
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

OpenCV	Essentials

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

OpenCV	Essentials

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started

Setting	up	OpenCV

Compiled	versus	precompiled	library

Configuring	OpenCV	with	CMake

Building	and	installing	the	library

Quick	recipe	for	setting	up	OpenCV

API	concepts	and	basic	datatypes

Our	first	program	–	reading	and	writing	images	and	videos

The	qmake	project	file

www.allitebooks.com

http://www.allitebooks.org

Reading	and	playing	a	video	file

Live	input	from	a	camera

Summary

2.	Something	We	Look	At	–	Graphical	User	Interfaces

Using	OpenCV’s	highgui	module

Text	and	drawing

Selecting	regions

Using	Qt-based	functions

Text	overlays	and	status	bar

The	properties	dialog

Windows	properties

Qt	images

Summary

3.	First	Things	First	–	Image	Processing

Pixel-level	access	and	common	operations

Image	histogram

Histogram	equalization

Brightness	and	contrast	modeling

Histogram	matching	and	LUT

Conversion	from	RGB	to	other	color	spaces

Filtering	with	the	retina	model

Arithmetic	and	geometrical	transforms

Arithmetic	transform

Geometrical	transforms

Summary

What	else?

4.	What’s	in	the	Image?	Segmentation

Thresholding

Contours	and	connected	components

Flood	fill

Watershed	segmentation

www.allitebooks.com

http://www.allitebooks.org

GrabCut

Summary

What	else?

5.	Focusing	on	the	Interesting	2D	Features

Interest	points

Feature	detectors

The	FAST	detector

The	SURF	detector

The	ORB	detector

The	KAZE	and	AKAZE	detectors

Feature	descriptor	extractors

Descriptor	matchers

Matching	the	SURF	descriptors

Matching	the	AKAZE	descriptors

Summary

What	else?

6.	Where’s	Wally?	Object	Detection

Object	detection

Detecting	objects	with	OpenCV

Cascades	are	beautiful

Object	detection	using	cascades

Training	your	own	cascade

Latent	SVM

Scene	text	detection

Summary

What	else?

7.	What	Is	He	Doing?	Motion

Motion	history

Reading	video	sequences

The	Lucas-Kanade	optical	flow

The	Gunnar-Farneback	optical	flow

www.allitebooks.com

http://www.allitebooks.org

The	Mean-Shift	tracker

The	CamShift	tracker

The	Motion	templates

The	Motion	history	template

The	Motion	gradient

The	Background	subtraction	technique

Image	alignment

Summary

What	else?

8.	Advanced	Topics

Machine	learning

The	KNN	classifier

The	Random	Forest	classifier

SVM	for	classification

What	about	GPUs?

Setting	up	OpenCV	with	CUDA

Configuring	the	OpenCV	build

Building	and	installing	the	library

A	quick	recipe	for	setting	up	OpenCV	with	CUDA

Our	first	GPU-based	program

Going	real	time

Performance

Summary

What	else?

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

OpenCV	Essentials

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

OpenCV	Essentials
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Production	reference:	1200814

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-424-4

www.packtpub.com

Cover	image	by	Arie	Leeuwesteijn	(<aleeuwesteyn@hotmail.com>)

