in the same way as methods with the same names defined
in the class String.

301Review notes
■ The append method adds the specified value at the end of the existing value of
a StringBuilder object.

■ The insert method enables you to insert characters at a specified position in a
StringBuilder object. The main difference between the append and insert

methods is that the insert method enables you to insert the requested data at a
particular position, whereas the append method allows you to add the requested
data only at the end of the StringBuilder object.

■ The method delete removes the characters in a substring of the specified
StringBuilder. The method deleteCharAt removes the char at the specified
position.

■ Unlike the class String, the class StringBuilder doesn’t define the method
trim.

■ The method reverse reverses the sequence of characters of a StringBuilder.
■ The replace method in the class StringBuilder replaces a sequence of charac-

ters, identified by their position, with another String.
■ In addition to using the method substring, you can also use the method sub-

Sequence to retrieve a subsequence of a StringBuilder object.

Arrays:

■ An array is an object that stores a collection of values.
■ An array itself is an object.
■ An array can store two types of data—a collection of primitive data types and a

collection of objects.
■ You can define one-dimensional and multidimensional arrays.
■ A one-dimensional array is an object that refers to a collection of scalar values.
■ A two-dimensional (or more) array is referred to as a multidimensional array.
■ A two-dimensional array refers to a collection of objects, in which each of the

objects is a one-dimensional array.
■ Similarly, a three-dimensional array refers to a collection of two-dimensional

arrays, and so on.
■ Multidimensional arrays may or may not contain the same number of elements

in each row or column.
■ The creation of an array involves three steps: declaration of an array, allocation

of an array, and initialization of array elements.
■ An array declaration is composed of an array type, a variable name, and one or

more occurrences of [].
■ Square brackets can follow either the variable name or its type. In the case of

multidimensional arrays, it can follow both of them.
■ An array declaration creates a variable that refers to null.
■ Because no elements of an array are created when it’s declared, it’s invalid to

define the size of an array with its declaration.

302 CHAPTER 4 Selected classes from the Java API and arrays
■ Array allocation allocates memory for the elements of an array. When you allo-
cate memory for an array, you must specify its dimensions, such as the number
of elements the array should store.

■ Because an array is an object, it’s allocated using the keyword new, followed by
the type of value that it stores, and then its size.

■ Once allocated, all the array elements store their default values. Elements of an
array that store objects refer to null. Elements of an array that store primitive
data types store 0 for integer types (byte, short, int, long), 0.0 for decimal
types (float and double), false for boolean, or /u0000 for char data.

■ To access an element in a two-dimensional array, use two array position values.
■ You can combine all the steps of array declaration, allocation, and initialization

into a single step.
■ When you combine array declaration, allocation, and initialization in a single

step, you can’t specify the size of the array. The size of the array is calculated by
the number of values that are assigned to the array.

■ You can declare and allocate an array but choose not to initialize its elements
(for example, int[] a = new int[5];).

■ The Java compiler doesn’t check the range of the index positions at which you
try to access an array element. The code throws an ArrayIndexOutOfBounds-

Exception exception if the requested index position doesn’t fall in the valid
range at runtime.

■ A multidimensional array can be asymmetrical; it may or may not define the
same number of columns for each of its rows.

■ The type of an array can also be an interface or abstract class. Such an array
can be used to store objects of classes that inherit from the interface type or
the abstract class type.

■ The type of an array can also be java.lang.Object. Because all classes extend
the java.lang.Object class, elements of this array can refer to any object.

■ All the arrays are objects and can access the variable length, which specifies the
number or components stored by the array.

■ Because all arrays are objects, they inherit and can access all methods from the
class Object.

ArrayList:

■ ArrayList is one of the most widely used classes from the Collections frame-
work. It offers the best combination of features offered by an array and the List
data structure.

■ An ArrayList is like a resizable array.
■ Unlike arrays, you may not specify an initial size to create an ArrayList.
■ ArrayList implements the interface List and allows null values to be added to it.
■ ArrayList implements all list operations (add, modify, and delete values).

303Review notes
■ ArrayList allows duplicate values to be added to it and maintains its inser-
tion order.

■ You can use either Iterator or ListIterator or an enhanced for loop to iter-
ate over the items of an ArrayList.

■ ArrayList supports generics, making it type safe.
■ Internally, an array of type java.lang.Object is used to store the data in an

ArrayList.
■ You can add a value to an ArrayList either at its end or at a specified position

by using the method add.
■ An iterator (Iterator or ListIterator) lets you remove elements as you iter-

ate through an ArrayList. It’s not possible to remove elements from an Array-

List while iterating through it using a for loop.
■ An ArrayList preserves the order of insertion of its elements. ListIterator

and the enhanced for loop will return the elements in the order in which they
were added to the ArrayList.

■ You can use the method set to modify an ArrayList by either replacing an
existing element in ArrayList or modifying its existing values.

■ remove(int) removes the element at the specified position in the list.
■ remove(Object o) removes the first occurrence of the specified element from

the list, if it’s present.
■ You can add multiple elements to an ArrayList from another ArrayList or any

other class that’s a subclass of Collection by using the method addAll.
■ You can remove all the ArrayList elements by calling the method clear on it.
■ get(int index) returns the element at the specified position in the list.
■ size() returns the number of elements in the list.
■ contains(Object o) returns true if the list contains the specified element.
■ indexOf(Object o) returns the index of the first occurrence of the specified

element in the list, or –1 if the list doesn’t contain the element.
■ lastIndexOf(Object o) returns the index of the last occurrence of the speci-

fied element in the list, or –1 if the list doesn’t contain the element.
■ The method clone defined in the class ArrayList returns a shallow copy of this

ArrayList instance. Shallow copy means that the method creates a new instance
of the ArrayList to be cloned, but the ArrayList elements aren’t copied.

■ You can use the method toArray to return an array containing all the elements
in ArrayList in sequence from the first to the last element.

Comparing objects for equality:

■ Any Java class can define a set of rules to determine whether two objects should
be considered equal.

■ The method equals is defined in the class java.lang.Object. All the Java
classes directly or indirectly inherit this class.

304 CHAPTER 4 Selected classes from the Java API and arrays
■ The default implementation of the equals method only checks whether two
object variables refer to the same object.

■ Because instance variables are used to store the state of an object, it’s common
to compare the values of the instance variables to determine whether two
objects should be considered equal.

■ When you override the equals method in your class, make sure that you use the
correct method signature for the equals method.

■ The Java API defines a contract for the equals method, which should be taken
care of when you implement the method in any of your classes.

■ According to the contract of the method equals, if a null value is passed to it,
the method equals should return false.

■ If the equals method modifies the value of any of the instance variables of the
method parameter passed to it, or of the object on which it is called, it will vio-
late the contract.

LocalDate:

■ LocalDate can be used to store dates like 2015-12-27 without time or time zones.
■ LocalDate instances are immutable.
■ The LocalDate constructor is marked private.
■ Use LocalDate’s overloaded static method of() to instantiate it:

– public static LocalDate of(int year, int month, int dayOfMonth)

– public static LocalDate of(int year, Month month, int dayOfMonth)

■ The of() methods will throw a DateTimeException when values passed to it are
out of range.

■ In date classes released with Java 8, the January month is represented by int

value 1 and not 0. The date classes defined with or prior to Java 7 represent Jan-
uary using 0.

■ LocalDate’s static method now() returns the current date from the system clock
as a LocalDate instance.

■ Use LocalDate’s static method parse() to parse a string in the format 2016-02-
27 to instantiate LocalDate.

■ If you pass invalid values to parse() or of(), you’ll get a DateTimeParse-

Exception. The format of the string passed to parse() must be exactly of the
format 9999-99-99. The month and date values passed to parse() must be of
two digits; a single digit is considered an invalid value. For days and months
with a value 1–9, pass 01–09.

■ You can use LocalDate’s instance methods like getXX() to query LocalDate on
its year, month, and date values:

– getDayOfMonth()

– getDayOfWeek()

– getDayOfYear()

305Review notes
– getMonth()

– getMonthValue()

– getYear()

■ LocalDate’s instance minusXX() methods return a copy of its value after sub-
tracting the specified days, months, weeks, or years from it:

– minusDays()

– minusMonths()

– minusWeeks()

– minusYears()

■ LocalDate is immutable. All the methods that seem to manipulate its value
return a copy of the LocalDate instance on which it’s called.

■ The plusXX() methods return a copy of LocalDate’s value after adding the speci-
fied days, months, or year to it:

– plusDays()

– plusMonths()

– plusWeeks()

– plusYears()

■ The withXX() methods return a copy of LocalDate’s value replacing the speci-
fied day, month, or year in it:

– withDayOfMonth()

– withDayOfYear()

– withMonth()

– withYear()

■ All additions, subtractions, or replacements to LocalDate consider leap years.
■ Despite the verbs used in the previous methods (add, subtract, replace), none of

them actually modifies an existing LocalDate—all of them return a new instance
with the requested changes applied.

■ The LocalDate class defines overloaded atTime() instance methods. These
methods combine LocalDate with time to create and return LocalDateTime,
which stores both the date and time.

■ Use the method toEpochDay() to convert LocalDate to the epoch date—the
count of days from January 1, 1970.

LocalTime:

■ It stores time in the format hours-minutes-seconds (without a time zone).
■ It stores time to nanosecond precision.
■ LocalTime is immutable.
■ You can instantiate LocalTime using LocalTime’s static method of() that accepts

hours, minutes, seconds, and nanoseconds.
■ The of() method uses a 24-hour clock to specify the hour value.

306 CHAPTER 4 Selected classes from the Java API and arrays
■ The of() method will throw a runtime exception, DateTimeException, if you
pass an invalid range of values to it.

■ LocalTime doesn’t define a method to pass a.m. or p.m. Use values 0–23 to
define hours. If you pass out-of-range values to either hours, minutes, or sec-
onds, you’ll get a runtime exception.

■ To get the current time from the system clock, use the static method now().
■ You can parse a string to instantiate LocalTime by using its static method

parse(). You can either pass a string in the format 15:08:23 (hours:minutes:sec-
onds) or parse any text using DateTimeFormatter.

■ If you pass invalid string values to parse(), the code will compile but will throw
a runtime exception. If you don’t pass a DateTimeFormatter, the format of the
string passed to parse() must be exactly of the format 99:99:99. The hours and
minutes values passed to parse() must be of two digits; a single digit is consid-
ered an invalid value. For hours and minutes with a value 0–9, pass 00–09.

■ You can use constants from the LocalTime class to work with predefined times:
– LocalTime.MIN—Minimum supported time, that is, 00:00
– LocalTime.MAX—Maximum supported time, that is, 23:59:59.999999999
– LocalTime.MIDNIGHT—Time when day starts, that is, 00:00
– LocalTime.NOON—Noontime, that is, 12:00

■ You can use instance methods like getXX() to query LocalTime on its hour,
minutes, seconds, and nanoseconds. All these methods return an int value.

■ The correct method names to query LocalTime are getHour(), getMinute(), get-
Second(), and getNano(). Watch out for exam questions that use invalid method
names like getHours(), getMinutes(), getSeconds(), or getNanoSeconds().

■ You can use the instance methods isAfter() and isBefore() to check whether
a time is after or before the specified time.

■ You can use the instance methods minusHours(), minusMinutes(), minusSec-

onds(), and minusNanos() to create and return a copy of LocalTime instances
with the specified period subtracted.

■ Unlike the getXXX() methods, the minusXXX() methods use the plural form:
getHour() versus minusHours(), getMinute() versus minusMinutes(), getSec-

ond() versus minusSeconds(), and getNano() versus minusNanos().
■ The plusHours(), plusMinutes(), plusSeconds(), and plusNanos() methods

accept long values and add the specified hours, minutes, seconds, or nanosec-
onds to time, returning its copy as LocalTime.

■ LocalTime is immutable. Calling any method on an instance won’t modify
its value.

■ The withHour(), withMinute(), withSecond(), and withNano() methods accept
an int value and return a copy of LocalTime with the specified value altered.

■ The class LocalTime defines the method atDate(), which can be passed a Local-
Date instance to create a LocalDateTime instance.

307Review notes
LocalDateTime:

■ LocalDateTime stores a value like 2050-06-18T14:20:30:908765 (year-month-
dayThours:minutes:seconds:nanoseconds).

■ The LocalDateTime class uses the letter T to separate date and time values in its
printed value.

■ You can consider this class to offer the functionality of both the LocalDate and
LocalTime classes. This class defines similar methods as those defined by the
LocalDate and LocalTime classes.

Period:

■ The Period class represents a date-based amount in years, months, and days,
like 2 years, 5 months, and 10 days. To work with time-based amounts in sec-
onds and nanoseconds, you can use the Duration class.

■ You can add or subtract Period instances from LocalDate and LocalDateTime

classes.
■ Period is an immutable class.
■ The Period class defines multiple factory methods to create its instances. The

static methods of(), ofYears(), ofMonths(), ofWeeks(), and ofDays() accept
int values to create periods of years, months, weeks, or days.

■ A Period of 35 days is not stored as 1 month and 5 days. Its individual elements,
that is, days, months, and years, are stored the way it is initialized.

■ You can define positive or negative periods of time. You can define Period

instances representing 15 or -15 days.
■ You can also parse a string to instantiate Period by using its static method

parse. This method parses string values of the format PnYnMnD or PnW, where
n represents a number and the letters (P, Y, M, D, and W) represent parse, year,
month, day, and week. These letters can exist in lower- or uppercase. Each
string must start with the letter p or P and must include at least one of the four
sections, that is, year, month, week, or day.

■ If you pass invalid string values to parse(), the code will compile but will throw
a runtime exception.

■ You can also use the static method between(LocalDate dateInclusive, Local-
Date dateExclusive) to instantiate Period.

■ The static method between accepts two LocalDate instances and returns a
Period instance representing number of years, days, and months between the
two dates. The first date is included, but the second date is excluded in the
returned Period.

■ The Period class implements the interface TemporalAmount, so it can be used
with the methods plus() and minus() defined in the classes LocalDateTime

and LocalDate.

308 CHAPTER 4 Selected classes from the Java API and arrays
■ Because Period instances can represent positive or negative periods (like 15
days or -15 days), you can subtract days from a LocalDate or LocalDateTime by
calling the method plus.

■ Similarly, you can use the method minus() with classes LocalDate and Local-
DateTime to subtract a period of years, months, weeks, or days.

■ You can use the instance methods getYears(), getMonths(), and getDays() to
query a Period instance on its years, months, and days. All these methods
return an int value.

■ When you initialize a Period instance with days more than 31 or months more
than 12, it doesn’t recalculate its years, months, or days components.

■ You can query whether any of three units of a Period is negative using the
methods isNegative and isZero. A Period instance is negative if all three of its
units are zero.

■ You can use instance methods minus(TemporalAmount), minusDays(long),
minusMonths(long), minusYears(long), and multipliedBy(int) to create and
return a copy of Period instances with the specified period subtracted or modified.

■ In the class Period, both the getXXX() methods and minusXXX() methods use
the plural form: getYears(), minusHours().

■ When you subtract a Period instance using the minusXXX() methods, its indi-
vidual elements are subtracted. Subtracting P10D from P1M returns P1M-10D
and not P20D.

■ The method multipliedBy(int) in the class Period is used to modify all ele-
ments of a Period instance. Period doesn’t define divideBy.

■ Adding a Period of 10 months to a Period of 5 months gives 15 months, not 1
year and 3 months.

■ The method toTotalMonths() returns the total number of months in the period
by multiplying the number of years by 12 and adding the number of months.

DateTimeFormatter

■ Defined in the package java.time.format, the class DateTimeFormatter can
be used to format and parse date and time objects.

■ A DateTimeFormatter can define rules to format or parse a date object, time
object, or both.

■ You can instantiate or access a DateTimeFormatter object in multiple ways:

– By calling a static ofXXX method, passing it a FormatStyle value
– By accessing public static fields of DateTimeFormatter

– By using a static method ofPattern and passing it a string value

■ To instantiate a DateTimeFormatter using ofXXX methods, pass it a Format-

Style value (FormatStyle.FULL, FormatStyle.LONG, FormatStyle.MEDIUM, or
FormatStyle.SHORT).

309Sample exam questions
■ You can access a DateTimeFormatter object by using the public and static fields
of this class: BASIC_ISO_DATE, ISO_DATE, ISO_TIME, and ISO_DATE_TIME.

■ The method format in DateTimeFormatter formats a date or time object to a
String using the rules of the formatter.

■ To parse a date or time object, you can use either the parse method in date/
time objects or the parse method in the DateTimeFormatter class.

4.9 Sample exam questions

Q4-1. What is the output of the following code?

class EJavaGuruArray {
 public static void main(String args[]) {
 int[] arr = new int[5];
 byte b = 4; char c = 'c'; long longVar = 10;
 arr[0] = b;
 arr[1] = c;
 arr[3] = longVar;
 System.out.println(arr[0] + arr[1] + arr[2] + arr[3]);
 }
}

a 4c010

b 4c10

c 113

d 103

e Compilation error

Q4-2. What is the output of the following code?

class EJavaGuruArray2 {
 public static void main(String args[]) {
 int[] arr1;
 int[] arr2 = new int[3];
 char[] arr3 = {'a', 'b'};
 arr1 = arr2;
 arr1 = arr3;
 System.out.println(arr1[0] + ":" + arr1[1]);
 }
}

a 0:0

b a:b

c 0:b

d a:0
e Compilation error

310 CHAPTER 4 Selected classes from the Java API and arrays
Q4-3. Which of the following are valid lines of code to define a multidimensional
int array?

a int[][] array1 = {{1, 2, 3}, {}, {1, 2,3, 4, 5}};
b int[][] array2 = new array() {{1, 2, 3}, {}, {1, 2,3, 4, 5}};
c int[][] array3 = {1, 2, 3}, {0}, {1, 2,3, 4, 5};
d int[][] array4 = new int[2][];

Q4-4. Which of the following statements are correct?

a The following code executes without an error or exception:

ArrayList<Long> lst = new ArrayList<>();
lst.add(10);

b Because ArrayList stores only objects, you can’t pass an element of an Array-

List to a switch construct.
c Calling clear() or remove() on an ArrayList will remove all its elements.
d If you frequently add elements to an ArrayList, specifying a larger capacity will

improve the code efficiency.
e Calling the method clone() on an ArrayList creates its shallow copy; that is, it

doesn’t clone the individual list elements.

Q4-5. Which of the following statements are correct?

a An ArrayList offers a resizable array, which is easily managed using the meth-
ods it provides. You can add and remove elements from an ArrayList.

b Values stored by an ArrayList can be modified.
c You can iterate through elements of an ArrayList using a for loop, Iterator,

or ListIterator.
d An ArrayList requires you to specify the total number of elements before you

can store any elements in it.
e An ArrayList can store any type of object.

Q4-6. What is the output of the following code?

import java.util.*; // line 1
class EJavaGuruArrayList { // line 2
 public static void main(String args[]) { // line 3
 ArrayList<String> ejg = new ArrayList<>(); // line 4
 ejg.add("One"); // line 5
 ejg.add("Two"); // line 6
 System.out.println(ejg.contains(new String("One"))); // line 7
 System.out.println(ejg.indexOf("Two")); // line 8
 ejg.clear(); // line 9
 System.out.println(ejg); // line 10

311Sample exam questions
 System.out.println(ejg.get(1)); // line 11
 } // line 12
} // line 13

a Line 7 prints true.
b Line 7 prints false.
c Line 8 prints -1.
d Line 8 prints 1.
e Line 9 removes all elements of the list ejg.
f Line 9 sets the list ejg to null.
g Line 10 prints null.
h Line 10 prints [].
i Line 10 prints a value similar to ArrayList@16356.
j Line 11 throws an exception.
k Line 11 prints null.

Q4-7. What is the output of the following code?

class EJavaGuruString {
 public static void main(String args[]) {
 String ejg1 = new String("E Java");
 String ejg2 = new String("E Java");
 String ejg3 = "E Java";
 String ejg4 = "E Java";
 do
 System.out.println(ejg1.equals(ejg2));
 while (ejg3 == ejg4);
 }
}

a true printed once
b false printed once
c true printed in an infinite loop
d false printed in an infinite loop

Q4-8. What is the output of the following code?

class EJavaGuruString2 {
 public static void main(String args[]) {
 String ejg = "game".replace('a', 'Z').trim().concat("Aa");
 ejg.substring(0, 2);
 System.out.println(ejg);
 }
}

a gZmeAZ

b gZmeAa

312 CHAPTER 4 Selected classes from the Java API and arrays
c gZm

d gZ

e game

Q4-9. What is the output of the following code?

class EJavaGuruString2 {
 public static void main(String args[]) {
 String ejg = "game";
 ejg.replace('a', 'Z').trim().concat("Aa");
 ejg.substring(0, 2);
 System.out.println(ejg);
 }
}

a gZmeAZ

b gZmeAa

c gZm

d gZ

e game

Q4-10. What is the output of the following code?

class EJavaGuruStringBuilder {
 public static void main(String args[]) {
 StringBuilder ejg = new StringBuilder(10 + 2 + "SUN" + 4 + 5);
 ejg.append(ejg.delete(3, 6));
 System.out.println(ejg);
 }
}

a 12S512S5

b 12S12S

c 1025102S

d Runtime exception

Q4-11. What is the output of the following code?

class EJavaGuruStringBuilder2 {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("123456");
 sb1.subSequence(2, 4);
 sb1.deleteCharAt(3);
 sb1.reverse();
 System.out.println(sb1);
 }
}

313Answers to sample exam questions
a 521

b Runtime exception
c 65321

d 65431

Q4-12. What is the output of the following code?

String printDate = LocalDate.parse("2057-08-11")
 .format(DateTimeFormatter.ISO_DATE_TIME);
System.out.println(printDate);

a August 11, 2057T00:00

b Saturday Aug 11,2057T00:00

c 08-11-2057T00:00:00

d Compilation error
e Runtime exception

4.10 Answers to sample exam questions

Q4-1. What is the output of the following code?

class EJavaGuruArray {
 public static void main(String args[]) {
 int[] arr = new int[5];
 byte b = 4; char c = 'c'; long longVar = 10;
 arr[0] = b;
 arr[1] = c;
 arr[3] = longVar;
 System.out.println(arr[0] + arr[1] + arr[2] + arr[3]);
 }
}

a 4c010
b 4c10
c 113
d 103
e Compilation error

Answer: e

Explanation: The code in this question won’t compile due to

arr[3] = longVar;

The preceding line of code tries to assign a value of type long to a variable of type int.
Because Java doesn’t support implicit narrowing conversions (for example, long to

314 CHAPTER 4 Selected classes from the Java API and arrays
int in this case), the assignment fails. Also, this code tries to trick you regarding your
understanding of the following:

■ Assigning a char value to an int array element (arr[1] = c)
■ Adding a byte value to an int array element (arr[0] = b)
■ Whether an unassigned int array element is assigned a default value (arr[2])

■ Whether arr[0] + arr[1] + arr[2] + arr[3] prints the sum of all these values
or a concatenated value

When answering questions in the OCA Java SE 8 Java Programmer I exam, be careful
about such tactics. If any of the answers lists a compilation error or a runtime excep-
tion as an option, look for obvious lines of code that could result in it. In this example,
arr[3] = longVar will result in a compilation error.

Q4-2. What is the output of the following code?

class EJavaGuruArray2 {
 public static void main(String args[]) {
 int[] arr1;
 int[] arr2 = new int[3];
 char[] arr3 = {'a', 'b'};
 arr1 = arr2;
 arr1 = arr3;
 System.out.println(arr1[0] + ":" + arr1[1]);
 }
}

a 0:0
b a:b
c 0:b

d a:0
e Compilation error

Answer: e

Explanation: Because a char value can be assigned to an int value, you might assume
that a char array can be assigned to an int array. But we’re talking about arrays of int
and char primitives, which aren’t the same as a primitive int or char. Arrays them-
selves are reference variables, which refer to a collection of objects of similar type.

Q4-3. Which of the following are valid lines of code to define a multidimensional
int array?

a int[][] array1 = {{1, 2, 3}, {}, {1, 2,3, 4, 5}};

b int[][] array2 = new array() {{1, 2, 3}, {}, {1, 2,3, 4, 5}};

c int[][] array3 = {1, 2, 3}, {0}, {1, 2,3, 4, 5};

d int[][] array4 = new int[2][];

315Answers to sample exam questions
Answer: a, d

Explanation: Option (b) is incorrect. This line of code won’t compile because new
array() isn’t valid code. Unlike objects of other classes, an array isn’t initialized using
the keyword new followed by the word array. When the keyword new is used to initial-
ize an array, it’s followed by the type of the array, not the word array.

 Option (c) is incorrect. To initialize a two-dimensional array, all of these values must
be enclosed within another pair of curly braces, as shown in the code in option (a).

Q4-4. Which of the following statements are correct?

a The following code executes without an error or exception:

ArrayList<Long> lst = new ArrayList<>();
lst.add(10);

b Because ArrayList stores only objects, you can’t pass element of an ArrayList

to a switch construct.
c Calling clear() or remove() on an ArrayList will remove all its elements.
d If you frequently add elements to an ArrayList, specifying a larger capacity will

improve the code efficiency.
e Calling the method clone() on an ArrayList creates its shallow copy; that is, it

doesn’t clone the individual list elements.

Answer: d, e

Explanation: Option (a) is incorrect. The default type of a non-floating numeric lit-
eral value is int. You can’t add an int to an ArrayList of type Long. You can pass val-
ues of type Long or long to its add method.

 Option (b) is incorrect. Starting with Java 7, switch also accepts variables of type
String. Because a String can be stored in an ArrayList, you can use elements of an
ArrayList in a switch construct.

 Option (c) is incorrect. Only clear() will remove all elements of an ArrayList.
 Option (d) is correct. An ArrayList internally uses an array to store all its elements.

Whenever you add an element to an ArrayList, it checks whether the array can
accommodate the new value. If it can’t, ArrayList creates a larger array, copies all the
existing values to the new array, and then adds the new value at the end of the array. If
you frequently add elements to an ArrayList, it makes sense to create an ArrayList

with a bigger capacity because the previous process isn’t repeated for each Array-

List insertion.
 Option (e) is correct. Calling clone() on an ArrayList will create a separate refer-

ence variable that stores the same number of elements as the ArrayList to be cloned.
But each individual ArrayList element will refer to the same object; that is, the indi-
vidual ArrayList elements aren’t cloned.

316 CHAPTER 4 Selected classes from the Java API and arrays
Q4-5. Which of the following statements are correct?

a An ArrayList offers a resizable array, which is easily managed using the meth-
ods it provides. You can add and remove elements from an ArrayList.

b Values stored by an ArrayList can be modified.
c You can iterate through elements of an ArrayList using a for loop, Iterator,

or ListIterator.
d An ArrayList requires you to specify the total elements before you can store

any elements in it.
e An ArrayList can store any type of object.

Answer: a, b, c, e

Explanation: Option (a) is correct. A developer may prefer using an ArrayList over
an array because it offers all the benefits of an array and a list. For example, you can
easily add or remove elements from an ArrayList.

 Option (b) is correct.
 Option (c) is correct. An ArrayList can be easily searched, sorted, and have its val-

ues compared using the methods provided by the Collection framework classes.
 Option (d) is incorrect. An array requires you to specify the total number of ele-

ments before you can add any element to it. But you don’t need to specify the total
number of elements that you may add to an ArrayList at any time in your code.

 Option (e) is correct.

Q4-6. What is the output of the following code?

import java.util.*; // line 1
class EJavaGuruArrayList { // line 2
 public static void main(String args[]) { // line 3
 ArrayList<String> ejg = new ArrayList<>(); // line 4
 ejg.add("One"); // line 5
 ejg.add("Two"); // line 6
 System.out.println(ejg.contains(new String("One"))); // line 7
 System.out.println(ejg.indexOf("Two")); // line 8
 ejg.clear(); // line 9
 System.out.println(ejg); // line 10
 System.out.println(ejg.get(1)); // line 11
 } // line 12
} // line 13

a Line 7 prints true.
b Line 7 prints false.
c Line 8 prints -1.
d Line 8 prints 1.
e Line 9 removes all elements of the list ejg.
f Line 9 sets ejg to null.
g Line 10 prints null.

317Answers to sample exam questions
h Line 10 prints [].
i Line 10 prints a value similar to ArrayList@16356.
j Line 11 throws an exception.
k Line 11 prints null.

Answer: a, d, e, h, j

Explanation: Line 7: The method contains accepts an object and compares it with
the values stored in the list. It returns true if the method finds a match and false oth-
erwise. This method uses the equals method defined by the object stored in the list.
In the example, the ArrayList stores objects of class String, which has overridden
the equals method. The equals method of the String class compares the values
stored by it. This is why line 7 returns the value true.

 Line 8: indexOf returns the index position of an element if a match is found; oth-
erwise, it returns -1. This method also uses the equals method behind the scenes to
compare the values in an ArrayList. Because the equals method in the class String

compares its values and not the reference variables, the indexOf method finds a
match in position 1.

 Line 9: The clear method removes all the individual elements of an ArrayList

such that an attempt to access any of the earlier ArrayList elements will throw a run-
time exception. It doesn’t set the ArrayList reference variable to null.

 Line 10: ArrayList has overridden the toString method such that it returns a list
of all its elements enclosed within square brackets. To print each element, the
toString method is called to retrieve its String representation.

 Line 11: The clear method removes all the elements of an ArrayList. An attempt
to access the (nonexistent) ArrayList element throws a runtime IndexOutOfBounds-

Exception exception.
 This question tests your understanding of ArrayList and determining the equality

of String objects.

Q4-7. What is the output of the following code?

class EJavaGuruString {
 public static void main(String args[]) {
 String ejg1 = new String("E Java");
 String ejg2 = new String("E Java");
 String ejg3 = "E Java";
 String ejg4 = "E Java";
 do
 System.out.println(ejg1.equals(ejg2));
 while (ejg3 == ejg4);
 }
}

a true printed once
b false printed once

318 CHAPTER 4 Selected classes from the Java API and arrays
c true printed in an infinite loop
d false printed in an infinite loop

Answer: c

Explanation: String objects that are created without using the new operator are placed
in a pool of Strings. Hence, the String object referred to by the variable ejg3 is
placed in a pool of Strings. The variable ejg4 is also defined without using the new
operator. Before Java creates another String object in the String pool for the vari-
able ejg4, it looks for a String object with the same value in the pool. Because this value
already exists in the pool, it makes the variable ejg4 refer to the same String object.
This, in turn, makes the variables ejg3 and ejg4 refer to the same String objects.
Hence, both of the following comparisons will return true:

■ ejg3 == ejg4 (compare the object references)
■ ejg3.equals(ejg4) (compare the object values)

Even though the variables ejg1 and ejg2 refer to different String objects, they define
the same values. So ejg1.equals(ejg2) also returns true. Because the loop condition
(ejg3==ejg4) always returns true, the code prints true in an infinite loop.

Q4-8. What is the output of the following code?

class EJavaGuruString2 {
 public static void main(String args[]) {
 String ejg = "game".replace('a', 'Z').trim().concat("Aa");
 ejg.substring(0, 2);
 System.out.println(ejg);
 }
}

a gZmeAZ

b gZmeAa

c gZm

d gZ

e game

Answer: b

Explanation: When chained, methods are evaluated from left to right. The first method
to execute is replace, not concat. Strings are immutable. Calling the method sub-
string on the reference variable ejg doesn’t change the contents of the variable ejg.
It returns a String object that isn’t referred to by any other variable in the code. In
fact, none of the methods defined in the String class modify the object’s own value.
They all create and return new String objects.

319Answers to sample exam questions
Q4-9. What is the output of the following code?

class EJavaGuruString2 {
 public static void main(String args[]) {
 String ejg = "game";
 ejg.replace('a', 'Z').trim().concat("Aa");
 ejg.substring(0, 2);
 System.out.println(ejg);
 }
}

a gZmeAZ

b gZmeAa

c gZm

d gZ

e game

Answer: e

Explanation: String objects are immutable. It doesn’t matter how many methods you
execute on a String object; its value won’t change. Variable ejg is initialized with the
String value "game". This value won’t change, and the code prints game.

Q4-10. What is the output of the following code?

class EJavaGuruStringBuilder {
 public static void main(String args[]) {
 StringBuilder ejg = new StringBuilder(10 + 2 + "SUN" + 4 + 5);
 ejg.append(ejg.delete(3, 6));
 System.out.println(ejg);
 }
}

a 12S512S5

b 12S12S

c 1025102S

d Runtime exception

Answer: a

Explanation: This question tests your understanding of operators, String, and
StringBuilder. The following line of code returns 12SUN45:

10 + 2 + "SUN" + 4 + 5

The + operator adds two numbers but concatenates the last two numbers. When
the + operator encounters a String object, it treats all the remaining operands as
String objects.

320 CHAPTER 4 Selected classes from the Java API and arrays
 Unlike the String objects, StringBuilder objects are mutable. The append and
delete methods defined in this class change its value. ejg.delete(3, 6) modifies the
existing value of the StringBuilder to 12S5. It then appends the same value to itself
when calling ejg.append(), resulting in the value 12S512S5.

Q4-11. What is the output of the following code?

class EJavaGuruStringBuilder2 {
 public static void main(String args[]) {
 StringBuilder sb1 = new StringBuilder("123456");
 sb1.subSequence(2, 4);
 sb1.deleteCharAt(3);
 sb1.reverse();
 System.out.println(sb1);
 }
}

a 521

b Runtime exception
c 65321

d 65431

Answer: c

Explanation: Like the method substring, the method subSequence doesn’t modify
the contents of a StringBuilder. Hence, the value of the variable sb1 remains
123456, even after the execution of the following line of code:

sb1.subSequence(2, 4);

The method deleteCharAt deletes a char value at position 3. Because the positions
are zero-based, the digit 4 is deleted from the value 123456, resulting in 12356. The
method reverse modifies the value of a StringBuilder by assigning to it the reverse
representation of its value. The reverse of 12356 is 65321.

Q4-12. What is the output of the following code?

String printDate = LocalDate.parse("2057-08-11")
 .format(DateTimeFormatter.ISO_DATE_TIME);
System.out.println(printDate);

a August 11, 2057T00:00

b Saturday Aug 11,2057T00:00

c 08-11-2057T00:00:00

d Compilation error
e Runtime exception

Answer: e

321Answers to sample exam questions
Explanation: The example code in this question calls LocalDate.parse(), passing it a
string value but no DateTimeFormatter instance. In this case, the text 2057-08-11 is
parsed using DateTimeFormatter.ISO_LOCAL_DATE. LocalDate.parse() returns a
LocalDate instance.

 The example code then calls the format method on a LocalDate instance, using
DateTimeFormatter.ISO_DATE_TIME. The code compiles successfully because the
format method accepts a DateTimeFormatter instance. But format() throws an excep-
tion at runtime because it tries to format a LocalDate instance using a formatter
(ISO_DATE_TIME) that defines rules for a date/time object. When no matching time
values are found in a LocalDate object, an exception is thrown.

EXAM TIP The parse method is defined as a static method in classes Local-
Date, LocalTime, and LocalDateTime. The class DateTimeFormatter defines
the method parse as an instance method. But format() is defined as an
instance method by all. The example code wouldn’t have compiled if the
order of calling parse() and format() was reversed:

String printDate = LocalDate.format(DateTimeFormatter.ISO_DATE_TIME)
 .parse("2057-08-11");

Flow control
Exam objectives covered in this chapter What you need to know

[3.3] Create if and if/else and ter-
nary constructs.

How to use if, if-else, if-else-if-else, and
nested if constructs.
The differences between using these if constructs with
and without curly braces {}.
How to use a ternary construct. How it compares with
if and if-else constructs.

[3.4] Use a switch statement. How to use a switch statement by passing the correct
type of arguments to the switch statement and case
and default labels.
The change in the code flow when break and return
statements are used in the switch statement.

[5.1] Create and use while loops. How to use the while loop, including determining when
to apply the while loop.

[5.2] Create and use for loops including
the enhanced for loop.

How to use for and enhanced for loops. The advan-
tages and disadvantages of the for loop and enhanced
for loop. Scenarios when you may not be able to use
the enhanced for loop.

[5.3] Create and use do/while loops. Creation and use of do-while loops. Every do-while
loop executes at least once, even if its condition evalu-
ates to false for the first iteration.
322

323Flow control
We all make multiple decisions on a daily basis, and we often have to choose from a
number of available options to make each decision. These decisions range from the
complex, such as selecting what subjects to study in school or which profession to
choose, to the simple, such as what food to eat or what clothes to wear. The option you
choose can potentially change the course of your life, in a small or big way. For exam-
ple, if you choose to study medicine at a university, you may become a research scien-
tist; if you choose fine arts, you may become a painter. But deciding whether to eat
pasta or pizza for dinner isn’t likely to have a huge impact on your life.

 You may also repeat particular sets of actions. These actions can range from eating
an ice cream cone every day, to phoning a friend until you connect, to passing exams
at school or university in order to achieve a desired degree. These repetitions can also
change the course of your life: you might relish having ice cream every day or enjoy
the benefits that come from earning a higher degree.

 In Java, the selection statements (if and switch) and looping statements (for,
enhanced for, while, and do-while) are used to define and choose among different
courses of action, as well as to repeat lines of code. You use these types of statements
to define the flow of control in code.

 In the OCA Java SE 8 Programmer I exam, you’ll be asked how to define and control
the flow in your code. To prepare you, I’ll cover the following topics in this chapter:

■ Creating and using if, if-else, ternary, and switch constructs to execute state-
ments selectively

■ Creating and using loops: while, do-while, for, and enhanced for

■ Creating nested constructs for selection and iteration statements
■ Comparing the do-while, while, for, and enhanced for loop constructs
■ Using break and continue statements

In Java, you can execute your code conditionally by using either the if or switch con-
struct. Let’s start with the if construct.

Exam objectives covered in this chapter What you need to know

[5.4] Compare loop constructs. The differences and similarities between for, enhanced
for, do-while, and while loops. Given a scenario or a
code snippet, knowing which is the most appropriate loop.

[5.5] Use break and continue. The use of break and continue statements.
A break statement can be used within loops and
switch statements. A continue statement can be
used only within loops.
The difference in the code flow when a break or
continue statement is used. Identify the right scenarios
for using break and continue statements.

324 CHAPTER 5 Flow control
5.1 The if, if-else, and ternary constructs

In this section, we’ll cover if, if-else, and ternary constructs. We’ll examine what
happens when these constructs are used with and without curly braces {}. We’ll also
cover nested if, if-else, and ternary constructs.

5.1.1 The if construct and its flavors

An if construct enables you to execute a set of statements in your code based on the
result of a condition. This condition must always evaluate to a boolean or a Boolean
value. You can specify a set of statements to execute when this condition evaluates
to true or false. (In many Java books, the terms constructs and statements are used
interchangeably.)

 Multiple flavors of the if statement are illustrated in figure 5.1:

■ if
■ if-else
■ if-else-if-else

In figure 5.1, condition1 and condition2 refer to a variable or an expression that must
evaluate to a boolean or a Boolean value; statement1, statement2, and statement3 refer to
either a single line of code or a code block.

EXAM TIP In Java, then isn’t a keyword, so it must not be used with the if
statement.

[3.3] Create if and if/else and ternary constructs

if

Yes

statement1

Yes No

statement1 statement2

condition1 = true? condition1 = true? condition1 = true?

if else-

statement2 statement3

condition2 = true?statement1

Yes No

Yes No

if else if-else- -

Figure 5.1 Multiple flavors of the if statement: if, if-else, and if-else-if-else

325The if, if-else, and ternary constructs
Let’s look at the use of the if statement flavors by first defining a set of variables:
score, result, name, and file, as follows:

int score = 100;
String result = "";
String name = "Lion";
java.io.File file = new java.io.File("F");

Figure 5.2 shows the use of if, if-else, and if-else-if-else constructs and com-
pares them by showing the code side by side.

Let’s quickly go through the code used in figure 5.2’s if, if-else, and if-else-if-else

statements. In the following example code, if the condition name.equals("Lion")

evaluates to true, a value of 200 is assigned to the variable score:

if (name.equals("Lion"))
 score = 200;

In the following example, if the condition name.equals("Lion") evaluates to true, a
value of 200 is assigned to the variable score. If this condition were to evaluate to
false, a value of 300 would be assigned to the variable score:

if (name.equals("Lion"))
 score = 200;
else
 score = 300;

In the following example, if score is equal to 100, the variable result is assigned a
value of A. If score is equal to 50, the variable result is assigned a value of B. If score

if

if (name.equals("Lion"))

score = 200;

if (name.equals("Lion"))

score = 200;

else

score = 300;

if else-

if (score == 100)

result = "A";

else if (score == 50)

result = "B";

else if (score == 10)

result = "C";

else

result = "F";

if else if else-- -

Figure 5.2 Multiple flavors of if statements implemented in code

Example of
if construct

Example of if-else
construct

326 CHAPTER 5 Flow control
is equal to 10, the variable result is assigned a value of C. If score doesn’t match any
of 100, 50, or 10, a value of F is assigned to the variable result. An if-else-if-else

construct can use different conditions for all its if constructs:

if (score == 100)
 result = "A";
else if (score == 50)
 result = "B";
else if (score == 10)
 result = "C";
else
 result = "F";

NOTE Chapters in this book use the code style that you’re likely to see on the
exam. The exam code style often includes practices that aren’t recommended
on real projects, like poorly indented code or skipping usage of braces for
brevity. This book doesn’t encourage you to use such obscure coding prac-
tices. Please write code that’s easy to read, comprehend, and maintain.

Figure 5.3 illustrates the preceding code and makes several points clear:

■ The last else statement is part of the last if construct, not any of the if con-
structs before it.

■ The if-else-if-else is an if-else construct in which the else part defines
another if construct. A few other programming languages, such as Python and
Shell Script, use elif; Perl and Ruby use elsif; and VB uses ElseIf to define
if-else-if constructs. If you’ve programmed with any of these languages, note
the difference in Java. The following code is equal to the preceding code:

if (score == 100)
 result = "A";

Condition 1 ->
score == 100

Condition 2 ->
score == 50

Condition 3 ->
score == 10

If none of previous conditions evaluates
to true, execute else statement

result = "A" score == 50?

score == 100?

Yes No

result = "B" score == 10?

Yes No

result = "C" result = "F"

Yes No

Figure 5.3 Execution of the
if-else-if-else code

327The if, if-else, and ternary constructs
else
 if (score == 50)
 result = "B";
 else
 if (score == 10)
 result = "C";
 else
 result="F";

Again, note that none of the preceding if constructs use then to define the code to
execute if a condition evaluates to true. Unlike other programming languages, then
isn’t a keyword in Java and isn’t used with the if construct.

EXAM TIP The if-else-if-else is an if-else construct in which the else
part defines another if construct.

The boolean expression used as a condition for the if construct can also include an
assignment operation. The following Twist in the Tale exercise throws in a twist by
modifying the value of a variable that the if statement is comparing. Let’s see if you
can answer it correctly (answer in the appendix).

Modify the code used in the preceding example as follows. What is the output of
this code?

String result = "1";
int score = 10;
if ((score = score+10) == 100)
 result = "A";
else if ((score = score+29) == 50)
 result = "B";
else if ((score = score+200) == 10)
 result = "C";
else
 result = "F";
System.out.println(result + ":" + score);

a A:10

b C:10

c A:20

d B:29

e C:249

f F:249

Twist in the Tale 5.1

328 CHAPTER 5 Flow control
5.1.2 Missing else blocks

What happens if you don’t define the else statement for an if construct? It’s acceptable
to define one course of action for an if construct as follows (omitting the else part):

boolean testValue = false;
if (testValue == true)
 System.out.println("value is true");

But you can’t define the else part for an if construct, skipping the if code block.
The following code won’t compile:

boolean testValue = false;
if (testValue == true)
else
 System.out.println("value is false");

But an empty code block that follows if works well:

boolean testValue = false;
if (testValue == true) {}
else
 System.out.println("value is false");

Here’s another interesting and bizarre piece of code:

int score = 100;
if((score=score+10) > 110);

B is a valid line of code, even if it doesn’t define either the then or else part of the if
statement. In this case, the if condition evaluates and that’s it. The if construct
doesn’t define any code that should execute based on the result of this condition.

NOTE Using if(testValue==true) is the same as using if(testValue). Sim-
ilarly, if(testValue==false) is the same as using if(!testValue). This
book includes examples of both these approaches. Many programming
beginners find the latter approach (without the explicit ==) confusing.

5.1.3 Implications of the presence and absence of {}
in if-else constructs

You can execute a single statement or a block of statements when an if condition
evaluates to true or false. An if block is marked by enclosing one or more state-
ments within a pair of curly braces {}. An if block will execute a single line of code if
there are no braces but will execute an unlimited number of lines if they’re contained
within a block (defined using braces). The braces are optional if there’s only one line
in the if statement.

Won’t
compile

Missing then
or else part

b

329The if, if-else, and ternary constructs
 The following code executes only one statement of assigning the value 200 to the
variable score if the expression used in the if statement evaluates to true:

String name = "Lion";
int score = 100;
if (name.equals("Lion"))
 score = 200;

What happens if you want to execute another line of code if the value of the variable
name is equal to Lion? Is the following code correct?

String name = "Lion";
int score = 100;
if (name.equals("Lion"))
 score = 200;
 name = "Larry";

NOTE The preceding code is a good example to suggest that you must use
braces in code on your real-world project to avoid errors.

The statement score = 200; executes if the if condition is true. Although it looks like
the statement name = "Larry"; is part of the if statement, it isn’t. It will execute
regardless of the result of the if condition because of the lack of braces {}.

EXAM TIP In the exam, watch out for code that uses misleading indentation
in if constructs. In the absence of a defined code block (marked with {}),
only the statement following the if construct will be considered part of it.

What happens to the same code if you define an else part for your if construct,
as follows?

String name = "Lion";
int score = 100;
if (name.equals("Lion"))
 score = 200;
 name = "Larry";
else
 score = 129;

In this case, the code won’t compile. The compiler will report that the else part is
defined without an if statement. If this leaves you confused, examine the following
code, which is indented in order to emphasize the fact that the name = "Larry" line
isn’t part of the else construct:

String name = "Lion";
int score = 100;
if (name.equals ("Lion"))
 score = 200;
name = "Larry";
else
 score = 129;

Set name
to Larry

This statement isn’t
part of the if construct.

This statement isn’t
part of the if construct.

The else statement seems
to be defined without a
preceding if construct.

330 CHAPTER 5 Flow control
If you want to execute multiple statements for an if construct, define them within a
block of code. You can do so by defining all this code within curly braces {}. Here’s
an example:

String name = "Lion";
int score = 100;
if (name.equals("Lion")) {
 score = 200;
 name = "Larry";
}
else
 score = 129;

Similarly, you can define multiple lines of code for the else part. The following exam-
ple does so incorrectly:

String name = "Lion";
if (name.equals("Lion"))
 System.out.println("Lion");
else
 System.out.println("Not a Lion");
 System.out.println("Again, not a Lion");

The output of the preceding code is as follows:

Lion
Again, not a Lion

Although the code at B looks like it will execute only if the value of the variable name
matches the value Lion, this is not the case. It’s indented incorrectly to trick you into
believing that it’s a part of the else block. The preceding code is the same as the fol-
lowing code (with correct indentation):

String name = "Lion";
if (name.equals("Lion"))
 System.out.println("Lion");
else
 System.out.println("Not a Lion");
System.out.println("Again, not a Lion");

If you wish to execute the last two statements in the preceding code only if the if con-
dition evaluates to false, you can do so by using {}:

String name = "Lion";
if (name.equals("Lion"))
 System.out.println("Lion");
else {
 System.out.println("Not a Lion");
 System.out.println("Again, not a Lion");
 }

Start of
code block

Statements to execute if
(name.equals("Lion")) evaluates to true

End of code
block

Not part of the else
construct; will execute
regardless of value of
variable name

b

Not part of the else
construct; will execute
regardless of value of
variable name

Now part of the else
construct; will execute
only when if condition
evaluates to false

331The if, if-else, and ternary constructs
You can define another statement, construct, or loop to execute for an if condition,
without using {}, as follows:

String name = "Lion";
if (name.equals("Lion"))
 for (int i = 0; i < 3; ++i)
 System.out.println(i);

System.out.println(i) is part of the for loop, not an unrelated statement that fol-
lows the for loop. So this code is correct and gives the following output:

0
1
2

5.1.4 Appropriate versus inappropriate expressions passed as
arguments to an if statement

The result of a variable or an expression used in an if construct must evaluate to true

or false. Assume the following definitions of variables:

int score = 100;
boolean allow = false;
String name = "Lion";

Let’s look at a few examples of some of the valid variables and expressions that can be
passed to an if statement:

(score == 100)
(name == "Lio")
(score <= 100 || allow)
(allow)

Using == is simply wrong for comparing two String objects for equality. As mentioned
in chapter 4, the correct way for comparing two String objects is to use the equals

method from the String class. But comparing two String values using == is a valid
expression that returns a boolean value, and it may be used in the exam.

 Now comes the tricky part of passing an assignment operation to an if construct.
What do you think is the output of the following code?

boolean allow = false;
if (allow = true)
 System.out.println("value is true");
else
 System.out.println("value is false");

An if
condition

A for loop is a single construct that
will execute if name.equals("Lion")
evaluates to true.

This code is part of the for loop
defined on the previous line.

Evaluates
to true Evaluates

to false

Evaluates
to trueEvaluates

to false

This is assignment,
not comparison.

332 CHAPTER 5 Flow control
You may think that because the value of the boolean variable allow is set to false, the
preceding code output’s value is false. Revisit the code and notice that the assign-
ment operation allow = true assigns the value true to the boolean variable allow.
Also, its result is also a boolean value, which makes it eligible to be passed on as an
argument to the if construct.

 Although the preceding code has no syntactical errors, there’s a logical error—an
error in the program logic. The correct code to compare a boolean variable with a
boolean literal value is as follows:

boolean allow = false;
if (allow == true)
 System.out.println("value is true");
else
 System.out.println("value is false");

EXAM TIP Watch out for code in the exam that uses the assignment operator
(=)to compare a boolean value in the if condition. It won’t compare the
boolean value; it’ll assign a value to it. The correct operator for comparing a
boolean value is the equality operator (==).

5.1.5 Nested if constructs

A nested if construct is an if construct defined within another if construct. Theoret-
ically, there’s no limit on the number of levels of nested if and if-else constructs.

 Whenever you come across nested if and if-else constructs, you need to be care-
ful about determining the else part of an if statement. If the preceding statement
didn’t make a lot of sense, look at the following code and determine its output:

int score = 110;
if (score > 200)
 if (score <400)
 if (score > 300)
 System.out.println(1);
 else
 System.out.println(2);
else
 System.out.println(3);

Based on the way the code is indented, you may believe that the else at d belongs to
the if defined at B. But it belongs to the if defined at c. Here’s the code with the
correct indentation:

int score = 110;
if (score > 200)
 if (score <400)
 if (score > 300)
 System.out.println(1);

This is
comparison.

if (score>200)b

if (score<400)c

To which if does
this else belong?

d

333The if, if-else, and ternary constructs
 else
 System.out.println(2);
else
 System.out.println(3);

Next, you need to understand how to do the following:

■ Define an else for an outer if other than the one that it’ll be assigned to by
default.

■ Determine to which if an else belongs in nested if constructs.

Both of these tasks are simple. Let’s start with the first one.

DEFINING AN ELSE FOR AN OUTER IF
The key point is to use curly braces, as follows:

int score = 110;
if (score > 200) {
 if (score < 400)
 if (score > 300)
 System.out.println(1);
 else
 System.out.println(2);
}
else
 System.out.println(3);

Curly braces at B and c mark the start and end of the if condition (score > 200)
defined at B. Hence, the else at d that follows c belongs to the if defined at B.

DETERMINING TO WHICH IF AN ELSE BELONGS

If code uses curly braces to mark the start and end of the territory of an if or else

construct, it can be simple to determine which else goes with which if, as mentioned
in the previous section. When the if constructs don’t use curly braces, don’t be con-
fused by the code indentation, which may or may not be correct.

 Try to match the ifs with their corresponding elses in the following poorly
indented code:

if (score > 200)
if (score < 400)
if (score > 300)
 System.out.println(1);
else
 System.out.println(2);
else
 System.out.println(3);

Start working from the inside out, with the innermost if-else statement, matching
each else with its nearest unmatched if statement. Figure 5.4 shows how to match
the if-else pairs for the preceding code, marked with B, c, and d.

This else belongs to the if
with condition (score<400).

Start if construct
for score > 200b

End if construct
for score > 200

c

else for score
> 200

d

334 CHAPTER 5 Flow control
Figure 5.5 shows how easy it becomes to match if-else pairs if the code is correctly
indented (with or without using braces).

NOTE As a good programming practice, indent all your code properly. Also
use braces to improve readability.

You can also use the ternary construct to evaluate an expression and assign a value
to a variable, depending on the result of a boolean expression, covered in the next
section.

5.1.6 Ternary construct

You can use a ternary operator, ?:, to define a ternary construct. A ternary construct
can be compared to a compact if-else construct, used to assign a value to a variable
depending on a boolean expression.

if (score > 200)

if (score < 400)

if (score > 300)

1

2

3

System.out.println(1);

else

System.out.println(2);

else

System.out.println(3);

This has noif
corresponding part.else

Match

inner-

most

if else-

pair
Match

next inner

if else- pair

Figure 5.4 How to match if-else pairs for poorly indented code

Correct code indentation Correct code indentation (with braces)

if (score > 200)
 if (score < 400)
 if (score > 300)
 System.out println(1);
 else
 System.out println(2);
 else
 System.out println(3);

if (score > 200) {
 if (score < 400) {
 if (score > 300) {
 System.out println(1);
 } else {
 System.out println(2);
 }
 } else {
 System.out println(3);
 }
}

Figure 5.5 Correct code indentation (with or without braces) makes the code more
readable.

335The if, if-else, and ternary constructs
CORRECT USAGE

In the following example, the variable discount is assigned the value 15 if the expres-
sion (bill > 2000) evaluates to true but 10 otherwise:

int bill = 2000;
int discount = (bill > 2000)? 15 : 10;
System.out.println(discount);

Figure 5.6 compares a ternary construct B used in the preceding example with an
if-else construct.

The parentheses enclosing a boolean expression are optional and are used for better
readability. The code will work without them:

int bill = 2000;
int discount = bill > 2000? 15 : 10;

The variable discount might or might not be declared in the same statement that
includes the ternary operator:

int bill = 2000;
int discount;
discount = (bill > 2000)? 15 : 10;

You can also assign an expression to the variable discount using a ternary operator.
Here’s the modified code:

int bill = 2000;
int discount = (bill > 2000)? bill-150 : bill - 100;
System.out.println(discount);

Uses ternary
operator

b

Outputs 10

Ternary construct if-else construct

int bill = 2000;
int discount = (bill > 2000)? 15 : 10;

int bill = 2000;
int discount
if (bill > 2000)
 discount = 15;
else
 discount = 10;

Figure 5.6 Comparing a ternary construct with an if-else construct

OK; boolean expression
not enclosed within ()

OK; variable discount isn’t
declared in this statement

Assign expression to
variable discount

Outputs 1900

336 CHAPTER 5 Flow control
A method that returns a value can also be used to initialize a variable in a ternary
construct:

class Ter{
 public void ternaryConstruct() {
 int bill = 2000;
 int discount = (bill > 2000)? getSpecDisc(): getRegDisc();
 System.out.println(discount);
 }
 int getRegDisc() {
 return 11;
 }
 int getSpecDisc() {
 return 15;
 }
}

INCORRECT USAGE

If the expression used to evaluate a ternary operator doesn’t return a boolean or a
Boolean value, the code won’t compile:

int bill = 2000;
int qty = 10;
int discount = ++qty ? 10: 20;

All three parts of a ternary operator are mandatory:

■ The boolean expression
■ The value returned if the boolean expression evaluates to true

■ The value returned if the boolean expression evaluates to false

Unlike an if construct, a ternary can’t drop its else part. The following code won’t
compile:

int discount = (bill > 2000)? 15;

In chapter 3, you created methods that return values. It’s not mandatory to assign val-
ues returned from these methods, but the same doesn’t apply to ternary constructs.
The value returned by a ternary operator must be assigned to a variable or the code
won’t compile:

(5000 > 2000)? 15 : 10;

Because a ternary operator must return values, which are assigned to a variable, it
can’t include code blocks. The following code won’t compile:

int bill = 2000;
int discount = (bill > 2000)? {bill-150} : {bill – 100};

Return value
using a method

Won’t compile; ++qty
isn’t a boolean type

Won’t compile

Won’t compile; not a statement

Won’t compile

337The if, if-else, and ternary constructs
A method that doesn’t return a value can’t be used to initialize variables in a ternary
construct:

class TernaryConst{
 public void invalidTernaryConstruct() {
 int bill = 2000;
 int discount = (bill > 2000)? 10 : getRegularDiscount();
 System.out.println(discount);
 }
 void getRegularDiscount() {}
}

INCORRECT ASSIGNMENTS

In the exam, watch out for compatibility of the value that’s returned by a ternary oper-
ator and the variable to which it’s assigned. The following code won’t compile because
it’s trying to assign a long value to an int variable:

long bill = 2000;
int discount = (bill > 2000)? bill-100 : bill - 50;

Also, look out for conversions between primitive and wrapper classes. The following
code won’t compile because Integer can’t be assigned to Long and vice versa:

Long discount = (5000 > 2000)? new Integer(10) : new Integer(15);

NESTED TERNARY CONSTRUCTS

In the following example, the if part of the ternary operator includes another ternary
operator. Watch out for nested ternary constructs on the exam:

int bill = 2000;
int qty = 10;
int discount = (bill > 1000)? (qty > 11)? 10 : 9 : 5;
System.out.println(discount);

Here’s a simple but effective method to split and indent a ternary construct into its
components to determine which value belongs to which operator. Let’s first indent a
simple ternary construct in which its boolean expression, if and else values, are
placed on separate lines:

int discount = (bill > 1000)?
 10
 :9;

Now let’s apply this indentation technique to the example used in the beginning of
this section:

int bill = 2000;
int qty = 10;

Won’t compile; getRegDisc
doesn’t return a value

Won’t compile;
bill-100 is of type long

Won’t
compile

Outputs 9

338 CHAPTER 5 Flow control
int discount = (bill > 1000)?
 (qty > 11)?
 10
 : 9
 : 5;

In the preceding code, B ends with ?, that is, the boolean expression. The code at c
includes all three components of the nested ternary operator. The code at c will exe-
cute if the boolean expression at B returns true. The code at d starts with : and
includes the else part of the ternary operator at B.

 Let’s apply the preceding indentation technique to another example. Here’s the
code before the indentation:

int bill = 2000;
int qty = 10;
int days = 10;
int discount = (bill > 1000)? (qty > 11)? 10 : days > 9? 20 : 30 : 5;
System.out.println(discount);

Here’s the same code with the indentation:

int bill = 2000;
int qty = 10;
int days = 10;
int discount = (bill > 1000)?
 (qty > 11)?
 10
 : days > 9 ? 20 : 30
 : 5;
System.out.println(discount);

You can also use the switch statement to execute code conditionally. Even though
both if-else constructs and switch statements are used to execute statements selec-
tively, they differ in their usage, which you’ll notice as you work with the switch state-
ment in the next section.

5.2 The switch statement

In this section, you’ll learn how to use the switch statement and see how it compares
to nested if-else constructs. You’ll learn the right ingredients for defining values
that are passed to the switch labels and the correct use of the break statement in
these labels.

The boolean
expression
ends with ?b

Nested ternary
operator with

three components c
The else part of the main
ternary constructd

Outputs 20

[3.4] Use a switch statement

339The switch statement

t
o

5.2.1 Create and use a switch statement

You can use a switch statement to compare the value of a variable with multiple val-
ues. For each of these values, you can define a set of statements to execute.

 The following example uses a switch statement to compare the value of the vari-
able marks with the literal values 10, 20, and 30, defined using the case keyword:

int marks = 20;
switch (marks) {
 case 10: System.out.println(10);
 break;
 case 20: System.out.println(20);
 break;
 case 30: System.out.println(30);
 break;
 default: System.out.println("default");
 break;
}

A switch statement can define multiple case labels within its switch block but only a
single default label. The default label executes when no matching value is found in
the case labels. A break statement is used to exit a switch statement, after the code
completes its execution for a matching case.

5.2.2 Comparing a switch statement with multiple if-else constructs

A switch statement can improve the readability of your code by replacing a set of
(rather complicated-looking) related if-else-if-else statements with a switch and
multiple case statements.

 Examine the following code, which uses if-else-if-else statements to check the
value of a String variable day and display an appropriate message:

String day = "SUN";
if (day.equals("MON") || day.equals("TUE")||
 day.equals("WED") || day.equals("THU"))
 System.out.println("Time to work");
else if (day.equals("FRI"))
 System.out.println("Nearing weekend");
else if (day.equals("SAT") || day.equals("SUN"))
 System.out.println("Weekend!");
else
 System.out.println("Invalid day?");

Now examine this implementation of the preceding code using the switch statement:

String day = "SUN";
switch (day) {
 case "MON":
 case "TUE":

Compare
value of marks

Values that are
compared to
variable marks

Marks
he end

f a case
label

Default case to execute if
no matching cases found

Multiple
comparisons

340 CHAPTER 5 Flow control
 case "WED":
 case "THU": System.out.println("Time to work");
 break;
 case "FRI": System.out.println("Nearing weekend");
 break;
 case "SAT":
 case "SUN": System.out.println("Weekend!");
 break;
 default: System.out.println("Invalid day?");
}

The two preceding snippets of code perform the same function of comparing the
value of the variable day and printing an appropriate value. But the latter code, which
uses the switch statement, is simpler and easier to read and follow.

 Note that the preceding switch statement doesn’t define code for all the case

values. What happens if the value of the variable day matches TUE? When control of
the code enters the label matching TUE in the switch construct, it’ll execute all the
code until it encounters a break statement or it reaches the end of the switch

statement.
 Figure 5.7 depicts the execution of the multiple if-else-if-else statements used

in the example code in this section. You can compare it to a series of questions and
answers that continue until a match is found or all the conditions are evaluated.

As opposed to an if-else-if-else construct, you can compare a switch statement to
asking a single question and evaluating its answer to determine which code to exe-
cute. Figure 5.8 illustrates the switch statement and its case labels.

EXAM TIP The if-else-if-else construct evaluates all the conditions until
it finds a match. A switch construct compares the argument passed to it with
its labels.

See if you can find the twist in the next exercise. Hint: It defines code to compare
String values (answer can be found in the appendix).

Figure 5.7 The if-else-if-else construct is like a series of questions and answers.

341The switch statement
Modify the code used in the previous example as follows. What’s the output of this code?

String day = new String("SUN");
switch (day) {
 case "MON":
 case "TUE":
 case "WED":
 case "THU": System.out.println("Time to work");
 break;
 case "FRI": System.out.println("Nearing weekend");
 break;
 case "SAT":
 case "SUN": System.out.println("Weekend!");
 break;
 default: System.out.println("Invalid day?");
}

a Time to work

b Nearing weekend

c Weekend!

d Invalid day?

5.2.3 Arguments passed to a switch statement

You can’t use the switch statement to compare all types of values, such as all types of
objects and primitives. There are limitations on the types of arguments that a switch

statement can accept.

Twist in the Tale 5.2

Figure 5.8 A switch statement
is like asking a question and
acting on the answer.

342 CHAPTER 5 Flow control
 Figure 5.9 shows the types of arguments that can be passed to a switch statement
and to an if construct.

A switch statement accepts arguments of types char, byte, short, int, and String

(starting in Java version 7). It also accepts arguments and expressions of types enum,
Character, Byte, Integer, and Short. Because enums aren’t on the OCA Java SE 8
Programmer I exam objectives, I won’t discuss them any further. The switch state-
ment doesn’t accept arguments of type long, float, or double, or any object besides
String.

 Apart from passing a variable to a switch statement, you can also pass an expres-
sion to the switch statement as long as it returns one of the allowed types. The follow-
ing code is valid:

int score =10, num = 20;
switch (score+num) {
 // ..code
}

The following code won’t compile because the type of history is double, which is a
type that isn’t accepted by the switch statement:

double history = 20;
switch (history) {
 // ..code
}

EXAM TIP Watch out for questions in the exam that try to pass a primitive
decimal type such as float or double to a switch statement. Code that tries
to do so will not compile.

char enum

byte Character

short Byte

if

boolean Boolean

int Short

String Integer

switch

Figure 5.9 Types of arguments that can be passed to a switch statement and an if
construct

Type of score+num is int and can
thus be passed as an argument
to the switch statement

double variable can’t be
passed as an argument to
a switch statement

343The switch statement
For nonprimitive types, that is, String and wrapper types, the switch argument must
not be null, which would cause a NullPointerException to be thrown:

Integer value = null;
switch (value) {
 default: System.out.println("value is not 10");
 break;
 case 10: System.out.println("value is 10");
 break;
}

In the preceding code, if the variable value is assigned the value 10, the code will out-
put value is 10.

EXAM TIP For nonprimitive types, that is, String and wrapper types, the
switch argument must not be null, which would cause a NullPointer-
Exception to be thrown.

5.2.4 Values passed to the label case of a switch statement

You’re constrained in a couple of ways when it comes to the value that can be passed
to the case label in a switch statement, as the following subsections explain.

CASE VALUES SHOULD BE COMPILE-TIME CONSTANTS

The value of a case label must be a compile-time constant value; that is, the value
should be known at the time of code compilation:

int a=10, b=20, c=30;
switch (a) {
 case b+c: System.out.println(b+c); break;
 case 10*7: System.out.println(10*7512+10); break;
}

Note that b+c in the preceding code defined at B can’t be determined at the time of
compilation and isn’t allowed. But 10*7 defined at c is a valid case label value.

 You can use variables in an expression if they’re marked final because the value
of final variables can’t change once they’re initialized:

final int a = 10;
final int b = 20;
final int c = 30;
switch (a) {
 case b+c: System.out.println(b+c); break;
}

Because the variables b and c are final variables here, at B the value of b+c can be
known at compile time. This makes it a compile-time constant value, which can be used
in a case label.

Throws
NullPointerException
because value is null

Not allowedb

Allowedc

Expression b+c is
compile-time constant

b

344 CHAPTER 5 Flow control
 You may be surprised to learn that if you don’t assign a value to a final variable
with its declaration, it isn’t considered a compile-time constant:

final int a = 10;
final int b = 20;
final int c;
c = 30;
switch (a) {
 case b+c: System.out.println(b+c); break;
}

This code defines a final variable c at line B but doesn’t initialize it. The final vari-
able c is initialized at line c. Because the final variable c isn’t initialized with its dec-
laration, at d the expression b+c isn’t considered a compile-time constant, so it can’t
be used as a case label.

CASE VALUES SHOULD BE ASSIGNABLE TO THE ARGUMENT PASSED TO THE SWITCH STATEMENT

Examine the following code, in which the type of argument passed to the switch state-
ment is byte and the case label value is of the type float. Such code won’t compile:

byte myByte = 10;
switch (myByte) {
 case 1.2: System.out.println(1); break;
}

NULL ISN’T ALLOWED AS A CASE LABEL

Code that tries to compare the variable passed to the switch statement with null
won’t compile, as demonstrated in the following code:

String name = "Paul";
switch (name) {
 case "Paul": System.out.println(1);
 break;
 case null: System.out.println("null");
}

ONE CODE BLOCK CAN BE DEFINED FOR MULTIPLE CASES

It’s acceptable to define a single code block for multiple case labels in a switch state-
ment, as shown by the following code:

int score =10;
switch (score) {
 case 100:
 case 50 :
 case 10 : System.out.println("Average score");
 break;

final variable c is defined
but not initialized

b

c is initializedc

Code doesn’t compile; b+c
isn’t considered a constant
expression because the
variable c wasn’t initialized
with its declaration.

d

Floating-point number can’t
be assigned to byte variable

null isn’t allowed
as a case label.

You can define
multiple cases, which
should execute the
same code block.

345The switch statement
 case 200: System.out.println("Good score");
}

This example code will output Average score if the value of the variable score matches
any of the values 100, 50, and 10.

5.2.5 Use of break statements within a switch statement

In the previous examples, note the use of break to exit the switch construct once a
matching case is found. In the absence of the break statement, control will fall through
the remaining code and execute the code corresponding to all the remaining cases
that follow that matching case.

 Consider the examples shown in figure 5.10—one with a break statement and the
other without a break statement. Examine the flow of code (depicted using arrows) in
this figure when the value of the variable score is equal to 50.

Our (hypothetical) enthusiastic programmers, Harry and Selvan, who are also prepar-
ing for this exam, sent in some of their code. Can you choose the correct code for
them in the following Twist in the Tale exercise? (The answer is in the appendix.)

Which of the following code submissions by our two hypothetical programmers, Harry
and Selvan, examines the value of the long variable dayCount and prints out the name
of any one month that matches the day count?

Twist in the Tale 5.3

switch statement without

break statements

switch statement with

break statements

score = 50;
switch (score) {

case 100: result = "A";
case 50 : result = "B";
case 10 : result = "C";
default : result = "F";

}

score = 50;
switch (score) {

case 100: result = "A";
break;

case 50 : result = "B";
break;

case 10 : result = "C";
break;

default : result = "F";
}

Figure 5.10 Differences in code flow for a switch statement with and without break
statements

346 CHAPTER 5 Flow control
a Submission by Harry:

long dayCount = 31;
if (dayCount == 28 || dayCount == 29)
 System.out.println("Feb");
else if (dayCount == 30)
 System.out.println("Apr");
else if (dayCount == 31)
 System.out.println("Jan");

b Submission by Selvan:

long dayCount = 31;
switch (dayCount) {
 case 28:
 case 29: System.out.println("Feb"); break;
 case 30: System.out.println("Apr"); break;
 case 31: System.out.println("Jan"); break;
}

In the next section, I’ll cover the iteration statements known as loop statements. Just
as you’d like to repeat the action of “eating an ice cream” every day, loops are used to
execute the same lines of code multiple times. You can use a for loop, an enhanced
for (for-each) loop, or the do-while and while loops to repeat a block of code. Let’s
start with the for loop.

5.3 The for loop

In this section, I’ll cover the regular or traditional for loop. The enhanced for loop is
covered in the next section.

 A for loop is usually used to execute a set of statements a fixed number of times. It
takes the following form:

for (initialization; condition; update) {
 statements;
}

Here’s a simple example:

int tableOf = 25;
for (int ctr = 1; ctr <= 5; ctr++) {
 System.out.println(tableOf * ctr);
}

[5.2] Create and use for loops including the enhanced for loop

Executes
multiple times

b

347The for loop
The output of the preceding code is as follows:

25
50
75
100
125

In the preceding example, the code at B will execute five times. It’ll start with an ini-
tial value of 1 for the variable ctr and execute while the value of the variable ctr is
less than or equal to 5. The value of variable ctr will increment by 1 (ctr++) after the
execution of the code at B.

 The code at B executes for ctr values 1, 2, 3, 4, and 5. Because 6 <= 5 evaluates
to false, the for loop completes its execution without executing the code at B any
further.

 In the preceding example, notice that the for loop
defines three types of statements separated with semico-
lons (;), as follows:

■ Initialization statements
■ Termination condition
■ Update clause (executable statement)

This loop is depicted as a flowchart in figure 5.11. The
statements defined within the loop body execute until
the termination condition is false.

 One important point to note with respect to the for

loop is that the update clause executes after all the state-
ments defined within the for loop body. In other words,
you can consider the update clause to be a last statement
in the for loop. The initialization section, which exe-
cutes only once, may define multiple initialization state-
ments. Similarly, the update clause may define multiple
statements. But there can be only one termination con-
dition for a for loop.

 In figure 5.12, I’ve provided a code snippet and a
flowchart that depicts the corresponding flow of execu-
tion of statements to explain the previous concept.

 Let’s explore the initialization block, termination
condition, and update clause of a for loop in detail.

Start

No

Yes

Initialization

statement(s)

Condition

== true?

Statements within

for block

Update

statement(s)

Stop

Figure 5.11 The flow of
control in a for loop

348 CHAPTER 5 Flow control

t
5.3.1 Initialization block

An initialization block executes only once. A for loop can declare and initialize multi-
ple variables in its initialization block, but the variables it declares should be of the
same type. The following code is valid:

int tableOf = 25;
for (int ctr = 1, num = 100000; ctr <= 5; ++ctr) {
 System.out.println(tableOf * ctr);
 System.out.println(num * ctr);
}

But you can’t declare variables of different types in an initialization block. The follow-
ing code will fail to compile:

for (int j=10, long longVar = 10; j <= l; ++j) { }

It’s a common programming mistake to try to use the variables defined in a for’s ini-
tialization block outside the for block. Please note that the scope of the variables
declared in the initialization block is limited to the for block. An example follows:

public class DemonstrateFor {

public static void main(String args[]) {

int ctr = 12;

for (int j=10, k=14;

j <= k;

++j, k=k-1, ctr--)

{

System.out.println(j+":"+k+":"+ctr);

}

}

}

Start

No

Yes

int j = 10;

int k = 14;

j <= k?

