Mala Gupta

vww.allitebooks.cond

CERTIFICATION GUIDE

OC/
P’rbgramme_r I
| | I

http://www.allitebooks.org

OCA Java SE 8 Programmer I Certification Guide

[vww.allitebooks.cond

http://www.allitebooks.org

[vww.allitebooks.cond

http://www.allitebooks.org

OCA Java SE &

Programmer 1
Certification Guide

MALA GUPTA

MANNING
SHELTER ISLAND

[vww.allitebooks.cond

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/l/l Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Francesco Bianchi
PO Box 761 Copy editor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Jean-Francois Morin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617293252
Printed in the United States of America
12345678910 -EBM - 21 2019 18 17 16

[vww.allitebooks.cond

www.manning.com
http://www.allitebooks.org

To Dheeraj, my pillar of strength

[vww.allitebooks.cond

http://www.allitebooks.org

[vww.allitebooks.cond

http://www.allitebooks.org

0 N O a0 A W N R

brief contents

Introduction 1

Java basics 22

Working with Java data types 92

Methods and encapsulation 147

Selected classes from the Java API and arrays 221
Flow control 322

Working with inheritance 384

Exception handling 469

Full mock exam 539

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

contents

preface xvii

acknowledgments xix

about this book xxi

about the author xxix

about the cover illustration xxx

Introduction 1

1 Disclaimer 2

2 Introduction to OCA Java SE 8 Programmer I
Certification 2

3 The importance of OCA Java SE 8 Programmer I
Certification 2

4 Comparing OCA Java exam versions 4

5 Next step: OCP Java SE 8 Programmer II (1Z0-809)
exam 8

6 Complete exam objectives, mapped to book chapters, and
readiness checklist 8

7 FAQs 10
FAQs on exam preparation 10 = FAQs on taking the exam 18

8 The testing engine used in the exam 20

vww.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Java basics 22

1.1 The structures of a Java class and a source code file 23
Structure of a Java class 24 = Structure and components of
a_Java source code file 32

1.2 Executable Java applications 36
Executable Java classes versus non-executable Java classes 36
The main method 37 = Run a Java program from the
command line 39

1.3 Java packages 41

The need for packages 42 = Defining classes in a package using
the package statement 42 = Using simple names with import
statements 45 = Using packaged classes without using the
import statement 47 = Importing a single member versus all
members of a package 48 = The import statement doesn’t import
the whole package tree 49 = Importing classes from the default
package 50 = Static imports 50

1.4 Java access modifiers 51

Access modifiers 52 = Public access modifier 53 = Protected
access modifier 54 = Default access (package access) 57
private access modifier 61 ® Access modifiers and

Java entities 62

1.5 Nonaccess modifiers 64
abstract modifier 65 = final modifier 66 ® static modifier 67

1.6 Features and components of Java 72

Valid features and components of Java 72 = Irrelevant features
and components of Java 74

1.7 Summary 74
1.8 Review notes 75
1.9 Sample exam questions 79

1.10 Answers to sample exam questions 84

Working with Java data types 92

2.1 Primitive variables 93

Category: Boolean 95 = Category: signed numeric 96
Category: character (unsigned integer) 102 = Confusion with
the names of the primitive data types 104

2.2 Identifiers 105
Valid and invalid identifiers 105

CONTENTS

2.3 Object reference variables 106

What are object reference variables? 107 = Differentiating between
object reference variables and primitive variables 109

2.4 Operators 111

Assignment operators 112 = Arithmetic operators 115
Relational operators 119 ® Logical operators 121
Operator precedence 123

2.5 Wrapper classes 125

Class hierarchy of wrapper classes 125 = Creating objects of the
wrapper classes 125 = Retrieving primitive values from the
wrapper classes 126 = Parsing a string value to a

primitive type 127 = Difference between using the valueOf
method and constructors of wrapper classes 128 = Comparing
objects of wrapper classes 128 = Autoboxing and unboxing 130

2.6 Summary 132
2.7 Review notes 132
2.8 Sample exam questions 136

2.9 Answers to sample exam questions 140

Methods and encapsulation 147

3.1 Scope of variables 149

Local variables 149 = Method parameters 151
Instance variables 152 = Class variables 153
Overlapping variable scopes 155

3.2 Object’s life cycle 158

An object is born. 159 = Object is accessible 160
Object is inaccessible 161 = Garbage collection 163

3.3 Create methods with arguments and return values 166

Return type of a method 168 = Method parameters 169
Return statement 172

3.4 Create an overloaded method 174
Argument list 175 = Return type 177 = Access level 177

3.5 Constructors of a class 178
User-defined constructors 178 = Default constructor 183
Overloaded constructors 185

3.6 Accessing object fields 188

What is an object field? 188 = Read and write object fields 189
Calling methods on objects 192

3.7

3.8

3.9
3.10
3.11
3.12

CONTENTS

Apply encapsulation principles to a class 194
Need for encapsulation 195 = Apply encapsulation 195

Passing objects and primitives to methods 197

Passing primitives to methods 198 = Passing object references
to methods 199

Summary 202
Review notes 203
Sample exam questions 207

Answers to sample exam questions 212

Selected classes from the Java API and arrays 221

4.1

4.2

4.3

4.4

4.5

4.6

Welcome to the world of the String class 223

Creating String objects 223 = The class String is immutable 227
Methods of the class String 230 = String objects and
operators 235 = Determining equality of Strings 236

Mutable strings: StringBuilder 239

The StringBuilder class is mutable 239 = Creating StringBuilder
objects 240 = Methods of class StringBuilder 241 = A quick
note on the class StringBuffer 247

Arrays 247

What is an array? 248 = Array declaration 249

Array allocation 250 = Array initialization 252

Combining array declaration, allocation, and initialization 254
Asymmetrical multidimensional arrays 255 = Arrays of type
interface, abstract class, and class Object 256 = NMembers of

an array 258

ArrayList 258

Creating an ArrayList 259 = Adding elements to an

ArrayList 261 ® Accessing elements of an ArrayList 263
Modifying the elements of an ArrayList 265 = Deleting the
elements of an ArrayList 266 = Other methods of ArrayList 267

Comparing objects for equality 273

The method equals in the class java.lang. Object 273
Comparing objects of a user-defined class 273 = Incorrect
method signature of the equals method 275 = Contract of the
equals method 276

Working with calendar data 278

LocalDate 279 » LocalTime 282 = LocalDateTime 285
Period 286 = DateTimeFormatter 291

4.7
4.8
4.9
4.10

CONTENTS xiii

Summary 297
Review notes 299
Sample exam questions 309

Answers to sample exam questions 313

Flow control 322

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
5.9
5.10
5.11

The if, if-else, and ternary constructs 324

The if construct and its flavors 324 = Missing else blocks 328
Implications of the presence and absence of {} in if-else
constructs 328 = Appropriate versus inappropriate expressions
passed as arguments to an if statement 331 = Nested if
constructs 332 = Ternary construct 334

The switch statement 338

Create and use a switch statement 339 = Comparing a switch
statement with multiple if-else constructs 339 = Arguments
passed to a switch statement 341 = Values passed to the label
case of a swilch statement 343 = Use of break statements within
a switch statement 345

The for loop 346

Initialization block 348 = Termination condition 349
The update clause 349 = Optional parts of a for statement 350
Nested for loop 351

The enhanced for loop 352

Tteration with enhanced for loop 352 = Limitations of the
enhanced for loop 355 = Nested enhanced for loop 356

The while and do-while loops 358

The while loop 358 = The do-while loop 360
while and do-while block, expression, and nesting rules 362

Comparing loop constructs 362

Comparing do-while and while loops 362 = Comparing for and
enhanced for loops 363 = Comparing for and while loops 364

Loop statements: break and continue 364

The break statement 364 = The continue statement 366
Labeled statements 367

Summary 368
Review notes 369
Sample exam questions 372

Answers to sample exam questions 377

CONTENTS

Working with inheritance 384

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9
6.10
6.11

Inheritance with classes 385

The need to inherit classes 385 = Benefils 387 = A derived class
contains within it an object of its base class 390 = Which base class
members are inherited by a derived class? 391 = Which base class

members aren’t inherited by a derived class? 391 = Derived classes
can define additional properties and behaviors 391 = Abstract base
class versus concrete base class 392

Use interfaces 394

Need for using interfaces 396 = Defining interfaces 398
Types of methods in an interface 401 = Implementing a single
interface 405 ® A class can’t extend multiple classes 407

A class can implement multiple interfaces 408 = Extending

interfaces 411 = Modifying existing methods of an interface 414

Properties of members of an interface 417

Reference variable and object types 418
Using a variable of the derived class to access its own object 418
Using a variable of a superclass to access an object of a derived
class 419 = Using a variable of an implemented interface to access
a derived class object 420 = The need for accessing an object using
the variables of its base class or implemented interfaces 421
Casting 424
How to cast a variable to another type 424
Need for casting 426
Use this and super to access objects and constructors 427
Object reference: this 427 = Object reference: super 430

Polymorphism 434
Polymorphism with classes 434 = Binding of variables and
methods at compile time and runtime 439 = Polymorphism
with interfaces 441

Simple lambda expressions 446
Comparing passing values with passing code to methods 446
Syntax of lambda expressions 449 = Interface Predicate 450

Summary 452

Review notes 453

Sample exam questions 456

Answers to sample exam questions 461

CONTENTS

Exception handling 469

7.1

7.2

7.3

7.4

7.5

7.6
7.7
7.8
7.9

Exceptions in Java 470

A taste of exceptions 470 = Why handle exceptions
separately? 473 = Does exception handling offer any
other benefits? 474

Categories of exceptions 475

Identifying exception categories 476 = Class hierarchy of
exception classes 476 = Checked exceptions 477
Runtime exceptions 478 = Errors 478

Creating a method that throws an exception 479

Create a method that throws a checked exception 480
Handle-or-declare rule 481 = Creating a method that throws
runtime exceptions or errors 481 = A method can declare to throw
all types of exceptions, even if it doesn’t 482

What happens when an exception is thrown? 483

Creating try-catch-finally blocks 485 = Using a method that throws
a checked exception 490 = Using a method that throws a runtime
exception 491 = Using a method that throws an ervor 493

Will a finally block execute even if the catch block defines a return
statement? 493 = What happens if both a catch and a finally block
define return statements? 494 = What happens if a finally block
modifies the value returned from a catch block? 495 = Can a try
block be followed only by a finally block? 496 = Does the order of the
exceptions caught in the catch blocks matter? 497 = Can I rethrow
an exception or the error I catch? 499 = Can I declare my methods
to throw a checked exception instead of handling it? 500 = I can
create nested loops, so can I create nested try-catch blocks too? 500
Should I handle errors? 502

Common exception classes and categories 503

ArrayIndexOutOfBoundsException and
IndexOutOfBoundskxception 504 = ClassCastException 505
LilegalArgumentlxception 507 = NullPointerException 508
ArithmeticException 511 = NumberFormatException 514
ExceptionInInitializerError 516 ® StackOverflowError 518
NoClassDeffoundError 519 = OutOfMemoryError 519

Summary 520
Review notes 520
Sample exam questions 526

Answers to sample exam questions 530

XV

xvi CONTENTS

Full mock exam 539
8.1 Mockexam 539

8.2 Answers to mock exam questions 574

appendix Answers to Twist in the Tale exercises 641

index 659

preface

Java programmer certifications are designed to tell would-be employers whether you
really know your stuff, and cracking the OCA Java SE 8 Programmer Certification is
not an easy task. Thorough preparation is crucial if you want to pass the exam the first
time with a score that you can be proud of. You need to know Java inside-out, and you
need to understand the certification process so that you're ready for the challenging
questions you’ll face in the exam.

This book is a comprehensive guide to the 1Z0-808 exam. You’ll explore a wide
range of important Java topics as you systematically learn how to pass the certification
exam. Each chapter starts with a list of the exam objectives covered in that chapter.
Throughout the book you’ll find sample questions and exercises designed to reinforce
key concepts and prepare you for what you’ll see in the real exam, along with numerous
tips, notes, and visual aids.

Unlike many other exam guides, this book provides multiple ways to digest impor-
tant techniques and concepts, including comic conversations, analogies, pictorial rep-
resentations, flowcharts, UML diagrams, and, naturally, lots of well-commented code.
The book also gives insight into common mistakes people make when taking the
exam, and guides you in avoiding traps and pitfalls. It provides

= Complete coverage of exam topics, all mapped to chapter and section numbers
= Hands-on coding exercises, including particularly challenging ones that throw
in a twist

xvii

xviii PREFACE

= Instruction on what’s happening behind the scenes using the actual code from
the Java API source
= Mastery of both the concepts and the exam

This book is written for developers with a working knowledge of Java. My hope is that
the book will deepen your knowledge and prepare you well for the exam and that you
will pass it with flying colors!

acknowledgments

First and foremost, I thank Dheeraj—my pillar of strength, my best friend, and my
husband. His constant guidance, encouragement, and love kept me going. He helped
me to get started with this book and got me over the goal line.

My sincere gratitude goes to Marjan Bace, publisher at Manning, for giving me the
opportunity to author this book. The Manning team has been wonderful—Michael
Stephens ensured that it was worth it for Manning to have a book on this subject.
Cynthia Kane, my development editor, is like sunshine. Not only did she help me with
the organization of individual chapters and the overall book, but she pulled me through
whenever the task of writing a book became overwhelming. It’s always a pleasure to
work with her. Copyeditor Linda Recktenwald not only applied her magic to sentence
and language constructions but also supplemented her editing with valuable sugges-
tions on technical content.

Technical development editor Francesco Bianchi suggested multiple additions and
modifications, improving the content of this book. Technical proofreader Jean-Francois
Morin was outstanding in his review. He not only pointed out existing errors but also
suggested multiple improvements to the organization of the contents. Proofreader
Katie Tennant was extremely capable and talented. She reviewed the final manuscript
with great precision.

The technical reviewers on this book did an awesome job of reviewing the con-
tents and sharing their valuable feedback and comments: Andrea Barisone, Andrea
Consentino, Anutosh Ghosh, David Blau, Marty Henderson, Mirsad Vojnikovic, Nicola
Pedot, Sanjiv Kumar, Simona Russo, Travis Nelson, and Ursin Stauss. I would also like

ACKNOWLEDGMENTS

to thank Nicole Butterfield and Donna Clements, review editors, for managing the
whole review process and meticulously funneling the feedback to make this book better.

Dennis Dalinnik did an outstanding job of converting the black-and-white hand-
drawn illustrations into glorious images. It was amazing to scrutinize the page proofs.
I also thank Dennis for adjusting the images in the final page proofs, which was a lot
of work. Janet Vail and Mary Piergies were awesome in their expertise at turning all
text, code, and images into publishable form. I am also grateful to Candace Gillhoolley
for her efforts in promoting the book.

I thank the MEAP readers for buying the book while it was being developed and
for their suggestions, corrections, and encouragement.

I'would also like to thank my former colleagues Harry Mantheakis, Paul Rosenthal,
and Selvan Rajan, whose names I use in coding examples throughout the book. I have
always looked up to them.

I thank my daughters, Shreya and Pavni, who often advised me on the images that
I created for the book. I thank my family for their unconditional support. The book
would have been not been possible without their love and encouragement.

about this book

This book is written for developers with a working knowledge of Java who want to earn
the OCA Java SE 8 Programmer Certification. It uses powerful tools and features to
make reaching your goal of certification a quick, smooth, and enjoyable experience.
This section explains the features used in the book and tells you how to use the book
to get the most out of it as you prepare for the certification exam. More information
on the exam and on how the book is organized is available in the Introduction.

Start your preparation with the chapter-based exam

objective map

I strongly recommend a structured approach to preparing for this exam. To help you
with this task, I developed a chapter-based exam objective map, as shown in figure 1.
The full version is in the Introduction (table 1.3).

Exam objectives 00veres(;i=|:i§:apter/
1 Java basics Chapters 1 and 3
1.1 Define the scope of variables Section 3.1
1.2 Define the structure of a Java class Section 1.1
1.3 Create executable Java applications with a mai n method; run a Java program from Section 1.2

e T e e e L =

Figure 1 The Introduction to this book provides a list of all exam objectives and the corresponding
chapter and section numbers where they are covered. See the full table in the Introduction (table 1.3).

ABOUT THIS BOOK

The map in the Introduction shows the complete exam objective list mapped to the
relevant chapter and section numbers. You can jump to the relevant section number
to work on a particular exam topic.

Chapter-based objectives

Each chapter starts with a list of the exam objectives covered in that chapter, as shown
in figure 2. This list is followed by a quick comparison of the major concepts and top-
ics covered in the chapter with real-world objects and scenarios.

Exam objectives covered in this chapter What you need to know

[1.2] Define the structure of a Java class. Structure of a Java class, with its components:
package and import statements, class declara-
tions, comments, variables, and methods.
Difference between the components of a Java
class and that of a Java source code file.

[1.3] Create executable Java applications with a | The right method signature for the mai n method
mai n method; run a Java program from the to create an executable Java application.
command line; including console output. The arguments that are passed to the mai n

Figure 2 An example of the list of exam objectives and brief explanations at the beginning of each
chapter

Section-based objectives

Each main section in a chapter starts by identifying the exam objective(s) that it cov-
ers. Each listed exam topic starts with the exam objective and its subobjective number.

In figure 3, the number “4.4” refers to section 4.4 in chapter 4 (the complete list of
chapters and sections can be found in the table of contents). The number “9.4” pre-
ceding the exam objective refers to the objective’s numbering in the list of exam
objectives on Oracle’s website (the complete numbered list of exam objectives is given
in table 1.3 in the Introduction).

4.4 Arraylist

E [9.4] Declare and use an ArrayList of a given type

In this section, I'll cover how to use ArrayLi st, its commonly used methods, and the
advantages it offers over an array.

The OCA Java SE 8 Programmer I exam covers only one class from the Java Collec-
tion API: ArraylLi st. The rest of the classes from the Java Collection API are covered
in the OCP Java SE 8 Programmer II exam (exam number 170-809). One of the reasons

Figure 3 An example of the beginning of a section, identifying the exam objective that it covers

ABOUT THIS BOOK xxiii

Exam tips

Each chapter provides multiple exam tips to reemphasize the points that are the most
confusing, overlooked, or frequently answered incorrectly by candidates and that
therefore require special attention for the exam. Figure 4 shows an example.

EXAM TIP An Arraylist preserves the order of insertion of its elements.

g Iterator, Listlterator, and the enhanced for loop will return the ele-
ments in the order in which they were added to the ArrayLi st. An iterator
(Iterator or Listlterator) lets you remove elements as you iterate an
ArraylList. It’s not possible to remove elements from an ArrayLi st while
iterating it using a f or loop.

Figure 4 Example of an exam tip; they occur multiple times in a chapter

Notes
All chapters also include multiple notes that draw your attention to points that should
be noted while you're preparing for the exam. Figure 5 shows an example.

NOTE Although the terms method parameters and method arguments are not the
” same, you may have noticed that many programmers use them interchange-
ably. Method parameters are the variables that appear in the definition of a
method. Method arguments are the actual values that are passed to a method
while executing it. In figure 3.15, the variables phNumand msg are method
parameters. If you execute this method as sendMsg("123456", "Hello"),
then the String values "123456" and "Hel | 0" are method arguments. As you
know, you can pass literal values or variables to a method. Thus, method argu-

ments can be literal values or variables.

Figure 5 Example note

Sidebars

Sidebars contain information that may not be directly relevant to the exam but that is
related to it. Figure 6 shows an example.

Figure 6 Example sidebar

XXivV

ABOUT THIS BOOK

Images

I use a lot of images in the chapters for an immersive learning experience. I believe

that a simple image can help you understand a concept quickly, and a little humor can
help you to retain information longer.

Simple images are used to draw your attention to a particular line of code (as shown
in figure 7).

public String replace(char oldChar, char newChar) {
if (oldChar != newChar) {
// code to create a new char array and
// replace the desired char with the new char

return new String(0, len, buf);
3

return this;

replace creates and
} returns a new String
object. It doesn’t modify
the existing array value.

Figure 7 An example image that draws your attention to a particular line of code

I use pictorial representation of data in arrays (figure 8) and other data types to aid
visualization and understanding.

[~ ®
multiStrArr 1 1
ull
@
€&

1 . o . .
Figure 8 An example pictorial representation
2 of data in an array

2

RN

To reinforce important points and help you retain them longer, a little humor has been
added using comic strips (as in figure 9).

I will buy
diamonds For

But what happens
iF you encounter an

I will
you and trest you exception while buying still treat you
to coffee. the dismonds? to coffee!

Figure 9 An example of a little humor to help you remember that the f i nal | y block always executes

ABOUT THIS BOOK XXV

I also use images to group and represent information for quick reference. Figure 10
shows an example of the protected members that can be accessed by derived or unre-
lated classes in the same or separate packages. I strongly recommend that you try to
create a few of your own figures like these.

Same package Separate package

Derived classes

Figure 10 An example of grouping and
representing information for quick reference

Unrelated classes

An image can also add more meaning to a sequence of steps explained in the text. For
example, figure 11 seems to bring the Java compiler to life by allowing it to talk with
you and convey what it does when it gets to compile a class that doesn’t define a con-
structor. Again, try a few of your own! It’ll be fun!

Poor class
Employee doesn’t
have a constructor.
Let me create
one for it.

class Employee {
String name;

| |
| |
| |
| | I !
: int age; U in I class Employee { !
: } : : String name; :
b - Java | int age; |
| —— = |
compiler : ,rEmponee() { j'ﬂ_l'
| : super(); : |
Oout : | } | : Default
| 'L ,,,,,,,,,,,,, JI | constructor
P |
L N

Figure 11 An example pictorial representation of steps executed by the Java
compiler when it compiles a class without a constructor

The exam requires that you know multiple methods from classes such as String,
StringBuil der, ArrayLi st, and others. The number of these methods can be over-
whelming, but grouping these methods according to their functionality can make this
task a lot more manageable. Figure 12 shows an example of an image that groups
methods of the St ring class according to their functionality.

String methods

|

Query position of chars Seem to modify String Others
charAt indexOf substring trim replace length startsWith endsWith

Figure 12 An example image used to group methods of the St r i ng class according to their functionality

ABOUT THIS BOOK

Expressions that involve multiple operands can be hard to comprehend. Figure 13 is
an example of an image that can save you from the mayhem of unary increment and
decrement operators used in prefix and postfix notation.

@)

a = a++ + a + a-—- - a-- + ++a;

@

Figure 13 Example of values taken by the operands during execution of an expression

Code snippets that define multiple points and that may result in the nonlinear execu-
tion of code can be very difficult to comprehend. These may include selection state-
ments, loops, or exception-handling code. Figure 14 is an example of an image that
clearly outlines the lines of code that will execute.

1> RiverRafting riverRafting = new RiverRafting(); 1. Execute code on line 3.

2> try {)

3> riverRafting.crossRapid(11); Code on lines 4 and 5 won't

4> riverRafting.rowRaft("'happy'); executfe if line 3 throws an

5> System.out.printIn(""Enjoy River Rafting"); exception.

6>

7> catch (FallingRiverException el) { 2. Combat exception thrown by
8> System.out.printIn(*'Get back in the raft"); code on line 3. Execute exception
9> 3} handler for

10> catch (DropOarException e2) { FallInRiverException.

11> System.out.printIn(*'Do not panic™);

12> } 3. finally block always

13> finally { executes, whether line 3 throws any
14> System.out.printin(*"Pay for the sport™); exception or not.

15> }

4. Control transfers to the
statement following the
try-catch-finally block.

16> System.out.printIn("After the try block™);

Figure 14 An example of flow of control in a code snippet that may define multiple points of
nonlinear execution of code

Twist in the Tale exercises

Each chapter includes a few Twist in the Tale exercises. For these exercises, I try to use
modified code from the examples already covered in a chapter, and the “Twist in the
Tale” title refers to modified or tweaked code. These exercises highlight how even

ABOUT THIS BOOK XXVii

small code modifications can change the behavior of your code. They should encour-
age you to carefully examine all the code in the exam.

My main reason for including these exercises is that on the real exam, you may get
to answer more than one question that seems to define exactly the same question and
answer options. But on closer inspection, you’ll realize that these questions differ
slightly and that these differences change the behavior of the code and the correct
answer option.

The answers to all the Twist in the Tale exercises are given in the appendix.

Code indentation

Some of the examples in this book show incorrect indentation of code. This has been
done on purpose because on the real exam you can’t expect to see perfectly indented
code. You should be able to comprehend incorrectly indented code to answer an
exam question correctly.

Review notes

When you’re ready to take your exam, don’t forget to reread the review notes a day
before or on the morning of the exam. These notes contain important points from
each chapter as a quick refresher.

Exam questions

Each chapter concludes with a set of 10 or 11 exam questions. These follow the
same pattern as the real exam questions. Attempt these exam questions after com-
pleting a chapter.

Answers to exam questions

The answers to all exam questions provide detailed explanations, including why options
are correct or incorrect. Mark your incorrect answers and identify the sections that
you need to reread. If possible, draw a few diagrams—you’ll be amazed at how much
they can help you retain the concepts. Give it a try—it’ll be fun!

Author Online

The purchase of OCA Java SE 8 Programmer I Certification Guide includes free access to a
private forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and other users. You
can access and subscribe to the forum at www.manning.com/books/oca-java-se-8-
programmer-i-certification-guide. This page provides information on how to get on
the forum once you’re registered, what kind of help is available, and the rules of con-
duct in the forum.

http://www.manning.com/books/oca-java-se-8-programmer-i-certification-guide
http://www.manning.com/books/oca-java-se-8-programmer-i-certification-guide

ABOUT THIS BOOK

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest her interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

NOTE This book uses code styles that you are likely to see on the exam. It
often includes practices that aren’t recommended on real projects, like
poorly indented code or skipping values for brevity, among others, but this is
not meant to encourage you to use obscure coding practices.

about the author

Mala is passionate about making people employable by bridg-
ing the gap between their existing and required skills. In her
quest to fulfill this mission, she is authoring books to help IT
professionals and students succeed on industry-recognized
Oracle Java certifications.

She has master’s degrees in computer applications along
with multiple other certifications from Oracle. With over 15
years of experience in IT as a developer, architect, trainer, and

mentor, she has worked with international training and soft-
ware services organizations on various Java projects. She is
experienced in mentoring teams on technical and software development processes.

She is the founder and lead mentor of a portal (www.ejavaguru.com) that has
offered Java courses for Oracle certification since 2006.

Mala is a firm believer in creativity as an essential life skill. To popularize the
importance of creativity, innovation, and design in life, she and her daughter started
KaagZevar (www.KaagZevar.com)—a platform for nurturing these values.

vww.allitebooks.cond

http://www.ejavaguru.com
http://www.KaagZevar.com
http://www.allitebooks.org

about the cover illustration

The figure on the cover of OCA Java SE 8 Programmer I Certification Guide is captioned
“Morning Habit of a Lady of Quality in Barbary—1700.” The illustration is taken from
Thomas Jefterys” A Collection of the Dresses of Different Nations, Ancient and Modern (four
volumes), London, published between 1757 and 1772. The title page states that these
are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys
(1719-1771) was called “Geographer to King George III.” He was an English cartogra-
pher who was the leading map supplier of his day. He engraved and printed maps for
government and other official bodies and produced a wide range of commercial maps
and atlases, especially of North America. His work as a mapmaker sparked an interest
in local dress customs of the lands he surveyed and mapped, which are brilliantly dis-
played in this collection.

Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other countries.
The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and
individuality of the world’s nations some 200 years ago. Dress codes have changed since
then and the diversity by region and country, so rich at the time, has faded away. It’s now
hard to tell apart the inhabitants of different continents, let alone different towns or
regions. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

Ata time when itis hard to tell one computer book from another, Manning celebrates
the inventiveness and initiative of the computer business with book covers based on the
rich diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures.

Introduction

This book is intended specifically for individuals who wish to earn the OCA Java SE
8 Programmer I Certification (exam number 170-808). It assumes that you are
familiar with Java and have some experience working with it. If you're completely
new to the Java programming language, I suggest that you start your journey with
an entry-level book and then come back to this one.

Introduction

Disclaimer

The information in this chapter is sourced from Oracle.com, public websites, and user
forums. Input has been taken from real people who have earned Java certification,
including the author. All efforts have been made to maintain the accuracy of the con-
tent, but the details of the exam—including the exam objectives, pricing, exam pass
score, total number of questions, maximum exam duration, and others—are subject
to change per Oracle’s policies. The author and publisher of the book shall not be
held responsible for any loss or damage accrued due to any information contained in
this book or due to any direct or indirect use of this information.

Introduction to OCA Java SE 8 Programmer I Certification

The Oracle Certified Associate (OCA) Java SE 8 Programmer I exam (1Z0-808) covers the
fundamentals of Java SE 8 programming, such as the structure of classes and interfaces,
variables of different data types, methods, operators, arrays, decision constructs, and
loops. The exam includes handling exceptions and a few commonly used classes from the
Java API like String, StringBui | der, and ArrayLi st. This exam doesn’t include a lot of
Java 8—specific language features. It includes an introduction to functional-style program-
ming with lambda expressions. It partially covers the new Date and Time API.

This exam is one of two steps to earning the title of Oracle Certified Professional
(OCP) Java SE 8 Programmer. It certifies that an individual possesses a strong founda-
tion in the Java programming language. Table 1 lists the details of this exam.

Table 1 Details for the OCA Java SE 8 Programmer | exam (1Z0-808)

Exam number 170-808

Java version Based on Java version 8
Number of questions 77

Passing score 65%

Time duration 150 minutes

Pricing US$300

Type of questions Multiple choice

The importance of OCA Java SE 8 Programmer I Certification

The OCA Java SE 8 Programmer I exam (1Z0-808) is an entry-level exam in your Java
certification roadmap, as shown in figure 1.

This exam is one of two steps to earn the title of OCP Java SE 8 Programmer. The
dashed lines and arrows in figure 1 depict the prerequisites for certification. OCP Java
Programmer certification (any Java version) is a prerequisite to earn most of the other
higher-level certifications in Java.

The importance of OCA Java SE 8 Programmer I Certification

Associate

Professional

Master

JavaSE 8 --

JavaSE7 --

Java SE 5/6

Java Junior
Associate 8

----» Java SE 8

- Java SE 7

Java SE 5/6

P R 5

. Java SE 6
Developer

Java SE

R

-.-..-.......,......-.-.-.,..........-.-,-.-.........1..-.-.--............-.-.-.
'
'
'

e

Java EE 6 Web
Component
Developer

Java EE 6
Enterprise
JavaBeans
Developer

Java EE 6 Web
Services
Developer

Java EE 6 Java
Persistence API
Developer

Java EE 6
JavaServer
Faces
Developer

Java EE 6
Enterprise
Architect

I

Java EE

Increasing difficulty level

Figure 1 OCA Java SE 8 Programmer certification is an entry-level certification in the Java certification

roadmap.

To earn the OCP Java SE 8 Programmer title, you must pass the following two certifica-
tions (in any order):
= OCA Java SE 8 Programmer I (1Z0-808)
= OCP Java SE 8 Programmer II (1Z0-809)

NOTE At the time of writing, Oracle made this exam a prerequisite for pass-
ing the 1Z0-809 exam. Earlier, Oracle allowed passing the 1Z0-808 and 1Z0-809
exams in any order. Even when this exam wasn’t a prerequisite for passing the

Introduction

170-809 exam, it was highly recommended to write it first. The 1Z0-808 exam
covers the basics of Java, and 1Z0-809 covers advanced Java concepts.

Java Junior Associate (1Z0-811) is a newer certification, launched by Oracle in 2016.
It’s a novice-level certification for students at secondary schools, two-year colleges, and
fouryear colleges and universities. All the other Java certifications are career-level cer-
tifications. As shown in figure 1, the Java certification tracks are offered under the cat-
egories Associate, Professional, Expert, and Master.

Comparing OCA Java exam versions

This section will clear up any confusion surrounding the different versions of the OCA
Java exam. As of now, Oracle offers three versions of the OCA certification in Java:

= OCA Java SE 8 Programmer I (exam number: 1Z0-808)

= OCA Java SE 7 Programmer I (exam number: 1Z0-803)

= OCA Java SE 5/SE 6 (exam number: 1Z0-850)

Table 2 compares these exams on their target audience, Java version, question count,
duration, and passing score.

Table 2 Comparing exams: OCA Java SE 8 Programmer I, OCA Java SE 7 Programmer I, and OCA Java
SE5/6

OCA Java SE 8 OCA Java SE 7 OCA Java SE 5/SE 6
Programmer | (1Z20-803) | Programmer | (1Z20-803) (1Z0-850)
Target audience Java programmers Java programmers Java programmers and IT
managers
Java version 8 7 6
Total number of 7 70 51
questions
Exam duration 150 minutes 120 minutes 115 minutes
Passing score 65% 63% 68%

The OCA Java SE 8 Programmer I Certification adds the following topics to the ones
covered by the OCA Java SE 7 Programmer I Certification:

= Features and components of Java

= Wrapper classes

= Ternary constructs

= Some classes from the new Java 8 Date and Time API

= (Creating and using lambda expressions

= Predicate interface

Comparing OCA Java exam versions

Figure 2 shows a detailed comparison of the exam objectives of the OCA Java SE 8 and
OCA Java SE 7 Programmer I exams. Here’s the legend to understand it:

» Light gray background—Main exam objective.

» Yellow background—Covered only in the OCA Java SE 8 exam.

» Green background—Although the text or main exam objective of this subobjec-

tive differs, it is covered by the other exam.

OCA Java SE 8 Objectives common to both exams
Java basics
* Run a Java program from the command * Define the scope of variables
line; including console output « Define the structure of a Java class
« Compare and contrast the features and « Create executable Java applications with
components of Java, such as platform amain method
independence, object orientation, « Import other Java packages to make them
encapsulation, and so on accessible in your code

Working with Java data types

 Develop code that uses wrapper * Declare and initialize variables (including
classes such as Boolean, Double, casting of primitive data types)
and Integer « Differentiate between object reference

variables and primitive variables
» Know how to read or write to object fields
« Explain an object’s lifecycle

Using operators and decision constructs

« Use Java operators, including * Test equality between Strings and other
parentheses to override operator objects using == and equals ()
precedence « Create if and if/else and ternary

« Ternary constructs constructs

» Use a switch statement
Creating and using arrays

* Declare, instantiate, initialize and use
a one-dimensional array

* Declare, instantiate, initialize and use a
multi-dimensional array

Using loop constructs

« Create and use while loops

« Create and use for loops, including
the enhanced for loop

* Create and use do/while loops

* Compare loop constructs

* Use break and continue

Working with methods and encapsulation

« Create methods with arguments « Apply the static keyword to
and return values; including methods and fields
overloaded methods « Apply access modifiers
« Create and overload constructors; « Apply encapsulation principles to a
including impact on default class
constructors « Determine the effect upon object

references and primitive values when
they are passed into methods that
change the values

OCA Java SE7

« Manipulate data using the
StringBuilder class and
its methods

» Creating and manipulating
Strings

» Use Java operators
« Use parenthesis to override
operator precedence

* Declare and use an
ArrayList

« Create methods with
arguments and return values
« Create an overloaded method
- Differentiate between default

and user defined constructors
» Create and overload
constructors

Figure 2 Comparing exam objectives of the OCA Java SE 8 Programmer | and OCA Java SE 7 Programmer |

certifications

6 Introduction

Working with Inheritance

« Describe inheritance and its benefits * Determine when casting is necessary « Implement inheritance

+ Develop code that demonstrates the use ' °*Use super and this to access objects « Develop code that
of polymorphism; including overriding and constructors demonstrates the use of
and object type versus reference type *Use abstract classes and interfaces polymorphism

« Differentiate between the type
of a reference and the type of

an object
Handling exceptions

- Describe the advantages of exception « Differentiate among checked exceptions, « Describe what exceptions are
handling unchecked exceptions, and errors used for in Java

- Create and invoke a method that throws *Create a try-catch block and determine ' «Invoke a method that throws
an exception how exceptions alter normal program flow an exception

» Recognize common exception classes » Recognize common exception
(such as Nul IPointerException, classes and categories
ArithmeticException,
Array IndexOutOfBoundsException,
ClassCastException)

Working with selected classes from the,Java API

* Manipulate data using the
StringBui lder class and its methods

- Creating and manipulating Strings

* Create and manipulate calendar data
using classes from
java.time.LocalDateTime,
Java.time.LocalDate,
java.time.LocalTime,
Java.time.format.DateTime

Formatter, java.time.Period

* Declare and use an ArraylList of a
given type

* Write a simple lambda expression that
consumes a lambda predicate expression

Figure 2 Comparing exam objectives of the OCA Java SE 8 Programmer | and OCA Java SE 7 Programmer |
certifications (continued)

Figure 3 shows a detailed comparison of the exam objectives of OCA Java SE 5/6
(1Z0-850) and OCA Java SE 7 Programmer I (1Z0-803). It shows objectives that are
exclusive to each of these exam versions and those that are common to both. The first
column shows the objectives that are included only in OCA Java SE 5/6 (1Z0-850), the
middle column shows common exam objectives, and the right column shows exam
objectives covered only in OCA Java SE 7 Programmer I (1Z0-803).

OCA Java SE 5/6
1Z0-850

Algorithm design and
implementation

« Algorithm
* Pseudocode

* Enums

Java development fundamentals

» Use of javac command
* Use of java command

« Purpose and type of classes
in packages
Jjava.awt
Javax.swing
Java.io
java.net
Java.util

i Java platforms and

3 integration technologies
i » Compare and contrast

' J2SE, J2ME, J2EE

L eRMI

1 +JDBC, SQL, RDMS

3 « JNDI, messaging, and JMS

Client technologies

* HTML, JavaScript
* J2ME MIDlets
 Applets

* Swing

Server technologies
« EJB, servlets, JSP, IMS, SMTP,
JAX-RBC, WebServices, JavaMail
« Servlet and JSP for HTML

« EJB session, entity, and
message-driven beans

« Web tier, business tier, EIS tier

OOP concepts

* UML diagrams

* Association

« Composition

« Association navigation

Comparing OCA Java exam versions

Common objectives

Java basics
« Variable scope
« Structure of Java class
« import and package statements
* main method

Working with Java data types

« Primitives, object references
« Read/write to object fields
« Call methods on objects
* Strings

Operators and decision constructs
« Java operators
« ifand if-else constructs
e switch statement

Creating and using arrays
« One-dimensional arrays
* Multidimensional arrays

Loop constructs

« for and enhanced for loops
«while and do-whi le loops
« break and continue statements

Methods and encapsulation

« Create methods with arguments
and return types

« Apply access modifiers

« Effect on object references and primitives

when they are passed to methods

Inheritance

« Implement inheritance
* Polymorphism
« Differentiate between type of
a reference variable and object
« Use abstract classes and interfaces

OCA Java SE 7 Programmer |
1Z0-803

* StringBuilder

« Parentheses to override
operator precedence

« Test equality between String and

other objects using == and equals()

*ArrayList

« Apply static keyword to methods
and fields

« Overloaded constructors and methods
« Default and user-defined constructors

« Determine when casting is necessary
* Use super and this to access objects

and constructors

Handling exceptions

« Exceptions and errors

« try-catch blocks

« Use of exceptions

« Methods that throw exceptions

« Common exception classes and
categories

Figure 3 Comparing objectives of exams OCA Java SE 5/6 and OCA Java SE 7 Programmer |

Introduction

Next step: OCP Java SE 8 Programmer Il (1Z0-809) exam

After successfully passing the OCA Java SE 8 Programmer I exam, the next step is to
take the OCP Java SE 8 Programmer II exam. The OCP Java SE 8 Programmer II certi-
fication is designed for individuals who possess advanced skills in the Java program-

ming language. It covers advanced Java features such as threads, concurrency,
collections, the Streams API, Java file I/O, inner classes, localization, and others.

Complete exam objectives, mapped to book chapters,
and readiness checklist

Table 3 includes a complete list of exam objectives for the OCA Java SE 8 Programmer

I exam, which was taken from Oracle’s website. All the objectives are mapped to the

book’s chapters and the section numbers that cover them.

Table 3 Exam objectives and subobjectives mapped to chapter and section numbers

Exam objectives

Covered in chapter/
section

1.1
1.2
1.3

1.4
1.5

2.1
2.2
2.3
2.4

25

3.1
3.2
3.3
3.4

4.1
4.2

Java basics
Define the scope of variables
Define the structure of a Java class

Create executable Java applications with a mai n method; run a Java program from
the command line, including console output

Import other Java packages to make them accessible in your code

Compare and contrast the features and components of Java, such as platform inde-
pendence, object orientation, encapsulation, and so on

Working with Java data types

Declare and initialize variables (including casting of primitive data types)
Differentiate between object reference variables and primitive variables
Know how to read and write to object fields

Explain an object's lifecycle (creation, "dereference by reassignment," and garbage
collection)

Develop code that uses wrapper classes such as Bool ean, Doubl e, and | nt eger

Using Operators and decision constructs

Use Java operators, including parentheses to override operator precedence
Test equality between Strings and other objects using == and equal s()
Create i f and i f /el se and ternary constructs

Use a swi t ch statement

Creating and using arrays
Declare, instantiate, initialize, and use a one-dimensional array

Declare, instantiate, initialize, and use a multidimensional array

Chapters 1 and 3
Section 3.1
Section 1.1

Section 1.2

Section 1.3

Section 1.6

Chapters 2 and 3
Sections 2.1 and 2.3
Sections 2.1 and 2.3
Section 3.6

Section 3.2

Section 2.5

Chapters 2, 4, and 5
Section 2.4
Sections 4.1 and 4.5
Section 5.1

Section 5.2

Chapter 4
Section 4.3
Section 4.3

Complete exam objectives, mapped to book chapters, and readiness checklist

Table 3 Exam objectives and subobjectives mapped to chapter and section numbers

Exam objectives

Covered in chapter/

section
5 Using loop constructs Chapter 5
5.1 Create and use whi | e loops Section 5.5
5.2 Create and use f or loops, including the enhanced f or loop Sections 5.3 and 5.4
5.3 Create and use do-whi | e loops Section 5.5
5.4 Compare loop constructs Section 5.6
5.5 Use br eak and conti nue Section 5.7
6 Working with methods and encapsulation Chapters 1 and 3
6.1 Create methods with arguments and return values, including overloaded methods Sections 3.3 and 3.4
6.2 Apply the st ati ¢ keyword to methods and fields Section 1.5
6.3 Create and overload constructors, including impact on default constructors Section 3.5
6.4 Apply access modifiers Section 1.4
6.5 Apply encapsulation principles to a class Section 3.7
6.6 Determine the effect on object references and primitive values when they are passed | Section 3.8
into methods that change the values
7 Working with inheritance Chapters 1 and 6
7.1 Describe inheritance and its benefits Sections 6.1 and 6.2
7.2 Develop code that demonstrates the use of polymorphism, including overriding and Sections 6.3 and 6.6
object type versus reference type
7.3 Determine when casting is necessary Section 6.4
7.4 Use super and t hi s to access objects and constructors Section 6.5
7.5 Use abst ract classes and interfaces Sections 1.5, 6.1, 6.2,
and 6.6
8 Handling exceptions Chapter 7
8.1 Differentiate among checked exceptions, unchecked exceptions, and errors Section 7.2
8.2 Create a try-cat ch block and determine how exceptions alter normal program flow Section 7.4
8.3 Describe the advantages of exception handling Section 7.1
8.4 Create and invoke a method that throws an exception Sections 7.3 and 7.4
8.5 Recognize common exception classes (such as Nul | Poi nt er Excepti on, Section 7.5
ArithnmeticException, Arrayl ndexQut Of BoundsExcept i on, O assCast Except i on)
9 Working with selected classes from the Java API Chapters 4 and 6
9.1 Manipulate data using the St ri ngBui | der class and its methods Section 4.2
9.2 Creating and manipulating Strings Section 4.1
9.3 Create and manipulate calendar data using classes from j ava. ti ne. Local - Section 4.6
Dat eTi ne, j ava. ti ne. Local Dat e, j ava. ti me. Local Ti e,
java.tine.fornat. Dat eTi neFornatter, andjava.tine. Period
9.4 Declare and use an Arr ayLi st of a given type Section 4.4
9.5 Write a simple lambda expression that consumes a lambda predicate expression Section 6.7

10

7.1

Introduction

FAQs

You might be anxious when you start your exam preparation or even when you think
about getting certified. This section can help calm your nerves by answering fre-
quently asked questions on exam preparation and taking the exam.

FAQs on exam preparation

This sections answers frequently asked questions on how to prepare for the exam,
including the best approach, study material, preparation duration, types of questions
in the exam, and more.

WILL THE EXAM DETAILS EVER CHANGE FOR THE OCA JAVA SE 8 PROGRAMMER | EXAM?

Oracle can change the exam details for a certification even after the certification is
made live. The changes can be to the exam objectives, pricing, exam duration, exam
questions, and other parts. In the past, Oracle has made similar changes to certifica-
tion exams. Such changes may not be major, but it’s always advisable to check Oracle’s
website for the latest exam information when you start your exam preparation.

WHAT IS THE BEST WAY TO PREPARE FOR THIS EXAM?

Generally, candidates use a combination of resources, such as books, online study
materials, articles on the exam, free and paid mock exams, and training to prepare for
the exam. Different combinations work best for different people, and there’s no one
perfect formula for preparation. Depending on whether training or self-study works
best for you, you can select the method that’s most appropriate for you. Combine it
with a lot of code practice and mock exams.

How Do | KNOW WHEN | AM READY FOR THE EXAM?

You can be sure about your exam readiness by consistently getting a good score in the
mock exams. Generally, a score of 80% and above in approximately three to five mock
exams (the more the better) attempted consecutively will assure you of a similar score
in the real exam.

How MANY MOCK TESTS SHOULD | ATTEMPT BEFORE THE REAL EXAM?
Ideally, you should attempt at least five mock exams before you attempt the real exam.
The more the better!

| HAVE TWO YEARS’ EXPERIENCE WORKING WITH JAVA. Do | STILL NEED TO PREPARE FOR
THIS CERTIFICATION?

It’s important to understand that there’s a difference between the practical knowl-
edge of having worked with Java and the knowledge required to pass this certification
exam. The authors of the Java certification exams employ multiple tricks to test your
knowledge. Hence, you need a structured preparation and approach to succeed in
the certification exam.

FAQs 11

WHAT IS THE IDEAL TIME REQUIRED TO PREPARE FOR THE EXAM?
The preparation time frame mainly depends on your experience with Java and the
amount of time that you can spend to prepare yourself. On average, you will require
approximately 150 hours of study over two or three months to prepare for this exam.
Again, the number of study hours required depends on individual learning curves
and backgrounds.

It’s important to be consistent with your exam preparation. You can’t study for a
month and then restart after, say, a gap of a month or more.

DOES THIS EXAM INCLUDE ANY UNSCORED QUESTIONS?
A few of the questions that you write in any Oracle exam may be marked unscored.
Oracle’s policy states that while taking an exam, you won’t be informed as to
whether a question will be scored. You may be surprised to learn that as many as 7
questions out of the 77 questions in the OCA Java SE 8 Programmer I exam may be
unscored. Even if you answer a few questions incorrectly, you stand a chance of scor-
ing 100%.

Oracle regularly updates its question bank for all its certification exams. These
unscored questions may be used for research and to evaluate new questions that can
be added to an exam.

CAN | START MY EXAM PREPARATION WITH THE MOCK EXAMS?

If you are quite comfortable with the Java language features, then yes, you can start
your exam preparation with the mock exams. This will also help you to understand
the types of questions to expect in the real certification exam. But if you have little
or no experience working with Java, or if you’re not quite comfortable with the lan-
guage features of Java, I don’t advise you to start with the mock exams. The exam
authors often use a lot of tricks to evaluate a candidate in the real certification
exam. Starting your exam preparation with mock exams will only leave you confused
about the Java concepts.

SHOULD | REALLY BOTHER GETTING CERTIFIED?

Yes, you should, for the simple reason that employers care about the certification of
employees. Organizations prefer a certified Java developer over a noncertified Java
developer with similar IT skills and experience. The certification can also get you a
higher paycheck than uncertified peers with comparable skills.

Do | NEED TO MAKE ANY ASSUMPTIONS?

Yes, Oracle has published the following assumptions for candidates on its website (as
mentioned previously, Oracle might change the exam details or assumptions, without
any prior notice):

» Missing package andi nport statements—If sample code doesn’t include package
or import statements, and the question doesn’t explicitly refer to these missing
statements, then assume that all sample code is in the same package, and import
statements exist to support them.

12

Introduction

m No file or directory path names for classes—If a question doesn’t state the filenames
or directory locations of classes, then assume one of the following, whichever
will enable the code to compile and run:

— All classes are in one file.
— Each class is contained in a separate file, and all files are in one directory.

» Unintended line breaks—Sample code might have unintended line breaks. If you
see a line of code that looks like it has wrapped, and this creates a situation where
the wrapping is significant (for example, a quoted St ri ng literal has wrapped),
assume that the wrapping is an extension of the same line, and the line doesn’t
contain a hard carriage return that would cause a compilation failure.

m Code fragments—A code fragment is a small section of source code that’s pre-
sented without its context. Assume that all necessary supporting code is present
and that the supporting environment fully supports the correct compilation
and execution of the code shown and its omitted environment.

» Descriptive comments—Take descriptive comments, such as “setter and getters go
here,” at face value. Assume that correct code exists, compiles, and runs success-
fully to create the described effect.

WHAT ARE THE TYPES OR FORMATS OF QUESTIONS THAT | CAN EXPECT IN THE EXAM?
The exam uses different formats of multiple choice questions, illustrated in this sec-
tion by eight example questions with figures.

The examples for all these types of questions show how the following set of topics
might be tested using a different question format:

» Correct declaration of the mai n method
= Passing command-line parameters

= Overloaded methods

= Significance of method parameter names
= Declaration of variables of varargs

Exam question type 1 (figure 4)—Includes simple code, but tricky or confusing answer

options.

Exam Simole Tricky or
question cot?e + confusing
type #1 answer options

Figure 4 Exam question type 1

The answer options in the following example would confuse a reader on whether the
command-line values would be concatenated or added as integer values:

FAQs 13

Given:

class JavaCertQTypel {
public static void main(String... cmd) {
main("private", cmd);
3
private static void main(String type, String[] args) {
System.out.printin(args[0] + args[1]);
3
3

What is the output when class JavaCertQTypel is executed using
the following command (choose 1 option):

jJava JavaCertQTypel 1 11 EJava Guru

1

111

111

12

1 11 EJava Guru
Compilation error
Runtime exception

N N A NN D

NOTE In this book, the sample exam questions at the end of each chapter
and full mock exam at the end of the book show answer options as lettered
(for example, a—d) for ease on discussion. In the exam, however, the answer
options aren’t numbered or lettered. They’re preceded with either a radio
button or a check box. Radio buttons are for questions with only one correct
answer, and check boxes are for questions with multiple correct answers.

Exam question type 2 (figure 5)—Exam questions without code give you a much
needed break from reading code. But it isn’t always easy to answer them.

Exam

Answer options
with only
text

No

uestion =
d code

type #2

Figure 5 Exam question type 2

An example of exam question, type 2:

Question2) Assuming that the phrase "the method main® refers to the method
main that starts an application, select the correct statements (choose 2
options).

[71 A class can define multiple methods with the name main, but with
different signatures.

[C] The method main can define its only method parameter of type varargs.

[C] Accessibility of the method main can"t be restricted to private.

[[1 A class with overloaded main methods won"t compile.

14

Introduction

Exam question type 3 (figure 6)—Reading though and comprehending lots of code can
be difficult. The key is to eliminate wrong answers to find the correct answers quickly.

Exam

question =
type #3

Lots of Answer options

code

with probable
code output

An example:

Figure 6 Exam question type 3

}

®
©
®
®

—

®

Given:

class JavaCertQuesType3 {

public static void main(String args[]) {
System.out.printIn(*Spring™);

}

public static void main(String... args) {
System.out.printin(*Summer™);

}

public static void main(String[] cmd) {
System.out.printIn(*Autumn™);

3

public static void main() {
System.out._printIn("Winter");

}

What is the output (choose 1 option)?

Code outputs Spring
Code outputs Summer
Code outputs Autumn
Code outputs Winter
Compilation error
Runtime exception

Exam question type 4 (figure 7)—This type of question is a classic example of “fill in
the blank.”

Code Answer options:
Exam - a) Code 1
uestion = | °°°° b) Code 2
b //INSERT CODE HERE ¢) Code 3

type #4

Figure 7 Exam question type 4

FAQs

An example:

Given:

class JavaCertQType4d {
static int c, a = 10, b = 21/2;
static {
c = a;

3
// INSERT CODE HERE
}

Which options, when inserted individually at //INSERT CODE HERE will
enable class JavaCertQType4 to output value 10 (choose 2)?

[[] public static void main(String... variables) {
System.out.printin(b);
}

[[] private static void main(String[] commandArgs) {
System.out.printin(b);
}

[[] public static void main(String args) {
System.out.printin(b);
}

[[] private static void main() {
System.out.printin(b);

public static void main(String... method) {
System.out._printin(b);
3

15

Exam question type 5 (figure 8)—This question type will include code, a condition,

or both. The answer options will include changes and their results, when applied to
the code in the question. Unless otherwise stated, changes in the answer options

that you choose are applied individually to the code or the specified situation.

Result of a correct answer option won’t involve changes suggested in other correct

answer options.

Exam Answer options

question = Code + | including suggested
type #5 changes to code

Figure 8 Exam question type 5

Introduction

An example:

Given:

1. class JavaCertQType5 {

2. protected static void main() {

3. System.out.printIn(*'EJavaGuru.com');

4. }

5. public static void main(String... method) {
6. main();

7. System.out.printIn(*'Mission0CAJ8");

8. 3

9. %}

Select correct option (choose 2):

Code will compile successfully if code on line 6 is commented.

Code will output the same result if access modifier of main() is
changed to private at line 2.

Code won"t compile if code on line 6 is placed after code on line 7.
The code compiles successfully, but throws a runtime exception.

oo co

Exam question type 6 (figure 9)—Because your mind is programmed to select the cor-
rect options, answer this type of question very carefully. My personal tip: cross fingers
in one of your hands to remind you that you need to select the incorrect statements.

Exam Select

question = Code + incorrect
type #6 options

Figure 9 Exam question type 6

An example:

Given:

1. class JavaCertQType6 {

2. public static void main(String... method) {
3. main();

4. main(method) ;

5. 3

6. protected static void main() {

7. System.out.printIn(*'EJavaGuru™);

8. 3

9. }

Select incorrect options (choose 2):

[] Code will compile successfully only if code on line 3 is commented.