http://www.packtpub.com
mailto:aleeuwesteyn@hotmail.com

Credits
Authors

Oscar	Deniz	Suarez

Mª	del	Milagro	Fernández	Carrobles

Noelia	Vállez	Enano

Gloria	Bueno	García

Ismael	Serrano	Gracia

Julio	Alberto	Patón	Incertis

Jesus	Salido	Tercero

Reviewers

Nashruddin	Amin

Emmanuel	d’Angelo

Karan	Kedar	Balkar

Arturo	de	la	Escalera

Commissioning	Editor

Ashwin	Nair

Acquisition	Editor

Sonali	Vernekar

Content	Development	Editor

Prachi	Bisht

Technical	Editor

Novina	Kewalramani

Project	Coordinator

Sageer	Parkar

Copy	Editors

Roshni	Banerjee

Dipti	Kapadia

Gladson	Monteiro

Aditya	Nair

Karuna	Narayanan

Adithi	Shetty

Stuti	Srivastava

Proofreaders

Simran	Bhogal

Bridget	Braund

Paul	Hindle

Bernadette	Watkins

Indexer

Hemangini	Bari

Mariammal	Chettiyar

Tejal	Soni

Graphics

Ronak	Dhruv

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Kyle	Albuquerque

Cover	Work

Kyle	Albuquerque

About	the	Authors
Oscar	Deniz	Suarez	is	the	author	of	more	than	50	refereed	papers	in	journals	and
conferences.	His	research	interests	are	mainly	focused	on	computer	vision	and	pattern
recognition.	He	received	the	runner-up	award	for	the	best	PhD	work	on	computer	vision
and	pattern	recognition	by	AERFAI	and	the	Image	File	and	Reformatting	Software
challenge	award	by	InnoCentive	Inc.	He	has	been	a	national	finalist	at	the	2009	Cor
Baayen	awards.	His	work	is	being	used	by	cutting-edge	companies	such	as	Existor,	GLIIF,
TapMedia,	E-Twenty,	and	others	and	has	also	been	added	to	OpenCV.	Currently,	he	works
as	an	associate	professor	at	the	University	of	Castilla-La	Mancha	and	contributes	to
Visilabs.	He	is	a	senior	member	of	IEEE	and	is	affiliated	with	AAAI,	SIANI,	CEA-IFAC,
AEPIA,	AERFAI-IAPR,	and	The	Computer	Vision	Foundation.	He	serves	as	an	academic
editor	for	the	journal	PLoS	ONE.	He	has	been	a	visiting	researcher	at	Carnegie	Mellon
University,	Pennsylvania,	USA;	Imperial	College,	London,	UK;	and	Leica	Biosystems,
Ireland.	He	has	co-authored	a	book	on	OpenCV	programming	for	mobile	devices.

Mª	del	Milagro	Fernández	Carrobles	received	her	Bachelor’s	degree	in	Computer
Science	and	Master’s	degree	in	Physics	and	Mathematics	from	the	University	of	Castilla-
La	Mancha,	Spain,	in	2010	and	2011,	respectively.	She	is	currently	a	PhD	candidate	and
works	at	Visilabs.	Her	research	interests	include	image	processing	and	artificial
intelligence,	especially	in	medical	imaging.

I	would	like	to	thank	my	parents	for	their	love	and	support.	Without	them,	I	would	never
have	gotten	where	I	am	today.	I	also	thank	Jorge	for	his	limitless	patience.

Noelia	Vállez	Enano	liked	computers	since	childhood,	although	she	didn’t	have	one
before	her	mid-teens.	In	2009,	she	finished	her	studies	in	Computer	Science	through	the
University	of	Castilla-La	Mancha.	She	started	her	work	at	the	Visilabs	group	through	a
project	about	mammography	CAD	systems	and	electronic	health	records.	Since	then,	she
has	obtained	a	Master’s	degree	in	Physics	and	Mathematics	and	has	enrolled	for	a	PhD
degree.	Her	work	involves	using	image	processing	and	pattern	recognition	methods.	She
also	likes	to	teach	and	work	in	other	areas	of	artificial	intelligence.

I	would	like	to	thank	Jose	and	the	rest	of	my	family	for	all	their	support	throughout	these
years	and	specially	now	that	I	am	writing	this	book	2200	km	away	from	them.

Gloria	Bueno	García	holds	a	PhD	in	Machine	Vision	from	Coventry	University,	UK.	She
has	experience	working	as	a	principal	researcher	in	several	research	centers,	such	as	UMR
7005	research	unit	CNRS,	Louis	Pasteur	University,	Strasbourg,	France;	Gilbert	Gilkes
and	Gordon	Technology,	UK;	and	CEIT	San	Sebastian,	Spain.	She	is	the	author	of	two
patents,	one	registered	software,	and	more	than	100	refereed	papers.	Her	interests	are	in
2D/3D	multimodality	image	processing	and	artificial	intelligence.	She	leads	the	Visilabs
research	group	at	the	University	of	Castilla-La	Mancha.	She	has	co-authored	a	book	on
OpenCV	programming	for	mobile	devices.