Print (j+":"+k+":"+ctr);

++j;

k = k-1;

ctr--;

Stop

Multiple declaration and initialization

Multiple increment and decrement

statements execute at the end

Figure 5.12 The flow of control in a for loop using a code example

Define and assign
multiple variables

Can’t define variables of differen
types in an initialization block

349The for loop
int tableOf = 25;
for (int ctr = 1; ctr <= 5; ++ctr) {
 System.out.println(tableOf * ctr);
}
ctr = 20;

5.3.2 Termination condition

The termination condition is evaluated once for each iteration before executing the
statements defined within the body of the loop. The for loop terminates when the ter-
mination condition evaluates to false:

for (int ctr = 1; ctr <= 5; ++ctr) {
 System.out.println(ctr);
}
...

The termination condition—ctr <= 5 in this example—is checked before B executes.
If the condition evaluates to false, control is transferred to c. A for loop can define
exactly one termination condition—no more, no less.

5.3.3 The update clause

Usually, you’d use this block to manipulate the value of the variable that you used to spec-
ify the termination condition. In the previous example, I defined the following code:

++ctr;

Code defined in this block executes after all the code defined in the body of the for

loop. The previous code increments the value of the variable ctr by 1 after the follow-
ing code executes:

System.out.println(ctr);

The termination condition is evaluated next. This execution continues until the ter-
mination condition evaluates to false.

 You can define multiple statements in the update clause, including calls to other
methods. The only limit is that these statements will execute in the order in which
they appear, at the end of all the statements defined in the for block. Examine the fol-
lowing code, which calls a method in the update block:

public class ForIncrementStatements {
 public static void main(String args[]) {
 String line = "ab";
 for (int i=0; i < line.length(); ++i, printMethod())
 System.out.println(line.charAt(i));
 }

Variable ctr is accessible
only within for loop body

Variable ctr isn’t accessible
outside for loop

for loop bodyb

Code following
the for loop

c

The increment
block can also
call methods.

350 CHAPTER 5 Flow control
 private static void printMethod() {
 System.out.println("Happy");
 }
}

The output of this code is as follows:

a
Happy
b
Happy

5.3.4 Optional parts of a for statement

All three parts of a for statement—that is, initialization block, termination condition,
and update clause—are optional. But you must specify that you aren’t including a sec-
tion by just including a semicolon. In the following example, the initialization block
doesn’t include any code:

int a = 10;
for(; a < 5; ++a) {
 System.out.println(a);
}

Removing the semicolon that marks the end of the initialization block prevents the
code from compiling:

int a = 10;
for(a < 5; ++a) {
 System.out.println(a);
}

In the following example, the termination condition is missing, resulting in a potentially
infinite loop (potentially because it can be stopped with a break statement or an exception):

for(int a = 10; ; ++a) {
 System.out.println(a);
}

Again, if you remove the semicolon that marks the end of the termination condition,
the code won’t compile:

for(int a = 10; ++a) {
 System.out.println(a);
}

The following code doesn’t include code in its update clause but compiles successfully:

for(int a = 10; a > 5;) {
 System.out.println(a);
}

printMethod is called
by the for loop’s
increment block.

Valid for loop without any
code in the initialization block

Won’t compile

Missing termination condition
implies infinite loop

Won’t
compile

Missing
update clause

351The for loop

But removing the semicolon that marks the start of the update clause prevents the
code from compiling:

for(int a = 10; a > 5) {
 System.out.println(a);
}

It’s interesting to note that the following code is valid:

for(;;)
 System.out.println(1);

EXAM TIP All three parts of a for statement—initialization block, termina-
tion condition, and update clause—are optional. A missing termination con-
dition implies an infinite loop.

5.3.5 Nested for loop

If a loop encloses another loop, they are called nested loops. The loop that encloses
another loop is called the outer loop, and the enclosed loop is called the inner loop. The-
oretically, there are no limits on the levels of nesting for loops.

 Let’s get started with a single-level nested loop. For an example, you can compare
the hour hand of a clock to an outer loop and its minute hand to an inner loop. Each
hour can be compared with an iteration of the outer loop, and each minute can be
compared with an iteration of the inner loop. Because an hour has 60 minutes, the
inner loop should iterate 60 times for each iteration of the outer loop. This comparison
between a clock and a nested loop is shown in figure 5.13.

You can use the following nested for loops to print out each minute (1 to 60) for hours
from 1 to 6:

for (int hrs = 1; hrs <= 6; hrs++) {
 for (int min = 1; min <= 60; min++) {
 System.out.println(hrs + ":" + min);
 }
}

Won’t
compile

Hour hand

(Outer loop)
Minute hand

(Inner loop)

1 hour = 60 minutes

1 hour = 1 complete revolution

by minute hand

Figure 5.13 Comparison of the hands of a clock to a nested loop

Outer loop iterates for
values 1 through 6

Inner loop iterates for
values 1 through 60

Executes 6  60 times (total outer loop
iterations  total inner loop iterations)

352 CHAPTER 5 Flow control
Nested loops are often used to initialize or iterate multidimensional arrays. The fol-
lowing code initializes a multidimensional array using nested for loops:

int multiArr[][];
multiArr = new int[2][3];
for (int i = 0; i < multiArr.length; i++) {
 for (int j = 0; j < multiArr[i].length; j++) {
 multiArr[i][j] = i + j;
 }
}

B defines a two-dimensional array multiArr. c allocates
this array, creating two rows and three columns, and assigns
all array members the default int value of 0. Figure 5.14
illustrates the array multiArr after it’s initialized using the
preceding code.

d defines an outer for loop. Because the value of multi-

Arr.length is 2 (the value of the first subscript at c), the
outer for loop executes twice, with the variable i having
the values 0 and 1. The inner for loop is defined at e.
Because the length of each of the rows of the multiArr

array is 3 (the value of the second subscript at c), the inner
loop executes three times for each iteration of the outer
for loop, with the variable j having the values 0, 1, and 2.

 In the next section, I’ll discuss another flavor of the for loop: the enhanced for

loop or for-each loop.

5.4 The enhanced for loop

The enhanced for loop is also called the for-each loop, and it offers some advantages
over the regular for loop. It also has some limitations.

5.4.1 Iteration with enhanced for loop

To start with, the regular for loop is cumbersome to use when it comes to iterating
through a collection or an array. You need to create a looping variable and specify the
start and end positions of the collection or the array, even if you want to iterate
through the complete collection or list. The enhanced for loop makes the previously
mentioned routine task quite a breeze, as the following example demonstrates for the
ArrayList myList:

ArrayList<String> myList= new ArrayList<String>();
myList.add("Java");
myList.add("Loop");

Array declarationb

Array allocationc

Outer for loopd

Inner for loope
Inner for loop ends

Outer for loop ends

multiArr 0
0

1

0

1

2

0

1

2

1

2

1

2

3

Figure 5.14 The array
multiArr after its
initialization

[5.2] Create and use for loops including the enhanced for loop

353The enhanced for loop
The following code uses the regular for loop to iterate through this list:

for(Iterator<String> i = myList.iterator(); i.hasNext();)
 System.out.println(i.next());

This code uses the enhanced for loop to iterate through the list myList:

for (String val : myList)
 System.out.println(val);

You can read the colon (:) in a for-each loop as “in.”
 The for-each loop is a breeze to implement: there’s no code clutter, and the code

is easy to write and comprehend. In the preceding example, the for-each loop is read
as “for each element val in collection myList, print the value of val.”

 You can also easily iterate through nested collections using the enhanced for loop.
In this example, assume that an ArrayList of exams, levels, and grades is defined
as follows:

ArrayList<String> exams= new ArrayList<String>();
exams.add("Java");
exams.add("Oracle");
ArrayList<String> levels= new ArrayList<String>();
levels.add("Basic");
levels.add("Advanced");
ArrayList<String> grades= new ArrayList<String>();
grades.add("Pass");
grades.add("Fail");

The following code creates a nested ArrayList, nestedArrayList, every element of
which is itself an ArrayList of String objects:

ArrayList<ArrayList<String>> nestedArrayList =
 new ArrayList< ArrayList<String>>();
nestedArrayList.add(exams);
nestedArrayList.add(levels);
nestedArrayList.add(grades);

The nestedArrayList can be compared to a multidimensional array, as shown in fig-
ure 5.15.

ArrayList of
ArrayList

Add object of ArrayList
to nestedArrayList

0 1 2

0

1

0

1

0

1

nestedArrayList

exams Java

Oracle

levels Basic

Advanced

grades Pass

Fail

Figure 5.15 Pictorial representation of nestedArrayList

354 CHAPTER 5 Flow control
A nested enhanced for loop can be used to iterate through the nested ArrayList

nestedArrayList. Here’s the relevant code:

for (ArrayList<String> nestedListElement : nestedArrayList)
 for (String element : nestedListElement)
 System.out.println(element);

The output of this code is as follows:

Java
Oracle
Basic
Advanced
Pass
Fail

The enhanced for loop is again a breeze to use to iterate through nested or non-nested
arrays. For example, you can use the following code to iterate through an array of ele-
ments and calculate its total:

int total = 0;
int primeNums[] = {2, 3, 7, 11};
for (int num : primeNums)
 total += num;

What happens when you try to modify the value of the loop variable in an enhanced
for loop? The result depends on whether you’re iterating through a collection of
primitive values or objects. If you’re iterating through an array of primitive values,
manipulation of the loop variable will never change the value of the array being iterated
because the primitive values are passed by value to the loop variable in an enhanced
for loop.

 When you iterate through a collection of objects, the value of the collection is
passed by reference to the loop variable. Therefore, if the value of the loop variable
is manipulated by executing methods on it, the modified value will be reflected in the
collection of objects being iterated:

StringBuilder myArr[] = {
 new StringBuilder("Java"),
 new StringBuilder("Loop")
 };
for (StringBuilder val : myArr)
 System.out.println(val);
for (StringBuilder val : myArr)
 val.append("Oracle");
for (StringBuilder val : myArr)
 System.out.println(val);

Iterates through array myArr
and prints Java and Loop

Appends Oracle to value
referenced by loop variable val

Iterates through array myArr and
prints JavaOracle and LoopOracle

355The enhanced for loop
The output of the preceding code is

Java
Loop
JavaOracle
LoopOracle

Let’s modify the preceding code. Instead of calling the method append on the loop
variable val, let’s assign to it another StringBuilder object. In this case, the original
elements of the array being iterated won’t be affected and will remain the same:

StringBuilder myArr[] = {
 new StringBuilder("Java"),
 new StringBuilder("Loop")
 };

or (StringBuilder val : myArr)
 System.out.println (val);
for (StringBuilder val : myArr)
 val = new StringBuilder("Oracle");
for (StringBuilder val : myArr)
 System.out.println (val);

The output of the preceding code is

Java
Loop
Java
Loop

EXAM TIP Watch out for code that uses an enhanced for loop and its loop
variable to change the values of elements in the collection that it iterates. This
behavior often serves as food for thought for the exam authors.

5.4.2 Limitations of the enhanced for loop

Although a for-each loop is a good choice for iterating through collections and
arrays, it can’t be used in some places.

CAN’T BE USED TO INITIALIZE AN ARRAY AND MODIFY ITS ELEMENTS

Can you use an enhanced for loop in place of the regular for loop in the following
code?

int[] myArray = new int[5];
for (int i=0; i<myArray.length; ++i) {
 myArray[i] = i;
 if ((myArray[i]%2)==0)
 myArray[i] = 20;
}

Iterates through array myArr
and prints Java and Loop

Assigns new StringBuilder object to
reference variable val with value Oracle

Iterates through array myArray
and still prints Java and Loop

Declare
array count=length

of the array

Initialize array
elements

Modify array
elements

356 CHAPTER 5 Flow control
The simple answer is no. Although you can define a counter outside the enhanced
for loop and use it to initialize and modify the array elements, this approach defeats
the purpose of the for-each loop. The traditional for loop is easier to use in this case.

CAN’T BE USED TO DELETE OR REMOVE THE ELEMENTS OF A COLLECTION

Because the for loop hides the iterator used to iterate through the elements of a col-
lection, you can’t use it to remove or delete the existing collection values because you
can’t call the remove method.

 If you assign a null value to the loop variable, it won’t remove the element from
a collection:

ArrayList<StringBuilder> myList= new ArrayList<>();
myList.add(new StringBuilder("One"));
myList.add(new StringBuilder("Two"));
for (StringBuilder val : myList)
 System.out.println (val);
for (StringBuilder val : myList)
 val = null;
for (StringBuilder val : myList)
 System.out.println(val);

The output of the preceding code is

One
Two
One
Two

CAN’T BE USED TO ITERATE OVER MULTIPLE COLLECTIONS OR ARRAYS IN THE SAME LOOP

Although it’s perfectly fine for you to iterate through nested collections or arrays
using a for loop, you can’t iterate over multiple collections or arrays in the same for-
each loop because the for-each loop allows for the creation of only one looping vari-
able. Unlike the regular for loop, you can’t define multiple looping variables in a for-
each loop.

EXAM TIP Use the for-each loop to iterate over arrays and collections. Don’t
use it to initialize, modify, or filter them.

5.4.3 Nested enhanced for loop

First of all, working with a nested collection is not the same as working with a nested
loop. A nested loop can also work with unrelated collections.

 As discussed in section 5.3.4, loops defined within another loop are called nested
loops. The loop that defines another loop within itself is called the outer loop, and the
loop that’s defined within another loop is called the inner loop. Theoretically, the level
of nesting for any of the loops has no limits, including the enhanced for loop.

 In this section, we’ll work with three nested, enhanced for loops. You can compare
a three-level nested loop with a clock that has hour, minute, and second hands. The

Doesn’t remove an object
from list; sets value of
loop variable to null

357The enhanced for loop

A

second hand of the clock completes a full circle each minute. Similarly, the minute
hand completes a full circle each hour. This comparison is shown in figure 5.16.

The following is a coding example of the nested, enhanced for loop, which I dis-
cussed in a previous section:

ArrayList<String> exams= new ArrayList<String>();
exams.add("Java"); exams.add("Oracle");
ArrayList<String> levels= new ArrayList<String>();
levels.add("Basic"); levels.add("Advanced");
ArrayList<String> grades= new ArrayList<String>();
grades.add("Pass"); grades.add("Fail");
for (String exam : exams)
 for (String level : levels)
 for (String grade : grades)
 System.out.println(exam+":"+level+":"+grade);

An inner loop in a nested loop executes for each iteration of its outer loop. The preced-
ing example defines three enhanced for loops: the outermost loop at B, the inner
nested loop at c, and the innermost loop at d. The complete innermost loop at d
executes for each iteration of its immediate outer loop defined at c. Similarly, the com-
plete inner loop defined at c executes for each iteration of its immediate outer loop
defined at B. Figure 5.17 shows the loop values for which all of these loops iterate.

Second hand

(Innermost loop)

Hour hand

(Outermost loop)

Minute hand

(Inner loop)

1 hour = 60 minutes

1 hour = 1 complete revolution by minute hand

1 min = 60 seconds

1 min = 1 complete revolution by second hand

Figure 5.16 Comparison between a clock with three hands and the levels of a nested for loop

First ArrayList

Second ArrayListThird
rray-
List

Outermost
loop

b
Inner
nested
loop

c

Innermost
nested loopd

for (String exam : exams)

for (String level : levels)

for (String grade : grades)

System.out.println(exam+":"+level+":"+grade);

Iterates for ,Java Oracle

Iterates for ,Basic Advanced

Iterates for ,Pass Fail

Figure 5.17 Nested for loop with the loop values for which each of these
nested loops iterates

358 CHAPTER 5 Flow control
The output of the preceding code is as follows:

Java:Basic:Pass
Java:Basic:Fail
Java:Advanced:Pass
Java:Advanced:Fail
Oracle:Basic:Pass
Oracle:Basic:Fail
Oracle:Advanced:Pass
Oracle:Advanced:Fail

EXAM TIP A nested loop executes all its iterations for each single iteration of
its immediate outer loop.

Apart from the for loops, the other looping statements on the exam are while and
do-while, which are discussed in the next section.

5.5 The while and do-while loops

You’ll learn about while and do-while loops in this section. Both of these loops exe-
cute a set of statements as long as their condition evaluates to true. Both of these
loops work in the same manner except for one difference: the while loops checks its
condition before evaluating its loop body, and the do-while loop checks its condition
after executing the statements defined in its loop body.

 Does this difference in behavior make a difference in their execution? Yes, it does,
and in this section, you’ll see how.

5.5.1 The while loop

A while loop is used to repeatedly execute a set of statements as long as its condition
evaluates to true. This loop checks the condition before it starts the execution of the
statement.

 For example, at the famous fast-food chain Superfast Burgers, an employee may be
instructed to prepare burgers as long as buns are available. In this example, the avail-
ability of buns is the while condition and the preparation of burgers is the while’s
loop body. You can represent this in code as follows:

boolean bunsAvailable = true;
while (bunsAvailable) {
 /* ... prepare burger ...*/
 if (noMoreBuns)
 bunsAvailable = false;
}

[5.1] Create and use while loops

[5.3] Create and use do-while loops

359The while and do-while loops
The preceding example is for demonstration purposes only, because the loop body
isn’t completely defined. The condition used in the while loop to check whether or
not to execute the loop body again should evaluate to false at some point; otherwise,
the loop will execute indefinitely. The value of this loop variable may be changed by
the while loop or by another method if it’s an instance or a static variable.

 The while loop accepts arguments of type boolean or Boolean. In the preceding
code, the loop body checks whether more buns are available. If none are available, it
sets the value of the variable bunsAvailable to false. The loop body doesn’t execute
for the next iteration because bunsAvailable evaluates to false.

 The execution of the preceding while loop is shown in figure 5.18 as a simple flow-
chart to help you understand the concept better.

Now, let’s examine another simple example that uses the while loop:

int num = 9;
boolean divisibleBy7 = false;
while (!divisibleBy7) {
 System.out.println(num);
 if (num % 7 == 0) divisibleBy7 = true;
 --num;
}

Start

No

No

Yes

Yes

bunsAvailable == true?

bunsAvailable = false

moreBuns == true?

Prepare burger

Stop while

Statements to

execute if while

condition evaluates

to true

Figure 5.18 A flowchart depicting the flow of code in a while loop

360 CHAPTER 5 Flow control
The output of this code is as follows:

9
8
7

What happens if you change the code as follows (changes in bold)?

int num = 9;
boolean divisibleBy7 = true;
while (divisibleBy7 == false) {
 System.out.println(num);
 if (num % 7 == 0) divisibleBy7 = true;
 --num;
}

The code won’t enter the loop because the condition divisibleBy7==false isn’t true.

5.5.2 The do-while loop

A do-while loop is used to repeatedly execute a set of statements until the condition
that it uses evaluates to false. This loop checks the condition after it completes the
execution of all the statements in its loop body.

 You could compare this structure to a software application that displays a menu at
startup. Each menu option will execute a set of steps and redisplay the menu. The last
menu option is “exit,” which exits the application and does not redisplay the menu:

boolean exitSelected = false;
do {
 String selectedOption = displayMenuToUser();
 if (selectedOption.equals("exit"))
 exitSelected = true;
 else
 executeCommand(selectedOption);
} while (exitSelected == false);

The preceding code is represented by a simple flowchart in figure 5.19 that will help
you to better understand the code.

 The preceding example is for demonstration purposes only because the methods
used in the do-while loop aren’t defined. As discussed in the previous section on
while loops, the condition that’s used in the do-while loop to check whether or not
to execute the loop body again should evaluate to false at some point, or the loop
will execute indefinitely. The value of this loop variable may be changed by the while

loop or by another method, if it’s an instance or static variable.

NOTE Don’t forget to use a semicolon (;) to end the do-while loop after
specifying its condition. Even some experienced programmers overlook
this step!

361The while and do-while loops
The do-while loop accepts arguments of type boolean or Boolean.
 Let’s modify the example used in section 5.5.1 to use the do-while loop instead of

a while loop, as follows:

int num = 9;
boolean divisibleBy7 = false;
do {
 System.out.println(num);
 if (num % 7 == 0) divisibleBy7 = true;
 num--;
} while (divisibleBy7 == false);

The output of this code is as follows:

9
8
7

No

No

Yes

Yes

Stop

selectedOption == exit?

Start

Display menu to user

Accept selectedOption

exitSelected = true

exitSelected == true? while

do

executeCommand(selectedOption)

Figure 5.19 Flowchart showing the flow of code in a do-while loop

362 CHAPTER 5 Flow control
What happens if you change the code as follows (changes in bold)?

int num = 9;
boolean divisibleBy7 = true;
do {
 System.out.println(num);
 if (num % 7 == 0) divisibleBy7 = true;
 num--;
} while (divisibleBy7 == false);

The output of the preceding code is as follows:

9

The do-while loop executes once, even though the condition specified in the do-while

loop evaluates to false because the condition is evaluated at the end of execution of
the loop body.

5.5.3 while and do-while block, expression, and nesting rules

You can use the curly braces {} with while and do-while loops to define multiple
lines of code to execute for every iteration. Without the use of curly braces, only the
first line of code will be considered a part of the while or do-while loop, as specified
in the if-else construct in section 5.1.3.

 Similarly, the rules that define an appropriate expression to be passed to while

and do-while loops are the same as for the if-else construct in section 5.1.4. Also, the
rules for defining nested while and do-while loops are the same as for the if-else

construct in section 5.1.5.

5.6 Comparing loop constructs

In this section, I’ll discuss the differences and similarities between the following loop-
ing constructs: do-while, while, for, and enhanced for.

5.6.1 Comparing do-while and while loops

Both do-while and while loops execute a set of statements until their termination
condition evaluates to false. The only difference between these two statements is that
the do-while loop executes the code at least once, even if the condition evaluates to
false. The do-while loop evaluates the termination condition after executing the
statements, whereas the while loop evaluates the termination condition before execut-
ing its statements.

 The forms taken by these statements are depicted in figure 5.20.

[5.4] Compare loop constructs

363Comparing loop constructs
What do you think the output of the following code is?

int num=10;
do {
 num++;
} while (++num > 20);
System.out.println (num);

The output of the preceding code is as follows:

12

What do you think the output of the following code is?

int num=10;
while (++num > 20) {
 num++;
}
System.out.println(num);

The output of the preceding code is as follows:

11

5.6.2 Comparing for and enhanced for loops

The regular for loop, although cumbersome to use, is much more powerful than the
enhanced for loop (as mentioned in section 5.4.1):

■ The enhanced for loop can’t be used to initialize an array and modify its
elements.

■ The enhanced for loop can’t be used to delete the elements of a collection.
■ The enhanced for loop can’t be used to iterate over multiple collections or

arrays in the same loop.

do {

... code

} while (condition is true);

while (condition is true) {

... code

}

do while- loop while loop

Code executes at least once, even if the

while condition initially evaluates to false.

Code never executes if while
condition initially evaluates to .false

Figure 5.20 Comparing do-while and while loops

Value of num incremented
to 11 is incremented by 1

Evaluate condition
++num > 20

Because 11 isn’t > 20,
num++ doesn’t execute.

364 CHAPTER 5 Flow control
5.6.3 Comparing for and while loops

You should try to use a for loop when you know the number of iterations—for exam-
ple, when you’re iterating through a collection or an array or when you’re executing a
loop for a fixed number of times, say, to ping a server five times.

 You should try to use a do-while or a while loop when you don’t know the number
of iterations beforehand and when the number of iterations depends on a condition
being true—for example, when accepting passport renewal applications from appli-
cants until there are no more applicants. In this case, you’d be unaware of the number
of applicants who have submitted their applications on a given day.

5.7 Loop statements: break and continue

Imagine that you’ve defined a loop to iterate through a list of managers, and you’re
looking for at least one manager whose name starts with the letter D. You’d like to exit
the loop after you find the first match, but how? You can do this by using the break

statement in your loop.
 Now imagine that you want to iterate through all the folders on your laptop and

scan any files larger than 10 MB for viruses. If all those files are found to be OK, you
want to upload them to a server. But what if you’d like to skip the steps of virus checking
and file uploading for file sizes less than 10 MB yet still proceed with the remaining files
on your laptop? You can! You’d use the continue statement in your loop.

 In this section, I’ll discuss the break and continue statements, which you can use
to exit a loop completely or to skip the remaining statements in a loop iteration. At
the end of this section, I’ll discuss labeled statements.

5.7.1 The break statement

The break statement is used to exit—or break out of—the for, for-each, do, and
do-while loops, as well as switch constructs. Alternatively, the continue statement
can be used to skip the remaining steps in the current iteration and start with the
next loop iteration.

 The difference between these statements can be best demonstrated with an
example. You could use the following code to browse and print all the values of a
String array:

String[] programmers = {"Paul", "Shreya", "Selvan", "Harry"};
for (String name : programmers) {
 System.out.println(name);
}

[5.5] Use break and continue

365Loop statements: break and continue
The output of the preceding code is as follows:

Paul
Shreya
Selvan
Harry

Let’s modify the preceding code to exit the loop when the array value is equal to
Shreya. Here’s the required code:

String[] programmers = {"Paul", "Shreya", "Selvan", "Harry"};
for (String name : programmers) {
 if (name.equals("Shreya"))
 break;
 System.out.println(name);
}

The output of the preceding code is as follows:

Paul

As soon as a loop encounters a break, it exits the loop. Hence, only the first value of
this array—that is, Paul—is printed. As mentioned in the section on the switch con-
struct, the break statement can be defined after every case in order for the control to
exit the switch construct once it finds a matching case.

 The preceding code snippets are depicted in figure 5.21, which shows the transfer
of control upon execution of the break statement.

When you use the break statement with nested loops, it exits the inner loop. The next
Twist in the Tale exercise looks at a small code snippet to see how the control transfers
when you use a break statement in nested for loops (answer in the appendix).

Break out
of the loop

for (String name : programmers) {

System.out.println(name);

}

for (String name : programmers) {

if (name.equals("Shreya"))

break;

System.out.println(name);

}

No exit condition. Code executes

for all iterations of loop.for

Control is transferred here if name

is equal to .Shreya

Figure 5.21 The flow of control when the break statement executes within a loop

366 CHAPTER 5 Flow control
Modify the code used in the previous example as follows. What is the output of this code?

String[] programmers = {"Outer", "Inner"};
for (String outer : programmers) {
 for (String inner : programmers) {
 if (inner.equals("Inner"))
 break;
 System.out.print(inner + ":");
 }
}

a Outer:Outer:

b Outer:Inner:Outer:Inner:

c Outer:

d Outer:Inner:
e Inner:Inner:

5.7.2 The continue statement

The continue statement is used to skip the remaining steps in the current iteration
and start with the next loop iteration. Let’s replace the break statement in the previ-
ous example with continue and examine its output:

String[] programmers = {"Paul", "Shreya", "Selvan", "Harry"};
for (String name : programmers) {
 if (name.equals("Shreya"))
 continue;
 System.out.println(name);
}

The output of the preceding code is as follows:

Paul
Selvan
Harry

As soon as a loop encounters continue, it exits the current iteration of the loop. In
this example, it skips the printing step for the array value Shreya. Unlike the break

statement, continue doesn’t exit the loop—it restarts with the next loop iteration,
printing the remaining array values (that is, Selvan and Harry).

 When you use the continue statement with nested loops, it exits the current itera-
tion of the inner loop.

 Figure 5.22 compares how the control transfers out of the loop and to the next
iteration when break and continue statements are used.

Twist in the Tale 5.4

Skip the remaining
loop statements

367Loop statements: break and continue
5.7.3 Labeled statements

In Java, you can add labels to the following types of statements:

■ A code block defined using {}
■ All looping statements (for, enhanced for, while, do-while)
■ Conditional constructs (if and switch statements)
■ Expressions
■ Assignments
■ return statements
■ try blocks
■ throws statements

An example of a labeled loop is given here:

String[] programmers = {"Outer", "Inner"};
outer:
for (int i = 0; i < programmers.length; i++) {
}

You can’t add labels to declarations. The following labeled declaration won’t compile:

outer :
 int[] myArray = {1,2,3};

It’s interesting to note that the preceding declaration can be defined within a block
statement, as follows:

outer : {
 int[] myArray = {1,2,3};
}

for while {or loop

break;

}

Takes control here

break statement continue statement

Takes control to the

start of next iteration

.
.
.

.
.
.

for while {or loop

continue;

}

.
.
.

.
.
.

Figure 5.22 Comparing the flow of control when using break and continue
statements in a loop

Variable declaration
that fails compilation

Start definition
of block

Variable declaration,
compiles

End block

368 CHAPTER 5 Flow control
LABELED BREAK STATEMENTS

You can use a labeled break statement to exit an outer loop. Here’s an example:

String[] programmers = {"Outer", "Inner"};
outer:
for (String outer : programmers) {
 for (String inner : programmers) {
 if (inner.equals("Inner"))
 break outer;
 System.out.print(inner + ":");
 }
}

The output of the preceding code is

Outer:

When this code executes break outer;, control transfers to the line of text that marks
the end of this block. It doesn’t transfer control to the label outer.

LABELED CONTINUE STATEMENTS

You can use a labeled continue statement to skip an iteration of the outer loop.
Here’s an example:

String[] programmers = {"Paul", "Shreya", "Selvan", "Harry"};
outer:
for (String name1 : programmers) {
 for (String name : programmers) {
 if (name.equals("Shreya"))
 continue outer;
 System.out.println(name);
 }
}

The output of the preceding code is

Paul
Paul
Paul
Paul

NOTE Please use labels sparingly and only if they really seem to increase the
readability of your code.

5.8 Summary
We started this chapter with the selection statements if and switch and ternary con-
structs. We covered the different flavors of the if construct. Then we looked at the
switch construct, which accepts a limited set of argument types including byte, char,
short, int, and String. The humble if-else construct can define virtually any set of
simple or complicated conditions.

Exits the outer loop,
marked with label outer

Skips remaining code for current
iteration of outer loop and starts
with its next iteration

369Review notes
 You also saw how you can execute your code using all types of loops: for, for-each,
do, and do-while. The for, do, and do-while loops have been around since the Java
language was first introduced, whereas the enhanced for loop (the for-each loop)
was added to the language as of Java version 5.0. I recommend that you use the for-
each loop to iterate through arrays and collections.

 At the end of this chapter, we looked at the break and continue statements. You
use the break statement to exit—or break out of—a for, for-each, do, do-while, or
switch construct. You use the continue statement to skip the remaining steps in the
current iteration and start with the next loop iteration.

5.9 Review notes
if and if-else constructs:

■ The if statement enables you to execute a set of statements in your code based on
the result of a condition, which should evaluate to a boolean or a Boolean value.

■ The multiple flavors of an if statement are if, if-else, and if-else-if-else.
■ The if construct doesn’t use the keyword then to define code to execute when

an if condition evaluates to true. The then part of the if construct follows the
if condition.

■ An if construct may or may not define its else part.
■ The else part of an if construct can’t exist without the definition of its then part.
■ It’s easy to get confused with the common if-else syntax used in other program-

ming languages. The if-elsif and if-elseif statements aren’t used in Java to
define if-else-if-else constructs. The correct keywords are if and else.

■ You can execute a single statement or a block of statements for corresponding
true and false conditions. A pair of braces marks a block of statements: {}.

■ If an if construct doesn’t use {} to define a block of code to execute for its then
or else part, only the first line of code is part of the if construct.

■ An assignment of a boolean variable can also be passed as an argument to the
if construct. It’s valid because the resultant value is boolean, which is accepted
by if constructs.

■ Theoretically, nested if and if-else constructs have no limits on their levels.
When using nested if-else constructs, be careful about matching the else

part with the right if part.

Ternary constructs:

■ You can use a ternary operator, ?:, to define a compact if-else construct to
assign value to a variable depending on a boolean expression.

■ The parentheses enclosing a boolean expression are optional for better read-
ability. The code will work without them.

■ You can assign a literal value or an expression to a variable using a ternary operator.
■ A method that returns a value can be used to initialize a variable in a ternary

construct.

370 CHAPTER 5 Flow control
■ If the expression used to evaluate a ternary operator doesn’t return a boolean
or Boolean value, the code won’t compile.

■ All three parts of a ternary operator are mandatory.
■ The value returned by a ternary operator must be assigned to a variable, or the

code won’t compile.
■ Because a ternary operator must return values, which are assigned to a variable,

it can’t include code blocks.
■ A method that doesn’t return a value can’t be used to initialize variables in a ter-

nary construct.
■ The value returned by a ternary construct must be compatible with the variable

type to which the value is being assigned.
■ Ternary operators can be nested to any level.

switch statements:

■ A switch statement is used to compare the value of a variable with multiple pre-
defined values.

■ A switch statement accepts arguments of type char, byte, short, int, and
String. It also accepts arguments of wrapper classes: Character, Byte, Short,
Integer, and Enum.

■ A switch statement can be compared with multiple related if-else-if-else

constructs.
■ You can pass an expression as an argument to a switch statement, as long as the

type of the expression is one of the acceptable data types.
■ The case value should be a compile-time constant, assignable to the argument

passed to the switch statement.
■ The case value can’t be the literal value null.
■ The case value can define expressions that use literal values; that is, they can be

evaluated at compile time, as in 7+2.
■ One code block can be defined to execute for multiple case values in a switch

statement.
■ A break statement is used to exit a switch construct once a matching case is

found and the required code statements have executed.
■ In the absence of the break statement, control will fall through all the remaining

case values in a switch statement until the first break statement is found, evalu-
ating the code for the case statements in order.

for loops:

■ A traditional for loop is usually used to execute a set of statements a fixed num-
ber of times.

■ A for loop defines three types of statements separated by semicolons (;): ini-
tialization statements, termination condition, and update clause.

371Review notes
■ The definition of any of the three for statements—initialization statements, ter-
mination condition, and update clause—is optional. For example, for (;;);
and for (;;){} are valid code for defining a for loop. Also, defining any one of
these statements is also valid code.

■ An initialization block executes only once. A for loop can declare and initialize
multiple variables in its initialization block, but the variables that it declares
should be of the same type.

■ The termination condition is evaluated once, for each iteration, before the
statements defined within the body of the loop are executed.

■ The for loop terminates when the termination condition evaluates to false.
■ The update block is usually used to increment or decrement the value of the

variables that are defined in the initialization block. It can also execute multiple
other statements, including method calls.

■ Nested for loops have no limits on levels.
■ Nested for loops are frequently used to work with multidimensional arrays.

Enhanced for loops:

■ The enhanced for loop is also called the for-each loop.
■ The enhanced for loop offers some benefits over the regular for loop, but it’s

not as flexible as the regular for loop.
■ The enhanced for loop offers simple syntax to iterate through a collection of

values—an array, ArrayList, or other classes from Java’s Collection framework
that store a collection of values.

■ The enhanced for loop can’t be used to initialize an array and modify its elements.
■ The enhanced for loop can’t be used to delete the elements of a collection.
■ The enhanced for loop can’t be used to iterate over multiple collections or

arrays in the same loop.
■ Nested enhanced for loops have no limits on levels.

while and do-while loops:

■ A while loop is used to keep executing a set of statements until the condition
that it uses evaluates to false. This loop checks the condition before it starts the
execution of the statement.

■ A do-while loop is used to keep executing a set of statements until the condi-
tion that it uses evaluates to false. This loop checks the condition after it com-
pletes the execution of all the statements in its loop body.

■ The levels of nested do-while or while loops have no limitations.
■ Both do-while and while loops can define either a single line of code or a code

block to execute. The latter is defined by using curly braces {}.

Comparing loop constructs:

■ Both the do-while and while loops execute a set of statements until the termi-
nation condition evaluates to false. The only difference between these two

372 CHAPTER 5 Flow control
statements is that the do-while loop executes the code at least once, even if the
condition evaluates to false.

■ The regular for loop, though cumbersome to use, is much more powerful than
the enhanced for loop.

■ The enhanced for loop can’t be used to initialize an array and modify its ele-
ments. The enhanced for loop can’t be used to delete or remove the elements
of a collection.

■ The enhanced for loop can’t be used to iterate over multiple collections or
arrays in the same loop.

■ You should try to use a for loop when you know the number of iterations—for
example, iterating through a collection or an array, or executing a loop for a
fixed number of times, say, to ping a server five times.

■ You should try to use a do-while or a while loop when you don’t know the
number of iterations beforehand and the number of iterations depends on a
condition being true—for example, accepting passport renewal applications
until all applicants have been attended to.

Loop statements (break and continue):

■ The break statement is used to exit—or break out of—the for, for-each, do, and
do-while loops and the switch construct.

■ The continue statement is used to skip the remaining steps in the current itera-
tion and start with the next loop iteration. The continue statement works with
the for, for-each, do, and do-while loops and the switch construct.

■ When you use the break statement with nested loops, it exits the correspond-
ing loop.

■ When you use the continue statement with nested loops, it exits the current
iteration of the corresponding loop.

Labeled statements:

■ You can add labels to a code block defined using braces, {}, all looping state-
ments (for, enhanced for, while, do-while), conditional constructs (if and
switch statements), expressions and assignments, return statements, try

blocks, and throws statements.
■ You can’t add labels to declarations of variables.
■ You can use a labeled break statement to exit an outer loop.
■ You can use a labeled continue statement to skip the iteration of the outer loop.

5.10 Sample exam questions
Q5-1. What’s the output of the following code?

class Loop2 {
 public static void main(String[] args) {
 int i = 10;

373Sample exam questions
 do
 while (i < 15)
 i = i + 20;
 while (i < 2);
 System.out.println(i);
 }
}

a 10

b 30

c 31

d 32

Q5-2. What’s the output of the following code?

class Loop2 {
 public static void main(String[] args) {
 int i = 10;
 do
 while (i++ < 15)
 i = i + 20;
 while (i < 2);
 System.out.println(i);
 }
}

a 10

b 30

c 31

d 32

Q5-3. Which of the following statements is true?

a The enhanced for loop can’t be used within a regular for loop.
b The enhanced for loop can’t be used within a while loop.
c The enhanced for loop can be used within a do-while loop.
d The enhanced for loop can’t be used within a switch construct.
e All of the above statements are false.

Q5-4. What’s the output of the following code?

int a = 10;
if (a++ > 10) {
 System.out.println("true");
}
{
 System.out.println("false");
}
System.out.println("ABC");

374 CHAPTER 5 Flow control
a true
false
ABC

b false
ABC

c true
ABC

d Compilation error

Q5-5. Given the following code, which of the optional lines of code can individually
replace the //INSERT CODE HERE line so that the code compiles successfully?

class EJavaGuru {
 public static void main(String args[]) {
 int num = 10;
 final int num2 = 20;
 switch (num) {
 // INSERT CODE HERE
 break;
 default: System.out.println("default");
 }
 }
}

a case 10*3: System.out.println(2);
b case num: System.out.println(3);
c case 10/3: System.out.println(4);
d case num2: System.out.println(5);

Q5-6. What’s the output of the following code?

class EJavaGuru {
 public static void main(String args[]) {
 int num = 20;
 final int num2;
 num2 = 20;
 switch (num) {
 default: System.out.println("default");
 case num2: System.out.println(4);
 break;
 }
 }
}

a default

b default
4

c 4

d Compilation error

375Sample exam questions
Q5-7. What’s the output of the following code?

class EJavaGuru {
 public static void main(String args[]) {
 int num = 120;
 switch (num) {
 default: System.out.println("default");
 case 0: System.out.println("case1");
 case 10*2-20: System.out.println("case2");
 break;
 }
 }
}

a default
case1
case2

b case1
case2

c case2

d Compilation error
e Runtime exception

Q5-8. What’s the output of the following code?

class EJavaGuru3 {
 public static void main(String args[]) {
 byte foo = 120;
 switch (foo) {
 default: System.out.println("ejavaguru"); break;
 case 2: System.out.println("e"); break;
 case 120: System.out.println("ejava");
 case 121: System.out.println("enum");
 case 127: System.out.println("guru"); break;
 }
 }
}

a ejava
enum
guru

b ejava

c ejavaguru
e

d ejava
enum
guru
ejavaguru

376 CHAPTER 5 Flow control
Q5-9. What’s the output of the following code?

class EJavaGuru4 {
 public static void main(String args[]) {
 boolean myVal = false;
 if (myVal=true)
 for (int i = 0; i < 2; i++) System.out.println(i);
 else System.out.println("else");
 }
}

a else

b 0

1
2

c 0

1

d Compilation error

Q5-10. What’s the output of the following code?

class EJavaGuru5 {
 public static void main(String args[]) {
 int i = 0;
 for (; i < 2; i=i+5) {
 if (i < 5) continue;
 System.out.println(i);
 }
 System.out.println(i);
 }
}

a Compilation error

b 0
5

c 0
5
10

d 10

e 0
1
5

f 5

377Answers to sample exam questions
5.11 Answers to sample exam questions
Q5-1. What’s the output of the following code?

class Loop2 {
 public static void main(String[] args) {
 int i = 10;
 do
 while (i < 15)
 i = i + 20;
 while (i < 2);
 System.out.println(i);
 }
}

a 10

b 30

c 31

d 32

Answer: b

Explanation: The condition specified in the do-while loop evaluates to false (because
10<2 evaluates to false). But the control enters the do-while loop because the do-while

loop executes at least once—its condition is checked at the end of the loop. The while

loop evaluates to true for the first iteration and adds 20 to i, making it 30. The while loop
doesn’t execute for the second time. Hence, the value of the variable i at the end of the
execution of the previous code is 30.

Q5-2. What’s the output of the following code?

class Loop2 {
 public static void main(String[] args) {
 int i = 10;
 do
 while (i++ < 15)
 i = i + 20;
 while (i < 2);
 System.out.println(i);
 }
}

a 10

b 30

c 31

d 32

Answer: d

Explanation: If you attempted to answer question 5-1, it’s likely that you would select
the same answer for this question. I deliberately used the same question text and

378 CHAPTER 5 Flow control
variable names (with a small difference) because you may encounter a similar pattern
in the OCA Java SE 8 Programmer I exam. This question includes one difference:
unlike question 5-1, it uses a postfix unary operator in the while condition.

 The condition specified in the do-while loop evaluates to false (because 10<2
evaluates to false). But the control enters the do-while loop because the do-while

loop executes at least once—its condition is checked at the end of the loop. This ques-
tion prints out 32, not 30, because the condition specified in the while loop (which
has an increment operator) executes twice.

 In this question, the while loop condition executes twice. For the first evaluation,
i++ < 15 (that is, 10<15) returns true and increments the value of variable i by 1 (due
to the postfix increment operator). The loop body modifies the value of i to 31. The
second condition evaluates i++<15 (that is, 31<15) to false. But because of the post-
fix increment operator value of i, the value increments to 32. The final value is
printed as 32.

Q5-3. Which of the following statements is true?

a The enhanced for loop can’t be used within a regular for loop.
b The enhanced for loop can’t be used within a while loop.
c The enhanced for loop can be used within a do-while loop.
d The enhanced for loop can’t be used within a switch construct.
e All of the above statements are false.

Answer: c

Explanation: The enhanced for loop can be used within all types of looping and con-
ditional constructs. Notice the use of “can” and “can’t” in the answer options. It’s
important to take note of these subtle differences.

Q5-4. What’s the output of the following code?

int a = 10;
if (a++ > 10) {
 System.out.println("true");
}
{
 System.out.println("false");
}
System.out.println("ABC");

a true
false
ABC

b false
ABC

379Answers to sample exam questions
c true
ABC

d Compilation error

Answer: b

Explanation: First of all, the code has no compilation errors. This question has a
trick—the following code snippet isn’t part of the if construct:

{
 System.out.println("false");
}

Hence, the value false will print no matter what, regardless of whether the condition
in the if construct evaluates to true or false.

 Because the opening and closing braces for this code snippet are placed right after
the if construct, it leads you to believe that this code snippet is the else part of the if
construct. Also, note that an if construct uses the keyword else to define the else

part. This keyword is missing in this question.
 The if condition (that is, a++ > 10) evaluates to false because the postfix incre-

ment operator (a++) increments the value of the variable a immediately after its ear-
lier value is used. 10 isn’t greater than 10, so this condition evaluates to false.

Q5-5. Given the following code, which of the optional lines of code can individually
replace the //INSERT CODE HERE line so that the code compiles successfully?

class EJavaGuru {
 public static void main(String args[]) {
 int num = 10;
 final int num2 = 20;
 switch (num) {
 // INSERT CODE HERE
 break;
 default: System.out.println("default");
 }
 }
}

a case 10*3: System.out.println(2);

b case num: System.out.println(3);

c case 10/3: System.out.println(4);

d case num2: System.out.println(5);

Answer: a, c, d

Explanation: Option (a) is correct. Compile-time constants, including expressions, are
permissible in the case labels.

380 CHAPTER 5 Flow control
 Option (b) is incorrect. The case labels should be compile-time constants. A non-
final variable isn’t a compile-time constant because it can be reassigned a value during
the course of a class’s execution. Although the previous class doesn’t assign a value to
it, the compiler still treats it as a changeable variable.

 Option (c) is correct. The value specified in the case labels should be assignable to
the variable used in the switch construct. You may think that 10/3 will return a deci-
mal number, which can’t be assigned to the variable num, but this operation discards
the decimal part and compares 3 with the variable num.

 Option (d) is correct. The variable num2 is defined as a final variable and assigned
a value on the same line of code, with its declaration. Hence, it’s considered to be a
compile-time constant.

Q5-6. What’s the output of the following code?

class EJavaGuru {
 public static void main(String args[]) {
 int num = 20;
 final int num2;
 num2 = 20;
 switch (num) {
 default: System.out.println("default");
 case num2: System.out.println(4);
 break;
 }
 }
}

a default

b default
4

c 4

d Compilation error

Answer: d

Explanation: The code will fail to compile. The case labels require compile-time con-
stant values, and the variable num2 doesn’t qualify as such. Although the variable num2
is defined as a final variable, it isn’t assigned a value with its declaration. The code
assigns a literal value 20 to this variable after its declaration, but it isn’t considered to
be a compile-time constant by the Java compiler.

Q5-7. What’s the output of the following code?

class EJavaGuru {
 public static void main(String args[]) {
 int num = 120;
 switch (num) {
 default: System.out.println("default");
 case 0: System.out.println("case1");

381Answers to sample exam questions
 case 10*2-20: System.out.println("case2");
 break;
 }
 }
}

a default
case1
case2

b case1
case2

c case2

d Compilation error
e Runtime exception

Answer: d

Explanation: The expressions used for both case labels—0 and 10*2-20—evaluate to
the constant value 0. Because you can’t define duplicate case labels for the switch

statement, the code will fail to compile with an error message that states that the code
defines a duplicate case label.

Q5-8. What’s the output of the following code?

class EJavaGuru3 {
 public static void main(String args[]) {
 byte foo = 120;
 switch (foo) {
 default: System.out.println("ejavaguru"); break;
 case 2: System.out.println("e"); break;
 case 120: System.out.println("ejava");
 case 121: System.out.println("enum");
 case 127: System.out.println("guru"); break;
 }
 }
}

a ejava
enum
guru

b ejava

c ejavaguru
e

d ejava
enum
guru
ejavaguru

Answer: a

382 CHAPTER 5 Flow control
Explanation: For a switch case construct, control enters the case labels when a
matching case is found. The control then falls through the remaining case labels
until it’s terminated by a break statement. The control exits the switch construct
when it encounters a break statement or it reaches the end of the switch construct.

 In this example, a matching label is found for case label 120. The control executes
the statement for this case label and prints ejava to the console. Because a break

statement doesn’t terminate the case label, the control falls through to case label 121.
The control executes the statement for this case label and prints enum to the console.
Because a break statement doesn’t terminate this case label also, the control falls
through to case label 127. The control executes the statement for this case label and
prints guru to the console. This case label is terminated by a break statement, so the
control exits the switch construct.

Q5-9. What’s the output of the following code?

class EJavaGuru4 {
 public static void main(String args[]) {
 boolean myVal = false;
 if (myVal=true)
 for (int i = 0; i < 2; i++) System.out.println(i);
 else System.out.println("else");
 }
}

a else

b 0
1
2

c 0
1

d Compilation error

Answer: c

Explanation: First of all, the expression used in the if construct isn’t comparing the
value of the variable myVal with the literal value true—it’s assigning the literal value
true to it. The assignment operator (=) assigns the literal value. The comparison
operator (==) is used to compare values. Because the resulting value is a boolean
value, the compiler doesn’t complain about the assignment in the if construct.

 The code is deliberately poorly indented because you may encounter similarly
poor indentation in the OCA Java SE 8 Programmer I exam. The for loop is part of
the if construct, which prints 0 and 1. The else part doesn’t execute because the if
condition evaluates to true. The code has no compilation errors.

383Answers to sample exam questions
Q5-10. What’s the output of the following code?

class EJavaGuru5 {
 public static void main(String args[]) {
 int i = 0;
 for (; i < 2; i=i+5) {
 if (i < 5) continue;
 System.out.println(i);
 }
 System.out.println(i);
 }
}

a Compilation error

b 0
5

c 0
5
10

d 10

e 0
1
5

f 5

Answer: f

Explanation: First, the following line of code has no compilation errors:

for (; i < 2; i=i+5) {

Using the initialization block is optional in a for loop. In this case, using a semicolon
(;) terminates it.

 For the first for iteration, the variable i has a value of 0. Because this value is less
than 2, the following if construct evaluates to true and the continue statement
executes:

if (i < 5) continue;

Because the continue statement ignores all the remaining statements in a for loop
iteration, the control doesn’t print the value of the variable i, which leads the control
to move on to the next for iteration. In the next for iteration, the value of the vari-
able i is 5. The for loop condition evaluates to false and the control moves out of
the for loop. After the for loop, the code prints out the value of the variable i, which
increments once using the code i=i+5.

Working with inheritance
Exam objectives covered in this chapter What you need to know

[7.1] Describe inheritance and its benefits. The need for inheriting classes.
How to implement inheritance using classes.

[7.2] Develop code that demonstrates the use
of polymorphism; including overriding and
object type versus reference type.

How to implement polymorphism with classes and
interfaces.
How to define polymorphic or overridden methods.
How to determine the valid types of the variables
that can be used to refer to an object.
How to determine the differences in the members
of an object, which ones are accessible, and when
an object is referred to using a variable of an inher-
ited base class or an implemented interface.

[7.3] Determine when casting is necessary. The need for casting.
How to cast an object to another class or an
interface.

[7.4] Use super and this to access objects
and constructors.

How to access variables, methods, and construc-
tors using super and this.
What happens if a derived class tries to access
variables of a base class when the variables aren't
accessible to the derived class.

[7.5] Use abstract classes and interfaces. The role of abstract classes and interfaces in imple-
menting polymorphism.

[9.5] Write a simple Lambda expression that
consumes a Lambda Predicate expression

Syntax and usage of lambda expressions. Usage of
Predicate class.
384

385Inheritance with classes
All living beings inherit the characteristics and behaviors of their parents. The off-
spring of a fly looks and behaves like a fly, and that of a lion looks and behaves like a
lion. But despite being similar to their parents, all offspring are also different and
unique in their own ways. In addition, a single action may have different meanings for
different beings. For example, the action “eat” has different meanings for a fly than a
lion. A fly eats nectar, whereas a lion eats an antelope.

 Something similar happens in Java. The concept of inheriting characteristics and
behaviors from parents can be compared to classes inheriting variables and methods
from a parent class. Being different and unique in one’s own way is similar to how a
class can both inherit from a parent and define additional variables and methods. Sin-
gle actions having different meanings can be compared to polymorphism in Java.

 In the OCA Java SE 8 Programmer I exam, you’ll be asked questions on how to
implement inheritance and polymorphism and how to use classes and interfaces.
Hence, this chapter covers the following:

■ Understanding and implementing inheritance
■ Developing code that demonstrates the use of polymorphism
■ Differentiating between the type of a reference and an object
■ Determining when casting is required
■ Using super and this to access objects and constructors
■ Using abstract classes and interfaces

6.1 Inheritance with classes

When we discuss inheritance in the context of an object-oriented programming lan-
guage such as Java, we talk about how a class can inherit the properties and behavior
of another class. The class that inherits from another class can also define additional
properties and behaviors. The exam will ask you explicit questions about the need to
inherit classes and how to implement inheritance using classes.

 Let’s get started with the need to inherit classes.

6.1.1 The need to inherit classes

Imagine the positions Programmer and Manager within an organization. Both of these
positions have a common set of properties, including name, address, and phone num-
ber. These positions also have different properties. A Programmer may be concerned with
a project’s programming languages, whereas a Manager may be concerned with project
status reports.

[7.1] Describe inheritance and its benefits

[7.5] Use abstract classes and interfaces

386 CHAPTER 6 Working with inheritance
 Let’s assume you’re supposed to store details of all Programmers and Managers in
your office. Figure 6.1 shows the properties and behavior that you may have identified
for a Programmer and a Manager, together with their representations as classes.

Did you notice that the classes Programmer and Manager have common properties,
namely, name, address, phoneNumber, and experience? The next step is to pull out
these common properties into a new position and name it something like Employee.
This step is shown in figure 6.2.

 This new position, Employee, can be defined as a new class, Employee, which is
inherited by the classes Programmer and Manager. A class uses the keyword extends to
inherit a class, as shown in figure 6.3.

 Inheriting a class is also referred to as subclassing. In figure 6.3, the inherited class
Employee is also referred to as the superclass, base class, or parent class. The classes
Programmer and Manager that inherit the class Employee are called subclasses, derived
classes, extended classes, or child classes.

 Why do you think you need to pull out the common properties and behaviors into
a separate class Employee and make the Programmer and Manager classes inherit it?
The next section covers the benefits of inheriting classes.

Programmer

name

address

phoneNumber

experience

programmingLanguages

writeCode()

class Programmer {

String name;

String address;

String phoneNumber;

float experience;

String[] programmingLanguages;

void writeCode() {}

}

Manager

name

address

phoneNumber

experience

teamSize

reportProjectStatus()

class Manager {

String name;

String address;

String phoneNumber;

float experience;

int teamSize;

void reportProjectStatus() {}

}

Figure 6.1 Properties and behavior of a Programmer and a Manager,
together with their representations as classes

387Inheritance with classes
6.1.2 Benefits

Do you know that all classes in Java inherit class java.lang.Object, either implicitly
or explicitly? Extending a class offers multiple benefits. Let’s revisit the examples used
in the previous section to highlight the benefits of inheriting classes.

Programmer

name

address

phoneNumber

experience

programmingLanguages

writeCode()

Employee

name

address

phoneNumber

experience

Manager

name

address

phoneNumber

experience

teamSize

reportProjectStatus()

Figure 6.2 Identify common properties and behaviors of a Programmer
and a Manager, pull them out into a new position, and name it Employee.

class Employee {

String name;

String address;

String phoneNumber;

float experience;

}

class Programmer extends Employee {

String[] programmingLanguages;

void writeCode() {}

}

class Manager extends Employee {

int teamSize;

void reportProjectStatus() {}

}

Employee

name

address

phoneNumber

experience

Programmer

programmingLanguages

writeCode()

Manager

teamSize

reportProjectStatus()

Figure 6.3 The classes Programmer and Manager extend the class Employee.

388 CHAPTER 6 Working with inheritance
SMALLER DERIVED CLASS DEFINITIONS

What if you were supposed to write more-specialized classes, such as Astronaut and
Doctor, which have the same common characteristics and behaviors as those of the
class Employee? With the class Employee in place, you’d only need to define the vari-
ables and methods that are specific to the classes Astronaut and Doctor and have the
classes inherit Employee.

 Figure 6.4 is a UML representation of the classes Astronaut, Doctor, Programmer,
and Manager, both with and without inheritance from the class Employee. As you
can see in this figure, the definition of these classes is smaller when they inherit the
class Employee.

NOTE The examples used in this book are simplified and generalized so that
you can focus on the concept being covered. They don’t take into consider-
ation all real-world scenarios. For example, on a particular project, an astro-
naut or a doctor might not be an employee of some organization.

EASE OF MODIFICATION TO COMMON PROPERTIES AND BEHAVIOR

What happens if your boss steps in and tells you that all of these specialized classes—
Astronaut, Doctor, Programmer, and Manager—should now have a property face-
bookId? Figure 6.5 shows that with the base class Employee in place, you just need to
add this variable to that base class. If you haven’t inherited from the class Employee,
you’ll need to add the variable facebookId to each of these four classes.

Without inheritance With inheritance

extends

extends extends

extends

Astronaut

name

address

phoneNumber

hoursInSpace

experience

Doctor

name

address

phoneNumber

surgery

experience

Programmer

name

address

phoneNumber

programmingLanguages

experience

Manager

name

address

phoneNumber

teamSize

experience

writeCode() reportProjectStatus()

Employee

name

address

phoneNumber

experience

Programmer

programmingLanguages

writeCode()

Manager

teamSize

reportProjectStatus()

Astronaut

hoursInSpace

Doctor

surgery

Figure 6.4 Differences in the size of the classes Astronaut, Doctor, Programmer, and Manager,
both with and without inheriting from the class Employee

389Inheritance with classes
Note that common code can be modified and deleted from the base class Employee
fairly easily.

EXTENSIBILITY

Code that works with the base class in a hierarchy tree can work with all classes that
are added using inheritance later.

 Assume that an organization needs to send out invitations to all its employees and
that it uses the following method to do so:

class HR {
 void sendInvitation(Employee emp) {
 System.out.println("Send invitation to" +
 emp.name + " at " + emp.address);
 }
}

Because the method sendInvitation accepts an argument of type Employee, you can
also pass to it a subclass of Employee. Essentially, this design means that you can use
the previous method with a class defined later that has Employee as its base class.
Inheritance makes code extensible.

USE TRIED-AND-TESTED CODE FROM A BASE CLASS

You don’t need to reinvent the wheel. With inheritance in place, subclasses can use
tried-and-tested code from a base class.

Without inheritance With inheritance

extends

extends extends

extends

Astronaut

name

address

phoneNumber

hoursInSpace

experience

Doctor

name

address

phoneNumber

surgery

experience

Programmer

name

address

phoneNumber

programmingLanguages

experience

Manager

name

address

phoneNumber

teamSize

experience

writeCode() reportProjectStatus()

Employee

name

address

phoneNumber

experience

Programmer

programmingLanguages

writeCode()

Manager

teamSize

reportProjectStatus()

Astronaut

hoursInSpace

Doctor

surgery

facebookId facebookId facebookId

facebookId facebookId

Figure 6.5 Adding a new property, facebookId, to all classes, with and without the base class
Employee

390 CHAPTER 6 Working with inheritance
CONCENTRATE ON THE SPECIALIZED BEHAVIOR OF YOUR CLASSES

Inheriting a class enables you to concentrate on the variables and methods that define
the special behavior of your class. Inheritance lets you make use of existing code from
a base class without having to define it yourself.

LOGICAL STRUCTURES AND GROUPING

When multiple classes inherit a base class, this creates a logical group. For an exam-
ple, see figure 6.5. The classes Astronaut, Doctor, Programmer, and Manager are all
grouped as types of the class Employee.

EXAM TIP Inheritance enables you to reuse code that has already been
defined by a class. Inheritance can be implemented by extending a class.

The next section solves the mystery of how you can access the inherited members of a
base class directly in a derived class.

6.1.3 A derived class contains within it an object of its base class

The classes Programmer and Manager inherit the nonprivate variables and methods
defined in the class Employee and use them directly, as if they were defined in their
own classes. Examine the following code:

class Employee {
 protected String name;
 protected String address;
 protected String phoneNumber;
 protected float experience;
}
class Manager extends Employee {
 protected int teamSize;
 public void reportProjectStatus() {}
}
class Programmer extends Employee {
 private String[] programmingLanguages;
 public void writeCode() {}
 public void accessBaseClassMembers() {
 name = "Programmer";
 }
}

How can the class Programmer assign a value to a variable that’s defined in the class
Employee? You can think of this arrangement as follows: When a class inherits another
class, it encloses within it an object of the inherited class. Hence, all the nonprivate
members (variables and methods) of the inherited class are available to the class, as
shown in figure 6.6.

 But a derived class can’t inherit all the members of its base class. The next two sec-
tions discuss which base class members are and aren’t inherited by a derived class.

Derived class Programmer
can directly access
members of its superclass

391Inheritance with classes
6.1.4 Which base class members are inherited by a derived class?

The access modifiers play an important role in determining the inheritance of base
class members in derived classes. A derived class can inherit only what it can see. A
derived class inherits all the nonprivate members of its base class. A derived class
inherits base class members with the following accessibility levels:

■ Default—Members with default access can be accessed in a derived class only if
the base and derived classes reside in the same package.

■ protected—Members with protected access are accessible to all the derived
classes, regardless of the packages in which the base and derived classes are
defined.

■ public—Members with public access are visible to all other classes.

EXAM TIP A derived class can inherit only what it can see.

6.1.5 Which base class members aren’t inherited by a derived class?

A derived class doesn’t inherit the following members:

■ private members of the base class.
■ Base class members with default access, if the base class and derived classes exist

in separate packages.
■ Constructors of the base class. A derived class can call a base class’s construc-

tors, but it doesn’t inherit them (section 6.5 discusses how a derived class can
call a base class’s constructors using the implicit reference super).

Apart from inheriting the properties and behavior of its base class, a derived class can
also define additional properties and behaviors, as discussed in the next section.

6.1.6 Derived classes can define additional properties and behaviors

Although derived classes are similar to their base classes, they generally also have
differences. Derived classes can define additional properties and behaviors. You
may see explicit questions on the exam about how a derived class can differ from its
base class.

Employee

Programmer

Features of class

Employee exist within

class Programmer.

Figure 6.6 An object of a derived class can access features of its base
class object.

392 CHAPTER 6 Working with inheritance
 Take a quick look back at figure 6.5. All the derived classes—Manager, Programmer,
Doctor, and Astronaut—define additional variables, methods, or both. Derived classes
can also define their own constructors and static methods and variables. A derived
class can also hide or override its base class’s members.

 When a derived class defines an instance or class variable with the same name as
one defined from its base class, only these new variables and methods are visible to
code using the derived class. When a derived class defines different code for a method
inherited from a base class by defining the method again, this method is treated as a
special method—an overridden method.

 You can implement inheritance by using either a concrete class or an abstract

class as a base class, but there are some important differences that you should be
aware of. These are discussed in the next section.

6.1.7 Abstract base class versus concrete base class

Figures 6.2 and 6.3 showed how you can pull out the common properties and behav-
ior of a Programmer and Manager and represent these as a new class, Employee. You
can define the class Employee as an abstract class, if you think that it’s only a catego-
rization and no real Employee exists in real life—that is, if all Employees are really
either Programmers or Managers. That’s the essence of an abstract class: it groups the
common properties and behavior of its derived classes, but it prevents itself from
being instantiated. Also, an abstract class can force all its derived classes to define
their own implementations for a behavior by defining it as an abstract method (a
method without a body).

NOTE Section 6.6.1 includes an example of usage of abstract classes: how it
forces its derived classes to implement the abstract methods.

It isn’t mandatory for an abstract class to define an abstract method. But if an
abstract base class defines one or more abstract methods, the class must be marked
as abstract and the abstract methods must be implemented in all its concrete
derived classes. If a derived class doesn’t implement all the abstract methods defined
by its base class, then it also needs to be an abstract class.

 For the exam, you need to remember the following important points about imple-
menting inheritance using an abstract base class:

■ You can never create objects of an abstract class.
■ A base class can be defined as an abstract class, even if it doesn’t define any

abstract methods.
■ A derived class should implement all the abstract methods of its base class. If it

doesn’t, it must be defined as an abstract derived class.
■ You can use variables of an abstract base class to refer to objects of its derived

class (discussed in detail in section 6.3).

393Inheritance with classes
The first Twist in the Tale exercise for this chapter queries you on the relationship
between base and derived classes (answer in the appendix).

Modify the code used in the previous example as follows. Which of the options is cor-
rect for this modified code?

class Employee {
 private String name;
 String address;
 protected String phoneNumber;
 public float experience;
}
class Programmer extends Employee {
 Programmer (String val) {
 name = val;
 }
 String getName() {
 return name;
 }
}
class Office {
 public static void main(String args[]) {
 new Programmer ("Harry").getName();
 }
}

a The class Office prints Harry.
b The derived class Programmer can’t define a getter method for a variable defined

in its base class Employee.
c The derived class Programmer can’t access variables of its base class in its

constructors.
d new Programmer ("Harry").getName(); isn’t the right way to create an object

of class Programmer.
e Compilation error.

TERMS AND DEFINITIONS TO REMEMBER

Following is a list of terms and their corresponding definitions that you should
remember; they’re used throughout the chapter, and you’ll come across them while
answering questions on inheritance in the OCA Java SE 8 Programmer I exam.

■ Base class—A class inherited by another class. The class Employee is a base class
for the classes Programmer and Manager in the previous examples.
– Superclass—A base class is also known as a superclass.
– Parent class—A base class is also known as a parent class.

Twist in the Tale 6.1

394 CHAPTER 6 Working with inheritance
■ Derived class—A class that inherits from another class. The classes Programmer

and Manager are derived classes in the previous examples.
– Subclass—A derived class is also known as a subclass.
– Extended class—A derived class is also known as an extended class.
– Child class—A derived class is also known as a child class.

■ IS-A relationship—A relationship shared by base and derived classes. In the previ-
ous examples, a Programmer IS-A Employee. A Manager IS-A Employee. Because
a derived class represents a specialized type of a base class, a derived class IS-A
kind of base class.

■ extends—The keyword used by a class to inherit another class and by an inter-
face to inherit another interface.

■ implements—The keyword used by a class to implement an interface (inter-
faces are covered in the next section).

NOTE The terms base class, superclass, and parent class are used interchange-
ably. Similarly, the terms derived class and subclass are also used interchan-
geably.

In this section, you learned that an abstract class may define abstract methods.
Let’s take it a step further to interfaces. In the next section, we’ll discuss why you need
interfaces and how to use them.

6.2 Use interfaces

We all use interfaces quite often in our lives. For example, when you refer to someone
as a runner, do you care whether that person is also an orator, a parent, or an entrepre-
neur? You care only that the person is able to run. The term runner enables you to
refer to unrelated individuals, by opening a small window to each person and access-
ing behavior that’s applicable to only that person’s capacity as a runner. Someone can
be referred to as a runner only if that person supports characteristics relevant to run-
ning, though the specific behavior can depend on the person.

 In the preceding example, you can compare the term runner to a Java interface,
which defines the required behavior run. An interface can define a set of behaviors
(methods) and constants. Usually it delegates the implementation of the behavior to
the classes that implement it. Interfaces are used to refer to multiple related or unre-
lated objects that share the same set of behaviors. Figure 6.7 compares the interface
runner with a small window to an object, which is concerned only about the running
capabilities of that object.

[7.1] Describe inheritance and its benefits

[7.5] Use abstract classes and interfaces

395Use interfaces
Similarly, when you design your application by using interfaces, you can use similar
windows (also referred to as specifications or contracts) to specify the behavior that you
need from an object, without caring about the specific types of objects.

NOTE You can compare a contract with a set of rules or deliverables that are
mutually accepted by persons. A contract might include a set of rules to
abide by or deliverables to be made accessible by a certain date. A contract
usually doesn’t include how the rules stated would be abided by or how the
deliverables would be made accessible. It states what and not how. Similarly,
an interface defines what behavior would be supported by the classes that
implement it.

Separating the required behavior from its implementation has many benefits. As an
application designer, you can use interfaces to establish the behavior that’s required
from objects, promoting flexibility in the design (new classes that implement an inter-
face can be created and used later). Interfaces make an application manageable,
extensible, and less prone to propagation of errors due to changes to existing types.

 Now imagine you created an interface in an application some time ago. The appli-
cation needs to be upgraded, which requires additional behavior to be added to some
of its interfaces. This wouldn’t have been possible with Java 7 or its earlier versions.
But with Java 8, you can add methods to an interface without breaking the existing
implementations. Prior to Java 8, an interface could only define abstract methods.
With Java 8, an interface can define the default implementation for its methods (so it

Parent

Window Runner
has limited access

to the objects.

Entrepreneur

invest

run

expand

Orator

work

run

conferences

facilitate

guide

run

Figure 6.7 You can compare an interface with a window that can connect multiple
objects but has limited access to them.

396 CHAPTER 6 Working with inheritance
doesn’t stop the existing classes that implement it from compiling). Interfaces in Java 8
can also define static methods. One of the main reasons for this language change
(adding default and static methods to interfaces) was to improve the aging Collec-
tions API, especially with Stream-based functionalities (covered by the OCP exam).

 In this section, you’ll come to understand the need for and importance of using
interfaces and different types of methods that can be defined in an interface. You’ll
work with the implicit and explicit properties of interface members—its constants and
methods. You’ll also see why inheriting multiples classes isn’t allowed but inheriting
multiple interfaces is allowed. Let’s get started with the need for interfaces.

6.2.1 Need for using interfaces

You need interfaces to enable multiple classes to support a set of behaviors. Let’s work
with the example used in section 6.1. In this example, Employee is the base class and
classes Programmer and Manager subclass Employee. Imagine that your boss steps in
and states that Programmer and Manager must support additional behaviors, as listed
in table 6.1.

How will you accomplish this task? One approach you can take is to define all the rele-
vant methods in the class Employee. Because both Programmer and Manager extend
the class Employee, they’d be able to access these methods. But wait: Programmer

doesn’t need the behavior of the conducting interview task; only Manager should sup-
port the functionality of conducting interviews.

 Another obvious approach would be to define the relevant methods in the desired
classes. You could define methods to conduct interviews in Manager and methods to
attend training in both Programmer and Manager. Again, this isn’t an ideal solution.
What will happen if your boss later informs you that all the Employees who attend
training should accept a training schedule; that is, there’s a change in the signature of
the method that defines the behavior “attend training”? Can you define separate
classes for this behavior and make the classes Programmer and Manager implement
them? No, you can’t. Java doesn’t allow a class to inherit multiple classes (covered in a
later section in this chapter).

 Let’s try interfaces. Create two interfaces to define the specified behavior:

interface Trainable {
 public void attendTraining();
}

Table 6.1 Additional behaviors that need to be supported by the classes
Programmer and Manager

Entity New expected behavior

Programmer Attend training

Manager Attend training, conduct interviews

397Use interfaces
interface Interviewer {
 public void conductInterview();
}

Although Java doesn’t allow a class to inherit from more than one class, it allows a
class to implement multiple interfaces. A class uses the keyword implements to imple-
ment an interface. In the following code, the classes Programmer and Manager imple-
ment the relevant interfaces (the modified code is in bold):

class Employee {
 String name;
 String address;
 String phoneNumber;
 float experience;
}
class Manager extends Employee implements Interviewer, Trainable {
 int teamSize;
 void reportProjectStatus() {}
 public void conductInterview() {
 System.out.println("Mgr - conductInterview");
 }
 public void attendTraining() {
 System.out.println("Mgr - attendTraining");
 }
}

class Programmer extends Employee implements Trainable{
 String[] programmingLanguages;
 void writeCode() {}
 public void attendTraining() {
 System.out.println("Prog - attendTraining");
 }
}

Figure 6.8 displays the relationships between these classes in a UML diagram.

NOTE An interface can be represented in UML diagrams using either a rect-
angle with the text <<interface>> or simply a circle. Both notations are popu-
lar; you may see them in various websites or books.

Manager
implements
Interviewer

and Trainable

Programmer
implements
only Trainable

extends implements

<<interface>>

Trainable

Employee

Programmer Manager

<<interface>>

Interviewer

Figure 6.8 Relationships among the
classes Employee, Programmer, and
Manager and the interfaces Trainable
and Interviewer

398 CHAPTER 6 Working with inheritance
The preceding relationships can also be represented as depicted in figure 6.9, where
the interfaces are defined as circles.

6.2.2 Defining interfaces

You can define methods and constants in an interface. Declaring an interface is
simple, but don’t let this simplicity take you for a ride. For the exam, it’s important
to understand the implicit modifiers that are added to the members of an inter-
face. All methods of an interface are implicitly public. The interface variables are
implicitly public, static, and final. Let’s define an interface Runner that defines
an abstract method speed and a variable distance. Figure 6.10 shows how implicit
modifiers are added to the members of interface Runner during the compilation
process.

Why do you think these implicit modifiers are added to the interface members?
Because an interface is used to define a contract, it doesn’t make sense to limit access
to its members—and so they are implicitly public. An interface can’t be instantiated,
and so the value of its variables should be defined and accessible in a static context,
which makes them implicitly static.

extends implements

Trainable Employee

Programmer Manager

Interviewer

Figure 6.9 Relationships among the classes Employee,
Programmer, and Manager and the interfaces Trainable and
Interviewer, with interfaces represented by circles

interface Runner{

 int speed();

 double distance = 70;

}

interface Runner{

 public abstract int speed();

 public static final double distance = 70;

}

Becomes

Figure 6.10 All the methods of an interface are implicitly public. Its variables are implicitly public,
static, and final.

399Use interfaces
 The exam will also test you on the various components of an interface declaration,
including access and nonaccess modifiers. Here’s the complete list of the components
of an interface declaration:

■ Access modifiers
■ Nonaccess modifiers
■ Interface name
■ All extended interfaces, if the interface is extending any interfaces
■ Interface body (variables and methods), included within a pair of curly braces {}

To include all the possible components, let’s modify the declaration of the inter-
face Runner:

public strictfp interface Runner extends Athlete, Walker {}

The components of the interface Runner are shown in figure 6.11. To declare any
interface, you must include the keyword interface, the name of interface, and its
body, marked by {}.

The optional and compulsory components of an interface can be summarized as listed
in table 6.2.

EXAM TIP The declaration of an interface can’t include a class name. An
interface can never extend any class.