[] Code will output the same result if access modifier of main() is
changed to public at line 6.

[] Code will compile sucessfully and execute without any runtime
exceptions.

[l

IT the order of code on lines 3 and 4 is reversed, the code won"t
output “EJavaGuru®.

FAQs 17

Exam question type 7 (figure 10)—This question won’t include any code in the text of
the question; it will state a condition that needs to be implemented using code given
in the answer options.

Answer options
with code

question
type #7

Exam

Figure 10 Exam question type 7

An example:

Which of the following options can be used to define a main method that
outputs the value of the second and fourth command parameters (choose 2):

[] public static void main(String... method) {

for (int i = 1; i1 < method.size & 1 < 6; 1 =1 + 2)
System.out.printin(method[i]);
}
[public static void main(String[] main) {
for (int 1 = 1; 1 < main.length & 1 < 6; 1 =1 + 2)

System.out.printIn(main[i]);
¥

[[] public static void main(String... arguments) {
int ctr = 0;
while (ctr < arguments.length) {
if (ctr >= 4) break;
if (ctr %2 = 0)
System.out.printin(arguments[ctr]);
++ctr;

¥

[] public static void main(String[] arguments) {
int ctr = 1;
while (ctr < arguments.length) {
if (ctr >= 4) break;
if (ctr %2 == 0)
System.out.printin(arguments[ctr]);
++Ctr;

Exam question type 8 (figure 11)—This question includes a pictorial representation
of a single or multidimensional array, stating a situation and asking you to select code
as input to get the required array formation.

EX""’T‘ D‘ag'a"_" Answer options
question = | representing | + as code
type #8 the code Figure 11 Exam question type 8

18

7.2

Introduction

An example:

Assuming that the following array and image represents variation of
Connect4 game, where a player wins if she places same number in a row or
column:

char[][] grid = new char[J[1{{"7"," *," "," "}, {°5","7"," ","5"},
{r7=,"77,°57,75"},{"5", 7" ,"7","5"}};

Which of the following assignments would enable a player with number 7
to win (choose 2 options)?

grid[0] = new char[]{"7","7"," "," "};
grid[1] = new char[]{"7","7"," ", "};
grid[0] = {"7°,°7"," *," "};

grid[1] = £*7°,77"," *,")

grid[0][1] = "7";

grid[1][2] = "7";

grid[0] = new char[4]{"7","7"," ", "};
grid[1] = new char[4]{"7","7"," "," "};

O0OoOo0ooOo

FAQs on taking the exam

This section contains a list of frequently asked questions related to the exam registra-
tion, exam coupon, do’s and don’ts while taking the exam, and exam retakes.

WHERE AND HOW DO | TAKE THIS EXAM?

You can take this exam at an Oracle Testing Center or Pearson VUE Authorized Test
ing Center. To sit for the exam, you must register for the exam and purchase an exam
voucher. The following options are available:

= Register for the exam and pay Pearson VUE directly

= Purchase an exam voucher from Oracle and register at Pearson VUE to take
the exam

= Register at an Oracle Testing Center

Look for the nearest testing centers in your area, register yourself, and schedule an
exam date and time. Most of the popular computer training institutes also have a testing
center on their premises. You can locate a Pearson VUE testing site at www.pearsonvue
.com/oracle/, which contains detailed information on locating testing centers and

http://www.pearsonvue.com/oracle/
http://www.pearsonvue.com/oracle/

FAQs 19

scheduling or rescheduling an exam. At the time of registration, you’ll need to pro-
vide the following details along with your name, address, and contact numbers:

= Exam title and number (OCA Java SE 8 Programmer I, 120-808)

= Any discount code that should be applied during registration

» Oracle Testing ID/Candidate ID, if you've taken any other Oracle/Sun certifi-
cation exam

= Your OPN Company ID (if your employer is in the Oracle Partner Network, you
can find out the company ID and use any available discounts on the exam fee)

SHOULD | CARRY MY PHOTO ID PROOF OR ANY OTHER PROOF?

The examination center coordinator will ask you for at least two ID proofs, one of
which must include your photograph. If in doubt, please connect with your examina-
tion center using email or phone and inquire about the ID requirements.

How LONG IS THE EXAM COUPON VALID?
Each exam coupon is printed with an expiry date. Beware of any discounted coupons
that come with an assurance that they can be used past the expiration date.

CAN | REFER TO NOTES OR BOOKS WHILE TAKING THIS EXAM?

You can’t refer to any books or notes while taking this exam. You’re not allowed to
carry any blank paper for rough work or even your mobile phone inside the testing
cubicle.

WHAT IS THE PURPOSE OF MARKING A QUESTION WHILE TAKING THE EXAM?

By marking a question, you can manage your time efficiently. Don’t spend a lot of
time on a single question. You can mark a difficult question to defer answering it while
taking your exam. The exam gives you an option to review answers to the marked
questions at the end of the exam. Also, navigating from one question to another using
the Back and Next buttons is usually time consuming. If you’re unsure of an answer,
mark it and review it at the end.

CAN | WRITE DOWN THE EXAM QUESTIONS AND TAKE THEM WITH ME?

No. The exam centers no longer provide sheets of paper for the rough work that you
may need to do while taking the exam. The testing center will provide you with either
erasable or non-erasable boards. If you’re provided with a non-erasable board, you
may request another one if you need it.

Oracle is quite particular about certification candidates distributing or circulating
the memorized questions in any form. If Oracle finds out that this is happening, it
may cancel a candidate’s certificate, bar that candidate forever from taking any Oracle
certification, inform the employer, or take legal action.

WHAT HAPPENS IF | COMPLETE THE EXAM BEFORE OR AFTER THE TOTAL TIME?

If you complete the exam before the total exam time has elapsed, revise your answers
and click the Submit or Finish button. If you have not clicked the Submit button and
you use up all the exam time, the exam engine will no longer allow you to modify any
of the exam answers and will present the screen with the Submit button.

vww.allitebooks.cond

http://www.allitebooks.org

20

Introduction

WILL | RECEIVE MY SCORE IMMEDIATELY AFTER THE EXAM?

No, you won’t. When you click the Submit button, the screen will request you to log in
to your Oracle account (CertView) after approximately half an hour to view your
score. It also includes the topics you answered incorrectly. The testing center won’t
give you any hard copies of your certification score. The certificate itself will arrive via
mail within six to eight weeks.

WHAT HAPPENS IF | FAIL? CAN | RETAKE THE EXAM?
It’s not the end of the world. Don’t worry if you fail. You can retake the exam after 14
days (and the world won’t know it’s a retake).

But you can’t retake a passed exam to improve your score. Also, you can’t retake a
beta exam.

The testing engine used in the exam

The user interface of the testing engine used for the certification exam is quite sim-
ple. (You could even call it primitive, compared to today’s web, desktop, and smart-
phone applications.)

Before you can start the exam, you will be required to accept the terms and condi-
tions of the Oracle Certification Candidate Agreement. Your computer screen will dis-
play all these conditions and give you an option to accept the conditions. You can
proceed with writing the exam only if you accept these conditions.

Here are the features of the testing engine used by Oracle:

» Fngine Ul is divided into three sections—The Ul of the testing engine is divided
into the following three segments:

— Static upper section—Displays question number, time remaining, and a check
box to mark a question for review

— Scrollable middle section—Displays the question text and the answer options

— Static bottom section—Displays buttons to display the previous question, display
the next question, end the exam, and review marked questions

» Fach question is displayed on a separate screen—The exam engine displays one ques-
tion on the screen at a time. It doesn’t display multiple questions on a single
screen, like a scrollable web page. All effort is made to display the complete
question and answer options without scrolling, or with little scrolling.

m Code Exhibit button—Many questions include code. Such questions, together
with their answers, may require significant scrolling to be viewed. Because this
can be quite inconvenient, such questions include a Code Exhibit button that
displays the code in a separate window.

» Mark questions to be reviewed—The question screen displays a check box with the
text “Mark for review” at the top-left corner. A question can be marked using this
option. The marked questions can be quickly reviewed at the end of the exam.

= Buittons to display the previous and next questions—The test includes buttons to display
the previous and next questions within the bottom section of the testing engine.

The testing engine used in the exam 21

» Buttons to end the exam and review marked questions—The engine displays buttons
to end the exam and to review the marked questions in the bottom section of
the testing engine.

» Remaining time—The engine displays the time remaining for the exam at the
top right of the screen.

» Question number—Each question displays its serial number.

m Correct number of answer options—Each question displays the correct number of
options that should be selected from multiple options.

On behalf of all at Manning Publications, I wish you good luck and hope that you
score very well on your exam.

Java baspes

Exam objectives covered in this chapter

What you need to know

[1.2] Define the structure of a Java class.

[1.3] Create executable Java applications with a
mai n method; run a Java program from the
command line; including console output.

[1.4] Import other Java packages to make them
accessible in your code.

[6.4] Apply access modifiers.

[7.5] Use abst r act classes and interfaces.

[6.2] Apply the st at i ¢ keyword to methods
and fields.

[1.5] Compare and contrast the features and
components of Java such as: platform indepen-
dence, object orientation, encapsulation, etc.

Structure of a Java class, with its components:
package and import statements, class declara-
tions, comments, variables, and methods.
Difference between the components of a Java
class and that of a Java source code file.

The right method signature for the mai n method
to create an executable Java application.

The arguments that are passed to the mai n
method.

Understand packages and import statements. Get
the right syntax and semantics to import classes
from packages and interfaces in your own classes.

Application of access modifiers (publ i c,

pr ot ect ed, default, and pri vat e) to a class
and its members. Determine the accessibility of
code with these modifiers.

The implication of defining classes, interfaces,
and methods as abst r act entities.

The implication of defining fields and methods as
st ati ¢ members.

The features and components that are relevant or
irrelevant to Java.

22

1.1

The structures of a Java class and a source code file 23

Imagine you’re setting up a new IT organization that works with multiple developers.
To ensure smooth and efficient working, you’ll define a structure for your organiza-
tion and a set of departments with separate responsibilities. These departments will
interact with each other whenever required. Also, depending on confidentiality require-
ments, your organization’s data will be available to employees on an as-needed basis,
or you may assign special privileges to only some employees of the organization. This
is an example of how organizations might work with a well-defined structure and a set
of rules to deliver the best results.

Similarly, Java has a well-defined structure and hierarchy. The organization’s struc-
ture and components can be compared with Java’s class structure and components,
and the organization’s departments can be compared with Java packages. Restricting
access to some data in the organization can be compared to Java’s access modifiers.
An organization’s special privileges can be compared to nonaccess modifiers in Java.

In the OCA Java SE 8 Programmer I exam, you’ll be asked questions on the struc-
ture of a Java class, packages, importing classes, and applying access and nonaccess
modifiers and features and components of Java. Given that information, this chapter
will cover the following:

= The structure and components of a Java class
= Understanding executable Java applications
» Understanding Java packages

= Importing Java packages into your code

= Applying access and nonaccess modifiers

= Features and components of Java

The structures of a Java class and a source code file

E [1.2] Define the structure of a Java class

NOTE When you see a certification objective callout such as the preceding one,
it means that in this section we’ll cover this objective. The same objective may
be covered in more than one section in this chapter or in other chapters.

This section covers the structures and components of both a Java source code file
(java file) and a Java class (defined using the keyword cl ass). It also covers the differ-
ences between a Java source code file and a Java class.

First things first. Start your exam preparation with a clear understanding of what’s
required from you in the certification exam. For example, try to answer the following
query from a certification aspirant: “I come across the term ‘class’ with different
meanings: class Person, the Java source code file (Person.java), and Java bytecode
stored in Person.class. Which of these structures is on the exam?” To answer this ques-
tion, take a look at figure 1.1, which includes the class Person, the files Person.java
and Person.class, and the relationship between them.

24

111

CHAPTER 1 Java basics

0e(‘\ned as

?\es-\des in
/\ Person.java Person.class
In
‘“:\ class Person { —_—
o

— class Person { S
String name; — —_—

String getName() { [

return name; -
}} -
- —
— —_—
) Out =
} —_—

Figure 1.1 Relationship between the class file Per son and the files Person.java and Person.class and
how one transforms into another

As you can see in figure 1.1, a person can be defined as a class Person. This class
should reside in a Java source code file (Person.java). Using this Java source code file,
the Java compiler (javac.exe on Windows or javac on Mac OS X/Linux/UNIX) gener-
ates bytecode (compiled code for the Java Virtual Machine) and stores it in Person.class.
The scope of this exam objective is limited to Java classes (class Per son) and Java source
code files (Person.java).

Structure of a Java class

The OCA Java SE 8 Programmer I exam will question you on the structure and com-
ponents of a Java source file and the classes or interfaces that you can define in it. Fig-
ure 1.2 shows the components of a Java class file (interfaces are covered in detail in
chapter 6).

In this section, I'll discuss all Java class file components. Let’s get started with the
package statement.

Java class components

Package statement —
Import statements —
Comments -
Class declaration { -
Variables -
Comments -
Constructors —
Methods -
Nested classes
Nested interfaces }
Enum Figure 1.2 Components
} of a Java class

The structures of a Java class and a source code file 25

NOTE The code in this book doesn’t include a lot of spaces—it imitates the
kind of code that you’ll see on the exam. But when you work on real projects,
I strongly recommend that you use spaces or comments to make your code
readable.

PACKAGE STATEMENT

All Java classes are part of a package. A Java class can be explicitly defined in a named

package; otherwise, it becomes part of a default package, which doesn’t have a name.
A package statement is used to explicitly define which package a class is in. If a class

includes a package statement, it must be the first statement in the class definition:

cl ass Course {
The rest of the code should be the first

package certification; QT The package statement
) for class Course statement in a class.

NOTE Packages are covered in detail in section 1.3 of this chapter.

The package statement can’t appear within a class declaration or after the class decla-
ration. The following code will fail to compile:

cl ass Course {
The rest of the code for class Course

}

package certification; If you place the package statement after the

class definition, the code won’t compile.

The following code will also fail to compile, because it places the package statement
within the class definition:

class Course { A package statement can’t be placed within
package comcert; the curly braces that mark the start and
} end of a class definition.

Also, if present, the package statement must appear exactly once in a class. The follow-
ing code won’t compile:

package com cert; A class can’t define multiple
package com exans; package statements.

cl ass Course {

}

IMPORT STATEMENT

Classes and interfaces in the same package can use each other without prefixing their
names with the package name. But to use a class or an interface from another pack-
age, you must use its fully qualified name, that is, packageNane. anySubpackageNane
. O assNane. For example, the fully qualified name of class Stringisj ava. | ang. String.

26

CHAPTER 1 Java basics

Because using fully qualified names can be tedious and can make your code difficult
to read, you can use the i mport statement to use the simple name of a class or inter-
face in your code.

Let’s look at this using an example class, Annual Exam which is defined in the pack-
age uni versity. Class Annual Examis associated with the class certification. Exam
Question, as shown using the Unified Modeling Language (UML) class diagram in
figure 1.3.

university certification
Figure 1.3 UML representation of the
Annual Exam ExamQuestion relationship between class Annual Exam

and ExamQuesti on

NOTE A UML class diagram represents the static view of an application. It
shows entities like packages, classes, interfaces, and their attributes (fields and
methods) and also depicts the relationships between them. It shows which
classes and interfaces are defined in a package. It depicts the inheritance rela-
tionship between classes and interfaces. It can also depict the associations
between them—when a class or an interface defines an attribute of another
type. All UML representations in this chapter are class diagrams. The exam
doesn’t cover UML diagrams. But using these quick and simple diagrams sim-
plifies the relationship between Java entities—both on the exam and in your
real-world projects.

NOTE Throughout this book, bold font will be used to indicate specific parts
of code that we’re discussing, or changes or modifications in code.

Here’s the code for class Annual Exam

package university;

import certification. ExanmQuestion;

cl ass Annual Exam { Define a variable
ExamQuest i on eq; of ExamQuestion

}

Note that the i nport statement follows the package statement but precedes the cl ass
declaration. What happens if the class Annual Examisn’t defined in a package? Will
there be any change in the code if the classes Annual Exam and ExamQuestion are
related, as depicted in figure 1.4?

certification
Figure 1.4 Relationship between the package-

less class Annual Examand ExamQuest i on

The structures of a Java class and a source code file 27

In this case, the class Annual Examisn’t part of an explicit package, but the class
ExamQuesti on is part of the package certification. Here’s the code for the class
Annual Exam

import certification. Exanfuesti on;
cl ass Annual Exam {

; Define a variable
Examuesti on eq; .
} q of ExamQuestion

As you can see in the previous example code, the class Annual Examdoesn’t define the
package statement, but it defines the i nport statement to import the class certifi -
cation. ExamQuesti on.

If a package statement is present in a class, the i nport statement must follow
the package statement. It’s important to maintain the order of the occurrence of the
package and i nport statements. Reversing this order will result in your code failing
to compile:

inport certification. Exanmuestion;
package university;
cl ass Annual Exam {

ExamQuesti on eq;

The code won’t compile because an
import statement can’t be placed
before a package statement.

}

We’ll discuss i mport statements in detail in section 1.3 of this chapter.

COMMENTS

You can also add comments to your Java code. Comments can appear at multiple

places in a class. A comment can appear before and after a package statement, before

and after the class definition, as well as before and within and after a method defini-

tion. Comments come in two flavors: multiline comments and end-of-line comments.
Multiline comments span multiple lines of code. They start with / * and end with

*/ . Here’s an example:

class MyC ass {
/*
comments that span nmultiple Multiline comments start
lines of code with /* and end with */.
*/

Multiline comments can contain special characters. Here’s an example:

class MWd ass {
/*
Milti-line comments with
speci al characters &A#8*{}|\|:;"'
?> < | @$W & ()

Multiline comment with
special characters in it

*/

28

CHAPTER 1 Java basics

In the preceding code, the comments don’t start with an asterisk on every line. But most
of the time when you see a multiline comment in a Java source code file (.java file),
you’ll notice that it uses an asterisk (*) to start the comment in the next line. Please note
that this isn’t required—it’s done more for aesthetic reasons. Here’s an example:

class Myd ass {

/* Multiline comments that start with * on a
* comments that span nmultiple new line—don’t they look well organized?
* lines of code The usage of * isn’t mandatory; it’s done
*/ for aesthetic reasons.

End-ofline comments start with // and, as evident by their name, they’re placed at
the end of a line of code or on a blank line. The text between // and the end of the
line is treated as a comment, which you’d normally use to briefly describe the line of
code. Here’s an example:

cl ass Person {
String fNane; // variable to store Person's first nane
String id; /Il a 6 letter id generated by the database

id

Brief comment to describe variable fName

Brief comment to describe variable

Though usage of multiline comments in the following code is uncommon, the exam
expects you to know that the code is valid:

String nane = /* Harry */ "Paul ";
System out. println(nane); 4| Outputs Paul

Here’s what happens if you include multiline comments within quotes while assigning
a string value:

String name = "/* Harry */ Paul"; Outputs /*
System out. println(name); Harry */ Paul

When included within double quotes, multiline comments are treated as regular char-
acters and not as comments. So the following code won’t compile because the value
assigned to variable nane is an unclosed string literal value:

String name = "Shre /* ya Won’t
*/ Paul "; compile
System out. printl n(nane);

In the earlier section on the package statement, you read that a package statement, if
present, should be the first line of code in a class. The only exception to this rule is

The structures of a Java class and a source code file 29

the presence of comments. A comment can precede a package statement. The follow-
ing code defines a package statement, with multiline and end-of-line comments:

/**

* @ut hor Maupta // first nane initial + |last nane .

+ @ersion 0.1 End-of—lme')

. comment within a
) multiline comment

* Class to store the details of a nonunent

*/

package uni; /1 package uni <@ End-of-line comment

cl ass Monunent {
int startYear;

String builtBy; /1 individual/ architect <—€) End-of-line comment
}
/1~ another comment End-of-line comment at
the beginning of a line

Line @ defines an end-ofline code comment within multiline code. This is accept-
able. The end-of-line code comment is treated as part of the multiline comment, not
as a separate end-ofline comment. Lines @ and @ define end-of-line code com-
ments. Line @ defines an end-ofine code comment at the start of a line, after the
class definition.

The multiline comment is placed before the package statement, which is accept-
able because comments can appear anywhere in your code.

Javadoc comments

Javadoc comments are special comments that start with / ** and end with */ in a
Java source file. These comments are processed by Javadoc, a JDK tool, to generate
APl documentation for your Java source code files. To see it in action, compare the
APl documentation of the class Stri ng and its source code file (String.java).

CLASS DECLARATION
The class declaration marks the start of a class. It can be as simple as the keyword

cl ass followed by the name of a class:

Simplest class declaration: keyword
class followed by the class name

cl ass Person {

1. A class can define a lot of things here, but we don’t
/.. need these details to show the class declaration.
}

The declaration of a class is composed of the following parts:

= Access modifiers
= Nonaccess modifiers

= (Class name

CHAPTER 1 Java basics

= Name of the base class, if the class is extending another class

= All implemented interfaces, if the class is implementing any interfaces

= Class body (class fields, methods, constructors), included within a pair of curly
braces, {}

Don’t worry if you don’t understand this material at this point. We’ll go through these
details as we move through the exam preparation.
Let’s look at the components of a class declaration using an example:

public final class Runner extends Person inplenments Athlete {}

The components of the preceding class declaration can be illustrated as shown in fig-
ure 1.5.

Class declaration components

| public | final | class | Runner | extends | Person | implements | Athlete | {}

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I
Keyword

: ACCB_S_S : : Keyword : Name of : : : implements : imNIezenr;eeﬁIed :

I modifier | I class | class I I I | Imp I

| | Nonaccess | | | Keyword | Base | | interface

I I ifi I I I I I I I

| | modifier | | | extends | class | | | Curly

I I I I I | hame I | braces

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

Optional Optional Optional Optional Optional

Figure 1.5 Components of a class declaration

Optional

Table 1.1 summarizes the compulsory and optional components.

Table 1.1 Components of a class declaration

Mandatory Optional

Keyword cl ass Access modifier, such as publ i ¢

Name of the class

Class body, marked by the opening and closing
curly braces, {}

Nonaccess modifier, such as f i nal

Keyword ext ends together with the name of the
base class

Keyword i npl enment s together with the names of
the interfaces being implemented

We’ll discuss the access and nonaccess modifiers in detail in sections 1.4 and 1.5 in

this chapter.

5

The structures of a Java class and a source code file 31

CLASS DEFINITION
A class is a design used to specify the attributes and behavior of an object. The attri-

butes of an object are implemented using variables, and the behavior is implemented
using methods. For example, consider a class as being like the design or specification of
a mobile phone, and a mobile phone as being an object of that design. The same
design can be used to create multiple mobile phones, just as the Java Virtual Machine
(JVM) uses a class to create its objects. You can also consider a class as being like a
mold that you can use to create meaningful and useful objects. A class is a design from
which an object can be created.
Let’s define a simple class to represent a mobile phone:

cl ass Phone {
String nodel;
String conpany;
Phone(String nodel) {
this. nodel = nodel;
}
doubl e wei ght;
voi d makeCal | (String nunmber) {

/1 code

}

void receiveCall () {
/1 code

}

Points to remember:

= A class name starts with the keyword cl ass. Watch out for the case of the key-
word cl ass. Java is cASE-sEnSiTivE. cl ass (lowercase ¢) isn’t the same as C ass
(uppercase C). You can’t use the word O ass (uppercase C) to define a class.

» The state of a class is defined using attributes or instance variables.

= [tisn’t compulsory to define all attributes of a class before defining its methods
(the variable wei ght is defined after Phone’s constructor). But this is far from
being optimal for readability.

= The behavior is defined using methods, which may include method parameters.

= A class definition may also include comments and constructors.

NOTE A class is a design from which an object can be created.

VARIABLES
Revisit the definition of the class Phone in the previous example. Because the variables

model , conpany, and wei ght are used to store the state of an object (also called an
instance), they're called instance variables or instance attributes. Each object has its own
copy of the instance variables. If you change the value of an instance variable for an
object, the value for the same named instance variable won’t change for another object.
The instance variables are defined within a class but outside all methods in a class.

32

1.1.2

CHAPTER 1 Java basics

A single copy of a class variable or st ati ¢ variable is shared by all the objects of a
class. The st ati ¢ variables are covered in section 1.5.3 with a detailed discussion of
the nonaccess modifier st ati c.

METHODS
Again, revisit the previous example. The methods makeCal | and receiveCal | are
instance methods, which are generally used to manipulate the instance variables.

A class method or static method can be used to manipulate the st ati ¢ variables, as dis-
cussed in detail in section 1.5.3.

CONSTRUCTORS

Class Phone in the previous example defines a single constructor. A class constructor is
used to create and initialize the objects of a class. A class can define multiple construc-
tors that accept different sets of method parameters.

Structure and components of a Java source code file

A Java source code file is used to define Java entities such as a class, interface, enum,
and annotation.

NOTE Java annotations are not on the exam and so won’t be discussed in
this book.

All your Java code should be defined in Java source code files (text files whose names
end with java). The exam covers the following aspects of the structure of a Java source
code file:

= Definition of a class and an interface in a Java source code file

= Definition of single or multiple classes and interfaces within the same Java
source code file

= Application of i nport and package statements to all the classes in a Java source
code file

We’ve already covered the detailed structure and definition of classes in section 1.1.1.
Let’s get started with the definition of an interface.

DEFINITION OF AN INTERFACE IN A JAVA SOURCE CODE FILE

An interface specifies a contract for the classes to implement. You can compare imple-
menting an interface to signing a contract. An interface is a grouping of related meth-
ods and constants. Prior to Java 8, interface methods were implicitly abstract. But
starting with Java version 8, the methods in an interface can define a default imple-
mentation. With Java 8, interfaces can also define st ati ¢ methods.

Here’s a quick example to help you understand the essence of interfaces. No mat-
ter which brand of television each of us has, every television provides the common
functionality of changing the channel and adjusting the volume. You can compare the
controls of a television set to an interface and the design of a television set to a class
that implements the interface controls.

The structures of a Java class and a source code file 33

Let’s define this interface:

interface Controls {
voi d changeChannel (i nt channel Nurber) ;
voi d increaseVol une();
voi d decreaseVol unme();

The definition of an interface starts with the keyword i nt er f ace. Remember, Java is
case-sensitive, so you can’t use the word I nt er f ace (with a capital /) to define an inter-
face. This section provides a brief overview of interfaces. You’ll work with interfaces in
detail in chapter 6.

DEFINITION OF SINGLE AND MULTIPLE CLASSES IN A SINGLE JAVA SOURCE CODE FILE

You can define either a single class or an interface in a Java source code file or multi-
ple such entities. Let’s start with a simple example: a Java source code file called
SingleClass.java that defines a single class Si ngl e ass:

class Singledass {

S ; Contents of Java source
} /l.. we are not detailing this part code file SingleClass.java

Here’s an example of a Java source code file, Multiplel.java, that defines multiple
interfaces:

interface Printable {
/l.. we are not detailing this part
} Contents of Java source
interface Movable { code file Multiplel.java
/1.. we are not detailing this part

}

You can also define a combination of classes and interfaces in the same Java source
code file. Here’s an example:

interface Printable {

/1.. we are not detailing this part
}
class MyC ass {

.. ili hi
} /1 we are not detailing this part Contents of Java

source code file

interface Mvable { Multiple2.java

/1.. we are not detailing this part
}
class Car {

/1.. we are not detailing this part

}

34

CHAPTER 1 Java basics

No particular order is required to define multiple classes or interfaces in a single Java
source code file.