Ismael	Serrano	Gracia	received	his	Bachelor’s	degree	in	Computer	Science	in	2012	from
the	University	of	Castilla-La	Mancha.	He	scored	the	highest	marks	in	his	final	degree

project	about	human	detection.	This	application	uses	depth	cameras	with	OpenCV
libraries.	He	is	currently	a	PhD	candidate	at	the	same	university,	holding	a	research	grant
from	the	Spanish	Ministry	for	Science	and	Research.	He	is	also	working	at	the	Visilabs
group	as	an	assistant	researcher	and	developer	on	different	computer	vision	topics.

Julio	Alberto	Patón	Incertis	graduated	from	the	University	of	Castilla-La	Mancha.	He
started	developing	computer	vision	applications	as	part	of	his	Master’s	degree	project	in
Computer	Science.	He	has	focused	on	mobile	devices,	mainly	Android;	he	has	created	a
mobile	application	for	this	platform	that	is	capable	of	locating,	tracking,	and	recognizing
text	for	blind	people.	This	application	was	later	used	as	a	part	of	a	patent-pending	indoor
positioning	system.	OpenCV	has	been	an	essential	part	of	all	his	projects.

Thanks	to	my	parents,	as	their	huge	efforts	allowed	me	to	obtain	a	degree	at	the	university.
I	would	also	like	to	thank	the	Visilabs	research	group	for	giving	me	the	opportunity	to
start	developing	computer	vision	applications.

Jesus	Salido	Tercero	gained	his	Electrical	Engineering	degree	and	PhD	(1996)	at
Universidad	Politécnica	de	Madrid,	Spain.	He	then	spent	2	years	(1997/98)	as	a	visiting
scholar	at	The	Robotics	Institute	(Carnegie	Mellon	University,	Pittsburgh,	USA),	working
on	cooperative	multirobot	systems.	Since	his	return	to	the	Spanish	university	of	Castilla-
La	Mancha,	he	divides	his	work	time	between	teaching	courses	on	robotics	and	industrial
informatics	and	researching	on	vision	and	intelligent	systems.	For	the	past	3	years,	his
efforts	have	been	directed	to	develop	vision	applications	on	mobile	devices.	He	has	co-
authored	a	book	on	OpenCV	programming	for	mobile	devices.

To	my	three	precious	jewels:	Dorita,	Juan	Pablo,	and	Jacobo.

About	the	Reviewers
Nashruddin	Amin	has	been	programming	with	OpenCV	since	2008.	He	enjoys	learning
Computer	Vision	topics	and	writing	programs	using	OpenCV	for	research	purposes.	He
also	maintains	a	blog	(http://opencv-code.com)	where	he	shares	his	experiences	with
OpenCV.

Emmanuel	d’Angelo	is	an	image-processing	enthusiast	who	has	turned	his	hobby	into	a
job.	After	working	as	a	technical	consultant	on	various	projects	ranging	from	real-time
image	stabilization	to	large-scale	image	database	analysis,	he	is	now	in	charge	of
developing	Digital	Signal	Processing	applications	on	low-power	consumer	devices.	You
can	find	more	insight	about	his	research	and	image	processing	related	information	on	his
blog	at	http://www.computersdontsee.net/.

Emmanuel	holds	a	PhD	degree	from	the	Swiss	Federal	Institute	of	Technology,	EPFL,
Switzerland,	and	a	Master’s	degree	in	Remote	Sensing	from	ISAE,	Toulouse,	France.

Karan	Kedar	Balkar	has	been	working	as	an	independent	Android	application	developer
for	the	past	4	years.	Born	and	brought	up	in	Mumbai,	he	holds	a	Bachelor’s	degree	in
Computer	Engineering.	He	has	written	over	50	programming	tutorials	on	his	personal	blog
(http://karanbalkar.com)	that	cover	popular	technologies	and	frameworks.

At	present,	he	is	working	as	a	software	engineer.	He	has	been	trained	on	various
technologies	including	Java,	Oracle,	and	.NET.	Apart	from	being	passionate	about
technology,	he	loves	to	write	poems	and	to	travel	to	different	places.	He	likes	listening	to
music	and	enjoys	playing	the	guitar.