Table 6.2 Optional and compulsory components of an interface declaration

Compulsory Optional

Keyword interface Access modifier

Name of the interface Nonaccess modifier

Interface body, marked by the opening
and closing curly braces {}

Keyword extends, together with the name of the base
interface(s) (Unlike a class, an interface can extend multiple
interfaces.)

public stictfp interface Runner extends Athlete, Walker {}

Access

modifier

Nonaccess

modifier
Keyword

Interface

name
Keyword

Name of interfaces

extended by

interface Runner

Curly

braces

Optional Optional Compulsory Compulsory Optional Optional Compulsory

Figure 6.11 Components of an interface declaration

400 CHAPTER 6 Working with inheritance
Can you define a top-level, protected interface? No, you can’t. For the exam, you must
know the answer to questions about the correct values for each component that can
be used with an interface declaration. Let’s dive into these nuances.

VALID ACCESS MODIFIERS FOR AN INTERFACE

You can declare a top-level interface (the one that isn’t declared within any other class or
interface), with only the following access levels:

■ public
■ No modifier (default access)

If you try to declare your top-level interfaces by using the other access modifiers
(protected or private), your interface will fail to compile. The following definitions
of the interface MyInterface won’t compile:

private interface MyInterface{}

protected interface MyInterface {}

EXAM TIP All the top-level Java types (classes, enums, and interfaces) can be
declared using only two access levels: public and default. Inner or nested
types can be declared using any access level.

VALID ACCESS MODIFIERS FOR MEMBERS OF AN INTERFACE

All members of an interface—variables, methods, inner interfaces, and inner classes
(yes, an interface can define a class within it!)—are inherently public because that’s
the only modifier they can accept. Using other access modifiers results in compila-
tion errors:

interface MyInterface {
 private int number = 10;
 protected void aMethod();
 interface interface2{}
 public interface interface4{}
}

The code at B fails compilation with the following error message:

illegal combination of modifiers: public and private
 private int number = 10;

VALID NONACCESS MODIFIERS FOR AN INTERFACE

You can declare a top-level interface with only the following nonaccess modifiers:

■ abstract

■ strictfp

Top-level interface can’t be
defined as private

Top-level interface can’t be
defined as protected

Won’t
compile

b

Won’t compile

interface2 is implicitly
prefixed with public

Interface member can
be prefixed with public

401Use interfaces
NOTE The strictfp keyword guarantees that results of all floating-point cal-
culations are identical on all platforms.

If you try to declare your top-level interfaces by using the other nonaccess modifiers
(final, static, transient, synchronized, or volatile), the interface will fail to
compile. All the following interface declarations fail to compile because they use
invalid nonaccess modifiers:

final interface MyInterface {}
static interface MyInterface {}
transient interface MyInterface {}
synchronized interface MyInterface {}
volatile interface MyInterface {}

6.2.3 Types of methods in an interface

Oracle has made fundamental changes to interfaces in Java 8. Apart from abstract

methods, an interface can define methods with default implementations. It can also
define static methods. Here’s a quick list of the types of methods that can be defined
in an interface (in Java 8):

■ abstract methods
■ Default methods (new in Java 8)
■ static methods (new in Java 8)

Let’s examine each of these in detail.

NOTE The default methods are also referred to as defender or virtual extension
methods. But the most popular term to refer them is default methods because the
default keyword is used to identify them.

ABSTRACT METHODS

Most jobs require a candidate to be interviewed, and the interviewer can be a CEO, a
technical leader, or a programmer. Although each of these categories supports the
behavior of an interviewer, it will conductInterview in its own specific manner.

 An abstract method is used to specify a behavior (set of methods), which must be
defined by the class that implements it. It’s another way of stating “a class supports a
behavior, but in its own manner” in the way it likes. In the following example, the
interface Interviewer defines an abstract method conductInterview.

 An abstract method is defined without a method body:

interface Interviewer {
 void conductInterview();
}

Won’t compile; invalid
nonaccess modifiers used
with interface declaration

Doesn’t include the
keyword abstract

402 CHAPTER 6 Working with inheritance
You might include the keyword abstract to define an abstract method in an inter-
face. The following definition of the method conductInterview is the same as its def-
inition in the preceding code:

interface Interviewer {
 abstract void conductInterview();
}

EXAM TIP Interface methods are implicitly abstract. To define default or
static methods, you must explicitly use the keyword default or static with
the method declaration in an interface. Default and static methods include
their implementation in an interface.

When a class implements an interface with abstract methods, the class must imple-
ment all the methods, or else the class won’t compile. A developer can’t add abstract

methods to an interface without breaking existing implementations. It can only be
done with default methods.

DEFAULT METHODS
Imagine you need to add a behavior—submit interview status—to the interface Inter-

viewer, after its publication. This wouldn’t have been possible with Java 7 and its ear-
lier versions without implying the need to provide an implementation for each
existing concrete class (either directly or through a superclass). Default methods can
rescue you here. Starting with Java 8, interfaces can be augmented by adding methods
with default implementation. Implementing classes might choose to override these
methods to define their own specific behavior. If they don’t choose to override them,
the default implementation from the interface is used. The definition of a default
method must include the keyword default:

interface Interviewer {
 abstract void conductInterview();
 default void submitInterviewStatus() {
 System.out.println("Accept");
 }
}

I deliberately oversimplified submitInterviewStatus() in the preceding code so
that the code focuses on the definition of default methods and not on its implemen-
tation details.

NEW IN JAVA 8 Interface methods can define an implementation by using
default methods.

Because the return type of the preceding method, submitInterviewStatus, is void,
the following definition of method submitInterviewStatus is valid:

interface Interviewer {
 default void submitInterviewStatus() {}
}

Includes keyword
abstract

Inclusion of
keyword default

Empty method body
!= abstract method

403Use interfaces
Even though the method in the preceding example doesn’t define any code in its
body, it isn’t equivalent to an abstract method. Declaration of a default method must
be followed by the method body marked using {}. The following code won’t compile:

interface Interviewer {
 default void submitInterviewStatus();
}

Just like regular methods, the return type of a default method must match the type of
the value that it returns. The following won’t compile:

interface Interviewer {
 default void submitInterviewStatus() {
 return 0;
 }
}

STATIC METHODS

Revisit the interface Interviewer used in the preceding section. Imagine that you
need a utility (static) method that can be used to book a conference hall for an
interview on a particular date and time. With Java 8, you can add static methods to
an interface. Prior to Java 8, interfaces weren’t allowed to define static methods. In
such a case, you’d need to define the required static method in a separate class. This
is one of the main reasons why static methods have been allowed in the interfaces—
to improve the aging Collections API, which includes a few classes just to define
static methods (like Collections and Paths).

NOTE static interface methods enable you to define utility methods in the
interfaces that they belong to.

Let’s add a static method bookConferenceRoom to the interface Interviewer (in bold):

interface Interviewer {
 abstract void conductInterview();
 default void submitInterviewStatus() {
 System.out.println("Accept");
 }
 static void bookConferenceRoom(LocalDateTime dateTime, int duration) {
 System.out.println("Interview scheduled on:" + dateTime);
 System.out.println("Book conference room for: "+duration + " hrs");
 }
}

The method bookConferenceRoom() must be called by prefixing its call with the
interface name. You can’t call it using a reference variable of the type Interviewer

or of the class that implements this interface. Let’s define the class Manager that

Won’t compile;
missing {}

Won’t compile; can’t return
0 for return type void

404 CHAPTER 6 Working with inheritance
implements Interviewer and the class Project that tries to call the method book-
ConferenceRoom:

class Manager implements Interviewer {}

class Project {
 public static void main(String[] args) {
 Interviewer inv = new Manager();
 inv.bookConferenceRoom(LocalDateTime.now(), 2);

 Manager mgr = new Manager();
 mgr.bookConferenceRoom(LocalDateTime.now(), 2);

 Interviewer.bookConferenceRoom(LocalDateTime.now(), 2);
 }
}

It’s interesting to note that for mgr.bookConferenceRoom(), the compiler states that
the method bookConferenceRoom is not defined for the type Manager.

EXAM TIP A static method in an interface can’t be called using a reference
variable. It must be called using the interface name.

In contrast to the preceding code, you can call a static method defined in a class
either by using reference variables or by the name of the class:

class Employee {
 static void defaultPlan() {
 System.out.println("Basic");
 }
}
class Programmer extends Employee {}

class Project {
 public static void main(String[] args) {
 Employee emp = new Programmer();
 emp.defaultPlan();

 Programmer pgr = new Programmer();
 pgr.defaultPlan();

 Employee.defaultPlan();
 Programmer.defaultPlan();
 }
}

In the preceding example, the static method defaultPlan is defined in the class
Employee, which is subclassed by the class Programmer. The class Project defines ref-
erence variables of the type Employee and Programmer and initializes them using
Programmer instances. To execute defaultPlan(), you can use the reference variables
emp and pgr of types Employee and Programmer, respectively. You can also call default-
Plan() by using the class name: Employee or Programmer.

Won’t
compile

Compiles
successfully

Static method in
class Employee

Programmer
subclasses Employee

Compiles; static method
accessed using variable emp

Compiles; static method
accessed using variable pgr

Compiles; static method accessed
using Employee and Programmer

405Use interfaces
EXAM TIP Unlike an interface, if you define a static method in a base class,
it can be accessed using either a reference variable or the class name.

6.2.4 Implementing a single interface

When a class implements an interface, it must follow a set of rules.

IMPLEMENT ABSTRACT METHODS

If a concrete class doesn’t implement the abstract methods of the interface it imple-
ments, it won’t compile:

interface Interviewer {
 abstract int interviewConducted();
}
class Manager implements Interviewer {}

Do you think the following code will compile?

interface Interviewer {
 abstract int interviewConducted();
}
class Manager implements Interviewer {
 int interviewConducted() {
 return 1;
 }
}

EXAM TIP You must implement an abstract method of an interface using
the explicit access modifier public.

When you implement an interface method in a class, it follows method-overriding
rules:

interface Interviewer {
 abstract Object interviewResult();
}
class Manager implements Interviewer {
 public String interviewResult() {
 return null;};
}

But the following won’t compile:

interface Interviewer {
 abstract int interviewConducted();
}
class Manager implements Interviewer {
 public Integer interviewConducted() {
 return 1;
 }
}

Won’t compile;
doesn’t implement
interviewConducted()

Won’t compile;
attempting to assign
weaker access privilege

Compiles
successfully

Won’t compile; return
type Integer isn't
compatible with int

406 CHAPTER 6 Working with inheritance
OVERRIDING DEFAULT METHODS

A class might choose to override the implementation of a default method in an inter-
face that it implements. If it doesn’t, the default implementation of the interface
method will be used. In the following example, the class Manager implements the
interface Interviewer but doesn’t override the default method submitInterview-

Status():

interface Interviewer {
 default Object submitInterviewStatus() {
 System.out.println("Accept");
 return null;
 }
}
class Manager implements Interviewer {}

Let’s override the default implementation of the method submitInterviewStatus()

in the class Manager. When a class overrides a default method, it doesn’t use the key-
word default. Also, it follows method-overriding rules:

interface Interviewer {
 default Object submitInterviewStatus() {
 System.out.println("Accept");
 return null;
 }
}
class Manager implements Interviewer {
 public String submitInterviewStatus() {
 System.out.println("Accept");
 return null;
 }
}

EXAM TIP While overriding a default method, you must not use the keyword
default. Rules for overriding default and regular methods are the same.

STATIC METHODS

If an interface defines a static method, the class that implements it can define a
static method with the same name, but the method in the interface isn’t related to the
method defined in the class. In the following example, the method bookConference-

Room in the class Manager doesn’t overload or override the method bookConference-

Room defined in the interface Interviewer. This is evident from the return types of
these methods (highlighted in bold):

interface Interviewer {
 static void bookConferenceRoom(LocalDateTime dateTime, int dur) {
 System.out.println("Interviewer-bookConferenceRoom");
 }
}

default method in
interface Interviewer

Class Manager doesn’t override
submitInterviewStatus()

default method with
return type Object

Overriding method with
return type String

407Use interfaces
class Manager implements Interviewer {
 static String bookConferenceRoom(LocalDateTime dateTime, int dur) {
 System.out.println("Manager-bookConferenceRoom");
 return null;
 }
}

EXAM TIP static methods in a class and the interface that it implements are
not related to each other. A static method in a class doesn’t hide or override
the static method in the interface that it implements.

Why do you think Java doesn’t allow a class to inherit multiple classes but allows a class
to implement multiple interfaces? I’ll cover that in detail in the next sections.

6.2.5 A class can’t extend multiple classes

In Java, a class can’t extend multiple classes. Let’s examine the reason using an exam-
ple, in which the class Programmer is allowed to inherit two classes: Employee and
Philanthropist. Figure 6.12 shows the relationship between these classes and the
corresponding code.

If the class Programmer inherited the method receiveSalary, defined in both Employee
and Philanthropist, what do you think a Programmer would do with their salary: pay
dues (like an Employee) or donate it (like a Philanthropist)? What do you think
would be the output of the following code?

class Test {
 public static void main(String args[]) {
 Programmer p = new Programmer();
 p.receiveSalary();
 }
}

In this case, the class Programmer can access two receiveSalary methods with identi-
cal method signatures but different implementations, so it’s impossible to resolve this
method call. This is why classes aren’t allowed to inherit multiple classes in Java.

Compiles
successfully

extends extends

class Employee {

public void receiveSalary() {

system.out.println("PayDues");

}

}

class Philanthropist {

public void receiveSalary() {

system.out.println("Donate");

}

}

class Programmer extends Employee, Philanthropist {}

Philanthropist

receiveSalary()

Employee

receiveSalary()

Programmer

Figure 6.12 What happens if a class is allowed to extend multiple classes?

Would this print
“PayDues” or “Donate”?

408 CHAPTER 6 Working with inheritance
EXAM TIP Because a derived class may inherit different implementations for
the same method signature from multiple base classes, multiple inheritance
isn’t allowed in Java.

6.2.6 A class can implement multiple interfaces

In the preceding section, we discussed that a class can’t inherit multiple classes. But a
class can implement multiple interfaces. Why is this allowed, when Java doesn’t
allow a class to extend multiple classes? Prior to Java 8, an interface could define only
abstract methods. So even if a class inherited methods with the same name from dif-
ferent interfaces, it came without an implementation.

 But with Java 8, an interface can also define default methods—methods that
include an implementation. So when a class implements multiple interfaces, it must
adhere to a set of rules.

EXAM TIP A class can extend multiple interfaces only if a set of rules is
adhered to.

IMPLEMENTING MULTIPLE INTERFACES WITH THE SAME CONSTANT NAMES

A class can implement multiple interfaces with the same constant name, as long as a
call to these interfaces isn’t ambiguous. In the following example, the class Animal

compiles successfully. It doesn’t use the constant MIN_DISTANCE defined in the inter-
faces Moveable and Jumpable that it implements:

interface Jumpable {
 int MIN_DISTANCE = 10;
}
interface Moveable {
 String MIN_DISTANCE = "SMALL";
}
class Animal implements Jumpable, Moveable {}

If you modify the implementation details of the class Animal so that it refers to the
variable MIN_DISTANCE without prefixing it with the interface name, then it won’t
compile:

interface Jumpable {
 int MIN_DISTANCE = 10;
}
interface Moveable {
 String MIN_DISTANCE = "SMALL";
}
class Animal implements Jumpable, Moveable {
 Animal() {
 System.out.println(MIN_DISTANCE);
 }
}

Compiles successfully;
no ambiguous
implicit reference
to MIN_DISTANCE

Won’t compile;
implicit reference
to MIN_DISTANCE
is ambiguous

409Use interfaces
When prefixed with the interface name, the reference to MIN_DISTANCE is no longer
ambiguous:

interface Jumpable {
 int MIN_DISTANCE = 10;
}
interface Moveable {
 String MIN_DISTANCE = "SMALL";
}
class Animal implements Jumpable, Moveable {
 Animal() {
 System.out.println(Jumpable.MIN_DISTANCE);
 }
}

If an implicit reference to a constant defined in an interface(s) isn’t ambiguous, the
class that implements the interface can refer to it without prefixing it with the inter-
face name:

interface Jumpable {
 int MIN_DISTANCE = 10;
}
interface Moveable {
 String MAX_DISTANCE = "SMALL";
}
class Animal implements Jumpable, Moveable {
 Animal() {
 System.out.println(MIN_DISTANCE);
 }
}

EXAM TIP A class can implement multiple interfaces with the same constant
names, only if a reference to the constants isn’t ambiguous.

IMPLEMENTING MULTIPLE INTERFACES WITH THE SAME ABSTRACT METHOD NAMES

An abstract method doesn’t define a body. It’s acceptable for a class to extend multi-
ple interfaces that define abstract methods with the same signature because when a
class implements the abstract method, it seems to implement the abstract method
from all the interfaces:

interface Jumpable {
 abstract String currentPosition();
}
interface Moveable {
 abstract String currentPosition();
}
class Animal implements Jumpable, Moveable {
 public String currentPosition() {
 return "Home";
 }
}

Compiles successfully;
the reference to
MIN_DISTANCE is
not ambiguous

Compiles successfully;
implicit reference to
MIN_DISTANCE is not
ambiguous

410 CHAPTER 6 Working with inheritance
But you can’t make a class extend multiple interfaces that define methods with the same
name that don’t seem to be a correct combination of overloaded methods. If you
change the return type of the method currentPosition() from String to void in the
interface Moveable, the class Animal won’t compile. It would need to implement meth-
ods currentPosition, which differ only in their return type, which isn’t acceptable:

interface Jumpable {
 abstract String currentPosition();
}
interface Moveable {
 abstract void currentPosition();
}
class Animal implements Jumpable, Moveable {
 public String currentPosition() {
 return "Home";
 }
}

EXAM TIP A class can implement multiple interfaces with the same abstract
method names if they have the same signature or form an overloaded set of
methods.

IMPLEMENTING MULTIPLE INTERFACES WITH THE SAME DEFAULT METHOD NAMES

Imagine a class, Animal, that extends multiple interfaces, Moveable and Jumpable,
which define default methods with the same name, relax(). If the class Animal doesn’t
override the default implementation of relax(), it won’t compile:

interface Jumpable {
 default void relax() {
 System.out.println("No jumping");
 }
}
interface Moveable {
 default void relax() {
 System.out.println("No moving");
 }
}
class Animal implements Jumpable, Moveable { }

Let’s modify the preceding code, so that the class Animal overrides the default imple-
mentation of relax(). In this case, it will compile successfully:

interface Jumpable {
 default void relax() {
 System.out.println("No jumping");
 }
}
interface Moveable {
 default void relax() {
 System.out.println("No moving");
 }
}

Won’t
compile

Won’t compile; inherits
unrelated defaults for
relax() from Jumpable
and Moveable

411Use interfaces
class Animal implements Jumpable, Moveable {
 public void relax() {
 System.out.println("Watch movie");
 }
}

The default methods that a class inherits from the interfaces that it implements must
form a correct set of overloaded methods, or else the class won’t compile:

interface Jumpable {
 default void relax() {
 System.out.println("No jumping");
 }
}
interface Moveable {
 default String relax() {
 System.out.println("No moving");
 return null;
 }
}
class Animal implements Jumpable, Moveable { }

EXAM TIP A class can implement multiple interfaces with the same default
method name and signature, if it overrides its default implementation.

IMPLEMENTING MULTIPLE INTERFACES WITH THE SAME STATIC METHOD NAMES

A class can implement multiple interfaces that define static methods with the same
name, even if they don’t qualify as correctly overloaded or overridden methods. This
is because they’re not inherited by the class that implements the interfaces:

interface Jumpable {
 static int maxDistance() {
 return 100;
 }
}
interface Moveable {
 static String maxDistance() {
 return "forest";
 }
}
class Animal implements Jumpable, Moveable { }

EXAM TIP A class can implement multiple interfaces with the same static
method names, irrelevant of their return types or signature.

6.2.7 Extending interfaces

An interface can extend multiple interfaces. When an interface extends another
interface, it must follow a set of rules.

Compiles
successfully

Won’t compile;
relax in Jumpable
and Moveable have
unrelated return types

Compiles
successfully

412 CHAPTER 6 Working with inheritance
EXTENDING MULTIPLE INTERFACES WITH THE SAME ABSTRACT METHOD NAMES

An abstract method doesn’t define a body. Consider the following code, whose UML
representation is shown in figure 6.13. Which of the getName methods will be inher-
ited by the interface MyInterface? Will MyInterface inherit the getName method
defined in BaseInterface1 or the one defined in BaseInterface2?

interface BaseInterface1 {
 String getName();
}
interface BaseInterface2 {
 String getName();
}
interface MyInterface extends BaseInterface1, BaseInterface2 {}

Because neither of the getName methods defined in BaseInterface1 and Base-

Interface2 define a method body (as shown in figure 6.14), the question of which of
the methods MyInterface inherits is irrelevant. The interface MyInterface has access
to a single getName method, which must be implemented by all the concrete classes
that implement MyInterface.

Let’s make the Employee class implement the interface MyInterface, as follows:

class Employee implements MyInterface {
 String name;
 public String getName() {
 return name;
 }
}

extends extends

<<interface>>

BaseInterface1

<<interface>>

MyInterface

<<interface>>

BaseInterface2

Figure 6.13 The interface MyInterface
extends the interfaces BaseInterface1
and BaseInterface2.

Oops! Only

name, no body.

<<interface>>

BaseInterface1

String getName();

<<interface>>

BaseInterface2

String getName();

Figure 6.14 Methods defined in an interface don’t have a method body.

Employee defines a body for
the method getName, inherited
from the interface MyInterface

413Use interfaces

y

EXTENDING MULTIPLE INTERFACES WITH THE SAME NAME DEFAULT METHOD NAMES

When an interface extends multiple interfaces, Java ensures that it shouldn’t inherit
multiple method implementations for the same method. In the following example,
interface MyInterface won’t compile because it inherits unrelated defaults for get-
Name() from types BaseInterface1 and BaseInterface2:

interface BaseInterface1 {
 default void getName() {
 System.out.println("Base 1");
 }
}
interface BaseInterface2 {
 default void getName() {
 System.out.println("Base 2");
 }
}
interface MyInterface extends BaseInterface1, BaseInterface2 {}

If you override the default implementation of the method getName() in MyInterface,
it will compile successfully:

interface BaseInterface1 {
 default void getName() { System.out.println("Base 1"); }
}
interface BaseInterface2 {
 default void getName() { System.out.println("Base 2"); }
}
interface MyInterface extends BaseInterface1, BaseInterface2 {
 default void getName() { System.out.println("Just me"); }
}

In the preceding code, the getName method in MyInterface can refer to a superinter-
face method by using the super keyword:

■ BaseInterface1.super.getName();
■ BaseInterface2.super.getName(); (This would work as well if MyInterface

were a class implementing both interfaces.) Other methods too can invoke a
superinterface method this way.

Here are three resolution rules in case of multiple inheritance:

■ Classes always win: a method implemented in a class always has priority over an
interface default method.

■ Otherwise, subinterfaces always win: a method implemented in a more specific
interface has precedence over one defined in a more general interface (for
example, a superinterface).

■ Otherwise, if there’s an ambiguity that can’t be resolved by the previous rules,
then you get to the case presented earlier: the targeted superinterface must be
specified, using the super keyword.

Won’t
compile

Compiles
successfull

414 CHAPTER 6 Working with inheritance

y

y

EXAM TIP When an interface extends multiple interfaces, Java ensures that it
shouldn’t inherit multiple method implementations for the same method.

EXTENDING MULTIPLE INTERFACES WITH THE SAME STATIC METHOD NAMES

An interface can extend multiple interfaces with the same static method name:

interface BaseInterface1 {
 static void status() { System.out.println("Base 1"); }
}
interface BaseInterface2 {
 static void status() { System.out.println("Base 2"); }
}
interface MyInterface extends BaseInterface1, BaseInterface2 {}

The following code also compiles successfully, even though the return types of the
methods status() in BaseInterface1 and BaseInterface2 are unrelated:

interface BaseInterface1 {
 static void status() {
 System.out.println("Base 1");
 }
}
interface BaseInterface2 {
 static String status() {
 System.out.println("Base 2");
 return null;
 }
}
interface MyInterface extends BaseInterface1, BaseInterface2 {
}

EXAM TIP An interface can extend multiple interfaces, which define static
methods with the same name; the signatures of these methods don’t matter.
This is because static methods are never inherited, so no conflicts can
occur.

6.2.8 Modifying existing methods of an interface

What happens if you modify the declaration of the methods in an interface? Because
you can define multiple types of methods in an interface—abstract, default, and
static—these modifications would have different implications.

 The modifications to existing methods of an interface can break the code of the
classes that implement it or the interfaces that extend it. The modifications must fol-
low the rules of implementing or extending interfaces, as covered in detail in the pre-
vious sections.

 In this section, you’ll see what happens when you modify an interface by changing
the type of its method (abstract, default, or static). This change can affect the
classes that implement the interface or the code that calls the modified methods.

Compiles
successfull

Compiles
successfull

415Use interfaces
CHANGING STATIC METHOD TO DEFAULT OR ABSTRACT

In an interface, if you change a static method to a default method, the implement-
ing class will continue to compile, but the code that calls the method won’t compile. It
you change a static method to an abstract method, the implementing class might
not compile. The code, changes, and results are shown in figure 6.15.

CHANGING AN ABSTRACT METHOD TO DEFAULT OR STATIC

If you modify an interface by changing its abstract method to a default method,
the code that calls the method will continue to compile. But if you change an
abstract method into a static method, the code that calls the method won’t com-
pile. This is because static methods of an interface are called by prefixing the
method name with the interface name. The code, modifications, and its results are
shown in figure 6.16.

CHANGING A DEFAULT METHOD TO ABSTRACT OR STATIC

If you modify an interface and change its default method to an abstract method, a
class that implements it might fail to compile. The implementing class will fail to com-
pile, if it doesn’t override the default method of the interface. If you modify the
default method to a static method in an interface, the code that calls the method
won’t compile. The code, changes, and results are shown in figure 6.17.

interface Jumpable {
 static int maxDistance() {
 return 100;
 }
}
class Animal implements Jumpable {}

class Forest {
 public static void main(String args[]) {
 Animal lion = new Animal();
 System.out println(Jumpable.maxDistance());
 }
}

interface Jumpable {
 default int maxDistance() {
 return 100;
 }
}
class Animal implements Jumpable {}

class Forest {
 public static void main(String args[]) {
 Animal lion = new Animal();
 System.out println(Jumpable.maxDistance());
 }
}

interface Jumpable {
 abstact int maxDistance();
}
class Animal implements Jumpable {}

Compiles Won’t compile

Won’t compile

Figure 6.15 What happens when you change a static method in an interface to a default or abstract method

416 CHAPTER 6 Working with inheritance
interface Jumpable {
 abstract int maxDistance();
)

class Animal implements Jumpable {
 public int maxDistance() {
 return 100;
 }
}
class Forest {
 public static void main(String args[]) {
 Animal lion = new Animal();
 System.out println(lion.maxDistance());
 }
}

interface Jumpable {
 default int maxDistance() {
 return 200;
 }
}
class Animal implements Jumpable {}
 public int maxDistance() {
 return 100;
 }
}
class Forest {
 public static void main(String args[]) {
 Animal lion = new Animal();
 System.out println(lion.maxDistance());
 }
}

Compiles

Doesn’t compile

interface Jumpable {
 static int maxDistance() {
 return 200;
 }
}
class Animal implements Jumpable {}
 public int maxDistance() {
 return 100;
 }
}
class Forest {
 public static void main(String args[]) {
 Animal lion = new Animal();
 System.out println(lion.maxDistance());
 }
}

Compiles

Figure 6.16 What happens when you change an
abstract method in an interface to a default or
static method

interface Jumpable {
 default int maxDistance() {
 return 200;
 }
}
class Animal implements Jumpable {}

class Forest {
 public static void main(String args[]) {
 Jumpable lion = new Animal();
 System.out println(lion.maxDistance());
 }
}

interface Jumpable {
 abstract int maxDistance();
}

class Animal implements Jumpable {}

Won’t compile

interface Jumpable {
 static int maxDistance() {
 return 200;
 }
}
class Animal implements Jumpable {}

class Forest {
 public static void main(String args[]) {
 Jumpable lion = new Animal();
 System.out println(lion.maxDistance());
 }
}

Won’t compile

Figure 6.17 What happens when you change a
default method in an interface to an abstract or
static method

417Use interfaces
6.2.9 Properties of members of an interface

An interface can define constants and methods, which are implicitly assigned a set
of properties.

INTERFACE CONSTANTS

As you’ve already seen, the variables of an interface are implicitly public, final, and
static. So the following definition of the interface MyInterface

interface MyInterface {
 int age = 10;
}

is equivalent to the following definition:

interface MyInterface {
 public static final int AGE = 10;
}

You must initialize all variables in an interface, or your code won’t compile:

interface MyInterface {
 int AGE;
}

INTERFACE METHODS

The methods of an interface are implicitly public. When you implement an interface,
you must implement all its methods by using the access modifier public. A class that
implements an interface can’t make the interface’s methods more restrictive.
Although the following class and interface definitions look acceptable, they’re not:

interface Relocatable {
 void move();
}
class CEO implements Relocatable {
 void move() {}
}

The following code is correct and compiles happily:

interface Relocatable {
 void move();
}
class CEO implements Relocatable {
 public void move() {}
}

public, static, and final
modifiers are implicitly
added to variables
defined in an interface

Won’t compile; should assign
a value to a final variable

Implicitly public

Won’t compile; can’t assign weaker
access (default access) to public
method move in class CEO

Implicitly public

Will compile

418 CHAPTER 6 Working with inheritance
INTERFACE CONSTRUCTORS

Unlike a class, an interface can’t define constructors.
 You can use a reference variable of a base class to refer to an object of its derived

class. Similarly, you can use a reference variable of an interface to refer to an object of
a class that implements it. It’s interesting to note that these variables can’t access all
the variables and methods defined in the derived class or the class that implements
the interface.

 Let’s dig into some more details about this in the next section.

6.3 Reference variable and object types

For this exam objective, you need to understand that when you refer to an object, the
type of the object reference variable and the type of the object being referred to may be dif-
ferent. But there are rules on how different these can be. This concept may take a while
to sink in, so don’t worry if you don’t get it on your first attempt.

 In the same way in which you can refer to a person using their first name, last
name, or both names, objects of derived classes can be referred to using a reference
variable of any of the following types:

■ Its own type—An object of a class HRExecutive can be referred to using an object
reference variable of type HRExecutive.

■ Its superclass—If the class HRExecutive inherits the class Employee, an object of
the class HRExecutive can be referred to using a variable of type Employee. If
the class Employee inherits the class Person, an object of the class HRExecutive

can also be referred to using a variable of type Person.
■ Implemented interfaces—If the class HRExecutive implements the interface

Interviewer, an object of the class HRExecutive can be referred to using a vari-
able of type Interviewer.

There are differences, however, when you try to access an object using a reference
variable of its own type, its base class, or an implemented interface. Let’s start with
accessing an object with a variable of its own type.

6.3.1 Using a variable of the derived class to access its own object

Let’s start with the code of the class HRExecutive, which inherits the class Employee
and implements the interface Interviewer, as follows:

class Employee {
 String name;
 String address;
 String phoneNumber;
 float experience;
}

[7.2] Develop code that demonstrates the use of polymorphism; including
overriding and object type versus reference type

419Reference variable and object types

ive

interface Interviewer {
 public void conductInterview();
}
class HRExecutive extends Employee implements Interviewer {
 String[] specialization;
 public void conductInterview() {
 System.out.println("HRExecutive - conducting interview");
 }
}

Here’s some code that demonstrates that an object of the class HRExecutive can be
referred to using a variable of type HRExecutive:

class Office {
 public static void main(String args[]) {
 HRExecutive hr = new HRExecutive();
 }
}

You can access fields and methods defined in the class Employee, the class HRExecu-
tive, and the interface Interviewer using the variable hr (with the type HRExecu-
tive), as follows:

class Office {
 public static void main(String args[]) {
 HRExecutive hr = new HRExecutive();
 hr.specialization = new String[] {"Staffing"};
 System.out.println(hr.specialization[0]);
 hr.name = "Pavni Gupta";
 System.out.println(hr.name);
 hr.conductInterview();
 }
}

When you access an object of the class HRExecutive using its own type, you can access
all the variables and methods that are defined in its base class and interface—the class
Employee and the interface Interviewer. Can you do the same if the type of the refer-
ence variable is changed to the class Employee, as defined in the next section?

6.3.2 Using a variable of a superclass to access an object of
a derived class

Let’s access an object of type HRExecutive using a reference variable of type Employee,
as follows:

class Office {
 public static void main(String args[]) {
 Employee emp = new HRExecutive();
 }
}

Class HRExecut
inherits class
Employee and
implements
interface
Interview

A variable of type
HRExecutive can
be used to refer
to its object

Access variable
defined in class
HRExecutive

Access variable defined
in class Employee

Access method defined in
interface Interviewer

Variable of type Employee can also
be used to refer to an object of
class HRExecutive because class
HRExecutive extends Employee

420 CHAPTER 6 Working with inheritance
Now let’s see whether changing the type of the reference variable makes any differ-
ence when accessing the members of the class Employee, the class HRExecutive, or the
interface Interviewer. Will the following code compile successfully?

class Office {
 public static void main(String args[]) {
 Employee emp = new HRExecutive();
 emp.specialization = new String[] {"Staffing"};
 System.out.println(emp.specialization[0]);
 emp.name = "Pavni Gupta";
 System.out.println(emp.name);
 emp.conductInterview();
 }
}

The code at B fails to compile because the type of the variable emp is defined as
Employee. Picture it like this: the variable emp can see only the Employee object. Hence,
it can access only the variables and methods defined in the class Employee, as illus-
trated in figure 6.18.

6.3.3 Using a variable of an implemented interface to access a derived
class object

Here’s another interesting equation: what happens when you change the type of the ref-
erence variable to the interface Interviewer? A variable of type Interviewer can also
be used to refer to an object of the class HRExecutive because the class HRExecutive

implements Interviewer. See the following code:

class Office {
 public static void main(String args[]) {
 Interviewer interviewer = new HRExecutive();
 }
}

Type of
variable

emp is
Employee

Variable emp can’t
access member
specialization
defined in class
HRExecutive

b

Variable emp can access member
name defined in class Employee

Variable emp can’t access
method conductInterview
defined in interface Interviewer

Reference

variable of type

Employee

Features of class

Employee exist

within class

HRExecutive.

Employee

HRExecutive

emp

Figure 6.18 A variable of type Employee can see only the members defined
in the class Employee.

421Reference variable and object types

interv
acces

of clas
or H
Now try to access the same set of variables and methods using the variable inter-

viewer, which refers to an object of the class HRExecutive:

class Office {
 public static void main(String args[]) {
 Interviewer interviewer = new HRExecutive();
 interviewer.specialization = new String[] {"Staffing"};
 System.out.println(interviewer.specialization[0]);
 interviewer.name = "Pavni Gupta";
 System.out.println(interviewer.name);
 interviewer.conductInterview();
 }
}

The code at B doesn’t compile because the type of the variable interviewer is
defined as Interviewer. Picture it like this: the variable interviewer can only access
the methods defined in the interface Interviewer, as illustrated in figure 6.19.

6.3.4 The need for accessing an object using the variables of its base
class or implemented interfaces

You may be wondering why you need a reference variable of a base class or an imple-
mented interface to access an object of a derived class if a variable can’t access all the
members that are available to an object of a derived class. The simple answer is that
you might not be interested in all the members of a derived class.

 Confused? Compare it with the following situation. When you enroll in flying
classes, do you care whether the instructor can cook Italian cuisine or knows how to
swim? No! You don’t care about characteristics and behavior that are unrelated to fly-
ing. Here’s another example. At an office party, all the Employees are welcome, whether
they are Programmers, HRExecutives, or Managers, as shown in figure 6.20.

 The same logic applies when you access an object of the class HRExecutive using a
reference variable of type Interviewer. When you do so, you’re only concerned about
the behavior of HRExecutive that relates to its capability as an Interviewer.

Type of variable
interviewer is
Interviewer

Variable
iewer can’t
s members
s Employee
RExecutive

b

Variable interviewer can access
method conductInterview
defined in interface Interviewer

A variable of type Interviewer
can only access methods defined

in interface Interviewer.

Reference

variable of type

Interviewer

Interviewer

HRExecutive

Features of class

Employee exist

within the class

HRExecutive.

EmployeeInterviewer

Figure 6.19 A variable of type Interviewer can see only the members defined in the
interface Interviewer.

422 CHAPTER 6 Working with inheritance
This arrangement also makes it possible to create an array (or a list) of the objects that
refers to different types of objects grouped by a common base class or an interface.
The following code segment defines an array of type Interviewer and stores in it
objects of the classes HRExecutive and Manager:

 class OfficeInheritanceList {
 public static void main(String args[]) {
 Interviewer[] interviewers = new Interviewer[2];
 interviewers[0] = new Manager();
 interviewers[1] = new HRExecutive();
 for (Interviewer interviewer : interviewers) {
 interviewer.conductInterview();
 }
 }
}

The class HRExecutive extends the class Employee and implements the interface
Interviewer. Hence, you can assign an object of HRExecutive to any of the following
types of variables:

■ HRExecutive

■ Employee

■ Interviewer

■ Object

Please note that the reverse of these assignments will fail compilation. To start with,
you can’t refer to an object of a base class by using a reference variable of its derived
class. Because all members of a derived class can’t be accessed using an object of the
base class, it isn’t allowed. The following statement won’t compile:

HRExecutive hr = new Employee();

Employees

HRExecutive

Programmer

Manager

Figure 6.20 All types of
Employees can attend an
office party.

Array of type
Interviewer—
an interfaceBecause

Manager
implements

interface
Interviewer,

it can be
stored here

Because
HRExecutive
implements
interface
Interviewer, it can
be stored here

Loop through the
array and call method

conductInterview

Not allowed—
won’t compile

423Reference variable and object types
Because you can’t create an object of an interface, the following line of code will also
fail to compile:

HRExecutive hr = new Interviewer();

It’s now time for you to try to add objects of the previously defined related classes—
Employee, Manager, and HRExecutive—to an array in your next Twist in the Tale exer-
cise (answers in the appendix).

Given the following definition of the classes Employee, Manager, and HRExecutive and
the interface Interviewer, select the correct options for the class TwistInTale2:

class Employee {}
interface Interviewer {}
class Manager extends Employee implements Interviewer {}
class HRExecutive extends Employee implements Interviewer {}

class TwistInTale2 {
 public static void main (String args[]) {
 Interviewer[] interviewer = new Interviewer[] {
 new Manager(), // Line 1
 new Employee(), // Line 2
 new HRExecutive(), // Line 3
 new Interviewer() // Line 4
 };
 }
}

a An object of the class Manager can be added to an array of the interface
Interviewer. Code on line 1 will compile successfully.

b An object of the class Employee can be added to an array of the interface
Interviewer. Code on line 2 will compile successfully.

c An object of the class HRExecutive can be added to an array of the interface
Interviewer. Code on line 3 will compile successfully.

d An object of the interface Interviewer can be added to an array of the inter-
face Interviewer. Code on line 4 will compile successfully.

EXAM TIP You may see multiple questions in the exam that try to assign an
object of a base class to a reference variable of a derived class. Note that a
derived class can be referred to using a reference variable of a superclass. The
reverse is not allowed and won’t compile.

In this section, you learned that the variables of a base class or interface are unable to
access all the members of the object to which they refer. Don’t worry; this can be

Twist in the Tale 6.2

Not allowed—
won’t compile

424 CHAPTER 6 Working with inheritance
resolved by casting a reference variable of a base class or an interface to the exact type
of the object they refer to, as discussed in the next section.

6.4 Casting

Casting is the process of forcefully making a variable behave as a variable of another
type. If a class shares an IS-A or inheritance relationship with another class or inter-
face, their variables can be cast to each other’s type.

 In section 6.3, you learned that you can’t access all the members of the class
HRExecutive (derived class) if you refer to it via a variable of type Interviewer (imple-
mented interface) or Employee (base class). In this section, you’ll learn how to cast a
variable of type Interviewer to access variables defined in the class HRExecutive and
why you’d want to.

6.4.1 How to cast a variable to another type
We’ll start with the definitions of the interface Interviewer and the classes HRExecutive

and Manager:

class Employee {}
interface Interviewer {
 public void conductInterview();
}
class HRExecutive extends Employee implements Interviewer {
 String[] specialization;
 public void conductInterview() {
 System.out.println("HRExecutive - conducting interview");
 }
}
class Manager implements Interviewer{
 int teamSize;
 public void conductInterview() {
 System.out.println("Manager - conducting interview");
 }
}

Create a variable of type Interviewer and assign to it an object of type HRExecutive

(as depicted in figure 6.21):

Interviewer interviewer = new HRExecutive();

[7.3] Determine when casting is necessary

Variable of type

Interviewer
Object of

HRExecutive

Figure 6.21 A reference variable of the interface
Interviewer referring to an object of the class
HRExecutive

425Casting
Try to access the variable specialization defined in the class HRExecutive using the
previous variable:

interviewer.specialization = new String[] {"Staffing"};

The previous line of code won’t compile. The compiler knows that the type of the vari-
able interviewer is Interviewer and that the interface Interviewer doesn’t define
any variable with the name specialization (as shown in figure 6.22).

On the other hand, the JRE knows that the object referred to by the variable
interviewer is of type HRExecutive, so you can use casting to get past the Java com-
piler and access the members of the object being referred to, as follows (see also fig-
ure 6.23):

((HRExecutive)interviewer).specialization = new String[] {"Staffing"};

In the previous example code, (HRExecutive) is placed just before the name of the
variable, interviewer, to cast it to HRExecutive. A pair of parentheses surrounds
HRExecutive, which lets Java know you’re sure that the object being referred to is an
object of the class HRExecutive. Casting is another method of telling Java, “Look, I
know that the actual object being referred to is HRExecutive, even though I’m using a
reference variable of type Interviewer.”

 The parentheses that surround the whole (HRExecutive)interviewer token are
required to bypass the Java operator precedence rules, according to which the casting

Won’t compile

interviewer.specialization
= new String[]{"Staffing"};

I just consulted

interface .Interviewer
It doesn't define the

variable .specialization

interface interviewer {
public void conductInterview();

}

Compilation error

Java

compiler

In

Out

Consult

Figure 6.22 The Java compiler doesn’t compile code if you try to access the variable
specialization, defined in the class HRExecutive, by using a variable of the interface
Interviewer.

426 CHAPTER 6 Working with inheritance
“operator” (the parentheses) has lower priority than the dot “operator” (used to access
an object field or invoke a method).

6.4.2 Need for casting

In section 6.3.4, I discussed the need to use a reference variable of an inherited class
or an implemented interface to refer to an object of a derived class. I also used an
example of enrolling in flying classes, where you don’t care about whether the instruc-
tor can cook Italian cuisine or knows how to swim. You don’t care about characteristics
and behavior that are unrelated to flying.

 But think about a situation in which you do care about the swimming skills of your
instructor. Imagine that when you’re attending flying classes, your friend inquires
about whether your flying instructor also conducts swimming classes, and if so,
whether your friend could enroll. In this case, a need arises to inquire about the swim-
ming skills of your flying instructor.

 Let’s apply this situation to Java. You can’t access all the members of an object if
you access it using a reference variable of any of its implemented interfaces or of a
base class. But when a need arises (as mentioned in the preceding paragraph), you
might choose to access some of the members of a derived class, which aren’t explicitly
available, by using the reference variable of the base type or the implemented inter-
face. This is where casting comes in!

 It’s time to see this in code. Here’s an example that exhibits the need for casting. An
application maintains a list of interviewers, and depending on the type of interviewer
(HRExecutive or Manager), it performs a different set of actions. If the interviewer is a

class HRExecutive extends Employee
implements Interviewer {

String [] specialization;

}

((HRExecutive) interviewer).specialization
= new String[]{"Staffing"};

..
.

..
.

..
.

Compilation successful

Java

compiler

In

Out

Consult

OK! Now I should consult the class

HRExecutive to check whether it

defines the variable .specialization

Figure 6.23 Casting can be used to access the variable specialization, defined
in the class HRExecutive, by using a variable of the interface Interviewer.

427Use this and super to access objects and constructors

f

ger
S
H

ar

If
b
c

valu
’s
 10,
Manager, the code calls conductInterview only if the value for the Manager’s teamSize

is greater than 10. Here’s the code that implements this logic:

class OfficeWhyCasting {
 public static void main(String args[]) {
 Interviewer[] interviewers = new Interviewer[2];
 interviewers[0] = new Manager();
 interviewers[1] = new HRExecutive();
 for (Interviewer interviewer : interviewers) {
 if (interviewer instanceof Manager) {
 int teamSize =((Manager)interviewer).teamSize;
 if (teamSize > 10) {
 interviewer.conductInterview();
 } else {
 System.out.println("Mgr can't " +
 "interview with team size less than 10");
 }
 } else if (interviewer instanceof HRExecutive) {
 interviewer.conductInterview();
 }
 }
 }
}

The preceding code shows a best practice when it comes to casting a variable, that is,
interviewer instanceof Manager. If you omit this test, you run the risk of code
throwing a ClassCastException (covered in section 7.5.2 in detail).

6.5 Use this and super to access objects and constructors

In this section, you’ll use the this and super keywords to access objects and construc-
tors. this and super are implicit object references. These variables are defined and ini-
tialized by the JVM for every object in its memory.

 Let’s examine the capabilities and use of each of these reference variables.

6.5.1 Object reference: this

The this reference always points to an object’s own instance. Any object can use the
this reference to refer to its own instance. Think of the words me, myself, and I: any-
one using those words is always referring to oneself, as shown in figure 6.24.

Array to store objects o
classes that implement
interface Interviewer

Store object of Mana
at array position 0

tore object of
RExecutive at
ray position 1

Loop through
values of array
interviewers

 object referred to
y interviewer is of
lass Manager, use

casting to retrieve
e for its teamSize

If interviewer’s
teamSize > 10, call

conductInterview

If interviewer
teamSize <=
print message

Otherwise, if object stored is of class
HRExecutive, call conductInterview

method on object; no casting is
required in this case

[7.4] Use super and this to access objects and constructors

428 CHAPTER 6 Working with inheritance
USING THIS TO ACCESS VARIABLES AND METHODS

You can use the keyword this to refer to all methods and variables that are accessible
to a class. For example, here’s a modified definition of the class Employee:

class Employee {
 String name;
}

The variable name can be accessed in the class Programmer (which extends the class
Employee) as follows:

class Programmer extends Employee {
 void accessEmployeeVariables() {
 name = "Programmer";
 }
}

Because there exist members of the class Employee within the class Programmer, the
variable name is accessible to an object of Programmer. The variable name can also be
accessed in the class Programmer as follows:

class Programmer extends Employee {
 void accessEmployeeVariables() {
 this.name = "Programmer";
 }
}

The this reference is required only when code executing within a method block
needs to differentiate between an instance variable and its local variable or method
parameters. But some developers use the keyword this all over their code, even when
it’s not required. Some use this as a means to differentiate instance variables from
local variables or method parameters.

 Figure 6.25 shows the constructor of the class Employee, which uses the reference
variable this to differentiate between the local and instance variables name, which are
declared with the same name.

 In the previous example, the class Employee defines an instance variable name. The
Employee class constructor also defines a method parameter name, which is effectively
a local variable defined within the scope of the method block. Hence, within the
scope of the previously defined Employee constructor, there’s a clash of names, and

this = I, me, myself

Figure 6.24 The keyword this can be
compared to the words me, myself, and I.

429Use this and super to access objects and constructors

Con
tha

n

c
t

M
first
in th
the local variable will take precedence (covered in section 3.1). Using name within the
scope of the Employee class constructor block will implicitly refer to that method’s
parameter, not the instance variable. In order to refer to the instance variable name
from within the scope of the Employee class constructor, you are obliged to use a this

reference.

USING THIS TO ACCESS CONSTRUCTORS

You can also reference one constructor from another by using the keyword this.
Here’s an example in which the class Employee defines two constructors, with the sec-
ond constructor calling the first one:

class Employee {
 String name;
 String address;
 Employee(String name) {
 this.name = name;
 }
 Employee(String name, String address) {
 this(name);
 this.address = address;
 }
}

To call the default constructor (one that doesn’t accept any method parameters), call
this(). Here’s an example:

class Employee {
 String name;
 String address;
 Employee() {
 name = "NoName";
 address = "NoAddress";
 }
 Employee(String name, String address) {
 this();
 if (name != null) this.name = name;
 if (address != null) this.address = address;
 }
}

class Employee {
String name;
Employee(String name) {

this.name = name;
}

} Method parameter name

Instance variable name

Figure 6.25 Using the keyword
this to differentiate between the
method parameter and the
instance variable

Instance variables are
name and address

Constructor that
accepts only name

structor
t accepts
ame and
address

Calls constructor that
accepts only name

Assigns value of method parameter
address to instance variable

Instance variables are
name and address

Constructor that doesn’t
accept any arguments

Constructor that accepts
name and address

Calls
onstructor
hat doesn’t
accept any

arguments.
ust be the

 statement
is method. Assigns value of not-null

method parameters

430 CHAPTER 6 Working with inheritance
If present, a call to a constructor from another constructor must be done on the first
line of code of the calling constructor.

EXAM TIP this refers to the instance of the class in which it’s used. this can
be used to access the inherited members of a base class in the derived class.

USING THE KEYWORD THIS IN AN INTERFACE

With Java 8, you can use the keyword this in an interface’s default method to access
its constants and other default and abstract methods. In the following example, the
interface Interviewer defines a default method submitInterviewStatus. This method
uses this to access itself and its constants or methods:

interface Interviewer {
 int MIN_SAL = 9999;
 default void submitInterviewStatus() {
 System.out.println(this);
 System.out.println(this.MIN_SAL);
 System.out.println(this.print());
 }
 String print();
}
class Manager implements Interviewer {
 public String print() {
 return("I am " + this);
 }
}
class Foo {
 public static void main(String rags[]) {
 Interviewer m = new Manager();
 m.submitInterviewStatus();
 }
}

You might see a similar output for the preceding code:

Manager@19e0bfd
9999
I am Manager@19e0bfd

EXAM TIP With Java 8, you can use the keyword this in a default method to
access the methods of an interface and its constants.

You can’t use the this keyword to access static methods of an interface.

6.5.2 Object reference: super

In the previous section, I discussed how this refers to the object instance itself. Simi-
larly, super is also an object reference, but super refers to the direct parent or base
class of a class. Think of the words my parent, my base: anyone using those terms is
always referring to their direct parent or the base class, as shown in figure 6.26.

431Use this and super to access objects and constructors

Assi
to
va

name,
in Prog
USING SUPER TO ACCESS VARIABLES AND METHODS OF THE BASE CLASS

The variable reference super can be used to access a variable or method from the
base class if there’s a clash between these names. This situation normally occurs when
a derived class defines variables and methods with the same name as the base class.

 Here’s an example:

class Employee {
 String name;
}
class Programmer extends Employee {
 String name;
 void setNames() {
 this.name = "Programmer";
 super.name = "Employee";
 }
 void printNames() {
 System.out.println(super.name);
 System.out.println(this.name);
 }
}
class UsingThisAndSuper {
 public static void main(String[] args) {
 Programmer programmer = new Programmer();
 programmer.setNames();
 programmer.printNames();
 }
}

The output of the preceding code is as follows:

Employee
Programmer

Similarly, you can use the reference variable super to access a method defined with
the same name in the base or the parent class.

super = parent or

base class

Inherit

Figure 6.26 When a class mentions super, it refers
to its direct parent or the base class.

Instance variable—
name, in Employee

Instance variable—
name, in Programmergn value

instance
riable—
 defined
rammer

Assign value to instance variable—
name, defined in Employee

Print value of instance variable—
name, defined in Employee

Print value of instance
variable—name, defined
in Programmer

Create an object of
class Programmer

432 CHAPTER 6 Working with inheritance

Const
that a

val
sup

variabl

c

th
USING SUPER TO ACCESS CONSTRUCTORS OF BASE CLASS

The reference variable super can also be used to refer to the constructors of the base
class in a derived class.

 Here’s an example in which the base class, Employee, defines a constructor that
assigns default values to its variables. Its derived class calls the base class constructor in
its own constructor.

class Employee {
 String name;
 String address;
 Employee(String name, String address) {
 this.name = name;
 this.address = address;
 }
}
class Programmer extends Employee {
 String progLanguage;
 Programmer(String name, String address, String progLang) {
 super(name, address);
 this.progLanguage = progLang;
 }
}

The code at B calls the superclass constructor by passing it the reference variables,
name and address, which it accepts itself.

EXAM TIP If present, a call to a superclass’s constructor must be the first
statement in a derived class’s constructor. Otherwise, a call to super(); (the
no-argument constructor) is inserted automatically by the compiler.

USING SUPER AND THIS IN STATIC METHODS

The keywords super and this are implicit object references. Because static methods
belong to a class, not to objects of a class, you can’t use this and super in static

methods. Code that tries to do so won’t compile:

class Employee {
 String name;
}
class Programmer extends Employee {
 String name;
 static void setNames() {
 this.name = "Programmer";
 super.name = "Employee";
 }
}

It’s time to attempt the next Twist in the Tale exercise, using the this and super key-
words (answer in the appendix).

Instance variables—
name and address

Constructor that accepts
name and address

Instance variable—
progLanguageructor

ccepts
ues for
erclass
es also

Calls
Employee
constructorb

Instance variable—
name, in Employee

Instance variable—
name, in Programmer

Won’t
ompile—
can’t use

is in static
method

Won’t compile—can’t use
super in static method

433Use this and super to access objects and constructors
Let’s modify the definition of the Employee and Programmer classes as follows. What is
the output of the class TwistInTale3?

class Employee {
 String name = "Emp";
 String address = "EmpAddress";
}
class Programmer extends Employee{
 String name = "Prog";
 void printValues() {
 System.out.print(this.name + ":");
 System.out.print(this.address + ":");
 System.out.print(super.name + ":");
 System.out.print(super.address);
 }
}
class TwistInTale3 {
 public static void main(String args[]) {
 new Programmer().printValues();
 }
}

a Prog:null:Emp:EmpAddress

b Prog:EmpAddress:Emp:EmpAddress

c Prog::Emp:EmpAddress

d Compilation error

Similarly, you can’t use the keyword this in a static method, defined in an interface:

interface Interviewer {
 int MIN_SAL = 9999;
 static int getMinSalary() {
 return this.MIN_SAL;
 }
}

Now let’s move to one of the very important programming concepts: polymorphism.
In the next section, you’ll use abstract classes and interfaces to implement it.

Twist in the Tale 6.3

Won’t compile; can’t use
keyword this in a static method

434 CHAPTER 6 Working with inheritance
6.6 Polymorphism

The literal meaning of the word polymorphism is “many forms.” At the beginning of this
chapter, I used a practical example to explain the meaning of polymorphism; the
same action may have different meanings for different living beings. The action eat
has a different meaning for a fly and a lion. A fly may eat nectar, whereas a lion may eat
an antelope. Reacting to the same action in one’s own unique manner in living beings
can be compared to polymorphism in Java.

 For the exam, you need to know what polymorphism in Java is, why you need it,
and how to implement it in code.

6.6.1 Polymorphism with classes

Polymorphism with classes comes into the picture when a class inherits another class
and both the base and the derived classes define methods with the same method sig-
nature (the same method name and method parameters). As discussed in the previ-
ous section, an object can also be referred to using a reference variable of its base
class. In this case, depending on the type of the object used to execute a method, the
Java runtime executes the method defined in the base or derived class.

 Let’s consider polymorphism using the classes
Employee, Programmer, and Manager, where the
classes Programmer and Manager inherit the class
Employee. Figure 6.27 shows a UML diagram depict-
ing the relationships among these classes.

 We’ll start with the Employee class, which is not
quite sure about what must be done to start work
on a project (execute method startProjectWork).
Hence, the method startProjectWork is defined
as an abstract method, and the class Employee is
defined as an abstract class, as follows:

abstract class Employee {
 public void reachOffice() {
 System.out.println("reached office - Gurgaon, India");
 }
 public abstract void startProjectWork();
}

The class Programmer extends the class Employee, which essentially means that it
has access to the method reachOffice defined in Employee. Programmer must also

[7.5] Use abstract classes and interfaces

[7.2] Develop code that demonstrates the use of polymorphism; including
overriding and object type versus reference type

extends extends

Employee

Programmer Manager

Figure 6.27 Relationships among the
classes Employee, Programmer,
and Manager

Doesn’t know how to
work on a project

435Polymorphism

refe
Man

Me
Pr
implement the abstract method startProjectWork, inherited from Employee. How
do you think a Programmer will typically start work on a programming project? Most
probably, the Programmer will define classes and unit test them. This behavior is con-
tained in the definition of the class Programmer, which implements the method start-

ProjectWork, as follows:

class Programmer extends Employee {
 public void startProjectWork() {
 defineClasses();
 unitTestCode();
 }
 private void defineClasses() { System.out.println("define classes"); }
 private void unitTestCode() { System.out.println("unit test code"); }
}

We’re fortunate to have another special type of Employee, a Manager, who knows how
to start work on a project. How do you think a Manager will typically start work on a
programming project? Most probably, the Manager will meet with the customers,
define a project schedule, and assign work to the team members. Here’s the defini-
tion of the class Manager that extends the class Employee and implements the method
startProjectWork:

class Manager extends Employee {
 public void startProjectWork() {
 meetingWithCustomer();
 defineProjectSchedule();
 assignRespToTeam();
 }
 private void meetingWithCustomer() {
 System.out.println("meet Customer");
 }
 private void defineProjectSchedule() {
 System.out.println("Project Schedule");
 }
 private void assignRespToTeam() {
 System.out.println("team work starts");
 }
}

Let’s see how this method behaves with different types of Employees. Here’s the rele-
vant code:

class PolymorphismWithClasses {
 public static void main(String[] args) {
 Employee emp1 = new Programmer();
 Employee emp2 = new Manager();
 emp1.reachOffice();
 emp2.reachOffice();
 emp1.startProjectWork();
 emp2.startProjectWork();
 }
}

emp1 refers to
Programmer

bemp2
rs to
ager

c

No confusion here because
reachOffice is defined only
in class Employeed

thod from
ogrammer

 e

Method from
Managerf

436 CHAPTER 6 Working with inheritance
Here’s the output of the code (blank lines added for clarity):

reached office - Gurgaon, India
reached office - Gurgaon, India

define classes
unit test code

meet Customer
Project Schedule
team work starts

The code at B creates an object of the class Programmer and assigns it to a variable of
type Employee. c creates an object of the class Manager and assigns it to a variable
of type Employee. So far, so good!

 Now comes the complicated part. d executes the method reachOffice. Because
this method is defined only in the class Employee, there isn’t any confusion and the
same method executes, printing the following:

reached office - Gurgaon, India
reached office - Gurgaon, India

The code at e executes the code emp1.startProjectWork() and calls the method
startProjectWork defined in the class Programmer, because emp1 refers to an object
of the class Programmer. Here’s the output of this method call:

define classes
unit test code

The code at f executes emp2.startProjectWork() and calls the method start-

ProjectWork defined in the class Manager, because emp2 refers to an object of the class
Manager. Here’s the output of this method call:

meet Customer
Project Schedule
team work starts

Figure 6.28 illustrates this code.
 As discussed in the beginning of this section, the usefulness of polymorphism lies

in the ability of an object to behave in its own specific manner when the same action is
passed to it. In the previous example, reference variables (emp1 and emp2) of type
Employee are used to store objects of the classes Programmer and Manager. When the
same action—that is, the method call startProjectWork—is invoked on these refer-
ence variables (emp1 and emp2), each method call results in the method defined in the
respective classes being executed.

437Polymorphism
POLYMORPHIC METHODS ARE ALSO CALLED OVERRIDDEN METHODS

Take a quick look at the method startProjectWork, as defined in the following classes
Employee, Programmer, and Manager (only the relevant code is shown):

abstract class Employee {
 public abstract void startProjectWork();
}
class Programmer extends Employee {
 public void startProjectWork() {
 ...
 }
}
class Manager extends Employee {
 public void startProjectWork() {
 ...
 }
}

Note that the name of the method startProjectWork is same in all these classes. Also,
it accepts the same number of method arguments and defines the same return type in
all three classes: Employee, Programmer, and Manager. This is a contract specified to
define overridden methods. Failing to use the same method name, same argument
list, or same return type won’t mark a method as an overridden method.

Variable of type

Employee

Object of

Programmer

message

'startProjectWork'

Object of

Manager

message

'startProjectWork'

Hey! I am a Programmer

and I follow my own different

way to start work on a project.

Hey! I am a Manager

and I follow my own different

way to start work on a project.

1) Define classes

2) Unit test code

1) Meet customer

2) Project schedule

3) Team work status

emp1 emp1

Variable of type

Employee

emp2 emp2

Figure 6.28 The objects are aware of their own type and execute the overridden method defined in
their own class, even if a base class variable is used to refer to them.

Method
startProjectWork in
class Employee

Method
startProjectWork in
class Programmer

Method
startProjectWork
in class Manager

438 CHAPTER 6 Working with inheritance
RULES TO REMEMBER TO OVERRIDE METHODS

Here’s the set of rules to note to define overriding methods:

■ Overridden methods are defined by classes and interfaces that share inheri-
tance relationships.

■ The name of the overridden method in the base class and the overriding
method in the subclass must be the same.

■ The argument list passed to the overridden method in the base class must be
the same as the argument list passed to the overriding method in the subclass.

■ The return type of an overriding method in the subclass can be the same as or a
subclass of the return type of the overridden method in the base class. When
the overriding method returns a subclass of the return type of the overridden
method, it’s known as a covariant return type.

■ An overridden method defined in the base class can be an abstract method or
a non-abstract method.

■ A derived class can override only non-final methods.
■ Access modifiers for an overriding method can be the same as or less restrictive

than the method being overridden, but they can’t be more restrictive.

DO POLYMORPHIC METHODS ALWAYS HAVE TO BE ABSTRACT?
No, polymorphic methods don’t always have to be abstract. You can define the class
Employee as a concrete class and the method startProjectWork as a non-abstract

method and still get the same results (changes in bold):

class Employee {
 public void reachOffice() {
 System.out.println("reached office - Gurgaon, India");
 }
 public void startProjectWork() {
 System.out.println("procure hardware");
 System.out.println("install software");
 }
}

Because there’s no change in the definition of the rest of the classes—Programmer,
Manager, and PolymorphismWithClasses—I haven’t listed them here. If you create an
object of the class Employee (not of any of its derived classes), you can execute the
method startProjectWork as follows:

Employee emp = new Employee();
emp.startProjectWork();

EXAM TIP To implement polymorphism with classes, you can define abstract
or non-abstract methods in the base class and override them in the derived
classes.

Object of class Employee,
not its derived classes

Call method startProjectWork,
defined in Employee

439Polymorphism
CAN POLYMORPHISM WORK WITH OVERLOADED METHODS?
No, polymorphism works only with overridden methods. Overridden methods have the
same number and type of method arguments, whereas overloaded methods define a
method argument list with either a different number or type of method parameters.

 Overloaded methods share only the same name; the JRE treats them like different
methods. In the case of overridden methods, the JRE decides at runtime which
method should be called based on the exact type of the object on which it’s called.

 It’s time for the next Twist in the Tale exercise. As usual, you can find the answers
in the appendix.

Given the following definition of classes Employee and Programmer, which of the
options when inserted at //INSERT CODE HERE// will define the method run as a poly-
morphic method?

class Employee {
 //INSERT CODE HERE// {
 System.out.println("Emp-run");
 return null;
 }
}
class Programmer extends Employee{
 String run() {
 System.out.println("Programmer-run");
 return null;
 }
}
class TwistInTale4 {
 public static void main(String args[]) {
 new Programmer().run();
 }
}

a String run()

b void run(int meters)

c void run()

d int run(String race)

6.6.2 Binding of variables and methods at compile time and runtime

You can use reference variables of a base class to refer to an object of a derived class.
But there’s a major difference in how Java accesses the variables and methods for
these objects. With inheritance, the instance variables bind at compile time and the
methods bind at runtime.

Twist in the Tale 6.4

440 CHAPTER 6 Working with inheritance

ble
in
e

Acc
me
in

Emp
NOTE Binding refers to resolving of variables or methods that would be called
for a reference variable.

Examine the following code:

class Employee {
 String name = "Employee";
 void printName() {
 System.out.println(name);
 }
}
class Programmer extends Employee {
 String name = "Programmer";
 void printName() {
 System.out.println(name);
 }
}
class Office1 {
 public static void main(String[] args) {
 Employee emp = new Employee();
 Employee programmer = new Programmer();

 System.out.println(emp.name);
 System.out.println(programmer.name);
 emp.printName();
 programmer.printName();
 }
}

The output of the preceding code is as follows:

Employee
Employee
Employee
Programmer

Let’s see what’s happening in the code, step by step:

■ B creates an object of the class Employee, referenced by a variable of its own
type—Employee.

■ c creates an object of the class Programmer, referenced by a variable of its base
type—Employee.

■ d accesses the variable name defined in the class Employee and prints
Employee.

■ e also prints Employee. The type of the variable programmer is Employee.
Because the variables are bound at compile time, the type of the object that’s
referenced by the variable emp doesn’t make a difference. programmer.name will
access the variable name defined in the class Employee.

Reference variable of
type Employee, object

of type Employee

b

Reference variable
of type Employee,
object of type
Programmer

c

Accesses varia
name defined
class Employe

d

Variables are bound at compile
time. Because type of variable
programmer is Employee, this
accesses the variable name
defined in class Employee.e

esses
thod

 class
loyee f

Methods are bound at runtime; which
method executes depends on the type of

object on which it’s called. This code calls
method printName in class Programmer. g

441Polymorphism
■ f prints Employee. Because the type of the reference variable emp and the type
of object referenced by it are the same (Employee), there’s no confusion with
the method call.

■ g prints Programmer. Even though the method printName is called using a ref-
erence of type Employee, the JRE is aware that the method is invoked on a
Programmer object and hence executes the overridden printName method in
the class Programmer.

EXAM TIP Watch out for code in the exam that uses variables of the base class
to refer to objects of the derived class and then accesses variables and meth-
ods of the referenced object. Remember that variables bind at compile time,
whereas methods bind at runtime.

6.6.3 Polymorphism with interfaces

Polymorphism can also be implemented using interfaces. Whereas polymorphism
with classes has a class as the base class, polymorphism with interfaces requires a class
to implement an interface. Polymorphism with interfaces involves abstract or default
methods from the implemented interface. An interface can also define static meth-
ods, but static methods never participate in polymorphism.

POLYMORPHISM WITH ABSTRACT METHODS

Let’s start with an example. Here’s an interface, MobileAppExpert, that defines an
abstract method, deliverMobileApp:

interface MobileAppExpert {
 void deliverMobileApp();
}

Here’s a simplified version of the classes Programmer and Manager that implement this
interface and the method deliverMobileApp:

class Employee {}
class Programmer extends Employee implements MobileAppExpert {
 public void deliverMobileApp() {
 System.out.println("testing complete on real device");
 }
}
class Manager extends Employee implements MobileAppExpert {
 public void deliverMobileApp() {
 System.out.println("QA complete");
 System.out.println("code delivered with release notes");
 }
}

The relationships among the two classes and the interface are shown in figure 6.29.
 In the real world, the delivery of a mobile application would have different mean-

ings for a programmer and a manager. For a programmer, the delivery of a mobile

442 CHAPTER 6 Working with inheritance
application may require the completion of testing on the real mobile device. But for a
manager, the delivery of a mobile application may mean completing the QA process
and handing over code to the client along with any release notes. The bottom line is
that the same message, deliverMobileApp, results in the execution of different sets of
steps for a programmer and a manager.

 Here’s a class, PolymorphismWithInterfaces, that creates objects of the classes
Programmer and Manager and calls the method deliverMobileApp:

class PolymorphismWithInterfaces {
 public static void main(String[] args) {
 MobileAppExpert expert1 = new Programmer();
 MobileAppExpert expert2 = new Manager();
 expert1.deliverMobileApp();
 expert2.deliverMobileApp();
 }
}

The output of the preceding code is as follows:

testing complete on real device
QA complete
code delivered with release notes

At B, the type of the variable is MobileAppExpert. Because the classes Manager and
Programmer implement the interface MobileAppExpert, a reference variable of type
MobileAppExpert can also be used to store objects of the classes Programmer and
Manager.

 Because both these classes also extend the class Employee, you can use a variable of
type Employee to store objects of the classes Programmer and Manager. But in this case
you won’t be able to call the method deliverMobileApp because it isn’t visible to the
class Employee. Examine the following code:

class PolymorphismWithInterfaces {
 public static void main(String[] args) {
 Employee expert1 = new Programmer();

extends

implements

<<interface>>

MobileAppExpert
Employee

Programmer Manager

Figure 6.29 Relationships among classes Employee, Programmer, and
Manager and the interface MobileAppExpert

Reference type of variables
expert1 and expert2 is
MobileAppExpertb

Employee can’t see
deliverMobileApp

443Polymorphism
 Employee expert2 = new Manager();
 expert1.deliverMobileApp();
 expert2.deliverMobileApp();
 }
}

Let’s see what happens if you modify the class Employee to implement the interface
MobileAppExpert, as follows:

class Employee implements MobileAppExpert {
 // code
}
interface MobileAppExpert {
 // code
}

Now the classes Programmer and Manager can just extend the class Employee. They no
longer need to implement the interface MobileAppExpert because their base class,
Employee, implements it:

class Programmer extends Employee {
 // code
}
class Manager extends Employee {
 // code
}

With the modified code, the new relationships among the classes Employee, Manager,
and Programmer and the interface MobileAppExpert are shown in figure 6.30.

Won’t compile

New relationship Old relationship

extends

implements

<<interface>>

MobileAppExpert
Employee

Programmer Manager

<<interface>>

MobileAppExpert

Employee

Programmer Manager

Figure 6.30 Modified relationships among the classes Employee, Manager, and Programmer, and
the interface MobileAppExpert

444 CHAPTER 6 Working with inheritance
Let’s try to access the method deliverMobileApp using a reference variable of type
Employee class, as follows:

class PolymorphismWithInterfaces {
 public static void main(String[] args) {
 Employee expert1 = new Programmer();
 Employee expert2 = new Manager();
 expert1.deliverMobileApp();
 expert2.deliverMobileApp();
 }
}

Figure 6.31 shows what’s accessible to the variable expert1.

EXAM TIP Watch out for overloaded methods that seem to participate in
polymorphism—overloaded methods don’t participate in polymorphism.
Only overridden methods—methods with the same method signatures—par-
ticipate in polymorphism.

POLYMORPHISM WITH DEFAULT METHODS

When a class implements an interface that defines a default method, the class might
or might not override the default method. In the following example, the class Manager

overrides the default method submitInterviewStatus, defined in the interface
Interviewer:

interface Interviewer {
 default Object submitInterviewStatus() {
 System.out.println("Interviewer:Accept");
 return null;
 }
}
class Manager implements Interviewer {
 public String submitInterviewStatus() {
 System.out.println("Manager:Accept");
 return null;
 }
}

Employee can see
deliverMobileApp

Will work!

MobileAppExpert

Employee

Programmer

Methods defined in interface

MobileAppExpert accessible in Employee

Fields and methods of class

Employee

Fields and methods of class

Programmer

Reference

variable of type

Employee

expert1

Figure 6.31 What’s accessible to the variable expert1

445Polymorphism
class Project {
 public static void main(String args[]) {
 Interviewer interviewer = new Manager();
 interviewer.submitInterviewStatus();

 Manager mgr = new Manager();
 mgr.submitInterviewStatus();
 }
}

Here’s the output of the preceding code:

Manager:Accept
Manager:Accept

In the preceding code, even though the class Project uses a reference variable of
the interface Interviewer and the class Manager to refer to a Manager instance, the
call to submitInterviewStatus() is delegated to the overriding method defined in
the class Manager.

 Here’s an interesting situation. Imagine that two interfaces, BaseInterface1 and
BaseInterface2, define default methods with the same name, getName(). These inter-
faces are extended by another interface, MyInterface, which overrides the method
getName. Now, imagine that a class, MyClass, implements all three interfaces. What is
the output when you call getName() on the MyClass instance? Will it compile?

interface BaseInterface1 {
 default void getName() { System.out.println("Base 1"); }
}
interface BaseInterface2 {
 default void getName() { System.out.println("Base 2"); }
}
interface MyInterface extends BaseInterface1, BaseInterface2 {
 default void getName() { System.out.println("Just me"); }
}
class MyClass implements BaseInterface1, BaseInterface2, MyInterface {
 public static void main(String ar[]) {
 new MyClass().getName();
 }
}

The preceding code compiles successfully and outputs Just me. Using the interface
names BaseInterface1, BaseInterface2 in the declaration of class MyClass is redun-
dant (duplicate) because MyInterface already extends BaseInterface1 and Base-

Interface2. So MyClass doesn’t inherit three implementations of the default method
getName. It inherits just one of them, getName(), which is defined in the interface
MyInterface.

446 CHAPTER 6 Working with inheritance
6.7 Simple lambda expressions

This exam includes working with simple lambda expressions to enable you to get
started with functional-style programming in Java. Functional programming enables you
to write declarative code. It lets you define what to do, rather than focusing on how to
do it. With functional programming, you can pass code to your methods as argu-
ments. Let’s get the hang of it by comparing passing of variable or literal values to
methods with passing code to them.