EXAM TIP The classes and interfaces can be defined in any order of occur-
rence in a Java source code file.

When you define a publ i ¢ class or an interface in a Java source file, the names of the
class or interface and Java source file must match. Also, a source code file can’t define
more than one publ i ¢ class or interface. If you try to do so, your code won’t compile,
which leads to a small hands-on exercise for you that I call Twist in the Tale, as men-
tioned in the preface. The answers to all these exercises are provided in the appendix.

Twist in the Tale 1.1

Modify the contents of the Java source code file Multiple.java, and define a public
interface in it. Execute the code and see how this modification affects your code.

Question: Examine the following content of Java source code file Multiple java and
select the correct options:

/] Contents of Miltiple.java
public interface Printable {
//.. we are not detailing this part

}
interface Myvable {
//.. we are not detailing this part

}

Options:
a A Java source code file can’t define multiple interfaces.
b A Java source code file can only define multiple classes.
¢ A Java source code file can define multiple interfaces and classes.
d The previous class will fail to compile.

The structures of a Java class and a source code file 35

If you need help getting your system set up to write Java, refer to Oracle’s “Getting
Started” tutorial, http://docs.oracle.com/javase/tutorial /getStarted/ .

Twist in the Tale 1.2

Question: Examine the content of the following Java source code file, Multiple2.java,

and select the correct option(s):

/1 contents of Miltiple2.java
interface Printable {
//.. we are not detailing

}
class Myd ass {

/1.. we are not detailing
}

interface Movable {
//.. we are not detailing

}
public class Car {

/1.. we are not detailing
}

public interface Miultiple2 {}

Options:

a The code fails to compile.

this part

this part

this part

this part

b The code compiles successfully.

¢ Removing the definition of class Car will compile the code.

d Changing class Car to a nonpublic class will compile the code.

e Changing interface Mil ti pl e2 to a nonpublic interface will compile the code.

APPLICATION OF PACKAGE AND IMPORT STATEMENTS IN JAVA SOURCE CODE FILES
In the previous section, I mentioned that you can define multiple classes and inter-
faces in the same Java source code file. When you use a package or i nport statement
within such Java files, both the package and i nport statements apply to all the classes
and interfaces defined in that source code file.

For example, if you include a package and an i nport statement in Java source
code file Multiple.java (as in the following code), Car, Movabl e, and Pri nt abl e will be
become part of the same package com manni ng. code:

/'l contents of Miltiple.java
package com nanni ng. code;

i mport com manni ng. *;
interface Printable {}
interface Movable {}

class Car {}

Printable, Movable, and Car are
part of package com.manning.code.

All classes and interfaces defined in
package com.manning are accessible
to Printable, Movable, and Car.

http://docs.oracle.com/javase/tutorial/getStarted/

5

‘z

I\

Y

1.2.1

=

CHAPTER 1 Java basics

EXAM TIP Classes and interfaces defined in the same Java source code file
can’t be defined in separate packages. Classes and interfaces imported using
the i nport statement are available to all the classes and interfaces defined in
the same Java source code file.

In the next section, you’ll create executable Java applications—classes that are used to
define an entry point of execution for a Java application.

Executable Java applications

E [1.3] Create executable Java applications with a main method; run a Java

program from the command line; including console output.

The OCA Java SE 8 Programmer I exam requires that you understand the meaning of
an executable Java application and its requirements, that is, what makes a regular Java
class an executable Java class. You also need to know how to execute a Java program
from the command line.

Executable Java classes versus non-executable Java classes

Doesn’t the Java Virtual Machine execute all the Java classes when they are used? If so,
what is a non-executable Java class?

An executable Java class, when handed over to the JVM, starts its execution at a
particular point in the class—the mai n method. The JVM starts executing the code
that’s defined in the mai n method. You can’t hand over a non-executable Java class
(class without a mai n method) to the JVM and ask it to execute it. In this case, the JVM
won’t know which method to execute because no entry point is marked.

Typically, an application consists of a number of classes and interfaces that are
defined in multiple Java source code files. Of all these files, a programmer designates
one of the classes as an executable class. The programmer can define the steps that
the JVM should execute as soon as it launches the application. For example, a pro-
grammer can define an executable Java class that includes code to display the appro-
priate GUI window to a user and to open a database connection.

In figure 1.6, the classes W ndow, User Dat a, Ser ver Connecti on, and User Pref er -
ences don’t define a mai n method. Class LaunchAppl i cati on defines a mai n method
and is an executable class.

NOTE A Java application can define more than one executable class. We
choose one (and exactly one) when the time comes to start its execution by

the JVM.

122

Executable Java applications 37

|Window| | ServerConnection | ©
| UserData | | UserPreferences | B B B B
’,publlc static v0|d String args[1){
Pt displayGuI ()
| LaunchApplication ,II' openDatabaseConnection();
) 3

Figure 1.6 Class LaunchAppl i cati on is an executable Java class, but the rest of the classes—
W ndow, User Dat a, Ser ver Connect i on, and User Pr ef er ences—aren’t.

The main method
The first requirement in creating an executable Java application is to create a class
with a method whose signature (name and method arguments) matches the main
method, defined as follows:
public class Hell oExam {

public static void main(String args[]) {

Systemout.printin("Hello exant);
}

This mai n method should comply with the following rules:

= The method must be marked as a publ i ¢ method.

= The method must be marked as a st ati ¢ method.

= The name of the method must be mai n.

= The return type of this method must be voi d.

= The method must accept a method argument of a String array or a variable
argument (varargs) of type String.

Figure 1.7 illustrates the previous code and its related set of rules.

public class HelloExam {
public static void main(String args[]) {
System.out.printIn(*'Hello exam');
3

Figure 1.7 Ingredients of a correct nai n method

38

CHAPTER 1 Java basics

It’s valid to define the method parameter passed to the mai n method as a variable
argument (varargs) of type String:

public static void main(String... args) 4—{ It’s valid to define args as
a variable argument.

To define a variable argument variable, the ellipsis (...) must follow the type of the
variable and not the variable itself (a mistake made by a lot of new programmers):

This won’t compile. Ellipsis must
follow the data type, String.

public static void main(String args...)
As mentioned previously, the name of the String array passed to the mai n method
need not be ar gs to qualify it as the correct mai n method. The following examples are
also correct definitions of the mai n method:

public static void main(String[] argunents)

public static void main(String[] Hellovrl d) arguments are arguments and

H The names of the method
HelloWorld, which is acceptable.

To define an array, the square brackets [] can follow either the variable name or its
type. The following is a correct method declaration of the mai n method:

public static void main(String[] args) The square brackets [] can follow
public static void main(String mnni eMuse[]) either the variable name or its type.

It’s interesting to note that the placement of the keywords publ i ¢ and stati ¢ can be
interchanged, which means that the following are both correct method declarations
of the mai n method:

public static void main(String[] args) The placements of the keywords
static public void main(String[] args) public and static are interchangeable.

NOTE Though both public static and static public are the valid order of
keywords to declare the mai n method, public static is more common and
thus more readable.

On execution, the code shown in figure 1.7 outputs the following:

Hel | 0 exam

If a class defines a mai n method that doesn’t match the signature of the mai n method,
it’s referred to as an overloaded method (overloaded methods are discussed in detail
in chapter 3). Overloaded methods are methods with the same name but different

1.2.3

Executable Java applications 39

signatures. For a quick example, class Hel | oExam can define multiple methods with
the method name mai n:

public class Hell oExam {
public static void main(String args) {
Systemout.println("Hello exam 2");

} JVM will
public static void main(String args[]) { execute this

Systemout.println("Hello exant); main method.
}

public static void main(int number) {
Systemout.printin("Hello exam 3");

}

On execution, JVM will execute the mai n method, resulting in the output Hel | 0 exam

Run a Java program from the command line

Almost all Java developers work with an Integrated Development Environment (IDE).
This exam, however, expects you to understand how to execute a Java application, or
an executable Java class, using the command prompt. For this reason, I suggest you
work with a simple text editor and command line (even if this might never be the
approach you use in the real world).

NOTE If you need help getting your system set up to compile or execute Java
applications using the command prompt, refer to Oracle’s detailed instructions
at http://docs.oracle.com/javase/tutorial / getStarted /cupojava/index.html.

Let’s revisit the code shown in figure 1.7:

public class Hell oExam {
public static void main(String args[]) {
Systemout.printin("Hello exant);
}

To execute the preceding code using a command prompt, issue the command j ava
Hel | oExam as shown in figure 1.8.

@ C:\Winde__ =y

Command

———QOutput

Figure 1.8 Using the command prompt to execute a Java application

http://docs.oracle.com/javase/tutorial/getStarted/cupojava/index.html

40

ie))

CHAPTER 1 Java basics

I mentioned that the mai n method accepts an array of St ri ng as the method parame-
ter. But how and where do you pass the array to the mai n method? Let’s modify the
previous code to access and output values from this array:

public class Hel |l oExamWt hParaneters {
public static void main(String args[]) {
System out. println(args[0]);
Systemout.println(args[1]);

Now let’s execute the preceding code using the command prompt, as shown in fig-

ure 1.9.

&Y C:\Windows\system32\cmd. o S
' i ame — A

————_Second
parameter

First method
parameter

Name'of class

Command java

Code output

Figure 1.9 Passing command parameters to a mai n method

As you can see from the output shown in figure 1.9, the keyword j ava and the name
of the class aren’t passed as command parameters to the mai n method. The OCA Java
SE 8 Programmer I exam will test you on your knowledge of whether the keyword
j ava and the class name are passed on to the mai n method.

EXAM TIP The method parameters that are passed to the mai n method are
also called command-line parameters or command-line values. As the name
implies, these values are passed to a method from the command line.

If you weren’t able to follow the code with respect to the arrays and the class Stri ng,
don’t worry; we’ll cover the class St ri ng and arrays in detail in chapter 4.

Here’s the next Twist in the Tale exercise for you. In this exercise, and in the rest
of the book, you’ll see the names Shreya, Harry, Paul, and Selvan, who are hypotheti-
cal programmers also studying for this certification exam. The answer is provided in
the appendix, as usual.

One of the programmers, Harry, executed a program that gave the output j ava one.
Now he’s trying to figure out which of the following classes outputs these results.

Java packages 41

Given that he executed the class using the command j ava EJava j ava one one, can
you help him figure out the correct option(s)?

a class EBElava {
public static void main(String sun[]) {
Systemout.println(sun[0] + " " + sun[2]);
}

}

b class EJava {
static public void main(String phone[]) {
System out. println(phone[0] + " " + phone[1]);
}
}

¢ class EJava {
static public void main(String[] argunments[]) {
Systemout. println(arguments[0] + " " + argunents[1]);
}
}

d class EJava {
static void public main(String args[]) {
Systemout.println(args[0] + " " + args[1]);
}

1.3 Java packages

[1.4] Import other Java packages to make them accessible in your code

This exam covers importing packages into other classes. But with more than a decade
and a half of experience, I've learned that before starting to import other packages
into your own code, it’s important to understand what packages are, the difference
between classes that are defined in a package and the classes that aren’t defined in a
package, and why you need to import packages in your code.

In this section, you’ll learn what Java packages are and how to create them. You’ll
use the i nport statement, which enables you to use simple names for classes and inter-
faces defined in separate packages.

42

131

1.3.2

CHAPTER 1 Java basics

The need for packages

Why do you think we need packages? First, answer this question: do you remember hav-
ing known more than one Amit, Paul, Anu, or John in your life? Harry knows more than
one Paul (six, to be precise), whom he categorizes as managers, friends, and cousins.
These are subcategorized by their location and relation, as shown in figure 1.10.

Manager, Manager,
Germany USA

fariend, Friend
school p
Harry

Cousin, Cousin,
maternal paternal

Figure 1.10 Harry
knows six Pauls!

Similarly, you can use a package to group together a related set of classes and inter-
faces (I won’t discuss enums here because they aren’t covered on this exam). Packages
also provide access protection and namespace management. You can create separate
packages to define classes for separate projects, such as Android games and online
healthcare systems. Further, you can create subpackages within these packages, such
as separate subpackages for GUIs, database access, networking, and so on.

NOTE In reallife projects, you’ll rarely work with a package-less class or inter-
face. Almost all organizations that develop software have strict package-
naming rules, which are often documented.

All classes and interfaces are defined in a package. If you don’t include an explicit
package statement in a class or an interface, it’s part of a default package.

Defining classes in a package using the package statement

You can indicate that a class or an interface is defined in a package by using the
package statement as the first statement in code. Here’s an example:

package certification;

cl ass ExamQuestion { Variables and
/'l..code methods

}

The class in the preceding code defines an ExamQuest i on class in the certification
package. You can define an interface, Mul ti pl eChoi ce, in a similar manner:
package certification;

interface Miltipl eChoice {
voi d choicel();

Java packages 43

voi d choice2();

Figure 1.11 shows a UML class diagram depicting the relationship of the package
certification to the class Exanmuest i on and the interface Mil ti pl eChoi ce.

certification

O Figure 1.11 A UML class diagram showing the
relationship shared by package certi fi cati on, class
Exanfuest i on, and interface Mul t i pl eChoi ce

MultipleChoice

The name of the package in the previous examples is certification. You may use
such names for small projects that contain only a few classes and interfaces, but it’s
common for organizations to use subpackages to define all their classes. For exam-
ple, if the folks at Oracle were to define a class to store exam questions for a Java
Associate exam, they might use the package name com oracl e. j avacert. associ ate.
Figure 1.12 shows its UML representation, together with the corresponding class
definition.

package com.oracle.javacert.associate; com.oracle. javacert. associate|
class ExamQuestion {

// variables and methods

Figure 1.12 A subpackage and its corresponding class definition

}

A package is made of multiple sections that go from the more-generic (left) to the
more-specific (right). The package name com oracl e. j avacert. associ at e follows a
package-naming convention recommended by Oracle and shown in table 1.2.

Table 1.2 Package-naming conventions used in the package name com or acl e. j avacert. associ at e

Package or subpackage name Its meaning

com Commercial. A couple of the commonly used three-letter package
abbreviations are

= gov—for government bodies

= edu—for educational institutions

oracle Name of the organization
j avacert Further categorization of the project at Oracle

associ ate Further subcategorization of Java certification

44

5

CHAPTER 1 Java basics

RULES TO REMEMBER
Here are a few of important rules about packages:

= Per Java naming conventions, package names should all be in lowercase.

= The package and subpackage names are separated using a dot (.).

» Package names follow the rules defined for valid identifiers in Java.

» For classes and interfaces defined in a package, the package statement is the
first statement in a Java source file (a .java file). The exception is that comments
can appear before or after a package statement.

= There can be a maximum of one package statement per Java source code file
(java file).

= All the classes and interfaces defined in a Java source code file are defined in
the same package. They can’t be defined in separate packages.

NOTE A fully qualified name for a class or interface is formed by prefixing its
package name with its name (separated by a dot). The fully qualified name of
the class ExamQuestion is certification. ExanQuestion in figure 1.11 and
comoracl e.javacert. associ at e. ExamQuest i on in figure 1.12.

DIRECTORY STRUCTURE AND PACKAGE HIERARCHY

The hierarchy of classes and interfaces defined in packages must match the hierarchy
of the directories in which these classes and interfaces are defined in the code. For
example, the class ExamQuest i on in the certificati on package should be defined in
a directory with the name “certification.” The name of the directory “certification”
and its location are governed by the rules shown in figure 1.13.

g f_’ (C:)
r M My Code

=). certification -
This structure should match the

ExamQuestion.class i ey =
- package hierarchy—certification

p 1his can be any directory

Figure 1.13 Matching directory structure and package hierarchy

For the package example shown in figure 1.13, note that there isn’t any constraint on
the location of the base directory in which the directory structure is defined, as shown
in figure 1.14.

o & ()

S — » This can beany directory

SN ProjectCode
= |, com
= |, oracle .'I'hix'.ﬂ|'1|cl_u|.'v.x\]1ulluhl match the
B javacert p;l\'kil}.‘,\.']'I:I\'I‘il.l\h_\)
-) com.oracle.javacert.associate
= associate R
. ExamQuestion.class

Figure 1.14 There’s no constraint on the location of the base directory to
define directories corresponding to package hierarchy.

133

Java packages 45

SETTING THE CLASSPATH FOR PACKAGED CLASSES
To enable the Java Runtime Environment (JRE) to find your classes, add the base
directory that contains your packaged Java code to the classpath.

For example, to enable the JRE to locate the certification. ExanQuestion class
from the previous examples, add the directory C:\MyCode to the classpath. To enable
the JRE to locate the class com oracl e. j avacert. associ at e. ExamQuest i on, add the
directory C\ProjectCode to the classpath.

NOTE You needn’t bother setting the classpath if you're working with an
IDE. But I strongly encourage you to learn how to work with a simple text edi-
tor and how to set a classpath. This can be helpful with your projects at work.
The exam expects you to spot code with compilation errors, which isn’t easy
to do if you didn’t learn how to do it without an IDE (IDEs usually include
code autocorrection or autocompletion features).

Using simple names with import statements

The i nport statement enables you to use simple names instead of using fully qualified
names for classes and interfaces defined in separate packages.

Let’s work with a real-life example. Imagine your home and your office. Living-
Room and Kitchen within your home can refer to each other without mentioning that
they exist within the same home. Similarly, in an office, a Cubicle and a Conference-
Hall can reference each other without explicitly mentioning that they exist within the
same office. But Home and Office can’t access each other’s rooms or cubicles without
stating that they exist in a separate home or office. This situation is represented in fig-
ure 1.15.

Home Office

Kitchen ConferenceHall

Figure 1.15 To refer to each other’s members, Home and Office should specify that they exist in
separate places.

To refer to the LivingRoom in Cubicle, you must specify its complete location, as
shown in the left part of the figure 1.16. As you can see in this figure, repeated refer-
ences to the location of LivingRoom make the description of LivingRoom look

46

CHAPTER 1 Java basics

tedious and redundant. To avoid this, you can display a notice in Cubicle that all
occurrences of LivingRoom refer to LivingRoom in Home and thereafter use its sim-
ple name. Home and Office are like Java packages, and this notice is the equivalent of
the i nport statement. Figure 1.16 shows the difference in using fully qualified names
and simple names for LivingRoom in Cubicle.

No import = use fully qualified names Import = use simple names

Home Office

Office

Cubicle

|LivingRoom| | Kitchen

Cubicle

LivingRoom in Home is small A \

LivingRoom in Home is blue

ConferenceHall

LivingRoom is small
> LivingRoom is blue

AW
Import LivingRoom
in Cubicle.

ConferenceHall

LivingRoom is still in

Home. It is not
embedded in
Cubicle.

Figure 1.16 LivingRoom can be accessed in Cubicle by using its fully qualified name. It can also
be accessed using its simple name if you also use the i nport statement.

Let’s implement the preceding example in code, where classes Livi ngRoom and
Ki t chen are defined in the package hone and classes Cubi cl e and Conf er enceHal |
are defined in the package of fi ce. Class Cubi cl e uses (is associated to) class Li vi ng-
Roomin the package home, as shown in figure 1.17.

home office
LivingRoom < Cubicle
Figure 1.17 A UML representation of

Kitchen ConferenceHal I classes Li vi ngRoomand Cubi cl e, defined

in separate packages, with their associations

Class Cubi cl e can refer to class Li vi ngRoomwithout using an i nport statement:

package office;
class Cubicle { In the absence of an import

hore. Li vi ngRoom | i vi ngRoom statement, use the fully qualified
} name to access class LivingRoom.

Java packages 47

Class Cubi cl e can use the simple name for class Li vi ngRoom by using the i nport

statement:
package office; import
i nport home. Li vi ngRoom <)J statement

class Cubicle {

Li vi ngRoom I i vi ngRoom No need to use the fully qualified

} name of class LivingRoom
@ NOTE The inport statement doesn’t embed the contents of the imported
class in your class, which means that importing more classes doesn’t increase

the size of your own class.

1.3.4 Using packaged classes without using the import statement

It’s possible to use a packaged class or interface without using the i nport statement,
by using its fully qualified name:

Missing import
statement
cl ass Annual Exam {

certification. ExanQuestion eq; ‘ Define a variable of ExamQuestion

} by using its fully qualified name.

But using a fully qualified class name can clutter your code if you create multiple vari-
ables of interfaces and classes defined in other packages. Dont use this approach in
real projects.

@ EXAM TIP You don’t need an expliciti nport statement to use members from
£ the j ava. | ang package. Classes and interfaces in this package are automati-
cally imported in all other Java classes, interfaces, or enums.

For the exam, it’s important to note that you can’t use the i nport statement to access
multiple classes or interfaces with the same names from different packages. For exam-
ple, the Java API defines class Dat e in two commonly used packages: j ava. util and
j ava. sql . To define variables of these classes in a class, use their fully qualified names
with the variable declaration:

import statement
not required
cl ass Annual Exam {

java.util.Date datel,; <+———— Variable of type java.util.Date

java. sql . Date date2;
} Variable of type
java.sql.Date

48

1.3.5

CHAPTER 1 Java basics

An attempt to use an i nport statement to import both these classes in the same class
will not compile:

inmport java.util.Date; Code to import classes with the same name
import java.sql.Date; from different packages won’t compile.
cl ass Annual Exam { }

An alternate approach (which works well in real projects) is to use the i nport defini-
tion with the class or interface that you use more often and fully reference the one
that you use just from time to time:

QJ import class you
i mport java.util.Date; use often
class Annual Exam {
Date datel; <+————— Use simple class name for java.util.Date

java. sqgl . Date date2;

Use fully qualified
name for java.sql.Date

Importing a single member versus all members of a package

You can import either a single member or all members (classes and interfaces) of a pack-
age using the i nport statement. First, revisit the UML notation of the certification
package, as shown in figure 1.18.

certification

MultipleChoice

Figure 1.18 A UML representation of
the certifi cati on package

Examine the following code for the class Annual Exam

QJ Imports only the
inport certification. ExamQuestion; class ExamQuestion
cl ass Annual Exam {

Exanuesti on eq; <+—— Compiles OK

Mul ti pl eChoi ce nt;
! Will not compile

1.3.6

Java packages 49

By using the wildcard character, an asterisk (*), you can import all the publ i ¢ mem-
bers, classes, and interfaces of a package. Compare the previous class definition with
the following definition of the class Annual Exam

Imports all classes and

import certification.*; interfaces from certification

cl ass Annual Exam {
ExanmQuesti on eq; <+——— Compiles OK

Mul ti pl eChoi ce nt;
} Also compiles OK

NOTE When overused, using an asterisk to import all members of a package
has a drawback. It may be harder to figure out which imported class or inter-
face comes from which package.

When you work with an IDE, it may automatically add i nport statements for classes
and interfaces that you reference in your code.

The import statement doesn’t import the whole package tree

You can’t import classes from a subpackage by using an asterisk in the i nport state-
ment. For example, the UML notation in figure 1.19 depicts the package com or acl e
.j avacert with the class Schedul e and two subpackages, associ at e and webdevel oper.
Package associ at e contains class ExamQuest i on, and package webdevel oper contains
class Mar kSheet .

com.oracle.javacert|

Schedule

associate webdeveloper
MarkSheet Figure 1.19 A UML representation of

package com or acl e. j avacert and

h

its subpackages

The following i nport statement will import only the class Schedul e. It won’t import
the classes ExamQuest i on and Mar kSheet :

Imports the class

i mport comoracle.javacert.*;
™) Schedule only

50

1.3.7

P
75N

1.3.8

CHAPTER 1 Java basics

Similarly, the following i nport statement will import all the classes from the packages
associ at e and webdevel oper:

Imports class
inport com oracle.javacert.associ ate. *; ExamQuestion only
. . .
import com oracle.javacert.webdevel oper. *; Imports class
MarkSheet only

Importing classes from the default package

What happens if you don’t include a package statement in your classes or interfaces?
In that case, they become part of a default, no-name package. This default package is
automatically imported in the Java classes and interfaces defined within the same
directory on your system.

For example, the classes Person and Of fi ce, which aren’t defined in an explicit
package, can use each other if they're defined in the same directory:

cl ass Person
{ Not defined in an
/'l code ..
} explicit package
class Ofice
Person b: { Class Person accessible
P .
} in class Office

A class from a default package can’t be used in any named packaged class, regardless
of whether they’re defined within the same directory or not.

EXAM TIP Members of a named package can’t access classes and interfaces
defined in the default package.

Static imports

You can import an individual st ati ¢ member of a class or all its st ati ¢ members by
using the i nport stati c statement. Although accessible using an instance, the stati c
members are better accessed by prefixing their name with the class or interface
names. By using stati ¢ i nport, you can drop the prefix and just use the name of the
stati ¢ variable or method. In the following code, class ExamQuesti on defines a pub-
l'icstatic variable marks and a public stati c method print:

public c! ass Ex_anQ_Jesti on { variable marks
static public int marks;

public static void print() { . .
System out . println(100); public static
} method print

package certification; public static

14

Java access modifiers 51

The mar ks variable can be accessed in the class Annual Examusing the i nport static
statement. The order of the keywords i mport and stati ¢ can’t be reversed:

package university;
inmport static certification. Exanfuestion. marks;
cl ass Annual Exam {

Annual Exanm() {

marks = 20; Access variable marks
} without prefixing it

with its class name

Correct statement
is import static, not
static import

EXAM TIP This feature is called static imports, but the syntax isi nport static.

To access all publ i c and st ati ¢ members of class ExamQuest i on in class Annual Exam
without importing each of them individually, you can use an asterisk with the i nport
static statement:

inport static certification. Exanuestion.*; members of class
cl ass Annual Exam { ExamQuestion
Annual Exam() {

mar ks = 20; Accesses variable marks and method print
print(); without prefixing them with their class names

package university; Imports all static

Because the variable marks and method print are defined as public members,
they’re accessible to the class Annual Exam By using the i mport stati ¢ statement, you
don’t have to prefix them with their class name.

NOTE On real projects, avoid overusing static imports; otherwise, the code
might become a bit confusing about which imported component comes from
which class.

The accessibility of a class, an interface, and their methods and variables is deter-

mined by their access modifiers, which are covered in the next section.

Java access modifiers

E [6.4] Apply access modifiers

In this section, we’ll cover all the access modifiers—publ i c, prot ect ed, and pri vat e—
as well as default access, which is the result when you don’t use an access modifier. We’ll
also look at how you can use access modifiers to restrict the accessibility of a class and
its members in the same and separate packages.

52

14.1

CHAPTER 1 Java basics

Access modifiers

Let’s start with an example. Examine the definitions of the classes House and Book in
the following code and the UML representation shown in figure 1.20.

S1 s Access not -
building allowed library
House x Book Figure 1.20 The nonpublic class
Book can’t be accessed outside the

package | i brary.

package buil di ng;
cl ass House {}
package library;
cl ass Book {}

With the current class definitions, the class House can’t access the class Book. Can you
make the necessary changes (in terms of the access modifiers) to make the class Book
accessible to the class House?

This one shouldn’t be difficult. From the discussion of class declarations in sec-
tion 1.1, you know that a top-level class can be defined only by using the public or
default access modifiers. If you declare the class Book using the access modifier publ i c,
it'll be accessible outside the package in which it is defined.

NOTE A top-level class is a class that isn’t defined within any other class. A
class that is defined within another class is called a nested or inner class. Nested
and inner classes aren’t on the OCA Java SE 8 Programmer I exam.

WHAT DO THEY CONTROL?