Firstly,	I	would	like	to	thank	my	parents	for	their	constant	support	and	encouragement.	I
would	also	like	to	thank	my	friends,	Srivatsan	Iyer,	Ajit	Pillai,	and	Prasaanth	Neelakandan
for	always	inspiring	and	motivating	me.

I	would	like	to	express	my	deepest	gratitude	to	Packt	Publishing	for	giving	me	a	chance	to
be	a	part	of	the	reviewing	process.

Arturo	de	la	Escalera	graduated	from	the	Universidad	Politecnica	de	Madrid,	Madrid,
Spain,	in	Automation	and	Electronics	Engineering	in	1989,	where	he	also	obtained	his
PhD	degree	in	Robotics	in	1995.	In	1993,	he	joined	the	department	of	Systems
Engineering	and	Automation	of	Universidad	Carlos	III	de	Madrid,	Madrid,	Spain,	where
he	is	an	Associate	Professor	since	1997.

His	current	research	interests	include	Advanced	Robotics	and	Intelligent	Transportation
Systems,	with	special	emphasis	on	vision	sensor	systems	and	image	data	processing
methods	for	environment	perception	and	real-time	pattern	recognition.	He	has	co-authored
more	than	30	articles	in	journals	and	more	than	70	papers	in	international	congresses.

Since	2005,	Arturo	de	la	Escalera	has	headed	the	Intelligent	Systems	Laboratory	at	UC3M
(www.uc3m.es/islab).	He	is	a	member	of	the	Editorial	Board	of	the	International	Journal
of	Advanced	Robotic	Systems	(topic—Robot	Sensors),	the	International	Journal	of
Information	and	Communication	Technology,	The	Open	Transportation	Journal,	and	The

http://opencv-code.com
http://www.computersdontsee.net/
http://karanbalkar.com
http://www.uc3m.es/islab

Scientific	World	Journal	(topic—Computer	Science).

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
OpenCV,	arguably	the	most	widely	used	computer	vision	library,	includes	hundreds	of
ready-to-use	imaging	and	vision	functions	and	is	extensively	used	in	both	academia	and
industry.	As	cameras	get	cheaper	and	imaging	features	grow	in	demand,	the	range	of
applications	taking	advantage	of	OpenCV	is	increasing	significantly,	particularly	for
mobile	platforms.

As	a	computer	vision	library,	OpenCV	provides	the	following	two	big	advantages:

It	is	open	source	and	everyone	can	freely	use	it,	either	on	an	academic	level	or	for
real-life	projects
It	arguably	contains	the	most	extensive	and	up-to-date	collection	of	computer	vision
functions

OpenCV	is	fed	with	cutting-edge	research	in	Computer	Vision,	image	and	video
processing,	and	machine	learning.

The	first	book	published	on	OpenCV	provided	a	mostly	theoretical	approach,	explaining
the	underlying	computer	vision	techniques.	Subsequent	books	have	adopted	the	contrary
approach,	filling	pages	and	pages	with	large	examples	(almost	complete	applications)	that
are	difficult	to	follow.	Large	examples	are	difficult	to	follow	and	cannot	be	easily	reused
in	the	reader’s	projects.	Examples	taking	up	several	pages	are	simply	not	appropriate	for	a
book.	We	believe	that	examples	should	be	easy	to	understand	and	should	also	be	used	as
building	blocks	to	reduce	the	time	needed	to	have	a	working	example	for	the	reader’s
projects.	Consequently,	in	this	book,	we	also	adopt	a	practical	approach,	although	we	aim
to	cover	a	larger	spectrum	of	functions	with	shorter,	easy-to-follow	examples.	From	our
experience	with	OpenCV,	we	can	affirm	that	examples	are	ultimately	the	most	valuable
resource.

What	this	book	covers
Chapter	1,	Getting	Started,	deals	with	the	basic	installation	steps	and	introduces	the
essential	concepts	of	the	OpenCV	API.	The	first	examples	to	read/write	images	and	video
and	capture	them	from	a	camera	are	also	provided.