6.7.1 Comparing passing values with passing code to methods

Imagine that you need to write methods to print values of a range of numbers, like 1
to 10, 10 to 20, and so on, without passing parameters to methods. Here’s how you
might write your code:

class NoMethodParameters{
 void print1To10() {
 for (int i = 1; i <= 10; i++)
 System.out.println(i);
 }
 void print10To20() {
 for (int i = 10; i <= 20; i++)
 System.out.println(i);
 }
 void print1To99() {
 for (int i = 1; i <= 99; i++)
 System.out.println(i);
 }
}

Because you know how to define method parameters for a method, you’re sure to
think it’s insane to define the methods as shown in the preceding code. So here’s a
method that accepts method arguments:

class WithMethodParameters {
 void printNumbers(int start, int end) {
 for (int i = start; i <= end; i++)
 System.out.println(i);
 }
}

Here’s how you would call the methods to print integers, defined in the preceding code:

NoMethodParameters noParameters = new NoMethodParameters();
noParameters.print10To20();
noParameters.print1To99();

WithMethodParameters withParameters = new WithMethodParameters();
withParameters.printNumbers(10, 20);

[9.5] Write a simple Lambda expression that consumes a Lambda
Predicate expression

447Simple lambda expressions
withParameters.printNumbers(1, 99);
withParameters.printNumbers(100, 200);
withParameters.printNumbers(500, 1000);

Note how you can define just one method, printNumbers, and call it with multiple val-
ues. Let’s apply the same logic to defining just one method, passing it code so that we
don’t need its multiple implementations.

 Before using lambdas, let’s work with an example that doesn’t use them, to highlight
their benefits. The following example defines the class Emp (with a few instance vari-
ables). It also defines an interface, Validate, which defines just one abstract method,
check. It’s meant to check the state of an Emp instance and return a boolean value:

interface Validate {
 boolean check(Emp emp);
}
class Emp {
 String name;
 int performanceRating;
 double salary;
 Emp(String nm, int rating, double sal) {
 name = nm;
 performanceRating = rating;
 salary = sal;
 }
 public String getName() { return name; }
 public int getPerformanceRating() { return performanceRating; }
 public double getSalary() { return salary; }
 public String toString() {
 return name + ":" + performanceRating + ":" + salary;
 }
}

To use the interface Validate (without using lambdas), you can either define a class
that implements it or define anonymous classes. Because anonymous classes aren’t on
this exam, I’ll define a class that implements the interface Validate. In the following
code, the class ValidatePerformanceRating checks an Emp instance, returning true if
the performanceRating of an Emp instance is greater than or equal to 5:

class ValidatePerformanceRating implements Validate{
 public boolean check(Emp emp) {
 return (emp.getPerformanceRating() >= 5);
 }
}

What happens if you want to check another attribute of an Emp instance, say, name?
You’ll need another class:

class ValidateName implements Validate{
 public boolean check(Emp emp) {
 return (emp.getName.startsWith("P"));
 }
}

448 CHAPTER 6 Working with inheritance
Compare the preceding classes—ValidateName and ValidatePerformanceRating—
with multiple printXXX methods in the class NoMethodParameters. Note how just the
boolean condition is changing in the check methods in the classes ValidateName and
ValidatePerformanceRating. Here’s how you would use instances of ValidateName

or ValidatePerformanceRating in a method, say, filter:

class Test {
 public static void main(String args[]) {
 Emp e1 = new Emp("Shreya", 5, 9999.00);
 Emp e2 = new Emp("Paul", 4, 1234.00);
 Emp e3 = new Emp("Harry", 5, 8769.00);
 Emp e4 = new Emp("Selvan", 1, 2769.00);

 ArrayList<Emp> empArrList = new ArrayList<>();
 empArrList.add(e1);
 empArrList.add(e2);
 empArrList.add(e3);
 empArrList.add(e4);

 filter(empArrList, new ValidatePerformanceRating());
 }
 static void filter(ArrayList<Emp> list, Validate rule) {
 for (Emp e : list) {
 if (rule.check(e)) {
 System.out.println(e);
 }
 }
 }
}

In the preceding code, the filter method accepts an ArrayList of Emp and outputs
the ones that return true when an Emp instance is checked with the method check of
the interface Validate.

 As mentioned previously, you’ll need to create multiple classes (that implement
the interface Validate) to use different validity rules. Apart from being mostly repeti-
tive, it’s verbose too. Lambdas to the rescue! Let’s remove the definition of the classes
ValidateName and ValidatePerformanceRating. To define the validation condition,
we’ll use lambdas (the modified code is in bold):

class Test {
 public static void main(String args[]) {
 Emp e1 = new Emp("Shreya", 5, 9999.00);
 Emp e2 = new Emp("Paul", 4, 1234.00);
 Emp e3 = new Emp("Harry", 5, 8769.00);
 Emp e4 = new Emp("Selvan", 1, 2769.00);

 ArrayList<Emp> empArrList = new ArrayList<>();
 empArrList.add(e1);
 empArrList.add(e2);
 empArrList.add(e3);
 empArrList.add(e4);

449Simple lambda expressions
 Validate validatePerfor = e -> e.getPerformanceRating() >= 5;
 filter(empArrList, validatePerfor);
 }
 static void filter(ArrayList<Emp> list, Validate rule) {
 for (Emp e : list) {
 if (rule.check(e)) {
 System.out.println(e);
 }
 }
 }
}

In the preceding code, there isn’t any change to the method filter that accepts a
method parameter of type Validate (an interface). The code at B defines a lambda
expression. It defines code to be passed to the method filter. Map the lambda
expression to the method signature of check in Validate. The method check accepts
only one method parameter and so does the lambda expression, that is, (e). The
method check returns a boolean value and so does the expression e.getPerfor-

manceRating() >= 5 in the lambda expression.

NOTE Lambdas work only with functional interfaces—interfaces that define
exactly one abstract method.

Let’s dive into the details of lambda expressions in the next section.

6.7.2 Syntax of lambda expressions

Let’s revisit the lambda expression used in the previous expression:

Validate validatePerfor = e -> e.getPerformanceRating() >= 5;

The preceding code includes only the mandatory sections of a lambda, as shown in
figure 6.32.

Each lambda expression has multiple optional and mandatory sections:

■ Parameter type (optional)
■ Parameter name (mandatory)
■ Arrow (mandatory)
■ Curly braces (optional)
■ Keyword return (optional)
■ Lambda body (mandatory)

Use lambda
expressions b

(e) -> e.getPerformanceRating() >= 5;

Parameter

name Arrow

Lambda body
Figure 6.32 A Lambda expression
and its mandatory sections

450 CHAPTER 6 Working with inheritance
The following are valid variations of the preceding lambda expression (modifications
in bold):

Validate validate = (e) -> e.getPerformanceRating() >= 5;
Validate validate = (Emp e) -> e.getPerformanceRating() >= 5;
Validate validate = (e) -> { return (e.getPerformanceRating() >= 5); };

On the exam, you’ll need to identify invalid lambda expressions. The return value of
the lambda expression must match or must be compatible with the return value of the
only abstract method in the interface. The method check in the interface Validate

declares its return type as boolean. So the following would be invalid:

Validate validatePerformance = (Emp e) -> 5;

If you try to pass an incorrect count of method parameters to the lambda expression,
the code won’t compile:

Validate validatePerformance = (e, f) -> { return true; };

Java 8 has added multiple functional interfaces for your convenience. This exam cov-
ers just one of these—interface Predicate—discussed in the next section.

6.7.3 Interface Predicate

Predicate is a functional interface. Here’s the partial definition of this interface:

public interface Predicate<T> {
 /**
 * Evaluates this predicate on the given argument.
 *
 * @param t the input argument
 * @return {@code true} if the input argument matches the predicate,
 * otherwise {@code false}
 */
 boolean test(T t);
 // rest of the code
}

In the preceding code, the class declaration includes <T>, which declares that
Predicate is a generic interface, which isn’t limited to a particular type. It can be
used with multiple types. Generics are covered in detail in the OCP Java SE 8 Pro-
grammer II exam.

 To use Predicate in your code, your method must accept a parameter of type
Predicate and you must use its public method test to evaluate an argument. Let’s

Doesn’t compile;
invalid return type

Doesn’t compile;
mismatch in
parameter count

451Simple lambda expressions
modify the example used in section 6.7.1 to use Predicate instead of Validate

(changes in bold):

class Test {
 public static void main(String args[]) {
 Emp e1 = new Emp("Shreya", 5, 9999.00);
 Emp e2 = new Emp("Paul", 4, 1234.00);
 Emp e3 = new Emp("Harry", 5, 8769.00);
 Emp e4 = new Emp("Selvan", 1, 2769.00);

 ArrayList<Emp> empArrList = new ArrayList<>();
 empArrList.add(e1);
 empArrList.add(e2);
 empArrList.add(e3);
 empArrList.add(e4);

 Predicate<Emp> predicate = e -> e.getPerformanceRating() >= 5;
 filter(empArrList, predicate);
 }
 static void filter(ArrayList<Emp> list, Predicate<Emp> rule) {
 for (Emp e : list) {
 if (rule.test(e)) {
 System.out.println(e);
 }
 }
 }
}

Java 8 has also modified many of its existing API methods, which work with functional
interfaces like Predicate. For example, the class ArrayList defines the method
removeIf, which accepts a method parameter of type Predicate. The following exam-
ple shows the use of removeIf:

Emp e1 = new Emp("Shreya", 5, 9999.00);
Emp e2 = new Emp("Paul", 4, 1234.00);
Emp e3 = new Emp("Harry", 5, 8769.00);
Emp e4 = new Emp("Selvan", 1, 2769.00);

ArrayList<Emp> empArrList = new ArrayList<>();
empArrList.add(e1);
empArrList.add(e2);
empArrList.add(e3);
empArrList.add(e4);

for (Emp e : empArrList)
 System.out.println(e);

System.out.println("After deletion..");

empArrList.removeIf(e -> e.getName().startsWith("S"));

for (Emp e : empArrList)
 System.out.println(e);

452 CHAPTER 6 Working with inheritance
Here’s the output of the preceding code:

Shreya:5:9999.0
Paul:4:1234.0
Harry:5:8769.0
Selvan:1:2769.0
After deletion..
Paul:4:1234.0
Harry:5:8769.0

As you can see, the use of Predicate and lambda expressions in the preceding code
enabled you to write code declaratively.

6.8 Summary
We started the chapter with a discussion of inheritance and polymorphism, using an
example from everyday life: all creatures inherit the properties and behavior of their
parents, and the same action (such as reproduce) may have different meanings for dif-
ferent species. Inheritance enables the reuse of existing code, and it can be imple-
mented using classes and interfaces. A class can’t extend more than one class, but it
can implement more than one interface. Inheriting a class is also called subclassing,
and the inherited class is referred to as the base or parent class. A class that inherits
another class or implements an interface is called a derived class or subclass.

 Just as it’s common to address someone using a last name or family name, an
object of a derived class can be referred to with a variable of a base class or an inter-
face that it implements. But when you refer to an object using a variable of the base
class, the variable can access only the members defined in the base class. Similarly, a
variable of type interface can access only the members defined in that interface. Even
with this limitation, you may wish to refer to objects using variables of their base class
to work with multiple objects that have common base classes.

 Objects of related classes—the ones that share an inheritance relationship—can
be cast to another object. You may wish to cast an object when you wish to access its
members that aren’t available by default using the variable that’s used to refer to
the object.

 The keywords this and super are object references and are used to access an
object and its base class, respectively. You can use the keyword this to access a class’s
variables, methods, and constructors. Similarly, the keyword super is used to access a
base class’s variables, methods, and constructors.

 Polymorphism is the ability of objects to execute methods defined in a superclass
or base class, depending on their type. Classes that share an inheritance relationship
exhibit polymorphism. The polymorphic method should be defined in both the base
class and the inherited class.

 You can implement polymorphism by using either classes or interfaces. In the case
of polymorphism with classes, the base class can be either an abstract class or a con-
crete class. The method in question here also need not be an abstract method. When

453Review notes
you implement polymorphism using interfaces, you must use an abstract method
from the interface.

 Java 8 enables you to write code declaratively. We covered lambda expressions,
their syntax, and the interface Predicate.

6.9 Review notes
Inheritance with classes:

■ A class can inherit the properties and behavior of another class.
■ A class can implement multiple interfaces.
■ An interface can inherit zero or more interfaces. An interface can’t inherit

a class.
■ Inheritance enables you to use existing code.
■ Inheriting a class is also known as subclassing.
■ A class that inherits another class is called a derived class or subclass.
■ A class that’s inherited is called a parent or base class or superclass.
■ Private members of a base class can’t be inherited in the derived class.
■ A derived class can only inherit members with the default access modifier if

both the base class and the derived class are in the same package.
■ A class uses the keyword extends to inherit a class.
■ A class uses the keyword implements to implement an interface.
■ A class can implement multiple interfaces but can inherit only one class.
■ An abstract class can inherit a concrete class, and a concrete class can inherit

an abstract class.

Use interfaces:

■ An interface uses the keyword extends to inherit another interface.
■ An interface can extend multiple interfaces.
■ Although interfaces can define a default implementation for their methods in

Java 8, it’s not compulsory for them to do so. Interfaces can also define
abstract methods.

■ The declaration of an interface can’t include a class name. An interface can
never extend any class.

■ All the top-level Java types (classes, enums, and interfaces) can be declared
using only two access levels: public and default. Inner or nested types can be
declared using any access level.

■ The strictfp keyword guarantees that results of all floating-point calculations
are identical on all platforms.

■ Interface methods are implicitly abstract. To define default or static methods,
you must use the keyword default or static.

■ Interface methods can define an implementation by using default methods.

454 CHAPTER 6 Working with inheritance
■ A static method in an interface can’t be called using a reference variable. It
must be called using the interface name.

■ Unlike an interface, if you define a static method in a base class, it can be
accessed using either a reference variable or the class name.

■ You must implement an abstract method of an interface using the explicit
access modifier public.

■ While overriding a default method, you must not use the keyword default. The
rules for overriding default and regular methods are same.

■ static methods in a class and the interface that it implements are not related
to each other. A static method in a class doesn’t hide or override the static

method in the interface that it implements.
■ Because a derived class may inherit different implementations for the same

method signature from multiple base classes, multiple inheritance is not
allowed in Java.

■ A class can extend multiple interfaces, only if a set of rules is adhered to:
– A class can implement multiple interfaces with the same constant names only

if the reference to the constants is not ambiguous.
– A class can implement multiple interfaces with the same abstract method

names if they have the same signature or form an overloaded set of methods.
– A class can implement multiple interfaces with the same default method name

if it overrides its default implementation.
– A class can implement multiple interfaces with the same static method name

regardless of their return types or signature.
■ When an interface extends multiple interfaces, Java ensures that it doesn’t inherit

multiple method implementations for the same method.
■ An interface can extend multiple interfaces that define static methods with

the same name; the signatures of these methods don’t matter.
■ The variables of an interface are implicitly public, final, and static.
■ The methods of an interface are implicitly public.
■ An interface can’t define any constructors.

Reference variable and object types:

■ With inheritance, you can also refer to an object of a derived class using a vari-
able of a base class or interface.

■ An object of a base class can’t be referred to using a reference variable of its
derived class.

■ When an object is referred to by a reference variable of a base class, the refer-
ence variable can access only the variables and members that are defined in the
base class.

■ When an object is referred to by a reference variable of an interface imple-
mented by a class, the reference variable can access only the variables and meth-
ods defined in the interface.

455Review notes
■ You may need to access an object of a derived class using a reference variable of
the base class to group and use all the classes with common parent classes or
interfaces.

The need for casting:

■ Casting is the process of forcefully making a variable behave as a variable of
another type.

■ If the class Manager extends the class Employee, and a reference variable emp of
type Employee is used to refer to an object of the class Manager, ((Manager)emp)

will cast the variable emp to Manager.

Using super and this to access objects and constructors:

■ The keywords super and this are object references. These variables are
defined and initialized by the JVM for every object in its memory.

■ The this reference always points to an object’s own instance.
■ You can use the keyword this to refer to all methods and variables that are

accessible to a class.
■ If a method defines a local variable or method parameter with the same name

as an instance variable, the keyword this must be used to access the instance
variable in the method.

■ You can call one constructor from another constructor by using the keyword
this.

■ With Java 8, you can use the keyword this in a default method to access the
methods of an interface and its constants.

■ The static methods of an interface can’t be accessed using the keyword this.
■ super, an object reference, refers to the parent class or the base class of a class.
■ The reference variable super can be used to access a variable or method from

the base class if there’s a clash between these names. This situation normally
occurs when a derived class defines variables and methods with the same names
as in the base class.

■ The reference variable super can also be used to refer to the constructors of the
direct parent class in a derived class.

Polymorphism with classes:

■ The literal meaning of the word polymorphism is “many forms.”
■ In Java, polymorphism comes into the picture when there’s an inheritance rela-

tionship between classes, and both the base and derived classes define methods
with the same name.

■ The polymorphic methods are also called overridden methods.
■ Overridden methods should define methods with the same name, same argu-

ment list, and same list of method parameters. The return type of the overrid-
ing method can be the same, or it can be a subclass of the return type of the

456 CHAPTER 6 Working with inheritance
overridden method in the base class, which is also known as the covariant
return type.

■ Access modifiers for an overriding method can be equally or less restrictive but
can’t be more restrictive than the method being overridden.

■ A derived class is said to override a method in the base class if it defines a
method with the same name, same parameter list, and same return type as in
the derived class.

■ If a method defined in a base class is overloaded in the derived classes, then
these two methods (in the base class and the derived class) are not called poly-
morphic methods.

■ When implementing polymorphism with classes, a method defined in the base
class may or may not be abstract.

■ When implementing polymorphism with interfaces, a method defined in the
base interface could be an abstract method or a non-abstract method with a
default implementation.

■ Static methods in interfaces don’t participate in polymorphism.

Simple lambda expressions:

■ Lambdas work only with functional interfaces—interfaces that define exactly
one abstract method.

■ Each lambda expression has multiple optional and mandatory sections:
– Parameter type (optional)
– Parameter name (mandatory)
– Arrow (mandatory)
– Curly braces (optional)
– Keyword return (optional)
– Lambda body (mandatory)

6.10 Sample exam questions

Q6-1. What is the output of the following code?

class Animal {
 void jump() { System.out.println("Animal"); }
}
class Cat extends Animal {
 void jump(int a) { System.out.println("Cat"); }
}
class Rabbit extends Animal {
 void jump() { System.out.println("Rabbit"); }
}
class Circus {
 public static void main(String args[]) {
 Animal cat = new Cat();
 Rabbit rabbit = new Rabbit();
 cat.jump();

457Sample exam questions
 rabbit.jump();
 }
}

a Animal
Rabbit

b Cat
Rabbit

c Animal
Animal

d None of the above

Q6-2. Given the following code, select the correct statements:

class Flower {
 public void fragrance() {System.out.println("Flower"); }
}
class Rose {
 public void fragrance() {System.out.println("Rose"); }
}
class Lily {
 public void fragrance() {System.out.println("Lily"); }
}
class Bouquet {
 public void arrangeFlowers() {
 Flower f1 = new Rose();
 Flower f2 = new Lily();
 f1.fragrance();
 }
}

a The output of the code is

Flower

b The output of the code is

Rose

c The output of the code is

Lily

d The code fails to compile.

Q6-3. Examine the following code and select the correct method declaration to be
inserted at //INSERT CODE HERE:

interface Movable {
 void move();
}

458 CHAPTER 6 Working with inheritance
class Person implements Movable {
 public void move() { System.out.println("Person move"); }
}
class Vehicle implements Movable {
 public void move() { System.out.println("Vehicle move"); }
}
class Test {
 // INSERT CODE HERE
 movable.move();
 }
}

a void walk(Movable movable) {

b void walk(Person movable) {
c void walk(Vehicle movable) {

d void walk() {

Q6-4. Select the correct statements:

a Only an abstract class can be used as a base class to implement polymorphism
with classes.

b Polymorphic methods are also called overridden methods.
c In polymorphism, depending on the exact type of object, the JVM executes the

appropriate method at compile time.
d None of the above.

Q6-5. Given the following code, select the correct statements:

class Person {}
class Employee extends Person {}
class Doctor extends Person {}

a The code exhibits polymorphism with classes.
b The code exhibits polymorphism with interfaces.
c The code exhibits polymorphism with classes and interfaces.
d None of the above.

Q6-6. Which of the following statements are true?

a Inheritance enables you to reuse existing code.
b Inheritance saves you from having to modify common code in multiple classes.
c Polymorphism passes special instructions to the compiler so that the code can

run on multiple platforms.
d Polymorphic methods can’t throw exceptions.

459Sample exam questions
Q6-7. Given the following code, which of the options are true?

class Satellite {
 void orbit() {}
}
class Moon extends Satellite {
 void orbit() {}
}
class ArtificialSatellite extends Satellite {
 void orbit() {}
}

a The method orbit defined in the classes Satellite, Moon, and Artificial-

Satellite is polymorphic.
b Only the method orbit defined in the classes Satellite and Artificial-

Satellite is polymorphic.
c Only the method orbit defined in the class ArtificialSatellite is polymor-

phic.
d None of the above.

Q6-8. Examine the following code:

class Programmer {
 void print() {
 System.out.println("Programmer - Mala Gupta");
 }
}
class Author extends Programmer {
 void print() {
 System.out.println("Author - Mala Gupta");
 }
}
class TestEJava {
 Programmer a = new Programmer();
 // INSERT CODE HERE
 a.print();
 b.print();
}

Which of the following lines of code can be individually inserted at //INSERT CODE
HERE so that the output of the code is as follows?

Programmer - Mala Gupta
Author - Mala Gupta

a Programmer b = new Programmer();

b Programmer b = new Author();

c Author b = new Author();

d Author b = new Programmer();

460 CHAPTER 6 Working with inheritance
e Programmer b = ((Author)new Programmer());

f Author b = ((Author)new Programmer());

Q6-9. Given the following code, which of the options, when applied individually, will
make it compile successfully?

Line1> interface Employee {}
Line2> interface Printable extends Employee {
Line3> String print();
Line4> }
Line5> class Programmer {
Line6> String print() { return("Programmer - Mala Gupta"); }
Line7> }
Line8> class Author extends Programmer implements Printable, Employee {
Line9> String print() { return("Author - Mala Gupta"); }
Line10> }

a Modify the code on line 2 to interface Printable{

b Modify the code on line 3 to publicStringprint();

c Define the accessibility of the print methods to public on lines 6 and 9.
d Modify the code on line 8 so that it implements only the interface Printable.

Q6-10. What is the output of the following code?

class Base {
 String var = "EJava";
 void printVar() {
 System.out.println(var);
 }
}
class Derived extends Base {
 String var = "Guru";
 void printVar() {
 System.out.println(var);
 }
}
class QReference {
 public static void main(String[] args) {
 Base base = new Base();
 Base derived = new Derived();
 System.out.println(base.var);
 System.out.println(derived.var);
 base.printVar();
 derived.printVar();
 }
}

a EJava
EJava
EJava
Guru

461Answers to sample exam questions
b EJava
Guru
EJava
Guru

c EJava
EJava
EJava
EJava

d EJava
Guru
Guru
Guru

6.11 Answers to sample exam questions

Q6-1. What is the output of the following code?

class Animal {
 void jump() { System.out.println("Animal"); }
}
class Cat extends Animal {
 void jump(int a) { System.out.println("Cat"); }
}
class Rabbit extends Animal {
 void jump() { System.out.println("Rabbit"); }
}
class Circus {
 public static void main(String args[]) {
 Animal cat = new Cat();
 Rabbit rabbit = new Rabbit();
 cat.jump();
 rabbit.jump();
 }
}

a Animal
Rabbit

b Cat
Rabbit

c Animal
Animal

d None of the above

Answer: a

Explanation: Although the classes Cat and Rabbit seem to override the method
jump, the class Cat doesn’t override the method jump() defined in the class Animal.
The class Cat defines a method parameter with the method jump, which makes it an

462 CHAPTER 6 Working with inheritance
overloaded method, not an overridden method. Because the class Cat extends the
class Animal, it has access to the following two overloaded jump methods:

void jump() { System.out.println("Animal"); }
void jump(int a) { System.out.println("Cat"); }

The following lines of code create an object of class Cat and assign it to a variable of
type Animal:

Animal cat = new Cat();

When you call the method jump on the previous object, it executes the method jump,
which doesn’t accept any method parameters, printing the following value:

Animal

The following code will also print Animal and not Cat:

Cat cat = new Cat();
cat.jump();

Q6-2. Given the following code, select the correct statements:

class Flower {
 public void fragrance() {System.out.println("Flower"); }
}
class Rose {
 public void fragrance() {System.out.println("Rose"); }
}
class Lily {
 public void fragrance() {System.out.println("Lily"); }
}
class Bouquet {
 public void arrangeFlowers() {
 Flower f1 = new Rose();
 Flower f2 = new Lily();
 f1.fragrance();
 }
}

a The output of the code is

Flower

b The output of the code is

Rose

c The output of the code is

Lily

d The code fails to compile.

463Answers to sample exam questions
Answer: d

Explanation: Although the code seems to implement polymorphism using classes,
note that neither of the classes Rose or Lily extends the class Flower. Hence, a variable
of type Flower can’t be used to store objects of the classes Rose or Lily. The following
lines of code will fail to compile:

Flower f1 = new Rose();
Flower f2 = new Lily();

Q6-3. Examine the following code and select the correct method declaration to be
inserted at //INSERT CODE HERE:

interface Movable {
 void move();
}
class Person implements Movable {
 public void move() { System.out.println("Person move"); }
}
class Vehicle implements Movable {
 public void move() { System.out.println("Vehicle move"); }
}
class Test {
 // INSERT CODE HERE
 movable.move();
 }
}

a void walk(Movable movable) {

b void walk(Person movable) {

c void walk(Vehicle movable) {

d void walk() {

Answer: a, b, c

Explanation: You need to insert code in the class Test that makes the following line of
code work:

movable.move();

Hence, option (d) is incorrect. Because class Test doesn’t define any instance meth-
ods, the only way that the question’s line of code can execute is when a method
parameter movable is passed to the method walk.

 Option (a) is correct. Because the interface Movable defines the method move, you
can pass a variable of its type to the method move.

 Option (b) is correct. Because the class Person implements the interface Movable
and defines the method move, you can pass a variable of its type to the method walk.
With this version of the method walk, you can pass it an object of the class Person or
any of its subclasses.

464 CHAPTER 6 Working with inheritance
 Option (c) is correct. Because the class Vehicle implements the interface Movable
and defines the method move, you can pass a variable of its type to the method walk.
With this version of method walk, you can pass it an object of the class Vehicle or any
of its subclasses.

Q6-4. Select the correct statements:

a Only an abstract class can be used as a base class to implement polymorphism
with classes.

b Polymorphic methods are also called overridden methods.
c In polymorphism, depending on the exact type of object, the JVM executes the

appropriate method at compile time.
d None of the above.

Answer: b

Option (a) is incorrect. To implement polymorphism with classes, either an abstract

class or a concrete class can be used as a base class.
 Option (c) is incorrect. First of all, no code execution takes place at compile time.

Code can only execute at runtime. In polymorphism, the determination of the exact
method to execute is deferred until runtime and is determined by the exact type of
the object on which a method needs to be called.

Q6-5. Given the following code, select the correct statements:

class Person {}
class Employee extends Person {}
class Doctor extends Person {}

a The code exhibits polymorphism with classes.
b The code exhibits polymorphism with interfaces.
c The code exhibits polymorphism with classes and interfaces.
d None of the above.

Answer: d

Explanation: The given code doesn’t define any method in the class Person that is
redefined or implemented in the classes Employee and Doctor. Although the classes
Employee and Doctor extend the class Person, all three polymorphism concepts or
design principles are based on a method, which is missing in these classes.

Q6-6. Which of the following statements are true?

a Inheritance enables you to reuse existing code.
b Inheritance saves you from having to modify common code in multiple classes.

465Answers to sample exam questions
c Polymorphism passes special instructions to the compiler so that the code can
run on multiple platforms.

d Polymorphic methods can’t throw exceptions.

Answer: a, b

Explanation: Option (a) is correct. Inheritance can allow you to reuse existing code
by extending a class. In this way, the functionality that’s already defined in the base
class need not be defined in the derived class. The functionality offered by the base
class can be accessed in the derived class as if it were defined in the derived class.

 Option (b) is correct. Common code can be placed in the base class, which can be
extended by all the derived classes. If any changes need to be made to this common
code, it can be modified in the base class. The modified code will be accessible to all
the derived classes.

 Option (c) is incorrect. Polymorphism doesn’t pass any special instructions to the
compiler to make the Java code execute on multiple platforms. Java code can execute
on multiple platforms because the Java compiler compiles to virtual machine code,
which is platform neutral. Different platforms implement this virtual machine.

 Option (d) is incorrect. Polymorphic methods can throw exceptions.

Q6-7. Given the following code, which of the options are true?

class Satellite {
 void orbit() {}
}
class Moon extends Satellite {
 void orbit() {}
}
class ArtificialSatellite extends Satellite {
 void orbit() {}
}

a The method orbit defined in the classes Satellite, Moon, and Artificial-
Satellite is polymorphic.

b Only the method orbit defined in the classes Satellite and Artificial-

Satellite is polymorphic.
c Only the method orbit defined in the class ArtificialSatellite is polymorphic.
d None of the above.

Answer: a

Explanation: All these options define classes. When methods with the same method
signature are defined in classes that share an inheritance relationship, the methods
are considered polymorphic.

466 CHAPTER 6 Working with inheritance
Q6-8. Examine the following code:

class Programmer {
 void print() {
 System.out.println("Programmer - Mala Gupta");
 }
}
class Author extends Programmer {
 void print() {
 System.out.println("Author - Mala Gupta");
 }
}
class TestEJava {
 Programmer a = new Programmer();
 // INSERT CODE HERE
 a.print();
 b.print();
}

Which of the following lines of code can be individually inserted at //INSERT CODE
HERE so that the output of the code is as follows?

Programmer - Mala Gupta
Author - Mala Gupta

a Programmer b = new Programmer();

b Programmer b = new Author();
c Author b = new Author();
d Author b = new Programmer();

e Programmer b = ((Author)new Programmer());

f Author b = ((Author)new Programmer());

Answer: b, c

Explanation: Option (a) is incorrect. This code will compile, but because both the ref-
erence variable and object are of type Programmer, calling print on this object will
print Programmer - Mala Gupta, not Author - Mala Gupta.

 Option (d) is incorrect. This code will not compile. You can’t assign an object of a
base class to a reference variable of a derived class.

 Option (e) is incorrect. This line of code will compile successfully, but it will fail at
runtime with a ClassCastException. An object of a base class can’t be cast to an
object of its derived class.

 Option (f) is incorrect. The expression ((Author)new Programmer()) is evaluated
before it can be assigned to a reference variable of type Author. This line of code also
tries to cast an object of the base class, Programmer, to an object of its derived class,
Author. This code will also compile successfully but will fail at runtime with a Class-

CastException. Using a reference variable of type Author won’t make a difference
here. What matters here is the type that follows the new operator.

467Answers to sample exam questions
Q6-9. Given the following code, which of the options, when applied individually, will
make it compile successfully?

Line1> interface Employee {}
Line2> interface Printable extends Employee {
Line3> String print();
Line4> }
Line5> class Programmer {
Line6> String print() { return("Programmer - Mala Gupta"); }
Line7> }
Line8> class Author extends Programmer implements Printable, Employee {
Line9> String print() { return("Author - Mala Gupta"); }
Line10> }

a Modify the code on line 2 to interface Printable {
b Modify the code on line 3 to public String print();
c Define the accessibility of the print methods to public on lines 6 and 9.
d Modify the code on line 8 so that it implements only the interface Printable.

Answer: c

Explanation: The methods in an interface are implicitly public. A non-abstract class
that implements an interface must implement all the methods defined in the inter-
face. While overriding or implementing the methods, the accessibility of the imple-
mented method must be public. An overriding method can’t be assigned a weaker
access privilege than public.

 Option (a) is incorrect. There are no issues with the interface Printable extending
the interface Employee and the class Author implementing both of these interfaces.

 Option (b) is incorrect. Adding the access modifier to the method print on line 3
won’t make any difference to the existing code. The methods defined in an interface
are implicitly public.

 Option (d) is incorrect. There are no issues with a class implementing two inter-
faces when one of the interfaces extends the other interface.

Q6-10. What is the output of the following code?

class Base {
 String var = "EJava";
 void printVar() {
 System.out.println(var);
 }
}
class Derived extends Base {
 String var = "Guru";
 void printVar() {
 System.out.println(var);
 }
}
class QReference {
 public static void main(String[] args) {

468 CHAPTER 6 Working with inheritance
 Base base = new Base();
 Base derived = new Derived();
 System.out.println(base.var);
 System.out.println(derived.var);
 base.printVar();
 derived.printVar();
 }
}

a EJava
EJava
EJava
Guru

b EJava
Guru
EJava
Guru

c EJava
EJava
EJava
EJava

d EJava
Guru
Guru
Guru

Answer: a

Explanation: With inheritance, the instance variables bind at compile time and the
methods bind at runtime. The following line of code refers to an object of the class
Base, using a reference variable of type Base. Hence, both of the following lines of
code print EJava:

System.out.println(base.var);
base.printVar();

But the following line of code refers to an object of the class Derived using a refer-
ence variable of type Base:

Base derived = new Derived();

Because the instance variables bind at compile time, the following line of code
accesses and prints the value of the instance variable defined in the class Base:

System.out.println(derived.var); // prints EJava

In derived.printVar(), even though the method printVar is called using a refer-
ence of type Base, the JVM is aware that the method is invoked on a Derived object
and so executes the overridden printVar method in the class Derived.

Exception handling
Exam objectives covered in this chapter What you need to know

[8.3] Describe the advantages of Exception
handling.

The need for and advantages of exception handlers.

[8.1] Differentiate among checked excep-
tions, unchecked exceptions, and Errors.

Differences and similarities between checked excep-
tions, RuntimeExceptions, and Errors.
Differences and similarities in the way these excep-
tions and errors are handled in code.

[8.2] Create a try-catch block and
determine how exceptions alter normal
program flow.

How to create a try-catch-finally block. Under-
stand the flow of code when the enclosed code
throws an exception or error.
How to create nested try-catch-finally blocks.

[8.4] Create and invoke a method that
throws an exception.

How to create methods that throw exceptions.
Rules that cover when overriding or overridden meth-
ods throw or don’t throw exceptions.
How to determine the flow of control when an
invoked method throws an exception. How to apply
this to cases when one is thrown without a try
block and from a try block (with appropriate and
insufficient exception handlers).
The difference in calling methods that throw or don’t
throw exceptions.

[8.5] Recognize common exception classes
(such as NullPointerException, Arithmetic-
Exception, ArrayIndexOutOfBounds-
Exception, ClassCastException)

How to recognize the code that can throw these
exceptions and handle them appropriately.
469

470 CHAPTER 7 Exception handling
Imagine you’re about to board an airplane to Geneva to attend an important confer-
ence. At the last minute, you learn that the flight has been cancelled because the pilot
isn’t feeling well. Fortunately, the airline quickly arranges for an alternative pilot,
allowing the flight to take off at its originally scheduled time. What a relief!

 This example illustrates how exceptional conditions can modify the initial flow of
an action and demonstrates the need to handle those conditions appropriately. In
Java, an exceptional condition (like the illness of a pilot) can affect the normal code
flow (airline flight operation). In this context, the arrangement for an alternative pilot
can be compared to an exception handler.

 Depending on the nature of the exceptional condition, you may or may not be able
to recover completely. For example, would airline management have been able to get
your flight off the ground if, instead, an earthquake had damaged much of the airport?

 In the exam, you’ll be asked similar questions with respect to Java code and excep-
tions. With that in mind, this chapter covers the following:

■ Understanding and identifying exceptions arising in code
■ Determining how exceptions alter the normal program flow
■ Understanding the need to handle exceptions separately in your code
■ Using try-catch-finally blocks to handle exceptions
■ Differentiating between checked exceptions, unchecked exceptions, and errors
■ Invoking methods that may throw exceptions
■ Recognizing common exception categories and classes

You might feel like we’re covering a lot in this chapter, but remember that we aren’t
going to delve into too much background information because I assume you already
know the definitions and uses of classes and methods, class inheritance, arrays, and
ArrayLists. Our focus in this chapter is on the exam objectives and what you need to
know about exceptions.

 In this chapter, I won’t discuss a try statement with multiple catch clauses, auto-
matic closing of resources with a try-with-resources statement, or the creation of cus-
tom exceptions. These topics are covered in the next level of Java certification (in the
OCP Java SE 8 Programmer II exam).

7.1 Exceptions in Java

In this section, you’ll learn what exceptions are in Java, why you need to handle excep-
tions separately from the main code, and all about their advantages and disadvantages.

7.1.1 A taste of exceptions

In figure 7.1, do you think the code in bold in the classes ArrayAccess, OpenFile, and
MethodAccess has anything in common?

[8.3] Describe the advantages of Exception handling

471Exceptions in Java
I’m sure, given this chapter’s title, that this question was easy to answer. Each of these
three statements is associated with throwing an exception or an error. Let’s look at
them individually:

■ Class ArrayAccess—Because the length of the array students is 3, trying to
access the element at array position 5 is an exceptional condition, as shown in
figure 7.2.

■ Class OpenFile—The constructor of the class FileInputStream throws a checked
exception, FileNotFoundException (as shown in figure 7.3). If you try to com-
pile this code without enclosing it within a try block and catching it, or marking

public class ArrayAccess {

public static void main(String args[]) {

String[] students = {"Shreya", "Joseph", null};

System.out.println(students[5].length());
}

}

public class OpenFile {

public static void main(String args[]) {

FileInputStream fis = new FileInputStream("file.txt");
}

}

public class MethodAccess {

public static void main(String args[]) {

myMethod();

}

public static void myMethod() {

System.out.println("myMethod");

myMethod();
}

}

Examine these

lines of code.

Figure 7.1 Getting a taste of exceptions in Java

public class ArrayAccess {

public static void main(String args[]) {

String[] students = {"Shreya", "Joseph", null};

System.out.println(students[5].length());
}

}

Invalid array

position

Array

students

Shreya

Joseph

null

0

1

2

Throws

ArrayIndexOutofBoundsException

at runtime

Figure 7.2 An example of ArrayIndexOutOfBoundsException

472 CHAPTER 7 Exception handling
it to be thrown by the method main (by using the throws statement), or catch-
ing this exception, your code will fail to compile. (I’ll discuss checked excep-
tions in detail in section 7.2.3.)

■ Class MethodAccess—As you can see in figure 7.4, the method myMethod calls
itself recursively, without specifying an exit condition. These recursive calls result
in a StackOverflowError at runtime.

These examples of exceptions are typical of what you’ll find on the OCA Java SE 8
Programmer I exam. Let’s move on and explore exceptions and their handling in Java
so that you can spot code that throws exceptions and handle them accordingly.

File I/O in Java
File I/O isn’t covered on this exam, but you may notice it mentioned in questions
related to exception handling. I’ll cover it quickly here just to the extent required for
this exam.

File I/O involves multiple classes that enable you to read data from and write it to a
source. This data source can be persistent storage, memory, or even network con-
nections. Data can be read and written as streams of binary or character data. Some

import java.io.*;

public class OpenFile {

public static void main(String args[]) {

FileInputStream fis = new
FileInputStream("file.txt");

}

}

Class fails

to compile

Checked exception, , thrown byFileNotFoundException

FileInputStream constructor, not “caught” by code

Figure 7.3 An example of FileNotFoundException

public class MethodAccess {

public static void main(String args[]) {

myMethod();

}

public static void myMethod() {

System.out.println("myMethod");

myMethod();

}

}

Throws

StackOverflowError at

runtime

Calls itself recursively

without an exit condition

Figure 7.4 An example of StackOverflowError

473Exceptions in Java
7.1.2 Why handle exceptions separately?

Imagine you want to post some comments on a blogging website. To make a com-
ment, you must complete the following steps:

1 Access the blogging website.
2 Log into your account.
3 Select the blog you want to comment on.
4 Post your comments.

The preceding list might seem like an ideal set of steps. In actual conditions, you may
have to verify whether you’ve completed a previous step before you can progress with
the next step. Figure 7.5 modifies the previous steps.

file I/O classes only read data from a source, some write data to a source, and some
do both.

In this chapter, you’ll work with three classes from the file I/O API: java.io.File,
java.io.FileInputStream, and java.io.FileOutputStream. File is an abstract
representation of file and directory pathnames. You can open a File and then read
from and write to it. A FileInputStream obtains input bytes using an object of the
class File. It defines the methods read to read bytes and close to close this
stream. A FileOutputStream is an output stream for writing data to a File. It
defines the methods write to write bytes and close to close this stream.

Creating an object of the class FileInputStream or FileOutputStream can throw
the checked exception java.io.FileNotFoundException. The methods read,
write, and close defined in classes FileInputStream and FileOutputStream can
throw the checked exception java.io.IOException. Note that FileNotFound-
Exception subclasses IOException.

Access the blogging website
if (website available) {

Log in to your account
if (login successful) {

Select the blog to be commented on
if (database error in accessing data) {

Try again later

}

else {

Post your comments
}

}

else {

Request for new password

}

}

else {

Try to access website again later

}

Expected code flow

lost in combating

exceptional

conditions

Figure 7.5 Expected code flow lost in combating exception conditions, without separate
exception handlers

474 CHAPTER 7 Exception handling
The modified logic (figure 7.5) requires the code to check conditions before a user
can continue with the next step. This checking of conditions at multiple places intro-
duces new steps for users and also new paths of execution of the original steps. The
difficult part of these modified paths is that they may leave users confused about the
steps involved in the tasks they’re trying to accomplish. Figure 7.6 shows how excep-
tion handling can help.

The code in figure 7.6 defines the original steps required to post comments to a blog,
along with some exception-handling code. Because the exception handlers are defined
separately, any confusion with what steps you need to accomplish to post comments
on the website has been clarified. In addition, this code doesn’t compromise on check-
ing the completion of a step before moving on to the next step, courtesy of appropriate
exception handlers.

7.1.3 Does exception handling offer any other benefits?

Apart from separating concerns between defining the regular program logic and the
exception-handling code, exceptions also can help pinpoint the offending code (code
that throws an exception), together with the method in which it is defined, by provid-
ing a stack trace of the exception or error.

NOTE A stack trace is so called because it gives you a way to trace back the
stack—the sequence of method calls that generated the error (covered in
detail in section 7.2).

Here’s an example:

public class Trace { // line 1
 public static void main(String args[]) { // line 2
 method1(); // line 3
 } // line 4
 public static void method1() { // line 5
 method2(); // line 6
 } // line 7

try {
Access the blogging website
Log in to your account
Select the blog to be commented on
Post your comments

catch (WebsiteUnavailableException e) {
// define code to execute if website not available

catch (LoginUnsuccesfulException e) {
// code to execute if login is unsuccessful

catch (DatabaseAccessException e) {
// code to execute if data for particular
// post cannot be accessed

}

Required code

flows together.

Exception-handling

code is separate

from the regular

flow of code.

Figure 7.6 Defining exception-handling code separate from the main code logic

475Categories of exceptions
 public static void method2() { // line 8
 String[] students = {"Shreya", "Joseph"}; // line 9
 System.out.println(students[5]); // line 10
 } // line 11
} // line 12

method2() tries to access the array element of students at index 5, which is an invalid
index for the array students, so the code throws the exception ArrayIndexOutOf-

BoundsException at runtime. Figure 7.7 shows the stack trace when this exception is
thrown. It includes the runtime exception message and the list of methods that were
involved in calling the code that threw the exception, starting from the entry point of
this application, the main method. You can match the line numbers specified in the
stack trace in figure 7.7 to the line numbers in the code.

NOTE The stack trace gives you a trace of the methods that were called when
the JVM encountered an unhandled exception. Stack traces are read from
the bottom up. In figure 7.7, the trace starts with the main method (the last
line of the stack trace) and continues up to the method containing the code
that threw the exception. Depending on the complexity of your code, a stack
trace can range from a few lines to hundreds of lines of code. A stack trace
works with handled and unhandled exceptions.

Let’s move on and look at more details of exception propagation and at the creation
of try-catch-finally blocks to take care of exceptions in code.

 Before diving into the details of exception handling, let’s look at the multiple fla-
vors of exceptions.

7.2 Categories of exceptions

The Java compiler and its runtime treat the exception categories in a different man-
ner. This implies that separate rules exist to define methods that throw exceptions and
code that handles them.

 In this section, you’ll learn about the categories of exceptions in Java: checked
exceptions, runtime exceptions, and errors.

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 5

at Trace.method2(Trace.java:10)
at Trace.method1(Trace.java:6)
at Trace.main(Trace.java:3)

Offending code in (line 10)method2

method2 method1called by (line 6)

method1 maincalled by (line 3)

Figure 7.7 Tracing the line of code that threw an exception at runtime

[8.1] Differentiate among checked exceptions, unchecked exceptions,
and Errors

476 CHAPTER 7 Exception handling
7.2.1 Identifying exception categories

As depicted in figure 7.8, exceptions can be divided into three main categories:

■ Checked exceptions
■ Runtime exceptions
■ Errors

NOTE Runtime exceptions and errors are collectively referred to as unchecked
exceptions.

Of these three types, checked exceptions require most of your attention when it comes
to coding and using methods. Runtime exceptions represent programming errors.
Checks should be inserted to prevent runtime exceptions from being thrown. There
are few options you can use for the errors, because they’re thrown by the JVM.

 For the OCA Java SE 8 Programmer I exam, it’s important to have a crystal-clear
understanding of these three categories of exceptions, including their similarities
and differences.

7.2.2 Class hierarchy of exception classes

Exception categories are related to each other; all extend the class java.lang.Throw-

able (as shown in the class hierarchy in figure 7.9).
 Here’s the categorization of exceptions based on their class hierarchy:

■ Checked exceptions—java.lang.Exception and its subclasses (excluding java.lang
.RuntimeException and its subclasses)

■ Runtime exceptions—java.lang.RuntimeException and its subclasses
■ Errors—java.lang.Error and its subclasses

Let’s examine each of these categories in detail.

Exceptions

Errors

Runtime

exceptions

Checked

exceptions

Unchecked exceptions = Runtime exception + Errors

Figure 7.8 Categories of exceptions:
checked exceptions, runtime exceptions,
and errors

477Categories of exceptions
7.2.3 Checked exceptions

When we talk about handling exceptions, checked exceptions take up most of our
attention.

 What is a checked exception?

■ A checked exception is an unacceptable condition foreseen by the author of a
method but outside their immediate control. For an example, FileNotFound-

Exception is a checked exception. This exception is thrown if the file that the
code is trying to access can’t be found. A method, say, readFile(), can declare
it to be thrown when it’s unable to access the target file.

■ Checked exceptions are so named because they’re checked during compila-
tion. If a method call throws a checked exception, the compiler checks and
ensures that the calling method is either handling the exception or declaring it
to be rethrown.

■ A checked exception is a subclass of the class java.lang.Exception, but it’s
not a subclass of java.lang.RuntimeException. It’s interesting to note, how-
ever, that the class java.lang.RuntimeException itself is a subclass of the class
java.lang.Exception.

EXAM TIP In this exam, you may have to select which type of reference vari-
able to use to store the object of the thrown checked exception in a handler.
To answer such questions correctly, remember that a checked exception sub-
classes java.lang.Exception but not java.lang.RuntimeException.

A checked exception is part of the API and is well documented. For a quick example,
here’s the declaration of the constructor of the class java.io.FileInputStream in the
Java API:

public FileInputStream(File file)
 throws FileNotFoundException

Checked exceptions are unacceptable conditions that a programmer foresees at the time
of writing a method. By declaring these exceptions as checked exceptions, the author of
the method makes its users aware of the exceptional conditions that can arise from its

java.lang.Throwable

java.lang.Object

java.lang.Error java.lang.Exception

java.lang.RuntimeException
Figure 7.9 Class hierarchies of
exception categories

478 CHAPTER 7 Exception handling
use. The user of a method with a checked exception must handle the exceptional condi-
tion accordingly.

7.2.4 Runtime exceptions

Although you’ll spend most of your time and energy combating checked exceptions,
the runtime exceptions will give you the most headaches. This is particularly true
when you’re preparing to work on real-life projects. Some examples of runtime excep-
tions are NullPointerException (the most common one), ArrayIndexOutOfBounds-

Exception, and ClassCastException.
 What is a runtime exception?

■ A runtime exception is a representation of a programming error. These occur
from inappropriate use of a piece of code. For example, NullPointerException

is a runtime exception that occurs when a piece of code tries to execute some
code on a variable that hasn’t been assigned an object and points to null.
Another example is ArrayIndexOutOfBoundsException, which is thrown when
a piece of code tries to access an array element at a nonexistent position.

■ A runtime exception is named so because it isn’t feasible to determine whether
a method call will throw a runtime exception until it executes.

■ A runtime exception is a subclass of java.lang.RuntimeException.
■ It’s optional to declare a runtime exception in the signature of a method. It’s

up to the person who writes the code to decide whether to declare it explicitly
or not.

EXAM TIP Together, runtime exceptions and errors are referred to as
unchecked exceptions.

7.2.5 Errors

Whether you’re preparing for this exam or your real-life projects, you need to know
when the JVM throws errors. These errors are considered to be serious exceptional
conditions and they can’t be directly controlled by your code.

 What is an error?

■ An error is a serious exception thrown by the JVM as a result of an error in the
environment state that processes your code. For example, NoClassDefFound-

Error is an error thrown by the JVM when it’s unable to locate the .class file that
it’s supposed to run. StackOverflowError is another error thrown by the JVM
when the size of the memory required by the stack of a Java program is greater
than what the JRE has offered for the Java application. This error might also
occur as a result of infinite or highly nested loops.

■ An error is a subclass of class java.lang.Error.
■ An error need not be a part of a method signature.
■ An error can be caught by an exception handler, but it shouldn’t be.

Let’s move on to creating methods that throw exceptions.

479Creating a method that throws an exception
7.3 Creating a method that throws an exception

In this section, you’ll explore the need to create methods that throw exceptions.
You’ll also work with the throw and throws keywords to define methods that throw
exceptions.

 Why do you need methods that throw exceptions? Imagine that you’re assigned
the task of finding a specific book and then reading and explaining its contents to a
class of students. The required sequence looks like the following:

1 Get the specified book.
2 Read aloud its contents.
3 Explain the contents to a class of students.

But what happens if you can’t find the specified book? You can’t proceed with the rest
of the actions without it, so you need to report back to the person who assigned the
task to you. This unexpected event (the missing book) prevents you from completing
your task. By reporting it, you want the originator of this request to take corrective or
alternate steps.

 Let’s code the preceding task as the teachClass method, as shown in figure 7.10,
which uses the throw statement and throws clause. This example code is for demon-
stration purposes only, because it uses the BookNotFoundException exception and the
locateBook(), readBook(), and explainContents() methods, which aren’t defined.

 The code in figure 7.10 is simple to follow. On execution of the code throw new
BookNotFoundException(), the execution of teachClass() halts. The JVM creates an
instance of BookNotFoundException and sends it off to the caller of teachClass() so
alternate arrangements can be made.

[8.4] Create and invoke a method that throws an exception

void teachClass() throws BookNotFoundException {

 boolean bookFound = locateBook();

 if (!bookFound)
 throw new BookNotFoundException();
 else {
 readBook();
 explainContents();
 }
}

Keyword

throws

Keyword

throw

Figure 7.10 Using throw and throws to create methods that can throw
exceptions

480 CHAPTER 7 Exception handling

nd,

of
eption
w
The throw statement is used to throw an instance of BookNotFoundException. The
throws statement is used in the declaration of the teachClass() method to signal
that it can throw BookNotFoundException.

 Why does a method choose to throw an exception as opposed to handling it itself?
It’s a contract between the calling method and the called method. Referring to the
teachClass() method shown in figure 7.9, the caller of teachClass would like to be
informed if teachClass() is unable to find the specified book. The teachClass()

method doesn’t handle BookNotFoundException because its responsibilities don’t
include working around a missing book.

 The preceding example helps identify a situation when you’d want a method to
throw an exception, rather than handling it itself. It shows you how to use and com-
pare the statements throw and throws—to throw exceptions and to signal that a
method might throw an exception. The example also shows that a calling method can
define alternate code, when the called method doesn’t complete successfully and
throws an exception. Apart from testing this logic, the exam will test you on how to
create and use methods that throw checked or unchecked exceptions and errors,
along with several other rules.

7.3.1 Create a method that throws a checked exception

Let’s create a simple method that doesn’t handle the checked exception thrown by it,
by using the statements throw and throws. The class DemoThrowsException defines
the readFile() method, which includes a throws clause in its method declaration.
The actual throwing of an exception is accomplished by the throw statement:

import java.io.FileNotFoundException;
class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 boolean found = findFile(file);
 if (!found)
 throw new FileNotFoundException("Missing file");
 else {
 //code to read file
 }
 }
 boolean findFile(String file) {
 //code to return true if file can be located
 }
}

A method can have multiple comma-separated class names of exceptions in its
throws clause. Including runtime exceptions or errors in the method declaration isn’t
required. Including them in the documentation is the preferred way to mention
them. A method can still throw runtime exceptions or errors, without including them
in its throws clause.

The throws statement indicates the
method can throw FileNotFoundException

or one of its subclasses

If file can’t be fou
code creates and
throws instance
FileNotFoundExc
by using the thro
statement

481Creating a method that throws an exception

n,

EXAM TIP Syntactically, you don’t always need a combination of throw and
throws statements to create a method that throws an exception (checked or
unchecked). You can replace the throw statement with a method that throws
an exception.

7.3.2 Handle-or-declare rule

To use a method that throws a checked exception, you must do one of the following:

■ Handle the exception—Enclose the code within a try block and catch the thrown
exception.

■ Declare it to be thrown—Declare the exception to be thrown by using the throws

clause.
■ Handle and declare—Implement both of the preceding options together.

EXAM TIP The rule of either handling or declaring an exception is also
referred to as the handle-or-declare rule. To use a method that throws a checked
exception, you must either handle the exception or declare it to be thrown. But
this rule applies only to checked exceptions and not to unchecked exceptions.

7.3.3 Creating a method that throws runtime exceptions or errors

When creating a method that throws a runtime exception or error, including the
exception or error name in the throws clause isn’t required. A method that throws a
runtime exception or error isn’t subject to the handle-or-declare rule.

 Let’s see this concept in action by modifying the preceding example so the read-
File() method throws NullPointerException (a runtime exception) when a null
value is passed to it (code changes are shown in bold in this example and throughout
the rest of the chapter):

import java.io.FileNotFoundException;
class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 if (file == null)
 throw new NullPointerException();
 boolean found = findFile(file);
 if (!found)
 throw new FileNotFoundException("Missing file");
 else {
 //code to read file
 }
 }
 boolean findFile(String file) {
 //code to return true if file can be located
 }
}

The exam might trick you by including the names of runtime exceptions and errors in
one method’s declaration and leaving them out in another. (You can include the

The throws clause indicates that this
method can throw FileNotFoundException

Code throws
NullPointerExceptio
but it’s not included
in the throws clause

482 CHAPTER 7 Exception handling
name of unchecked exceptions in the throws clause, but you don’t have to.) Assum-
ing that the rest of the code remains the same, the following method declaration
is correct:

public void readFile(String file)
 throws NullPointerException, FileNotFoundException {
 //rest of the code remains same
}

EXAM TIP Adding runtime exceptions or errors to a method’s declaration
isn’t required. A method can throw a runtime exception or error irrespective
of whether its name is included in its throws clause.

7.3.4 A method can declare to throw all types of exceptions,
even if it doesn’t

In the following example, the class ThrowExceptions defines multiple methods,
which declare to throw different exception types. The class ThrowExceptions com-
piles successfully, even though its methods don’t include the code that might throw
these exceptions:

class ThrowExceptions {
 void method1() throws Error {}
 void method2() throws Exception {}
 void method3() throws Throwable {}
 void method4() throws RuntimeException {}
 void method5() throws FileNotFoundException {}
}

Although a try block can define a handler for unchecked exceptions not thrown by
it, it can’t do so for checked exceptions (other than Exception):

class HandleExceptions {
 void method6() {
 try {}
 catch (Error e) {}
 }
 void method7() {
 try {}
 catch (Exception e) {}
 }
 void method8() {
 try {}
 catch (Throwable e) {}
 }
 void method9() {
 try {}
 catch (RuntimeException e) {}
 }

Though not required, including runtime
exceptions in the throws clause is valid.

483What happens when an exception is thrown?
 void method10() {
 try {}
 catch (FileNotFoundException e) {}
 }
}

In the preceding code, method6(), method7(), method8(), and method9() compile
even though their try block doesn’t define code to throw the exception being han-
dled by its catch block. But method10() won’t compile.

EXAM TIP A method can declare to throw any type of exception, checked or
unchecked, even if it doesn’t do so. But a try block can’t define a catch
block for a checked exception (other than Exception) if the try block
doesn’t throw that checked exception or use a method that declares to throw
that checked exception.

In the next section, we’ll detail what happens when an exception is thrown and how to
handle that.

7.4 What happens when an exception is thrown?

In this section, we’ll uncover what happens when an exception is thrown in Java. We’ll
work through several examples to understand how the normal flow of code is dis-
rupted when an exception is thrown. We’ll also define an alternative program flow for
code that may throw exceptions using try-catch-finally blocks.

 As with all other Java objects, an exception is an object. All types of exceptions sub-
class java.lang.Throwable. When a piece of code hits an obstacle in the form of an
exceptional condition, it creates an object of the class java.lang.Throwable (at run-
time, an object of the most appropriate subtype is created), initializes it with the nec-
essary information (such as its type, an optional textual description, and the offending
program’s state), and hands it over to the JVM. The JVM blows a siren in the form of
this exception and looks for an appropriate code block that can “handle” this excep-
tion. The JVM keeps account of all the methods that were called when it hit the
offending code, so to find an appropriate exception handler it looks through all the
tracked method calls.

 Reexamine the class Trace and the ArrayIndexOutOfBoundsException thrown by
it, as mentioned in section 7.1.3. Figure 7.11 illustrates the propagation of the excep-
tion ArrayIndexOutOfBoundsException thrown by method2 through all the methods.

Won’t
compile

[8.2] Create a try-catch block and determine how exceptions alter normal
program flow

[8.4] Create and invoke a method that throws an exception

484 CHAPTER 7 Exception handling
To understand how an exception propagates through method calls, it’s important
to understand how method calls work. An application starts its execution with the
method main, and main may call other methods. When main calls another method,
the called method should complete its execution before main can complete its own
execution.

Stack
pointer Start execution

of class Tracemain()
b

Stack
pointer

ArrayIndexOutOfBoundsException
not handled by main()

Halts execution of class

main()
g

Stack
pointer

method1()

main()

c

Stack
pointer

method1()

method2()

main()

d

main() method1()calls

Stack
pointer

method1()

main()

f
ArrayIndexOutOfBoundsException not

handled by method1()

Hands it over to main()

method1() method2()calls

Stack
pointer

method1()

method2()

main()

e Throws ArrayIndexOutOfBoundsException

Not handled by itself

Hands it over to method1()

Figure 7.11 Propagation of an exception through multiple method calls

485What happens when an exception is thrown?
 An operating system (OS) keeps track of the code that it needs to execute using a
stack. A stack is a type of list in which the items that are added last to it are the first
ones to be taken off it—last in, first out. This stack uses a stack pointer to point to the
instructions that the OS should execute.

 Now that you have this basic information under your belt, here’s a step-by-step dis-
cussion of exception propagation, as shown in figure 7.11:

1 When the method main starts its execution, its instructions are pushed onto
the stack.

2 The method main calls the method method1, and instructions for method1 are
pushed onto the stack.

3 method1 calls method2; instructions for method2 are pushed onto the stack.
4 method2 throws an exception: ArrayIndexOutOfBoundsException. Because

method2 doesn’t handle this exception itself, it’s passed to the method that
called it—method1.

5 method1 doesn’t define any exception handler for ArrayIndexOutOfBounds-

Exception, so it hands this exception over to its calling method—main.
6 There are no exception handlers for ArrayIndexOutOfBoundsException in main.

Because there are no further methods that handle ArrayIndexOutOfBounds-

Exception, execution of the class Trace stops.

You can use try-catch-finally blocks to define code to execute when an exception is
thrown, as discussed in the next section.

7.4.1 Creating try-catch-finally blocks

When you work with exception handlers, you often hear the terms try, catch, and
finally. Before you start to work with these concepts, I’ll answer three simple questions:

■ Try what?
First, you try to execute your code. If it doesn’t execute as planned, you handle
the exceptional conditions using a catch block.

■ Catch what?
You catch the exceptional event arising from the code enclosed within the try

block and handle the event by defining appropriate exception handlers.
■ What does finally do?

Finally, you execute a set of code, in all conditions, regardless of whether the
code in the try block throws any exceptions.

Let’s compare a try-catch-finally block with a real-life example. Imagine you’re going
river rafting on your vacation. Your instructor informs you that while rafting, you might
fall off the raft into the river while crossing the rapids. In such a condition, you should try
to use your oar or the rope thrown toward you to get back into the raft. You might also
drop your oar into the river while rowing your raft. In such a condition, you should not
panic and should stay seated. Whatever happens, you’re paying for this adventure sport.

486 CHAPTER 7 Exception handling

id

tion

Raft
 Compare this to Java code:

■ You can compare river rafting to a class whose methods might throw exceptions.
■ Crossing the rapids and rowing a raft are methods that might throw exceptions.
■ Falling off the raft and dropping your oar are the exceptions.
■ The steps for getting back into the raft and not panicking are the exception

handlers—code that executes when an exception arises.
■ The fact that you pay for the sport, whether you stay in the boat or not, can be

compared to the finally block.

Let’s implement the previous real-life examples by defining appropriate classes and
methods. To start with, here are two barebones exception classes—FallInRiver-

Exception and DropOarException—that can be thrown by methods in the class
RiverRafting:

class FallInRiverException extends Exception {}
class DropOarException extends Exception {}

NOTE You can create an exception of your own—a custom exception—by
extending the class Exception (or any of its subclasses). Although the cre-
ation of custom classes is not on this exam, you may see questions in the exam
that create and use custom exceptions. Perhaps these are included because
hardly any checked exceptions from the Java API are on this exam. Coding
questions on the exam may create and use custom exceptions.

Following is a definition of class RiverRafting. Its methods crossRapid and rowRaft
may throw exceptions of type FallInRiverException and DropOarException:

class RiverRafting {
 void crossRapid(int degree) throws FallInRiverException {
 System.out.println("Cross Rapid");
 if (degree > 10) throw new FallInRiverException();
 }
 void rowRaft(String state) throws DropOarException {
 System.out.println("Row Raft");
 if (state.equals("nervous")) throw new DropOarException();
 }
}

The method crossRapid at B throws the exception FallInRiverException. When
you call this method, you should define an exception handler for this exception. Sim-
ilarly, the method rowRaft at c throws the exception DropOarException. When you
call this method, you should define an exception handler for this exception.

 When you execute methods that may throw checked exceptions (exceptions that
don’t extend the class RuntimeException), enclose the code within a try block.
catch blocks that follow a try block should handle all the checked exceptions
thrown by the code enclosed in the try block (checked exceptions are covered in
detail in section 7.2.3).

Method crossRap
may throw
FallInRiverExcepb

Method row
may throw
DropOar-
Exceptionc

487What happens when an exception is thrown?
 The code shown in figure 7.12 uses the class RiverRafting as defined previously
and depicts the flow of control when the code on line 3 (riverRafting.cross-

Rapid(11);) throws an exception of type FallInRiverException.

The example in figure 7.12 shows how exceptions alter the normal program flow. If
the code on line 3 throws an exception (FallInRiverException), the code on lines 4
and 5 won’t execute. In this case, control is transferred to the code block that handles
FallInRiverException. Then control is transferred to the finally block. After the
execution of the finally block, the code that follows the try-catch-finally block is
executed. The output of the previous code is as follows:

Cross Rapid
Get back in the raft
Pay for the sport
After the try block

If you modify the previous example code as follows, no exceptions are thrown by the
code on line 3 (modifications in bold):

class TestRiverRafting {
 public static void main(String args[]) {
 RiverRafting riverRafting = new RiverRafting();
 try {
 riverRafting.crossRapid(7);
 riverRafting.rowRaft("happy");
 System.out.println("Enjoy River Rafting");
 } catch (FallInRiverException e1) {
 System.out.println("Get back in the raft");
 } catch (DropOarException e2) {
 System.out.println("Do not panic");
 } finally {

1> RiverRafting riverRafting = new RiverRafting();
2> try {
3> riverRafting.crossRapid(11);
4> riverRafting.rowRaft("happy");
5> System.out.println("Enjoy River Rafting");
6> }
7> catch (FallingRiverException e1) {
8> System.out.println("Get back in the raft");
9> }
10> catch (DropOarException e2) {
11> System.out.println("Do not panic");
12> }
13> finally {
14> System.out.println("Pay for the sport");
15> }
16> System.out.println("After the try block");

1. Execute code on line 3.

Code on lines 4 and 5 won't
execute if line 3 throws an
exception.

2. Combat exception thrown by

code on line 3. Execute exception

handler for

FallInRiverException.

3. block alwaysfinally
executes, whether line 3 throws any

exception or not.

4. Control transfers to the

statement following the

try catch finally- - block.

Figure 7.12 Modified flow of control when an exception is thrown

No exceptions
thrown by this
line of code

488 CHAPTER 7 Exception handling
 System.out.println("Pay for the sport");
 }
 System.out.println("After the try block");
 }
}

The output of the previous code is as follows:

Cross Rapid
Row Raft
Enjoy River Rafting
Pay for the sport
After the try block

What do you think the output of the code would be if the method rowRaft threw an
exception? Try it for yourself!

EXAM TIP The finally block executes regardless of whether the try block
throws an exception.

SINGLE TRY BLOCK, MULTIPLE CATCH BLOCKS, AND A FINALLY BLOCK

For a try block, you can define multiple catch blocks but only a single finally block.
Multiple catch blocks are used to handle different types of exceptions. A finally

block is used to define cleanup code—code that closes and releases resources, such as
file handlers and database or network connections.

 When it comes to code, it makes sense to verify a concept by watching it in action.
Let’s work through a simple example so that you can better understand how to use the
try-catch-finally block.

 In the following listing, the constructor of the class FileInputStream may throw a
FileNotFoundException, and calling the method read on an object of FileInput-

Stream, such as fis, may throw an IOException.

import java.io.*;
public class MultipleExceptions {
 public static void main(String args[]) {
 FileInputStream fis = null;
 try {
 fis = new FileInputStream("file.txt");
 System.out.println("File Opened");
 fis.read();
 System.out.println("Read File ");
 } catch (FileNotFoundException fnfe) {
 System.out.println("File not found");
 } catch (IOException ioe) {
 System.out.println("I/O Exception");
 } finally {
 System.out.println("finally");
 //code to close fis
 }

Listing 7.1 Code flow with multiple catch statements and a finally block

May throw
FileNotFoundException

May throw
IOException

Positioning of
catch and
finally blocks
can’t be
interchanged

489What happens when an exception is thrown?
 System.out.println("Next task..");
 }
}

Table 7.1 compares the code output that occurs depending on whether the system is
able or unable to open (and read) file.txt.

In either of the cases described in table 7.1, the finally block executes, and after its
execution, control is transferred to the statement following the try-catch block.
Here’s the output of the class MultipleExceptions if none of its code throws an
exception:

File Opened
Read File
finally
Next task..

It’s time now to attempt this chapter’s first Twist in the Tale exercise. When you exe-
cute the code in this exercise, you’ll understand what happens when you change the
placement of the exception handlers (answers are in the appendix).

Let’s modify the placement of the finally block in listing 7.1 and see what happens.
 Given that file.txt doesn’t exist on your system, what is the output of the follow-

ing code?

import java.io.*;
public class MultipleExceptions {
 public static void main(String args[]) {
 FileInputStream fis = null;
 try {
 fis = new FileInputStream("file.txt");
 System.out.println("File Opened");
 fis.read();
 System.out.println("Read File");
 } finally {
 System.out.println("finally");

Table 7.1 Output of code in listing 7.1 when the system is unable to open file.txt and when the system
is able to open file.txt but unable to read it

Output if the system is unable
to open file.txt

Output if the system is able to open file.txt but unable
to read it

File not found
finally
Next task..

File Opened
File Closing Exception
finally
Next task..

Twist in the Tale 7.1

490 CHAPTER 7 Exception handling
 } catch (FileNotFoundException fnfe) {
 System.out.println("File not found");
 } catch (IOException ioe) {
 System.out.println("File Closing Exception");
 }
 System.out.println("Next task..");
 }
}

a The code prints

File not found
finally
Next task..

b The code prints

File Opened
File Closing Exception
finally
Next task..

c The code prints File not found.
d The code fails to compile.

7.4.2 Using a method that throws a checked exception

To use a method that throws a checked exception, you must follow the handle-or-declare
rule (section 7.3.2). In the following code, the method main in the class TestRiver-

Rafting won’t compile because it doesn’t handle or declare the checked exception
FallInRiverException declared to be thrown by the method crossRapid:

class FallInRiverException extends Exception {}

class RiverRafting {
 void crossRapid(int degree) throws FallInRiverException {
 System.out.println("Cross Rapid");
 if (degree > 10) throw new FallInRiverException();
 }
}

class TestRiverRafting {
 public static void main(String args[]) {
 RiverRafting riverRafting = new RiverRafting();
 riverRafting.crossRapid(9);
 }
}

FallInRiverException is
a checked exception

crossRapid
declares
to throw
FallInRiver-
Exception

Won’t compile; main neither handles
nor declares FallInRiverException

491What happens when an exception is thrown?

y-

The main method in the classes Handle, Declare, and HandleAndDeclare compiles
successfully because they follow the handle-or-declare rule:

class Handle {
 public static void main(String args[]) {
 RiverRafting riverRafting = new RiverRafting();
 try {
 riverRafting.crossRapid(9);
 } catch (FallInRiverException e) {
 System.out.println("Exception : " + e);
 }
 }
}
class Declare {
 public static void main(String args[]) throws FallInRiverException {
 RiverRafting riverRafting = new RiverRafting();
 riverRafting.crossRapid(9);
 }
}
class HandleAndDeclare {
 public static void main(String args[]) throws FallInRiverException {
 RiverRafting riverRafting = new RiverRafting();
 try {
 riverRafting.crossRapid(9);
 } catch (FallInRiverException e) {
 System.out.println("Exception : " + e);
 }
 }
}

EXAM TIP To use a method that throws a checked exception, you must follow the
handle-or-declare rule.

7.4.3 Using a method that throws a runtime exception

If a method throws a runtime exception, the exception name isn’t required to be
included in the method’s declaration (though it is allowed). To use a method that
throws a runtime exception, you don’t need to follow the declare-or-handle rule.
Here’s an example:

class FeelingHungryException extends RuntimeException {}

class Trip {
 void goTrekking(LocalTime startTime) {
 // compare time now and start time
 // throw FeelingHungryException if difference is > 2 hrs
 int hrs = LocalTime.now().getHour() - startTime.getHour();
 if (hrs >= 2) throw new FeelingHungryException();
 }
}

class TestTrip {
 public static void main(String args[]) {
 Trip trip = new Trip();

FeelingHungry-
Exception is a
runtime exception

goTrekking
throws
FeelingHungr
Exception
(without
including it
in the method
signature)

492 CHAPTER 7 Exception handling
 trip.goTrekking(LocalTime.of(11,24));
 }
}

Here’s another example. Examine the following code, which throws a runtime excep-
tion (ArrayIndexOutOfBoundsException):

public class InvalidArrayAccess {
 public static void main(String args[]) {
 String[] students = {"Shreya", "Joseph"};
 System.out.println(students[5]);
 System.out.println("All seems to be well");
 }
}

The preceding code doesn’t print output from System.out.println("All seems to
be well"). The code execution halts with the exception thrown by the code that tries
to output the value of students[5].

 It’s possible to create an exception handler for the exception ArrayIndexOutOf-

BoundsException thrown by the previous example code, as follows:

public class InvalidArrayAccess {
 public static void main(String args[]) {
 String[] students = {"Shreya", "Joseph"};
 try {
 System.out.println(students[5]);
 } catch (ArrayIndexOutOfBoundsException e){
 System.out.println("Exception");
 }
 System.out.println("All seems to be well");
 }
}

The output of the previous code is as follows:

Exception
All seems to be well

In the same way you can catch a checked exception, you can also catch a Runtime-

Exception. On real projects, the preferred approach is to avoid runtime exceptions
by including appropriate checks. For example, in the previous code, you can prevent
ArrayIndexOutOfBoundsException from being thrown by using appropriate checks:

public class InvalidArrayAccess {
 public static void main(String args[]) {
 String[] students = {"Shreya", "Joseph"};
 int pos = 10;
 if (pos > 0 && pos < students.length)
 System.out.println(students[pos]);
 }
}

Compiles successfully even though
main neither handles nor declares
FeelingHungryException

students[5] tries to access
nonexistent array position;
exception thrown:
ArrayIndexOutOfBounds-
Exception

This line won’t execute
because pos is greater than
length of array students

493What happens when an exception is thrown?
7.4.4 Using a method that throws an error

Errors are serious exceptions thrown by the JVM, such as when it runs out of stack
memory or can’t find the definition of a class. You shouldn’t define code to handle
errors. You should instead let the JVM handle the errors.