Access modifiers control the accessibility of a class or an interface, including its mem-
bers (methods and variables), by other classes and interfaces within the same or sepa-
rate packages. By using the appropriate access modifiers, you can limit access to your
class or interface and their members.

CAN ACCESS MODIFIERS BE APPLIED TO ALL TYPES OF JAVA ENTITIES?

Access modifiers can be applied to classes, interfaces, and their members (instance and
class variables and methods). Local variables and method parameters can’t be defined
using access modifiers. An attempt to do so will prevent the code from compiling.

How MANY ACCESS MODIFIERS ARE THERE: THREE OR FOUR?
Programmers are frequently confused about the number of access modifiers in Java
because the default access isn’t defined using an explicit keyword. If a Java class, inter-
face, method, or variable isn’t defined using an explicit access modifier, it is said to be
defined using the default access, also called package access.

Java has four access levels:

= public (least restrictive)
= protected

142

Java access modifiers 53

m default
= private (most restrictive)

To understand all of these access levels, we’ll use the same set of classes: Book, Cour seBook,
Li brari an, St or yBook, and House. Figure 1.21 depicts these classes using UML notation.

library building

«extends»

Figure 1.21 A set of classes and their relationships to help you
understand access modifiers

Classes Book, Cour seBook, and Li brari an are defined in the package |ibrary. The
classes St oryBook and House are defined in the package buil di ng. Further, classes
St oryBook and Cour seBook (defined in separate packages) extend class Book. Using
these classes, I'll show how the accessibility of a class and its members varies with dif-
ferent access modifiers, from unrelated to derived classes, across packages.

As I cover each of the access modifiers, I'll add a set of instance variables and a
method to the class Book with the relevant access modifier. I'll then define code in
other classes to access class Book and its members.

Public access modifier

This is the least restrictive access modifier. Classes and interfaces defined using the pub-
I'i ¢ access modifier are accessible across all packages, from derived to unrelated classes.

To understand the publ i ¢ access modifier, let’s define the class Book as a public
class and add a publ i ¢ instance variable (i sbn) and a publ i ¢ method (pri nt Book) to
it. Figure 1.22 shows the UML notation.

library building

extends
Book D D O StoryBook
T1son:3ering
+printBook() | [Librarian
4
«extends»

Figure 1.22 Understanding the publ i c access modifier

54

14.3

CHAPTER 1 Java basics

Definition of class Book:

) public class
package |ibrary; Book
public class Book { public variable isbn

public String isbn;

public void printBook() {} public method

} printBook

The publ i ¢ access modifier is said to be the least restrictive, so let’s try to access the
publ i ¢ class Book and its publi ¢ members from class House. We’ll use class House
because House and Book are defined in separate packages and they’re unrelated.

NOTE The term wunrelated classes in this chapter refers to classes that don’t
share inheritance relation. For instance, classes House and Book are unre-
lated, if neither House derives from Book nor Book derives from House.

Class House doesn’t enjoy any advantages by being defined in the same package or
being a derived class.
Here’s the code for class House:

package buil di ng;
inmport library. Book;

public class House { Class Book is accessible
House() { QJ to class House.
Book book = new Book(); . . .
String val ue = book.isbn; 4—{ Varlab!e 'SI.)" |s
book. pri nt Book() ; accessible in House.
) j Method printBook is
} accessible in House.

In the preceding example, class Book and its publ i ¢ members—instance variable i shn
and method pri nt Book—are accessible to class House. They are also accessible to
the other classes: St oryBook, Li brari an, House, and Cour seBook. Figure 1.23 shows
the classes that can access a publ i ¢ class and its members.

Same package Separate package

Derived classes

Unrelated classes Figure 1.23 Classes that can access
a public class and its members

Protected access modifier

The members of a class defined using the pr ot ect ed access modifier are accessible to

= Classes and interfaces defined in the same package

= All derived classes, even if they’'re defined in separate packages

Java access modifiers 55

Let’s add a pr ot ect ed instance variable aut hor and a method nodi f yTenpl at e to the
class Book. Figure 1.24 shows the class representation.

library building

«extends»
Book e---mmmooo--odeoooooooo ----| StoryBook
#author:String
- - House
Librarian

#modifyTemplate()

4
1

«extends»
)

Figure 1.24 Understanding the pr ot ect ed access modifier

Here’s the code for the class Book (I've deliberately left out its publ i ¢ members because
they aren’t required in this section):

package |ibrary; Protected
public class Book { QJ variable author
protected String author;
protected void nodi fyTenplate() {}
} j Protected method
modifyTemplate

Figure 1.25 illustrates how classes from the same and separate packages, derived classes,
and unrelated classes access the class Book and its pr ot ect ed members.

Class House fails compilation for trying to access the method nodi f yTenpl at e and
the variable aut hor. Following is the compilation error message:

House. java: 8: nodi fyTenpl ate() has protected access in |ibrary. Book
book. nodi f yTenpl ate() ;

AN

NOTE Java code fails compilation because of syntax errors. In such a case, the
Java compiler notifies the offending code with its line number and a short
description of the error. The preceding code is output from the compilation
process. This book uses the command prompt to compile all Java code.

A derived class inherits the protected members of its base class, irrespective of the
packages in which they’re defined.

Notice that the derived classes Cour seBook and St or yBook inherit class Book’s pro-
tected member variable aut hor and method nodi f yTenpl at e() . If class St or yBook

CHAPTER 1 Java basics

[Nibrary | [building
package library;
public class Book {
protected string author; Can access
protected void modifyTempIate(){}—o— extends
H Can access
f extends
package library; package building;
public class CourseBook extends Book { import library.Book;
public CourseBook(){ public class StoryBook extends Book{
author=""ABC"; g public StoryBook(){
modifyTemplate(); § author="ABC";
3
3} % modifyTemplate();
¥ ¥
}
package library; package building;
public class Librarian { import library.Book;
public Librarian(Q{ > public class House{
Book book = new Book(); public House(){
book.author = "ABC"; Can access Book book=new Book();
book.modifyTemplate(); #¢ book.author="ABC";
} ¥ book._modifyTemplate();
¥ 3
}

Figure 1.25 Access of pr ot ect ed members of the class Book in unrelated and derived classes,
from the same and separate packages

tries to instantiate Book using a reference variable and then tries to access its pro-
tected variable aut hor and method nodi f yTenpl at e() , it won’t compile:

package buil di ng;
inmport |ibrary. Book;
cl ass StoryBook extends Book {
St oryBook() {
Book book = new Book();
String v = book. aut hor; %
book. modi f yTenpl ate() ; N

Classes Book and StoryBook
defined in separate packages

Protected members of class Book are not
accessible in derived class StoryBook, if
accessed using a new object of class Book.

)

kz‘

144

Java access modifiers 57

EXAM TIP A concise but not too simple way of stating the previous rule is this:
A derived class can inherit and access pr ot ect ed members of its base class,
regardless of the package in which it’s defined. A derived class in a separate
package can’t access protect ed members of its base class using reference
variables.

Figure 1.26 shows the classes that can access pr ot ect ed members of a class or interface.

Same package Separate package

X
. Usi Using
Derived classes o reference
inheritance T
Unrelated classes x Figure 1.26 Classes that can
access protected members

Default access (package access)

The members of a class defined without using any explicit access modifier are defined
with package accessibility (also called default accessibility). The members with package
access are only accessible to classes and interfaces defined in the same package. The
default access is also referred to as package-private. Think of a package as your home,
classes as rooms, and things in rooms as variables with default access. These things
aren’t limited to one room—they can be accessed across all the rooms in your home.
But they’re still private to your home—you wouldn’t want them to be accessed outside
your home. Similarly, when you define a package, you might want to make members
of classes accessible to all the other classes across the same package.

NOTE Although the package-private access is as valid as the other access lev-
els, in real projects it often appears as the result of inexperienced developers
forgetting to specify the access mode of Java components.

Let’s define an instance variable i ssueCount and a method i ssueH st ory with default
access in class Book. Figure 1.27 shows the class representation with these new members.

library building

«extends»
Book REREEETEEEETEREEY PEERREEEE ----| StoryBook
~issueCount:int
MCibrarian]
Librarian

~issueHistory()
4
«extends»

Figure 1.27 Understanding class representation for default access

58

CHAPTER 1 Java basics

Here’s the code for the class Book (I've deliberately left out its publ i ¢ and pr ot ect ed
members because they aren’t required in this section):

package library; Public class Book
public class Book { Variable issueCount

int issueCount; with default access

voi d issueHi story() {}
} Method issueHistory
with default access

You can see how classes from the same package and separate packages, derived classes,
and unrelated classes access the class Book and its members (the variable i ssueCount
and the method i ssueHi st ory) in figure 1.28.

library building

package library;

public class Book {

Can access int issueCount; Cannot access
L _ extends
Can access void |ssut—)H|st0ry(){}__‘r
}
\
extends —
package building;
package library; import library.Book;
public class CourseBook extends Book { public class StoryBook extends Book{
public CourseBook(){ Q public StoryBook(){
- - ~ >
int ¢ = issueCount; 3 int c = issueCount;
- - . o
issueHistory(); 8 % issueHistory();
[0}
} 4 }
¥ }
package library; package building;
public class Librarian { import library.Book;
public Librarian(QQ{ > public class House{
Book b = new Book(); public House(){
int ¢ = b.issueCount; Book b = new Book();
b.issueHistory(); # int c = b.issueCount;
} ¥ b._issueHistory(Q);
3 }
¥

Figure 1.28 Access of members with default access to the class Book in unrelated and derived
classes from the same and separate packages

Java access modifiers 59

Because the classes Cour seBook and Li brari an are defined in the same package as
the class Book, they can access the variables i ssueCount and i ssueH st ory. Because the
classes House and St or yBook don’t reside in the same package as the class Book, they
can’t access the variables i ssueCount and i ssueHi story. The class St or yBook throws
the following compilation error message:

St oryBook. java: 6: issueH story() is not public in Iibrary.Book; cannot be
accessed from outsi de package

book. i ssueHi story();
N

Class House is unaware of the existence of i ssueHi st ory() —it fails compilation with
the following error message:

House. java: 9: cannot find synbol
synbol : nethod issueH story()
I ocation: class building. House

i ssueHi story();

DEFINING A CLASS BOOK WITH DEFAULT ACCESS
What happens if we define a class with default access? What will happen to the accessi-
bility of its members if the class itself has default (package) accessibility?

Consider this situation: Assume that Superfast Burgers opens a new outlet on a
beautiful island and offers free meals to people from all over the world, which obvi-
ously includes inhabitants of the island. But the island is inaccessible by all means (air
and water). Would awareness of the existence of this particular Superfast Burgers out-
let make any sense to people who don’t inhabit the island? An illustration of this
example is shown in figure 1.29.

Figure 1.29 This Superfast Burgers can’t be accessed from outside the
island because the island is inaccessible by air and water.

60

CHAPTER 1 Java basics

The island is like a package in Java, and Superfast Burgers is like a class defined with
default access. In the same way that Superfast Burgers can’t be accessed from outside
the island in which it exists, a class defined with default (package) access is visible and
accessible only from within the package in which it’s defined. It can’t be accessed from
outside the package in which it resides.

Let’s redefine the class Book with default (package) access, as follows:

package library;
cl ass Book {

Class Book now
//.. class menbers

has default access.

}

The behavior of class Book remains the same for the classes Cour seBook and Li brari an,
which are defined in the same package. But class Book can’t be accessed by classes
House and St or yBook, which reside in a separate package.

Let’s start with the class House. Examine the following code:

package buil di ng;
inmport library. Book;
public class House {}

Class Book isn’t accessible
in class House.

Class House generates the following compilation error message:

House.java: 2: library.Book is not public in library; cannot be accessed from
out si de package
inmport |ibrary. Book;

Here’s the code of class St or yBook:

Book isn’t accessible
package buil di ng; QJ in StoryBook.
inport library. Book; StoryBook can’t
cl ass StoryBook extends Book {} 4—‘ extend Book.

Figure 1.30 shows which classes can access members of a class or interface with default
(package) access.

Same package Separate package

Derived classes
x Figure 1.30 The classes that

Unrelated classes x can access members with default
(package) access

Because a lot of programmers are confused about which members are made accessi-
ble by using the prot ect ed and default access modifiers, the exam tip offers a simple
and interesting rule to help you remember their differences.

)

ﬁi

B

Java access modifiers 61

EXAM TIP Default access can be compared to package-private (accessible
only within a package), and prot ect ed access can be compared to package-
private + kids (“kids” refer to derived classes). Kids can access prot ect ed
methods only by inheritance and not by reference (accessing members by
using the dot operator on an object).

private access modifier

The pri vat e access modifier is the most restrictive access modifier. The members of a
class defined using the pri vat e access modifier are accessible only to themselves. It
doesn’t matter whether the class or interface in question is from another package or
has extended the class—pri vat e members are not accessible outside the class in which
they’re defined. pri vat e members are accessible only to the classes and interfaces in
which they’re defined.

Let’s see this in action by adding a pri vat e method count Pages to the class Book.
Figure 1.31 depicts the class representation using UML.

library building

«extends»
Book fer---emmeoooooooqeooooooood ----| StoryBook
—Sountrages [Cibrarian |
Librarian

#modifyTemplate()

4
«extends»

Figure 1.31 Understanding the pri vat e access modifier

Examine the following definition of the class Book:

package |ibrary;

cl ass Book { private
private void countPages() {} method
protected void nodi fyTenpl ate() {

count Pages () ; Only Book can access its own

} private method countPages.

None of the classes defined in any of the packages (whether derived or not) can
access the private method count Pages. But let’s try to access it from the class
Cour seBook. I chose Cour seBook because both of these classes are defined in the same
package, and Cour seBook extends the class Book. Here’s the code of Cour seBook:

62

1.4.6

CHAPTER 1 Java basics

package |ibrary;
cl ass CourseBook extends Book {
Cour seBook() {

count Pages() ;
} CourseBook can’t access
private method countPages.

CourseBook
extends Book.

Because the class Cour seBook tries to access private members of the class Book, it won’t
compile. Similarly, if any of the other classes (St or yBook, Li brari an, House, or Cour se-
Book) tries to access the pri vat e method count Pages() of class Book, it won’t compile.

Here’s an interesting situation: do you think a Book instance can access its private
members using a reference variable? The following code won’t compile—even though
variable b1 is of type Book, it’s trying to access its private method count Pages outside
Book:

cl ass Test Book {
public static void main(String args[]) {
Book bl = new Book();

bl. count Pages(); <»—‘ Won’t compile

Figure 1.32 shows the classes that can access the pri vat e members of a class.

Same package Separate package

Derived classes x x

Unrelated classes x x Figure 1.32 No classes can access
pri vat e members of another class

NOTE For your real projects, it is possible to access private members of a class
outside them, using Java reflection. But Java reflection isn’t on the exam. So don’t
consider it when answering questions on the accessibility of private members.

Access modifiers and Java entities

Can every access modifier be applied to all the Java entities? The simple answer is no.
Table 1.3 lists the Java entities and the access modifiers that can be used with them.

Table 1.3 Java entities and the access modifiers that can be applied to them

Entity name public pr ot ect ed private

Top-level class, interface, enum v X X
Class variables and methods

v v
Instance variables and methods v v
X X

x N N

Method parameter and local variables

by

b

Java access modifiers 63

What happens if you try to code the combinations for an X in table 1.3? None of these
combinations will compile. Here’s the code:

protected class MyTopLevel O ass {}
private class MyTopLevel d ass {}
protected interface TopLevel Interface {}

Won’t compile—top-level class and
interfaces can’t be defined with
protected and private access.

voi d nyMet hod(int paran { and local variables can’t be defined

voi d nyMethod(private int param {} ::] Won’t compile—method parameters
public int Iocal Variable = 10; using any explicit access modifiers.

}

Watch out for these combinations on the exam. It’s simple to insert these small and
invalid combinations in any code snippet and still make you believe that you’re being
tested on a rather complex topic like threads or concurrency.

EXAM TIP Watch out for invalid combinations of a Java entity and an access
modifier. Such code won’t compile.

Twist in the Tale 1.4

The following task was assigned to a group of programmers: “How can you declare a class
Qurtai nin a package bui | di ng so thatitisn’t visible outside the package bui | di ng?”

These are the answers submitted by Paul, Shreya, Harry, and Selvan. Which of
these do you think is correct and why? (You can check your Twist in the Tale answers
in the appendix.)

Programmer name Submitted code

Paul package bui | di ng;
public class Curtain {}

Shreya package bui |l ding;
protected class Curtain {}

Harry package bui |l di ng;
class Curtain {}

Selvan package bui |l ding;
private class Curtain {}

Your job title may assign special privileges or responsibilities to you. For example, if
you work as a Java developer, you may be responsible for updating your programming
skills or earning professional certifications in Java. Similarly, you can assign special
privileges, responsibilities, and behaviors to your Java entities by using nonaccess modifi-
ers, which are covered in the next section.

64

15

CHAPTER 1 Java basics

Nonaccess modifiers

E [7.5] Use abstract classes and interfaces
E [6.2] Apply the static keyword to methods and fields

This section discusses the nonaccess modifiers abstract, fi nal, and static. Access
modifiers control the accessibility of your class and its members outside the class
and the package. Nonaccess modifiers change the default behavior of a Java class and
its members.

For example, if you add the keyword abstract to the definition of a class, it can’t
be instantiated. Such is the magic of the nonaccess modifiers.

You can characterize your classes, interfaces, methods, and variables with the fol-
lowing nonaccess modifiers (though not all are applicable to each Java entity):

= abstract

= static

= final

= synchroni zed
= native

m strictfp

= transient

= volatile

The OCA Java SE 8 Programmer I exam covers only three of these nonaccess modifi-
ers: abstract, final, and stati ¢, which I’ll cover in detail. To ward off any confusion
about the rest of the modifiers, I'll describe them briefly here:

= synchroni zed—A synchr oni zed method can’t be accessed by multiple threads
concurrently. You can’t mark classes, interfaces, or variables with this modifier.

= native—A native method calls and makes use of libraries and methods imple-
mented in other programming languages such as C or C++. You can’t mark
classes, interfaces, or variables with this modifier.

m transient—A transi ent variable isn’t serialized when the corresponding object
is serialized. The transi ent modifier can’t be applied to classes, interfaces, or
methods.

= volatile—A volatile variable’s value can be safely modified by different
threads. Classes, interfaces, and methods can’t use this modifier.

m strictfp—Classes, interfaces, and methods defined using this keyword ensure
that calculations using floating-point numbers are identical on all platforms.
This modifier can’t be used with variables.

Now let’s look at the three nonaccess modifiers that are on the exam.

151

Nonaccess modifiers 65

abstract modifier

When added to the definition of a class, interface, or method, the abst ract modifier
changes its default behavior. Because it is a nonaccess modifier, abstract doesn’t
change the accessibility of a class, interface, or method.

Let’s examine the behavior of each of these with the abstract modifier.

ABSTRACT CLASS

When the abstract keyword is prefixed to the definition of a concrete class, it
changes it to an abstract class, even if the class doesn’t define any abstract meth-
ods. The following code is a valid example of an abstract class:

abstract class Person {
private String naneg;
public void displayNanme() { }

An abstract class can’t be instantiated, which means that the following code will fail
to compile:

class University { This’line of code
Person p = new Person(); won’t compile.

}

Here’s the compilation error thrown by the previous class:

Uni versity.java:4: Person is abstract; cannot be instantiated
Person p = new Person();
N

1 error

EXAM TIP An abstract class may or may not define an abstract method.
But a concrete class can’t define an abstract method.

ABSTRACT INTERFACE

An interface is an abstract entity by default. The Java compiler automatically adds the
keyword abst ract to the definition of an interface. Thus, adding the keyword abst r act
to the definition of an interface is redundant. The following definitions of interfaces
are the same:

Interface defined without the
explicit use of keyword abstract

interface Movable {}

abstract interface Mvable {}
Interface defined with the

explicit use of keyword abstract

66

CHAPTER 1 Java basics

ABSTRACT METHOD
An abstract method doesn’t have a body. Usually, an abstract method is imple-
mented by a derived class. Here’s an example:

abstract class Person {

private String name; This isn’t an abstract method.
public void displayName() { } It has an empty body: {}.
public abstract void perform();

This is an abstract method.
} It isn’t followed by {}.

EXAM TIP A method with an empty body isn’t an abstract method.

ABSTRACT VARIABLES
None of the different types of variables (instance, stati ¢, local, and method parame-
ters) can be defined as abstract.

EXAM TIP Don’t be tricked by code that tries to apply the nonaccess modifier
abstract to a variable. Such code won’t compile.

final modifier

The keyword f i nal can be used with the declaration of a class, variable, or method. It
can’t be used with the declaration of an interface.

FINAL CLASS
A class that’s marked final can’t be extended by another class. The class Pr of essor
won’t compile if the class Per son is marked as f i nal , as follows:

final class Person {} 5 .
cl ass Professor extends Person {} <1—‘ Won’t compile

FINAL INTERFACE
An interface can’t be marked as fi nal . An interface is abstract by default and mark-
ing it with fi nal will prevent your interface from compiling:

final interface MyInterface{} <»—‘ Won’t compile

FINAL VARIABLE
Afinal variable can’t be reassigned a value. It can be assigned a value only once. See
the following code:

class Person {
final |1 ong MAX_AGE;
Person() { Compiles successfully: value
MAX AGE = 99; assigned once to final variable

}

153

Nonaccess modifiers 67

Compare the previous example with the following code, which tries to reassign a value
to a final variable:

class Person {
final long MAX_AGE = 90;
Person() { Won’t compile;
MAX_AGE = 99; reassignment not allowed

}

It’s easy to confuse reassigning a value to a fi nal variable with calling a method on a
final variable, which might change the state of the object that it refers to. If a refer-
ence variable is defined as a f i nal variable, you can’t reassign another object to it, but
you can call methods on this variable (that modify its state):

cl ass Person {
final StringBuilder name = new StringBuil der("Sh");
Person() {
name. append("reya");
name = new StringBuilder();
} Won'’t compile. You can’t reassign
} another object to a final variable.

Can call methods on
a final variable that
change its state

FINAL METHOD
A final method defined in a base class can’t be overridden by a derived class. Exam-
ine the following code:

cl ass Person {
final void sing() {
Systemout.printin("la..la..la..");

}
}
cl ass Professor extends Person { , .
voi d sing() { | Won’t compile
Systemout. println("Al pha.. beta.. gamm");
}
}

If a method in a derived class has the same method signature as its base class’s
method, it’s referred to as an overridden method. Overridden methods are discussed
along with polymorphism in chapter 6.

static modifier

The nonaccess modifier st ati ¢ can be applied to the declarations of variables, meth-
ods, classes, and interfaces. We’ll examine each of them in following sections.

68

CHAPTER 1 Java basics

STATIC VARIABLES

stati c variables belong to a class. They’re common to all instances of a class and
aren’t unique to any instance of a class. st ati ¢ attributes exist independently of any
instances of a class and may be accessed even when no instances of the class have been
created. You can compare a st at i ¢ variable with a shared variable. A st ati ¢ variable
is shared by all the objects of a class.

NOTE A class and an interface can declare st ati ¢ variables. This section cov-
ers declaration and usage of static variables that are defined in a class.
Chapter 6 covers interfaces and their st at i ¢ variables in detail.

Think of a static variable as being like a common bank vault that’s shared by the
employees of an organization. Each of the employees accesses the same bank vault, so
any change made by one employee is visible to all the other employees, as illustrated
in figure 1.33.

~,

All employess
share the same

B [l

Harry Paul
Bank vault

Figure 1.33 Comparing a shared bank vault with a st at i c variable

Figure 1.34 defines a class Enp that defines a non-st ati ¢ variable nane and a static
variable bankVaul t .

class Emp {

String name;

static int bankVault;
T

Figure 1.34 Definition of the class Enp with a st at i ¢ variable
bankVaul t and non-st at i c variable nane

Nonaccess modifiers 69

It’s time to test what we’ve been discussing up to this point. The following Test Enp
class creates two objects of the class Enp (from figure 1.34) and modifies the value of
the variable bankVaul t using these separate objects:

Reference variables empl and emp2

class TestEnp {
J refer to separate objects of class Emp.

public static void main(String[] args) {
Enp enpl = new Enp();
Enp enp2 = new Enmp();

Variable enpl. bankVaul t = 10; Variable bankVault of variable
bankVault enp2. bankVaul t = 20; emp2 is assigned a value of 20.
°he':'albli: System out . println(enpl. bankVault);
assigr?ed a System out . printl n(enp2. bankVaul t); This will print 20.
value of 10. | System out. printl n(Enp. bankVaul t);
} This will print 20 as well. This will also print 20.

In the preceding code example, enpl. bankVaul t, enp2. bankVaul t, and Enp. bank-
Vaul t all refer to the samest ati ¢ attribute: bankVaul t.

o EXAM TIP Even though you can use an object reference variable to access
e stati c members, it’s not advisable to do so. Because st at i ¢ members belong

to a class and not to individual objects, using object reference variables to
access stati ¢ members may make them appear to belong to an object. The
preferred way to access them is by using the class name. The static and
final nonaccess modifiers can be used together to define constants (variables
whose value can’t change).

In the following code, the class Enp defines the constants M N_AGE and MAX_AGE:

class Enp { Constant
public static final int MN_ACGE = 20; MIN_AGE
static final int MAX_AGE = 70;

} Constant MAX_AGE

Although you can define a constant as a non-st ati ¢ member, it’s common practice
to define constants as st at i ¢ members, because doing so allows the constant values to
be used across objects and classes.

STATIC METHODS

stati ¢ methods aren’t associated with objects and can’t use any of the instance variables
of a class. You can define st at i ¢ methods to access or manipulate st at i ¢ variables:
class Enmp {

String nane;
static int bankVault;

static int getBankVaultVal ue() { static method getBankVaultValue
return bankVault; returns the value of static
1 variable bankVault.

vww . allitebooks.cond

http://www.allitebooks.org

70

CHAPTER 1 Java basics

It’s a common practice to use static methods to define wutility methods, which are
methods that usually manipulate the method parameters to compute and return an
appropriate value:

static doubl e interest(double numl, double nun2, double nunB) {

ret ur n(numi+nun2+nunsg)/ 3;
}

The following utility (st ati ¢) method doesn’t define input parameters. The method
aver ageCf Fi r st 1001 nt eger s computes and returns the average of numbers 1 to 100:

Method averageOfFirst100Integers

int sum= 0;
doesn’t define method parameters.

for (int i=1; i <= 100; ++i) {
sum += i;

static doubl e averageO First 100l ntegers() { j

}
return (sum/100;

The nonprivate st ati ¢ variables and methods are inherited by derived classes. The
stati ¢ members aren’t involved in runtime polymorphism. You can’t override the
stati c members in a derived class, but you can redefine them.

Any discussion of st at i ¢ methods and their behavior can be quite confusing if you
aren’t aware of inheritance and derived classes. But don’t worry if you don’t under-
stand all of it. I'll cover derived classes and inheritance in chapter 6. For now, note
that a stati c method can be accessed using the name of the object reference vari-
ables and the class in a manner similar to st ati ¢ variables.

WHAT CAN A STATIC METHOD ACCESS?