Chapter	2,	Something	We	Look	At	–	Graphical	User	Interfaces,	covers	user	interface
capabilities	for	our	OpenCV-based	applications.

Chapter	3,	First	Things	First	–	Image	Processing,	covers	the	most	useful	image
processing	techniques	available	in	OpenCV.

Chapter	4,	What’s	in	the	Image?	Segmentation,	tackles	the	all-important	problem	of	image
segmentation	in	OpenCV.

Chapter	5,	Focusing	on	the	Interesting	2D	Features,	covers	the	functions	available	for
extracting	keypoints	and	descriptors	from	an	image.

Chapter	6,	Where’s	Wally?	Object	Detection,	describes	that	object	detection	is	a	central
problem	in	computer	vision.	This	chapter	explains	the	functionality	available	for	object
detection.

Chapter	7,	What	Is	He	Doing?	Motion,	considers	more	than	just	a	single	static	image.	This
chapter	deals	with	motion	and	tracking	in	OpenCV.

Chapter	8,	Advanced	Topics,	focuses	on	some	advanced	topics	such	as	machine	learning
and	GPU-based	acceleration.

What	you	need	for	this	book
The	approach	followed	in	this	book	is	particularly	suited	for	readers	who	are	already
knowledgeable	in	computer	vision	(or	can	learn	the	discipline	elsewhere)	and	want	to	start
developing	applications	rapidly.	Each	chapter	provides	several	examples	of	the	key
available	functions	for	the	most	important	stages	in	a	vision	system.	The	book	is,
therefore,	focused	on	providing	the	reader	with	a	working	example	as	soon	as	possible	so
that	he/she	can	develop	additional	features	on	top	of	that.

To	use	this	book,	only	free	software	is	needed.	All	the	examples	have	been	developed	and
tested	with	the	freely	available	Qt	IDE.	The	freely	available	CUDA	toolkit	is	required	for
the	GPU	acceleration	examples	in	Chapter	8,	Advanced	Topics.

www.allitebooks.com

http://www.allitebooks.org

Who	this	book	is	for
This	book	is	neither	a	C++	tutorial	nor	a	textbook	on	computer	vision.	The	book	is
intended	for	C++	developers	who	want	to	learn	how	to	implement	the	main	techniques	of
OpenCV	and	get	started	with	it	quickly.	Previous	contact	with	computer	vision/image
processing	is	expected.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	folder	names,	filenames,	file	extensions,	pathnames,	system	variables,
URLs,	and	user	input	are	shown	as	follows:	“Each	module	has	an	associated	header	file
(for	example,	core.hpp).”

A	block	of	code	is	set	as	follows:

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[])

{

		Mat	frame;	//	Container	for	each	frame

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[])

{

Any	command-line	input	or	output	is	written	as	follows:

C:\opencv-buildQt\install

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Also,	the	checkboxes
labeled	as	Grouped	and	Advanced	should	be	marked	in	the	CMake	main	window.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/4244OS_Graphics.pdf.

https://www.packtpub.com/sites/default/files/downloads/4244OS_Graphics.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started
This	chapter	deals	with	the	basic	installation	steps	and	settings	required	to	develop
applications	with	the	OpenCV	library.	Also,	it	introduces	the	essential	concepts	in	order	to
use	the	Application	Programming	Interface	(API)	provided	by	the	library	and	the	basic
datatypes	supplied.	This	chapter	includes	a	section	with	full	examples	of	code	that
illustrate	how	to	read/write	images	and	video	files,	and	access	images	from	live	cameras.
These	examples	also	show	how	to	get	access	to	live	input	from	cameras	connected	to	a
computer.

Setting	up	OpenCV
OpenCV	can	be	downloaded	from	http://opencv.org/,	and	is	available	for	the	most	popular
operating	systems,	such	as	Unix	(Linux/Mac),	Microsoft	Windows	(Windows),	Android,
and	iOS.	In	this	book,	the	last	stable	release	(2.4.9)	of	OpenCV	for	Windows	7	(SP1)	has
been	used.	For	Windows,	this	release	comes	in	the	form	of	a	self-extracting	archive
(opencv-2.4.9.exe),	which	should	be	extracted	to	the	desired	location	(for	example,
OPENCV_SCR	for	C:\opencv-src).	It	should	be	noted	that	in	Windows	it	is	strongly
recommended	to	allocate	the	source	and	binaries	at	absolute	paths	without	white	spaces
because	errors	might	appear	later.