 In the remainder of this section, we’ll look at some frequently asked questions on
try-catch-finally blocks that often overwhelm certification aspirants.

7.4.5 Will a finally block execute even if the catch block defines a
return statement?

Imagine the following scenario: a guy promises to buy diamonds for his girlfriend and
treat her to coffee. The girl inquires about what will happen if he meets with an excep-
tional condition during the diamond purchase, such as inadequate funds. To the girl’s
disappointment, the boy replies that he’ll still treat her to coffee.

 You can compare the try block to the purchase of diamonds and the finally

block to the coffee treat. The girl gets the coffee treat regardless of whether the boy
successfully purchases the diamonds. Figure 7.13 shows this conversation.

It’s interesting to note that a finally block will execute even if the code in the try

block or any of the catch blocks defines a return statement. Examine the code in fig-
ure 7.14 and its output, and note when the class ReturnFromCatchBlock is unable to
open file.txt.

 As you can see from figure 7.14’s code output, the flow of control doesn’t return to
the method main when the return statement executes in the catch handler of File-

NotFoundException. It continues with the execution of the finally block before con-
trol is transferred back to the main method. Note that control isn’t transferred to the
println statement "Next task.. " that follows the try block because the return

statement is encountered in the catch block, as mentioned previously.

Figure 7.13 A little humor to help you remember that a finally block executes regardless of
whether an exception is thrown

494 CHAPTER 7 Exception handling
Going back to the example of the guy and his girlfriend, a few tragic conditions, such
as an earthquake or tornado, can cancel the coffee treat. Similarly, there are a few sce-
narios in Java in which a finally block does not execute:

■ Application termination—The try or the catch block executes System.exit,
which immediately terminates the application.

■ Fatal errors—A crash of the JVM or the OS occurs.

In the exam, you may be questioned on the correct order of two or more exception
handlers. Does order matter? See for yourself in section 7.4.9.

7.4.6 What happens if both a catch and a finally block define return
statements?

In the previous section, you saw that the finally block executes even if a catch block
defines a return statement. For a method that defines a try-catch-finally block,
what is returned to the calling method if both catch and finally return a value?

 Here’s an example:

class MultipleReturn {
 int getInt() {
 try {
 String[] students = {"Harry", "Paul"};
 System.out.println(students[5]);
 } catch (Exception e) {
 return 10;
 } finally {
 return 20;
 }
 }

import java.io.*;
public class ReturnFromCatchBlock {

public static void main(String args[]) {
openFile();

}
private static void openFile() {

FileInputStream fis = null;
try {

fis = new FileInputStream("file.txt");
}
catch (FileNotFoundException fnfe) {

System.out.println("file not found");
return;

}
finally {

System.out.println("finally");
}
System.out.println("Next task..");

}
}

The return
statement does not

return the control to

the methodmain
before execution of

the blockfinally
completes. Code output:

file not found
finally

Figure 7.14 The finally block executes even if an exception handler defines a return
statement.

Throws
ArrayIndexOutOfBoundsException

Returns value 10
from catch block

Returns value 20
from finally block

495What happens when an exception is thrown?

n

0
ck
 public static void main(String args[]) {
 MultipleReturn var = new MultipleReturn();
 System.out.println(var.getInt());
 }
}

The output of the preceding code is

20

If both the catch and finally blocks define return statements, the calling method
will receive a value from the finally block.

7.4.7 What happens if a finally block modifies the value returned from
a catch block?

If a catch block returns a primitive data type, the finally block can’t modify the
value being returned by it. Here’s an example:

class MultipleReturn {
 int getInt() {
 int returnVal = 10;
 try {
 String[] students = {"Harry", "Paul"};
 System.out.println(students[5]);
 } catch (Exception e) {
 System.out.println("About to return :" + returnVal);
 return returnVal;
 } finally {
 returnVal += 10;
 System.out.println("Return value is now :" + returnVal);
 }
 return returnVal;
 }
 public static void main(String args[]) {
 MultipleReturn var = new MultipleReturn();
 System.out.println("In Main:" + var.getInt());
 }
}

The output of the preceding code is as follows:

About to return :10
Return value is now :20
In Main:10

Even though the finally block adds 10 to the variable returnVal, this modified value
is not returned to the method main. Control in the catch block copies the value of
returnVal to be returned before it executes the finally block, so the returned value
is not modified when finally executes.

Throws
ArrayIndexOutOfBoundsExceptio

Returns value 1
from catch blo

Modifies value
of variable to

be returned in
finally block

496 CHAPTER 7 Exception handling
 Will the preceding code behave in a similar manner if the method returns an
object? See for yourself:

class MultipleReturn {
 StringBuilder getStringBuilder() {
 StringBuilder returnVal = new StringBuilder("10");
 try {
 String[] students = {"Harry", "Paul"};
 System.out.println(students[5]);
 } catch (Exception e) {
 System.out.println("About to return :" + returnVal);
 return returnVal;
 } finally {
 returnVal.append("10");
 System.out.println("Return value is now :" + returnVal);
 }
 return returnVal;
 }
 public static void main(String args[]) {
 MultipleReturn var = new MultipleReturn();
 System.out.println("In Main:" + var.getStringBuilder());
 }
}

This is the output of the preceding code:

About to return :10
Return value is now :1010
In Main:1010

In this case, the catch block returns an object of the class StringBuilder. When the
finally block executes, it can access the value of the object referred to by the variable
returnVal and can modify it. The modified value is returned to the method main.
Remember that primitives are passed by value and objects are passed by reference.

EXAM TIP Watch out for code that returns a value from the catch block and
modifies it in the finally block. If a catch block returns a primitive data
type, the finally block can’t modify the value being returned by it. If a catch
block returns an object, the finally block can modify the state of the object
being returned by it.

7.4.8 Can a try block be followed only by a finally block?

Syntactically, you can define a try block that might only be followed by a finally block:

class NoCatchOnlyFinally {
 public static void main(String args[]) {
 String name = null;
 try {
 System.out.println("Try block : open resource 1");
 System.out.println("Try block : open resource 2");

Throws
ArrayIndexOutOfBoundsException

Returns
StringBuilder
object value
from catch

block

Modifies value
of variable to

be returned in
finally block

497What happens when an exception is thrown?
 System.out.println("in try : " + name.length());
 System.out.println("Try block : close resources");
 } finally {
 System.out.println("finally : close resources");
 }
 }
}

Here’s the output of the preceding code:

Try block : open resource 1
Try block : open resource 2
finally : close resources
Exception in thread "main" java.lang.NullPointerException
 at NoCatchOnlyFinally.main(NoCatchOnlyFinally.java:7)

Because main() in the preceding code throws an unchecked exception, NullPointer-

Exception, it compiles successfully. But if the code enclosed within a try block declares
to throw a checked exception, either it must be followed by a catch block, or the
method in which it is defined must declare to throw it.

7.4.9 Does the order of the exceptions caught in the catch
blocks matter?

Order doesn’t matter for unrelated classes. But it does matter for related classes shar-
ing an IS-A relationship because catch blocks are checked from the top down to find
a suitable one to handle a given exception.

 In the latter case, if you try to catch an exception of the base class before an excep-
tion of the derived class, your code will fail to compile. This behavior may seem
bizarre, but there’s a valid reason for it. As you know, an object of a derived class can
be assigned to a variable of a base class. Similarly, if you try to catch an exception of a
base class before its derived class, the exception handler for the derived class can
never be reached, so the code will fail to compile.

 Examine the code in figure 7.15, which has been modified by defining the catch
block for IOException before the catch block for FileNotFoundException.

 Figure 7.16 depicts an interesting way to remember that order matters. As you
know, a thrown exception looks for an appropriate exception handler, starting with
the first handler and working toward the last. Let’s compare a thrown exception to a
tiger and the exception handlers to doors that allow certain types of creatures to
enter. Like a thrown exception, the tiger should start with the first door and move on
to the rest of the doors until a match is found.

 The tiger starts with the first door, which allows all animals to enter. Voilà! The
tiger enters the first door and never reaches the second door, which is meant specifi-
cally for tigers. In Java, when such a condition arises, the Java compiler refuses to com-
pile the code because the later exception handler code will never execute. Java
doesn’t compile code if it contains unreachable statements.

498 CHAPTER 7 Exception handling
RULES TO REMEMBER

Here are a few more rules you’ll need to answer the questions in the OCA Java SE 8
Programmer I exam:

■ A try block may be followed by multiple catch blocks, and the catch blocks
may be followed by a single finally block.

■ A try block may be followed by either a catch or a finally block or both. But
a finally block alone won’t suffice if code in the try block throws a checked
exception. In this case, you need to catch the checked exception or declare it to
be thrown by your method. Otherwise, your code won’t compile.

■ The try, catch, and finally blocks can’t exist independently.
■ The finally block can’t appear before a catch block.
■ A finally block always executes, regardless of whether the code throws an

exception.

import java.io.*;
public class CaseBaseExceptionBeforeDerived {

public static void main(String args[]) {
FileInputStream fis = null;
try {

fis = new FileInputStream("file.txt");
fis.close();

}
catch () {IOException ioe

System.out.println("IOException");
}
catch () {FileNotFoundException fnfe

System.out.println("file not found");
}

}
}

Positions interchanged

Class fails to compile

Exception class hierarchy

java.lang.Throwable

java.lang.Exception

java.io.IOException

java.io.FileNotFoundException

Figure 7.15 The order of placement of exception handlers is important.

b

Door 1

Animals only
Door 2

Tigers only

c

Figure 7.16 A visual way to remember
that the order matters for exceptions
caught in the catch blocks

499What happens when an exception is thrown?
7.4.10 Can I rethrow an exception or the error I catch?

You can do whatever you want with an exception. Rethrow it, pass it on to a method,
assign it to another variable, upload it to a server, send it in an SMS, and so on. Exam-
ine the following code:

import java.io.*;
public class ReThrowException {
 FileInputStream soccer;
 public void myMethod() {
 try {
 soccer = new FileInputStream("soccer.txt");
 } catch (FileNotFoundException fnfe) {
 throw fnfe;
 }
 }
}

Oops! The previous code fails to compile, and you get the following compilation
error message:

ReThrowException.java:9: unreported exception java.io.FileNotFoundException;
must be caught or declared to be thrown

 throw fnfe;
 ^

When you rethrow a checked exception, it’s treated like a regular thrown checked
exception, meaning that all the rules of handling a checked exception apply to it. In the
previous example, the code neither caught the rethrown FileNotFoundException

exception nor declared that the method myMethod would throw it using the throw

clause. Hence, the code failed to compile.
 The following (modified) code declares that the method myMethod throws a File-

NotFoundException, and it compiles successfully:

import java.io.*;
public class ReThrowException {
 FileInputStream soccer;
 public void myMethod() throws FileNotFoundException {
 try {
 soccer = new FileInputStream("soccer.txt");
 } catch (FileNotFoundException fnfe) {
 throw fnfe;
 }
 }
}

Another interesting point to note is that the previous code doesn’t apply to a Runtime-

Exception. You can rethrow a runtime exception, but you’re not required to catch it,
nor must you modify your method signature to include the throws clause. The simple
reason for this rule is that RuntimeExceptions aren’t checked exceptions, and they

Use throw keyword to
throw exception caught
in exception handler

Throws
FileNotFoundException

Exception
rethrown

500 CHAPTER 7 Exception handling
may not be caught or declared to be thrown by your code (exception categories are
discussed in detail in section 7.2).

7.4.11 Can I declare my methods to throw a checked exception instead
of handling it?

If a method doesn’t wish to handle the checked exceptions thrown by a method it
calls, it can declare to throw these exceptions using the throws clause in its own
method declaration. Examine the following example, in which the method myMethod
doesn’t include an exception handler; instead, it rethrows the IOException thrown by
a constructor of the class FileInputStream using the throws clause in its declaration:

import java.io.*;
public class ReThrowException2 {
 public void myMethod() throws IOException {
 FileInputStream soccer = new FileInputStream("soccer.txt");
 soccer.close();
 }
}

Any method that calls myMethod must now either catch the exception IOException or
declare that it will be rethrown in its method signature.

7.4.12 I can create nested loops, so can I create nested try-catch
blocks too?

The simple answer is yes, you can define a try-catch-finally block within another
try-catch-finally block. Theoretically, the levels of nesting for the try-catch-
finally blocks have no limits.

 In the following example, another set of try-catch blocks is defined in the try and
finally blocks of the outer try block:

import java.io.*;
public class NestedTryCatch {
 FileInputStream players, coach;
 public void myMethod() {
 try {
 players = new FileInputStream("players.txt");
 try {
 coach = new FileInputStream("coach.txt");
 //.. rest of the code
 } catch (FileNotFoundException e) {
 System.out.println("coach.txt not found");
 }
 //.. rest of the code
 }
 catch (FileNotFoundException fnfe) {
 System.out.println("players.txt not found");
 }
 finally {

myMethod throws
checked exception

Outer try
block

Inner try
block

Outer
catch
block

Outer finally
block

501What happens when an exception is thrown?
 try {
 players.close();
 coach.close();
 } catch (IOException ioe) {
 System.out.println(ioe);
 }
 }
 }
}

Now comes another Twist in the Tale exercise that’ll test your understanding of the
exceptions thrown and caught by nested try-catch blocks. In this one, an inner try

block defines code that throws a NullPointerException. But the inner try block
doesn’t define an exception handler for this exception. Will the outer try block catch
this exception? See for yourself (answer in the appendix).

Given that players.txt exists on your system and that the assignment of players, shown
in bold, doesn’t throw any exceptions, what’s the output of the following code?

import java.io.*;
public class TwistInTaleNestedTryCatch {
 static FileInputStream players, coach;
 public static void main(String args[]) {
 try {
 players = new FileInputStream("players.txt");
 System.out.println("players.txt found");
 try {
 coach.close();
 } catch (IOException e) {
 System.out.println("coach.txt not found");
 }
 } catch (FileNotFoundException fnfe) {
 System.out.println("players.txt not found");
 } catch (NullPointerException ne) {
 System.out.println("NullPointerException");
 }
 }
}

a The code prints

players.txt found
NullPointerException

b The code prints

players.txt found
coach.txt not found

c The code throws a runtime exception.
d The code fails to compile.

Twist in the Tale 7.2

Another Inner
try block

502 CHAPTER 7 Exception handling
7.4.13 Should I handle errors?

Although you can define code to handle errors, you shouldn’t. You should instead
let the JVM handle the errors. The following example shows how it’s possible to
catch an error:

public class CatchError {
 public static void main(String args[]) {
 try {
 myMethod();
 } catch (StackOverflowError s) {
 System.out.println(s);
 }
 }
 public static void myMethod() {
 System.out.println("myMethod");
 myMethod();
 }
}

Though you shouldn’t handle errors in your code, what happens if you do? Will the
exception handler that handles the code execute? See for yourself by answering the ques-
tion in the following Twist in the Tale exercise (answer in the appendix).

Will the code in the error-handling block execute? What do you think is the output of
the following code?

public class TwistInTaleCatchError {
 public static void main(String args[]) {
 try {
 myMethod();
 } catch (StackOverflowError s) {
 for (int i=0; i<2; ++i)
 System.out.println(i);
 }
 }
 public static void myMethod() {
 myMethod();
 }
}

a 0

b java.lang.StackOverFlowError

c 0
1

d 0
1
2
java.lang.StackOverFlowError

Twist in the Tale 7.3

A class can catch and handle
an error, but it shouldn’t.

503Common exception classes and categories
In the next section, you’ll work with specific exception classes and errors that are on
the exam.

7.5 Common exception classes and categories

In this section, we’ll take a look at common exception classes and categories of excep-
tions. You’ll also learn about the scenarios in which these exceptions are thrown and
how to handle them.

 For this exam, you should be familiar with the scenarios that lead to these commonly
thrown exception classes and categories and how to handle them. Table 7.2 lists com-
mon errors and exceptions. Although the exam specifically lists four runtime excep-
tions, you might see the other common exception and error classes on the exam.

The OCA Java SE 8 Programmer I exam objectives require that you understand
which of the previously mentioned errors and exceptions are thrown by the JVM
and which should be thrown programmatically. From the discussion of errors earlier
in this chapter, you know that errors represent issues associated with the JRE, such
as OutOfMemoryError. As a programmer, you shouldn’t throw or catch these errors—
leave them for the JVM. The definition of runtime exceptions notes that these are
the kinds of exceptions that are thrown by the JVM, which shouldn’t be thrown by
you programmatically.

 Let’s review each of these in detail.

Table 7.2 Common errors and exceptions

Runtime exceptions Errors

ArrayIndexOutOfBoundsException ExceptionInInitializerError

IndexOutOfBoundsException StackOverflowError

ClassCastException NoClassDefFoundError

IllegalArgumentException OutOfMemoryError

ArithmeticException

NullPointerException

NumberFormatException

[8.5] “Recognize common exception classes (such as NullPointerException,
ArithmeticException, ArrayIndexOutOfBoundsException,
ClassCastException)”

504 CHAPTER 7 Exception handling
7.5.1 ArrayIndexOutOfBoundsException and IndexOutOfBoundsException

As shown in figure 7.17, ArrayIndexOutOfBoundsException and IndexOutOfBounds-

Exception are runtime exceptions, which share an IS-A relationship. IndexOutOf-
BoundsException is subclassed by ArrayIndexOutOfBoundsException.

An ArrayIndexOutOfBoundsException is thrown when a piece of code tries to
access an array out of its bounds (either an array is accessed at a position less than 0
or at a position greater than or equal to its length). An IndexOutOfBoundsException

is thrown when a piece of code tries to access a list, like an ArrayList, using an ille-
gal index.

 Assume that an array and list have been defined as follows:

String[] season = {"Spring", "Summer"};
ArrayList<String> exams = new ArrayList<>();
exams.add("SCJP");
exams.add("SCWCD");

The following lines of code will throw an ArrayIndexOutOfBoundsException:

System.out.println(season[5]);
System.out.println(season[-9]);

The following lines of code will throw an IndexOutOfBoundsException:

System.out.println(exams.get(-1));
System.out.println(exams.get(4));

Why do you think the JVM has taken the responsibility on itself to throw this excep-
tion? One of the main reasons is that this exception isn’t known until runtime and

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.IndexOutOfBoundsException

java.lang.ArrayIndexOutOfBoundsException
Figure 7.17 Class hierarchy of
ArrayIndexOutOfBoundsException

Can’t access position
>= array length

Can’t access array at
negative position

Can’t access list at
negative position

Can’t access list at
position >= its size

505Common exception classes and categories
depends on the array or list position that’s being accessed by a piece of code. Most
often, a variable is used to specify this array or list position, and its value may not be
known until runtime.

NOTE When you try to access an invalid array position, ArrayIndexOutOf-
BoundsException is thrown. When you try to access an invalid ArrayList
position, IndexOutOfBoundsException is thrown.

You can avoid these exceptions from being thrown if you check whether the index
position you’re trying to access is greater than or equal to 0 and less than the size of
your array or ArrayList.

7.5.2 ClassCastException

Before I start discussing the example I’ll use for this exception, take a quick look at
figure 7.18 to review the class hierarchy of this exception.

Examine the code in the next listing, where the line of code that throws the Class-

CastException is shown in bold.

import java.util.ArrayList;
public class ListAccess {
 public static void main(String args[]) {
 ArrayList<Ink> inks = new ArrayList<Ink>();
 inks.add(new ColorInk());
 inks.add(new BlackInk());
 Ink ink = (BlackInk)inks.get(0);
 }
}
class Ink{}
class ColorInk extends Ink{}
class BlackInk extends Ink{}

A ClassCastException is thrown when an object fails an IS-A test with the class type to
which it’s being cast. In the preceding example, class Ink is the base class for classes

Listing 7.2 An example of code that throws ClassCastException

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.ClassCastException
Figure 7.18 Class hierarchy of
ClassCastException

Throws
ClassCastException

506 CHAPTER 7 Exception handling
ColorInk and BlackInk. The JVM throws a ClassCastException in the previous case
because the code in bold tries to explicitly cast an object of ColorInk to BlackInk.

 Note that this line of code avoided the compilation error because the variable inks

defines an ArrayList of type Ink, which can store objects of type Ink and all its sub-
classes. The code then correctly adds the permitted objects: one each of BlackInk and
ColorInk. If the code had defined an ArrayList of type BlackInk or ColorInk, the
code would have failed the compilation, as follows:

import java.util.ArrayList;
public class Invalid {
 public static void main(String args[]) {
 ArrayList<ColorInk> inks = new ArrayList<ColorInk>();
 inks.add(new ColorInk());
 Ink ink = (BlackInk)inks.get(0);
 }
}
class Ink{}
class ColorInk extends Ink{}
class BlackInk extends Ink{}

Here’s the compilation error thrown by the previously modified piece of code:

Invalid.java:6: inconvertible types
found : ColorInk
required: BlackInk
 Ink ink = (BlackInk)inks.get(0);
 ^

You can use the instanceof operator to verify whether an object can be cast to another
class before casting it. Assuming that the definition of classes Ink, ColorInk, and
BlackInk are the same as defined in the previous example, the following lines of code
will avoid the ClassCastException:

import java.util.ArrayList;
public class AvoidClassCastException {
 public static void main(String args[]) {
 ArrayList<Ink> inks = new ArrayList<Ink>();
 inks.add(new ColorInk());
 inks.add(new BlackInk());
 if (inks.get(0) instanceof BlackInk) {
 BlackInk ink = (BlackInk)inks.get(0);
 }
 }
}

In the previous example, the condition (inks.get(0)instanceofBlackInk) evaluates
to false, so the then part of the if statement doesn’t execute.

 In the following Twist in the Tale exercise, I’ll introduce an interface used in the
casting example in listing 7.2 (answer in the appendix).

Compilation
issues

No
ClassCastException

507Common exception classes and categories
Let’s introduce an interface used in listing 7.2 and see how it behaves. Following is the
modified code. Examine the code and select the correct options:

class Ink{}
interface Printable {}
class ColorInk extends Ink implements Printable {}
class BlackInk extends Ink{}

class TwistInTaleCasting {
 public static void main(String args[]) {
 Printable printable = null;
 BlackInk blackInk = new BlackInk();
 printable = (Printable)blackInk;
 }
}

a printable = (Printable)blackInk will throw compilation error
b printable = (Printable)blackInk will throw runtime exception
c printable = (Printable)blackInk will throw checked exception
d The following line of code will fail to compile:

printable = blackInk;

7.5.3 IllegalArgumentException

As the name of this exception suggests, Illegal-
ArgumentException is thrown to specify that a
method has passed illegal or inappropriate argu-
ments. Its class hierarchy is shown in figure 7.19.

 Even though it’s a runtime exception, pro-
grammers usually use this exception to validate
the arguments that are passed to a method. The
exception constructor is passed a descriptive
message, specifying the exception details. Exam-
ine the following code:

public void login(String username, String pwd, int maxLoginAttempt) {
 if (username == null || username.length() < 6)
 throw new IllegalArgumentException
 ("Login:username can’t be shorter than 6 chars");
 if (pwd == null || pwd.length() < 8)
 throw new IllegalArgumentException
 ("Login: pwd cannot be shorter than 8 chars");
 if (maxLoginAttempt < 0)
 throw new IllegalArgumentException
 ("Login: Invalid loginattempt val");

Twist in the Tale 7.4

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.IllegalArgumentException

Figure 7.19 Class hierarchy of
IllegalArgumentException

508 CHAPTER 7 Exception handling
 //.. rest of the method code
}

The previous method validates the various method parameters passed to it and throws
an appropriate IllegalArgumentException if they don’t meet the requirements of
the method. Each object of the IllegalArgumentException is passed a different
String message that briefly describes it.

7.5.4 NullPointerException

The NullPointerException, shown in figure 7.20,
is the quintessential exception.

 I imagine that almost all Java programmers
have had a taste of this exception, but let’s look at
an explanation for it.

 This exception is thrown by the JVM if you try
to access a non-static method or a variable through
a null value. The exam can have interesting code
combinations to test you on whether a particular
piece of code will throw a NullPointerException.
The key is to ensure that the reference variable
has been assigned a non-null value. In particular,
I’ll address the following cases:

■ Accessing members of a reference variable that is explicitly assigned a null
value

■ Using an uninitialized local variable, which may seem to throw a NullPointer-

Exception

■ Attempting to access nonexistent array positions
■ Using members of an array element that are assigned a null value

Let’s get started with the first case, in which a variable is explicitly assigned a null value:

import java.util.ArrayList;
class ThrowNullPointerException {
 static ArrayList<String> list = null;
 public static void main(String[] args) {
 list.add("1");
 }
}

The preceding code tries to access the method add on the variable list, which has
been assigned a null value. It throws an exception, as follows:

Exception in thread "main" java.lang.NullPointerException
 at ThrowNullPointerException.main(ThrowNullPointerException.java:5)

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.NullPointerException

Figure 7.20 Class hierarchy of
NullPointerException

list is null

Attempt to call method
add on list throws
NullPointerException

509Common exception classes and categories
By default, the static and instance variables of a class are assigned a null value. In
the previous example, the static variable list is assigned an explicit null value. To
help you clarify the code and avoid any possible doubt, list is assigned an explicit
null value. When the method main tries to execute the method add on the variable
list, it calls a method on a null value. This call causes the JVM to throw a Null-
PointerException (which is a RuntimeException). If you define the variable list as
an instance variable and don’t assign an explicit value to it, you’ll get the same result
(NullPointerException being thrown at runtime). Because the static method main

can’t access the instance variable list, you’ll need to create an object of the class
ThrowNullPointerException to access it:

import java.util.ArrayList;
class ThrowNullPointerException {
 ArrayList<String> list;
 public static void main(String[] args) {
 ThrowNullPointerException obj = new ThrowNullPointerException();
 obj.list.add("1");
 }
}

You can prevent a NullPointerException from being thrown by checking whether an
object is null before trying to access its member:

import java.util.ArrayList;
class ThrowNullPointerException {
 static ArrayList<String> list;
 public static void main(String[] args) {
 if (list!=null)
 list.add("1");
 }
}

What happens if you modify the previous code as follows? Will it still throw a Null-
PointerException?

import java.util.ArrayList;
class ThrowNullPointerException {
 public static void main(String[] args) {
 ArrayList<String> list;
 if (list!=null)
 list.add("1");
 }
}

Interestingly, the previous code fails to compile. list is defined as a local variable
inside the method main, and by default local variables aren’t assigned a value—not
even a null value. If you attempt to use an uninitialized local variable, your code will
fail to compile. Watch out for similar questions in the exam.

list is implicitly
assigned a null value

Attempt to call method
add on list throws
NullPointerException

Ascertain that
list is not null

Fails to
compile

510 CHAPTER 7 Exception handling
 Another set of conditions when code may throw the NullPointerException

involves the use of arrays:

class ThrowAnotherNullPointerException {
 static String[] oldLaptops;
 public static void main(String[] args) {
 System.out.println(oldLaptops[1]);
 }
}

In the preceding code, the static variable oldLaptops is assigned a null value by
default. Its array elements are neither initialized nor assigned a value. The code that
tries to access the array’s second element throws a NullPointerException.

 In the following code, two array elements of the variable newLaptops are initialized
and assigned a default value of null. If you call the method toString on the second
element of the variable newLaptops, it results in a NullPointerException being
thrown:

class ThrowNullPointerException {
 public static void main(String[] args) {
 String[] newLaptops = new String[2];
 System.out.println(newLaptops[1].toString());
 }
}

If you modify the code at B as follows, it won’t throw an exception—it’ll print the value
null. This is because the object-based System.out.println() overload calls the object-
based String.valueOf() overload, which itself checks whether the object to “print” is
null, in which case it will output null without calling any toString() method:

System.out.println(newLaptops[1]);

EXAM TIP In the exam, watch out for code that tries to use an uninitialized
local variable. Because such variables aren’t initialized with even a null value,
you can’t print their value using the System.out.println method. Such code
won’t compile.

Let’s modify the previous code that uses the variable oldLaptops and check your
understanding of NullPointerExceptions. Here’s another Twist in the Tale hands-on
exercise for you (answers in the appendix).

Let’s check your understanding of the NullPointerException. Here’s a code snippet.
Examine the code and select the correct answers.

class TwistInTaleNullPointerException {
 public static void main(String[] args) {
 String[][] oldLaptops =

Twist in the Tale 7.5

Throws
NullPointerException

Throws
NullPointerException

b

No RuntimeException; prints “null”

511Common exception classes and categories
 { {"Dell", "Toshiba", "Vaio"}, null,
{"IBM"}, new String[10] };
 System.out.println(oldLaptops[0][0]); // line 1
 System.out.println(oldLaptops[1]); // line 2
 System.out.println(oldLaptops[3][6]); // line 3
 System.out.println(oldLaptops[3][0].length()); // line 4
 System.out.println(oldLaptops); // line 5
 }
}

a Code on line 1 will throw NullPointerException

b Code on lines 1 and 3 will throw NullPointerException

c Only code on line 4 will throw NullPointerException

d Code on lines 3 and 5 will throw NullPointerException

7.5.5 ArithmeticException

When the JVM encounters an exceptional mathe-
matical condition, like dividing an integer by zero,
it throws ArithmeticException (the class hierarchy
shown in figure 7.21). Note that division by 0 is not
the same as division by 0.0. In this section, we’ll
cover the results of division of integers and deci-
mals by 0 and 0.0.

 The following summarizes the cause of an
ArithmeticException:

■ A division will be performed as an integer
division as long as only integers are involved.
As soon as there’s a floating-point number, then everything is computed in
floating-point arithmetic (true for all arithmetic operations, by the way).

■ An integer division by zero throws an ArithmeticException.
■ A floating-point division by zero won’t throw any exception but rather will

return ±Infinity or NaN, depending on the first operand.

DIVISION OF AN INTEGER VALUE BY 0
Although it might seem simple to spot an occurrence of this exception, assumptions
can be wrong. Let’s start with a simple and explicit example (which is easy to spot):

class ThrowArithmeticEx {
 public static void main(String args[]) {
 System.out.println(77/0);
 }
}

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.AritmeticException

Figure 7.21 Class hierarchy of
ArithmeticException

Division
by 0

512 CHAPTER 7 Exception handling
On execution, the previous code will throw an ArithmeticException with a similar
message:

Exception in thread "main" java.lang.ArithmeticException: / by zero
 at ThrowArithmeticEx.main(ThrowArithmeticEx.java:3)

Here’s an example of comparatively complex code that you might see on the exam.
Do you think it will throw an ArithmeticException? Also, do you think that the
answer seems obvious like in the preceding code?

class ThrowArithmeticEx {
 public static void main(String args[]) {
 int a = 10;
 int y = a++;
 int z = y--;

 int x1 = a - 2*y - z;
 int x2 = a - 11;
 int x = x1/ x2;

 System.out.println(x);
 }
}

The preceding code throws ArithmeticException for the operation x1/x2 because
the value of x2 is 0. With the initialization of the variable y, the value of variable a is
incremented by 1, from 10 to 11 (due to the post-fix increment operator). The vari-
able x2 is initialized with a value that’s equal to 11 and less than a, which is 0.

EXAM TIP In the exam, watch out for division with integers. If the divisor is 0,
the integer value that’s being divided doesn’t matter. Such an operation will
throw an ArithmeticException.

What do you think would be the answer if you divide 0 by 0? What do you think is the
output of the following code: 1, 0, or ArithmeticException?

class ThrowArithmeticEx {
 public static void main(String args[]) {
 int x = (int)(7.3/10.6);
 int y = (int)(100.76/123.87);

 int z = x/y;

 System.out.println(x);
 }
}

Division of an integer number by 0 will result in an ArithmeticException. So the pre-
ceding code will also throw an ArithmeticException.

EXAM TIP Division of a negative or positive integer value by 0 will result in an
ArithmeticException.

513Common exception classes and categories
Here’s an explicit example of dividing 0 by 0:

System.out.println(0/0);

EXAM TIP Division of 0 by 0 results in an ArithmeticException.

DIVISION OF A DECIMAL VALUE BY 0
If you divide a positive decimal number by 0, the answer is Infinity:

class DivideDecimalNumberByZero {
 public static void main(String args[]) {
 System.out.println(77.0/0);
 }
}

If you divide a negative decimal number by 0, the answer is -Infinity:

class DivideNegativeDecimalNumberByZero {
 public static void main(String args[]) {
 System.out.println(-77.0/0);
 }
}

EXAM TIP If you divide a positive decimal value by 0, the result is Infinity. If
you divide a negative decimal value by 0, the result is -Infinity.

Here’s an interesting question: what do you think is the result of division of 0.0 by 0?
Here’s a quick code snippet:

System.out.println(0.0/0);

EXAM TIP Division of 0.0 by 0 results in NaN (Not a Number).

Any mathematical operation with a NaN results in NaN.

DIVISION OF INTEGERS OR DECIMALS BY 0.0
Dividing by 0 and dividing by 0.0 don’t give you the same results. Let’s revisit the pre-
vious examples, starting with the modified version of the first example in this section:

class DivideIntegerByZeroPointZero {
 public static void main(String args[]) {
 System.out.println(77/0.0);
 System.out.println(77.0/0.0);
 }
}

The preceding code doesn’t throw an ArithmeticException. It outputs Infinity.

EXAM TIP When a positive integer or decimal value is divided by 0.0, the
result is Infinity.

Throws ArithmeticException

Outputs
Infinity

Outputs
-Infinity

Outputs NaN

Outputs
Infinity

514 CHAPTER 7 Exception handling
Here’s another modified example:

class DivideByZeroPointZero {
 public static void main(String args[]) {
 int a = 10;
 int y = a++;
 int z = y--;

 int x1 = a - 2*y - z;
 int x2 = a - 11;
 double x3 = x2;

 double x = x1/ x3;

 System.out.println(x);
 System.out.println(x1);
 System.out.println(x3);
 }
}

Here’s the output of the preceding code:

-Infinity
-17
0.0

The preceding code doesn’t throw an ArithmeticException. The variable x1 is
assigned a negative integer value, that is, -17. The variable x2 is assigned the value 0.
When the variable x3 of type double is initialized with the value of x2, it’s promoted to
a double value, assigning 0.0 to x3. When a negative integer value is divided by 0.0,
the result is –Infinity.

EXAM TIP When a negative integer or decimal value is divided by 0.0, the
result is –Infinity.

7.5.6 NumberFormatException

What happens if you try to convert “87” and
“9m#” to numeric values? The former value is
OK, but you can’t convert the latter value to a
numeric value unless it’s an encoded value,
straight from a James Bond movie, that can be
converted to anything.

 As shown in figure 7.22, NumberFormat-

Exception is a runtime exception. It’s thrown
to indicate that the application tried to convert
a string (with an inappropriate format) to one
of the numeric types.

 Multiple classes in the Java API define pars-
ing methods. One of the most frequently used

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.IllegalArgumentException

java.lang.NumberFormatException

Figure 7.22 Class hierarchy of
NumberFormatException

515Common exception classes and categories

Valid
value

c
conv

to nu
v

.

ption.
rted
methods is parseInt from the class Integer. It’s used to parse a String argument as a
signed (negative or positive) decimal integer. Here are some examples:

System.out.println(Integer.parseInt("-123"));
System.out.println(Integer.parseInt("123"));
System.out.println(Integer.parseInt("+123"));
System.out.println(Integer.parseInt("123_45"));
System.out.println(Integer.parseInt("12ABCD"));

Starting in Java 7, you can use underscores (_) in numeric literal values. But you can’t
use them in String values passed to the method parseInt. The letters ABCD aren’t
used in the decimal number system, but they can be used in the hexadecimal number
system, so you can convert the hexadecimal literal value "12ABCD" to the decimal
number system by specifying the base of the number system as 16:

System.out.println(Integer.parseInt("123ABCD", 16));

Note that the argument 16 is passed to the method parseInt, not to the method
println. The following will not compile:

System.out.println(Integer.parseInt("123ABCD"), 16);

You may throw NumberFormatException from your own method to indicate that
there’s an issue with the conversion of a String value to a specified numeric format
(decimal, octal, hexadecimal, binary), and you can add a customized exception mes-
sage. One of the most common candidates for this exception is methods that are
used to convert a command-line argument (accepted as a String value) to a numeric
value. Please note that all command-line arguments are accepted in a String array as
String values.

 The following is an example of code that throws a NumberFormatException

programmatically:

public class ThrowNumberFormatException {
 public static int convertToNum(String val) {
 int num = 0;
 try {
 num = Integer.parseInt(val, 16);
 } catch (NumberFormatException e) {
 throw new NumberFormatException(val+
 " cannot be converted to hexadecimal number");
 }
 return num;
 }

String
s that
an be
erted
meric
alues

Will throw NumberFormatException
Use of underscores in string values
isn’t allowed.

Will throw NumberFormatExce
Characters ABCD can’t be conve
to integers in base 10.

Prints 19114957

Won’t compile

In the exception handler,
creates and throws new

NumberFormatException
with a custom message

516 CHAPTER 7 Exception handling
 public static void main(String args[]) {
 System.out.println(convertToNum("16b"));
 System.out.println(convertToNum("65v"));
 }
}

The conversion of the hexadecimal literal 16b to the decimal number system is suc-
cessful. But the conversion of the hexadecimal literal 65v to the decimal number sys-
tem fails, and the previous code will give the following output:

363
Exception in thread "main" java.lang.NumberFormatException: 65v cannot be

converted to hexadecimal number
 at

ThrowNumberFormatException.convertToNum(ThrowNumberFormatException.java:8)
 at ThrowNumberFormatException.main(ThrowNumberFormatException.java:14)

Now let’s take a look at some of the common errors that are covered on this exam.

7.5.7 ExceptionInInitializerError

The ExceptionInInitializerError error
is typically thrown by the JVM when a static
initializer in your code throws any type of
RuntimeException. Figure 7.23 shows the
class hierarchy of ExceptionInInitializer-

Error.
 A static initializer block is defined

using the keyword static, followed by curly
braces, in a class. This block is defined
within a class but not within a method. It’s
usually used to execute code when a class
loads for the first time. Runtime exceptions
arising from any of the following will throw this error:

■ Execution of an anonymous static block
■ Initialization of a static variable
■ Execution of a static method (called from either of the previous two items)

The static initializer block of the class defined in the following example will throw a
NumberFormatException, and when the JVM tries to load this class, it’ll throw an
ExceptionInInitializerError:

public class DemoExceptionInInitializerError {
 static {
 int num = Integer.parseInt("sd", 16);
 }
}

java.lang.Throwable

java.lang.Error

java.lang.LinkageError

java.lang.ExceptionInInitializerError

Figure 7.23 Class hierarchy of
ExceptionInInitializerError

517Common exception classes and categories
Following is the error message when the JVM tries to load the class DemoExceptionIn-

InitializerError:

java.lang.ExceptionInInitializerError
Caused by: java.lang.NumberFormatException: For input string: "sd"
 at

java.lang.NumberFormatException.forInputString(NumberFormatException.jav
a:48)

 at java.lang.Integer.parseInt(Integer.java:447)
 at

DemoExceptionInInitializerError.<clinit>(DemoExceptionInInitializerError
.java:3)

EXAM TIP Beware of code that seems to be simple in the OCA Java SE 8 Pro-
grammer I exam. The class DemoExceptionInInitializerError (mentioned
previously) seems deceptively simple, but it’s a good candidate for an exam
question. As you know, this class throws the error ExceptionInInitializer-
Error when the JVM tries to load it.

In the following example, initialization of a static variable results in a NullPointer-

Exception being thrown. When this class is loaded by the JVM, it throws an Exception-

InInitializerError:

public class DemoExceptionInInitializerError1 {
 static String name = null;
 static int nameLength = name.length();
}

The error message when the JVM tries to load the DemoExceptionInInitializerError1

class is as follows:

java.lang.ExceptionInInitializerError
Caused by: java.lang.NullPointerException
 at

DemoExceptionInInitializerError1.<clinit>(DemoExceptionInInitializerErro
r1.java:3)

Exception in thread "main"

Now let’s move on to the exception thrown by a static method, which may be called
by the static initializer block or to initialize a static variable. Examine the following
code, in which MyException is a user-defined RuntimeException:

public class DemoExceptionInInitializerError2 {
 static String name = getName();
 static String getName() {
 throw new MyException();
 }
}
class MyException extends RuntimeException{}

MyException is a
runtime exception.

518 CHAPTER 7 Exception handling
This is the error thrown by the class DemoExceptionInInitializerError2:

java.lang.ExceptionInInitializerError
Caused by: MyException
 at

DemoExceptionInInitializerError2.getName(DemoExceptionInInitializerError
2.java:4)

 at
DemoExceptionInInitializerError2.<clinit>(DemoExceptionInInitializerErro
r2.java:2)

Did you notice that the error ExceptionInInitializerError can be caused only by a
runtime exception? This happens for valid reasons, of course.

 If a static initializer block throws an error, it doesn’t recover from it to come back
to the code to throw an ExceptionInInitializerError. This error can’t be thrown if
a static initializer block throws an object of a checked exception because the Java
compiler is intelligent enough to determine this condition and doesn’t allow you to
throw an unhandled checked exception from a static initialization block.

EXAM TIP ExceptionInInitializerError can be caused by an object of
RuntimeException only. It can’t occur as the result of an error or checked
exception thrown by the static initialization block.

7.5.8 StackOverflowError

The StackOverflowError error extends Virtual-

MachineError (as shown in figure 7.24). As its name
suggests, you should leave it to be managed by the
JVM.

 This error is thrown by the JVM when a Java
program calls itself so many times that the memory
stack allocated to execute the Java program “over-
flows” (overflows means that the stack exceeds a
certain size). Examine the following code, in which
a method calls itself recursively without an exit
condition:

public class DemoStackOverflowError{
 static void recursion() {
 recursion();
 }
 public static void main(String args[]) {
 recursion();
 }
}

The following error is thrown by the previous code:

Exception in thread "main" java.lang.StackOverflowError
 at DemoStackOverflowError.recursion(DemoStackOverflowError.java:3)

java.lang.Throwable

java.lang.Error

java.lang.VirtualMachineError

java.lang.StackOverflowError

Figure 7.24 Class hierarchy of
StackOverflowError

Calls itself recursively,
without exit condition

519Common exception classes and categories
7.5.9 NoClassDefFoundError

What would happen if you failed to set your class-
path and, as a result, the JVM was unable to load
the class that you wanted to access or execute? Or
what would happen if you tried to run your appli-
cation before compiling it (and so no .class file
would be found for the class you were trying to
use)? In both these conditions, the JVM would
throw a NoClassDefFoundError (the class hierar-
chy shown in figure 7.25).

 This is what the Java API documentation says
about this error:

Thrown if the Java Virtual Machine or a ClassLoader instance tries to load in the
definition of a class (as part of a normal method call or as part of creating a new instance
using the new expression) and no definition of the class could be found.1

Because this particular error isn’t a coding issue, I don’t have a coding example for
you. As you can see from the error hierarchy diagram in figure 7.25, this is a linkage
error arising from a missing class file definition at runtime. Like every system error,
this error shouldn’t be handled by the code and should be left to be handled exclu-
sively by the JVM.

NOTE Don’t confuse the exception thrown by Class.forName(), used to
load the class, and NoClassDefFoundError, thrown by the JVM. Class.for-
Name() throws ClassNotFoundException.

7.5.10 OutOfMemoryError

What happens if you create and use a lot of objects
in your application—for example, if you load a large
chunk of persistent data to be processed by your
application? In such a case, the JVM may run out of
memory on the heap, and the garbage collector may
not be able to free more memory for the JVM. In
this case, the JVM is unable to create any more
objects on the heap. An OutOfMemoryError will be
thrown (the class hierarchy shown in figure 7.26).

 You’ll always work with a finite heap size, no mat-
ter what platform you work on, so you can’t create

1 The NoClassDefFoundError documentation can be found in the Javadoc: http://docs.oracle.com/javase/
8/docs/api/java/lang/NoClassDefFoundError.html.

java.lang.Throwable

java.lang.Error

java.lang.LinkageError

java.lang.NoClassDefFoundError

Figure 7.25 Class hierarchy of
NoClassDefFoundError

java.lang.Throwable

java.lang.Error

java.lang.VirtualMachineError

java.lang.OutOfMemoryError

Figure 7.26 Class hierarchy of
OutOfMemoryError

http://docs.oracle.com/javase/8/docs/api/java/lang/NoClassDefFoundError.html
http://docs.oracle.com/javase/8/docs/api/java/lang/NoClassDefFoundError.html

520 CHAPTER 7 Exception handling
and use an unlimited number of objects in your application. To get around this error,
you need to either limit the number of resources or objects that your application cre-
ates or increase the heap size on the platform you’re working with.

 A number of tools are available (which are beyond the scope of this book) that can
help you monitor the number of objects created in your application.

7.6 Summary
In this chapter, we discussed the need for exception handling, as well as the advan-
tages of defining the exception-handling code separately from the program logic. You
saw how this approach helps separate concerns about defining the regular program
logic and exception-handling code. We also looked at the code syntax, specifically try-
catch-finally blocks, for implementing exception-handling code. Code that throws
an exception should be enclosed within a try block that’s immediately followed by a
catch and/or a finally block. A try block can be followed by multiple catch blocks
but only a single finally block. A finally block can’t be placed before a try block. A
try block must be followed by at least one catch or finally block. The try, catch,
and finally blocks can’t exist independently.

 Next, we delved into the different categories of exceptions: checked exceptions,
runtime or unchecked exceptions, and errors. Checked exceptions are subclasses of
the class java.lang.Exception. Unchecked exceptions are subclasses of the class
java.lang.RuntimeException, which itself is a subclass of the class java.lang.Excep-
tion. Errors are subclasses of java.lang.Error. All of these exceptions are subclasses of
java.lang.Throwable.

 A checked exception is an unacceptable condition foreseen by the author of a
method but outside the immediate control of the code. A runtime exception repre-
sents a programming error—these occur because of inappropriate use of another
piece of code. Errors are serious exceptions, thrown by the JVM, as a result of an error
in the environment state that processes your code.

 In the final sections of this chapter, we covered commonly occurring exceptions
and errors, such as NullPointerException, IllegalArgumentException, StackOver-

flowError, and more. For each of these errors and exceptions, I explained the condi-
tions in which they may be thrown in code and whether they should be explicitly
handled in exception handlers.

7.7 Review notes
This section lists the main points of all the sections covered in this chapter.

 Why handle exceptions separately:

■ Handling exceptions separately enables you to define the main logic of your
code together.

■ Without the use of separate exception handlers, the main logic of your code
would be lost in combating the exceptional conditions. (See figure 7.5 for an
example.)

521Review notes
■ Exception handlers separate the concerns of defining regular program logic
from exception-handling code.

■ Exceptions help pinpoint the offending code, together with the method in
which it’s defined, by providing a stack trace of the exception or error.

■ The JVM may send the stack trace of an unhandled exception to the Java
console.

Categories of exceptions:

■ Exceptions are divided into three categories: checked exceptions, runtime (or
unchecked exceptions), and errors. These three categories share IS-A relation-
ships (inheritance).

■ Subclasses of the class java.lang.RuntimeException are categorized as run-
time exceptions.

■ Subclasses of the class java.lang.Error are categorized as errors.
■ Subclasses of the class java.lang.Exception are categorized as checked excep-

tions if they’re not subclasses of the class java.lang.RuntimeException.
■ The class java.lang.RuntimeException is a subclass of the class java.lang

.Exception.
■ The class java.lang.Exception is a subclass of the class java.lang.Throwable.
■ The class java.lang.Error is also a subclass of the class java.lang.Throwable.
■ The class java.lang.Throwable inherits the class java.lang.Object.

Checked exceptions:

■ A checked exception is an unacceptable condition foreseen by the author of a
method but outside the immediate control of the code.

■ A checked exception is a subclass of the java.lang.Exception class but not a
subclass of java.lang.RuntimeException. It’s interesting to note, however,
that the class java.lang.RuntimeException itself is a subclass of the class java
.lang.Exception.

■ If a method calls another method that may throw a checked exception, either it
must be enclosed within a try-catch block, or the method should declare this
exception to be thrown in its method signature.

Runtime exceptions:

■ Runtime exceptions represent programming errors. These occur from inappro-
priate use of another piece of code. For example, NullPointerException is a
runtime exception that occurs when a piece of code tries to execute some code
on a variable that hasn’t been assigned an object and points to null. Another
example is ArrayIndexOutOfBoundsException, which is thrown when a piece of
code tries to access an array of list elements at a nonexistent position.

■ A runtime exception is a subclass of java.lang.RuntimeException.

522 CHAPTER 7 Exception handling
■ A runtime exception might not be a part of the method signature, even if a
method may throw it.

■ A runtime exception may not necessarily be caught by a try-catch block.

Errors:

■ An error is a serious exception, thrown by the JVM as a result of an error in the
environment state, which processes your code. For example, NoClassDefFound-

Error is an error thrown by the JVM when it’s unable to locate the .class file it’s
supposed to run.

■ StackOverflowError is another error, thrown by the JVM when the size of the
memory required by the stack of the Java program is greater than what the JRE
has offered for the Java application. This error usually occurs as a result of infi-
nite or highly nested loops.

■ An error is a subclass of the class java.lang.Error.
■ An error need not be a part of a method signature.
■ Although you can handle errors syntactically, there’s little that you can do

when these errors occur. Usually, ordinary programs aren’t expected to recover
from errors.

Creating a method that throws an exception:

■ A method uses a throw statement to throw an exception or error.
■ A method uses a throws clause in its signature to declare that it might throw an

exception.
■ A method can have multiple comma-separated class names of exceptions in its

throws clause. Including runtime exceptions or errors in the method declara-
tion isn’t required.

■ Syntactically, you don’t always need a combination of throw and throws state-
ments to create a method that throws an exception (checked or unchecked).
You can replace the throw statement with a method that throws an exception.

■ To use a method that throws a checked exception, you must do one of the
following:

– Handle the exception—Enclose the code within a try block and catch the
thrown exception.

– Declare it to be thrown—Declare the exception to be thrown by using the
throws clause.

– Handle and declare—Implement both of the preceding options together.
■ While creating a method that throws a runtime exception or error, including

the exception or error name in the throws clause isn’t required.
■ A method that throws a runtime exception or error isn’t subject to the handle-

or-declare rule.

523Review notes
■ A method can declare to throw all types of exceptions, even if it doesn’t. But a
try block can’t define a catch block for a checked exception (other than
Exception) if the try block doesn’t throw that checked exception or use a
method that declares to throw that checked exception.

What happens when an exception is thrown:

■ An exception is an object of the class java.lang.Throwable.
■ When a piece of code hits an obstacle in the form of an exceptional condition,

it creates an object of subclass java.lang.Throwable, initializes it with the nec-
essary information (such as its type and optionally a textual description and the
offending program’s state), and hands it over to the JVM.

■ Enclose the code that may throw an exception within a try block.
■ Define catch blocks to include alternative code to execute when an exceptional

condition arises.
■ A try block can be followed by one or more catch blocks.
■ The catch blocks must be followed by zero or one finally block.
■ The finally block executes regardless of whether the code in the try block

throws an exception.
■ The order in which the catch blocks are placed matters. If the caught excep-

tions have an inheritance relationship, the base class exceptions can’t be caught
before the derived class exceptions. An attempt to do this will result in compila-
tion failure.

■ A finally block will execute even if a try or catch block defines a return

statement.
■ If both catch and finally blocks define return statements, the calling method

will receive the value from the finally block.
■ If a catch block returns a primitive data type, a finally block can’t modify the

value being returned by it.
■ If a catch block returns an object, a finally block can modify the value being

returned by it.
■ A finally block alone won’t suffice with a try block if code in the try block

throws a checked exception. In this case, you’ll need to catch the checked
exception or define in the method signature that the exception is thrown, or
your code won’t compile.

■ None of the try, catch, and finally blocks can exist independently.
■ The finally block can’t appear before a catch block.
■ You can rethrow an error that you catch in an exception handler.
■ You can either handle an exception or declare it to be thrown by your method.

In the latter case, you need not handle the exception in your code. This applies
to checked exceptions.

■ You can create nested exception handlers.

524 CHAPTER 7 Exception handling
■ A try, catch, or finally block can define another try-catch-finally block.
Theoretically, there’s no limit on the allowed level of nesting of try-catch-
finally blocks.

Commonly occurring exceptions, categories, and classes:

■ In typical programming conditions, the ArrayIndexOutOfBoundsException

shouldn’t be thrown programmatically.
■ One of the main reasons for the JVM taking the responsibility on itself for

throwing this exception is that this exception isn’t known until runtime and
depends on the array or list position that’s being accessed by a piece of code.
Most often, a variable is used to specify this array or list position, and its value
may not be known until runtime.

■ ClassCastException is a runtime exception. java.lang.ClassCastException

extends java.lang.RuntimeException.
■ ClassCastException is thrown when an object fails an IS-A test with the class

type it is being cast to.
■ You can use the operator instanceof to verify whether an object can be cast to

another class before casting it.
■ IllegalArgumentException is a runtime exception. java.lang.Illegal-

ArgumentException extends java.lang.RuntimeException.
■ An IllegalArgumentException is thrown to specify that a method has been

passed illegal or inappropriate arguments.
■ Even though IllegalArgumentException is a runtime exception, programmers

usually use this exception to validate the arguments that are passed to a method,
and the exception constructor is passed a descriptive message specifying the
exception details.

■ As a programmer, you can throw an IllegalStateException to signal to the
calling method that the method that’s being requested for execution isn’t ready
to start its execution or is in a state in which it can’t execute.

■ NullPointerException is a runtime exception. The class java.lang.Null-
PointerException extends java.lang.RuntimeException.

■ A NullPointerException is thrown by the JVM if you try to access a method or
variable of an uninitialized reference variable.

■ When the JVM encounters an exceptional mathematical condition, like divid-
ing a number by zero, it throws an ArithmeticException.

■ In division with integers, if the divisor is 0, the integer value that’s being divided
doesn’t matter. Such an operation will throw an ArithmeticException.

■ Division of a negative or positive integer value by 0 will result in an Arithmetic-

Exception.
■ Division of 0 by 0 results in an ArithmeticException.
■ If you divide a positive decimal value by 0, the result is Infinity. If you divide a

negative decimal value by 0, the result is -Infinity.

525Review notes
■ Division of 0.0 by 0 results in NaN (Not a Number).
■ When a positive integer or decimal value is divided by 0.0, the result is Infinity.
■ When a negative integer or decimal value is divided by 0.0, the result is –Infinity.
■ NumberFormatException is a runtime exception. java.lang.NumberFormat-

Exception extends java.lang.IllegalArgumentException. java.lang.Illegal-
ArgumentException extends java.lang.RuntimeException.

■ You can throw a NumberFormatException from your own method to indicate
that there’s an issue with the conversion of a String value to a specified numeric
format (decimal, octal, hexadecimal, or binary).

■ Runtime exceptions arising from any of the following may throw an Exception-

InInitializerError:
– Execution of an anonymous static block
– Initialization of a static variable
– Execution of a static method (called from either of the previous two items)

■ The error ExceptionInInitializerError can be thrown only by an object of a
runtime exception.

■ ExceptionInInitializerError can’t be thrown if a static initializer block
throws an object of a checked exception, because the Java compiler is intelli-
gent enough to determine this condition, and it doesn’t allow you to throw an
unhandled checked exception from a static initialization block.

■ StackOverflowError is an error. java.lang.StackOverflowError extends
java.lang.VirtualMachineError.

■ Because StackOverflowError extends VirtualMachineError, it should be left
to be managed by the JVM.

■ The StackOverflowError error is thrown by the JVM when a Java program calls
itself so many times that the memory stack allocated to execute the Java pro-
gram “overflows.”

■ NoClassDefFoundError is an Error. java.lang.NoClassDefFoundError extends
java.lang.LinkageError. java.lang.LinkageError extends java.lang.Error.

■ A NoClassDefFoundError is thrown by the JVM or a ClassLoader when it’s
unable to load the definition of a class required to create an object of the class.

■ Don’t confuse the exception thrown by Class.forName(), used to load the
class, and NoClassDefFoundError, thrown by the JVM. Class.forName() throws
a ClassNotFoundException.

■ An OutOfMemoryError is thrown by the JVM when it’s unable to create objects
on the heap and the garbage collector may not be able to free more memory
for the JVM.

526 CHAPTER 7 Exception handling
7.8 Sample exam questions
Q7-1. What is the output of the following code:

class Course {
 String courseName;
 Course() {
 Course c = new Course();
 c.courseName = "Oracle";
 }
}
class EJavaGuruPrivate {
 public static void main(String args[]) {
 Course c = new Course();
 c.courseName = "Java";
 System.out.println(c.courseName);
 }
}

a The code will print Java.
b The code will print Oracle.
c The code will not compile.
d The code will throw an exception or an error at runtime.

Q7-2. Select the correct option(s):

a You cannot handle runtime exceptions.
b You should not handle errors.
c If a method throws a checked exception, it must be either handled by the

method or specified in its throws clause.
d If a method throws a runtime exception, it may include the exception in its

throws clause.
e Runtime exceptions are checked exceptions.

Q7-3. Examine the following code and select the correct option(s):

class EJavaGuruExcep {
 public static void main(String args[]) {
 EJavaGuruExcep var = new EJavaGuruExcep();
 var.printArrValues(args);
 }
 void printArrValues(String[] arr) {
 try {
 System.out.println(arr[0] + ":" + arr[1]);
 } catch (NullPointerException e) {
 System.out.println("NullPointerException");
 } catch (IndexOutOfBoundsException e) {
 System.out.println("IndexOutOfBoundsException");
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("ArrayIndexOutOfBoundsException");

527Sample exam questions
 }
 }
}

a If the class EJavaGuruExcep is executed using the following command, it prints
NullPointerException:

java EJavaGuruExcep

b If the class EJavaGuruExcep is executed using the following command, it prints
IndexOutOfBoundsException:

java EJavaGuruExcep

c If the class EJavaGuruExcep is executed using the following command, it prints
ArrayIndexOutOfBoundsException:

java EJavaGuruExcep one

d The code will fail to compile.

Q7-4. What is the output of the following code?

class EJava {
 void method() {
 try {
 guru();
 return;
 } finally {
 System.out.println("finally 1");
 }
 }
 void guru() {
 System.out.println("guru");
 throw new StackOverflowError();
 }
 public static void main(String args[]) {
 EJava var = new EJava();
 var.method();
 }
}

a guru
finally 1

b guru
finally 1
Exception in thread "main" java.lang.StackOverflowError

c guru
Exception in thread "main" java.lang.StackOverflowError

d guru

e The code fails to compile.

528 CHAPTER 7 Exception handling
Q 7-5. What is the output of the following code?

class Quest5 {
 public static void main(String args[]) {
 int arr[] = new int[5];
 arr = new int[]{1,2,3,4};

 int x = arr[1]-- + arr[0]-- /arr[0] * arr[4];
 System.out.println(x);
 }
}

a The code outputs a value.
b The code outputs a value followed by an exception.
c ArithmeticException

d NullPointerException

e IndexOutOfBoundsException

f ArrayIndexOutOfBoundsException

g Compilation error
h None of the above

Q7-6. Which of the following methods will not compile?

a private void method1(String name) {
 if (name.equals("star"))
 throw new IllegalArgumentException(name);
}

b private void method2(int age) {
 if (age > 30)
 throw Exception();
}

c public Object method3(boolean accept) {
 if (accept)
 throw new StackOverflowError();
 else
 return new StackOverflowError();
}

d protected double method4() throws Exception {
 throw new Throwable();
}

e public double method5() throws Exception {
 return 0.7;
}

Q7-7. What is the output of the following code?

 class TryFinally {
 int tryAgain() {
 int a = 10;
 try {
 ++a;

529Sample exam questions
 } finally {
 a++;
 }
 return a;
 }
 public static void main(String args[]) {
 System.out.println(new TryFinally().tryAgain());
 }
}

a 10

b 11

c 12

d Compilation error
e Runtime exception

Q7-8. What is the output of the following code?

class EJavaBase {
 void myMethod() throws ExceptionInInitializerError {
 System.out.println("Base");
 }
}
class EJavaDerived extends EJavaBase {
 void myMethod() throws RuntimeException {
 System.out.println("Derived");
 }
}
class EJava3 {
 public static void main(String args[]) {
 EJavaBase obj = new EJavaDerived();
 obj.myMethod();
 }
}

a Base

b Derived

c Derived
Base

d Base
Derived

e Compilation error

Q7-9. Which of the following statements are true?

a A user-defined class may not throw an IllegalStateException. It must be
thrown only by Java API classes.

b System.out.println will throw a NullPointerException if an uninitialized
instance variable of type String is passed to it to print its value.

530 CHAPTER 7 Exception handling
c NumberFormatException is thrown by multiple methods from the Java API
when invalid numbers are passed on as Strings to be converted to the specified
number format.

d ExceptionInInitializerError may be thrown by the JVM when a static ini-
tializer in your code throws a NullPointerException.

Q7-10. What is the output of the following code?

class EJava {
 void foo() {
 try {
 String s = null;
 System.out.println("1");
 try {
 System.out.println(s.length());
 } catch (NullPointerException e) {
 System.out.println("inner");
 }
 System.out.println("2");
 } catch (NullPointerException e) {
 System.out.println("outer");
 }
 }
 public static void main(String args[]) {
 EJava obj = new EJava();
 obj.foo();
 }
}

a 1
inner
2
outer

b 1
outer

c 1
inner

d 1
inner
2

7.9 Answers to sample exam questions

Q7-1. What is the output of the following code:

class Course {
 String courseName;
 Course() {
 Course c = new Course();
 c.courseName = "Oracle";
 }
}

531Answers to sample exam questions
class EJavaGuruPrivate {
 public static void main(String args[]) {
 Course c = new Course();
 c.courseName = "Java";
 System.out.println(c.courseName);
 }
}

a The code will print Java.
b The code will print Oracle.
c The code will not compile.
d The code will throw an exception or an error at runtime.

Answer: d

Explanation: This class will throw a StackOverflowError at runtime. The easiest way
to look for a StackOverflowError is to locate recursive method calls. In the question’s
code, the constructor of the class Course creates an object of the class Course, which
will call the constructor again. Hence, this becomes a recursive call and ends up
throwing a StackOverflowError at runtime. (As you know, an exception or an error
can be thrown only at runtime, not compile time.)

Q7-2. Select the correct option(s):

a You cannot handle runtime exceptions.
b You should not handle errors.
c If a method throws a checked exception, it must be either handled by the

method or specified in its throws clause.
d If a method throws a runtime exception, it may include the exception in its

throws clause.
e Runtime exceptions are checked exceptions.

Answer: b, c, d

Explanation: Option (a) is incorrect. You can handle runtime exceptions the way you
can handle a checked exception in your code: using a try-catch block.

 Option (b) is correct. You shouldn’t try to handle errors in your code. Or, to put it
another way, you can’t do much when an error is thrown by your code. Instead of try-
ing to handle errors in your code, you should resolve the code that results in these
errors. For example, StackOverflowError is an error that will be thrown by your code
if your code executes a method recursively without any exit condition. This repetition
will consume all the space on the stack and result in a StackOverflowError.

 Option (c) is correct. If you fail to implement either of these options, your code
won’t compile.

 Option (d) is correct. It isn’t mandatory for runtime exceptions to be included in
a method’s throws clause. Usually this inclusion is unnecessary, but if you do include
it, your code will execute without any issues.

532 CHAPTER 7 Exception handling
 Option (e) is incorrect. A runtime exception and all its subclasses are not checked
exceptions.

Q7-3. Examine the following code and select the correct option(s):

class EJavaGuruExcep {
 public static void main(String args[]) {
 EJavaGuruExcep var = new EJavaGuruExcep();
 var.printArrValues(args);
 }
 void printArrValues(String[] arr) {
 try {
 System.out.println(arr[0] + ":" + arr[1]);
 } catch (NullPointerException e) {
 System.out.println("NullPointerException");
 } catch (IndexOutOfBoundsException e) {
 System.out.println("IndexOutOfBoundsException");
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("ArrayIndexOutOfBoundsException");
 }
 }
}

a If the class EJavaGuruExcep is executed using the following command, it prints
NullPointerException:

java EJavaGuruExcep

b If the class EJavaGuruExcep is executed using the following command, it prints
IndexOutOfBoundsException:

java EJavaGuruExcep

c If the class EJavaGuruExcep is executed using the following command, it prints
ArrayIndexOutOfBoundsException:

java EJavaGuruExcep one

d The code will fail to compile.

Answer: d

Explanation: The key to answering this question is to be aware of the following two facts:

■ Exceptions are classes. If an exception’s base class is used in a catch block, it
can catch all the exceptions of its derived class. If you try to catch an exception
from its derived class afterward, the code won’t compile.

■ ArrayIndexOutOfBoundsException is a derived class of IndexOutOfBounds-

Exception.

The rest of the points try to trick you into believing that the question is based on the
arguments passed to a main method.

533Answers to sample exam questions
Q7-4. What is the output of the following code?

class EJava {
 void method() {
 try {
 guru();
 return;
 } finally {
 System.out.println("finally 1");
 }
 }
 void guru() {
 System.out.println("guru");
 throw new StackOverflowError();
 }
 public static void main(String args[]) {
 EJava var = new EJava();
 var.method();
 }
}

a guru
finally 1

b guru
finally 1
Exception in thread "main" java.lang.StackOverflowError

c guru
Exception in thread "main" java.lang.StackOverflowError

d guru

e The code fails to compile.

Answer: b

Explanation: No compilation errors exist with the code.
 The method guru throws StackOverflowError, which is not a checked exception.

Even though your code shouldn’t throw an error, it is possible syntactically. Your code
will compile successfully.

 The call to the method guru is immediately followed by the keyword return, which is
supposed to end the execution of the method method. But the call to guru is placed
within a try-catch block, with a finally block. Because guru doesn’t handle the error
StackOverflowError itself, the control looks for the exception handler in the method
method. This calling method doesn’t handle this error but defines a finally block. The
control then executes the finally block. Because the code can’t find an appropriate
handler to handle this error, it propagates to the JVM, which abruptly halts the code.

Q 7-5. What is the output of the following code?

class Quest5 {
 public static void main(String args[]) {
 int arr[] = new int[5];
 arr = new int[]{1,2,3,4};

534 CHAPTER 7 Exception handling
 int x = arr[1]-- + arr[0]-- /arr[0] * arr[4];
 System.out.println(x);
 }
}

a The code outputs a value.
b The code outputs a value followed by an exception.
c ArithmeticException

d NullPointerException

e IndexOutOfBoundsException

f ArrayIndexOutOfBoundsException

g Compilation error
h None of the above

Answer: c

Explanation: Apart from testing your exception-handling skills, this question also tests
you in operator precedence. The code throws an ArithmeticException in an attempt
to evaluate the following expression:

int x = arr[1]-- + arr[0]-- /arr[0] * arr[4];

Before execution of the preceding line of code, arr[1] stores value 2, arr[0] stores
value 1, and arr[4] isn’t initialized. So an attempt to access arr[4] would result in an
ArrayIndexOutOfBoundsException.

 In an arithmetic operation, post- and pre-increment operators have the highest
precedence. So the first pass reduces this equation to

int x = 2 + 1 /0 * undefined;

Both * and / have equal precedence level here. What matters beyond operator prece-
dence is reading the same-level operations from left to right. This is why / is com-
puted before * in the present expression. So an attempt to execute 1/0 throws an
ArithmeticException.

Q7-6. Which of the following methods will not compile?

a private void method1(String name) {
 if (name.equals("star"))
 throw new IllegalArgumentException(name);
}

b private void method2(int age) {
 if (age > 30)
 throw Exception();
}

535Answers to sample exam questions
c public Object method3(boolean accept) {
 if (accept)
 throw new StackOverflowError();
 else
 return new StackOverflowError();
}

d protected double method4() throws Exception {
 throw new Throwable();
}

e public double method5() throws Exception {
 return 0.7;
}

Answer: b, d

Explanation: Methods that compile successfully might not be implemented correctly.
This question only asks about the methods that will follow the syntax rules so that they
compile successfully.

 Option (a) code compiles successfully. Because IllegalArgumentException is a
runtime exception, method1() can throw it without declaring it to be thrown in its
throws statement.

 Option (b) code won’t compile. method2() throws a checked exception, that is,
Exception, without declaring it to be thrown in its throws statement.

 Although the code in option (c) makes little sense, it will compile successfully. A
method can throw a StackOverflowError (an unchecked exception) without includ-
ing it in the throws clause of its method declaration.

 Option (d) code won’t compile. If a method declares to throw a checked excep-
tion, its body can’t throw a more general exception in its body. method4() declares to
throw Exception but throws Throwable, which is not allowed (Exception subclasses
Throwable).

 Option (e) code will compile successfully. If a method declares to throw Exception,
it might not actually throw it. This only applies to Exception (because Runtime-

Exception subclasses it), runtime exceptions, and errors.

Q7-7. What is the output of the following code?

class TryFinally {
 int tryAgain() {
 int a = 10;
 try {
 ++a;
 } finally {
 a++;
 }
 return a;
 }

536 CHAPTER 7 Exception handling
 public static void main(String args[]) {
 System.out.println(new TryFinally().tryAgain());
 }
}

a 10

b 11

c 12

d Compilation error
e Runtime exception

Answer: c

Explanation: The try block executes, incrementing the value of variable a to 11. This
step is followed by execution of the finally block, which also increments the value of
variable a by 1, to 12. The method tryAgain returns the value 12, which is printed by
the method main.

 There are no compilation issues with the code. A try block can be followed by a
finally block without any catch blocks. Even though the try block doesn’t throw
any exceptions, it compiles successfully. The following is an example of a try-catch
block that won’t compile because it tries to catch a checked exception that’s never
thrown by the try block:

try {
 ++a;
} catch (java.io.FileNotFoundException e) {
}

Q7-8. What is the output of the following code?

class EJavaBase {
 void myMethod() throws ExceptionInInitializerError {
 System.out.println("Base");
 }
}
class EJavaDerived extends EJavaBase {
 void myMethod() throws RuntimeException {
 System.out.println("Derived");
 }
}
class EJava3 {
 public static void main(String args[]) {
 EJavaBase obj = new EJavaDerived();
 obj.myMethod();
 }
}

a Base

b Derived

537Answers to sample exam questions
c Derived
Base

d Base
Derived

e Compilation error

Answer: b

Explanation: The rule that if a base class method doesn’t throw an exception, an over-
riding method in the derived class can’t throw an exception applies only to checked
exceptions. It doesn’t apply to runtime (unchecked) exceptions or errors. A base or
overridden method is free to throw any error or runtime exception.

Q7-9. Which of the following statements are true?

a A user-defined class may not throw an IllegalStateException. It must be
thrown only by Java API classes.

b System.out.println will throw a NullPointerException if an uninitialized
instance variable of type String is passed to it to print its value.

c NumberFormatException is thrown by multiple methods from the Java API
when invalid numbers are passed on as Strings to be converted to the specified
number format.

d ExceptionInInitializerError may be thrown by the JVM when a static ini-
tializer in your code throws a NullPointerException.

Answer: c, d

Option (a) is incorrect. A user-defined class can throw any exception from the Java
API.

 Option (b) is incorrect. An uninitialized instance variable of type String will be
assigned a default value of null. When you pass this variable to System.out.println

to print it, it will print null. If you try to access any non-static member (variable or
method) of this null object, then a NullPointerException will be thrown.

Q7-10. What is the output of the following code?

class EJava {
 void foo() {
 try {
 String s = null;
 System.out.println("1");
 try {
 System.out.println(s.length());
 } catch (NullPointerException e) {
 System.out.println("inner");
 }
 System.out.println("2");

538 CHAPTER 7 Exception handling
 } catch (NullPointerException e) {
 System.out.println("outer");
 }
 }
 public static void main(String args[]) {
 EJava obj = new EJava();
 obj.foo();
 }
}

a 1
inner
2
outer

b 1
outer

c 1
inner

d 1
inner
2

Answer: d

Explanation: First of all, nested try-catch statements don’t throw compilation errors.
 Because the variable s hasn’t been initialized, an attempt to access its method

length() will throw a NullPointerException. The inner try-catch block handles
this exception and prints inner. The control then moves on to complete the remain-
ing code in the outer try-catch block, printing 2. Because the NullPointerException

was already handled in the inner try-catch block, it’s not handled in the outer try-

catch block.

Full mock exam
On the real exam, each question displays the count of correct options that you
should select. The exam engine won’t allow you to select more answer options than
are specified by this number. If you try to do so, a warning will be displayed. The
questions in this mock exam also specify the correct number of answer options to
align it more closely with the real exam.