Neither st ati ¢ methods nor st ati ¢ variables can access the non-st ati ¢ variables and

methods of a class. But the reverse is true: non-st at i ¢ variables and methods can access

st ati ¢ variables and methods because the stati ¢ members of a class exist even if no

instances of the class exist. Stati ¢ members are forbidden from accessing instance

methods and variables, which can exist only if an instance of the class is created.
Examine the following code:

class Myd ass {
static int x = count();
int count() { return 10; }

Compilation
error

This is the compilation error thrown by the previous class:

M/d ass. java: 3: nonstatic nethod count() cannot be referenced froma static
cont ext
static int x = count();
N

1 error

®)

R
!

b

®)
¢)

B

Nonaccess modifiers 71

The following code is valid:

class WO ass { static variable referencing
static int x = result(); a static method

static int result() { return 20; }

int nonStaticResult() { return result(); } Non-static method

} using static method

EXAM TIP static methods and variables can’t access the instance members
of a class.

Table 1.4 summarizes the access capabilities of st ati ¢ and non-st ati ¢ members.

Table 1.4 Access capabilities of st at i ¢ and non-st at i ¢ members

Member type Can access st at i c attribute Can access non-st at i c attribute
P or method? or method?
static Yes No
Non-static Yes Yes

ACCESSING STATIC MEMBERS FROM A NULL REFERENCE

Because st ati ¢ variables and methods belong to a class and not to an instance, you
can access them using variables, which are initialized to nul|. Watch out for such
questions in the exam. Such code won’t throw a runtime exception (Nul | Poi nt er -
Excepti on to be precise). In the following example, the reference variable enp is ini-
tialized to nul | :

class Enmp {
String nane;
static int bankVault;
static int getBankVaul t Val ue() {
return bankVault;

}
}
class Ofice { Outputs 0
public static void main(String[] args) {
Enp enp = null;
System out. printl n(enp. bankVaul t);
System out . println(enp. get BankVaul t Val ue());
}
}

EXAM TIP You can access St at i ¢ variables and methods using a nul | reference.

72

1.6

16.1

CHAPTER 1 Java basics

The next section covers features of Java that led to its popularity two decades ago, and
which still hold strong.

Features and components of Java

E [1.5] Compare and contrast the features and components of Java such as:

platform independence, object orientation, encapsulation, etc.

The Java programming language was released in 1995. It was developed mainly to
work with consumer appliances. But it soon became very popular with web browsers,
to deliver dynamic content (using applets), which didn’t require it to be recompiled
for separate platforms. Let’s get started with the distinctive features and components
of Java, which still make it a popular programming language.

NOTE The exam will question you on the features and components of Java
that are relevant or irrelevant to it.

Valid features and components of Java

Java offers multiple advantages over other languages and platforms.

PLATFORM INDEPENDENCE

This feature is one of main reasons of Java’s phenomenal rise since its release. It’s also
referred to as “write once, run anywhere” (WORA)—a slogan created by Sun Micro-
systems™ to highlight Java’s platform independence.

Features and components of Java 73

Java code can be executed on multiple systems without recompilation. Java code is
compiled into bylecode, to be executed by a virtual machine—the Java Virtual Machine
(JVM). A JVM is installed on platforms with different OSs like Windows, Mac, or
Linux. A JVM interprets bytecodes to machine-specific instructions for execution. The
implementation details of a JVM are machine-dependent and might differ across plat-
forms, but all of them interpret the same bytecode in a similar manner. Bytecode gen-
erated by a Java compiler is supported by all platforms with a JVM.

Other popular programming languages like C and C++ compile their code to a
host system. So the code must be recompiled for separate platforms.

OBJECT ORIENTATION

Java emulates real-life object definition and behavior. In real life, state and behavior
are tied to an object. Similarly, all Java code is defined within classes, interfaces, or
enums. You need to create their objects to use them.

ABSTRACTION

Java lets you abstract objects and include only the required properties and behavior in
your code. For example, if you're developing an application that tracks the popula-
tion of a country, you’ll record a person’s name, address, and contact details. But for a
health-tracking system, you might want to include health-related details and behavior
as well.

ENCAPSULATION

With Java classes, you can encapsulate the state and behavior of an object. The state or
the fields of a class are protected from unwanted access and manipulation. You can
control the level of access and modifications to your objects.

INHERITANCE
Java enables its classes to inherit other classes and implement interfaces. The inter-
faces can inherit other interfaces. This saves you from redefining common code.

POLYMORPHISM

The literal meaning of polymorphism is “many forms.” Java enables instances of its
classes to exhibit multiple behaviors for the same method calls. You’ll learn about this
in detail in chapter 6.

TYPE SAFETY

In Java, you must declare a variable with its data type before you can use it. This means
that you have compile-time checks that ensure you never assign to a variable a value of
the wrong type.

AUTOMATIC MEMORY MANAGEMENT

Unlike other programming languages like C or C++, Java uses garbage collectors for
automatic memory management. They reclaim memory from objects that are no lon-
ger in use. This frees developers from explicitly managing the memory themselves. It
also prevents memory leaks.

74

1.6.2

1.7

CHAPTER 1 Java basics

MULTITHREADING AND CONCURRENCY
Java has supported multithreading and concurrency since it was first released—sup-
ported by classes and interfaces defined in its core APIL.

SECURITY
Java includes multiple builtin security features (though not all are covered in this
exam) to control access to your resources and execution of your programs.

Java is type safe and includes garbage collection. It provides secure class loading,
and verification ensures execution of legitimate Java code.

The Java platform defines multiple APIs, including cryptography and public key
infrastructure. Java applications that execute under a security manager control access to
your resources, like reading or writing to file. Access to a resource can be controlled
using a policy file. Java enables you to define digital signatures, certificates, and key-
stores to secure code and file exchanges. Signed code is distributed for execution.

With features like encapsulation and data hiding, Java secures the state of its objects.
Java applets execute in browsers and don’t allow code to be downloaded to a system,
thus enabling security for browsers and the systems that run them.

Irrelevant features and components of Java

The exam might also include some terms that are irrelevant.

SINGLE-THREADED

Java supports multithreading programming with inbuilt classes and interfaces. You
can create and use single threads, but the Java language isn’t single-threaded. Even
when you create single threads of execution, Java executes its own processes like gar-
bage collection in separate threads. Java isn’t a single-threaded language.

RELATED TO JAVASCRIPT
Java isn’t related to JavaScript (except for the similarity in their name). JavaScript is a
programming language used in web pages to make them interactive.

Summary

This chapter started with a look at the structure of a Java class. Although you should
know how to work with Java classes, Java source code files (.java files), and Java byte-
code files (.class files), the OCA Java SE 8 Programmer I exam will question you only
on the structure and components of the first two—classes and source code—not on
Java bytecode.

We discussed the components of a Java class and of Java source code files. A class
can define multiple components, namely, i nport and package statements, variables,
constructors, methods, comments, nested classes, nested interfaces, annotations, and
enums. A Java source code file (.java) can define multiple classes and interfaces.

We then covered the differences and similarities between executable and non-
executable Java classes. An executable Java class defines the entry point (mai n method)
for the JVM to start its execution. The mai n method should be defined with the

18

Review notes 75

required method signature; otherwise, the class will fail to be categorized as an execut-
able Java class.

Packages are used to group together related classes and interfaces. They also pro-
vide access protection and namespace management. The i nport statement is used to
import classes and interfaces from other packages. In the absence of an i nport state-
ment, classes and interfaces should be referred to by their fully qualified names (com-
plete package name plus class or interface name).

Access modifiers control the access of classes and their members within a package
and across packages. Java defines four access modifiers: publi c, protect ed, default,
and pri vat e. When default access is assigned to a class or its member, no access mod-
ifier is prefixed to it. The absence of an access modifier is equal to assigning the class
or its members with default access. The least restrictive access modifier is publ i ¢, and
private is the most restrictive. protected access sits between public and default
access, allowing access to derived classes outside a package.

We covered the abstract and static nonaccess modifiers. A class or a method
can be defined as an abstract member. abstract classes can’t be instantiated. Meth-
ods and variables can be defined as st ati ¢ members. All the objects of a class share
the same copy of st ati ¢ variables, which are also known as class-level variables.

Finally, we covered the features and components of Java that make it a popular
choice.

Review notes

This section lists the main points covered in this chapter.
The structure of a Java class and source code file:

» The OCA Java SE 8 Programmer I exam covers the structure and components
of a Java class and Java source code file (.java file). It doesn’t cover the structure
and components of Java bytecode files (.class files).

= A class can define multiple components. All the Java components you’ve heard
of can be defined within a Java class: i nport and package statements, variables,
constructors, methods, comments, nested classes, nested interfaces, annotations,
and enums.

» This exam doesn’t cover the definitions of nested classes, nested interfaces,
annotations, and enums.

= [f a class defines a package statement, it should be the first statement in the
class definition.

= The package statement can’t appear within a class declaration or after the class
declaration.

= [f present, the package statement should appear exactly once in a class.

= The inport statement allows usage of simple names, nonqualified names of
classes, and interfaces.

76

CHAPTER 1 Java basics

The inport statement can’t be used to import multiple classes or interfaces
with the same name.

A class can include multiple i nport statements.

If a class includes a package statement, all the i mport statements should follow
the package statement.

If present, an i nport statement must be placed before any class or interface
definition.

Comments are another component of a class. Comments are used to annotate
Java code and can appear at multiple places within a class.

A comment can appear before or after a package statement, before or after the
class definition, and before, within, or after a method definition.

Comments come in two flavors: multiline and end-of-line comments.
Comments can contain any special characters (including characters from the
Unicode charset).

Multiline comments span multiple lines of code. They start with /* and end
with */ .

End-ofline comments start with // and, as the name suggests, are placed at the
end of a line of code or a blank line. The text between // and the end of the
line is treated as a comment.

Class declarations and class definitions are components of a Java class.

A Java class may define zero or more instance variables, methods, and constructors.
The order of the definition of instance variables, constructors, and methods
doesn’t matter in a class.

A class may define an instance variable before or after the definition of a
method and still use it.

A Java source code file (.java file) can define multiple classes and interfaces.

A publi ¢ class can be defined only in a source code file with the same name.
package and i nport statements apply to all the classes and interfaces defined in
the same source code file (.java file).

Executable Java applications:

An executable Java class is a class that, when handed over to the Java Virtual
Machine (JVM), starts its execution at a particular point in the class. This point
of execution is the mai n method.

For a class to be executable, the class should define a mai n method with the
signature public static void main(String args[]) or public static void
mai n(String... args). The positions of static and public can be inter-
changed, and the method parameter can use any valid name.

A class can define multiple methods with the name mai n, provided that the sig-
nature of these methods doesn’t match the signature of the main method

Review notes 77

defined in the previous point. These overloaded versions aren’t considered the
mai n method.

The mai n method accepts an array of type String containing the method
parameters passed to it by the JVM.

The keyword j ava and the name of the class aren’t passed on as command
parameters to the mai n method.

Java packages:

You can use packages to group together a related set of classes and interfaces.
By default, all classes and interfaces in separate packages and subpackages
aren’t visible to each other.

The package and subpackage names are separated using a dot.

All classes and interfaces in the same package are visible to each other.

An i nport statement allows the use of simple names for packaged classes and
interfaces defined in other packages.

You can’t use the i nport statement to access multiple classes or interfaces with
the same names from different packages.

You can import either a single member or all members (classes and interfaces)
of a package using the i nport statement.

You can’t import classes from a subpackage by using the wildcard character, an
asterisk (*), in the i mport statement.

A class from a default package can’t be used in any named packaged class,
regardless of whether it’s defined within the same directory or not.

You can import an individual st ati ¢ member of a class or all its st ati ¢ mem-
bers by using a stati cinport statement.

Aninport statement can’t be placed before a package statement in a class. Any
attempt to do so will cause the compilation of the class to fail.

The members of default packages are accessible only to classes or interfaces
defined in the same directory on your system.

Java access modifiers:

The access modifiers control the accessibility of your class and its members out-
side the class and package.

Java defines four access levels: publ i c, pr ot ect ed, default, and pri vat e.

Java defines three access modifiers: publ i c, prot ected, and pri vate.

The publ i ¢ access modifier is the least restrictive access modifier.

Classes and interfaces defined using the publ i ¢ access modifier are accessible
to related and unrelated classes outside the package in which they’re defined.
The members of a class defined using the pr ot ect ed access modifier are acces-
sible to classes and interfaces defined in the same package and to all derived
classes, even if they’re defined in separate packages.

78

CHAPTER 1 Java basics

The members of a class defined without using an explicit access modifier are
defined with package accessibility (also called default accessibility).

The members with package access are accessible only to classes and interfaces
defined in the same package.

A class defined using default access can’t be accessed outside its package.

The members of a class defined using a pri vat e access modifier are accessible
only to the class in which they’re defined. It doesn’t matter whether the class or
interface in question is from another package or has extended the class. Private
members are not accessible outside the class in which they’re defined.

The privat e access modifier is the most restrictive access modifier.

Nonaccess modifiers:

The nonaccess modifiers change the default properties of a Java class and its
members.

The nonaccess modifiers covered by this exam are abstract, final , and stati c.
The abstract keyword, when prefixed to the definition of a concrete class, can
change it to an abst ract class, even if it doesn’t define any abst ract methods.
An abstract class can’t be instantiated.

An interface is implicitly abstract. The Java compiler automatically adds the
keyword abstract to the definition of an interface (which means that adding
the keyword abst ract to the definition of an interface is redundant).

An abstract method doesn’t have a body. When a non-abstract class extends a
class with an abstract method, it must implement the method.

A variable can’t be defined as an abstract variable.

The st ati ¢ modifier can be applied to inner classes, inner interfaces, variables,
and methods. Inner classes and interfaces aren’t covered in this exam.

A method can’t be defined as both abstract and stati c.

stati ¢ attributes (fields and methods) are common to all instances of a class
and aren’t unique to any instance of a class.

static attributes exist independently of any instances of a class and may be
accessed even when no instances of the class have been created.

stati c attributes are also known as class fields or class methods because they’re
said to belong to their class, not to any instance of that class.

A static variable or method can be accessed using the name of a reference
object variable or the name of a class.

A static method or variable can’t access non-st at i ¢ variables or methods of a
class. But the reverse is true: non-static variables and methods can access
st ati ¢ variables and methods.

static classes and interfaces are a type of nested classes and interfaces, but
they aren’t covered in this exam.

1.9

Sample exam questions 79

You can’t prefix the definition of a top-level class or an interface with the key-
word st at i c. A top-level class or interface is one that isn’t defined within another
class or interface.

Features and components of Java:

Object orientation—]ava emulates real-life object definition and behavior. It uses
classes, interfaces, or enums to define all its code.

Abstraction—]ava lets you abstract objects and include only the required proper-
ties and behavior in your code.

Encapsulation—The state or the fields of a class are protected from unwanted
access and manipulation.

Inheritance—]ava enables its classes to inherit other classes and implement inter-
faces. The interfaces can inherit other interfaces.

Polymorphism—T]ava enables instances of its classes to exhibit multiple behaviors
for the same method calls.

Type safety—In Java, you must declare a variable with its data type before you can
use it.

Automatic memory managemeni—Java uses garbage collectors for automatic mem-
ory management. They reclaim memory from objects that are no longer in use.
Multithreading and concurrency—Java defines classes and interfaces to enable
developers to develop multithreaded code.

Javaisn’t a single-threaded language.

Sample exam questions
Q1-1. Given:

class EJava {
/1..code

}

Which of the following options will compile?

a

b

package j ava. oca. associ at e;
class Guru {
EJava eJava = new EJava();

}

package java. oca;

i nport EJava;

class Guru {
EJava eJava;

}

package j ava.oca. *;
i nport java.default.*;
class GQuru {

EJava eJava;

}

80

CHAPTER 1 Java basics

d package java.oca. associ at e;
inmport default.*;
class Guru {
defaul t. EJava eJava;

}

e None of the above

Q1-2. The following numbered list of Java class components is not in any particular
order. Select the acceptable order of their occurrence in any Java class (choose all

that apply):

1
2
3
4

comments

i nport statement
package statement
methods

class declaration
variables

a 1,3,2,5,6,4
b 3,1,2,5,4,6
¢ 3,2,1,4,5,6
d 3,2,1,5,6,4

Q1-3. Which of the following examples defines a correct Java class structure?

a #connect java conpiler;
#connect java virtual machine;
cl ass EJavaGuru {}

b package java conpiler;
inmport java virtual machine;
clasS BEJavaGuru {}

¢ inport javavirtual machine.*;
package j avaconpil er;
cl ass EJavaGuru {
voi d methodl() {}
int count;

}

d package javaconpiler;
import javavirtual machi ne. *;
cl ass EJavaGuru {
voi d methodl() {}
int count;

}

e #package javaconpil er;
$i nport javavi rtual machi ne;
cl ass EJavaGuru {
voi d methodl() {}
int count;

Sample exam questions 81

f package javaconpiler;
i mport javavi rtual machi ne;
Cl ass EJavaGuru {
void nethodl() {}
int count;

Q1-4. Given the following contents of the Java source code file MyClass.java, select the
correct options:

/1 contents of MyC ass.java

package com ej avagur u;

import java.util.Date;

cl ass Student {}
class Course {}

a The imported class, j ava. uti| . Dat e, can be accessed only in the class St udent .

b The imported class, j ava. util . Dat e, can be accessed by both the St udent and
Cour se classes.

¢ Both of the classes Student and Course are defined in the package com
. ej avagur u.

d Only the class Student is defined in the package com ej avaguru. The class
Cour se is defined in the default Java package.

Q1-5. Given the following definition of the class EJavaGur u,

cl ass EJavaGuru {
public static void main(String[] args) {
Systemout.println(args[1]+":"+ args[2]+":"+ args[3]);
}
}

what is the output of EJavaGur u, if it is executed using the following command?

java EJavaGuru one two three four

a one:two:three

b EJavaCuru: one:two
¢ java: EJavaGuru: one
d two:three:four

Q1-6. Which of the following options, when inserted at// | NSERT CODE HERE, will print
out EJavaCGur u?

public class ElavaGuru {
/1 | NSERT CODE HERE

{
}

System out. println("EJavaGuru");

82

CHAPTER 1 Java basics

a public void main (String[] args)

b public void main(String args[])

¢ static public void main (String[] array)
d public static void main (String args)

e static public main (String args[])

Q1-7. What is the meaning of “write once, run anywhere”? Select the correct options:

a Java code can be written by one team member and executed by other team
members.

b Itis for marketing purposes only.

¢ It enables Java programs to be compiled once and can be executed by any JVM
without recompilation.

d Old Java code doesn’t need recompilation when newer versions of JVMs are
released.

Q1-8. A class Cour se is defined in a package com ej avagur u. Given that the physical
location of the corresponding class file is /mycode/com/ejavaguru/Course.class and
execution takes place within the mycode directory, which of the following lines of
code, when inserted at // | NSERT CODE HERE, will import the Cour se class into the
class MyCour se?

/1 1 NSERT CODE HERE

cl ass MyCourse {
Cour se c;

}

a inport mycode. com ej avaguru. Cour se;
i mport com ej avagur u. Cour se;

i mport mycode. com ej avagur u;

d inport com ejavaguru;

i mport mycode. com ej avagur u*;

f import com ej avaguru*;

T

o

o

Q1-9. Examine the following code:

cl ass Course {
String courseNang;
}
cl ass EJavaGuru {
public static void main(String args[]) {
Course ¢ = new Course();
c.courseNane = "Java";
System out. println(c.courseNane);

Sample exam questions 83

Which of the following statements will be true if the variable cour seNane is defined as
a privat e variable?

a The class EJavaGur u will print Java.
b The class EJavaGur u will print nul | .
¢ The class EJavaGur u won’t compile.
d The class EJavaGur u will throw an exception at runtime.

Q1-10. Given the following definition of the class Cour se,

package com ej avagur u. cour ses;
cl ass Course {
public String courseNaneg;

}

what’s the output of the following code?

package com ej avagur u;
i nport com ej avagur u. cour ses. Cour se;
class EJavaGuru {
public static void main(String args[]) {
Course ¢ = new Course();
c.courseNane = "Java";
System out . println(c.courseNane);

a The class EJavaGur u will print Java.
b The class EJavaGur u will print nul | .
¢ The class EJavaGur u won’t compile.
d The class EJavaGur u will throw an exception at runtime.

Q1-11. Given the following code, select the correct options:

package com ej avagur u. cour ses;
cl ass Course {
public String courseNaneg;
public void setCourseName(private String nanme) {
cour seNanme = narne;

}

a You can’t define a method argument as a pri vat e variable.

b A method argument should be defined with either publ i ¢ or default accessibility.

¢ For overridden methods, method arguments should be defined with pr ot ect ed
accessibility.

d None of the above.

84

CHAPTER 1 Java basics

1.10 Answers to sample exam questions

Q1-1. Given:

class EJava {
/1..code

}

Which of the following options will compile?

package j ava. oca. associ at e;
class Guru {
EJava eJava = new EJava();

}

package j ava. oca;

i mport EJava,

class @uru {
EJava eJava;

}

package j ava. oca. *;
inmport java.default.*;
class Guru {

EJava eJava;

}

package j ava. oca. associ at e;
inmport default.*;
class Guru {

defaul t. EJava eJava;

}

None of the above

Answer: e

Explanation: A class that isn’t defined in a package gets implicitly defined in Java’s
default package. But such classes can’t be accessed by classes or interfaces, which are

explicitly defined in a package.

Option a is incorrect. The EJava class isn’t defined in a package, so it can’t be
accessed by the Qur u class, which is defined in the j ava. oca. associ at e package.

Options b, ¢, and d won’t compile. Option b uses invalid syntax in the i nport state-
ment. Options ¢ and d try to import classes from nonexistent packages—java.default

and default.

Q1-2. The following numbered list of Java class components is not in any particular
order. Select the correct order of their occurrence in a Java class (choose all that apply):

1 comments

2 inport statement

Answers to sample exam questions 85

package statement
methods
class declaration

o a & W

variables

a 1,3,2,5,6,4
b 3,1,2,5,4,6
¢ 3,2,1,4,5,6
d 3,2,1,5,6,4

Answer: a, b, d

Explanation: The comments can appear anywhere in a class. They can appear before
and after package and i nport statements. They can appear before or after a class,
method, or variable declaration.

The first statement (if present) in a class should be a package statement. It can’t be
placed after an i mport statement or a declaration of a class.

The import statement should follow a package statement and be followed by a
class declaration.

The class declaration follows the i nport statements, if present. It’s followed by the
declaration of the methods and variables.

Answer c is incorrect. None of the variables or methods can be defined before the
definition of a class or interface.

Q1-3. Which of the following examples defines a correct Java class structure?

a #connect java compiler;
#connect java virtual nachine;
cl ass EJavaGuru {}

b package java conpiler;
inport java virtual machine;
cl ass EJavaGuru {}

¢ inport javavirtual machi ne.*;
package javaconpil er;
class EJavaGuru {
voi d met hod1() {}
int count;

}

d package javaconpil er;
i mport javavi rtual machi ne. *;
cl ass EJavaGuru {
voi d methodl() {}
int count;

86

CHAPTER 1 Java basics

e #package javaconpil er;
$i nport javavirtual machi ne;
cl ass EJavaGuru {
voi d methodl() {}
int count;

}

f package javaconpiler;
import javavirtual machi ne;
Cl ass EJavaGuru {
voi d nmethodl() {}
int count;

Answer: d

Explanation: Option a is incorrect because #connect isn’t a statement in Java. # is
used to add comments in UNIX.

Option b is incorrect because a package name (Java conpiler) can’t contain
spaces. Also, j ava virtual nmachine isn’t a valid package name to be imported in a
class. The package name to be imported can’t contain spaces.

Option c is incorrect because a package statement (if present) must be placed
before an i nport statement.

Option e is incorrect. #package and $i nport aren’t valid statements or directives
in Java.

Option fis incorrect. Java is case-sensitive, so the word cl ass is not the same as the
word O ass. The correct keyword to define a class is cl ass.

Q1-4. Given the following contents of the Java source code file MyClass.java, select the
correct options:

/1 contents of Myd ass.java

package com ej avagur u;

import java.util.Date;

class Student {}
cl ass Course {}

a The imported class, j ava. util . Dat e, can be accessed only in the class St udent .

b The imported class, j ava. uti | . Dat e, can be accessed by both the St udent and
Cour se classes.

¢ Both of the classes St udent and Cour se are defined in the package com ej ava-
guru.

d Only the class Student is defined in the package com ej avaguru. The class
Cour se is defined in the default Java package.

Answer: b, ¢

Answers to sample exam questions 87

Explanation: You can define multiple classes, interfaces, and enums in a Java source
code file.

Option a is incorrect. The i nport statement applies to all the classes, interfaces,
and enums defined within the same Java source code file.

Option d is incorrect. If a package statement is defined in the source code file, all
the classes, interfaces, and enums defined within it will exist in the same Java package.

Q1-5. Given the following definition of the class EJavaGur u,

cl ass EJavaGuru {
public static void main(String[] args) {
Systemout.println(args[1]+":"+ args[2]+":"+ args[3]);
}
}

what is the output of the previous class, if it is executed using the following command?

java EJavaCuru one two three four

a one:two:three

b EJavaCuru: one:two
¢ java: EJavaQuru: one
d two:three:four

Answer: d

Explanation: The command-line arguments passed to the mai n method of a class do
not contain the word Java and the name of the class.
Because the position of an array is zero-based, the method argument is assigned
the following values:
args[0] -> one
args[1] -> two
args[2] -> three
args[3] -> four

The class prints t wo: t hree: f our.

Q1-6. Which of the following options, when inserted at// | NSERT CODE HERE, will print
out EJavaGuru?

public class ElavaGuru {
/1 1 NSERT CODE HERE

{
}

System out . println("EJavaGuru");

88

CHAPTER 1 Java basics

a public void main (String[] args)

b public void main(String args[])

¢ static public void main (String[] array)
d public static void main (String args)

e static public main (String args[])

Answer: ¢

Explanation: Option a is incorrect. This option defines a valid method but not a valid
mai n method. The mai n method should be defined as a st ati ¢ method, which is miss-
ing from the method declaration in option a.

Option b is incorrect. This option is similar to the method defined in option a,
with one difference. In this option, the square brackets are placed after the name of
the method argument. The mai n method accepts an array as a method argument, and
to define an array, the square brackets can be placed after either the data type or the
method argument name.

Option c is correct. Extra spaces in a class are ignored by the Java compiler.

Option d is incorrect. The mai n method accepts an array of String as a method
argument. The method in this option accepts a single Stri ng object.

Option e is incorrect. It isn’t a valid method definition and doesn’t specify the
return type of the method. This line of code will not compile.

Q1-7. What is the meaning of “write once, run anywhere”? Select the correct options:

a Java code can be written by one team member and executed by other team
members.

b Itis for marketing purposes only.

¢ It enables Java programs to be compiled once and can be executed by any JVM
without recompilation.

d Old Java code doesn’t need recompilation when newer versions of JVMs are
released.

Answer: ¢

Explanation: Platform independence, or “write once, run anywhere,” enables Java
code to be compiled once and run on any system with a JVM. It isn’t for marketing
purposes only.

Q1-8. A class Cour se is defined in a package com ej avagur u. Given that the physical
location of the corresponding class file is /mycode/com/ejavaguru/Course.class
and execution takes place within the mycode directory, which of the following lines

Answers to sample exam questions 89

of code, when inserted at // | NSERT CODE HERE, will import the Cour se class into the
class MyCour se?

/1 1 NSERT CODE HERE
class MyCourse {

Cour se c;
}
a inmport mycode.com ej avaguru. Course;
b inport com ejavaguru. Cour se;
¢ inmport mycode.com ejavagur u;
d inmport com ejavaguru;
e inmport mycode.com ej avaguru*;
f inport com ej avaguru*;
Answer: b

Explanation: Option a is incorrect. The base directory, mycode, in which package
com ej avagur u is defined, must not be included in the i nport statement.