After	extracting	the	archive,	the	obtained	files	are	organized	in	two	subdirectories	under
OPENCV_SCR:	build	and	sources.	The	first	one	(build)	includes	precompiled	(binaries)
versions	with	Microsoft	Visual	C++	compilers	(MSVC,	v.	10,	11,	and	12)	for	32-	and	64-
bit	architectures	(located	in	the	x	86	and	x	64	subdirectories	respectively).	The	sources
subdirectory	contains	the	source	code	of	the	OpenCV	library.	This	code	might	be
compiled	with	other	compilers	(for	example,	GNU	g++).

Tip
Using	the	precompiled	versions	of	OpenCV	is	the	easiest	option	and	only	requires	setting
the	location	of	OpenCV’s	dynamic	libraries	binaries	(DLL	files)	in	the	Path	environment
variable.	For	instance,	in	our	setup,	this	location	could	be
OPENCV_SCR/build/x86/vc12/bin	where	the	binaries	compiled	with	MS	VC	version	12
for	the	32	bit	architecture	are	located.	Remember	that	changing	the	environment	variables
in	Windows	7	(SP1)	can	be	done	on	Advanced	System	Settings	under	Properties	of	My
Computer.	The	Rapid	Environment	Editor	tool	(available	at	http://www.rapidee.com)
provides	a	convenient	way	to	change	Path	and	other	environment	variables	in	Windows	7.

This	chapter	covers	a	detailed	installation	process	of	OpenCV	on	Windows	7	(SP1).	For
Linux	and	other	operating	systems,	you	can	have	a	look	at	the	OpenCV	online
documentation	(OpenCV	Tutorials,	Introduction	to	OpenCV	section)	available	at
http://docs.opencv.org/doc/tutorials/tutorials.html.

http://opencv.org/
http://www.rapidee.com
http://docs.opencv.org/doc/tutorials/tutorials.html

Compiled	versus	precompiled	library
The	OpenCV	distribution	includes	the	source	code	of	the	library	that	can	be	compiled
when	a	different	binary	version	is	required.	One	such	situation	comes	when	we	need	to	use
the	Qt-based	user	interface	functions	available	in	OpenCV	(which	are	not	included	in	the
precompiled	versions).	Besides,	the	build	process	(compilation)	for	the	OpenCV	library	is
required	if	our	compiler	(for	example,	GNU	g++)	doesn’t	match	the	precompiled	version
of	the	library.

The	requirements	that	have	to	be	met	in	order	to	compile	OpenCV	with	Qt	are	as	follows:

A	compatible	C++	compiler:	We	use	the	GNU	g++	compiler	included	with	MinGW
(Minimal	GNU	GCC	for	Windows).	This	is	a	standard	compiler	on	Unix	and	it	is
appropriate	to	guarantee	code	compatibility.	Prior	to	the	build	process,	it	is	quite
convenient	to	add	the	location	of	the	compiler	binaries	(g++	and	gmake)	to	the	Path
environment	variable	(for	example,	in	our	local	system,	the	location	is
C:\Qt\Qt5.2.1\Tools\mingw48_32\bin).
The	Qt	library:	In	particular,	the	Qt	5.2.1	bundle	(available	at	http://qt-project.org/)
is	customized	for	an	easy	setup	because	it	includes	the	Qt	library	and	the	complete
development	IDE	Qt	Creator	with	MinGW	4.8	and	OpenGL.	Qt	Creator	is	a	full-
fledged	IDE	with	free	software	license	that	we	recommend.	The	Qt	binaries	location
must	also	be	added	to	the	Path	environment	variable	(for	example,
C:\Qt\Qt5.2.1\5.2.1\mingw48_32\bin).
The	CMake	build	system:	This	cross-platform	build	system	is	available	at
http://www.cmake.org/.	It	consists	of	a	set	of	tools	that	help	the	user	prepare	and
generate	the	suitable	configuration	files	used	for	building	(compiling),	testing,	and
packaging	a	large	code	project	such	as	OpenCV.