8.1 Mock exam

ME-Q1) Given the following definition of the classes Animal, Lion, and Jumpable,
select the correct combinations of assignments of a variable that don’t result in
compilation errors or runtime exceptions (select 2 options).

interface Jumpable {}
class Animal {}
class Lion extends Animal implements Jumpable {}

This chapter covers
■ Complete mock exam with 77 questions
■ Answers to all mock exam questions with

extensive explanations and the subobjective on
which each exam question is based
539

540 CHAPTER 8 Full mock exam
a Jumpable var1 = new Jumpable();

b Animal var2 = new Animal();

c Lion var3 = new Animal();

d Jumpable var4 = new Animal();

e Jumpable var5 = new Lion();

f Jumpable var6 = (Jumpable)(new Animal());

ME-Q2) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will make the code print 1? (Select 1 option.)

try {
 String[][] names = {{"Andre", "Mike"}, null, {"Pedro"}};
 System.out.println (names[2][1].substring(0, 2));
} catch (/*INSERT CODE HERE*/) {
 System.out.println(1);
}

a IndexPositionException e

b NullPointerException e

c ArrayIndexOutOfBoundsException e

d ArrayOutOfBoundsException e

ME-Q3) What is the output of the following code? (Select 1 option.)

public static void main(String[] args) {
 int a = 10; String name = null;
 try {
 a = name.length(); //line1
 a++; //line2
 } catch (NullPointerException e){
 ++a;
 return;
 } catch (RuntimeException e){
 a--;
 return;
 } finally {
 System.out.println(a);
 }
}

a 5

b 6

c 10

d 11

e 12

f Compilation error
g No output
h Runtime exception

541Mock exam
ME-Q4) Given the following class definition,

class Student { int marks = 10; }

what is the output of the following code? (Select 1 option.)

class Result {
 public static void main(String... args) {
 Student s = new Student();
 switch (s.marks) {
 default: System.out.println("100");
 case 10: System.out.println("10");
 case 98: System.out.println("98");
 }
 }
}

a 100
10
98

b 10
98

c 100

d 10

ME-Q5) Given the following code, which code can be used to create and initialize an
object of the class ColorPencil? (Select 2 options.)

class Pencil {}
class ColorPencil extends Pencil {
 String color;
 ColorPencil(String color) {this.color = color;}
}

a ColorPencil var1 = new ColorPencil();

b ColorPencil var2 = new ColorPencil(RED);

c ColorPencil var3 = new ColorPencil("RED");

d Pencil var4 = new ColorPencil("BLUE");

ME-Q6) What is the output of the following code? (Select 1 option.)

class Doctor {
 protected int age;
 protected void setAge(int val) { age = val; }
 protected int getAge() { return age; }
}
class Surgeon extends Doctor {
 Surgeon(String val) {
 specialization = val;
 }

542 CHAPTER 8 Full mock exam
 String specialization;
 String getSpecialization() { return specialization; }
}
class Hospital {
 public static void main(String args[]) {
 Surgeon s1 = new Surgeon("Liver");
 Surgeon s2 = new Surgeon("Heart");
 s1.age = 45;
 System.out.println(s1.age + s2.getSpecialization());
 System.out.println(s2.age + s1.getSpecialization());
 }
}

a 45Heart
0Liver

b 45Liver
0Heart

c 45Liver
45Heart

d 45Heart
45Heart

e Class fails to compile.

ME-Q7) What is the output of the following code? (Select 1 option.)

class RocketScience {
 public static void main(String args[]) {
 int a = 0;
 while (a == a++) {
 a++;
 System.out.println(a);
 }
 }
}

a The while loop won’t execute; nothing will be printed.
b The while loop will execute indefinitely, printing all numbers, starting from 1.
c The while loop will execute indefinitely, printing all even numbers, starting

from 0.
d The while loop will execute indefinitely, printing all even numbers, starting

from 2.
e The while loop will execute indefinitely, printing all odd numbers, starting

from 1.
f The while loop will execute indefinitely, printing all odd numbers, starting

from 3.

543Mock exam
ME-Q8) Given the following statements,

■ com.ejava is a package
■ class Person is defined in package com.ejava
■ class Course is defined in package com.ejava

which of the following options correctly import the classes Person and Course in the
class MyEJava? (Select 3 options.)

a import com.ejava.*;
class MyEJava {}

b import com.ejava;
class MyEJava {}

c import com.ejava.Person;
import com.ejava.Course;
class MyEJava {}

d import com.ejava.Person;
import com.ejava.*;
class MyEJava {}

ME-Q9) Given that the following classes Animal and Forest are defined in the same
package, examine the code and select the correct statements (select 2 options).

line1> class Animal {
line2> public void printKing() {
line3> System.out.println("Lion");
line4> }
line5> }

line6> class Forest {
line7> public static void main(String... args) {
line8> Animal anAnimal = new Animal();
line9> anAnimal.printKing();
line10> }
line11> }

a The class Forest prints Lion.
b If the code on line 2 is changed as follows, the class Forest will print Lion:

private void printKing() {

c If the code on line 2 is changed as follows, the class Forest will print Lion:

void printKing() {

d If the code on line 2 is changed as follows, the class Forest will print Lion:

default void printKing() {

544 CHAPTER 8 Full mock exam
ME-Q10) Given the following code,

class MainMethod {
 public static void main(String... args) {
 System.out.println(args[0]+":"+ args[2]);
 }
}

what is its output if it’s executed using the following command? (Select 1 option.)

java MainMethod 1+2 2*3 4-3 5+1

a java:1+2

b java:3

c MainMethod:2*3

d MainMethod:6

e 1+2:2*3

f 3:3

g 6

h 1+2:4-3

i 31

j 4

ME-Q11) What is the output of the following code? (Select 1 option.)

interface Moveable {
 int move(int distance);
}
class Person {
 static int MIN_DISTANCE = 5;
 int age;
 float height;
 boolean result;
 String name;
}
public class EJava {
 public static void main(String arguments[]) {
 Person person = new Person();
 Moveable moveable = (x) -> Person.MIN_DISTANCE + x;
 System.out.println(person.name + person.height + person.result
 + person.age + moveable.move(20));
 }
}

a null0.0false025

b null0false025

c null0.0ffalse025

d 0.0false025

545Mock exam
e 0false025

f 0.0ffalse025

g null0.0true025

h 0true025

i 0.0ftrue025

j Compilation error
k Runtime exception

ME-Q12) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will make the code print the value of the variable pagesPerMin? (Select 1
option.)

class Printer {
 int inkLevel;
}
class LaserPrinter extends Printer {
 int pagesPerMin;
 public static void main(String args[]) {
 Printer myPrinter = new LaserPrinter();
 System.out.println(/* INSERT CODE HERE */);
 }
}

a (LaserPrinter)myPrinter.pagesPerMin

b myPrinter.pagesPerMin

c LaserPrinter.myPrinter.pagesPerMin

d ((LaserPrinter)myPrinter).pagesPerMin

ME-Q13) What is the output of the following code? (Select 1 option.)

interface Keys {
 String keypad(String region, int keys);
}
public class Handset {
 public static void main(String... args) {
 double price;
 String model;
 Keys varKeys = (region, keys) ->
 {if (keys >= 32)
 return region; else return "default";};
 System.out.println(model + price + varKeys.keypad("AB", 32));
 }
}

a null0AB

b null0.0AB

c null0default

d null0.0default

546 CHAPTER 8 Full mock exam
e 0

f 0.0

g Compilation error

ME-Q14) What is the output of the following code? (Select 1 option.)

public class Sales {
 public static void main(String args[]) {
 int salesPhone = 1;
 System.out.println(salesPhone++ + ++salesPhone +
 ++salesPhone);
 }
}

a 5

b 6

c 8

d 9

ME-Q15) Which of the following options defines the correct structure of a Java class
that compiles successfully? (Select 1 option.)

a package com.ejava.guru;
package com.ejava.oracle;
class MyClass {
 int age = /* 25 */ 74;
}

b import com.ejava.guru.*;
import com.ejava.oracle.*;
package com.ejava;
class MyClass {
 String name = "e" + "Ja /*va*/ v";
}

c class MyClass {
 import com.ejava.guru.*;
}

d class MyClass {
 int abc;
 String course = //this is a comment
 "eJava";
}

e None of the above

ME-Q16) What is the output of the following code? (Select 1 option.)

class OpPre {
 public static void main(String... args) {
 int x = 10;
 int y = 20;

547Mock exam
 int z = 30;
 if (x+y%z > (x+(-y)*(-z))) {
 System.out.println(x + y + z);
 }
 }
}

a 60

b 59

c 61

d No output.
e The code fails to compile.

ME-Q17) Select the most appropriate definition of the variable name and the line num-
ber on which it should be declared so that the following code compiles successfully
(choose 1 option).

class EJava {
 // LINE 1
 public EJava() {
 System.out.println(name);
 }
 void calc() {
 // LINE 2
 if (8 > 2) {
 System.out.println(name);
 }
 }
 public static void main(String... args) {
 // LINE 3
 System.out.println(name);
 }
}

a Define static String name; on line 1.
b Define String name; on line 1.
c Define String name; on line 2.
d Define String name; on line 3.

ME-Q18) Examine the following code and select the correct statement (choose 1 option).

line1> class Emp {
line2> Emp mgr = new Emp();
line3> }
line4> class Office {
line5> public static void main(String args[]) {
line6> Emp e = null;
line7> e = new Emp();
line8> e = null;
line9> }
line10> }

548 CHAPTER 8 Full mock exam
a The object referred to by object e is eligible for garbage collection on line 8.
b The object referred to by object e is eligible for garbage collection on line 9.
c The object referred to by object e isn’t eligible for garbage collection because

its member variable mgr isn’t set to null.
d The code throws a runtime exception and the code execution never reaches

line 8 or line 9.

ME-Q19) Given the following,

long result;

which options are correct declarations of methods that accept two String arguments
and an int argument and whose return value can be assigned to the variable result?
(Select 3 options.)

a Short myMethod1(String str1, int str2, String str3)

b Int myMethod2(String val1, int val2, String val3)

c Byte myMethod3(String str1, str2, int a)

d Float myMethod4(String val1, val2, int val3)

e Long myMethod5(int str2, String str3, String str1)

f Long myMethod6(String... val1, int val2)

g Short myMethod7(int val1, String... val2)

ME-Q20) Which of the following will compile successfully? (Select 3 options.)

a int eArr1[] = {10, 23, 10, 2};

b int[] eArr2 = new int[10];

c int[] eArr3 = new int[] {};

d int[] eArr4 = new int[10] {};

e int eArr5[] = new int[2] {10, 20};

ME-Q21) Assume that Oracle has asked you to create a method that returns the con-
catenated value of two String objects. Which of the following methods can accom-
plish this job? (Select 2 options.)

a public String add(String 1, String 2) {
 return str1 + str2;
}

b private String add(String s1, String s2) {
 return s1.concat(s2);
}

c protected String add(String value1, String value2) {
 return value2.append(value2);
}

549Mock exam
d String subtract(String first, String second) {
 return first.concat(second.substring(0));
}

ME-Q22) Given the following,

int ctr = 10;
char[] arrC1 = new char[]{'P','a','u','l'};
char[] arrC2 = {'H','a','r','r','y'};
//INSERT CODE HERE
System.out.println(ctr);

which options, when inserted at //INSERT CODE HERE, will output 14? (Choose 2 options.)

a for (char c1 : arrC1) {
 for (char c2 : arrC2) {
 if (c2 == 'a') break;
 ++ctr;
 }
}

b for (char c1 : arrC1)
 for (char c2 : arrC2) {
 if (c2 == 'a') break;
 ++ctr;
 }

c for (char c1 : arrC1)
 for (char c2 : arrC2)
 if (c2 == 'a') break;
 ++ctr;

d for (char c1 : arrC1) {
 for (char c2 : arrC2) {
 if (c2 == 'a') continue;
 ++ctr;
 }
}

ME-Q23) Given the following definitions of the class ChemistryBook, select the state-
ments that are correct individually (choose 2 options).

import java.util.ArrayList;
class ChemistryBook {
 public void read() {} //METHOD1
 public String read() { return null; } //METHOD2
 ArrayList read(int a) { return null; } //METHOD3
}

a Methods marked with //METHOD1 and //METHOD2 are correctly overloaded
methods.

b Methods marked with //METHOD2 and //METHOD3 are correctly overloaded
methods.

550 CHAPTER 8 Full mock exam
c Methods marked with //METHOD1 and //METHOD3 are correctly overloaded
methods.

d All the methods—methods marked with //METHOD1, //METHOD2, and //METHOD3—
are correctly overloaded methods.

ME-Q24) Given the following,

final class Home {
 String name;
 int rooms;
 //INSERT CONSTRUCTOR HERE
}

which options, when inserted at //INSERT CONSTRUCTOR HERE, will define valid over-
loaded constructors for the class Home? (Choose 3 options.)

a Home() {}

b Float Home() {}

c protected Home(int rooms) {}

d final Home() {}

e private Home(long name) {}

f float Home(int rooms, String name) {}

g static Home() {}

ME-Q25) Given the following code, which option, if used to replace // INSERT CODE
HERE, will make the code print numbers that are completely divisible by 14? (Select 1
option.)

for (int ctr = 2; ctr <= 30; ++ctr) {
 if (ctr % 7 != 0)
 //INSERT CODE HERE
 if (ctr % 14 == 0)
 System.out.println(ctr);
}

a continue;

b exit;

c break;

d end;

ME-Q26) What is the output of the following code? (Select 1 option.)

import java.util.function.Predicate;
public class MyCalendar {
 public static void main(String arguments[]) {
 Season season1 = new Season();
 season1.name = "Spring";

551Mock exam
 Season season2 = new Season();
 season2.name = "Autumn";

 Predicate<String> aSeason = (s) -> s == "Summer" ?
 season1.name : season2.name;
 season1 = season2;
 System.out.println(season1.name);
 System.out.println(season2.name);
 System.out.println(aSeason.test(new String("Summer")));
 }
}
class Season {
 String name;
}

a String
Autumn
false

b Spring
String
false

c Autumn
Autumn
false

d Autumn
String
true

e Compilation error
f Runtime exception

ME-Q27) What is true about the following code? (Select 1 option.)

class Shoe {}
class Boot extends Shoe {}
class ShoeFactory {
 ShoeFactory(Boot val) {
 System.out.println("boot");
 }
 ShoeFactory(Shoe val) {
 System.out.println("shoe");
 }
}

a The class ShoeFactory has a total of two overloaded constructors.
b The class ShoeFactory has three overloaded constructors, two user-defined

constructors, and one default constructor.
c The class ShoeFactory will fail to compile.
d The addition of the following constructor will increment the number of con-

structors of the class ShoeFactory to 3:

private ShoeFactory (Shoe arg) {}

552 CHAPTER 8 Full mock exam
ME-Q28) Given the following definitions of the classes ColorPencil and TestColor,
which option, if used to replace //INSERT CODE HERE, will initialize the instance vari-
able color of the reference variable myPencil with the String literal value "RED"?
(Select 1 option.)

class ColorPencil {
 String color;
 ColorPencil(String color) {
 //INSERT CODE HERE
 }
}
class TestColor {
 ColorPencil myPencil = new ColorPencil("RED");
}

a this.color = color;

b color = color;

c color = RED;

d this.color = RED;

ME-Q29) What is the output of the following code? (Select 1 option.)

class EJavaCourse {
 String courseName = "Java";
}
class University {
 public static void main(String args[]) {
 EJavaCourse courses[] = { new EJavaCourse(), new EJavaCourse() };
 courses[0].courseName = "OCA";
 for (EJavaCourse c : courses) c = new EJavaCourse();
 for (EJavaCourse c : courses) System.out.println(c.courseName);
 }
}

a Java
Java

b OCA
Java

c OCA
OCA

d None of the above

ME-Q30) What is the output of the following code? (Select 1 option.)

class Phone {
 static void call() {
 System.out.println("Call-Phone");
 }
}

553Mock exam
class SmartPhone extends Phone{
 static void call() {
 System.out.println("Call-SmartPhone");
 }
}
class TestPhones {
 public static void main(String... args) {
 Phone phone = new Phone();
 Phone smartPhone = new SmartPhone();
 phone.call();
 smartPhone.call();
 }
}

a Call-Phone
Call-Phone

b Call-Phone
Call-SmartPhone

c Call-Phone
null

d null
Call-SmartPhone

ME-Q31) Given the following code, which of the following statements are true? (Select 3
options.)

class MyExam {
 void question() {
 try {
 question();
 } catch (StackOverflowError e) {
 System.out.println("caught");
 }
 }
 public static void main(String args[]) {
 new MyExam().question();
 }
}

a The code will print caught.
b The code won’t print caught.
c The code would print caught if StackOverflowError were a runtime exception.
d The code would print caught if StackOverflowError were a checked exception.
e The code would print caught if question() throws the exception NullPointer-

Exception.

ME-Q32) A class Student is defined as follows:

public class Student {
 private String fName;
 private String lName;

554 CHAPTER 8 Full mock exam
 public Student(String first, String last) {
 fName = first; lName = last;
 }
 public String getName() { return fName + lName; }
}

The creator of the class later changes the method getName as follows:

 public String getName() {
 return fName + " " + lName;
 }

What are the implications of this change? (Select 2 options.)

a The classes that were using the class Student will fail to compile.
b The classes that were using the class Student will work without any compila-

tion issues.
c The class Student is an example of a well-encapsulated class.
d The class Student exposes its instance variable outside the class.

ME-Q33) What is the output of the following code? (Select 1 option.)

class ColorPack {
 int shadeCount = 12;
 static int getShadeCount() {
 return shadeCount;
 }
}
class Artist {
 public static void main(String args[]) {
 ColorPack pack1 = new ColorPack();
 System.out.println(pack1.getShadeCount());
 }
}

a 10

b 12

c No output
d Compilation error

ME-Q34) Paul defined his Laptop and Workshop classes to upgrade his laptop’s mem-
ory. Do you think he succeeded? What is the output of this code? (Select 1 option.)

class Laptop {
 String memory = "1 GB";
}
class Workshop {
 public static void main(String args[]) {
 Laptop life = new Laptop();
 repair(life);

555Mock exam
 System.out.println(life.memory);
 }
 public static void repair(Laptop laptop) {
 laptop.memory = "2 GB";
 }
}

a 1 GB
b 2 GB
c Compilation error
d Runtime exception

ME-Q35) What is the output of the following code? (Select 1 option.)

public class Application {
 public static void main(String... args) {
 double price = 10;
 String model;
 if (price > 10)
 model = "Smartphone";
 else if (price <= 10)
 model = "landline";
 System.out.println(model);
 }
}

a landline

b Smartphone

c No output
d Compilation error

ME-Q36) What is the output of the following code? (Select 1 option.)

class EString {
 public static void main(String args[]) {
 String eVal = "123456789";
 System.out.println(eVal.substring(eVal.indexOf("2"),

➥ eVal.indexOf("0")).concat("0"));
 }
}

a 234567890

b 34567890

c 234456789

d 3456789

e Compilation error
f Runtime exception

556 CHAPTER 8 Full mock exam
ME-Q37) Examine the following code and select the correct statements (choose
2 options).

class Artist {
 Artist assistant;
}
class Studio {
 public static void main(String... args) {
 Artist a1 = new Artist();
 Artist a2 = new Artist();
 a2.assistant = a1;
 a2 = null; // Line 1
 }
 // Line 2
}

a At least two objects are garbage collected on line 1.
b At least one object is garbage collected on line 1.
c No objects are garbage collected on line 1.
d The number of objects that are garbage collected on line 1 is unknown.
e At least two objects are eligible for garbage collection on line 2.

ME-Q38) What is the output of the following code? (Select 1 option.)

class Book {
 String ISBN;
 Book(String val) {
 ISBN = val;
 }
}
class TestEquals {
 public static void main(String... args) {
 Book b1 = new Book("1234-4657");
 Book b2 = new Book("1234-4657");
 System.out.print(b1.equals(b2) +":");
 System.out.print(b1 == b2);
 }
}

a true:false

b true:true

c false:true

d false:false

e Compilation error—there is no equals method in the class Book.
f Runtime exception.

557Mock exam
ME-Q39) Which of the following statements are correct? (Select 2 options.)

a StringBuilder sb1 = new StringBuilder() will create a StringBuilder

object with no characters but with an initial capacity to store 16 characters.
b StringBuilder sb1 = new StringBuilder(5*10) will create a StringBuilder

object with a value of 50.
c Unlike the class String, the concat method in StringBuilder modifies the

value of a StringBuilder object.
d The insert method can be used to insert a character, number, or String at

the start or end or a specified position of a StringBuilder.

ME-Q40) Given the following definition of the class Animal and the interface Jump,
select the correct array declarations and initialization (choose 3 options).

interface Jump {}
class Animal implements Jump {}

a Jump eJump1[] = {null, new Animal()};

b Jump[] eJump2 = new Animal()[22];

c Jump[] eJump3 = new Jump[10];

d Jump[] eJump4 = new Animal[87];

e Jump[] eJump5 = new Jump()[12];

ME-Q41)What is the output of the following code? (Select 1 option.)

import java.util.*;
class EJGArrayL {
 public static void main(String args[]) {
 ArrayList<String> seasons = new ArrayList<>();
 seasons.add(1, "Spring"); seasons.add(2, "Summer");
 seasons.add(3, "Autumn"); seasons.add(4, "Winter");
 seasons.remove(2);

 for (String s : seasons)
 System.out.print(s + ", ");
 }
}

a Spring, Summer, Winter,

b Spring, Autumn, Winter,

c Autumn, Winter,

d Compilation error
e Runtime exception

558 CHAPTER 8 Full mock exam
ME-Q42) What is the output of the following code? (Select 1 option.)

class EIf {
 public static void main(String args[]) {
 bool boolean = false;
 do {
 if (boolean = true)
 System.out.println("true");
 else
 System.out.println("false");
 }
 while(3.3 + 4.7 > 8); }
}

a The class will print true.
b The class will print false.
c The class will print true if the if condition is changed to boolean == true.
d The class will print false if the if condition is changed to boolean != true.
e The class won’t compile.
f Runtime exception.

ME-Q43) How many Fish did the Whale (defined as follows) manage to eat? Examine
the following code and select the correct statements (choose 2 options).

class Whale {
 public static void main(String args[]) {
 boolean hungry = false;
 while (hungry=true) {
 ++Fish.count;
 }
 System.out.println(Fish.count);
 }
}
class Fish {
 static byte count;
}

a The code doesn’t compile.
b The code doesn’t print a value.
c The code prints 0.
d Changing ++Fish.count to Fish.count++ will give the same results.

ME-Q44) Given the following code, which option, if used to replace /* REPLACE CODE
HERE */, will make the code print the name of the phone with the position at which
it’s stored in the array phones? (Select 1 option.)

class Phones {
 public static void main(String args[]) {
 String phones[]= {"BlackBerry", "Android", "iPhone"};

559Mock exam
 for (String phone : phones)
 /* REPLACE CODE HERE */
 }
}

a System.out.println(phones.count + ":" + phone);

b System.out.println(phones.counter + ":" + phone);

c System.out.println(phones.getPosition() + ":" + phone);

d System.out.println(phones.getCtr() + ":" + phone);

e System.out.println(phones.getCount() + ":" + phone);

f System.out.println(phones.pos + ":" + phone);

g None of the above

ME-Q45) Given the following code,

Byte b1 = (byte)100; // 1
Integer i1 = (int)200; // 2
Long l1 = (long)300; // 3
Float f1 = (float)b1 + (

0int)l1; // 4
String s1 = 300; // 5
if (s1 == (b1 + i1)) // 6
 s1 = (String)500; // 7
else // 8
 f1 = (int)100; // 9
System.out.println(s1 + ":" + f1); // 10

what is the output? Select 1 option.

a Code fails compilation at line numbers 1, 3, 4, 7.
b Code fails compilation at line numbers 6, 7.
c Code fails compilation at line numbers 7, 9.
d Code fails compilation at line numbers 4, 5, 6, 7, 9.
e No compilation error—outputs 500:300.
f No compilation error—outputs 300:100.
g Runtime exception.

ME-Q46) What is the output of the following code? (Select 1 option.)

class Book {
 String ISBN;
 Book(String val) {
 ISBN = val;
 }
 public boolean equals(Object b) {
 if (b instanceof Book) {
 return ((Book)b).ISBN.equals(ISBN);
 }

560 CHAPTER 8 Full mock exam
 else
 return false;
 }
}

class TestEquals {
 public static void main(String args[]) {
 Book b1 = new Book("1234-4657");
 Book b2 = new Book("1234-4657");
 LocalDate release = null;
 release = b1.equals(b2) ? b1 == b2? LocalDate.of(2050,12,12):
 LocalDate.parse("2072-02-01"):LocalDate.parse("9999-09-09");
 System.out.print(release);
 }
}

a 2050-12-12

b 2072-02-01

c 9999-09-09

d Compilation error
e Runtime exception

ME-Q47) What is the output of the following code? (Select 1 option.)

int a = 10;
for (; a <= 20; ++a) {
 if (a%3 == 0) a++; else if (a%2 == 0) a=a*2;
 System.out.println(a);
}

a 11
13
15
17
19

b 20

c 11
14
17
20

d 40

e Compilation error

ME-Q48) Given the following code, which option, if used to replace // INSERT CODE
HERE, will define an overloaded rideWave method? (Select 1 option.)

class Raft {
 public String rideWave() { return null; }
 //INSERT CODE HERE
}

561Mock exam
a public String[] rideWave() { return null; }

b protected void riceWave(int a) {}

c private void rideWave(int value, String value2) {}

d default StringBuilder rideWave (StringBuffer a) { return null; }

ME-Q49) Given the following code, which option, if used to replace // INSERT CODE
HERE, will correctly calculate the sum of all the even numbers in the array num and
store it in the variable sum? (Select 1 option.)

int num[] = {10, 15, 2, 17};
int sum = 0;
for (int number : num) {
 //INSERT CODE HERE
 sum += number;
}

a if (number % 2 == 0)
 continue;

b if (number % 2 == 0)
 break;

c if (number % 2 != 0)
 continue;

d if (number % 2 != 0)
 break;

ME-Q50) What is the output of the following code? (Select 1 option.)

class Op {
 public static void main(String... args) {
 int a = 0;
 int b = 100;
 Predicate<Integer> compare = (var) -> var++ == 10;
 if (!b++ > 100 && compare.test(a)) {
 System.out.println(a+b);
 }
 }
}

a 100

b 101

c 102

d Code fails to compile.
e No output is produced.

562 CHAPTER 8 Full mock exam
ME-Q51) Choose the option that meets the following specification: Create a well-
encapsulated class Pencil with one instance variable model. The value of model should
be accessible and modifiable outside Pencil. (Select 1 option.)

a class Pencil {
 public String model;
}

b class Pencil {
 public String model;
 public String getModel() { return model; }
 public void setModel(String val) { model = val; }
}

c class Pencil {
 private String model;
 public String getModel() { return model; }
 public void setModel(String val) { model = val; }
}

d class Pencil {
 public String model;
 private String getModel() { return model; }
 private void setModel(String val) { model = val; }
}

ME-Q52) What is the output of the following code? (Select 1 option.)

class Phone {
 void call() {
 System.out.println("Call-Phone");
 }
}
class SmartPhone extends Phone{
 void call() {
 System.out.println("Call-SmartPhone");
 }
}
class TestPhones {
 public static void main(String[] args) {
 Phone phone = new Phone();
 Phone smartPhone = new SmartPhone();
 phone.call();
 smartPhone.call();
 }
}

a Call-Phone
Call-Phone

b Call-Phone
Call-SmartPhone

c Call-Phone
null

d null
Call-SmartPhone

563Mock exam
ME-Q53) What is the output of the following code? (Select 1 option.)

class Phone {
 String keyboard = "in-built";
}
class Tablet extends Phone {
 boolean playMovie = false;
}
class College2 {
 public static void main(String args[]) {
 Phone phone = new Tablet();
 System.out.println(phone.keyboard + ":" + phone.playMovie);
 }
}

a in-built:false

b in-built:true

c null:false

d null:true

e Compilation error

ME-Q54) What is the output of the following code? (Select 1 option.)

public class Wall {
 public static void main(String args[]) {
 double area = 10.98;
 String color;
 if (area < 5)
 color = "red";
 else
 color = "blue";
 System.out.println(color);
 }
}

a red

b blue

c No output
d Compilation error

ME-Q55) What is the output of the following code? (Select 1 option.)

class Diary {
 int pageCount = 100;
 int getPageCount() {
 return pageCount;
 }
 void setPageCount(int val) {
 pageCount = val;
 }
}

564 CHAPTER 8 Full mock exam
class ClassRoom {
 public static void main(String args[]) {
 System.out.println(new Diary().getPageCount());
 new Diary().setPageCount(200);
 System.out.println(new Diary().getPageCount());
 }
}

a 100
200

b 100
100

c 200
200

d Code fails to compile.

ME-Q56) How many times do you think you can shop with the following code (that is,
what’s the output of the following code)? (Select 1 option.)

class Shopping {
 public static void main(String args[]) {
 boolean bankrupt = true;
 do System.out.println("enjoying shopping"); bankrupt = false;
 while (!bankrupt);
 }
}

a The code prints enjoying shopping once.
b The code prints enjoying shopping twice.
c The code prints enjoying shopping in an infinite loop.
d The code fails to compile.

ME-Q57) Which of the following options are valid for defining multidimensional
arrays? (Choose 4 options.)

a String ejg1[][] = new String[1][2];

b String ejg2[][] = new String[][] { {}, {} };

c String ejg3[][] = new String[2][2];

d String ejg4[][] = new String[][]{{null},new String[]{"a","b","c"},

{new String()}};

e String ejg5[][] = new String[][2];

f String ejg6[][] = new String[][]{"A", "B"};

g String ejg7[][] = new String[]{{"A"}, {"B"}};

565Mock exam
ME-Q58) What is the output of the following code? (Select 1 option.)

class Laptop {
 String memory = "1GB";
}
class Workshop {
 public static void main(String args[]) {
 Laptop life = new Laptop();
 repair(life);
 System.out.println(life.memory);
 }
 public static void repair(Laptop laptop) {
 laptop = new Laptop();
 laptop.memory = "2GB";
 }
}

a 1 GB
b 2 GB
c Compilation error
d Runtime exception

ME-Q59) Given the following code, which option, if used to replace //INSERT CODE
HERE, will enable a reference variable of type Roamable to refer to an object of the
Phone class? (Select 1 option.)

interface Roamable{}
class Phone {}
class Tablet extends Phone implements Roamable {
 //INSERT CODE HERE
}

a Roamable var = new Phone();

b Roamable var = (Roamable)Phone();

c Roamable var = (Roamable)new Phone();

d Because the interface Roamable and the class Phone are unrelated, a refer-
ence variable of type Roamable can’t refer to an object of the class Phone.

ME-Q60) What is the output of the following code? (Select 1 option.)

class Paper {
 Paper() {
 this(10);
 System.out.println("Paper:0");
 }
 Paper(int a) { System.out.println("Paper:1"); }
}
class PostIt extends Paper {}

566 CHAPTER 8 Full mock exam
class TestPostIt {
 public static void main(String[] args) {
 Paper paper = new PostIt();
 }
}

a Paper:1

b Paper:0

c Paper:0
Paper:1

d Paper:1
Paper:0

ME-Q61) Examine the following code and select the correct statement (choose 1
option).

line1> class StringBuilders {
line2> public static void main(String... args) {
line3> StringBuilder sb1 = new StringBuilder("eLion");
line4> String ejg = null;
line5> ejg = sb1.append("X").substring(sb1.indexOf("L"),

sb1.indexOf("X"));
line6> System.out.println(ejg);
line7> }
line8> }

a The code will print LionX.
b The code will print Lion.
c The code will print Lion if line 5 is changed to the following:

ejg = sb1.append("X").substring(sb1.indexOf('L'), sb1.indexOf('X'));

d The code will compile only when line 4 is changed to the following:

StringBuilder ejg = null;

ME-Q62) Given the following code,

interface Jumpable {
 int height = 1;
 default void worldRecord() {
 System.out.print(height);
 }
}
interface Moveable {
 int height = 2;
 static void worldRecord() {
 System.out.print(height);
 }

}

567Mock exam
class Chair implements Jumpable, Moveable {
 int height = 3;
 Chair() {
 worldRecord();
 }
 public static void main(String args[]) {
 Jumpable j = new Chair();
 Moveable m = new Chair();
 Chair c = new Chair();
 }
}

what is the output? Select 1 option.

a 111

b 123

c 333

d 222

e Compilation error
f Runtime exception

ME-Q63) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will enable the class Jungle to determine whether the reference variable
animal refers to an object of the class Lion and print 1? (Select 1 option.)

class Animal{ float age; }
class Lion extends Animal { int claws;}
class Jungle {
 public static void main(String args[]) {
 Animal animal = new Lion();
 /* INSERT CODE HERE */
 System.out.println(1);
 }
}

a if (animal instanceof Lion)

b if (animal instanceOf Lion)

c if (animal == Lion)

d if (animal = Lion)

ME-Q64) Given that the file Test.java, which defines the following code, fails to com-
pile, select the reasons for the compilation failure (choose 2 options).

class Person {
 Person(String value) {}
}
class Employee extends Person {}

568 CHAPTER 8 Full mock exam
class Test {
 public static void main(String args[]) {
 Employee e = new Employee();
 }
}

a The class Person fails to compile.
b The class Employee fails to compile.
c The default constructor can call only a no-argument constructor of a base

class.
d The code that creates the object of the class Employee in the class Test did

not pass a String value to the constructor of the class Employee.

ME-Q65) Examine the following code and select the correct statements (choose 2
options).

class Bottle {
 void Bottle() {}
 void Bottle(WaterBottle w) {}
}
class WaterBottle extends Bottle {}

a A base class can’t pass reference variables of its defined class as method
parameters in constructors.

b The class compiles successfully—a base class can use reference variables of its
derived class as method parameters.

c The class Bottle defines two overloaded constructors.
d The class Bottle can access only one constructor.

ME-Q66) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will cause the code to print 110? (Select 1 option.)

class Book {
 private int pages = 100;
}
class Magazine extends Book {
 private int interviews = 2;
 private int totalPages() { /* INSERT CODE HERE */ }

 public static void main(String[] args) {
 System.out.println(new Magazine().totalPages());
 }

}

a return super.pages + this.interviews*5;

b return this.pages + this.interviews*5;

c return super.pages + interviews*5;

569Mock exam
d return pages + this.interviews*5;

e None of the above

ME-Q67) Given the following code,

class NoInkException extends Exception {}
class Pen{
 void write(String val) throws NoInkException {
 int c = (10 - 7)/ (8 - 2 - 6);
 }
 void article() {
 //INSERT CODE HERE
 }
}

which of the options, when inserted at //INSERT CODE HERE, will define a valid use of
the method write in the method article? (Select 2 options.)

a try {
 new Pen().write("story");
} catch (NoInkException e) {}

b try {
 new Pen().write("story");
} finally {}

c try {
 write("story");
} catch (Exception e) {}

d try {
 new Pen().write("story");
} catch (RuntimeException e) {}

ME-Q68) What is the output of the following code? (Select 1 option.)

class EMyMethods {
 static String name = "m1";
 void riverRafting() {
 String name = "m2";
 if (8 > 2) {
 String name = "m3";
 System.out.println(name);
 }
 }
 public static void main(String[] args) {
 EMyMethods m1 = new EMyMethods();
 m1.riverRafting();
 }
}

a m1

b m2

c m3

d The code fails to compile.

570 CHAPTER 8 Full mock exam
ME-Q69) What is the output of the following code? (Select 1 option.)

class EBowl {
 public static void main(String args[]) {
 String eFood = "Corn";
 System.out.println(eFood);
 mix(eFood);
 System.out.println(eFood);
 }
 static void mix(String foodIn) {
 foodIn.concat("A");
 foodIn.replace('C', 'B');
 }
}

a Corn
BornA

b Corn
CornA

c Corn
Born

d Corn
Corn

ME-Q70) Which statement is true for the following code? (Select 1 option.)

class SwJava {
 public static void main(String args[]) {
 String[] shapes = {"Circle", "Square", "Triangle"};
 switch (shapes) {
 case "Square": System.out.println("Circle"); break;
 case "Triangle": System.out.println("Square"); break;
 case "Circle": System.out.println("Triangle"); break;
 }
 }
}

a The code prints Circle.
b The code prints Square.
c The code prints Triangle.
d The code prints

Circle
Square
Triangle

e The code prints

Triangle
Circle
Square

f The code fails to compile.

571Mock exam
ME-Q71) Given the following definition of the classes Person, Father, and Home,
which option, if used to replace //INSERT CODE HERE, will cause the code to compile
successfully? (Select 3 options.)

class Person {}
class Father extends Person {
 public void dance() throws ClassCastException {}
}
class Home {
 public static void main(String args[]) {
 Person p = new Person();
 try {
 ((Father)p).dance();
 }
 //INSERT CODE HERE
 }
}

a catch (NullPointerException e) {}
catch (ClassCastException e) {}
catch (Exception e) {}
catch (Throwable t) {}

b catch (ClassCastException e) {}
catch (NullPointerException e) {}
catch (Exception e) {}
catch (Throwable t) {}

c catch (ClassCastException e) {}
catch (Exception e) {}
catch (NullPointerException e) {}
catch (Throwable t) {}

d catch (Throwable t) {}
catch (Exception e) {}
catch (ClassCastException e) {}
catch (NullPointerException e) {}

e finally {}

ME-Q72) What is the output of the following code? (Select 1 option.)

import java.time.*;
class Camera {
 public static void main(String args[]) {
 int hours;
 LocalDateTime now = LocalDateTime.of(2020, 10, 01, 0 , 0);
 LocalDate before = now.toLocalDate().minusDays(1);
 LocalTime after = now.toLocalTime().plusHours(1);

 while (before.isBefore(after) && hours < 4) {
 ++hours;
 }
 System.out.println("Hours:" + hours);
 }
}

572 CHAPTER 8 Full mock exam
a The code prints Camera:null.
b The code prints Camera:Adjust settings manually.
c The code prints Camera:.
d The code will fail to compile.

ME-Q73) The output of the class TestEJavaCourse, defined as follows, is 300:

class Course {
 int enrollments;
}
class TestEJavaCourse {
 public static void main(String args[]) {
 Course c1 = new Course();
 Course c2 = new Course();
 c1.enrollments = 100;
 c2.enrollments = 200;
 System.out.println(c1.enrollments + c2.enrollments);
 }
}

What will happen if the variable enrollments is defined as a static variable? (Select
1 option.)

a No change in output. TestEJavaCourse prints 300.
b Change in output. TestEJavaCourse prints 200.
c Change in output. TestEJavaCourse prints 400.
d The class TestEJavaCourse fails to compile.

ME-Q74) What is the output of the following code? (Select 1 option.)

String ejgStr[] = new String[][]{{null},new String[]{"a","b","c"},{new
String()}}[0] ;

String ejgStr1[] = null;
String ejgStr2[] = {null};

System.out.println(ejgStr[0]);
System.out.println(ejgStr2[0]);
System.out.println(ejgStr1[0]);

a null
NullPointerException

b null
null
NullPointerException

c NullPointerException

d null
null
null

573Mock exam
ME-Q75) Examine the following code and select the correct statement (choose 1 option).

import java.util.*;
class Person {}
class Emp extends Person {}

class TestArrayList {
 public static void main(String[] args) {
 ArrayList<Object> list = new ArrayList<>();
 list.add(new String("1234")); //LINE1
 list.add(new Person()); //LINE2
 list.add(new Emp()); //LINE3
 list.add(new String[]{"abcd", "xyz"}); //LINE4
 list.add(LocalDate.now().plus(1)); //LINE5
 }
}

a The code on line 1 won’t compile.
b The code on line 2 won’t compile.
c The code on line 3 won’t compile.
d The code on line 4 won’t compile.
e The code on line 5 won’t compile.
f None of the above.
g All the options from (a) through (e).

ME-Q76) What is the output of the following code? (Select 1 option.)

public class If2 {
 public static void main(String args[]) {
 int a = 10; int b = 20; boolean c = false;
 if (b > a) if (++a == 10) if (c!=true) System.out.println(1);
 else System.out.println(2); else System.out.println(3);
 }
}

a 1

b 2

c 3

d No output

ME-Q77) Given the following code,

interface Movable {
 default int distance() {
 return 10;
 }
}
interface Jumpable {
 default int distance() {

574 CHAPTER 8 Full mock exam
 return 10;
 }
}

which options correctly define the class Person that implements interfaces Movable
and Jumpable? (Select 1 option.)

a class Person implements Movable, Jumpable {}

b class Person implements Movable, Jumpable {
 default int distance() {
 return 10;
 }
}

c class Person implements Movable, Jumpable {
 public int distance() {
 return 10;
 }
}

d class Person implements Movable, Jumpable {
 public long distance() {
 return 10;
 }
}

e class Person implements Movable, Jumpable {
 int distance() {
 return 10;
 }
}

8.2 Answers to mock exam questions
This section contains answers to all the mock exam questions in section 8.1. Also, each
question is preceded by the exam objectives that the question is based on.

ME-Q1) Given the following definition of the classes Animal, Lion, and Jumpable,
select the correct combinations of assignments of a variable that don’t result in compi-
lation errors or runtime exceptions (select 2 options).

[7.2] Develop code that demonstrates the use of polymorphism; including
overriding and object type versus reference type

[7.3] Determine when casting is necessary

[8.5] “Recognize common exception classes (such as NullPointerException,
ArithmeticException, ArrayIndexOutOfBoundsException,
ClassCastException)”

575Answers to mock exam questions
interface Jumpable {}
class Animal {}
class Lion extends Animal implements Jumpable {}

a Jumpable var1 = new Jumpable();

b Animal var2 = new Animal();

c Lion var3 = new Animal();

d Jumpable var4 = new Animal();

e Jumpable var5 = new Lion();

f Jumpable var6 = (Jumpable)(new Animal());

Answer: b, e

Explanation: Option (a) is incorrect. An interface can’t be instantiated.
 Option (c) is incorrect. A reference variable of a derived class can’t be used to

refer to an object of its base class.
 Option (d) is incorrect. A reference variable of type Jumpable can’t be used to

refer to an object of the class Animal because Animal doesn’t implement the interface
Jumpable.

 Option (f) is incorrect. Although this line of code will compile successfully, it will
throw a ClassCastException at runtime. You can explicitly cast any object to an inter-
face, even if it doesn’t implement it to make the code compile. But if the object’s class
doesn’t implement the interface, the code will throw a ClassCastException at runtime.

ME-Q2) Given the following code, which option, if used to replace /*INSERT CODE
HERE*/, will make the code print 1? (Select 1 option.)

try {
 String[][] names = {{"Andre", "Mike"}, null, {"Pedro"}};
 System.out.println (names[2][1].substring(0, 2));
} catch (/*INSERT CODE HERE*/) {
 System.out.println(1);
}

a IndexPositionException e

b NullPointerException e

c ArrayIndexOutOfBoundsException e

d ArrayOutOfBoundsException e

Answer: c

Explanation: Options (a) and (d) are incorrect because the Java API doesn’t define
any exception classes with these names.

[8.2] Create a try-catch block and determine how exceptions alter normal
program flow

576 CHAPTER 8 Full mock exam
 Here’s a list of the array values that are initialized by the code in this question:

names[0][0] = "Andre"
names[0][1] = "Mike"
names[1] = null
names[2][0] = "Pedro"

Because the array position [2][1] isn’t defined, any attempt to access it will throw an
ArrayIndexOutOfBoundsException.

 An attempt to access any position of the second array—that is, names[1][0]—will
throw a NullPointerException because names[1] is set to null.

ME-Q3) What is the output of the following code? (Select 1 option.)

public static void main(String[] args) {
 int a = 10; String name = null;
 try {
 a = name.length(); //line1
 a++; //line2
 } catch (NullPointerException e){
 ++a;
 return;
 } catch (RuntimeException e){
 a--;
 return;
 } finally {
 System.out.println(a);
 }
}

a 5

b 6

c 10

d 11

e 12

f Compilation error
g No output
h Runtime exception

Answer: d

Explanation: Because the variable name isn’t assigned a value, you can’t call an
instance method (length()) using it. The following line of code will throw a Null-
PointerException:

name.length();

[8.2] Create a try-catch block and determine how exceptions alter normal
program flow

577Answers to mock exam questions
When an exception is thrown, the control is transferred to the exception handler,
skipping the execution of the remaining lines of code in the try block. So the code
(a++) doesn’t execute at the comment marked with line2.

 The code defines an exception handler for both NullPointerException and
RuntimeException. When an exception is thrown, more than one exception handler
won’t execute. In this case, the exception handler for NullPointerException will exe-
cute because it’s more specific and it’s defined earlier than RuntimeException. The
exception handler for NullPointerException includes the following code:

++a;
return;

The preceding code increments the value of the variable a by 1; and before it exits the
method main, due to the call to the statement return, it executes the finally block,
outputting the value 11. A finally block executes even if the catch block includes a
return statement.

ME-Q4) Given the following class definition,

class Student { int marks = 10; }

what is the output of the following code? (Select 1 option.)

class Result {
 public static void main(String... args) {
 Student s = new Student();
 switch (s.marks) {
 default: System.out.println("100");
 case 10: System.out.println("10");
 case 98: System.out.println("98");
 }
 }
}

a 100
10
98

b 10
98

c 100

d 10

Answer: b

Explanation: The default case executes only if no matching values are found. In this
case, a matching value of 10 is found and the case label prints 10. Because a break

[3.4] Use a switch statement

578 CHAPTER 8 Full mock exam
statement doesn’t terminate this case label, the code execution continues and exe-
cutes the remaining statements within the switch block, until a break statement ter-
minates it or it ends.

ME-Q5) Given the following code, which code can be used to create and initialize an
object of the class ColorPencil? (Select 2 options.)

class Pencil {}
class ColorPencil extends Pencil {
 String color;
 ColorPencil(String color) {this.color = color;}
}

a ColorPencil var1 = new ColorPencil();

b ColorPencil var2 = new ColorPencil(RED);

c ColorPencil var3 = new ColorPencil("RED");

d Pencil var4 = new ColorPencil("BLUE");

Answer: c, d

Explanation: Option (a) is incorrect because new ColorPencil() tries to invoke the
no-argument constructor of the class ColorPencil, which isn’t defined in the class
ColorPencil.

 Option (b) is incorrect because new ColorPencil(RED) tries to pass a variable RED,
which isn’t defined in the code.

ME-Q6) What is the output of the following code? (Select 1 option.)

class Doctor {
 protected int age;
 protected void setAge(int val) { age = val; }
 protected int getAge() { return age; }
}
class Surgeon extends Doctor {
 Surgeon(String val) {
 specialization = val;
 }
 String specialization;
 String getSpecialization() { return specialization; }
}
class Hospital {
 public static void main(String args[]) {
 Surgeon s1 = new Surgeon("Liver");

[7.4] Use super and this to access objects and constructors

[2.3] Know how to read or write to object fields

579Answers to mock exam questions
 Surgeon s2 = new Surgeon("Heart");
 s1.age = 45;
 System.out.println(s1.age + s2.getSpecialization());
 System.out.println(s2.age + s1.getSpecialization());
 }
}

a 45Heart
0Liver

b 45Liver
0Heart

c 45Liver
45Heart

d 45Heart
45Heart

e Class fails to compile.

Answer: a

Explanation: The constructor of the class Surgeon assigns the values "Liver" and
"Heart" to the variable specialization of objects s1 and s2. The variable age is
protected in the class Doctor. Also, the class Surgeon extends the class Doctor.
Hence, the variable age is accessible to reference variables s1 and s2. The code
assigns a value of 45 to the member variable age of reference variable s1. The variable
age of reference variable s2 is initialized to the default value of an int, which is 0.
Hence, the code prints the values mentioned in option (a).

ME-Q7) What is the output of the following code? (Select 1 option.)

class RocketScience {
 public static void main(String args[]) {
 int a = 0;
 while (a == a++) {
 a++;
 System.out.println(a);
 }
 }
}

a The while loop won’t execute; nothing will be printed.
b The while loop will execute indefinitely, printing all numbers, starting from 1.
c The while loop will execute indefinitely, printing all even numbers, starting

from 0.

[3.1] Use Java operators; including parentheses to override operator
precedence

580 CHAPTER 8 Full mock exam
d The while loop will execute indefinitely, printing all even numbers, starting
from 2.

e The while loop will execute indefinitely, printing all odd numbers, starting
from 1.

f The while loop will execute indefinitely, printing all odd numbers, starting
from 3.

Answer: d

Explanation: The while loop will execute indefinitely because the condition a == a++
will always evaluate to true. The postfix unary operator will increment the value of the
variable a after it’s used in the comparison expression. a++ within the loop body will
increment the value of a by 1. Hence, the value of a increments by 2 in a single loop.

ME-Q8) Given the following statements,

■ com.ejava is a package
■ class Person is defined in package com.ejava
■ class Course is defined in package com.ejava

which of the following options correctly import the classes Person and Course in the
class MyEJava? (Select 3 options.)

a import com.ejava.*;
class MyEJava {}

b import com.ejava;
class MyEJava {}

c import com.ejava.Person;
import com.ejava.Course;
class MyEJava {}

d import com.ejava.Person;
import com.ejava.*;
class MyEJava {}

Answer: a, c, d

Explanation: Option (a) is correct. The statement import com.ejava.*; imports all
the public members of the package com.ejava in the class MyEJava.

 Option (b) is incorrect. Because com.ejava is a package, to import all the classes
defined in this package, the package name should be followed by .*:

import com.ejava.*;

Option (c) is correct. It uses two separate import statements to import each of the
classes Person and Course individually, which is correct.

[1.4] Import other Java packages to make them accessible in your code

581Answers to mock exam questions
 Option (d) is also correct. The first import statement imports only the class Person

in MyClass. But the second import statement imports both the Person and Course

classes from the package com.ejava. You can import the same class more than once in
a Java class with no issues. This code is correct.

 In Java, the import statement makes the imported class visible to the Java compiler,
allowing it to be referred to by the class that’s importing it. In Java, the import state-
ment doesn’t embed the imported class in the target class.

ME-Q9) Given that the following classes Animal and Forest are defined in the same
package, examine the code and select the correct statements (select 2 options).

line1> class Animal {
line2> public void printKing() {
line3> System.out.println("Lion");
line4> }
line5> }

line6> class Forest {
line7> public static void main(String... args) {
line8> Animal anAnimal = new Animal();
line9> anAnimal.printKing();
line10> }
line11> }

a The class Forest prints Lion.
b If the code on line 2 is changed as follows, the class Forest will print Lion:

private void printKing() {

c If the code on line 2 is changed as follows, the class Forest will print Lion:

void printKing() {

d If the code on line 2 is changed as follows, the class Forest will print Lion:

default void printKing() {

Answer: a, c

Explanation: Option (a) is correct. The code will compile successfully and print Lion.
 Option (b) is incorrect. The code won’t compile if the access modifier of the

method printKing is changed to private. private members of a class can’t be
accessed outside the class.

 Option (c) is correct. The classes Animal and Forest are defined in the same
package, so changing the access modifier of the method printKing to default access

[6.4] Apply access modifiers

582 CHAPTER 8 Full mock exam
will still make it accessible in the class Forest. The class will compile successfully
and print Lion.

 Option (d) is incorrect. “default” isn’t a valid access modifier or keyword in Java. In
Java, the default accessibility is marked by the absence of any explicit access modifier.
This code will fail to compile.

ME-Q10) Given the following code,

class MainMethod {
 public static void main(String... args) {
 System.out.println(args[0]+":"+ args[2]);
 }
}

what’s its output if it’s executed using the following command? (Select 1 option.)

java MainMethod 1+2 2*3 4-3 5+1

a java:1+2

b java:3

c MainMethod:2*3

d MainMethod:6

e 1+2:2*3

f 3:3

g 6

h 1+2:4-3

i 31

j 4

Answer: h

Explanation: This question tests you on multiple points.

1 The arguments that are passed on to the main method—The keyword java and the
name of the class (MainMethod) aren’t passed as arguments to the main method.
The arguments following the class name are passed to the main method. In this
case, four method arguments are passed to the main method, as follows:

args[0]: 1+2
args[1]: 2*3
args[2]: 4-3
args[3]: 5+1

[1.3] Create executable Java applications with a main method; run a Java
program from the command line; including console output.

583Answers to mock exam questions
2 The type of the arguments that are passed to the main method—The main method
accepts arguments of type String. All the numeric expressions—1+2, 2*3, 5+1,
and 4-3—are passed as literal String values. These won’t be evaluated when
you try to print their values. Hence, args[0] won’t be printed as 3. It will be
printed as 1+2.

3 + operations with String array elements—Because the array passed to the main

method contains all the String values, using the + operand with its individual
values will concatenate its values. It won’t add the values, if they are numeric
expressions. Hence, "1+2"+"4-3" won’t evaluate to 31 or 4.

ME-Q11) What is the output of the following code? (Select 1 option.)

interface Moveable {
 int move(int distance);
}
class Person {
 static int MIN_DISTANCE = 5;
 int age;
 float height;
 boolean result;
 String name;
}
public class EJava {
 public static void main(String arguments[]) {
 Person person = new Person();
 Moveable moveable = (x) -> Person.MIN_DISTANCE + x;
 System.out.println(person.name + person.height + person.result
 + person.age + moveable.move(20));
 }
}

a null0.0false025

b null0false025

c null0.0ffalse025

d 0.0false025

e 0false025

f 0.0ffalse025

g null0.0true025

h 0true025

[2.2] Differentiate between object reference variables and primitive variables

[9.5] Write a simple Lambda expression that consumes a Lambda
Predicate expression

584 CHAPTER 8 Full mock exam
i 0.0ftrue025

j Compilation error
k Runtime exception

Answer: a

Explanation: The instance variables of a class are all assigned default values if no
explicit value is assigned to them. Here are the default values of the primitive data
types and the objects:

■ char -> \u0000
■ byte, short, int -> 0
■ long -> 0L
■ float-> 0.0f
■ double -> 0.0d
■ boolean -> false

■ objects -> null

Moveable is a functional interface. The example code defines the code to execute for
its functional method move by using the Lambda expression (x) -> Person.MIN

_DISTANCE + x.
 Calling moveable.move(20) passes 20 as an argument to the method move. It returns

25 (the sum of Person.MIN_DISTANCE, which is 5, and the method argument 20).

ME-Q12) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will make the code print the value of the variable pagesPerMin? (Select 1
option.)

class Printer {
 int inkLevel;
}
class LaserPrinter extends Printer {
 int pagesPerMin;
 public static void main(String args[]) {
 Printer myPrinter = new LaserPrinter();
 System.out.println(/* INSERT CODE HERE */);
 }
}

a (LaserPrinter)myPrinter.pagesPerMin

b myPrinter.pagesPerMin

c LaserPrinter.myPrinter.pagesPerMin

d ((LaserPrinter)myPrinter).pagesPerMin

[7.3] Determine when casting is necessary

585Answers to mock exam questions
Answer: d

Explanation: Option (a) is incorrect because (LaserPrinter) tries to cast myPrinter

.pagesPerMin (variable of primitive type int) to LaserPrinter, which is incorrect.
This code won’t compile.

 Option (b) is incorrect. The type of reference variable myPrinter is Printer.
myPrinter refers to an object of the class LaserPrinter, which extends the class
Printer. A reference variable of the base class can’t access the variables and methods
defined in its subclass without an explicit cast.

 Option (c) is incorrect. LaserPrinter.myPrinter treats LaserPrinter as a vari-
able, although no variable with this name exists in the question’s code. This code fails
to compile.

ME-Q13) What is the output of the following code? (Select 1 option.)

interface Keys {
 String keypad(String region, int keys);
}
public class Handset {
 public static void main(String... args) {
 double price;
 String model;
 Keys varKeys = (region, keys) ->
 {if (keys >= 32)
 return region; else return "default";};
 System.out.println(model + price + varKeys.keypad("AB", 32));
 }
}

a null0AB

b null0.0AB

c null0default

d null0.0default

e 0

f 0.0

g Compilation error

Answer: g

[2.1] Declare and initialize variables (including casting of primitive data types)

[9.5] Write a simple Lambda expression that consumes a Lambda
Predicate expression

586 CHAPTER 8 Full mock exam
Explanation: The local variables (variables that are declared within a method) aren’t
initialized with their default values. If you try to print the value of a local variable
before initializing it, the code won’t compile.

 The Lambda expression used in the code is correct.

ME-Q14) What is the output of the following code? (Select 1 option.)

public class Sales {
 public static void main(String args[]) {
 int salesPhone = 1;
 System.out.println(salesPhone++ + ++salesPhone +
 ++salesPhone);
 }
}

a 5

b 6

c 8

d 9

Answer: c

Explanation: Understanding the following rules will enable you to answer this ques-
tion correctly:

■ An arithmetic expression is evaluated from left to right.
■ When an expression uses the unary increment operator (++) in postfix nota-

tion, its value increments just after its original value is used in an expression.
■ When an expression uses the unary increment operator (++) in prefix notation,

its value increments just before its value is used in an expression.

The initial value of the variable salesPhone is 1. Let’s evaluate the result of the arith-
metic expression salesPhone++ + ++salesPhone + ++salesPhone step by step:

1 The first occurrence of salesPhone uses ++ in postfix notation, so its value is
used in the expression before it’s incremented by 1. This means that the expres-
sion evaluates to

1 + ++salesPhone + ++salesPhone

2 Note that the previous usage of ++ in postfix increments has already incre-
mented the value of salesPhone to 2. The second occurrence of salesPhone

[3.1] Use Java operators; including parentheses to override operator
precedence

587Answers to mock exam questions
uses ++ in prefix notation, so its value is used in the expression after it’s incre-
mented by 1, to 3. This means that the expression evaluates to

1 + 3 + ++salesPhone

3 The third occurrence of salesPhone again uses ++ in prefix notation, so its
value is used in the expression after it’s incremented by 1, to 4. This means that
the expression evaluates to

1 + 3 + 4

The preceding expression evaluates to 8.

ME-Q15) Which of the following options defines the correct structure of a Java class
that compiles successfully? (Select 1 option.)

a package com.ejava.guru;
package com.ejava.oracle;
class MyClass {
 int age = /* 25 */ 74;
}

b import com.ejava.guru.*;
import com.ejava.oracle.*;
package com.ejava;
class MyClass {
 String name = "e" + "Ja /*va*/ v";
}

c class MyClass {
 import com.ejava.guru.*;
}

d class MyClass {
 int abc;
 String course = //this is a comment
 "eJava";
}

e None of the above

Answer: d

Explanation: This question requires you to know

■ Correct syntax and usage of comments
■ Usage of import and package statements

[1.2] Define the structure of a Java class

[1.4] Import other Java packages to make them accessible in your code

588 CHAPTER 8 Full mock exam
None of the code fails to compile due to the end-of-line or multiline comments. All
the following lines of code are valid:

int age = /* 25 */ 74;
String name = "e" + "Ja /*va*/ v";
String course = //this is a comment
 "eJava";

In the preceding code, the variable age is assigned an integer value 74, the variable
name is assigned a string value "eJa /*va*/ v", and course is assigned a string value
"eJava". A multiline comment delimiter is ignored if put inside a string definition.
Let’s see how all the options perform on the usage of package and import statements:

 Option (a) is incorrect. A class can’t define more than one package statement.
 Option (b) is incorrect. Although a class can import multiple packages in a class,

the package statement must be placed before the import statement.
 Option (c) is incorrect. A class can’t define an import statement within its class

body. The import statement appears before the class body.
 Option (d) is correct. In the absence of any package information, this class

becomes part of the default package.

ME-Q16) What is the output of the following code? (Select 1 option.)

class OpPre {
 public static void main(String... args) {
 int x = 10;
 int y = 20;
 int z = 30;
 if (x+y%z > (x+(-y)*(-z))) {
 System.out.println(x + y + z);
 }
 }
}

a 60

b 59

c 61

d No output.
e The code fails to compile.

Answer: d

Explanation: x+y%z evaluates to 30; (x+(y%z))and (x+(-y)*(-z)) evaluate to 610.
The if condition returns false and the line of code that prints the sum of x, y, and z
doesn’t execute. Hence, the code doesn’t provide any output.

[3.1] Use Java operators; including parentheses to override operator
precedence

589Answers to mock exam questions
ME-Q17) Select the most appropriate definition of the variable name and the line
number on which it should be declared so that the following code compiles success-
fully (choose 1 option).

class EJava {
 // LINE 1
 public EJava() {
 System.out.println(name);
 }
 void calc() {
 // LINE 2
 if (8 > 2) {
 System.out.println(name);
 }
 }
 public static void main(String... args) {
 // LINE 3
 System.out.println(name);
 }
}

a Define static String name; on line 1.
b Define String name; on line 1.
c Define String name; on line 2.
d Define String name; on line 3.

Answer: a

Explanation: The variable name must be accessible in the instance method calc, the
class constructor, and the static method main. A non-static variable can’t be
accessed by a static method. Hence, the only appropriate option is to define a
static variable name that can be accessed by all: the constructor of the class EJava
and the methods calc and main.

ME-Q18) Examine the following code and select the correct statement (choose 1 option).

line1> class Emp {
line2> Emp mgr = new Emp();
line3> }

[1.1] Define the scope of variables

[6.2] Apply the static keyword to methods and fields

[2.4] Explain an Object’s Lifecycle (creation, “dereference by reassignment”
and garbage collection)

590 CHAPTER 8 Full mock exam
line4> class Office {
line5> public static void main(String args[]) {
line6> Emp e = null;
line7> e = new Emp();
line8> e = null;
line9> }
line10> }

a The object referred to by object e is eligible for garbage collection on line 8.
b The object referred to by object e is eligible for garbage collection on line 9.
c The object referred to by object e isn’t eligible for garbage collection because

its member variable mgr isn’t set to null.
d The code throws a runtime exception and the code execution never reaches

line 8 or line 9.

Answer: d

Explanation: The code throws java.lang.StackOverflowError at runtime. Line 7
creates an instance of class Emp. Creation of an object of the class Emp requires the cre-
ation of an instance variable mgr and its initialization with an object of the same class.
As you can see, the Emp object creation calls itself recursively (without an exit condi-
tion), resulting in a java.lang.StackOverflowError.

ME-Q19) Given the following,

long result;

which options are correct declarations of methods that accept two String arguments
and an int argument and whose return value can be assigned to the variable result?
(Select 3 options.)

a Short myMethod1(String str1, int str2, String str3)

b Int myMethod2(String val1, int val2, String val3)

c Byte myMethod3(String str1, str2, int a)

d Float myMethod4(String val1, val2, int val3)

e Long myMethod5(int str2, String str3, String str1)

f Long myMethod6(String... val1, int val2)

g Short myMethod7(int val1, String... val2)

[2.5] Develop code that uses wrapper classes such as Boolean, Double,
and Integer.

[6.1] Create methods with arguments and return values; including
overloaded methods

591Answers to mock exam questions
Answer: a, e, g

Explanation: The placement of the type of method parameters and the name of the
method parameters doesn’t matter. You can accept two String variables and then
an int variable or a String variable followed by int and again a String. The name
of an int variable can be str2. As long as the names are valid identifiers, any name
is acceptable. The return type of the method must be assignable to a variable of
type long.

 Option (a) is correct. The value of a Short instance can be assigned to a variable of
the primitive type long.

 Option (b) is incorrect. It won’t compile because Int is not defined in the Java API.
The correct wrapper class name for the int data type is Integer.

 Options (c) and (d) are incorrect. Unlike the declaration of multiple variables,
which can be preceded by a single occurrence of their data type, each and every
method argument must be preceded by its type. The declaration of the following vari-
ables is valid:

int aa, bb;

But the declaration of the method parameters in the following declaration isn’t:

Byte myMethod3(String str1, str2, int a) { /*code*/ }

Option (e) is correct. The value of a Long instance can be assigned to a variable of
primitive type long.

 Option (f) won’t compile. If varargs is used to define method parameters, it must
be the last one.

 Option (g) is correct. The method parameter val2, a variable argument, can
accept two String arguments. Also, the return value of method7(), a Short, can be
assigned to a variable of type long.

ME-Q20) Which of the following will compile successfully? (Select 3 options.)

a int eArr1[] = {10, 23, 10, 2};

b int[] eArr2 = new int[10];

c int[] eArr3 = new int[] {};

d int[] eArr4 = new int[10] {};

e int eArr5[] = new int[2] {10, 20};

Answer: a, b, c

[4.1] Declare, instantiate, initialize, and use a one-dimensional array

592 CHAPTER 8 Full mock exam
Explanation: Option (d) is incorrect because it defines the size of the array while
using {}, which isn’t allowed. Both of the following lines of code are correct:

int[] eArr4 = new int[10];
int[] eArr4 = new int[]{};

Option (e) is incorrect because it’s invalid to specify the size of the array within the
square brackets when you’re declaring, instantiating, and initializing an array in a sin-
gle line of code.

ME-Q21) Assume that Oracle has asked you to create a method that returns the con-
catenated value of two String objects. Which of the following methods can accom-
plish this job? (Select 2 options.)

a public String add(String 1, String 2) {
 return str1 + str2;
}

b private String add(String s1, String s2) {
 return s1.concat(s2);
}

c protected String add(String value1, String value2) {
 return value2.append(value2);
}

d String subtract(String first, String second) {
 return first.concat(second.substring(0));
}

Answer: b, d

Explanation: Option (a) is incorrect. This method defines method parameters with
invalid identifier names. Identifiers can’t start with a digit.

 Option (b) is correct. The method requirements don’t talk about the access modi-
fier of the required method. It can have any accessibility.

 Option (c) is incorrect because the class String doesn’t define any append
method.

 Option (d) is correct. Even though the name of the method—subtract—isn’t an
appropriate name for a method that tries to concatenate two values, it does accom-
plish the required job.

[6.1] Create methods with arguments and return values; including
overloaded methods

[9.2] Create and manipulate strings

593Answers to mock exam questions
ME-Q22) Given the following,

int ctr = 10;
char[] arrC1 = new char[]{'P','a','u','l'};
char[] arrC2 = {'H','a','r','r','y'};
//INSERT CODE HERE
System.out.println(ctr);

which options, when inserted at //INSERT CODE HERE, will output 14? (Choose 2
options.)

a for (char c1 : arrC1) {
 for (char c2 : arrC2) {
 if (c2 == 'a') break;
 ++ctr;
 }
}

b for (char c1 : arrC1)
 for (char c2 : arrC2) {
 if (c2 == 'a') break;
 ++ctr;
 }

c for (char c1 : arrC1)
 for (char c2 : arrC2)
 if (c2 == 'a') break;
 ++ctr;

d for (char c1 : arrC1) {
 for (char c2 : arrC2) {
 if (c2 == 'a') continue;
 ++ctr;
 }
}

Answer: a, b

Explanation: Options (a) and (b) differ only in the usage of {} for the outer for

construct. You can use {} to group the statements to execute for iteration constructs
like do, do-while, and for. {} are also used with conditional constructs like switch

and if-else.
 The initial value of the variable ctr is 10. The size of array arrC1 is 4 and the size of

array arrC2 is 5 with 'a' at the second position. The outer loop executes four times.

[3.3] Create if and if/else and ternary constructs

[5.2] Create and use for loops including the enhanced for loop

[5.5] Use break and continue

594 CHAPTER 8 Full mock exam
Because the second character referred to by arrC2 is 'a', the inner loop will incre-
ment the value of variable ctr for its first element. The inner loop won’t execute
++ctr for its second element because c2=='a' returns true and the break statement,
and exits the inner loop. The inner loop increments the value ctr four times, incre-
menting its value to 14.

 Option (c) is incorrect. Because the inner for loop doesn’t use {} to group the
lines of code that must execute for it, the code ++ctr isn’t a part of the inner for loop.

 Option (d) is incorrect. The code ++ctr just executes once, after the completion
of the outer and inner for loops, because it isn’t a part of the looping constructs.

ME-Q23) Given the following definitions of the class ChemistryBook, select the state-
ments that are correct individually (choose 2 options):

import java.util.ArrayList;
class ChemistryBook {
 public void read() {} //METHOD1
 public String read() { return null; } //METHOD2
 ArrayList read(int a) { return null; } //METHOD3
}

a Methods marked with //METHOD1 and //METHOD2 are correctly overloaded
methods.

b Methods marked with //METHOD2 and //METHOD3 are correctly overloaded
methods.

c Methods marked with //METHOD1 and //METHOD3 are correctly overloaded
methods.

d All the methods—methods marked with //METHOD1, //METHOD2, and //METHOD3—
are correctly overloaded methods.

Answer: b, c

Explanation: Options (a) and (d) are incorrect because the methods read marked
with //METHOD1 and //METHOD2 differ only in their return types, void and String.
Overloaded methods can’t be defined with only a change in their return types; hence,
these methods don’t qualify as correctly overloaded methods.

 Note that the presence of methods marked with //METHOD1 and //METHOD2
together will cause a compilation error.

[6.1] Create methods with arguments and return values; including
overloaded methods

595Answers to mock exam questions
ME-Q24) Given the following,

final class Home {
 String name;
 int rooms;
 //INSERT CONSTRUCTOR HERE
}

which options, when inserted at //INSERT CONSTRUCTOR HERE, will define valid over-
loaded constructors for the class Home? (Choose 3 options.)

a Home() {}

b Float Home() {}

c protected Home(int rooms) {}

d final Home() {}

e private Home(long name) {}

f float Home(int rooms, String name) {}

g static Home() {}

Answer: a, c, e

Explanation: A constructor must not define an explicit return type. It you use it to do
so, it’s no longer a constructor. A constructor can be defined using any access level—
private, default, protected, and public—irrespective of the access level that’s used to
declare the class.

 Options (b) and (f) are incorrect because they define explicit return types: Float
or float. The code in these options defines a method with the name Home, not con-
structors.

 Options (d) and (g) are incorrect. The code won’t compile because a constructor
can’t be defined using non-access modifiers static, abstract, or final.

[6.2] Apply the static keyword to methods and fields

[6.3] Create and overload constructors; including impact on default
constructors

[6.4] Apply access modifiers

596 CHAPTER 8 Full mock exam
ME-Q25) Given the following code, which option, if used to replace //INSERT CODE
HERE, will make the code print numbers that are completely divisible by 14? (Select
1 option.)

for (int ctr = 2; ctr <= 30; ++ctr) {
 if (ctr % 7 != 0)
 //INSERT CODE HERE
 if (ctr % 14 == 0)
 System.out.println(ctr);
}

a continue;

b exit;

c break;

d end;

Answer: a

Explanation: Options (b) and (d) are incorrect because exit and end aren’t valid
statements in Java.

 Option (c) is incorrect. Using break will terminate the for loop for the first itera-
tion of the for loop so that no output is printed.

ME-Q26) What is the output of the following code? (Select 1 option.)

import java.util.function.Predicate;
public class MyCalendar {
 public static void main(String arguments[]) {
 Season season1 = new Season();
 season1.name = "Spring";

 Season season2 = new Season();
 season2.name = "Autumn";

[3.3] Create if and if/else and ternary constructs

[5.2] Create and use for loops including the enhanced for loop

[5.5] Use break and continue

[2.1] Declare and initialize variables (including casting of primitive data types)

[9.5] Write a simple Lambda expression that consumes a Lambda
Predicate expression

597Answers to mock exam questions
 Predicate<String> aSeason = (s) -> s == "Summer" ?
 season1.name : season2.name;

 season1 = season2;
 System.out.println(season1.name);
 System.out.println(season2.name);
 System.out.println(aSeason.test(new String("Summer")));
 }
}
class Season {
 String name;
}

a String
Autumn
false

b Spring
String
false

c Autumn
Autumn
false

d Autumn
String
true

e Compilation error
f Runtime exception

Answer: e

Explanation: The return type of the functional method test in the functional inter-
face Predicate is boolean. The following Lambda expression is trying to return a
String value and so the code fails compilation:

Predicate<String> aSeason = (s) -> s == "Summer" ?
 season1.name : season2.name;

This question also covers another important topic: multiple variable references can
refer to the same instances. Let’s assume that you modify the preceding Lambda
expression as follows:

Predicate<String> aSeason = (s) -> s == "Summer";

In this case, the code will output the following:

Autumn
Autumn
false

598 CHAPTER 8 Full mock exam
This is because multiple variable references can point to the same object. The follow-
ing lines of code define a reference variable season1, which refers to an object that
has the value of its instance variable (name) set to Spring:

Season season1 = new Season();
season1.name = "Spring";

The following lines of code define a reference variable season2, which refers to an
object that has the value of its instance variable (name) set to Autumn:

Season season2 = new Season();
season2.name = "Autumn";

The following line of code reinitializes the reference variable season1 and assigns it to
the object referred to by the variable season2:

season1 = season2;

Now the variable season1 refers to the object that’s also referred to by the variable
season2. Both of these variables refer to the same object—the one that has the value
of the instance variable set to Autumn. Hence, the output of the modified code is
as follows:

Autumn
Autumn
false

A quick reminder for the reason for the preceding output: a String object with the
value "Summer", created with the new operator, is never pooled by the JVM. Here, such
an instance is compared to the pooled "Summer" instance through the == operator.

ME-Q27) What is true about the following code? (Select 1 option.)

class Shoe {}
class Boot extends Shoe {}
class ShoeFactory {
 ShoeFactory(Boot val) {
 System.out.println("boot");
 }
 ShoeFactory(Shoe val) {
 System.out.println("shoe");
 }
}

[6.3] Create and overload constructors; including impact on default
constructors

599Answers to mock exam questions
a The class ShoeFactory has a total of two overloaded constructors.
b The class ShoeFactory has three overloaded constructors, two user-defined

constructors, and one default constructor.
c The class ShoeFactory will fail to compile.
d The addition of the following constructor will increment the number of con-

structors of the class ShoeFactory to 3:

private ShoeFactory (Shoe arg) {}

Answer: a

Explanation: Java accepts changes in the objects of base-derived classes as a sole crite-
rion to define overloaded constructors and methods.