Options ¢ and e are incorrect. The class’s physical location isn’t specified in the
i mport statement.

Options d and f are incorrect. ej avagur u is a package. To import a package and its
members, the package name should be followed by . *, as follows:

i mport com ej avaguru. *;

Q1-9. Examine the following code:

cl ass Course {
String courseNang;

}
class EJavaGuru {
public static void main(String args[]) {
Course ¢ = new Course();
c.courseNane = "Java";
System out . println(c.courseNane);

}
Which of the following statements will be true if the variable cour seName is defined as

a privat e variable?

a The class EJavaGur u will print Java.

b The class EJavaGur u will print null.

¢ The class EJavaGur u won’t compile.

d The class EJavaGur u will throw an exception at runtime.

Answer: ¢

90

CHAPTER 1 Java basics

Explanation: If the variable cour seNane is defined as a pri vat e member, it won’t be
accessible from the class EJavaGur u. An attempt to do so will cause it to fail at compile
time. Because the code won’t compile, it can’t execute.

Q1-10. Given the following definition of the class Cour se,

package com ej avagur u. cour ses;
cl ass Course {
public String courseNaneg;

}

what’s the output of the following code?

package com ej avagur u;
i nport com ej avagur u. cour ses. Cour se;
cl ass EJavaGuru {
public static void main(String args[]) {
Course ¢ = new Course();
c.courseNane = "Java";
System out. println(c. courseNane);

}
}
a The class EJavaGur u will print Java.
b The class EJavaGur u will print nul | .
¢ The class EJavaQur u will not compile.
d The class EJavaGur u will throw an exception at runtime.
Answer: ¢

Explanation: The class will fail to compile because a nonpublic class can’t be accessed
outside a package in which it’s defined. The class Cour se therefore can’t be accessed
from within the class EJavaQur u, even if it’s explicitly imported into it. If the class itself
isn’t accessible, there’s no point in accessing a public member of a class.

Q1-11. Given the following code, select the correct options:

package com ej avagur u. cour ses;
cl ass Course {
public String courseNane;
public void setCourseNane(private String nane) {
cour seNane = nane;

}

a You can’t define a method argument as a pri vat e variable.
b A method argument should be defined with either publ i ¢ or default accessibility.

Answers to sample exam questions 91

¢ For overridden methods, method arguments should be defined with pr ot ect ed
accessibility.

d None of the above.

Answer: a

Explanation: You can’t add an explicit accessibility keyword to the method parame-
ters. If you do, the code won’t compile.

Working with
Java data types

Exam objectives covered in this chapter

What you need to know

[2.2] Differentiate between object reference
variables and primitive variables.

[2.1] Declare and initialize variables (including
casting of primitive data types).

[2.5] Develop code that uses wrapper classes
such as Boolean, Double, and Integer.

[3.1] Use Java operators; including parenthe-
ses to override operator precedence.

The primitive data types in Java, including scenar-
ios when a particular primitive data type should or
can’t be used. Similarities and differences between
the primitive data types.

Similarities and differences between primitive and
object reference variables.

Declaration and initialization of primitives and
object reference variables.

Literal values for primitive and object reference
variables.

How and when values are boxed and unboxed when
used with wrapper classes.

Use of assignment, arithmetic, relational, and logi-
cal operators with primitives and object reference
variables.

Valid operands for an operator. Output of an arith-
metic expression.

Determine the equality of two primitives.

How to override the default operator precedence by
using parentheses.

Imagine that you’ve just purchased a new home. You’ll likely need to buy different-
sized containers to store different types of food items, because one size can’t fit all.

92

2.1

Primitive variables 93

Also, you might move around food items in your home—perhaps because of a change
in the requirements over time (you wish to eat it or you wish to store it).

Your new Kkitchen is an analogy for how Java stores its data using different data
types, and manipulates the data using operators. The food items are like data types in
Java, and the containers used to store the food are like variables in Java. The change
in the requirements that triggers a change in the state of food items can be compared
to the processing logic. The agents of change (fire, heat, or cooling) that change the
state of the food items can be compared to Java operators. You need these agents of
change so that you can process the raw food items to create delicacies.

In the OCA Java SE 8 Programmer I exam, you’ll be asked questions on the various
data types in Java, such as how to create and initialize them and what their similarities
and differences are. The exam will also question you on using the Java operators. This
chapter covers the following:

= Primitive data types in Java

= Literal values of primitive Java data types

= Object reference variables in Java

= Valid and invalid identifiers

= Usage of Java operators

= Modification of default operator precedence via parentheses

Primitive variables

E [2.1] Declare and initialize variables (including casting of primitive data types)

[2.2] Differentiate between object reference variables and primitive variables

In this section, you’ll learn all the primitive data types in Java, their literal values, and

the process of creating and initializing primitive variables. A variable defined as one of
the primitive data types is a primitive variable.

Primitive data types, as the name suggests, are the simplest data types in a program-
ming language. In the Java language, they're predefined. The names of the primitive
types are quite descriptive of the values that they can store. Java defines the following
eight primitive data types:

= char

= byte

= short

= int

= |ong

= float

= double

= bool ean

CHAPTER 2 Working with Java data types

@?@ e

22?27?27
‘ Character H Integer ‘ Types of
values
‘ Decimal ‘ ‘ Boolean ‘

Figure 2.1 Matching a value
with its corresponding type

Examine figure 2.1 and try to match the given value with the corresponding type.
This should be a simple exercise. Table 2.1 provides the answers.

Table 2.1 Matching a value with its corresponding data type

Character values Integer values Decimal values Boolean
a 100 7.3 true
4573

In the preceding exercise, I categorized the data that you need to store as follows:
character, integer, decimal, and Boolean values. This categorization will make your
life simpler when confronted with selecting the most appropriate primitive data type
to store a value. For example, to store an integer value, you need a primitive data
type that’s capable of storing integer values; to store decimal numbers, you need a
primitive data type that can store decimal numbers. Simple, isn’t it?

Let’s map the types of data that the primitive data types can store, because it’s
always easy to group and remember information.

NOTE The category Boolean is not the same as the primitive data type bool ean
or wrapper class Bool ean. Java primitive data types and class names are dis-
played using code font.

The primitive data types can be categorized as follows: Boolean, character, and numeric
(further categorized as integral and floating-point) types. Take a look at this categori-
zation in figure 2.2.

As shown in figure 2.2, the char primitive data type is an unsigned numeric data
type. It can only store positive integers. The rest of the numeric data types (byte,
short, int,long, float, and doubl e) are signed numeric data types (they can store
both negative and positive values). The categorization in figure 2.2 will help you fur-
ther associate each data type with the value that it can store. Let’s start with the Bool-
ean category.

211

A
s\

Primitive variables 95

Primitive data types

JI
Numeric B
Signed Unsigned
] | } !
Integers Floating-point Character
S S S — !
byte short int long float double char boolean

Figure 2.2 Categorization of primitive data types

Category: Boolean

The Boolean category has only one data type: bool ean. A bool ean variable can store
one of two values: true or f al se. It’s used in scenarios where only two states can exist.
See table 2.2 for a list of questions and their probable answers.

Table 2.2 Suitable data that can be stored using a bool ean data type

Question Probable answers
Did you purchase the exam voucher? Yes/No
Did you log in to your email account? Yes/No
Did you tweet about your passion today? Yes/No
Tax collected in financial year 2001-2002 Good question! But it can’t be answered as yes/no.

EXAM TIP In this exam, the questions test your ability to select the best suit-
able data type for a condition that can only have two states: yes/no or true/
false. The correct answer here is the bool ean type.

Here’s some code that defines bool ean primitive variables:

bool ean voucher Purchased = true;
bool ean exanPrepStarted = fal se;

In some languages, such as JavaScript, you don’t need to define the type of a variable
before you use it. In JavaScript, the compiler defines the type of the variable according

96

212

CHAPTER 2 Working with Java data types

to the value that you assign to it. Java, in contrast, is a strongly typed language. You
must declare a variable and define its type before you can assign a value to it. Figure 2.3
illustrates defining a bool ean variable and assigning a value to it.

boolean result = false;

Figure 2.3 Defining and
assigning a primitive variable

Another point to note here is the value that’s assigned to a bool ean variable. I used
the literals t rue and f al se to initialize the bool ean variables. A /literal is a fixed value
that doesn’t need further calculations in order for it to be assigned to any variable.
true and f al se are the only two bool ean literals.

NOTE There are only two bool ean literal values: t r ue and f al se.

Category: signed numeric

The numeric category defines two subcategories: integers and floating point (also
called decimals). Let’s start with the integers.

INTEGERS: BYTE, INT, SHORT, LONG
When you can count a value in whole numbers, the result is an integer. It includes
both negative and positive numbers. Table 2.3 lists probable scenarios in which the
data can be stored as integers.

Table 2.3 Data that can be categorized as numeric (nondecimal numbers) data type

Situation Can be stored as integers?
Number of friends on Facebook Yes
Number of tweets posted today Yes
Number of photographs uploaded for printing Yes
Your body temperature Not always

You can use the byte, short, int, and | ong data types to store integer values. Wait a
minute: why do you need so many types to store integers?

Each one of these can store a different range of values. The benefits of the smaller
ones are obvious: they need less space in memory and are faster to work with. Table 2.4

Primitive variables 97

lists all these data types, along with their sizes and the ranges of the values that they
can store.

Table 2.4 Ranges of values stored by the signed numeric Java primitive data types

Data type Size Range of values

byte 8 bits -128 to 127, inclusive

short 16 bits -32,768 to 32,767, inclusive

i nt 32 bits -2,147,483,648 t0 2,147,483,647, inclusive

| ong 64 bits -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, inclusive

The OCA Java SE 8 Programmer I exam may ask you questions about the range of
integers that can be assigned to a byt e data type, but it won’t include questions on the
ranges of integer values that can be stored by short, int, or | ong data types. Don’t
worry—you don’t have to memorize the ranges for all these data types!

Here’s some code that assigns literal values to primitive numeric variables within
their acceptable ranges:

byte num = 100;

short sum = 1240;

int total = 48764;

| ong popul ation = 214748368;

The default type of a nondecimal number is i nt . To designate an integer literal value
as a | ong value, add the suffix L or| (L in lowercase), as follows:

long fishlnSea = 764398609800L;

Integer literal values come in four flavors: binary, decimal, octal, and hexadecimal:

= Binary number system—A base-2 system, which uses only 2 digits, 0 and 1.

= Octal number system—A base-8 system, which uses digits 0 through 7 (a total of 8
digits). Here the decimal number 8 is represented as octal 10, decimal 9 as 11,
and so on.

» Decimal number system—The base-10 number system that you use every day. It’s
based on 10 digits, from 0 through 9 (a total of 10 digits).

» Hexadecimal number system—A base-16 system, which uses digits 0 through 9 and
the letters A through F (a total of 16 digits and letters). Here the number 10 is
represented as Aora, l1l1asBorb,12asCorc,13asDord, 14asE ore, and 15
as Forf.

Let’s take quick look at how you can convert integers in the decimal number system to
the other number systems. Figures 2.4, 2.5, and 2.6 show how to convert the decimal
number 267 to the octal, hexadecimal, and binary number systems.

98 CHAPTER 2 Working with Java data types

8)26733 8J 334 8) 4 Lo Ans=413

-264 -32 -0

3 1 4 Figure 2.4 Converting an
| integer from decimal to octal

16026746 16) 160 16) 1 L0 Ans=10B (11isBinhex)

26 16 0
1 0 1 Figure 2.5 Converting an integer
from decimal to hexadecimal
2|267 Ans=1 00001011
2|133-1 f
2]66-1
2|33-0
2|16-1
2(8-0
214-0
2(2-0
210 Figure 2.6 Converting an
0-1 _— integer from decimal to binary

& EXAM TIP In the exam, you won’t be asked to convert a number from the

o2 . .

ES decimal number system to the octal and hexadecimal number systems and
vice versa. But you can expect questions that ask you to select valid literals for
integers. The figures 2.4-2.6 will help you understand these number systems
better and retain this information longer, which will in turn enable you to
answer questions correctly during the exam.

You can assign integer literals in base decimal, binary, octal, and hexadecimal. For
octal literals, use the prefix 0; for binary, use the prefix 0B or 0b; and for hexadecimal,
use the prefix 0X or 0x. Here’s an example of each of these:
]) _ 267 in decimal number system is
267 in Int baseDechaI - 267; equal to 413 in octal number system 267 in decimal number
decimal int octVal = 0413, .
. _ . system is equal to 10B
number int hexVal = 0x10B; in hexadecimal
int binval = 0b100001011; N In hexadecima
system ! ’ 267 in decimal number system number system
is equal to 100001011 in

binary number system

Primitive variables 99

Java 7 introduced the use of underscores as part of the literal values. Grouping indi-
vidual digits or letters of literal values makes them more readable. The underscores
have no effect on the values. The following is valid code:

| ong baseDeci mal = 100_267_760;

long octVal = 04 13: :Iore-nlaadatblle Iitﬁr::l va(liuef inlbti:a:y,
| ong hexval = 0x10_BA_75; underscores to group digits and letters
I ong binval = 0bl1_0000_10 11; group dig

RULES TO REMEMBER
Here’s a quick list of rules for usage of underscores in the numeric literal values:

= You can place an underscore right after the prefix 0, which is used to define an
octal literal value.

= You can’t start or end a literal value with an underscore.

= You can’t place an underscore right after the prefixes Ob, 0B, 0x, and 0X, which
are used to define binary and hexadecimal literal values.

= You can’t place an underscore prior to an L suffix (the L suffix is used to mark a
literal value as | ong).

= You can’t use an underscore in positions where a string of digits is expected
(see the following example).

Because you’re likely to be questioned on valid and invalid uses of underscores in lit-
eral values on the exam, let’s look at some invalid examples:

int intLiteral = _100; ‘ Can’t start or end a literal
int intLiteral2 = 100_999_; value with an underscore

long longLiteral = 100_L;
Can’t place an underscore

prior to suffix L

The following line of code will compile successfully but will fail at runtime:

int i = Integer.parselnt("45_98"); 4—{ Ian::J;'c‘lgu::(;;;:?:r:;:::t&here

Because a String value can accept underscores, the compiler will compile the previ-
ous code. But the runtime will throw an exception stating that an invalid format of
value was passed to the method par sel nt .

Here’s the first Twist in the Tale exercise of this chapter for you to attempt. It uses
multiple combinations of underscores in numeric literal values. See if you can get all
of them right (answers in the appendix).

100

CHAPTER 2 Working with Java data types

Twist in the Tale 2.1

Let’s use the primitive variables baseDeci mal , oct Val , hexVal , and bi nVal defined
earlier in this section and introduce additional code for printing the values of all these
variables. Determine the output of the following code:

cl ass Twi st nTal eNunber Systens {

public static void main (String args[]) {
int baseDeci mal = 267,
int octVal = 0413;
int hexVal = 0x10B;
int binVal = 0b100001011;
Systemout.println (baseDeci mal + octVal);
Systemout.println (hexVal + binVal);

Here’s another quick exercise—let’s define and initialize some | ong primitive vari-
ables that use underscores in the literal values assigned to them. Determine which of
these does this job correctly:

long varl = 0_100_267_760;

long var2 = 0_x_4_13;

long var3 = 0b_x10_BA 75;
long var4 = 0b_10000_10_11;
long var5 = 0xalO0_AG 75;
long var6 = 0x1_0000_10;

long var7 = 100__12_12;

FLOATING-POINT NUMBERS: FLOAT AND DOUBLE

You need floating-point numbers where you expect decimal numbers. For example,
can you define the probability of an event occurring as an integer? Table 2.5 lists prob-
able scenarios in which the corresponding data is stored as a floating-point number.

Table 2.5 Data that’s stored as floating-point numbers

Situation Is the answer a floating-point number?

Orbital mechanics of a spacecraft Yes (very precise values are required)
Probability of your friend request being accepted Yes; probability is between 0.0 (none) and 1.0 (sure)
Speed of Earth revolving around the sun Yes

Magnitude of an earthquake on the Richter scale | Yes

Primitive variables 101

In Java, you can use the f| oat and doubl e primitive data types to store decimal num-
bers. f| oat requires less space than doubl e, but it can store a smaller range of values
than doubl e. f| oat is less precise than doubl e. f| oat can’t represent accurately some
numbers even if they’'re in range. The same limitation applies to doubl e—even if it’s a
data type that offer more precision. Table 2.6 lists the sizes and ranges of values for
float and doubl e.

Table 2.6 Range of values for decimal numbers

Data type Size Range of values

f | oat 32 bits +/-1.4E-45 to +/-3.4028235E+38, +/-infinity, +/-0, NaN

doubl e 64 bits +/-4.9E-324 to +/-1.7976931348623157E+308, +/-infinity, +/-0, NaN

Here’s some code in action:

float average = 20. 129F;
float orbit = 1765. 65f;
doubl e inclination = 120.1762;

Did you notice the use of the suffixes F and f while initializing the variables aver age
and or bi t in the preceding code? The default type of a decimal literal is doubl e, but
by suffixing a decimal literal value with F or f, you tell the compiler that the literal
value should be treated like a f | 0oat and not a doubl e.

You can also assign a literal decimal value in scientific notation as follows:

doubl e inclination2 = 1.201762e2; q—{ 120‘1?62 is same as 1.2.017-62e2 (th?
latter is expressed in scientific notation)

You can also add the suffix D or d to a decimal number value to specify that it’s a
doubl e value. Because the default type of a decimal number is doubl e, the use of the
suffix D or d is redundant. Examine the following line of code:

doubl e inclination = 120.1762D; <+—— 120.1762D is same as 120.1762

Starting with Java version 7, you can also use underscores with the floating-point literal
values. The rules are generally the same as previously mentioned for numeric literal val-
ues; the following rules are specific to floating-point literals:
= You can’t place an underscore prior to a D, d, F, or f suffix (these suffixes are
used to mark a floating-point literal as doubl e or f| oat).
= You can’t place an underscore adjacent to a decimal point.

Let’s look at some examples that demonstrate the invalid use of underscores in floating-
point literal values:

float floatLiteral = 100._48F; Can’t use underscore
doubl e doubl eLiteral = 100_.87; adjacent to a decimal point

102 CHAPTER 2 Working with Java data types

float floatLiteral 2 = 100.48_F; Can’t use underscore
doubl e doubl eLiteral 2 = 100. 87_d; prior to suffix F, f, D, or d

2.1.3 Category: character (unsigned integer)

The character category defines only one data type: char. A char is an unsigned inte-
ger. It can store a single 16-bit Unicode character; that is, it can store characters from
virtually all the existing scripts and languages, including Japanese, Korean, Chinese,
Devanagari, French, German, and Spanish. Because your keyboard may not have keys
to represent all these characters, you can use a value from \ u0000 (or 0) to a maxi-
mum value of \ uf fff (or 65, 535) inclusive. The following code shows the assignment
of a value to a char variable:

Use single quotes to assign
a char, not double quotes.

char c1 ='D;
A very common mistake is using double quotes to assign a value to a char . The correct
option is single quotes. Figure 2.7 shows a conversation between two (hypothetical)
programmers, Paul and Harry.

pr can you No double quotes!
3ssign char O to It's char c= 0
3 variable?

Figure 2.7 Never use double quotes to assign a letter as a char value.

What happens if you try to assign a char using double quotes? The code will fail to
compile, with this message:

Type mismatch: cannot convert from String to char

& EXAM TIP Never use double quotes to assign a letter to a char variable. Dou-
ot . . .
/) ble quotes are used to assign a value to a variable of type St ri ng.

Internally, Java stores char data as an unsigned integer value (positive integer). It’s
therefore acceptable to assign a positive integer value to a char, as follows:

char c1 = 122; <+—— Assignz tocl

5

Primitive variables 103

NOTE The exam will test you on multiple (obscure) techniques like assigning
an unsigned integer value to a char data type. But I don’t recommend using
these on real projects. Please write code that’s readable and easy to maintain.

The integer value 122 is equivalent to the letter z, but the integer value 122 is not
equal to the Unicode value \ u0122. The former is a number in base 10 (uses digits 0-9)
and the latter is a number in base 16 (uses digits 0-9 and letters a—f—lower- or upper-
case). \ U is used to mark the value as a Unicode value. You must use quotes to assign
Unicode values to char variables. Here’s an example:

char c2 = '\u0122';
Systemout.printin("cl
Systemout.println("c2

"rocl);
"+ c2);

Figure 2.8 shows the output of the preceding code on a system that supports Unicode
characters.

cl=z Figure 2.8 The output of assigning a character using the
c2=G integer value 122 versus the Unicode value \u0122

As mentioned earlier, char values are unsigned integer values, so if you try to assign a
negative number to one, the code won’t compile. Here’s an example:

char c3 = -122; <—— Fails to compile

But you can forcefully assign a negative number to a char type by casting it to char,
as follows:

char ¢3 = (char)-122;
Systemout.println("c3 =" + ¢3);

<] Compiles successfully
In the previous code, note how the literal value —122 is prefixed by (char) . This practice
is called casting. Casting is the forceful conversion of one data type to another data type.
You can cast only compatible data types. For example, you can cast a char to ani nt
and vice versa. But you can’t cast an i nt to a bool ean value or vice versa. When you
cast a bigger value to a data type that has a smaller range, you tell the compiler that
you know what you’re doing, so the compiler proceeds by chopping off any extra bits
that may not fit into the smaller variable. Use casting with caution—it may not always
give you the correct converted values.
Figure 2.9 shows the output of the preceding code that cast a value to ¢3 (the value
looks weird!).

Figure 2.9 The output of assigning a negative
c3 == value to a character variable

104

2.1.4

|
)

biAES

CHAPTER 2 Working with Java data types

The char data type in Java doesn’t allocate space to store the sign of an integer. If you
try to forcefully assign a negative integer to char, the sign bit is stored as the part of
the integer value, which results in the storage of unexpected values.

EXAM TIP The exam will test your understanding of the possible values that
can be assigned to a variable of type char, including whether an assignment
will result in a compilation error. Don’t worry—it won’t test you on the value
that’s actually displayed after assigning arbitrary integer values to a char!

Confusion with the names of the primitive data types

If you’ve previously worked in another programming language, there’s a good chance
that you might get confused with the names of the primitive data types in Java and other
languages. For example, C defines a primitive short int data type. But short and i nt
are two separate primitive data types in Java. The OCA Java SE 8 Programmer I exam
will test you on your ability to recognize the names of the primitive data types, and the
answers to these questions may not be immediately obvious. An example follows:

Question: What is the output of the following code?

public class MyChar {
public static void main(String[] args) {

int nylnt = 7,

bool result = true;

if (result == true)
do

Systemout. println(nylnt);

while (nylnt > 10);

a Itprints 7 once.
b It prints nothing.
¢ Compilation error.

d Runtime error.

The correct answer is (c). This question tries to trick you with complex code that
doesn’t use any i f constructs or do-whi | e loops! As you can see, it uses an incorrect
data type name, bool , to declare and initialize the variable resul t. Therefore, the
code will fail to compile.

EXAM TIP Watch out for questions that use incorrect names for the primitive
data types. For example, there isn’t any bool primitive data type in Java. The
correct data type is bool ean. If you've worked with other programming lan-
guages, you might get confused trying to remember the exact names of all the
primitive data types used in Java. Remember that just two of the primitive data
types—i nt and char—are shortened; the rest of the primitive data types
(byte, short, | ong, fl oat, and doubl e) are not.

2.2

221

Identifiers 105

Identifiers

Identifiers are names of packages, classes, interfaces, methods, and variables. Though
identifying a valid identifier is not explicitly included in the exam objectives, there’s a
good chance that you’ll encounter a question similar to the following that will require
you to identify valid and invalid identifiers:

Question: Which of the following lines of code will compile successfully?
=7,
= 1090;

a byte examtotal
b int exam Tot al

The correct answer is (a). Option (b) is incorrect because hyphens aren’t allowed in
the name of a Java identifier. Underscores are allowed.

Valid and invalid identifiers

Table 2.7 contains a list of rules that will enable you to correctly define valid (and
invalid) identifiers, along with some examples.

Table 2.7 Ingredients of valid and invalid identifiers

Properties of valid identifiers

Properties of invalid identifiers

Unlimited length

Starts with a letter (a-z, upper- or lowercase), a
currency sign, or an underscore

Can use a digit (not at the starting position)
Can use an underscore (at any position)

Can use a currency sign (at any position): =, $, £,
¢, ¥, and others

Same spelling as a Java reserved word or keyword
(see table 2.8)

Uses special characters: |, @#, %", & *, (,),
TR RV A

Starts with a Java digit (0-9)

Examples of valid identifiers

Examples of invalid identifiers

cust oner Val ueObj ect

$rate, £Value, _sine
happy2Hel p, null Val ue
Const ant

7wor | d (identifier can’t start with a digit)
%al ue (identifier can’t use special char %

Di gital !, books@ranni ng (identifier can’t
use special char! or @

nul | ,true, fal se, got o (identifier can’t have
the same name as a Java keyword or reserved
word)

You can’t define a variable with the same name as Java keywords or reserved words. As
these names suggest, they're reserved for specific purposes. Table 2.8 lists Java key-
words, reserved words, and literals that you can’t use as identifier names.

106

2.3

CHAPTER 2 Working with Java data types

Table 2.8 Java keywords and reserved words that can’t be used as names for Java variables

abstract def aul t goto package this
assert do i f private throw
bool ean doubl e i mpl enent s protected t hr ows
br eak el se i mport public transi ent
byt e enum i nst anceof return true
case ext ends i nt short try
catch fal se interface static voi d
char final | ong strictfp vol atile
cl ass finally native super whi | e
const f1 oat new switch

conti nue for nul | synchroni zed

Let’s combat some of the common mistakes when determining correct and incorrect
variables using the following variable declarations:

Valid: underscore
is allowed

Valid: combination of
two or more keywords Valid (but using both of these
together can be very confusing)
j avaSeni nar ;

. Invalid: hyphen
isn’t allowed
Invalid: a dot in
Invalid: % si a variable name
j Valid (though nvalid: % sign is not allowed

isn’t allowed
strange)

int fal setrue;
int javasem nar,
i nt DATA- COUNT;
int DATA_COUNT;
int car.count;
int %tr;

int ¥tofAnd$c¢;

Next, let’s look at the object reference variables and how they differ from the primi-
tive variables.

Object reference variables

E [2.1] Declare and initialize variables (including casting of primitive data types)

[2.2] Differentiate between object reference variables and primitive variables

The variables in Java can be categorized into two types: primitive variables and reference

variables. In this section, along with a quick introduction to reference variables, we’ll
cover the basic differences between reference variables and primitive variables.

Reference variables are also known as object reference variables or object references. 1 use
these terms interchangeably in this text.

231

Object reference variables 107

What are object reference variables?

Objects are instances of classes, including both predefined and user-defined classes. For

a reference type in Java, the variable name evaluates to the address of the location in

memory where the object referenced by the variable is stored. An object reference is, in

fact, a memory address that points to a memory area where an object’s data is located.
Let’s quickly define a barebones class, Per son, as follows:

cl ass Person {}

When an object is instantiated with the new operator, a memory address value to that
object is returned. That address is usually assigned to the reference variable. Figure 2.10
shows a line of code that creates a reference variable per son of type Per son and assigns
an object to it.