 Option (b) is incorrect because Java doesn’t generate a default constructor for a
class that has already defined a constructor.

 Option (c) is incorrect. All classes defined for this example compile successfully.
 Option (d) is incorrect. The class ShoeFactory already defines a constructor that

accepts a method argument of type Shoe. You can’t overload a constructor with a mere
change in its access modifier.

ME-Q28) Given the following definitions of the classes ColorPencil and TestColor,
which option, if used to replace //INSERT CODE HERE, will initialize the instance vari-
able color of the reference variable myPencil with the String literal value "RED"?
(Select 1 option.)

class ColorPencil {
 String color;
 ColorPencil(String color) {
 //INSERT CODE HERE
 }
}
class TestColor {
 ColorPencil myPencil = new ColorPencil("RED");
}

a this.color = color;

b color = color;

c color = RED;

d this.color = RED;

Answer: a

Explanation: Option (b) is incorrect. This line of code will assign the value of the
method parameter to itself. The constructor of the class ColorPencil defines a method

[7.4] Use super and this to access objects and constructors

600 CHAPTER 8 Full mock exam
parameter with the same name as its instance variable, color. To access an instance
variable in the constructor, it must be prefixed with the keyword this, or it will refer
to the method parameter color.

 Options (c) and (d) are incorrect. They try to access the value of the variable RED,
which isn’t defined in the code.

ME-Q29) What is the output of the following code? (Select 1 option.)

class EJavaCourse {
 String courseName = "Java";
}
class University {
 public static void main(String args[]) {
 EJavaCourse courses[] = { new EJavaCourse(), new EJavaCourse() };
 courses[0].courseName = "OCA";
 for (EJavaCourse c : courses) c = new EJavaCourse();
 for (EJavaCourse c : courses) System.out.println(c.courseName);
 }
}

a Java
Java

b OCA
Java

c OCA
OCA

d None of the above

Answer: b

Explanation: This question tests you on multiple concepts: how to read from and
write to object fields, how to use arrays, the enhanced for loop, and assigning a value
to a loop variable.

 The code defines an array of the class EJavaCourse with two elements. The default
value of the variable courseName—Java—is assigned to each of these two elements.
courses[0].courseName = "OCA" changes the value courseName for the object stored
at array position 0. c = new EJavaCourse() assigns a new object to the loop variable c.
This assignment doesn’t reassign new objects to the array reference variables.
System.out.println(c.courseName) prints the name of the courseName of the objects
initially stored by the array, using the loop variable c.

 The loop variable in the enhanced for loop refers to a copy of the array or list ele-
ment. If you modify the state of the loop variable, the modified object state will be
reflected in the array. But if you assign a new object to the loop variable, it won’t be
reflected in the list or the array that’s being iterated. You can compare this behavior of

[2.3] Know how to read or write to object fields

601Answers to mock exam questions
the enhanced for loop variable with the behavior of object references passed as argu-
ments to a method.

ME-Q30) What is the output of the following code? (Select 1 option.)

class Phone {
 static void call() {
 System.out.println("Call-Phone");
 }
}
class SmartPhone extends Phone{
 static void call() {
 System.out.println("Call-SmartPhone");
 }
}
class TestPhones {
 public static void main(String... args) {
 Phone phone = new Phone();
 Phone smartPhone = new SmartPhone();
 phone.call();
 smartPhone.call();
 }
}

a Call-Phone
Call-Phone

b Call-Phone
Call-SmartPhone

c Call-Phone
null

d null
Call-SmartPhone

Answer: a

Explanation: Invocation of a static method is tied to the type of the reference vari-
able and doesn’t depend on the type of the object that’s assigned to the reference
variable. The static method belongs to a class, not to its objects. Reexamine the fol-
lowing code:

Phone smartPhone = new SmartPhone();
smartPhone.call();

[6.2] Apply the static keyword to methods and fields [6.2] Apply the static keyword to methods and fields

[7.2] Develop code that demonstrates the use of polymorphism; including
overriding and object type versus reference type

602 CHAPTER 8 Full mock exam
In the preceding code, the type of the reference variable smartPhone is Phone. Because
call is a static method, smartPhone.call() calls the method call defined in the
class Phone.

ME-Q31) Given the following code, which of the following statements are true?
(Select 3 options.)

class MyExam {
 void question() {
 try {
 question();
 } catch (StackOverflowError e) {
 System.out.println("caught");
 }
 }
 public static void main(String args[]) {
 new MyExam().question();
 }
}

a The code will print caught.
b The code won’t print caught.
c The code would print caught if StackOverflowError were a runtime exception.
d The code would print caught if StackOverflowError were a checked exception.
e The code would print caught if question() throws the exception NullPointer-

Exception.

Answer: a, c, d

Explanation: Option (a) is correct. The control will be transferred to the exception
handler for StackOverflowError when it’s encountered. Hence it will print caught.

 Options (c) and (d) are correct. Exception handlers execute when the corre-
sponding checked or runtime exceptions are thrown.

 Option (e) is incorrect. An exception handler for the class StackOverflow can’t
handle exceptions of the class NullPointerException because NullPointerExcep-

tion is not a superclass of StackOverflowError.

ME-Q32) A class Student is defined as follows:

public class Student {
 private String fName;
 private String lName;

[8.1] Differentiate among checked exceptions, unchecked exceptions,
and Errors

[6.5] Apply encapsulation principles to a class

603Answers to mock exam questions
 public Student(String first, String last) {
 fName = first; lName = last;
 }
 public String getName() { return fName + lName; }
}

The creator of the class later changes the method getName as follows:

 public String getName() {
 return fName + " " + lName;
 }

What are the implications of this change? (Select 2 options.)

a The classes that were using the class Student will fail to compile.
b The classes that were using the class Student will work without any compila-

tion issues.
c The class Student is an example of a well-encapsulated class.
d The class Student exposes its instance variable outside the class.

Answer: b, c

Explanation: This is an example of a well-encapsulated class. There’s no change in the
signature of the method getName after it’s modified. Hence, none of the code that
uses this class and method will face any compilation issues. Its instance variables
(fName and lName) aren’t exposed outside the class. They’re available only via a pub-
lic method: getName.

ME-Q33) What is the output of the following code? (Select 1 option.)

class ColorPack {
 int shadeCount = 12;
 static int getShadeCount() {
 return shadeCount;
 }
}
class Artist {
 public static void main(String args[]) {
 ColorPack pack1 = new ColorPack();
 System.out.println(pack1.getShadeCount());
 }
}

a 10

b 12

c No output
d Compilation error

[6.2] Apply the static keyword to methods and fields

604 CHAPTER 8 Full mock exam
Answer: d

Explanation: A static method can’t access non-static instance variables of a class.
Hence, the class ColorPack fails to compile.

ME-Q34) Paul defined his Laptop and Workshop classes to upgrade his laptop’s mem-
ory. Do you think he succeeded? What is the output of this code? (Select 1 option.)

class Laptop {
 String memory = "1 GB";
}
class Workshop {
 public static void main(String args[]) {
 Laptop life = new Laptop();
 repair(life);
 System.out.println(life.memory);
 }
 public static void repair(Laptop laptop) {
 laptop.memory = "2 GB";
 }
}

a 1 GB
b 2 GB
c Compilation error
d Runtime exception

Answer: b

Explanation: The method repair defined in this example modifies the state of the
method parameter laptop that’s passed to it. It does so by modifying the value of
the instance variable memory.

 When a method modifies the state of an object reference variable that’s passed to
it, the changes made are visible in the calling method. The method repair makes
changes to the state of the method parameter laptop; these changes are visible in the
method main. Hence, the method main prints the value of life.memory as 2 GB.

ME-Q35) What is the output of the following code? (Select 1 option.)

public class Application {
 public static void main(String... args) {
 double price = 10;

[6.6] Determine the effect upon object references and primitive values
when they are passed into methods that change the values

[2.1] Declare and initialize variables (including casting of primitive data types)

605Answers to mock exam questions
 String model;
 if (price > 10)
 model = "Smartphone";
 else if (price <= 10)
 model = "landline";
 System.out.println(model);
 }
}

a landline

b Smartphone

c No output
d Compilation error

Answer: d

Explanation: The local variables aren’t initialized with default values. Code that tries
to print the value of an uninitialized local variable fails to compile.

 In this code, the local variable model is only declared, not initialized. The initializa-
tion of the variable model is placed within the if and else-if constructs. If you initial-
ize a variable within an if or else-if construct, the compiler can’t be sure whether
these conditions will evaluate to true, resulting in no initialization of the local vari-
able. Because there’s no else at the bottom and the compiler can’t tell whether the if
and else-if are mutually exclusive, the code won’t compile.

 If you remove the condition if (price <= 10) from the previous code, the code
will compile successfully:

public class Application {
 public static void main(String... args) {
 double price = 10;
 String model;
 if (price > 10)
 model = "Smartphone";
 else
 model = "landline";
 System.out.println(model);
 }
}

In this code, the compiler can be sure about the initialization of the local variable model.

ME-Q36) What is the output of the following code? (Select 1 option.)

class EString {
 public static void main(String args[]) {
 String eVal = "123456789";

[9.2] Create and manipulate strings

606 CHAPTER 8 Full mock exam
 System.out.println(eVal.substring(eVal.indexOf("2"),

➥ eVal.indexOf("0")).concat("0"));
 }
}

a 234567890

b 34567890

c 234456789

d 3456789

e Compilation error
f Runtime exception

Answer: f

Explanation: When multiple methods are chained on a single code statement, the
methods execute from left to right, not from right to left. eVal.indexOf("0")

returns a negative value because, as you can see, the String eVal doesn’t contain
the digit 0. Hence, eVal.substring is passed a negative end value, which results in a
runtime exception.

ME-Q37) Examine the following code and select the correct statements (choose 2
options).

class Artist {
 Artist assistant;
}
class Studio {
 public static void main(String... args) {
 Artist a1 = new Artist();
 Artist a2 = new Artist();
 a2.assistant = a1;
 a2 = null; // Line 1
 }
 // Line 2
}

a At least two objects are garbage collected on line 1.
b At least one object is garbage collected on line 1.
c No objects are garbage collected on line 1
d The number of objects that are garbage collected on line 1 is unknown.
e At least two objects are eligible for garbage collection on line 2.

Answer: d, e

[2.4] Explain an Object’s Lifecycle (creation, “dereference by reassignment”
and garbage collection)

607Answers to mock exam questions
Explanation: Options (a), (b), and (c) are incorrect.
 When an object reference is marked as null, the object is marked for garbage col-

lection. But you can’t be sure exactly when a garbage collector will kick in to garbage
collect the objects. A garbage collector is a low-priority thread, and its exact execution
time will depend on the OS. The OS will start this thread if it needs to claim unused
space. You can be sure only about the number of objects that are eligible for garbage
collection. You can never be sure about which objects have been garbage collected, so
any statement that asserts that a particular number of objects have been garbage col-
lected is incorrect.

 Option (d) is correct. As mentioned previously, the exact number of objects gar-
bage collected at any point in time can’t be determined.

 Option (e) is correct. If you marked this option incorrect, think again. The ques-
tion wants you to select the correct statements, and this is a correct statement. You
may argue that at least two objects were already made eligible for garbage collection at
line 1, and you’re correct. But because nothing changes on line 2, at least two objects
are still eligible for garbage collection.

ME-Q38) What is the output of the following code? (Select 1 option.)

class Book {
 String ISBN;
 Book(String val) {
 ISBN = val;
 }
}
class TestEquals {
 public static void main(String... args) {
 Book b1 = new Book("1234-4657");
 Book b2 = new Book("1234-4657");
 System.out.print(b1.equals(b2) +":");
 System.out.print(b1 == b2);
 }
}

a true:false

b true:true

c false:true

d false:false

e Compilation error—there is no equals method in the class Book.
f Runtime exception

Answer: d

[3.2] Test equality between Strings and other objects using == and equals()

608 CHAPTER 8 Full mock exam
Explanation: The comparison operator determines whether the reference variables
refer to the same object. Because the reference variables b1 and b2 refer to different
objects, b1==b2 prints false.

 The method equals is a public method defined in the class java.lang.Object.
Because the class Object is the superclass for all the classes in Java, the method equals

is inherited by all classes. Hence, the code compiles successfully. The default imple-
mentation of the method equals in the base class compares the object references and
returns true if both reference variables refer to the same object, and false otherwise.

 Because the class Book doesn’t override this method, the method equals in the base
class Object is called for b1.equals(b2), which returns false. Hence, the code prints

false:false

ME-Q39) Which of the following statements are correct? (Select 2 options.)

a StringBuilder sb1 = new StringBuilder() will create a StringBuilder
object with no characters but with an initial capacity to store 16 characters.

b StringBuilder sb1 = new StringBuilder(5*10) will create a StringBuilder

object with a value of 50.
c Unlike the class String, the concat method in StringBuilder modifies the

value of a StringBuilder object.
d The insert method can be used to insert a character, number, or String at

the start or end or a specified position of a StringBuilder.

Answer: a, d

Explanation: There is no concat method in the StringBuilder class. It defines a
whole army of append methods (overloaded methods) to add data at the end of
a StringBuilder object.

new StringBuilder(50) creates a StringBuilder object with no characters but
with an initial capacity to store 50 characters.

ME-Q40) Given the following definition of the class Animal and the interface Jump,
select the correct array declarations and initialization (choose 3 options).

interface Jump {}
class Animal implements Jump {}

a Jump eJump1[] = {null, new Animal()};
b Jump[] eJump2 = new Animal()[22];

[9.1] Manipulate data using the StringBuilder class and its methods

[4.1] Declare, instantiate, initialize, and use a one-dimensional array

609Answers to mock exam questions
c Jump[] eJump3 = new Jump[10];

d Jump[] eJump4 = new Animal[87];

e Jump[] eJump5 = new Jump()[12];

Answer: a, c, d

Explanation: Option (b) is incorrect because the right side of the expression is trying
to create a single object of the class Animal by using parentheses (). At the same time,
it’s also using the square brackets [] to define an array. This combination is invalid.

 Option (e) is incorrect. Apart from using an invalid syntax to initialize an array (as
mentioned previously), it also tries to create objects of the interface Jump. Objects of
interfaces can’t be created.

ME-Q41)What is the output of the following code? (Select 1 option.)

import java.util.*;
class EJGArrayL {
 public static void main(String args[]) {
 ArrayList<String> seasons = new ArrayList<>();
 seasons.add(1, "Spring"); seasons.add(2, "Summer");
 seasons.add(3, "Autumn"); seasons.add(4, "Winter");
 seasons.remove(2);

 for (String s : seasons)
 System.out.print(s + ", ");
 }
}

a Spring, Summer, Winter,

b Spring, Autumn, Winter,

c Autumn, Winter,

d Compilation error
e Runtime exception

Answer: e

Explanation: The code throws a runtime exception, IndexOutOfBoundsException,
because the ArrayList is trying to insert its first element at position 0. Before the first
call to the method add, the size of the ArrayList seasons is 0. Because season’s first
element is stored at position 0, a call to store its first element at position 1 will throw a

[9.4] Declare and use an ArrayList of a given type

[8.5] “Recognize common exception classes (such as NullPointerException,
ArithmeticException, ArrayIndexOutOfBoundsException,
ClassCastException)”

610 CHAPTER 8 Full mock exam
RuntimeException. The elements of an ArrayList can’t be added to a higher position
if lower positions are available.

ME-Q42) What is the output of the following code? (Select 1 option.)

class EIf {
 public static void main(String args[]) {
 bool boolean = false;
 do {
 if (boolean = true)
 System.out.println("true");
 else
 System.out.println("false");
 }
 while(3.3 + 4.7 > 8); }
}

a The class will print true.
b The class will print false.
c The class will print true if the if condition is changed to boolean == true.
d The class will print false if the if condition is changed to boolean != true.
e The class won’t compile.
f Runtime exception

Answer: e

Explanation: This question tries to trick you on two points. First, there’s no data type
bool in Java. Second, the name of an identifier can’t be the same as a reserved word.
The code tries to define an identifier of type bool with the name boolean.

ME-Q43) How many Fish did the Whale (defined as follows) manage to eat? Examine
the following code and select the correct statements (choose 2 options).

class Whale {
 public static void main(String args[]) {
 boolean hungry = false;

[2.1] Declare and initialize variables (including casting of primitive data types)

[3.3] Create if and if/else and ternary constructs

[5.3] Create and use do-while loops

[5.1] Create and use while loops

611Answers to mock exam questions
 while (hungry=true) {
 ++Fish.count;
 }
 System.out.println(Fish.count);
 }
}
class Fish {
 static byte count;
}

a The code doesn’t compile.
b The code doesn’t print a value.
c The code prints 0.
d Changing ++Fish.count to Fish.count++ will give the same results.

Answer: b, d

Explanation: Option (a) is incorrect because the code compiles successfully.
 Option (c) is incorrect. This question tries to trick you by comparing a boolean

value when it’s assigning a boolean value in the while construct. Because the while

loop assigns the value true to the variable hungry, it will always return true, incre-
menting the value of the variable count and thus getting stuck in an infinite loop.

 Option (d) is correct because when the unary increment operator (++) is not part
of an expression, postfix and prefix notation behave in exactly the same manner.

ME-Q44) Given the following code, which option, if used to replace /* REPLACE CODE
HERE */, will make the code print the name of the phone with the position at which
it’s stored in the array phones? (Select 1 option.)

class Phones {
 public static void main(String args[]) {
 String phones[]= {"BlackBerry", "Android", "iPhone"};
 for (String phone : phones)
 /* REPLACE CODE HERE */
 }
}

a System.out.println(phones.count + ":" + phone);

b System.out.println(phones.counter + ":" + phone);

c System.out.println(phones.getPosition() + ":" + phone);

d System.out.println(phones.getCtr() + ":" + phone);

e System.out.println(phones.getCount() + ":" + phone);

f System.out.println(phones.pos + ":" + phone);

g None of the above

[5.2] Create and use for loops including the enhanced for loop

612 CHAPTER 8 Full mock exam
Answer: g

Explanation: The enhanced for loop doesn’t provide you with a variable to access the
position of the array that it’s being used to iterate over. This facility comes with the
regular for loop.

ME-Q45) Given the following code,

Byte b1 = (byte)100; // 1
Integer i1 = (int)200; // 2
Long l1 = (long)300; // 3
Float f1 = (float)b1 + (int)l1; // 4
String s1 = 300; // 5
if (s1 == (b1 + i1)) // 6
 s1 = (String)500; // 7
else // 8
 f1 = (int)100; // 9
System.out.println(s1 + ":" + f1); // 10

what is the output? Select 1 option.

a Code fails compilation at line numbers 1, 3, 4, 7.
b Code fails compilation at line numbers 6, 7.
c Code fails compilation at line numbers 7, 9.
d Code fails compilation at line numbers 4, 5, 6, 7, 9.
e No compilation error—outputs 500:300.
f No compilation error—outputs 300:100.
g Runtime exception

Answer: d

Explanation: This question tests you on multiple concepts:

■ Autoboxing and unboxing wrapper classes
■ The difference between casting primitive values and wrapper classes, for exam-

ple, from long to int and casting Long to int

[2.5] Develop code that uses wrapper classes such as Boolean, Double,
and Integer.

[3.2] Test equality between Strings and other objects using == and equals()

[7.3] Determine when casting is necessary

[9.2] Create and manipulate strings

613Answers to mock exam questions
■ Implicit and explicit casting of primitives and objects
■ Exception thrown due to invalid explicit casting (implicit casting doesn’t throw

any exception)

The code on lines 1, 2, and 3 doesn’t throw a compilation error or runtime excep-
tions. You can explicitly cast all numeric primitive data types to one another. For
example, a double primitive value can be implicitly cast to a byte. A char primitive
can be explicitly cast to any other numeric data type:

char c = 100;
Float f = (float)c;

The code at line 4 will throw a compilation error. The code (int)l1 isn’t casting prim-
itive long to int. It’s trying to cast Long to primitive int. You can explicitly cast a wrap-
per object to only the type that it wraps.

 The code at line 5 doesn’t compile because you can’t assign int values to String ref-
erence variables by using the assignment operator. You can use the String method
valueOf(), passing it a numeric value (integer or decimal) to return a String instance.

 The code at line 6 doesn’t compile because you can’t compare String instances
with instances of wrapper classes.

 The code at line 7 doesn’t compile. You can’t explicitly cast a numeric literal value
to convert it to a String value.

 The code at line 9 doesn’t compile because int can’t be converted to Float.

ME-Q46) What is the output of the following code? (Select 1 option.)

class Book {
 String ISBN;
 Book(String val) {
 ISBN = val;
 }
 public boolean equals(Object b) {
 if (b instanceof Book) {
 return ((Book)b).ISBN.equals(ISBN);
 }

[3.2] Test equality between Strings and other objects using == and equals()

[3.3] Create if and if/else and ternary constructs

[9.3] Create and manipulate calendar data using classes from
java.time.LocalDateTime, java.time.LocalDate, java.time.LocalTime,
java.time.format.DateTimeFormatter, java.time.Period

614 CHAPTER 8 Full mock exam
 else
 return false;
 }
}

class TestEquals {
 public static void main(String args[]) {
 Book b1 = new Book("1234-4657");
 Book b2 = new Book("1234-4657");
 LocalDate release = null;
 release = b1.equals(b2) ? b1 == b2? LocalDate.of(2050,12,12):
 LocalDate.parse("2072-02-01"):LocalDate.parse("9999-09-09");
 System.out.print(release);
 }
}

a 2050-12-12

b 2072-02-01

c 9999-09-09

d Compilation error
e Runtime exception

Answer: b

Explanation: This question tests you on multiple concepts:

■ Usage of equals() and the comparison operator == to determine object equality
■ Usage of the ternary operator
■ Correct method and syntax to instantiate LocalDate

The comparison operator determines whether the reference variables refer to the
same object. Because the reference variables b1 and b2 refer to different objects,
b1==b2 will return false.

 The method equals is a public method defined in the class java.lang.Object.
Because the class Object is the superclass for all the classes in Java, equals is inherited
by all classes. The default implementation of equals in the base class compares the
object references and returns true if both reference variables refer to the same object
and false otherwise. If a class has overridden this method, it returns a boolean value
depending on the logic defined in this class. The class Book overrides the equals

method and returns true if the Book object defines the same ISBN value as the Book
object being compared to. Because the ISBN object value of both variables b1 and b2 is
the same, b1.equals(b2) returns true.

 Here’s the syntax of the ternary operator:

variable = booleanValue? returnValueIfTrue : returnValueIfFalse;

All the components of a ternary operator are compulsory. Unlike an if construct, you
can’t leave out the else part in a ternary operator. The code in this question uses a

615Answers to mock exam questions
nested ternary operator. Let’s indent the code, which will make it easy to evaluate
the expression:

release = b1.equals(b2) ?
 b1 == b2?
 LocalDate.of(2050,12,12):
 LocalDate.parse("2072-02-01"):
 LocalDate.parse("9999-09-09");

Because b1.equals(b2) returns true, the control evaluates the nested ternary opera-
tor. Because b1 == b2 returns false, the code returns the LocalDate instance created
in the else part of the ternary operator, 2072-02-01.

ME-Q47) What is the output of the following code? (Select 1 option.)

int a = 10;
for (; a <= 20; ++a) {
 if (a%3 == 0) a++; else if (a%2 == 0) a=a*2;
 System.out.println(a);
}

a 11
13
15
17
19

b 20

c 11
14
17
20

d 40

e Compilation error

Answer: b

Explanation: This question requires multiple skills: understanding the declaration of
a for loop, the use of operators, and the use of the if-else construct.

 The for loop is correctly defined in the code. The for loop in this code doesn’t
use its variable initialization block; it starts with ; to mark the absence of its variable
initialization block. The code for the if construct is deliberately incorrect, because
you may encounter similar code in the exam.

[5.2] Create and use for loops including the enhanced for loop

616 CHAPTER 8 Full mock exam
 For the first iteration of the for loop, the value of the variable a is 10. Because a <=
20 evaluates to true, control moves on to the execution of the if construct. This if
construct can be indented properly as follows:

if (a%3 == 0)
 a++;
else if (a%2 == 0)
 a=a*2;

(a%3 == 0) evaluates to false and(a%2 == 0) evaluates to true, so a value of 20 (a*2)
is assigned to a. The subsequent line prints the value of a as 20.

 The increment part of the loop statement, (++a), increments the value of variable
a to 21. For the next loop iteration, its condition evaluates to false (a <= 20), and the
loop terminates.

ME-Q48) Given the following code, which option, if used to replace //INSERT CODE
HERE, will define an overloaded rideWave method? (Select 1 option.)

class Raft {
 public String rideWave() { return null; }
 //INSERT CODE HERE
}

a public String[] rideWave() { return null; }

b protected void riceWave(int a) {}

c private void rideWave(int value, String value2) {}

d default StringBuilder rideWave (StringBuffer a) { return null; }

Answer: c

Explanation: Option (a) is incorrect. Making a change only in the return value of a
method doesn’t define a valid overloaded method.

 Option (b) is incorrect. The name of the method in this option is riceWave and
not rideWave. Overloaded methods should have the same method name.

 Option (d) is incorrect. default isn’t a valid access modifier. The default modifier
is marked by the absence of an access modifier.

[6.1] Create methods with arguments and return values; including
overloaded methods

617Answers to mock exam questions
ME-Q49) Given the following code, which option, if used to replace //INSERT CODE
HERE, will correctly calculate the sum of all the even numbers in the array num and
store it in the variable sum? (Select 1 option.)

int num[] = {10, 15, 2, 17};
int sum = 0;
for (int number : num) {
 //INSERT CODE HERE
 sum += number;
}

a if (number % 2 == 0)
 continue;

b if (number % 2 == 0)
 break;

c if (number % 2 != 0)
 continue;

d if (number % 2 != 0)
 break;

Answer: c

Explanation: To find the sum of the even numbers, you first need to determine
whether a number is an even number. Then you need to add the even numbers to the
variable sum.

 Option (c) determines whether the array element is completely divisible by 2. If it
isn’t, it skips the remaining statements in the for loop by using the continue state-
ment, which starts execution of the for loop with the next array element. If the array
element is completely divisible by 2, continue doesn’t execute, and the array number
is added to the variable sum.

ME-Q50) What is the output of the following code? (Select 1 option.)

import java.util.function.Predicate;
class Op {
 public static void main(String... args) {

[5.2] Create and use for loops including the enhanced for loop

[5.5] Use break and continue

[3.1] Use Java operators; including parentheses to override operator
precedence

[9.5] Write a simple Lambda expression that consumes a Lambda
Predicate expression

618 CHAPTER 8 Full mock exam
 int a = 0;
 int b = 100;
 Predicate<Integer> compare = (var) -> var++ == 10;
 if (!b++ > 100 && compare.test(a)) {
 System.out.println(a+b);
 }
 }
}

a 100

b 101

c 102

d Code fails to compile.
e No output is produced.

Answer: d

Explanation: The code defines the Lambda expression correctly.
 Although it may seem that the unary negation operator ! is being applied to the

expression b++ > 100, it’s actually being applied to the variable b of type int. Because
a unary negation operator ! can’t be applied to a variable of type int, the code fails to
compile. The correct if condition would be as follows:

if (!(b++ > 100) && compare.test(a)) {

ME-Q51) Choose the options that meets the following specification: Create a well-
encapsulated class Pencil with one instance variable model. The value of model should
be accessible and modifiable outside Pencil. (Select 1 option.)

a class Pencil {
 public String model;
}

b class Pencil {
 public String model;
 public String getModel() { return model; }
 public void setModel(String val) { model = val; }
}

c class Pencil {
 private String model;
 public String getModel() { return model; }
 public void setModel(String val) { model = val; }
}

d class Pencil {
 public String model;
 private String getModel() { return model; }
 private void setModel(String val) { model = val; }
}

[6.5] Apply encapsulation principles to a class

619Answers to mock exam questions
Answer: c

Explanation: A well-encapsulated class’s instance variables shouldn’t be directly
accessible outside the class. They should be accessible via non-private getter and
setter methods.

ME-Q52) What is the output of the following code? (Select 1 option.)

class Phone {
 void call() {
 System.out.println("Call-Phone");
 }
}
class SmartPhone extends Phone{
 void call() {
 System.out.println("Call-SmartPhone");
 }
}
class TestPhones {
 public static void main(String[] args) {
 Phone phone = new Phone();
 Phone smartPhone = new SmartPhone();
 phone.call();
 smartPhone.call();
 }
}

a Call-Phone
Call-Phone

b Call-Phone
Call-SmartPhone

c Call-Phone
null

d null
Call-SmartPhone

Answer: b

Explanation: The method call is defined in the base class Phone. This method call is
inherited and overridden by the derived class SmartPhone. The type of both reference
variables, phone and smartphone, is Phone. But the reference variable phone refers to
an object of the class Phone, and the variable smartPhone refers to an object of the
class SmartPhone. When the method call is called on the reference variable smart-

Phone, it calls the method call defined in the class SmartPhone, because a call to an
overridden method is resolved at runtime and is based on the type of the object on
which a method is called.

[7.2] Develop code that demonstrates the use of polymorphism; including
overriding and object type versus reference type

620 CHAPTER 8 Full mock exam
ME-Q53) What is the output of the following code? (Select 1 option.)

class Phone {
 String keyboard = "in-built";
}
class Tablet extends Phone {
 boolean playMovie = false;
}
class College2 {
 public static void main(String args[]) {
 Phone phone = new Tablet();
 System.out.println(phone.keyboard + ":" + phone.playMovie);
 }
}

a in-built:false

b in-built:true

c null:false

d null:true

e Compilation error

Answer: e

Explanation: This code won’t compile. The object reference variable phone, of type
Phone, can be used to refer to an object of its derived type, Tablet. But variables of
a base class can’t access variables and methods of its derived classes without an
explicit cast to the object of the derived class. So phone can access keyboard but not
playMovie.

ME-Q54) What is the output of the following code? (Select 1 option.)

public class Wall {
 public static void main(String args[]) {
 double area = 10.98;
 String color;
 if (area < 5)
 color = "red";
 else
 color = "blue";
 System.out.println(color);
 }
}

[7.2] Develop code that demonstrates the use of polymorphism; including
overriding and object type versus reference type

[2.1] Declare and initialize variables (including casting of primitive data types)

621Answers to mock exam questions
a red

b blue

c No output
d Compilation error

Answer: b

Explanation: When you answer a question that includes accessing the value of a local
variable, check whether it has been initialized or not. Code that tries to access an
uninitialized local variable won’t compile.

 In this question, the local variable color is initialized using an if-else construct.
The variable color will be initialized as the value "red" if the value of another local
variable (area) is less than 5 but will be initialized as "blue" otherwise. So, irrespec-
tive of the value of area, color will be initialized for sure. In an if-else construct, at
least one of the two blocks of code, corresponding to if and else, is sure to execute.
The code will execute successfully, printing blue.

 Watch out for code that initializes a local variable using a conditional statement. If
the compiler can’t seem to guarantee initialization of a local variable, code that tries to
access it won’t compile. Here’s a modified version of the code (modifications in bold)
included in this question, which doesn’t compile:

public class Wall {
 public static void main(String args[]) {
 double area = 10.98;
 String color;
 if (area < 5)
 color = "red";
 if (area >= 5)
 color = "blue";
 System.out.println(color);
 }
}

ME-Q55) What is the output of the following code? (Select 1 option.)

class Diary {
 int pageCount = 100;
 int getPageCount() {
 return pageCount;
 }
 void setPageCount(int val) {
 pageCount = val;
 }
}

[2.3] Know how to read or write to object fields

622 CHAPTER 8 Full mock exam
class ClassRoom {
 public static void main(String args[]) {
 System.out.println(new Diary().getPageCount());
 new Diary().setPageCount(200);
 System.out.println(new Diary().getPageCount());
 }
}

a 100
200

b 100
100

c 200
200

d The code fails to compile.

Answer: b

Explanation: The constructor of a class creates and returns an object of the class in
which it’s defined. This returned object can be assigned to a reference variable. In
case the returned object isn’t assigned to any reference variable, none of the variables
or methods of this object can be accessed again. This is what happens in the class
ClassRoom. All calls to the methods getPageCount and setPageCount in the example
operate on unrelated objects.

ME-Q56) How many times do you think you can shop with the following code (that is,
what’s the output of the following code)? (Select 1 option.)

class Shopping {
 public static void main(String args[]) {
 boolean bankrupt = true;
 do System.out.println("enjoying shopping"); bankrupt = false;
 while (!bankrupt);
 }
}

a The code prints enjoying shopping once.
b The code prints enjoying shopping twice.
c The code prints enjoying shopping in an infinite loop.
d The code fails to compile.

Answer: d

Explanation: The code fails to compile because it’s trying to stuff two lines of code
between the do and while statements without using curly braces.

[5.3] Create and use do-while loops

623Answers to mock exam questions
ME-Q57) Which of the following options are valid for defining multidimensional arrays?
(Choose 4 options.)

a String ejg1[][] = new String[1][2];

b String ejg2[][] = new String[][] { {}, {} };

c String ejg3[][] = new String[2][2];

d String ejg4[][] = new String[][]{{null},new String[]{"a","b","c"},

{new String()}};

e String ejg5[][] = new String[][2];

f String ejg6[][] = new String[][]{"A", "B"};

g String ejg7[][] = new String[]{{"A"}, {"B"}};

Answer: a, b, c, d

Explanation: Options (a), (b), (c), and (d) define a multidimensional array correctly.
 Option (e) is incorrect because the size in the first square bracket is missing.
 Option (f) is incorrect. The correct code must use an additional pair of {} on the

right-hand side, as follows:

String ejg6[][] = new String[][]{{"A"}, {"B"}};

Option (g) is incorrect. The correct code must use an additional [] on the right-hand
side as follows:

String ejg7[][] = new String[][]{{"A"}, {"B"}};

ME-Q58) What is the output of the following code? (Select 1 option.)

class Laptop {
 String memory = "1GB";
}
class Workshop {
 public static void main(String args[]) {
 Laptop life = new Laptop();
 repair(life);
 System.out.println(life.memory);
 }
 public static void repair(Laptop laptop) {
 laptop = new Laptop();
 laptop.memory = "2GB";
 }
}

[4.2] Declare, instantiate, initialize, and use a multidimensional array

[6.6] Determine the effect upon object references and primitive values
when they are passed into methods that change the values

624 CHAPTER 8 Full mock exam
a 1 GB
b 2 GB
c Compilation error
d Runtime exception

Answer: a

Explanation: The method repair defined in this example assigns a new object to the
method parameter laptop that’s passed to it. Then it modifies the state of this new
assigned object by assigning 1 GB to its instance variable, memory.

 When a method reassigns an object reference variable that’s passed to it, the
changes made to its state aren’t visible in the calling method. This is because the changes
are made to a new object and not to the one that was initially passed to this method.
The method repair assigns a new object to the reference variable laptop that’s
passed to it and then modifies its state. Hence, the changes made to the state of the
method parameter laptop aren’t visible in method main, and it prints the value of
life.memory as 1 GB.

ME-Q59) Given the following code, which option, if used to replace //INSERT CODE
HERE, will enable a reference variable of type Roamable to refer to an object of the
Phone class? (Select 1 option.)

interface Roamable{}
class Phone {}
class Tablet extends Phone implements Roamable {
 //INSERT CODE HERE
}

a Roamable var = new Phone();

b Roamable var = (Roamable)Phone();

c Roamable var = (Roamable)new Phone();

d Because the interface Roamable and the class Phone are unrelated, a refer-
ence variable of the type Roamable can’t refer to an object of the class Phone.

Answer: c

Explanation: Option (a) is incorrect. Without explicit casting, a reference variable of
type Roamable can’t refer to an object of the class Phone.

 Option (b) is incorrect because this is an invalid line of code that will fail to compile.
 Option (d) is incorrect because a reference variable of the type Roamable can refer

to an object of the class Phone with an explicit cast.
 Note that although option (c) will compile, it will throw a ClassCastException if

it’s executed.

[7.3] Determine when casting is necessary

625Answers to mock exam questions
ME-Q60) What is the output of the following code? (Select 1 option.)

class Paper {
 Paper() {
 this(10);
 System.out.println("Paper:0");
 }
 Paper(int a) { System.out.println("Paper:1"); }
}
class PostIt extends Paper {}
class TestPostIt {
 public static void main(String[] args) {
 Paper paper = new PostIt();
 }
}

a Paper:1

b Paper:0

c Paper:0
Paper:1

d Paper:1
Paper:0

Answer: d

Explanation: new PostIt() creates an object of the class PostIt by calling its com-
piler-provided no-argument constructor. The no-argument constructor of the class
PostIt calls its base class no-argument constructor, which calls the other constructor
that accepts one int method argument. The constructor that accepts an int argu-
ment prints Paper:1 and then returns control to the no-argument constructor. The
no-argument constructor then prints Paper:0.

ME-Q61) Examine the following code and select the correct statement (choose 1 option).

line1> class StringBuilders {
line2> public static void main(String... args) {
line3> StringBuilder sb1 = new StringBuilder("eLion");
line4> String ejg = null;
line5> ejg = sb1.append("X").substring(sb1.indexOf("L"),

sb1.indexOf("X"));
line6> System.out.println(ejg);
line7> }
line8> }

[7.4] Use super and this to access objects and constructors

[9.1] Manipulate data using the StringBuilder class and its methods

626 CHAPTER 8 Full mock exam
a The code will print LionX.
b The code will print Lion.
c The code will print Lion if line 5 is changed to the following:

ejg = sb1.append("X").substring(sb1.indexOf('L'), sb1.indexOf('X'));

d The code will compile only when line 4 is changed to the following:

StringBuilder ejg = null;

Answer: b

Explanation: Option (a) is incorrect and option (b) is correct. The substring

method doesn’t include the character at the end position in the result that it returns.
Hence, the code prints Lion.

 Option (c) is incorrect. If line 5 is changed as suggested in this option, the code
won’t compile. You can’t pass a char to StringBuilder’s method indexOf; it accepts
String.

 Option (d) is incorrect because there are no compilation issues with the code.

ME-Q62) Given the following code,

interface Jumpable {
 int height = 1;
 default void worldRecord() {
 System.out.print(height);
 }
}
interface Moveable {
 int height = 2;
 static void worldRecord() {
 System.out.print(height);
 }

}
class Chair implements Jumpable, Moveable {
 int height = 3;
 Chair() {
 worldRecord();
 }
 public static void main(String args[]) {
 Jumpable j = new Chair();
 Moveable m = new Chair();
 Chair c = new Chair();
 }
}

what is the output? Select 1 option.

[7.5] Use abstract classes and interfaces

627Answers to mock exam questions
a 111

b 123

c 333

d 222

e Compilation error
f Runtime exception

Answer: a

Explanation: The constructor of the class Chair invokes the default non-static

method defined in the interface Jumpable. Moreover, if only the static world-

Record() method in the interface Moveable were defined, its invocation would have
to be qualified (that is, Moveable.worldRecord();) for the class Chair to compile.

ME-Q63) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will enable the class Jungle to determine whether the reference variable
animal refers to an object of the class Lion and print 1? (Select 1 option.)

class Animal{ float age; }
class Lion extends Animal { int claws;}
class Jungle {
 public static void main(String args[]) {
 Animal animal = new Lion();
 /* INSERT CODE HERE */
 System.out.println(1);
 }
}

a if (animal instanceof Lion)

b if (animal instanceOf Lion)

c if (animal == Lion)

d if (animal = Lion)

Answer: a

Explanation: Option (b) is incorrect because the correct operator name is instanceof

and not instanceOf (note the capitalized O).
 Options (c) and (d) are incorrect. Neither of these lines of code will compile

because they are trying to compare and assign a class name to a variable, which isn’t
allowed.

[7.3] Determine when casting is necessary

628 CHAPTER 8 Full mock exam
ME-Q64) Given that the file Test.java, which defines the following code, fails to com-
pile, select the reasons for the compilation failure (choose 2 options).

class Person {
 Person(String value) {}
}
class Employee extends Person {}
class Test {
 public static void main(String args[]) {
 Employee e = new Employee();
 }
}

a The class Person fails to compile.
b The class Employee fails to compile.
c The default constructor can call only a no-argument constructor of a base

class.
d The code that creates an object of the class Employee in the class Test did not

pass a String value to the constructor of the class Employee.

Answer: b, c

Explanation: The class Employee doesn’t compile, so the class Test can’t use a variable
of type Employee, and it fails to compile.

 While trying to compile the class Employee, the Java compiler generates a default
constructor for it, which looks like the following:

Employee() {
 super();
}

Note that a derived class constructor must always call a base class constructor. When
Java generates the previous default constructor for the class Employee, it fails to com-
pile because the base class doesn’t have a no-argument constructor. The default con-
structor that’s generated by Java can only define a call to a no-argument constructor in
the base class. It can’t call any other base class constructor.

[6.3] Create and overload constructors; including impact on default
constructors

629Answers to mock exam questions
ME-Q65) Examine the following code and select the correct statements (choose 2
options).

class Bottle {
 void Bottle() {}
 void Bottle(WaterBottle w) {}
}
class WaterBottle extends Bottle {}

a A base class can’t pass reference variables of its defined class as method
parameters in constructors.

b The class compiles successfully—a base class can use reference variables of
its derived class as method parameters.

c The class Bottle defines two overloaded constructors.
d The class Bottle can access only one constructor.

Answer: b, d

Explanation: A base class can use reference variables and objects of its derived classes.
Note that the methods defined in the class Bottle aren’t constructors but regular
methods with the name Bottle. The return type of a constructor isn’t void.

ME-Q66) Given the following code, which option, if used to replace /* INSERT CODE
HERE */, will cause the code to print 110? (Select 1 option.)

class Book {
 private int pages = 100;
}
class Magazine extends Book {
 private int interviews = 2;
 private int totalPages() { /* INSERT CODE HERE */ }

 public static void main(String[] args) {
 System.out.println(new Magazine().totalPages());
 }

}

a return super.pages + this.interviews*5;

b return this.pages + this.interviews*5;

c return super.pages + interviews*5;

[6.3] Create and overload constructors; including impact on default
constructors

[7.4] Use super and this to access objects and constructors

630 CHAPTER 8 Full mock exam
d return pages + this.interviews*5;

e None of the above

Answer: e

Explanation: The variable pages has private access in the class Book, and it can’t be
accessed from outside this class.

ME-Q67) Given the following code,

class NoInkException extends Exception {}
class Pen{
 void write(String val) throws NoInkException {
 int c = (10 - 7)/ (8 - 2 - 6);
 }
 void article() {
 //INSERT CODE HERE
 }
}

which of the options, when inserted at //INSERT CODE HERE, will define a valid use of
the method write in the method article? (Select 2 options.)

a try {
 new Pen().write("story");
} catch (NoInkException e) {}

b try {
 new Pen().write("story");
} finally {}

c try {
 write("story");
} catch (Exception e) {}

d try {
 new Pen().write("story");
} catch (RuntimeException e) {}

Answer: a, c

Explanation: On execution, the method write will always throw an Arithmetic-

Exception (a RuntimeException) due to division by 0. But this method declares to
throw a NoInkException, which is a checked exception.

[8.4] Create and invoke a method that throws an exception

[8.5] “Recognize common exception classes (such as NullPointerException,
ArithmeticException, ArrayIndexOutOfBoundsException,
ClassCastException)”

631Answers to mock exam questions
 Because NoInkException extends the class Exception and not RuntimeException,
NoInkException is a checked exception. When you call a method that throws a
checked exception, you can either handle it using a try-catch block or declare it to
be thrown in your method signature.

 Option (a) is correct because a call to the method write is enclosed within a try

block. The try block is followed by a catch block, which defines a handler for the
exception NoInkException.

 Option (b) is incorrect. The call to the method write is enclosed within a try block,
followed by a finally block. The finally block isn’t used to handle an exception.

 Option (c) is correct. Because NoInkException is a subclass of Exception, an excep-
tion handler for the class Exception can handle the exception NoInkException as well.

 Option (d) is incorrect. This option defines an exception handler for the class
RuntimeException. Because NoInkException is not a subclass of RuntimeException,
this code won’t handle NoInkException.

ME-Q68) What is the output of the following code? (Select 1 option.)

class EMyMethods {
 static String name = "m1";
 void riverRafting() {
 String name = "m2";
 if (8 > 2) {
 String name = "m3";
 System.out.println(name);
 }
 }
 public static void main(String[] args) {
 EMyMethods m1 = new EMyMethods();
 m1.riverRafting();
 }
}

a m1

b m2

c m3

d The code fails to compile.

Answer: d

Explanation: The class EMyMethods defines three variables with the name name:

■ The static variable name with the value "m1"
■ The local variable name in the method riverRafting with the value "m2"
■ The variable name, local to the if block in the method riverRafting, with the

value "m3"

[1.1] Define the scope of variables

632 CHAPTER 8 Full mock exam
The code fails to compile due to the definition of two local variables with the same
name (name) in the method riverRafting. If this code were allowed to compile, the
scope of these local variables would overlap—the variable name defined outside the if
block would be accessible to the complete method riverRafting. The scope of the
local variable name, defined within the if block, would be limited to the if block.

 Within the if block, how do you think the code would differentiate between these
local variables? Because there’s no way to do so, the code fails to compile.

ME-Q69) What is the output of the following code? (Select 1 option.)

class EBowl {
 public static void main(String args[]) {
 String eFood = "Corn";
 System.out.println(eFood);
 mix(eFood);
 System.out.println(eFood);
 }
 static void mix(String foodIn) {
 foodIn.concat("A");
 foodIn.replace('C', 'B');
 }
}

a Corn
BornA

b Corn
CornA

c Corn
Born

d Corn
Corn

Answer: d

Explanation: String objects are immutable. This implies that using any method can’t
change the value of a String variable. In this case, the String object is passed to a
method, which seems to, but doesn’t, change the contents of String.

ME-Q70) Which statement is true for the following code? (Select 1 option.)

class SwJava {
 public static void main(String args[]) {
 String[] shapes = {"Circle", "Square", "Triangle"};

[9.2] Create and manipulate strings

[3.4] Use a switch statement

633Answers to mock exam questions
 switch (shapes) {
 case "Square": System.out.println("Circle"); break;
 case "Triangle": System.out.println("Square"); break;
 case "Circle": System.out.println("Triangle"); break;
 }
 }
}

a The code prints Circle.
b The code prints Square.
c The code prints Triangle.
d The code prints

Circle
Square
Triangle

e The code prints

Triangle
Circle
Square

f The code fails to compile.

Answer: f

Explanation: The question tries to trick you; it passes a String[] value to a switch

construct by passing it an array of String objects. The code fails to compile because
an array isn’t a valid argument to a switch construct. The code would have compiled
if it passed an element from the array shapes (shapes[0], shapes[1], or shapes[2]).

ME-Q71) Given the following definition of the classes Person, Father, and Home,
which options, if used to replace //INSERT CODE HERE, will cause the code to compile
successfully? (Select 3 options.)

class Person {}
class Father extends Person {
 public void dance() throws ClassCastException {}
}
class Home {
 public static void main(String args[]) {
 Person p = new Person();
 try {
 ((Father)p).dance();
 }
 //INSERT CODE HERE
 }
}

[8.4] Create and invoke a method that throws an exception

634 CHAPTER 8 Full mock exam
a catch (NullPointerException e) {}
catch (ClassCastException e) {}
catch (Exception e) {}
catch (Throwable t) {}

b catch (ClassCastException e) {}
catch (NullPointerException e) {}
catch (Exception e) {}
catch (Throwable t) {}

c catch (ClassCastException e) {}
catch (Exception e) {}
catch (NullPointerException e) {}
catch (Throwable t) {}

d catch (Throwable t) {}
catch (Exception e) {}
catch (ClassCastException e) {}
catch (NullPointerException e) {}

e finally {}

Answer: a, b, e

Explanation: Because NullPointerException and ClassCastException don’t share a
base class–derived class relationship, these can be placed before or after each other.

 The class Throwable is the base class of Exception. Hence, the exception handler
for the class Throwable can’t be placed before the exception handler of the class
Exception. Similarly, Exception is a base class for NullPointerException and Class-

CastException. Hence, the exception handler for the class Exception can’t be placed
before the exception handlers of the class ClassCastException or NullPointer-

Exception.
 Option (e) is OK because no checked exceptions are defined to be thrown.

ME-Q72) What is the output of the following code? (Select 1 option.)

import java.time.*;
class Camera {
 public static void main(String args[]) {
 int hours;
 LocalDateTime now = LocalDateTime.of(2020, 10, 01, 0 , 0);

[2.1] Declare and initialize variables (including casting of primitive data types)

[5.1] Create and use while loops

[9.3] Create and manipulate calendar data using classes from
java.time.LocalDateTime, java.time.LocalDate, java.time.LocalTime,
java.time.format.DateTimeFormatter, java.time.Period

635Answers to mock exam questions
 LocalDate before = now.toLocalDate().minusDays(1);
 LocalTime after = now.toLocalTime().plusHours(1);

 while (before.isBefore(after) && hours < 4) {
 ++hours;
 }
 System.out.println("Hours:" + hours);
 }
}

a The code prints Camera:null.
b The code prints Camera:Adjust settings manually.
c The code prints Camera:.
d The code fails to compile.

Answer: d

Explanation: Note the type of the variables now, before, and after—they aren’t the
same. The code fails compilation because the code before.isBefore(after) calls
the isBefore method on an instance of LocalDate, passing it a LocalTime instance,
which isn’t allowed.

 The local variable hours isn’t initialized prior to being referred to in the while

condition (hours < 4), which is another reason why the class doesn’t compile.

ME-Q73) The output of the class TestEJavaCourse, defined as follows, is 300:

class Course {
 int enrollments;
}
class TestEJavaCourse {
 public static void main(String args[]) {
 Course c1 = new Course();
 Course c2 = new Course();
 c1.enrollments = 100;
 c2.enrollments = 200;
 System.out.println(c1.enrollments + c2.enrollments);
 }
}

What will happen if the variable enrollments is defined as a static variable? (Select
1 option.)

a No change in output. TestEJavaCourse prints 300.
b Change in output. TestEJavaCourse prints 200.
c Change in output. TestEJavaCourse prints 400.
d The class TestEJavaCourse fails to compile.

Answer: c

[6.2] Apply the static keyword to methods and fields

636 CHAPTER 8 Full mock exam

-

Explanation: The code doesn’t fail compilation after the definition of the variable
enrollments is changed to a static variable. A static variable can be accessed using
a variable reference of the class in which it’s defined. All the objects of a class share
the same copy of the static variable. When the variable enrollments is modified
using the reference variable c2, c1.enrollments is also equal to 200. Hence, the code
prints the result of 200 + 200, that is, 400.

ME-Q74) What is the output of the following code? (Select 1 option.)

String ejgStr[] = new String[][]{{null},new String[]{"a","b","c"},{new
String()}}[0] ;

String ejgStr1[] = null;
String ejgStr2[] = {null};

System.out.println(ejgStr[0]);
System.out.println(ejgStr2[0]);
System.out.println(ejgStr1[0]);

a null
NullPointerException

b null
null
NullPointerException

c NullPointerException

d null
null
null

Answer: b

Explanation: The trickiest assignment in this code is the assignment of the variable
ejgStr. The following line of code may seem to (but doesn’t) assign a two-dimensional
String array to the variable ejgStr:

String ejgStr[] = new String[][]{{null},new String[]{"a","b","c"},{new
String()}}[0] ;

The preceding code assigns the first element of a two-dimensional String array to the
variable ejgStr. The following indented code will make the previous statement easier
to understand:

String ejgStr[] = new String[][]{
 {null},
 new String[]{"a","b","c"},
 {new String()}

[4.2] Declare, instantiate, initialize, and use a multidimensional array

First element of two-dimensional
array—an array of length 1

Second element of two-dimensional
array—an array of length 3

Third element of two
dimensional array—
an array of length 1

637Answers to mock exam questions
 }
 [0] ;

So let’s look at the simplified assignment:

String ejgStr[] = {null};
String ejgStr1[] = null;
String ejgStr2[] = {null};

Revisit the code that prints the array elements:

System.out.println(ejgStr[0]);
System.out.println(ejgStr2[0]);
System.out.println(ejgStr1[0]);

Because ejgStr refers to an array of length 1 ({null}), ejgStr[0] prints null.
ejgStr2 also refers to an array of length 1 ({null}), so ejgStr2[0] also prints null.
ejgStr1 refers to null, not to an array. An attempt to access the first element of
ejgStr1 throws a NullPointerException.

ME-Q75) Examine the following code and select the correct statement (choose 1
option).

import java.util.*;
class Person {}
class Emp extends Person {}

class TestArrayList {
 public static void main(String[] args) {
 ArrayList<Object> list = new ArrayList<>();
 list.add(new String("1234")); //LINE1
 list.add(new Person()); //LINE2
 list.add(new Emp()); //LINE3
 list.add(new String[]{"abcd", "xyz"}); //LINE4
 list.add(LocalDate.now().plus(1)); //LINE5
 }
}

End of definition of
two-dimensional arrayFirst element of

this array, {null}

Prints nullb

Prints nullc

Throws NullPointerExceptiond

[9.3] Create and manipulate calendar data using classes from
java.time.LocalDateTime, java.time.LocalDate, java.time.LocalTime,
java.time.format.DateTimeFormatter, java.time.Period

[9.4] Declare and use an ArrayList of a given type

638 CHAPTER 8 Full mock exam
a The code on line 1 won’t compile.
b The code on line 2 won’t compile.
c The code on line 3 won’t compile.
d The code on line 4 won’t compile.
e The code on line 5 won’t compile.
f None of the above.
g All the options from (a) to (e).

Answer: e

Explanation: The type of an ArrayList determines the type of the objects that can be
added to it. An ArrayList can add to it all the objects of its derived class. Options (a)
to (d) will compile because the class Object is the superclass of all Java classes; the
ArrayList list as defined in this question will accept all types of objects, including
arrays, because they are also objects.

 Although a LocalDate instance can be added to an ArrayList, the code in option
(e) won’t compile. LocalDate.now() returns a LocalDate instance. But the class
LocalDate doesn’t define a plus() method, which accepts an integer value to be added
to it—there’s actually one plus method that accepts a TemporalAmount instance. You
can use any of the following methods to add days, months, weeks, or years to Local-
Date, passing it long values:

■ plusDays(long daysToAdd)

■ plusMonths(long monthsToAdd)

■ plusWeeks(long weeksToAdd)

■ plusYears(long yearsToAdd)

You can also use the following method to add a duration of days to LocalDate, passing
it an instance of Period (Period implements TemporalAmount):

plus(TemporalAmount amountToAdd)

ME-Q76) What is the output of the following code? (Select 1 option.)

public class If2 {
 public static void main(String args[]) {
 int a = 10; int b = 20; boolean c = false;
 if (b > a) if (++a == 10) if (c!=true) System.out.println(1);
 else System.out.println(2); else System.out.println(3);
 }
}

a 1

b 2

[3.3] Create if and if/else and ternary constructs

639Answers to mock exam questions
c 3

d No output

Answer: c

Explanation: The key to answering questions about unindented code is to indent it.
Here’s how:

if (b > a)
 if (++a == 10)
 if (c!=true)
 System.out.println(1);
 else
 System.out.println(2);
 else System.out.println(3);

Now the code becomes much simpler to look at and understand. Remember that the
last else statement belongs to the inner if (++a == 10). As you can see, if (++a ==
10) evaluates to false, the code will print 3.

ME-Q77) Given the following code,

interface Movable {
 default int distance() {
 return 10;
 }
}
interface Jumpable {
 default int distance() {
 return 10;
 }
}

which options correctly define the class Person that implements interfaces Movable
and Jumpable? (Select 1 option.)

a class Person implements Movable, Jumpable {}

b class Person implements Movable, Jumpable {
 default int distance() {
 return 10;
 }
}

c class Person implements Movable, Jumpable {
 public int distance() {
 return 10;
 }
}

[7.5] Use abstract classes and interfaces

640 CHAPTER 8 Full mock exam
d class Person implements Movable, Jumpable {
 public long distance() {
 return 10;
 }
}

e class Person implements Movable, Jumpable {
 int distance() {
 return 10;
 }
}

Answer: c

Explanation: Option (a) is incorrect because the class Person can’t implement both
interfaces, Jumpable and Movable, which define the method distance with the same
signatures and a default implementation. The class Person must override the default
implementation of distance() to implement both these interfaces.

 Option (b) is incorrect. When a class overrides the default implementation of a
method that it inherits from an interface, it can’t use the keyword default. Such code
won’t compile.

 Option (d) is incorrect. The method distance() with the return type long can’t
override distance() with the return type int.

 Option (e) is incorrect and this code won’t compile. The class Person is trying to
decrease the accessibility of distance(), from public to the default access level.

appendix
Answers to Twist

in the Tale exercises

Chapters 1 through 7 include multiple Twist in the Tale exercises. The answers to
these exercises, along with comprehensive explanations, are given in this appendix.
The answers to each exercise include the following elements:

■ Purpose—The aim of the exercise (the twist to which each exercise is trying to
draw your attention)

■ Answer—The correct answer
■ Explanation—A comprehensive explanation of the answer

Let’s get started with the first chapter.

A.1 Chapter 1: Java basics
Chapter 1 includes four Twist in the Tale exercises.

A.1.1 Twist in the Tale 1.1

Purpose: This exercise encourages you to practice code with a combination of the
correct contents (classes and interfaces) of a Java source code file.

Answer: c, d

Explanation: Options (a) and (b) are incorrect.
 Option (c) is correct because a Java source code file can define multiple inter-

faces and classes.
 Option (d) is correct because a public interface or class can be defined in a

Java source code file with a matching name. The public interface Printable

can’t be defined in the Java source code file, Multiple.java. It must be defined in
Printable.java.
641

642 APPENDIX Answers to Twist in the Tale exercises
A.1.2 Twist in the Tale 1.2

Purpose: Though similar to Twist in the Tale 1.1, this question is different in terms of
its wording and intent. It asks you to select the options that are correct individually.
Selecting an option that’s correct individually means that an option should be correct
on its own and not in combination with any other option. You may get to answer simi-
lar questions in the real exam.

Answer: a, c, d

Explanation: Option (a) is correct and (b) is incorrect because Multiple2.java won’t
compile. Multiple2.java can’t define a public class Car.

 Option (c) is correct because removal of the definition of the public class Car

from Multiple2.java will leave only one public interface in Multiple2.java—Multiple2.
Because the names of the public interface Multiple2 and the source code file match,
Multiple2.java will compile successfully.

 Option (d) is correct. Changing the public class Car to a non-public class will
leave only one public interface in Multiple2.java—Multiple2. Because the names of
the public interface Multiple2 and source code file match, Multiple2.java will com-
pile successfully.

 Option (e) is incorrect. If you change the access modifier of the public interface
Multiple2 to non-public, Multiple2.java will contain a definition of a public class
Car, which isn’t allowed.

A.1.3 Twist in the Tale 1.3

Purpose: This exercise encourages you to execute the code in the options to under-
stand the correct method signature of the method main together with the method
parameters that are passed to it.

Answer: a, b

Explanation: All the options in this question are supposed to execute using the com-
mand javaEJava java one one. The purpose of each of these terms is as follows:

■ Term 1, java—Used to execute a Java class
■ Term 2, EJava—Name of class to execute
■ Term 3, java—Passed as the first argument to the method main

■ Term 4, one—Passed as the second argument to main

■ Term 5, one—Passed as the third argument to main

To output java one, the main method should output the first and either the second or
third method parameters passed to it.

 Options (a) and (b) are correct because they use the correct method signature of
the method main. The name of the method parameter need not be args. It can be any
other valid identifier. Option (a) outputs the values of the first and third terms passed
to it. Option (b) outputs the values of the first and second terms passed to it.

643Chapter 2: Working with Java data types
 Option (c) is incorrect because this main method accepts a two-dimensional array.
Hence, it won’t be treated as the main method.

 Option (d) is incorrect because this code won’t compile. The access modifier of a
method (public) should be placed before its return type (void); otherwise, the code
won’t compile.

A.1.4 Twist in the Tale 1.4

Purpose: Apart from determining the right access modifier that can limit the visibility
of a class within a package, this exercise wants you to try out different access modifiers
that can be used to declare a class.

Answer: The code submitted by Harry.

Explanation: The code submitted by Paul is incorrect because when the class Curtain

is defined with the public access modifier, it will be accessible outside the package
building.

 The code submitted by Shreya and Selvan is incorrect because the class Curtain is
a top-level class (it’s not defined within another class), so it can’t be defined using the
access modifiers protected and private.

A.2 Chapter 2: Working with Java data types
Chapter 2 includes four Twist in the Tale exercises. Twist in the Tale 2.1 has two parts.

A.2.1 Twist in the Tale 2.1 (part 1)

Purpose: By default, System.out.println() will print out a number in its decimal base.
It does so regardless of the base number system that you use to initialize a number.

Answer: The code prints the following output:

534
534

Explanation: Often programmers are tricked by similar questions. If a variable is
assigned a value using 0b100001011 (a number in the binary number system), a pro-
grammer might believe that System.out.println() will print out numbers in the
binary number system, which is incorrect. By default, System.out.println() will print
out a number in its decimal base. All four variables baseDecimal, octVal, hexVal, and
binVal represent the decimal value 267 in the decimal, octal, hexadecimal, and binary
number systems. The addition operation adds these values and prints 534 twice.

 You can use a method from the class Integer to print out a value in the binary
number system as follows:

System.out.println(Integer.toBinaryString(0b100001011));

Note that the class Integer isn’t on this exam and you won’t be asked any questions
on it. This class is mentioned only for your reference.

644 APPENDIX Answers to Twist in the Tale exercises
A.2.2 Twist in the Tale 2.1 (part 2)

Purpose: A new Java 7 language feature is the use of the underscore in literal number
values. This exercise’s purpose is to help you get familiar with this feature if you
haven’t worked with underscores in literal number values before.

Answer: Only var1, var6, and var7 correctly define a literal integer value.

Explanation: The literal value 0_x_4_13 defined by var2 is incorrect because it uses
underscores after the starting 0 and after the letter x, neither of which is allowed. The
correct value is 0x4_13.

 The literal value 0b_x10_BA_75 defined by var3 is incorrect. You can’t place an
underscore right after the prefixes 0b and 0B that are used to define binary literal val-
ues. Also, a binary value can contain only the digits 1 and 0.

 The literal value 0b_10000_10_11 defined by value var4 is incorrect. You can’t
place an underscore right after the prefixes 0b and 0B used to define binary literal val-
ues. The correct value is 0b10000_10_11.

 The literal value 0xa10_AG_75 defined by var5 is incorrect because it uses the let-
ter G, which isn’t allowed in a hexadecimal number system. A correct value is
0xa10_A_75.

 The literal integer defined by var1 is valid. But 0 (for octal literals) is an exception
to the rule stating that a radix prefix can’t be isolated by an underscore (for example,
0x_100_267_760 and 0b_100_110 are invalid expressions).

A.2.3 Twist in the Tale 2.2

Purpose: To reinforce the following concepts:

■ Multiple variables of the same type can be defined on the same line of code.
■ Variable assignment rule: if multiple variables of similar types are assigned values

on the same line, assignment starts from right to left. Also, unlike other pro-
gramming languages such as C, the literal value 0 can’t be assigned to a variable
of type boolean.

■ Questions that ask you to select incorrect answers or code can be confusing. It’s
common to start by determining the incorrect options and then selecting the
correct options. Make note of such questions.

Answer: a, b, c, e

Explanation: Options (a) and (b) are incorrect statements. You can define multiple
variables of the same type on the same line. Also, you can assign values to variables of
compatible types on the same line of code. Assignment starts from right to left. For
proof, the following lines of code will compile:

int int1;
long long2;
long2 = int1 = 10;

645Chapter 2: Working with Java data types
But the following lines of code won’t compile:

int i1;
long l2;
int1 = long2 = 10;

In the final line of the preceding code, a literal value 10 is assigned to the variable
long2 of type long, which is acceptable. An attempt to assign the value of the vari-
able long2 to int1 fails because it would need an explicit cast.

 Option (c) is an incorrect statement because a literal value 0 can’t be assigned to a
variable of type boolean.

 Option (d) is a correct statement.
 Option (e) is an incorrect statement. The code doesn’t define a variable with the

name yes and thus seems to treat it like a literal value. Java doesn’t define a literal
value yes, so the code doesn’t compile.

A.2.4 Twist in the Tale 2.3

Purpose: The exercise encourages you to

■ Try code with increment and decrement postfix and prefix unary operators
■ Get the hang of how variables are evaluated in an expression that has multiple

occurrences of unary operators in postfix and prefix notation

Answer: 32

Explanation: The actual task is to evaluate the following expression:

int a = 10;
a = ++a + a + --a - --a + a++;
System.out.println(a);

This is the actual task because the question asks you to replace all occurrences of ++a
with a++, --a with a--, and vice versa. This expression is depicted in figure A.1:

a = ++a + a + --a - --a + a++ ;

1!

1!

1)

j

j

Value of a
increments

before this

value is

used

Value of a
remains

the same

Value of a
decrements before

its value is used

Value of a
decrements

before its

value is

used

Value of a
increments

after its

value is

used

Figure A.1 Evaluation of an expression
that has multiple unary operators in postfix
and prefix notation

646 APPENDIX Answers to Twist in the Tale exercises
A.2.5 Twist in the Tale 2.4

Purpose: To determine whether the operands of an expression that uses the short-cir-
cuit operators && and || will evaluate.

Answer: The operands that will execute are circled and the ones that won’t are enclosed
in rectangles in figure A.2.

Explanation: Both of the short-circuit operators, && and ||, will evaluate their first
operand. For the short-circuit operator &&, if the first operand evaluates to false, it
won’t evaluate the second operator. For the short-circuit operator ||, if the first oper-
and evaluates to true, it won’t evaluate the second operator.

 For the expression (a++ > 10 || ++b < 30), because a++ > 10 evaluates to false,
both operands will evaluate.

 For the expression (a > 90 && ++b < 30), because a > 90 evaluates to false, the sec-
ond operand won’t execute.

 For expression (!(c > 20) && a == 10), because !(c > 20) evaluates to false, the
second operand won’t execute.

 The expression (a >= 99 || a <= 33 && b == 10) has three operands together with
the OR (||) and AND (&&) short-circuit operators. Because the short-circuit operator
AND has higher operator precedence than the short-circuit operator OR, the expres-
sion is evaluated as follows:

(a >= 99 || (a <= 33 && b == 10))

Evaluation of the preceding expression starts with the evaluation of (a <= 33 &&
b == 10). Because a <= 33 evaluates to true, the operator && evaluates the second
operand (b == 10) to determine whether (a <= 33 && b == 10) will return true or
false. a <= 33 returns true and b == 10 returns false, so the expression (a <= 33
&& b == 10) returns false.

class TwistInTaleLogicalOperators {

public static void main(String args[]){

int a=10;

int b=20;

int c=40;

System.out.println(a++>10 || ++b<30); //line1

System.out.println(a>90 && ++b<30);

System.out.println(!(c>20) && a==10);

System.out.println(a>=99 || a<=33 && b==10);

System.out.println(a>=99 && a<=33 || b==10);

}

}

Figure A.2 In an expression that uses the short-circuit operators &&
and ||, the operands that are evaluated are circled and the ones that
aren’t evaluated are enclosed in rectangles.

647Chapter 3: Methods and encapsulation
 The original expression—(a >= 99 || (a <= 33 && b == 10))—is now reduced to the
following expression:

(a >= 99 || false)

The short-circuit operator OR (||) executes its first operand (even if the value of the
second operand is known), evaluating a >= 99. So for this expression, all three oper-
ands are evaluated.

 The expression (a >= 99 && a <= 33 || b == 10) also has three operands, together
with OR and AND short-circuit operators. Because the short-circuit operator AND has a
higher operator precedence than the short-circuit operator OR, this expression is eval-
uated as follows:

((a >= 99 && a <= 33) || b == 10)

a >= 99 evaluates to false, so the next operand (a <= 33) isn’t evaluated. Because
the first operand to operator ||, a >= 99 && a <= 33), evaluates to false, b == 10 is
evaluated.

A.3 Chapter 3: Methods and encapsulation
Chapter 3 includes three Twist in the Tale exercises.

A.3.1 Twist in the Tale 3.1

Purpose: In the same way that the class TestPhone in this exercise defines a local vari-
able with the same name as its instance variable, I strongly recommend that you try
out different combinations of defining variables with the same name in a class, but
with different scope.

Answer: a

Explanation: The class Phone defines an instance variable with the name phoneNumber.
The method setNumber also defines a local variable phoneNumber and assigns a value
to its local variable. A local variable takes precedence over an instance variable
defined in the class with the same names. Because there is no change in the value of
the instance variable phoneNumber, 123456789 is printed to the console from the
method main, defined in the class TestPhone.

A.3.2 Twist in the Tale 3.2

Purpose: To learn that recursive or circular calls to constructors aren’t allowed.

Answer: The code fails to compile, with the following compilation error message:

Employee.java:4: error: recursive constructor invocation
 Employee() {
 ^
1 error

648 APPENDIX Answers to Twist in the Tale exercises
Explanation: A method calling itself is called recursion. Two or more methods calling
each other, in a circular manner, is called circular method calling.

 Starting in Java version 1.4.1, the Java compiler won’t compile code with recursive or
circular constructors. A constructor is used to initialize an object, so it doesn’t make
sense to allow recursive calls to a constructor. You can initialize an object once and
then modify it. You can’t initialize an object multiple times.

 In case you’re wondering whether you can call a constructor conditionally from
another constructor, you can’t. A call to a constructor must be the first statement:

class Employee {
 String name;
 int age;
 Employee() {
 if (7<2)
 this();
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

Also, circular constructor calls aren’t allowed:

class Employee {
 String name;
 int age;
 Employee() {
 this(null, 0);
 }
 Employee(String newName, int newAge) {
 this();
 name = newName;
 age = newAge;
 }
}

The previous example doesn’t compile, with the following compilation error message:

Employee.java:8: error: recursive constructor invocation
 Employee(String newName, int newAge) {
 ^
1 error

Note that similar recursive or circular calls defined in methods don’t result in compi-
lation errors.

A.3.3 Twist in the Tale 3.3

Purpose: A class with public instance variable(s) can never be designated as a well-
encapsulated class.

Answer: e

Won’t compile—conditional
execution of constructors
isn’t allowed. The call to this
must be the first statement
in the constructor.

Won’t compile. This
constructor calls back the
no-argument constructor,
resulting in a circular
constructor call.

649Chapter 4: Selected classes from the Java API and arrays
Explanation: This question tries to trick you by defining options that play with multi-
ple access modifiers for methods getWeight and setWeight. Because the instance
variable model of the class Phone is defined using the public access modifier (and no
proposed options address this issue), it’s accessible outside this class. So Phone isn’t a
well-encapsulated class.

A.4 Chapter 4: Selected classes from the Java API
and arrays
Chapter 4 includes four Twist in the Tale exercises.

A.4.1 Twist in the Tale 4.1

Purpose: To remind you to be careful with the overloaded methods of the class String

that accept either char or String or both, the code in this exercise passes an invalid
method argument—a char—to method startsWith.

Answer: e

Explanation: When it comes to the String class, it’s easy to confuse the methods that
accept char or String values as method arguments. For example, the overloaded
method indexOf can accept both String and char values to search for a target value
in a String. The methods startsWith and endsWith accept only arguments of type
String. The method charAt accepts only method arguments of type int. Hence, this
method can be passed char values, which are stored as unsigned integer values.

A.4.2 Twist in the Tale 4.2

Purpose: This exercise has multiple purposes:

■ To confuse you with the use of method names, which are used in the Java API by
other classes to create their objects.

■ To encourage you to refer to the Java API documentation when you work with
classes from the Java API. The Java API documentation is an extensive source of
information and facts that are often not included in most books (because it’s
practically impossible to do so).

Answer: d

Explanation: The correct way to create an object of class StringBuilder with a
default capacity of 16 characters is to call StringBuilder’s no-argument construc-
tor, as follows:

StringBuilder name = StringBuilder();

650 APPENDIX Answers to Twist in the Tale exercises
A.4.3 Twist in the Tale 4.3

Purpose: Identify the difference between an array element that isn’t initialized and an
array element that doesn’t exist. A pictorial representation of a multidimensional
array is quick to draw, and you can easily refer to its nonexistent or null array ele-
ments. This concept is shown in figure A.3.

Answer: b, d

Explanation: Option (a) is incorrect. Initializing a row of array multiStrArr with
{"Jan","Feb",null} and {"Jan","Feb",null,null} isn’t the same. The former
option defines three array elements with the last array element assigned to null. The
latter option defines four array elements with the last two array elements assigned
to null.

 Option (b) is correct. The array element at the position exists but isn’t assigned
any value. It’s assigned to null.

 Option (c) is incorrect. Because multiStrArr[1] refers to null, multiStrArr[1][1]

doesn’t exist.
 Option (d) is correct. As shown in figure A.3, the array multiStrArr doesn’t

define an equal number of elements in each row, so it’s asymmetric.

A.4.4 Twist in the Tale 4.4

Purpose: This exercise tries to trick you by using multiple objects of ArrayList, assign-
ing the object reference of one ArrayList to another, and modifying the value of the
ArrayList objects. String objects are immutable—you can’t change their values.