Person person = new Person();

Figure 2.10 The creation
and assignment of a
reference variable

When the statement shown in figure 2.10 executes, three things happen:
= A new Person object is created.
= A variable named per son is created in the stack with an empty (nul |) value.
® The variable person is assigned the memory address value where the object

is located.

Figure 2.11 contains an illustration of a reference variable and the object it refers to
in memory.

Person person = new Person();

Object reference, | B1050 f-------.___ Person object
variable person e located at
“777h~._ address B1050
) Heap ™.
memory N
Stack
memory

Figure 2.11 An object reference variable and the referenced object in memory

108

5

CHAPTER 2 Working with Java data types

You can think of an object reference variable as a handle to an object that allows you

access to that object’s attributes. The following analogy will help you understand

object reference variables, the objects that they refer to, and their relationship. Think

of objects as analogous to dogs, and think of object references as analogous to leashes.

Although this analogy won’t bear too much analysis, the following comparisons are valid:
= Aleash not attached to a dog is a reference object variable with a nul | value.

= A dog without a leash is a Java object that’s not referred to by any object refer-
ence variable.

= Just as an unleashed dog might be picked up by animal control, an object that
isn’t referred to by a reference variable is liable to be garbage collected (removed
from memory by the JVM).

= Several leashes may be tethered to a single dog. Similarly, a Java object may be
referenced by multiple object reference variables.

Figure 2.12 illustrates this analogy.

— 3

A leash without a dog. A dog without a leash.

Several leashes may be tethered to one dog.

Figure 2.12 Dog leash analogy for understanding objects

The default value of all types of object reference variables is nul | . You can also assign
anul | value to a reference variable explicitly. Here’s an example:

Person person = null;

In this case, the reference variable per son can be compared to a leash without a dog.

NOTE The literal value for all types of object reference variables is nul | .

23.2

Object reference variables 109

Differentiating between object reference variables and
primitive variables

Just as men and women are fundamentally different (according to John Gray, author
of Men Are from Mars, Women Are from Venus), primitive variables and object reference
variables differ from each other in multiple ways. The basic difference is that primitive
variables store the actual values, whereas reference variables store the addresses of the
objects they refer to.

Let’s assume that a class Per son is already defined. If you create an i nt variable a
and an object reference variable person, they will store their values in memory, as
shown in figure 2.13.

int a=77,
Person person = new Person();

77 — Object stored at
address B10
Heap -
o memory
B1O -7~ o
Stack
memory

Figure 2.13 Primitive variables store the actual values, whereas object reference
variables store the addresses of the objects they refer to.

Other important differences between primitive variables and object reference vari-
ables are shown in figure 2.14 as a conversation between a girl and a boy. The girl rep-
resents an object reference variable and the boy represents a primitive variable.
(Don’t worry if you don’t understand all of these analogies. They’ll make much more
sense after you read related topics in later chapters.)

In the next section, you’ll start manipulating these variables using operators.

110 CHAPTER 2 Working with Java data types

Category Object reference variables Primitive variables

I like the simplicity in
the way I am created.
I store the actusl
values.

I like the sophistication
in the way I am created.
I store the address of
the object to which T
refer.

Storage

@

No conFusion
here! Simply use

To compare

Determination i
refFerence varisbles,

of equality
use the == operator. To the == operator to
compare the objects I refer compare primitive
to, use the equals () values.
method.
Count of There is no limit Even though there
types to the types of classes. are only eight types of

I rule the Java world! primitives, we are the
You can Find me all over ones that are used

the dava code! within sll objects to
. share values.
~

Arguments
passed to
methods

I am so cool!
Methods do not
discriminate
3gainst me!

I hate the They may change my
diffFerence inway state or assign @ new
methods treat me object to me. In the

when they sccept me |sttep case, changes

85 8 method are not reflected back

parameter! in the calling method.

Figure 2.14 Differences between object reference variables and primitive variables

24

Operators 111

Category Object reference variables Primitive variables

Literal values Poor reference

variables! I enjoy the
luxury of seperate litersl
values For different

primitive values:
boolean - False
integer - O
decimal - 0.0
char - /u0000

Ha! Ha! Ha!
I don 't Pear the
garbage collector!

Primitive values

are not marked
For garbage
collection.

I have just one
literal value For sl
types of reference
variables: null.

Garbage collection The object
I refer tois
reclaimed by the
garbage collector
when I don't refer

to it any longer.

&

Java operators

I enjoy the I enjoy
peace of not being the privelege of

disturbed by all Java working with so many
operators - especislly Java operators:
arithmetic: -arithmetic
4=, -=, *=, [= -assignment
-logical
' -relstional.

Figure 2.14 Differences between object reference variables and primitive variables (continued)

Operators

E [3.1] Use Java operators; including parentheses to override operator

precedence

In this section, you’ll use different types of operators—assignment, arithmetic, rela-
tional, and logical—to manipulate the values of variables. You’ll write code to deter-
mine the equality of two primitive data types. You’ll also learn how to modify the

112

24.1

OK to
assign
variables
of same

type

CHAPTER 2 Working with Java data types

default precedence of an operator by using parentheses. For the OCA Java SE 8 Pro-
grammer I exam, you should be able to work with the operators listed in table 2.9.

Table 2.9 Operator types and the relevant operators

Operator type Operators Purpose

Assignment = 4=, -=*= /= Assign value to a variable

Arithmetic +,-,%,1,%++, - - Add, subtract, multiply, divide, and modulus primitives
Relational <, <=,>,>= === Compare primitives

Logical 1, &&, | | Apply NOT, AND, and OR logic to primitives

NOTE Not all operators can be used with all types of operands. For example,
you can determine whether a number is greater than another number, but
you can’t determine whether true is greater than fal se or a number is
greater than t r ue. Take note of this as you learn the usage of all the operators
on this exam.

Assignment operators

The assignment operators that you need to know for the exam are =, +=, - =, *=,

and / =.

The simple assignment operator, =, is the most frequently used operator. It’s used
to initialize variables with values and to reassign new values to them.

The +=, - =, *=, and / = operators are short forms of addition, subtraction, multipli-
cation, and division with assignment. The += operator can be read as “first add and
then assign,” and - = can be read as “first subtract and then assign.” Similarly, * = can be
read as “first multiply and then assign,” /= can be read as “first divide and then
assign,” and % can be read as “first modulus and then assign.” If you apply these oper-
ators to two operands, a and b, they can be represented as follows:

a-=bisequal toa=a->b
a+=Dbis equal toa=a+b
a*=bisequal toa=a*b
a/=bisequal toa=a/ b
a % bis equal toa=a %b

Let’s have a look at some valid lines of code:

i

OK to assign variables
of same type

OK to assign literal 10.2
to variable of type double
doubl e nmyDoubl e2 = 10. 2;
int a = 10;

int b= a;

float floatl = 10.2F;

float float2 = floatl; QT

OK to assign literal 10 to
variable of type int

OK to assign literal
10.2F to variable of
type float

Reassign

a value of
10 to both
variables
aandb.

Operators

b += a: . .
' OK; b is assigned a value
a=b =10 of20. b = 10 + 10.
b -= a;
a=b>b = 10; OK; b is assigned a value
b *= a; of 0.b = 10 - 10.
z /_:ba__ 10; b is assigned a value of
' 100.b = 10 * 10.

b is assigned a value of
1.b=10/10.

Next let’s look at some invalid lines of code:

Ouch! boolean can’t Ouch! ch "
QJ be assigned to double. uch: char can

doubl e nyDoubl e2 = true; be assigned to
boolean b = '¢'; boolean.
bool ean bl = 0;
bool ean b2 -= bi; Ouch! boolean can’t be

Ouch! You can’t add or assigned a literal value

subtract boolean values. other than true or false.

113

Now let’s try to squeeze the variables that can store a larger range of values into vari-

ables with a shorter range. Try the following assignments:

Il ong num = 100976543356L; Compiler won’t
int val = num allow this

It’s similar to what’s shown in figure 2.15, where someone is forcefully trying to squeeze

a bigger value (| ong) into a smaller container (i nt).

JT Figure 2.15 Assigning a bigger value

(long) to a variable (int) that’s only

Small container (int) capable of storing a smaller value range

You can still assign a bigger value to a variable that can only store smaller ranges by
explicitly casting the bigger value to a smaller value. By doing so, you tell the compiler
that you know what you’re doing. In that case, the compiler proceeds by chopping off

any extra bits that may not fit into the smaller variable. Beware! Though chopping off

extra bits will make a bigger value fit in a smaller data type, the remaining bits won’t

represent the original value and can produce unexpected results.

114

B

N q
2

Define and
initialize
variables
on the
same line

CHAPTER 2 Working with Java data types

Compare the previous assignment example (assigning a | ong to an i nt) with the
following example that assigns a smaller value (i nt) to a variable (I ong) that’s capable
of storing bigger value ranges:

int intVal = 1009;
long longVval = intVal; | Allowed

Anint can easily fit into a | ong because there’s enough room for it (as shown in fig-
ure 2.16).

| can
easily fit

]
here! Figure 2.16 Assigning a smaller value (int) to

a variable (long) that’s capable of storing a

Big container (1ong) larger value range

EXAM TIP You can’t use the assignment operators to assign a bool ean value
to variables of type char, byte,int,short,|ong,fl oat, or doubl e, or vice versa.

You can also assign multiple values on the same line using the assignment operator.
Examine the following lines of code:

a=b=c: value of c is assigned to b and

int a=7 b=10 ¢ = 8; ? Assignment starts from right; the
System out. println(a); . the value of b is assigned to a
Prints

On the line tagged @, the assignment starts from right to left. The value of variable ¢
is assigned to the variable b, and the value of variable b (which is already equal to) is
assigned to the variable a. This is proved by the fact that line 3 prints 8, and not 7!
The next Twist in the Tale throws in a few twists with variable assignment and ini-
tialization. Let’s see if you can identify the incorrect ones (answers in the appendix).

Twist in the Tale 2.2

Let’s modify the assignment and initialization of the bool ean variables used in previous
sections. Examine the following code initializations and select the incorrect answers:

public class Foo {
public static void main (String args[]) {

bool ean bl, b2, b3, b4, b5, b6; /1l line 1
bl = b2 = b3 = true; /Il line 2
b4 = 0; /Il line 3
b5 = 'fal se'; /Il line 4
b6 = yes; /Il line 5

Operators 115

a The code on line 1 will fail to compile.

b Can’tinitialize multiple variables like the code on line 2.
¢ The code on line 3 is correct.

d Can’tassign' fal se' to a bool ean variable.

e The code on line b is correct.

2.4.2 Arithmetic operators

Let’s take a quick look at each of these operators, together with a simple example, in
table 2.10.

Table 2.10 Use of arithmetic operators with examples

Operator Purpose Usage Answer
+ Addition 12 + 10 22
- Subtraction 19 - 29 -10
* Multiplication 101 * 45 4545
/ Division (quotient) 10/ 6 1
10.0 / 6.0 1. 6666666666666667
% Modulus (remainder in division) 10 % 6 4
10.0 % 6.0 4.0
++ Unary increment operator; incre- ++var orvar ++ 11 (assuming value of
ments value by 1 var is 10)
-- Unary decrement operator; decre- | - -var orvar- - 9 (assuming value of var
ments value by 1 is 10)
o EXAM TIP You can use unary increment and decrement operators with vari-
ot . . > :
:g! ables but not with literal values. If you do, the code won’t compile.

When you apply the addition operator to char values, their corresponding ASCII val-
ues are added and subtracted. Here’s a quick example (the ASCII value of character

ais 97):

char charl = "'a'; Outputs a

System out. println(charl); <»J P
Systemout. print(charl + charl); <+—— Outputs 194

And the following code outputs 0:

char charl = 'a';
Systemout. print(charl - charil); <] Outputs 0

116

b))

&)l

%

)

R
i

B

CHAPTER 2 Working with Java data types

EXAM TIP You can use all arithmetic operators with the char primitive data
type, including unary increment and decrement operators.

IMPLICIT WIDENING OF DATA TYPES IN AN ARITHMETIC OPERATION

All byt e, short, and char values are automatically widened to i nt when used as oper-
ands for arithmetic operations. If a | ong value is involved somewhere, then every-
thing, including i nt values, is widened to | ong. This explains why you can’t assign the
sum of two byt e values to a short type:

byte agel = 10;)
byte age2 = 20; Fails t.o
short sum = agel + age2; compile

The preceding code fails with the following error message:

inconpatible types: possible |ossy conversion fromint to short
short sum = agel + age2;
N

1 error

EXAM TIP For arithmetic operations with data types char, byte, short, or
int, all operand values are widened to int. If an arithmetic operation
includes the data type | ong, all operand values are widened to | ong. If an
arithmetic operation includes a data type of f | oat or doubl e, all operand val-
ues are widened to doubl e.

But if you modify the preceding example and define variables agel and age2 as f i nal
variables, then the compiler is assured that their sum, value 30, can be assigned to a
variable of type short, without any loss of precision. In this case, the compiler is good
to assign the sum of agel and age2 to sum Here’s the modified code:

final byte agel = 10; .
final byte age2 = 20; Compiles
short sum = agel + age2; successfully

++ AND -- (UNARY INCREMENT AND DECREMENT OPERATORS)
The operators ++ and - - are unary operators; they work with a single operand. They’re
used to increment or decrement the value of a variable by 1.

Unary operators can also be used in prefix and postfix notation. In prefix notation,
the operator appears before its operand:

int a = 10; Operator ++ in

++a: prefix notation

3

In postfix notation, the operator appears after its operand:

int a = 10; Operator ++ in

a++: postfix notation

Operators 117

When these operators aren’t part of an expression, the postfix and prefix notations
behave in exactly the same manner:

? nt a = 20; <—— Assign 20 to a
L:‘_;; b = 10; Assign 10 to b

b++; .
Systemout. printin(a); < | Prints 21

Systemout.printin(b); < punec1q

When a unary operator is used in an expression, its placement with respect to its oper-
and decides whether its value will increment or decrement before the evaluation of
the expression or after the evaluation of the expression. See the following code,
where the operator ++ is used in prefix notation:

int a= 20 4] Assign20toa .

int b= 10; <+— Assign 10to b .ASSIgn 20 — (+ +10), that
int ¢c = a - ++b; is, 20-11, or 9, to c
Systemout.println(c); q—’ Prints 9

System out. println(b); <1—‘ Prints 11

In the preceding example, the expression a - ++b uses the increment operator (++) in
prefix notation. Therefore, the value of variable b increments to 11 before it’s sub-
tracted from 20, assigning the result 9 to the variable c.

When ++ is used in postfix notation with an operand, its value increments after it’s
been used in the expression:

int a =50 | HAssign50toa

int b = 10; <— Assign 10 to b Assign 50 — (10+ +), that
int ¢c = a- b++ is, 50-10, or 40, to c
System out. println(c); <1—‘ Prints 40

System out. println(b); <;_’ Prints 11

The interesting part here is that the value of b is printed as 11 in both cases because
the value of the variable increments (or decrements) as soon as the expression in
which it’s used is evaluated.

The same logic applies to the unary operator, - - . Here’s an example:
double d = 20.0; < | Assign20.0tod
double e = 10.0; <— Mssign 10.0 to e Assign 20.0 * (--10.0), that
double f =d * --e; is, 20.0 * 9.0, or 180.0, to f
System out. println(f); 4_’ Prints 180.0

Systemout. printin(e); <1—‘ Prints 9.0

118

CHAPTER 2 Working with Java data types

Let’s use the unary decrement operator (--) in postfix notation and see what happens:

double d = 20.0: <'_| Assign 20.0 to d

double e = 10.0: <— Mssign 10.0 to e Assig:: 20.0 * (10.0--), that is,
double f =d * e--; 20.0 * 10.0, or 200.0, to f
Systemout.println(f); <;_| .

System out. println(e); <+ Prints 9.0 Prints 200.0

Let’s check out some example code that uses unary increment and decrement opera-
tors in both prefix and postfix notation in the same line of code. What do you think
the output of the following code will be?

int a = 10;

a=at+ +a+a-- - a-- + ++a;
System out. println(a);

The output of this code is 32. The expression on the right-hand side evaluates from
left to right, with the following values, which evaluate to 32:

a=10 + 11 + 11 - 10 + 10;

The evaluation of an expression starts from left to right. For a prefix unary operator,
the value of its operand increments or decrements just before its value is used in an
expression. For a postfix unary operator, the value of its operand increments or decre-

ments just after its value is used in an expression. Figure 2.17 illustrates what’s hap-
pening in the preceding expression.

@) ©

a=a++ + a + a-- - a-- + ++a;

@ Q) ©

Figure 2.17 Evaluation of an expression that has multiple occurrences of unary operators in postfix
and prefix notation

For the exam, it’s important for you to have a good understanding of, and practice in,
using postfix and prefix operators. In addition to the expressions shown in the previous

24.3

Operators 119

examples, you can also find them in use as conditions in i f statements, f or loops, and
do- whi | e and whi | e loops.

The next Twist in the Tale exercise will give you practice with unary operators used
in prefix and postfix notation (answer in the appendix).

Twist in the Tale 2.3

Let’s modify the expression used in figure 2.17 by replacing all occurrences of unary
operators in prefix notation with postfix notations and vice versa. So ++a changes to
a++, and vice versa. Similarly, - - a changes to a- -, and vice versa. Your task is to evalu-
ate the modified expression and determine the output of the following code:

int a=10;
a=++ta +a+ --a- --a + at+
Systemout.println (a);

Try to form the expression by replacing the values of variable a in the expression and
explain each of them, the way it was done for you in figure 2.17.

Relational operators
Relational operators are used to check one condition. You can use these operators to
determine whether a primitive value is equal to another value or whether it is less than
or greater than the other value.

These relational operators can be divided into two categories:

= Comparing greater (>, >=) and lesser values (<, <=)
= Comparing values for equality (==) and inequality (! =)
The operators <, <=, >, and >= work with all types of numbers, both integers (includ-

ing char) and floating point, that can be added and subtracted. Examine the follow-
ing code:

int il = 10;
int i2 = 20)
Systemout.printin(il >=i2); <) Prints false

I ong longl = 10;
long I ong2 = 20; .
System out. println(longl <= |ong2); 4_1 Prints true

The second category of operators is covered in the following section.

EXAM TIP You can’t compare incomparable values. For example, you can’t
compare a bool ean with an i nt, a char, or a floating-point number. If you try
to do so, your code will not compile.

120 CHAPTER 2 Working with Java data types

COMPARING PRIMITIVES FOR EQUALITY (USING == AND !=)

The operators == (equal to) and ! = (not equal to) can be used to compare all types of
primitives: char, byte, short, int, | ong, fl oat, doubl e, and bool ean. The operator
== returns the bool ean value true if the primitive values that you're comparing are
equal, and f al se otherwise. The operator ! = returns t r ue if the primitive values that
you’re comparing are not equal, and f al se otherwise. For the same set of values, if ==
returns true, ! = will return f al se. Sounds interesting!

Examine the following code:

int a = 10;

int b = 20; .
Systemout.printin(a == b); | Prints false
Systemout.printin(a !'= b); 4 Prints true

bool ean bl = fal se;

Systemout. println(bl == true); | Prints false

Systemout.printin(bl != true); <+—— Prints true
System out. println(bl == fal se); .
Systemout.println(bl != false); Prints true

Prints false

Remember that you can’t apply these operators to incomparable types. In the follow-
ing code snippet, the code that compares an i nt variable to a bool ean variable will fail
to compile:

int a = 10;
bool ean bl = fal se; Cause.s .
Systemout.println(a == bl); compilation error

Here’s the compilation error:

inconparabl e types: int and bool ean
Systemout.println(a == bl);

A

& EXAM TIP The result of the relational operation is always a bool ean value.
S You can’t assign the result of a relational operation to a variable of type char,
int,byte,short,long,float, ordouble.

i
i

=

COMPARING PRIMITIVES USING THE ASSIGNMENT OPERATOR (=)
It’s a very common mistake to use the assignment operator, =, in place of the equality

operator, ==, to compare primitive values. Before reading any further, check out the
following code:

int a = 10;

int b = 20; Prints 20 (this is not
Systemout.println(a = b); a boolean value!)

bool ean bl = fal se; J Prints true
Systemout.println(bl = true);

Systemout. println(bl = false); <—— Prints false

24.4

Operators 121

In the previous example, @ isn’t comparing the variables a and b. It’s assigning the
value of the variable b to a and then printing out the value of the variable a, which is
20. Similarly, @ isn’t comparing the variable bl with the bool ean literal true. It’s
assigning the bool ean literal t r ue to variable bl and printing out the value of the vari-
able bl.

NOTE You can’t compare primitive values by using the assignment opera-
tor, =.

Logical operators

Logical operators are used to evaluate one or more expressions. These expressions
should return a bool ean value. You can use the logical operators AND, OR, and NOT to
check multiple conditions and proceed accordingly. Here are a few real-life examples:

m Case 1 (for managers)—Request promotion if customer is extremely happy with
the delivered project AND you think you deserve to be in your boss’s seat!

» Case 2 (for students)—Accept job proposal if handsome pay and perks OR awe-
some work profile.

» Case 3 (for entry-level Java programmers)—If NOT happy with current job, change it.

In each of these example cases, you’re making a decision (request promotion, accept
job proposal, or change job) only if a set of conditions is satisfied. In case 1, a manager
may request a promotion only if both the specified conditions are met. In case 2, a stu-
dent may accept a new job if either of the conditions is true. In case 3, an entry-level
Java programmer may change their current job if not happy with the current job, that
is, if the specified condition (being happy with the current job) is false.

As illustrated in these examples, if you wish to proceed with a task when both the
conditions are true, use the logical AND operator, &&. If you wish to proceed with a task
when either of the conditions is true, use the logical OR operator, || . If you wish to
reverse the outcome of a bool ean value, use the negation operator, ! .

Time to look at some code in action:

int a = 10; j Prints false
int b = 20;
Systemout.printin(a > 20 & b > 10); ﬁ Prints true
Systemout.printin(a > 20 || b > 10);
Systemout.println(! (b > 10)); 4—0 Prints false
Systemout.println(! (a > 20));

46 Prints true

© prints f al se because both of the conditions, a > 20 and b > 10, are not tr ue. The
first one (a > 20) is fal se. @ prints t r ue because one of these conditions (b > 10) is
true. @ prints f al se because the specified condition, b > 10, is t r ue. (4] prints t r ue
because the specified condition, a > 20, is f al se.

Table 2.11 will help you understand the result of using these logical operators.

122

5

CHAPTER 2 Working with Java data types

Table 2.11 Outcome of using boolean literal values with the logical operators AND, OR, and NOT

Operators && (AND) Operator | | (OR) Operator ! (NOT)
true && true - true true || true = true I'true > false
true && false > false true || false > true Ifalse > true
false & true > false false || true = true
false & false > false false || false > false
true && true && false > false || false || true >
fal se true

Here’s a summary of this table:

» Logical AND (&&)—Evaluates to tr ue if all operands are tr ue; f al se otherwise.

m Logical R (| |)—Evaluates to t r ue if any or all the operands are tr ue.

» Logical negation (!)—Negates the bool ean value. Evaluates to true for fal se
and vice versa.

The operators | and & can also be used to manipulate individual bits of a number
value, but I won’t cover this usage here, because it’s not on this exam.

&& AND || ARE SHORT-CIRCUIT OPERATORS

Another interesting point to note with respect to the logical operators & and || is
that they’re also called short-circuit operators because of the way they evaluate their
operands to determine the result. Let’s start with the operator &&

The && operator returns t r ue only if both the operands are true. If the first oper-
and to this operator evaluates to f al se, the result can never be true. Therefore, &&
does not evaluate the second operand. Similarly, the | | operator does not evaluate the
second operator if the first operand evaluates to t r ue.

int marks = 8; j Prints false
int total 10;
Systemout.printin(total < marks && ++marks > 5); 4? Prints 8
System out . println(marks);

Systemout.printin(total == 10 || ++marks > 10); <——@ Prints true

System out . println(marks);
<la Prints 8

In the first print statement @. because the first condition, t ot al < marks, evaluates to
fal se, the next condition, ++marks > 5, isn’t even evaluated. As you can see @, the
output value of marks is still 8 (the value to which it was initialized on line 1)! Simi-
larly, in the next comparison ©, because total == 10 evaluates to true, the second
condition, ++mar ks > 10, isn’t evaluated. Again, this can be verified when the value of
nar ks is printed again @, and the output is 8.

NOTE All the relational and logical operators return a bool ean value, which
can be assigned to a primitive bool ean variable.

Operators 123

The purpose of the next Twist in the Tale is to encourage you to play with code that
uses short-circuit operators. To determine whether a bool ean expression passed as an
operand to the shortcircuit operators evaluates, you can apply a unary increment
operator (in postfix notation) to the variable used in the expression. Compare the
new variable value with the old value to verify whether the expression was evaluated
(answers in the appendix).

Twist in the Tale 2.4

As you know, the short-circuit operators & and | | may not evaluate both their oper-
ands if they can determine the result of the expression by evaluating just the first
operand. Examine the following code and circle the expressions that you think will
evaluate. Draw a square around the expressions that you think may not execute. (For
example, on line 1, both a++ > 10 and ++b < 30 will evaluate.)

class Twi stlnTal eLLogi cal Operators {
public static void main (String args[]) {

int a = 10;
int b = 20;
int ¢ = 40;
Systemout.println(a++ > 10 || ++b < 30); /1 linel

Systemout.println(a > 90 & ++b < 30);
Systemout.println(!(c>20) && a==10);
Systemout.printin(a >= 99 || a <= 33 & b == 10);
Systemout.println(a >= 99 & a <= 33 || b == 10);

2.4.5 Operator precedence

What happens if you use multiple operators within a single line of code with multi-
ple operands? Which one should be treated like the king and given preference over
the others?

Don’t worry. Java already has a rule in place for just such a situation. Table 2.12 lists
the precedence of operators: the operator on top has the highest precedence, and
operators within the same group have the same precedence and are evaluated from
left to right.

124

5

CHAPTER 2 Working with Java data types

Table 2.12 Precedence of operators

Operator Precedence
Postfix Expr essi on++, expr essi on- -
Unary ++expr essi on, - - expr essi on, +expr essi on, - expr essi on, !
Multiplication * (multiply), / (divide), %(remainder)
Addition + (add), - (subtract)
Relational <, >, <=, >=
Equality ==,1=
Logical AND &&
Logical OR |
Assignment =, +=,-=,%*=, [=, %

NOTE Table 2.12 is limited to the operators that are part of the OCA exam.
You can access the complete list at https://docs.oracle.com/javase/ tutorial/
java/nutsandbolts/operators.html.

Let’s execute an expression that uses multiple operators (with different precedence)
in an expression:

int intl = 10, int2 = 20, int3 = 30; £ Prints 300
Systemout.printin(intl %int2 * int3 +intl/ int2);

Because this expression @ defines multiple operators with different precedence, it’s
evaluated as follows:

(((intl %int2) * int3)) + (intl/ int2)
(((10 %20) * 30)) + (10 / 20)

((10 *30)) + (0)

(300)

What if you don’t want to evaluate the expression in this way? The remedy is simple:
use parentheses to override the default operator precedence. Here’s an example that
adds i nt 3 and i nt 1 before multiplying by i nt 2:

int intl =10, int2 = 20, int3 = 30; . ,
Systemout.printin(intl %int2 * (int3 + intl) / int2); < Prints 20!

NOTE You can use parentheses to override the default operator precedence.
If your