Answer: a

Explanation: Option (a) is correct, and options (b), (c), and (d) are incorrect. The
ArrayLists myArrList and yourArrList contain String objects. The value of String

objects can’t be modified once created.

multiStrArr

null

1 1

0 0
A

B

1

0
Jan

Feb

2
null

2

Figure A.3 Array multiStrArr
and its elements

651Chapter 5: Flow control
A.5 Chapter 5: Flow control
Chapter 5 includes four Twist in the Tale exercises.

A.5.1 Twist in the Tale 5.1
Purpose: To emphasize multiple points:

■ A variable of any type can be (re)assigned a value in an expression used in an if
condition.

■ if-else-if statements execute each if condition as control is passed to them,
changing the value of any variable that’s manipulated in the evaluation of the
expression.

■ An expression used in an if condition should evaluate to a boolean value.

Answer: f

Explanation: The flow of execution of code statements in this exercise is shown in fig-
ure A.4.

The arrows on the left in figure A.4 show the flow of execution of statements for this
code snippet. The if conditions on the right show the actual values that are com-
pared after the expression used in the if statements is evaluated. Following is a
detailed description:

■ The initial value of variable score is 10. The first condition ((score = score +
10) == 100) reassigns the value of variable score to 20 and then compares it to

String result = "1";

int score = 10;

if((score = score +10) == 100) if(20==100)

result = "A";

else if((score = score + 29) == 50) if(49 == 50)

result = "B";

else if((score = score + 200 == 10) if(249 == 10)

result = "C";

else

result = "F";

score = 249

result = "F"

Flow of

execution

of statements add 10 to score

add 29 to score

add 200 to score

Figure A.4 Flow of execution of code in Twist in the Tale 5.1

652 APPENDIX Answers to Twist in the Tale exercises
the literal integer value 100. The expression 20 == 100 returns a boolean value
false. The control doesn’t evaluate the then part of the if construct and moves
on to the evaluation of the second if condition defined in the else part.

■ The second condition ((score = score + 29) == 50) adds 29 to the existing
value 20 of variable score and then compares the new value 49 with 50. The
expression 49 == 50 returns false again. The control doesn’t evaluate the then
part of the if construct and moves on to evaluation of the second if condition
defined in the else part.

■ The third condition ((score = score + 200) == 10) adds a value of 200 to the
existing value 49 of variable score, making it 249, and compares that with
the integer literal value 10. Because 249 == 10 evaluates to false, control moves
to the else part. The else part assigns a literal value F to the variable result. At
the end of execution of the if-else-if statement, the variable score is assigned
a value of 249 and result is assigned a value of F. The code outputs F:249.

EXAM TIP This exercise is a nice opportunity to remind you that such assigna-
tions are always performed before the test or other expression they are part of
(that is, preassignations) except for post-incrementations (that is, postfixed ++).

A.5.2 Twist in the Tale 5.2

Purpose: The switch construct uses the equals method to compare the value of its
argument with the case values. It doesn’t compare the variable references.

Answer: c

Explanation: You may have answered questions with code like the following, which
prints false:

String aDay = new String("SUN");
System.out.println(aDay == "SUN");

String objects that are created using the assignment operator (=) are stored in a pool
of String objects, but String objects that are created using the operator new aren’t
stored in the pool of String objects.

 When a String object is passed as an argument to a switch construct, it doesn’t
compare the object references; it compares the object values using the equals

method. In the code snippet shown in the question, a match is found for the String

literal value SUN, so the code prints Weekend!, executes the break statement, and exits
the block.

A.5.3 Twist in the Tale 5.3

Purpose: Note the type of the variable that’s passed as an argument to the switch con-
struct. Among the primitive data types, you can pass on variables of types byte, short,
char, and int to a switch construct. Other data types that you can pass to a switch

construct are Byte, Short, Integer, Character, enum, and String.

653Chapter 6: Working with inheritance
 This question tries to take your attention off this simple basic requirement and to
move your focus to the logic of the question.

Answer: The submission by Harry.

Explanation: Paul’s submission doesn’t compile because a switch construct doesn’t
accept an argument of the long primitive data type.

A.5.4 Twist in the Tale 5.4

Purpose: When an unlabeled break statement is used within nested loops (for any
combinations of for, do-while, or while loops), a break statement will end the execu-
tion of the inner loop, not all the nested loops. The outer loop will continue to execute,
starting with its next iteration value.

Answer: a

Explanation: Let’s start with the outer loop’s first iteration. In the first iteration, the
value of the variable outer is Outer.

 For the outer loop’s first iteration, the inner loop should execute for the values
Outer and Inner for the variable inner. For the first iteration of the inner loop, the
value of the variable inner is Outer, so the condition inner.equals("Inner") evalu-
ates to false and the break statement doesn’t execute. The code prints the value of
the variable inner, which is Outer:, and starts with the next iteration of the inner
loop. In the second iteration of the inner loop, the value of the variable inner is
Inner, so the condition inner.equals("Inner") evaluates to true and the break

statement executes, ending the execution of the inner loop and skipping the code
that prints out the value of the variable inner.

 The outer loop starts its execution with the second iteration. In this iteration, the
value of the variable outer is Outer. For the outer loop’s iteration, the inner loop
executes twice in the same manner as mentioned in the previous paragraph. This
iteration of the outer loop again prints the value of the variable inner when it’s
equal to Outer.

 The nested loops included in the question print out the value Outer: twice:

Outer:Outer:

A.6 Chapter 6: Working with inheritance
Chapter 6 includes four Twist in the Tale exercises.

A.6.1 Twist in the Tale 6.1

Purpose: This question is an example of a simple concept (private members are not
accessible to a derived class) that is made to look complex by including code and
options that try to divert your attention. Expect similar questions on the exam.

Answer: e

654 APPENDIX Answers to Twist in the Tale exercises
Explanation: The code fails to compile because the private members of a class can’t
be accessed outside a class—not even by its derived class. The compiler can detect
such attempts; this code won’t compile.

A.6.2 Twist in the Tale 6.2

Purpose: To help you to work with a combination of

■ Arrays
■ Assigning an object of a derived class to a reference variable of the base class
■ Assigning an object of a class that implements an interface to a reference vari-

able of the interface

Answer: a, c

Explanation: The rules you need to follow to assign a value to an array element are the
same rules you follow when you assign an object to a reference variable. Because the
type of array interviewer is Interviewer, you can assign objects of classes that imple-
ment this interface. The inheritance of classes Employee, Manager, and HRExecutive

and the interface Interviewer are shown in figure A.5.

As you can see in figure A.5, the classes Manager and HRExecutive implement the
interface Interviewer. The class Employee doesn’t implement the interface Inter-

viewer; hence, an object of the class Employee can’t be added to an array of type
Interviewer.

 From this explanation, it’s apparent that options (a) and (c) are correct and
option (b) is incorrect.

 Option (d) is incorrect because you can’t create objects of an interface. Option
(d) tries to create an object of the interface Interviewer. Code that tries to create an
instance of an interface won’t compile.

A.6.3 Twist in the Tale 6.3

Purpose: If there is no collision with the name of a variable defined in the base class or
derived class, the variable can be accessed using both super and this references from
a derived class. If there is a collision, the base class variable can be accessed using the
super reference.

Employee

Manager HRExecutive

Interviewer

Figure A.5 UML notation of inheritance
hierarchy of the classes Employee,
Manager, and HRExecutive and the
interface Interviewer

655Chapter 7: Exception handling
Answer: b

Explanation: In a derived class, you’d normally use the implicit reference super to
refer to a method or variable of a base class. Similarly, you’d normally use the implicit
reference this to refer to a method or variable defined in the same class. A derived
class contains within it an object of its base class and can access non-private members
of its base class. A derived class can also refer to the members of its base class as its own
members using the reference this. This approach is acceptable only if the same mem-
ber isn’t defined in the derived class, that is, if there are no name collisions.

 The base class Employee defines two non-private variables, name and address,
which are accessible in Employee’s derived class Programmer. The class Programmer

also defines an instance variable name, so the variable name should be prefixed with
the explicit references super and this to refer to the variable name defined in the
classes Employee and Programmer. The variable address can be referred to using both
super and this in the derived class Programmer.

 Option (a) is incorrect. The derived class Programmer can refer to the variable
address defined in the base class using this.address. This value won’t print null.

 Option (c) is incorrect. this.address won’t print blank when accessed from the
derived class Programmer.

 Option (d) is incorrect. The code has no compilation issues.

A.6.4 Twist in the Tale 6.4

Purpose: Polymorphic methods should define a method’s overriding rules.

Answer: a

Explanation: Polymorphic methods exist when classes or interfaces share an inheri-
tance relationship. A polymorphic method can be defined by a derived class if

■ The derived class implements an abstract method defined in a base class or
interface

■ The derived class overrides a non-abstract method defined in a base class

Options (b) and (d) are incorrect. A method can’t be overridden if it defines a differ-
ent parameter list.

 Option (c) is incorrect. The return type of the overridden method must be the
same in the base class and the derived class.

A.7 Chapter 7: Exception handling
Chapter 7 includes five Twist in the Tale exercises.

A.7.1 Twist in the Tale 7.1

Purpose: A finally block can’t be placed before the catch blocks. A number of pro-
grammers have compared this question with placing the label default before the

656 APPENDIX Answers to Twist in the Tale exercises
label case in a switch construct. Though the latter approach works, the finally and
catch blocks aren’t so flexible.

Answer: d

Explanation: Options (a), (b), and (c) are incorrect because code that defines a
finally block before catch blocks won’t compile.

A.7.2 Twist in the Tale 7.2

Purpose: Unhandled exceptions thrown by an inner exception handler are passed on
to the outer try-catch block to handle.

Answer: a

Explanation: Options (b), (c), and (d) are incorrect. The question assumes that a text
file players.txt exists on your system so that the following code won’t throw a FileNot-

FoundException exception:

players = new FileInputStream("players.txt");

The code defined for this question doesn’t initialize the static variable coach before
executing the following code, which is bound to throw a NullPointerException:

coach.close();

The previous line of code is defined in the inner try block, which doesn’t define an
exception handler for the exception NullPointerException. This exception is propa-
gated to the outer exception-handler block. The outer exception handler catches the
NullPointerException thrown by the inner try block and executes the appropriate
exception handler. Hence, the code prints the following:

players.txt found
NullPointerException

A.7.3 Twist in the Tale 7.3

Purpose: To determine whether exception-handling code for errors will execute.

Answer: b

Explanation: We know that typically errors shouldn’t be handled programmatically
and that they should be left for the JVM to take care of. Also, you can’t be sure that
error-handling code for all the errors will execute. For example, error-handling code
for StackOverFlowError may execute but (as the name suggests) may not execute for
VirtualMachineError.

657Chapter 7: Exception handling
A.7.4 Twist in the Tale 7.4

Purpose: ClassCastException is a runtime exception. As you know, a runtime excep-
tion can be thrown only by the JVM.

Answer: b, d

Explanation: Options (a) and (c) are incorrect because the code throws ClassCast-

Exception, which is a runtime exception, for the following code:

printable = (Printable)blackInk;

Option (d) is correct because neither the class BlackInk nor any of its base classes
implement the interface Printable. Thus, the code that assigns blackInk to printable

without an explicit cast will fail to compile.

A.7.5 Twist in the Tale 7.5

Purpose: Trying to access a nonexistent position of an array throws an ArrayIndex-

OutOfBoundsException. Calling a member on a null value stored in an array throws a
NullPointerException.

Answer: c

Explanation: Let’s indent the assignment of the two-dimensional array oldLaptops so
that it’s easier to understand the values that are assigned to it:

String[][] oldLaptops = {
 {"Dell", "Toshiba", "Vaio"},
 null,
 {"IBM"},
 new String[10]
 };

The preceding code results in the following assignments:

oldLaptops[0] = {"Dell", "Toshiba", "Vaio"};
oldLaptops[1] = null;
oldLaptops[2] = {"IBM"};
oldLaptops[3] = new String[10];

A pictorial representation of the two-dimensional String array oldLaptops is shown
in figure A.6.

658 APPENDIX Answers to Twist in the Tale exercises
As you can see, oldLaptops[3] is an array of 10 uninitialized String objects. All the
members (from index position 0 to 9) of the array oldLaptops[3] are assigned a null
value. The code on line 4 tries to call the method length on the first element of array
oldLaptops[0], which is null, throwing a NullPointerException.

0

1

2

0

1

2

3

oldLaptops

Dell

0
IBM

Toshiba

Vaio

null

0
null

1
null

2
null

3
null

4
null

5
null

6
null

7
null

8
null

9
null Figure A.6 The array oldLaptops

index
Symbols

-- operator, 115
% operator, 115
&& operator, 121, 122–123
/* character, 27
*/ character, 27
* character, 28, 49
* operator, 115
/** character, 29
*= operator, 112
... (ellipsis), 38, 171
!. operator, 121
// character, 28
@ sign, 242
[] (square brackets), 38, 249–250, 252
_ (underscores), 99, 515
{ } (curly braces), 30, 151, 156, 362, 399, 403
|| operator, 121, 122–123
+ operator, 115, 235
++ operator, 115
+= operator, 112, 131, 235, 236
< operator, 119
<= operator, 119
<> (angle brackets), 260
= (assignment operator), 112, 223–224, 227, 252, 332
-= operator, 112
/= operator, 112
!= operator, comparing primitives for equality using, 120
== operator, comparing primitives for equality using,

120
> operator, 119
>= operator, 119
: (colon), 353
. (dot notation), 44, 61, 192, 426
" (double quotes), 102, 223, 225

- (negative sign), 287
; (semicolons), 347, 350, 360
1Z0-808 (OCA Java SE 8 Programmer I exam), 2–4
1Z0-809 (OCP Java SE 8 Programmer II exam), 3–4
1Z0-811 (Java Junior Associate) certification, 4
() (parentheses), 124
' character, 102
- operator, 115
/ operator, 115
?: operator, 334

A

abstract base class, vs. concrete base class, 392–394
abstract class type, arrays of, 257
abstract interface, 66
abstract keyword, 64
abstract methods
 extending multiple interfaces with same abstract

method names, 412
 implementing, 405
 implementing multiple interfaces with same abstract

method names, 409–410
 overview, 392, 401–402
 polymorphism with, 441–444
abstract modifier
 abstract class, 65
 abstract interface, 65
 abstract method, 66
 abstract variables, 66
 overview, 64
abstraction, 73, 79
ac value, 232
access modifiers
 default access (package access), 57–61
 Java entities and, 52, 62–63
659

INDEX660
access modifiers (continued)
 number of, 52–53
 overview, 29, 77–78
 private, 61–62
 protected, 54–57
 public, 53–54
 what they control, 52
accessing object fields, 205–206
accessor method, 189
acctNumber, 276
acctType, 276
acl value, 232
add method, 508
addAll method, 267–268
addSeconds() method, 284
age variable, 198
allocating arrays, 250–255
AND operator, 121, 122
angle brackets, 260
Animal class, 408, 410
AnnualExam class, 26–27, 48
anonymous classes, 183
append() method
 overview, 355
StringBuilder class, 242–243
application termination, 494
arguments, 204
arithmetic operators, 115–119, 134–135
ArithmeticException, 503, 511–514
ArrayAccess class, 470–472
ArrayIndexOutOfBoundsException, 253–254, 471, 475,

478, 483, 485, 492, 504–505
ArrayList class, 258–273
 accessing elements of, 263–264, 269–271
 adding elements to, 261–263, 267–269
 clearing elements, 269
 cloning, 272
 creating, 259–261
 creating arrays from, 273
 deleting elements of, 266–267
 modifying elements of, 265
 overview, 258, 302–303
arrays, 247–258
 of abstract class type, 257
 allocating, 250–252, 254–255
 asymmetrical multidimensional, 255–256
 creating from ArrayList, 273
 declaring, 249–250, 254–255
 initializing, 252–255
 of interface type, 256–257
 members of, 258
 of object, 257–258
 overview, 247–249, 301–302
ASCII values, 115
assignedArrList variable, 272

assigning primitives, 125
assignment operator, 112–115, 120–121, 134, 223–224,

227, 252, 332
assignments, 367
associate subpackage, 49
asterisk character, 28, 49
Astronaut class, 388
asymmetrical arrays, 256
asymmetrical multidimensional arrays, 255–256
at prefix, 278
atDate() method, 285
atTime() method, 281
author variable, 55–56
autoboxing
 overview, 126
 wrapper classes, 130–132
automatic memory management, 73, 79, 164
average variable, 101
averageOfFirst100Integers method, 70
avg variable, 149, 150

B

b1 variable, 274
b2 variable, 274
b3 variable, 274
BankAccount class, 273–275
bankVault variable, 68–69
base class, 386
baseDecimal variable, 100
BaseInterface1, 412, 414, 445
BaseInterface2, 412, 414, 445
binary number system, 97
binVal variable, 100
BlackInk class, 506
bold font, 26
Book class, 52, 53–54, 60
bookConferenceRoom method, 403
BookNotFoundException, 479–480
Boolean category, 95–96
Boolean class, 125, 127, 129
boolean data type, 93, 104, 132–133
boolean variable, 120, 122
Boolean.FALSE static constant, 128
Boolean.parseBoolean() method, 127
Boolean.TRUE static constant, 128
booleanValue() method, 126, 142
break outer, 368
break statement, 338, 364–366, 368, 372
building package, 53, 63
bunsAvailable variable, 359
buy.booleanValue() method, 142
byte argument, 342
Byte class, 127, 129
byte data type, 93, 96–99

INDEX 661
bytecode, 73
byteValue() method, 126

C

c variable, 344
calcAverage method, 173, 176, 177, 178
calendar data, 278–299
 DateTimeFormatter, 291–299
 accessing, 292–294
 formatting date or time objects using, 294–296
 instantiating, 292–294
 overview, 291
 parsing date or time objects using, 296–299
 LocalDate, 279–282
 converting to another type, 281–282
 creating, 279
 manipulating, 280–281
 querying, 279–280
 LocalDateTime, 285–286
 LocalTime, 282–285
 combining with another type, 285
 creating, 282–283
 manipulating, 284–285
 querying, 283–284
 using constants, 283
 overview, 278
 Period, 286–291
 converting to another type, 291
 instantiating, 286–288
 manipulating, 289–291
 manipulating LocalDate and LocalDateTime using,

288–289
 querying instances, 289
case keyword, 339
case-sensitive, 31
casting, 424–427
 need for, 426–427
 overview, 103, 455
 of variable to another type, 424–426
catch block, 483
certificates, 74
certification package, 27, 42–43, 48
CertView, 20
chaining methods, 234–235
char argument, 342
char array
 methods of String don’t modify, 229–230
 overview, 227, 244
char data type, 93, 102, 103–104
character category (unsigned integer), 102–104
Character class, 125, 126, 127, 129
character primitive data types, 134
charAt() method, 230–231, 241
charValue() method, 126

check method, 447
checked exceptions
 overview, 476, 477–478, 486, 521
 throwing, 480–481, 490–491, 500
child classes, 386
class constructors, 205
class definition, 31
class keyword, 23
class method, 32
class variables, 153–156
 comparing scope of, 156
 comparing use of in different scopes, 155
 overlapping scopes of, 155–156
 overview, 153
ClassCastException, 427, 478, 503, 505–507
classes
 defining in packages, using package statement, 42–45
 directory structure and package hierarchy, 44
 overview, 42–43
 rules to remember, 44
 setting classpath for packaged classes, 45
 inheritance with, 385–394
 abstract base class vs. concrete base class, 392–394
 base class members inherited by/not inherited by

derived class, 391
 derived class containing object of its base class, 390–391
 derived classes defining additional properties and

behaviors, 391–392
 extending classes, benefits of, 387–390
 need to inherit classes, 385–387
 polymorphism with, 434–439
 overview, 434–436
 polymorphic methods (overridden methods), 437
 rules for overriding methods, 438
 whether polymorphic methods always abstract, 438
 whether polymorphism works with overloaded

methods, 439
 structure of, 24–32
 class definition, 31
 comments, 27–29
 constructors, 32
 import statement, 25–27
 methods, 32
 overview, 24
 package statement, 25
 variables, 31–32
Class.forName() method, 519
ClassLoader, 519
ClassNotFoundException, 519
classpath, setting for packaged classes, 45
classVariable, 156
cleanup code, 488
clone() method, 258, 272
cloning, ArrayList, 272
close method, 473

INDEX662
code block, 367
Code Exhibit button, 20
code flow, 345
code fragments, 12
Collection class, 267
colon character, 353
ColorInk class, 506
command line, running Java program from, 39–41
comments, 27–29
com.mobile package, 154–155
common categories, 524–525
common classes, 524–525
common exceptions, 524–525
com.oracle .javacert package, 49
com.oracle.javacert.associate package, 43
compareTo() method, 131
compile-time checks, 73
concat method, 234
concatenation operators, 235
concrete base class, vs. abstract base class, 392–394
concurrency, 74, 79
conditional constructs, 367
conductInterview method, 401, 427
ConferenceHall class, 46–47
constant pool, String class, 225
constants
 implementing multiple interfaces with same constant

names, 408–409
 overview, 69, 417
constructors, 32, 178–188, 418
 access levels, 180
 accessing using this keyword, 429–430
 of base class, accessing using super, 432
 default constructors, 183–185
 vs. initialization blocks, 181–183
 overloaded, 185–188
 invoking from another constructor, 186–187
 overview, 185
 rules to remember, 187–188
 user-defined, 178–183
contains method, 269, 270, 275
contiguous memory locations, 248
continue statement, 366–367, 368–369, 372
contracts, 395
count variable, 239
countPages method, 61–62
CourseBook class, 53–54, 60
covariant return type, 438
CreateArrayList class, 259
crossRapid method, 486
ctr variable, 152, 346, 349
Cubicle class, 46–47
curly braces, 30, 151, 156, 328–331, 362, 399, 403
currentPosition() method, 410
Curtain class, 63

D

D suffix, 101
dark gray background, 5
data hiding, 74
data types, 92–146
 casting, 103
 identifiers, 105–106
 object reference variables, 106–111
 differentiating from primitive variables, 109–111
 overview, 106–108
 operators, 111–124
 arithmetic operators, 115–119
 assignment operators, 112–115
 logical operators, 121–123
 overview, 111
 precedence of, 123–124
 relational operators, 119–121
 overview, 92
 primitive variables, 93–104
 Boolean category, 95–96
 character category (unsigned integer), 102–104
 names of primitive data types, 104
 overview, 93–94
 signed numeric category, 96–102
 wrapper classes, 125–132
 autoboxing and unboxing, 130–132
 class hierarchy of, 125
 comparing objects of, 128–130
 difference between using valueOf method and con-

structors of, 128
 objects of, 125–126
 parsing string value to primitive type, 127
 retrieving primitive values from, 126–127
Date class, 47
DateTimeException class, 281, 282
DateTimeFormatter class, 291–299
 accessing, 292–294
 formatting date or time objects using, 294–296
 instantiating, 292–294
 overview, 291, 308–309
 parsing date or time objects using, 296–299
DateTimeParseException, 279, 297
day variable, 339–340
dayCount variable, 345
daysOffWork method, 171, 193
decimal integer, 515
decimal number system, 97, 515
decimals, 96
declaring arrays, 249–250, 254–255
decrement operator, 115
default access level, 57–61, 180
default accessibility, 57
default constructors, 183–185
default keyword, 401, 402

INDEX 663
default label, 339
default methods
 extending multiple interfaces with same default

method names, 413–414
 implementing multiple interfaces with same default

method names, 410–411
 overriding, 406
 overview, 402–403
 polymorphism with, 444–445
default package, 25, 42, 50
defaultPlan() method, 404
defender method, 401
delete() method, StringBuilder class, 245
deleteCharAt() method, StringBuilder class, 245
deliverMobileApp method, 441
DemoExceptionInInitializerError class, 517
DemoExceptionInInitializerError2 class, 518
DemoThrowsException class, 480
derived classes, 55–56, 386, 394
descriptive comments, 12
digital signatures, 74
discount variable, 335
distance variable, 398
Doctor class, 388
dot operator, 44, 61, 192, 426
double argument, 342
Double class, 127, 128, 131
double data type, 93, 101–102
double quotes, 28, 102, 223, 225
double type, 169
doubleValue() method, 126
do-while loop
 comparing with while loop, 362–363
 overview, 360–362
DropOarException class, 486
Duration class, 286

E

elementData variable, 260–261, 273
ellipsis, 38, 171
else blocks, 162, 328
else statement, 326
Emp class, 68–69, 447
emp variable, 71, 420, 440
emp1.startProjectWork() method, 436
emp2.startProjectWork() method, 436
Employee class, 171, 181, 184, 390, 393, 422, 424, 428,

434, 437
empty body, 66
encapsulation
 applying, 195–197
 need for, 195
 overview, 73, 74, 194
end-of-line comments, 28–29

endsWith() method, String class, 233–234
enhanced for loops, 352–358
 comparing with for loop, 363
 Iteration with, 352–355
 limitations of, 355–356
 nested, 356–358
 overview, 371
ensureCapacity method, 263
entities, Java, access modifiers and, 52, 62–63
enums, 342
epoch date, 282
equality, comparing objects for, 273–277
 comparing objects of user-defined class, 273–275
 contract of equals method, 276–277
 equals method in class java.lang.Object, 273
 incorrect method signature of equals method,

275–276
equals() method
 contract of, 276–277
 incorrect method signature of, 275–276
 in java.lang.Object class, 273
 overview, 275
error-handling block, 502
errors, 476, 478, 493, 522
Exam class, 161, 163
ExamQuestion class, 26–27, 42–43, 49
exception categories, 521
ExceptionInInitializerError, 503, 516–518
exceptions, 469–538
 benefits of handling, 474–475
 categories of, 475–478
 checked exceptions, 477–478
 class hierarchy of exception classes, 476–477
 errors, 478
 identifying, 476
 overview, 475
 runtime exceptions, 478
 classes and categories, 503–520
 ArithmeticException, 511–514
 ArrayIndexOutOfBoundsException, 504–505
 ClassCastException, 505–507
 ExceptionInInitializerError, 516–518
 IllegalArgumentException, 507–508
 IndexOutOfBoundsException, 504–505
 NoClassDefFoundError, 519
 NullPointerException, 508–511
 NumberFormatException, 514–516
 OutOfMemoryError, 519–520
 overview, 503
 StackOverflowError, 518
 example of, 470–473
 methods for throwing, 479–483
 handle-or-declare rule, 481
 overview, 479
 throwing all types of exceptions, 482–483

INDEX664
exceptions (continued)
 throwing checked exception, 480–481, 490–491, 500
 throwing errors, 493
 throwing runtime exceptions, 481–482, 491–492
 separate handling of, 473–474
 throwing, 483–503
 overview, 483–484
 rethrowing, 499–500
 try-catch-finally blocks and, 485–490, 493–498, 500–501
executable Java applications, 36–41
 executable Java classes versus non-executable Java

classes, 36–37
 main method, 37–39
 running Java program from command line, 39–41
expandCapacity() method, 243
experience property, 386
expert1 variable, 444
explainContents() method, 479–480
expressions, 367
extended classes, 386
extended interfaces, 399
extends keyword, 30, 386, 394
external reference, 165

F

facebookId property, 388–389
FallInRiverException class, 486–487
false value, boolean variable, 95
fatal errors, 494
features and components of Java, 72–75
 abstraction, 73
 automatic memory management, 73
 encapsulation, 73
 inheritance, 73
 multithreading and concurrency, 74
 object orientation, 73
 platform independence, 72–73
 polymorphism, 73
 security, 74
 type safety, 73
File I/O, 472–473
file variable, 325
FileInputStream class, 471, 488, 500
FileNotFoundException, 471, 477, 488, 497
filter method, 448–449
final char array, 229
final interface, 417
final modifier, 66–67
 final class, 66
 final interface, 66
 final method, 67
 final variable, 66–67
 overview, 64, 401
final variables, 116, 227, 343–344, 398

finalize method, 159
float argument, 342
Float class, 127, 128
float data type, 93, 101–102
floating-point literals, 101
floating-point number, 251
floatValue() method, 126
flow control, 322–383
 do-while, comparing with while loop, 362–363
 do-while loop, 360–362
 else blocks, missing, 328
 if constructs, 324–327, 332–338
 if-else constructs, 328–331
 for loop, 346–352
 comparing with enhanced for loops, 363
 comparing with while loop, 364
 enhanced, 352–358
 initialization block, 348–349
 nested, 351–352
 optional parts of for statement, 350–351
 overview, 346–347
 termination condition, 349
 update clause, 349–350
 loop constructs, 362–364
 loop statements, 364–369
 break statement, 364–366, 368
 continue statement, 366–367, 368–369
 labeled statements, 367–369
 overview, 322–323
 switch statement, 338–346
 arguments passed to, 341–343
 comparing with multiple if-else constructs, 339–341
 creating, 339
 label case of, values passed to, 343–346
 overview, 338
 using, 339
 ternary constructs, 334–338
 correct usage, 335–336
 incorrect assignments, 337
 incorrect usage, 336–337
 nested, 337–338
 overview, 334
 while loop
 comparing with do-while loop, 362–363
 comparing with for loop, 364
 overview, 358–360
for block, 152
for loop, 346–352
 comparing with enhanced for loops, 363
 comparing with while loop, 364
 enhanced, 352–358
 Iteration with, 352–355
 limitations of, 355–356
 nested, 356–358
 initialization block, 348–349

INDEX 665
for loop (continued)
 nested, 351–352
 optional parts of for statement, 350–351
 overview, 346–347, 370–371
 termination condition, 349
 update clause, 349–350
format method, 294, 295
format prefix, 278
FormatStyle value, 292, 294
forward reference, 151
from prefix, 278
fully qualified names, 45
functional interfaces, 449
functional-style programming, 446

G

garbage collection, 163–166
 automatic memory management, 164
 overview, 163
 of referenced objects, 165–166
 using System.gc() or Runtime.getRuntime().gc(),

165
 when object is garbage collected, 164–165
get() method, 263, 269
get prefix, 278
getAge method, 189
getAverage() method, 149, 150
getDays() method, 289
getHour() method, 284
getMinute() method, 284
getMonths() method, 289
getName() method, 193, 445, 412, 413
getNano() method, 284
getSecond() method, 284
getter method, 189
getWeight method, 168, 169
getXX() method, 279, 283
getYears() method, 289

H

HandleAndDeclare class, 491
handle-or-declare rule, 481, 491
handling exceptions separately, 520–521
hashCode() method, 130, 243, 277
HashMap, 130
hasNext method, 264
HelloExam class, 39
hex value, 242
hexadecimal number system, 97, 515
hexVal variable, 100
hiding class members, 392
Home class, 196
House class, 52, 53–54, 60

hr variable, 419
HRExecutive class, 418, 419, 420, 422, 424, 425

I

IDE (Integrated Development Environment), 39, 45
identifiers, 105–106
if block, 150
if constructs, 104, 324–327, 332–338, 369
if statements, 119, 150, 156, 323, 506
if-else constructs
 {} in, 328–331
 multiple, comparing with switch statement, 339–341
 overview, 149, 369
if-else pairs, 333–334
if-else statement, 150
IllegalArgumentException, 503, 507–508
immutable classes, 125
implemented interfaces, 418
implements keyword, 30, 394, 397
implicit widening, of data types in an arithmetic opera-

tion, 116–119
import statement, 25–27, 35–36, 41
import static statement, 50
incorrect statements, 16
increment() method, 132
increment operators, 115
indentation technique, 338
indexOf method, 231, 241, 269, 270
IndexOutOfBoundsException, 503
information hiding, 196
inheritance, 384–468
 casting, 424–427
 need for, 426–427
 of variable to another type, 424–426
 with classes, 385–394
 abstract base class vs. concrete base class, 392–394
 base class members inherited by/not inherited by

derived class, 391
 derived class containing object of its base class, 390–391
 derived classes defining additional properties and

behaviors, 391–392
 extending classes, benefits of, 387–390
 need to inherit classes, 385–387
 interfaces, 394–418
 class can’t extend multiple classes, 407–408
 defining, 398–401
 implementing single interface, 405–407
 methods in, modifying, 414–417
 methods in, types of, 401–405
 multiple interfaces, extending, 411–414
 multiple interfaces, implementing, 408–411
 need for using, 396–398
 overview, 394–395
 properties of members of, 417–418

INDEX666
inheritance (continued)
 lambda expressions, 446–453
 comparing passing values with passing code to meth-

ods, 446–449
 Predicate interface, 450–453
 syntax of, 449–450
 overview, 73, 79, 384
 polymorphism, 434–445
 binding of variables and methods at compile time

and runtime, 439–441
 with classes, 434–439
 with interfaces, 441–445
 reference variables, 418–424
 accessing objects using, 421–424
 of derived class, using to access its own object, 418–419
 of interface, using to access derived class object,

420–421
 of superclass, using to access object of derived class,

419–420
 super keyword, 430–433
 accessing constructors of base class using, 432
 accessing variables and methods of base class using,

431
 overview, 430
 using in static methods, 432–433
 this keyword, 427–429
 accessing constructors using, 429–430
 accessing variables and methods using, 428–429
 overview, 427
 using in interfaces, 430
 using in static methods, 432–433
inherited methods, 258
inheriting classes, 386
initialization blocks, vs. constructors, 181–183
initialization statements, 347
initializer block, 205
initializing arrays, 252–255
Ink class, 505–506
inner class, 52
inner loop, 351, 356
inner parentheses, 124
insert() method, StringBuilder class, 243–245
instance attributes, 31
instance variables, 31, 152–153
instanceof operator, 506
instanceVariable, 156
int argument, 186, 342
int data type, 93, 96–99
int type, 169
int value, 132, 251, 283
int variable, 109, 120, 337
intArray, 248, 253
Integer class, 127, 129, 515
Integer variables, 128
integers, 96–99

Integrated Development Environment. See IDE
interface body, 399
interface keyword, 33, 399
interface name, 399
interface type, arrays of, 256–257
interfaceArray, 256
interfaces, 394–418
 defining, 398–401
 methods in, modifying, 414–417
 changing default method to abstract or static, 415–416
 changing static method to default or abstract, 415
 overview, 414
 methods in, types of, 401–405
 abstract methods, 401–402
 default methods, 402–403
 static methods, 403–405
 multiple interfaces, extending, 411–414
 overview, 411
 with same abstract method names, 412
 with same name default method names, 413–414
 with same name static method names, 414
 multiple interfaces, implementing, 408–411
 with same abstract method names, 409–410
 with same constant names, 408–409
 with same default method names, 410–411
 need for using, 396–398
 overview, 394–395, 453–454
 properties of members of, 417–418
 constants, 417
 constructors, 418
 methods, 417
 single, implementing, 405–407
 implementing abstract methods, 405
 overriding default methods, 406
 static methods, 406–407
Interviewer interface, 402, 403, 420
interviewer variable, 421, 422, 424, 425
inTransit() method, 236
intValue() method, 126
invalid combinations, 63
invalid identifiers, 105–106
IOException, 488, 497
is prefix, 278
IS-A relationship, 394
isAfter() method, 280, 284
isBefore() method, 280, 284
isbn variable, 53–54
island of isolation, 165, 166
isNegative method, 289
isPrime method, 152
issueCount variable, 57–59
issueHistory method, 57–59
isTested method, 153
isZero method, 289
iterators, 263, 356

INDEX 667
J

Java, features and components of, 72–75
 abstraction, 73
 automatic memory management, 73
 encapsulation, 73
 inheritance, 73
 multithreading and concurrency, 74
 object orientation, 73
 platform independence, 72–73
 polymorphism, 73
 security, 74
 type safety, 73
Java Development Kit. See JDK
java HelloExam command, 39
Java Junior Associate certification. See 1Z0-811
java keyword, 40
Java reflection, 62
Java Runtime Environment. See JRE
java variable, 165
Java Virtual Machine. See JVM
JavaBeans, 189
Javadoc comments, 28
java.io.File class, 473
java.io.FileInputStream class, 477
java.io.FileNotFoundException, 473
java.io.FileOutputStream class, 473
java.io.IOException, 473
java.io.Serializable interface, 125
java.lang package, 47, 223, 239
java.lang.Comparable interface, 125
java.lang.Error class, 476, 478
java.lang.Exception class, 476, 477
java.lang.IndexOutOfBoundsException error, 270
java.lang.Number class, 125
java.lang.Object class, 159, 257, 273, 386
java.lang.RuntimeException class, 476, 477
java.lang.Throwable class, 476, 483
java.sql package, 47
java.time.format package, 291
java.util package, 47, 259
java.util.Date instance, 167
JDK (Java Development Kit), 228
JRE (Java Runtime Environment), 45, 231
Jumpable interface, 408, 410
JVM (Java Virtual Machine), 31, 36, 73, 519

K

key-value pairs, 130
Kitchen class, 46–47

L

L suffix, 99
label case of switch statement, values passed to, 343–346
labeled declarations, 367
labeled statements, 367–369
 labeled break statements, 368
 labeled continue statements, 368–369
 overview, 367, 372
lambda expressions, 446–453
 comparing passing values with passing code to meth-

ods, 446–449
 overview, 456
 Predicate interface, 450–453
 syntax of, 449–450
lang1.substring() method, 238
lang2.substring() method, 238
lastIndexOf method, 269, 270
LaunchApplication class, 36–37
length() method, 233, 241, 258
length variable, 258
letters variable, 233
Librarian class, 53–54, 60
library package, 53–54
life cycle, of objects, 158–166
 garbage collection, 163–166
 automatic memory management, 164
 overview, 163
 of referenced objects, 165–166
 using System.gc() or Runtime.getRuntime().gc(),

165
 when object is garbage collected, 164–165
 object comes into being, 159–160
 object is accessible, 160–161
 object is inaccessible, 161–163
 dereferencing by reassignment, 162–163
 overview, 161
 variable goes out of scope, 162
 overview, 158
life span, of variables, 149
light gray background, 5
List data structure, 259
List interface, 259
list variable, 508–509
ListIterator, 263–264
literal values, 96, 160
LivingRoom class, 46–47
local variables, 149–151
LocalDate class, 279–282
 converting to another type, 281–282
 creating, 279
 manipulating, 280–281
 manipulating using Period, 288–289
 overview, 294, 304–305
 querying, 279–280

INDEX668
LocalDateTime class
 manipulating using Period, 288–289
 overview, 285–286
LocalTime class, 282–285
 combining with another type, 285
 creating, 282–283
 manipulating, 284–285
 overview, 305–306
 querying, 283–284
 using constants, 283
localVariable, 156
locateBook() method, 479–480
logical error, 332
logical operators, 121–123, 135
logToFile, 236
long argument, 342
Long class, 127, 129
long data type, 93, 96–99
longValue() method, 126, 337
loop constructs, 362–364
loop iteration, 351
loop statements, 364–369
 break statement, 364–366, 368
 continue statement, 366–367, 368–369
 labeled statements, 367–369
 labeled break statements, 368
 labeled continue statements, 368–369
 overview, 367
 overview, 372
looping constructs, 149
looping statements, 367

M

main method, 36, 166, 202, 472, 475, 484, 485, 490,
496, 509

makeCall method, 32
Manager class, 386, 396, 403, 434, 437
Mark for review check box, 20
marks value, 122
marks variable, 50–51, 339
MarkSheet class, 49
MAX_AGE constant, 69
medium gray background, 5
memory management, automatic, 73
method arguments, 170
method parameters, 40, 151–152, 233
method1 method, 156
method2() method, 156, 475, 483
MethodAccess class, 470–472
methodParameter, 156
methods, 197–203
 accessing using this keyword, 428–429
 calling on objects, 192–194

 creating, with arguments and return values, 166–174
 method parameters, 169–172
 overview, 166–167
 return statement, 172–174
 return type of method, 168–169
 in interfaces
 modifying, 414–417
 types of, 401–405
 overloaded, creating, 174–178
 overridden
 overview, 437
 rules for overriding methods, 438
 whether always abstract, 438
 overview, 32, 197
 passing object references to, 199–203
 modification of state of object references passed to

methods, 201–203
 reassignment of object references passed to methods,

199–201
 passing primitives to, 198–199
mgr.bookConferenceRoom() method, 404
MIN_AGE constant, 69
MIN_DISTANCE constant, 408
minus() method, 288
minus prefix, 278
minusHours() method, 284
minusMinutes() method, 284
minusNanos() method, 284
minusSeconds() method, 284
minusXXX() method, 280, 290
MiscMethodsArrayList4 class, 271
missing statements, 11
missing termination condition, 351
MobileAppExpert interface, 441
modifyTemplate method, 55–56
modifyVal method, 198–199
Moveable interface, 408, 410
msg variable, 169
multiArr array, 251–252, 352
multiArr.length, 352
multidimensional arrays, 247, 248, 352
multiline comments, 27–29
multiple interfaces, 409
Multiple1.java file, 33
Multiple2.java file, 35
MultipleChoice interface, 42–43
MultipleExceptions class, 489
multithreading, 74, 79
mutable elements, 273
mutator method, 189
myArrList, 260
MyClass1 class, 256
MyClass2 class, 256
myExam variable, 161
myExam1 variable, 162

INDEX 669
myExam2 variable, 162
MyInterface, 256, 400, 412, 417
myMethod method, 472, 499–500
MyPerson class, 266–267, 271

N

name property, 386
name variable, 28, 191, 228, 267, 325, 329, 428
named packages, 50
native modifier, 64
negation operator, 121
negative sign, 287
nested arrays, 354
nested class, 52
nested collections, 353
nested enhanced for loop, 356–358
nested for loop, 351–352
nested if constructs, 332–338
nested ternary constructs, 337–338
nestedArrayList, 353–354
new expression, 519
new keyword, 251, 255
new operator, 107, 159, 160, 225, 238
newLaptops variable, 510
newWeight variable, 168
newWeight2 variable, 169
no-argument constructor, 184
NoClassDefFoundError, 478, 503, 519
NoMethodParameters class, 448
nonaccess modifiers, 64–72
 abstract modifier, 65–66
 abstract class, 65
 abstract interface, 65
 abstract method, 66
 abstract variables, 66
 final modifier, 66–67
 final class, 66
 final interface, 66
 final method, 67
 final variable, 66–67
 overview, 64, 78–79, 399
 static modifier, 67–72
 accessing static members from null reference, 71–72
 overview, 67
 static methods, 69–70
 static variables, 68–69
no-name package, 50
non-executable Java classes, 36–37
non–final char array, 239
non-nested arrays, 354
non-null value, 508
NOT operator, 121, 122
now() method, 279, 283
null reference, accessing static members from, 71–72

null value, 108, 161, 186, 226, 356, 481, 508
NullPointerException, 132, 343, 478, 497, 501, 503,

508–511, 517
num parameter, 152
num variable, 235
Number class, 127
NumberFormatException, 127, 503, 514–516
numeric data types, 133
numReceived() method, 236

O

objArray, 248, 257–258
Object class, 125
object fields, 188–194
 calling methods on objects, 192–194
 overview, 188–189
 reading and writing, 189–192
object orientation, 73, 79
Object parameter, 243
object reference variables, 106–111, 418–424
 accessing objects using, 421–424
 of derived class, using to access its own object, 418–419
 differentiating from primitive variables, 109–111
 of interface, using to access derived class object, 420–421
 overview, 106–108, 418
 of superclass, using to access object of derived class,

419–420
object references
 overview, 106
 passing to methods, 199–203
 modification of state of object references passed to

methods, 201–203
 reassignment of object references passed to methods,

199–201
object types, 454–455
Object variable, 422
ObjectLife1 class, 161
ObjectLifeCycle class, 159
ObjectLifeCycle2 class, 160
objects
 calling methods on, 192–194
 comparing for equality, 273–277
 comparing objects of user-defined class, 273–275
 contract of equals method, 276–277
 equals method in class java.lang.Object, 273
 incorrect method signature of equals method,

275–276
 life cycle of, 158–166
 garbage collection, 163–166
 object comes into being, 159–160
 object is accessible, 160–161
 object is inaccessible, 161–163
 overview, 158
 overview, 206

INDEX670
obj.intValue() method, 132
OCA (Oracle Certified Associate), 2
OCA Java SE 8 Programmer I exam. See 1Z0-808
OCP (Oracle Certified Professional), 2
OCP Java SE 8 Programmer II exam. See 1Z0-809
octal number system, 97
octVal variable, 100
of() method, 279, 282
of prefix, 278
ofDays() method, 286
Office class, 179–180, 198, 393
ofLocalizedDate method, 292
ofLocalizedDateTime method, 292
ofLocalizedTime method, 292
ofMonths() method, 286
ofPattern method, 292, 293
ofWeeks() method, 286
ofYears() method, 286
oldLaptops variable, 510
one-dimensional arrays, 247, 248
OpenFile class, 470–472
operating system. See OS
operators, 111–124
 arithmetic operators, 115–119
 assignment operators, 112–115
 logical operators, 121–123
 overview, 111
 precedence of, 123–124
 relational operators, 119–121
 comparing primitives for equality, 120
 comparing primitives using assignment operator,

120–121
 overview, 119
OR operator, 121, 122
Oracle Certification Candidate Agreement, 20
Oracle Certified Associate. See OCA
Oracle Certified Professional. See OCP
Oracle Testing Center, 18
Oracle value, 232
orbit variable, 101
OS (operating system), 485
outer loop, 351, 356
outer parentheses, 124
OutOfMemoryError, 503, 519–520
overflows, 518
overlapping scopes, 155–156, 157
overloaded constructors, 185–188
 invoking from another constructor, 186–187
 overview, 185
 rules to remember, 187–188
overloaded methods
 creating, 174–178
 access level, 177–178
 argument list, 175–177
 overview, 174

 return type, 177
 rules for defining overloaded methods, 175
 overview, 38
overridden methods
 default methods, 406
 overview, 67, 392, 437
 rules for overriding methods, 438
 whether always abstract, 438

P

p1 argument, 200
p2 argument, 200
package accessibility, 52, 57
package statement
 defining classes in using, 42–45
 directory structure and package hierarchy, 44
 overview, 42–43
 rules to remember, 44
 setting classpath for packaged classes, 45
 in Java source code file, 35–36
 overview, 24, 25
package-private access, 57, 61
packages, 41–51
 defining classes in using package statement, 42–45
 directory structure and package hierarchy, 44
 overview, 42–43
 rules to remember, 44
 setting classpath for packaged classes, 45
 import statement doesn’t import whole package tree,

49–50
 importing classes from default package, 50
 importing single member vs. all members of, 48–49
 need for, 42
 overview, 41
 static imports, 50–51
 using packaged classes without using import state-

ment, 47–48
 using simple names with import statements, 45–47
parent class, 386, 393
parentheses, 124
parse() method, 279, 283, 287
parse prefix, 278
parseDataType method, 127
parseInt method, 99, 515
Pearson VUE Authorized Testing Center, 18
performanceRating, 447
Period class, 286–291
 converting to another type, 291
 instantiating, 286–288
 manipulating, 289–291
 manipulating LocalDate and LocalDateTime using,

288–289
 overview, 307–308
 querying instances, 289

INDEX 671
person variable, 107
person1 variable, 201
person1.getName() method, 202
person2 variable, 201
Person.java file, 24
Philanthropist class, 407
phNum variable, 169
Phone class, 153, 154–155, 158, 168, 195, 197
phoneNumber variable, 157, 158, 386
php variable, 165
platform independence, 72–73
plus() method, 288
plus prefix, 278
plusHours() method, 284
plusMinutes() method, 284
plusNanos() method, 284
plusSeconds() method, 284
plusXXX() method, 280, 291
PnW format, 287
PnYnMnD format, 287
policy file, 74
polymorphism, 434–445
 binding of variables and methods at compile time and

runtime, 439–441
 with classes, 434–439
 overview, 434–436
 polymorphic methods (overridden methods), 437
 rules for overriding methods, 438
 whether polymorphic methods always abstract, 438
 whether polymorphism works with overloaded meth-

ods, 439
 with interfaces, 441–445
 abstract methods, 441–444
 default methods, 444–445
 overview, 73, 79
PolymorphismWithClasses, 438, 455–456
PolymorphismWithInterfaces class, 442
pool, String class, 225
positive integer, 102
postfix notation, unary operators, 116–117
potentially infinite loop, 350
Predicate interface, 450–453
prefix notation, unary operators, 116–117
primitive data types, 93, 132
primitive values, retrieving from wrapper classes, 126–127
primitive variables, 93–104
 Boolean category, 95–96
 character category (unsigned integer), 102–104
 confusion with names of primitive data types, 104
 differentiating from object reference variables, 109–111
 overview, 93–94
 signed numeric category, 96–102
 floating-point numbers, 100–102
 integers, 96–99
 rules to remember, 99–100

primitives
 overview, 206
 passing to methods, 198–199
primitiveValue() method, 126
print method, 50–51
printBook method, 53–54
println method, 175, 493
printNumbers method, 447
printVal method, 167
private access level, 180
private access modifier, 61–62
private modifiers, 400
private variable, 195, 227
Professor class, 66
program overflow, 518
Programmer class, 386, 390, 393, 396, 404, 428, 434, 437
Project class, 404
protected access level, 61, 180
protected access modifier, 54–57
protected interface, 400
protected member, 391
protected modifiers, 400
public access level, 180
public access modifier, 53–54
public class, 34
public interface, 417
public member, 391
public methods, 196
public static, 38
public variable, 398

Q

querying LocalDate, 279–280
question display buttons, 20
quotes, 28

R

reachOffice method, 436
read method, 473, 488
readBook() method, 479–480
readFile() method, 477, 480
reading object fields, 189–192
receiveCall method, 32
receiveSalary method, 407
reference variables, 67, 454–455. See also object refer-

ence variables
referenced objects, garbage collection of, 165–166
relational operators, 119–121, 135
relax() method, 410
remove method, 266, 356
removeIf method, 451
replace() method, 229, 233, 234, 246
resetValueOfMemberVariable method, 202

INDEX672
result variable, 104, 152, 325
return keyword, 449
return statements, 167, 170, 367
return values, 204
ReturnFromCatchBlock class, 493
returnVal variable, 495
reusing code, 390
reverse() method, StringBuilder class, 246
RiverRafting class, 486
rowRaft method, 486
Runner interface, 398
runtime exceptions, 71, 231, 476, 478, 481–482, 491–492,

521–522
RuntimeException, 492, 499
Runtime.getRuntime().gc() method, garbage collec-

tion using, 165

S

scalar values, 248
Schedule class, 49
scope of variables, 149–158
 class variables, 153–155
 comparing scope of variables, 156
 comparing use of variables in different scopes, 155
 overlapping variable scopes, 155–156
 overview, 153
 variables with same name in different scopes, 157–158
 instance variables, 152–153
 local variables, 149–151
 method parameters, 151–152
 overview, 203
scrollable middle section, Engine UI, 20
security, 74
semicolons, 347, 350, 360
sendInvitation method, 389
sequence of arguments, 177
ServerConnection class, 36–37
set method, 265
setAge method, 189
setAverage() method, 149
setModel method, 167
setName method, 161, 190
setNumber method, 158
setter method, 189
setTested method, 151–152, 153
setWeight method, 168, 196
shadowing, 157
shallow copy, 272
short argument, 342
Short class, 127, 129
short data type, 93, 96–99
short int data type, 104
shortValue() method, 126
signed code, 74

signed numeric category, 96–102
 floating-point numbers, 100–102
 integers, 96–99
 rules to remember, 99–100
signed numeric data types, 94
single quotes, 102
single threads, 74
SingleClass class, 33
single-level nested loop, 351
size() method, 269
softKeyboard variable, 154–155, 157
source code file, structure and components of, 32–36
 definition of interface in, 32–33
 package and import statements in, 35–36
 single and multiple classes in, 33–35
specialization variable, 425
specifications, 395
speed method, 398
square brackets, 38, 249–250, 252
stack pointer, 485
stack trace, 474, 475
StackOverflowError, 472, 478, 503, 518
Star class, 188
starAge variable, 189
startProjectWork method, 434–435, 437
startsWith() method, String class, 233–234
static attributes, 68
static bottom section, Engine UI, 20
static imports, 51
static interface, 417
static keyword, 153, 516
static methods
 extending multiple interfaces with same static method

names, 414
 overview, 403–407
static modifier, 67–72
 accessing static members from null reference, 71–72
 overview, 67, 401
 static methods, 69–70
 static variables, 68–69
static public, 38
static upper section, Engine UI, 20
static variable, 32, 157, 359, 398
status() method, 414
StoryBook class, 53–54
Stream-based functionalities, 396
strictfp modifier, 64, 400
String argument, 126, 186, 342, 515
String array, 38, 364
String class, 223–239
 equality of Strings, determining, 236–239
 comparing reference variables to instance values,

237–238
 equality of values returned by string methods, 238–239
 equals method, 236–237

INDEX 673
String class (continued)
 methods of, 230–235
 chaining, 234–235
 charAt(), 230–231
 indexof(), 231
 length(), 233
 replace(), 233
 startsWith() and endsWith(), 233–234
 substring(), 231–232
 trim(), 232–233
 objects of
 counting, 226–227
 creating, 223–230
 immutability of, 227–228
 overview, 299–300
 string objects and operators, 235–236
String concatenation, 236
String value, 99
StringBuffer class, 226, 235
StringBuilder class, 239–247
 methods of, 241–247
 append(), 242–243
 delete() and deleteCharAt(), 245
 insert(), 243–245
 overview, 241
 replace(), 246
 reverse(), 246
 SubSequence(), 247
 trim(), 246
 as mutable, 239–240
 objects of, creating, 240–241
 overview, 300–301, 496
StringBuilder object, 355
String.valueOf() method, 243, 510
students array, 471, 475
subclassing, 386
submit interview status, 402
submitInterviewStatus() method, 402, 406, 430,

444–445
SubSequence() method, StringBuilder class, 247
substring() method, 231–232, 238, 241
super() method, 432
super keyword, 430–433
 accessing constructors of base class using, 432
 accessing variables and methods of base class using,

431
 overview, 430, 455
 using in static methods, 432–433
superclass, 393
swap method, 200
switch construct, 151, 156
switch statement, 338–346
 arguments passed to, 341–343
 comparing with multiple if-else constructs, 339–341
 creating, 339

 label case of, values passed to, 343–346
 overview, 338
 using, 339
synchronized method, 247
synchronized modifier, 64, 401
syntax errors, 55
System.exit, 494
System.gc() method, garbage collection using, 165
System.out.println() method, 288, 331, 510

T

teachClass method, 479–480
teamSize value, 427
TemporalAccessor interface, 294
TemporalAmount interface, 288
termination condition, 347
ternary constructs, 334–338
 correct usage, 335–336
 incorrect assignments, 337
 incorrect usage, 336–337
 nested, 337–338
 overview, 334
ternary operator, 334
test method, 450
tested variable, 153
TestEmp class, 69, 182
TestMethods class, 168
TestPhone class, 158
TestRiverRafting class, 490
this() method, 429
this keyword, 427–429
 accessing constructors using, 429–430
 accessing variables and methods using, 428–429
 overview, 186, 427
 using in interfaces, 430
three-dimensional array, 249
throw clause, 522–523
throw keyword, 479
throw statement, 522–523
ThrowExceptions class, 482
thrown exceptions, 523–524
throws keyword, 479
throws statements, 367, 472
to prefix, 278
todaysDate method, 167
toEpochDay() method, 282
top-level class, 52
top-level interface, 400
toString method, 243, 510
total loop, 131
toTotalMonths() method, 291
Trace class, 485
training schedule, 396
transient modifier, 64, 401

INDEX674
trim() method, 232–233, 246
true value, boolean variable, 95
try blocks, 367, 471, 482
try-catch block, 156
try-catch-finally blocks
 exceptions and, 485–490, 493–498, 500–501
 overview, 183, 475, 483
two-dimensional array, 248–249
type safety, 73, 79

U

UML (Unified Modeling Language) class diagram, 26,
397

unboxing
 overview, 126
 wrapper classes, 130–132
unchecked exceptions, 476
underscores, 99, 515
Unicode values, 103
Unified Modeling Language class diagram. See UML
unintended line breaks, 12
unrelated classes, 54
unsigned numeric data types, 94
update clause, 347
UserData class, 36–37
user-defined class, comparing objects of, 273–275
user-defined constructors, 178–183
UserPreferences class, 36–37
utility methods, 70

V

val element, 353
val parameter, 151–152
val variable, 235, 355
valid identifiers, 105–106, 134
Validate interface, 447, 449
ValidateName class, 448
ValidatePerformanceRating class, 447, 448
value array, 227, 240
value variable, 227, 229, 239, 343
valueOf() method, 125, 128, 131
varargs (variable arguments), 38, 171
varargs parameters, 193
variable argument. Seevarargs
variable scope, 149, 156
variables. See also object reference variables; primitive

variables
 accessing using this keyword, 428–429
 and methods of base class, 431
 overview, 31–32

 scope of, 149–158
 class variables, 153–155
 instance variables, 152–153
 local variables, 149–151
 method parameters, 151–152
virtual extension methods, 401
virtual machine. See VM
VirtualMachineError, 518
VM (virtual machine), 73
void keyword, 171
void type, 168
volatile modifier, 64, 401

W

webdevelopersubpackage, 49
weight variable, 31, 195
well-encapsulated objects, 148
while loop
 comparing with do-while loop, 362–363
 comparing with for loop, 364
 overview, 358–360
white space, 232
wildcard character, 28, 49
Window class, 36–37
with prefix, 278
withDays() method, 291
withHour() method, 285
withMinute() method, 285
withMonths() method, 291
withNano() method, 285
withSecond() method, 285
withXX() method, 280–281
withYears() method, 291
WORA (write once, run anywhere), 72
wrapper classes, 125–132
 autoboxing and unboxing, 130–132
 class hierarchy of, 125
 comparing objects of, 128–130
 difference between using valueOf method and con-

structors of, 128
 objects of, 125–126
 overview, 135–136
 parsing string value to primitive type, 127
 retrieving primitive values from, 126–127
write method, 473
write once, run anywhere. See WORA

Y

yourArrList, 268
yourExam variable, 163

Mala Gupta

To earn the OCA Java SE 8 Programmer I Certifi cation, you
have to know your Java inside and out, and to pass the exam
you need to understand the test itself. Th is book cracks

open the questions, exercises, and expectations you’ll face on
the OCA exam so you’ll be ready and confi dent on test day.

OCA Java SE 8 Programmer I Certifi cation Guide prepares
Java developers for the 1Z0-808 with thorough coverage of Java
topics typically found on the exam. Each chapter starts with a
list of exam objectives mapped to section numbers, followed by
sample questions and exercises that reinforce key concepts.
You’ll learn techniques and concepts in multiple ways, including
memorable analogies, diagrams, fl owcharts, and lots of well-
commented code. You’ll also get the scoop on common exam
mistakes and ways to avoid traps and pitfalls.

What’s Inside
● Covers all exam topics
● Hands-on coding exercises
● Flowcharts, UML diagrams, and other visual aids
● How to avoid built-in traps and pitfalls
● Complete coverage of the OCA Java SE 8 Programmer I
 exam (1Z0-808)

Written for developers with a working knowledge of Java who
want to earn the OCA Java SE 8 Programmer I Certifi cation.

Mala Gupta is a Java coach and trainer who holds multiple
Java certifi cations. Since 2006 she has been actively supporting
Java certifi cation as a path to career advancement.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/oca-java-se-8-programmer-i-certification-guide

$59.99 / Can $68.99 [INCLUDING eBOOK]

OCA Java SE 8
Programmer I Certifi cation Guide

JAVA CERTIFICATION

M A N N I N G

“Guides you through all
the tricks and pitfalls you
need to master in order
 to pass the exam.”
—Jean-François Morin

Laval University

“Mala Gupta is a master
of her art—she wrote
the defi nitive guide

to this exam!”—Marty Henderson, Anthem Inc.

“Off ers a thorough and
well-structured preparation

for the OCA exam.”—-Ursin Strauss, Swiss Post

“Clear, concise, correct,
 and complete.”—Travis Nelson

Software Technology Group

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Start your preparation with the chapter-based exam objective map
	Chapter-based objectives
	Section-based objectives
	Exam tips
	Notes
	Sidebars
	Images
	Twist in the Tale exercises
	Code indentation
	Review notes
	Exam questions
	Answers to exam questions
	Author Online

	about the author
	about the cover illustration
	Introduction
	1 Disclaimer
	2 Introduction to OCA Java SE 8 Programmer I Certification
	3 The importance of OCA Java SE 8 Programmer I Certification
	4 Comparing OCA Java exam versions
	5 Next step: OCP Java SE 8 Programmer II (1Z0-809) exam
	6 Complete exam objectives, mapped to book chapters, and readiness checklist
	7 FAQs
	7.1 FAQs on exam preparation
	7.2 FAQs on taking the exam

	8 The testing engine used in the exam

	1 Java basics
	1.1 The structures of a Java class and a source code file
	1.1.1 Structure of a Java class
	1.1.2 Structure and components of a Java source code file

	1.2 Executable Java applications
	1.2.1 Executable Java classes versus non-executable Java classes
	1.2.2 The main method
	1.2.3 Run a Java program from the command line

	1.3 Java packages
	1.3.1 The need for packages
	1.3.2 Defining classes in a package using the package statement
	1.3.3 Using simple names with import statements
	1.3.4 Using packaged classes without using the import statement
	1.3.5 Importing a single member versus all members of a package
	1.3.6 The import statement doesn’t import the whole package tree
	1.3.7 Importing classes from the default package
	1.3.8 Static imports

	1.4 Java access modifiers
	1.4.1 Access modifiers
	1.4.2 Public access modifier
	1.4.3 Protected access modifier
	1.4.4 Default access (package access)
	1.4.5 private access modifier
	1.4.6 Access modifiers and Java entities

	1.5 Nonaccess modifiers
	1.5.1 abstract modifier
	1.5.2 final modifier
	1.5.3 static modifier

	1.6 Features and components of Java
	1.6.1 Valid features and components of Java
	1.6.2 Irrelevant features and components of Java

	1.7 Summary
	1.8 Review notes
	1.9 Sample exam questions
	1.10 Answers to sample exam questions

	2 Working with Java data types
	2.1 Primitive variables
	2.1.1 Category: Boolean
	2.1.2 Category: signed numeric
	2.1.3 Category: character (unsigned integer)
	2.1.4 Confusion with the names of the primitive data types

	2.2 Identifiers
	2.2.1 Valid and invalid identifiers

	2.3 Object reference variables
	2.3.1 What are object reference variables?
	2.3.2 Differentiating between object reference variables and primitive variables

	2.4 Operators
	2.4.1 Assignment operators
	2.4.2 Arithmetic operators
	2.4.3 Relational operators
	2.4.4 Logical operators
	2.4.5 Operator precedence

	2.5 Wrapper classes
	2.5.1 Class hierarchy of wrapper classes
	2.5.2 Creating objects of the wrapper classes
	2.5.3 Retrieving primitive values from the wrapper classes
	2.5.4 Parsing a string value to a primitive type
	2.5.5 Difference between using the valueOf method and constructors of wrapper classes
	2.5.6 Comparing objects of wrapper classes
	2.5.7 Autoboxing and unboxing

	2.6 Summary
	2.7 Review notes
	2.8 Sample exam questions
	2.9 Answers to sample exam questions

	3 Methods and encapsulation
	3.1 Scope of variables
	3.1.1 Local variables
	3.1.2 Method parameters
	3.1.3 Instance variables
	3.1.4 Class variables
	3.1.5 Overlapping variable scopes

	3.2 Object’s life cycle
	3.2.1 An object is born
	3.2.2 Object is accessible
	3.2.3 Object is inaccessible
	3.2.4 Garbage collection

	3.3 Create methods with arguments and return values
	3.3.1 Return type of a method
	3.3.2 Method parameters
	3.3.3 Return statement

	3.4 Create an overloaded method
	3.4.1 Argument list
	3.4.2 Return type
	3.4.3 Access level

	3.5 Constructors of a class
	3.5.1 User-defined constructors
	3.5.2 Default constructor
	3.5.3 Overloaded constructors

	3.6 Accessing object fields
	3.6.1 What is an object field?
	3.6.2 Read and write object fields
	3.6.3 Calling methods on objects

	3.7 Apply encapsulation principles to a class
	3.7.1 Need for encapsulation
	3.7.2 Apply encapsulation

	3.8 Passing objects and primitives to methods
	3.8.1 Passing primitives to methods
	3.8.2 Passing object references to methods

	3.9 Summary
	3.10 Review notes
	3.11 Sample exam questions
	3.12 Answers to sample exam questions

	4 Selected classes from the Java API and arrays
	4.1 Welcome to the world of the String class
	4.1.1 Creating String objects
	4.1.2 The class String is immutable
	4.1.3 Methods of the class String
	4.1.4 String objects and operators
	4.1.5 Determining equality of Strings

	4.2 Mutable strings: StringBuilder
	4.2.1 The StringBuilder class is mutable
	4.2.2 Creating StringBuilder objects
	4.2.3 Methods of class StringBuilder
	4.2.4 A quick note on the class StringBuffer

	4.3 Arrays
	4.3.1 What is an array?
	4.3.2 Array declaration
	4.3.3 Array allocation
	4.3.4 Array initialization
	4.3.5 Combining array declaration, allocation, and initialization
	4.3.6 Asymmetrical multidimensional arrays
	4.3.7 Arrays of type interface, abstract class, and class Object
	4.3.8 Members of an array

	4.4 ArrayList
	4.4.1 Creating an ArrayList
	4.4.2 Adding elements to an ArrayList
	4.4.3 Accessing elements of an ArrayList
	4.4.4 Modifying the elements of an ArrayList
	4.4.5 Deleting the elements of an ArrayList
	4.4.6 Other methods of ArrayList

	4.5 Comparing objects for equality
	4.5.1 The method equals in the class java.lang.Object
	4.5.2 Comparing objects of a user-defined class
	4.5.3 Incorrect method signature of the equals method
	4.5.4 Contract of the equals method

	4.6 Working with calendar data
	4.6.1 LocalDate
	4.6.2 LocalTime
	4.6.3 LocalDateTime
	4.6.4 Period
	4.6.5 DateTimeFormatter

	4.7 Summary
	4.8 Review notes
	4.9 Sample exam questions
	4.10 Answers to sample exam questions

	5 Flow control
	5.1 The if, if-else, and ternary constructs
	5.1.1 The if construct and its flavors
	5.1.2 Missing else blocks
	5.1.3 Implications of the presence and absence of {} in if-else constructs
	5.1.4 Appropriate versus inappropriate expressions passed as arguments to an if statement
	5.1.5 Nested if constructs
	5.1.6 Ternary construct

	5.2 The switch statement
	5.2.1 Create and use a switch statement
	5.2.2 Comparing a switch statement with multiple if-else constructs
	5.2.3 Arguments passed to a switch statement
	5.2.4 Values passed to the label case of a switch statement
	5.2.5 Use of break statements within a switch statement

	5.3 The for loop
	5.3.1 Initialization block
	5.3.2 Termination condition
	5.3.3 The update clause
	5.3.4 Optional parts of a for statement
	5.3.5 Nested for loop

	5.4 The enhanced for loop
	5.4.1 Iteration with enhanced for loop
	5.4.2 Limitations of the enhanced for loop
	5.4.3 Nested enhanced for loop

	5.5 The while and do-while loops
	5.5.1 The while loop
	5.5.2 The do-while loop
	5.5.3 while and do-while block, expression, and nesting rules

	5.6 Comparing loop constructs
	5.6.1 Comparing do-while and while loops
	5.6.2 Comparing for and enhanced for loops
	5.6.3 Comparing for and while loops

	5.7 Loop statements: break and continue
	5.7.1 The break statement
	5.7.2 The continue statement
	5.7.3 Labeled statements

	5.8 Summary
	5.9 Review notes
	5.10 Sample exam questions
	5.11 Answers to sample exam questions

	6 Working with inheritance
	6.1 Inheritance with classes
	6.1.1 The need to inherit classes
	6.1.2 Benefits
	6.1.3 A derived class contains within it an object of its base class
	6.1.4 Which base class members are inherited by a derived class?
	6.1.5 Which base class members aren’t inherited by a derived class?
	6.1.6 Derived classes can define additional properties and behaviors
	6.1.7 Abstract base class versus concrete base class

	6.2 Use interfaces
	6.2.1 Need for using interfaces
	6.2.2 Defining interfaces
	6.2.3 Types of methods in an interface
	6.2.4 Implementing a single interface
	6.2.5 A class can’t extend multiple classes
	6.2.6 A class can implement multiple interfaces
	6.2.7 Extending interfaces
	6.2.8 Modifying existing methods of an interface
	6.2.9 Properties of members of an interface

	6.3 Reference variable and object types
	6.3.1 Using a variable of the derived class to access its own object
	6.3.2 Using a variable of a superclass to access an object of a derived class
	6.3.3 Using a variable of an implemented interface to access a derived class object
	6.3.4 The need for accessing an object using the variables of its base class or implemented interfaces

	6.4 Casting
	6.4.1 How to cast a variable to another type
	6.4.2 Need for casting

	6.5 Use this and super to access objects and constructors
	6.5.1 Object reference: this
	6.5.2 Object reference: super

	6.6 Polymorphism
	6.6.1 Polymorphism with classes
	6.6.2 Binding of variables and methods at compile time and runtime
	6.6.3 Polymorphism with interfaces

	6.7 Simple lambda expressions
	6.7.1 Comparing passing values with passing code to methods
	6.7.2 Syntax of lambda expressions
	6.7.3 Interface Predicate

	6.8 Summary
	6.9 Review notes
	6.10 Sample exam questions
	6.11 Answers to sample exam questions

	7 Exception handling
	7.1 Exceptions in Java
	7.1.1 A taste of exceptions
	7.1.2 Why handle exceptions separately?
	7.1.3 Does exception handling offer any other benefits?

	7.2 Categories of exceptions
	7.2.1 Identifying exception categories
	7.2.2 Class hierarchy of exception classes
	7.2.3 Checked exceptions
	7.2.4 Runtime exceptions
	7.2.5 Errors

	7.3 Creating a method that throws an exception
	7.3.1 Create a method that throws a checked exception
	7.3.2 Handle-or-declare rule
	7.3.3 Creating a method that throws runtime exceptions or errors
	7.3.4 A method can declare to throw all types of exceptions, even if it doesn’t

	7.4 What happens when an exception is thrown?
	7.4.1 Creating try-catch-finally blocks
	7.4.2 Using a method that throws a checked exception
	7.4.3 Using a method that throws a runtime exception
	7.4.4 Using a method that throws an error
	7.4.5 Will a finally block execute even if the catch block defines a return statement?
	7.4.6 What happens if both a catch and a finally block define return statements?
	7.4.7 What happens if a finally block modifies the value returned from a catch block?
	7.4.8 Can a try block be followed only by a finally block?
	7.4.9 Does the order of the exceptions caught in the catch blocks matter?
	7.4.10 Can I rethrow an exception or the error I catch?
	7.4.11 Can I declare my methods to throw a checked exception instead of handling it?
	7.4.12 I can create nested loops, so can I create nested try-catch blocks too?
	7.4.13 Should I handle errors?

	7.5 Common exception classes and categories
	7.5.1 ArrayIndexOutOfBoundsException and IndexOutOfBoundsException
	7.5.2 ClassCastException
	7.5.3 IllegalArgumentException
	7.5.4 NullPointerException
	7.5.5 ArithmeticException
	7.5.6 NumberFormatException
	7.5.7 ExceptionInInitializerError
	7.5.8 StackOverflowError
	7.5.9 NoClassDefFoundError
	7.5.10 OutOfMemoryError

	7.6 Summary
	7.7 Review notes
	7.8 Sample exam questions
	7.9 Answers to sample exam questions

	8 Full mock exam
	8.1 Mock exam
	8.2 Answers to mock exam questions

	Appendix—Answers to Twist in the Tale exercises
	A.1 Chapter 1: Java basics
	A.1.1 Twist in the Tale 1.1
	A.1.2 Twist in the Tale 1.2
	A.1.3 Twist in the Tale 1.3
	A.1.4 Twist in the Tale 1.4

	A.2 Chapter 2: Working with Java data types
	A.2.1 Twist in the Tale 2.1 (part 1)
	A.2.2 Twist in the Tale 2.1 (part 2)
	A.2.3 Twist in the Tale 2.2
	A.2.4 Twist in the Tale 2.3
	A.2.5 Twist in the Tale 2.4

	A.3 Chapter 3: Methods and encapsulation
	A.3.1 Twist in the Tale 3.1
	A.3.2 Twist in the Tale 3.2
	A.3.3 Twist in the Tale 3.3

	A.4 Chapter 4: Selected classes from the Java API and arrays
	A.4.1 Twist in the Tale 4.1
	A.4.2 Twist in the Tale 4.2
	A.4.3 Twist in the Tale 4.3
	A.4.4 Twist in the Tale 4.4

	A.5 Chapter 5: Flow control
	A.5.1 Twist in the Tale 5.1
	A.5.2 Twist in the Tale 5.2
	A.5.3 Twist in the Tale 5.3
	A.5.4 Twist in the Tale 5.4

	A.6 Chapter 6: Working with inheritance
	A.6.1 Twist in the Tale 6.1
	A.6.2 Twist in the Tale 6.2
	A.6.3 Twist in the Tale 6.3
	A.6.4 Twist in the Tale 6.4

	A.7 Chapter 7: Exception handling
	A.7.1 Twist in the Tale 7.1
	A.7.2 Twist in the Tale 7.2
	A.7.3 Twist in the Tale 7.3
	A.7.4 Twist in the Tale 7.4
	A.7.5 Twist in the Tale 7.5

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Back cover