Configuring	OpenCV	with	CMake
In	this	section,	we	illustrate	the	configuration	steps	for	OpenCV	with	CMake,	with	the
help	of	screenshots	of	the	steps	involved:

1.	 The	first	step	involves	the	selection	of	directories	and	compilers.	Once	CMake	is
launched,	both	the	source	directory	(OPENCV_SCR)	and	the	build	directory
(OPENCV_BUILD)	can	be	set	in	the	proper	text	fields	in	the	CMake	main	window.	Also,
the	checkboxes	labeled	as	Grouped	and	Advanced	should	be	marked	in	the	CMake
main	window.	We	continue	clicking	on	the	Configure	button.	At	this	point,	the	tool
prompts	the	user	to	specify	the	desired	compiler	and	we	choose	MinGW	Makefiles
using	the	native	compilers.	If	we	choose	the	Specify	native	compilers	option,	it	is
possible	to	specify	a	particular	location	for	the	compiler	and	make	tools.	After
clicking	on	the	Finish	button,	the	configuration	step	continues	checking	the	settings
of	the	system.	The	following	screenshot	shows	the	CMake	window	at	the	end	of	this
preconfiguration	process:

http://qt-project.org/
http://www.cmake.org/

CMake	at	the	end	of	the	preconfiguration	step

Note
For	the	purpose	of	simplicity,	we	use	in	this	text	OPENCV_BUILD	and	OPENCV_SCR	to
denote	respectively	the	target	and	source	directories	of	the	OpenCV	local	setup.	Keep
in	mind	that	all	directories	should	match	the	current	local	configuration.

2.	 The	next	step	is	the	selection	of	the	build	options.	At	the	center	of	the	main	CMake
window,	the	red	entries	might	be	changed	if	desired.	In	our	setup,	we	open	the	entries
grouped	with	the	label	WITH	and	there	we	set	the	WITH_QT	entry	to	ON,	and	then
we	click	on	Configure	again	to	obtain	a	new	set	of	options.

3.	 Now,	the	next	stage	is	to	set	the	Qt	directories.	In	the	main	CMake	window,	a	few
entries	are	marked	in	red.	These	are	the	required	directories	to	build	OpenCV	with
Qt.	The	next	entries	to	be	set	are:	Qt5Concurrent_DIR,	Qt5Core_DIR,	Qt5Gui_DIR,
Qt5OpenGL_DIR,	Qt5Test_DIR,	and	Qt5Widgets_DIR	(refer	to	the	following	figure).	In
our	setup,	these	directories	can	be	found	under

C:/Qt/Qt5.2.1/5.2.1/mingw48_32/lib/cmake.

By	clicking	on	the	Configure	button	once,	we	obtain	no	further	red	entries	and	the
configuration	process	is	finally	done,	as	shown	in	the	following	screenshot:

Setting	Qt	directories	for	CMake

4.	 The	last	step	is	to	generate	the	project.	In	this	step,	we	click	on	the	Generate	button
to	obtain	the	suitable	project	files	to	build	OpenCV	in	the	target	platform.	Then,	the
CMake	GUI	should	be	closed	to	continue	with	the	compilation.

In	the	process	just	described,	it	is	possible	to	change	the	configuration	options	as	many
times	as	desired	before	the	generation	step.	Some	other	convenient	options	to	be	set	are
listed	as	follows:

BUILD_EXAMPLES:	This	option	is	used	to	compile	the	source	code	of	several
examples	included	in	the	distribution

BUILD_SHARED_LIBS:	Uncheck	this	option	to	get	a	static	version	of	the	libraries
CMAKE_BUILD_TYPE:	Set	this	to	Debug	to	get	a	version	for	debugging	purposes
and	so	on
WITH_TBB:	Set	this	option	to	activate	the	use	of	Intel®	Threading	Building	Block
that	lets	you	easily	write	parallel	C++	code
WITH_CUDA:	Set	this	option	to	use	processing	by	GPU	through	CUDA	libraries

Building	and	installing	the	library
The	compilation	should	be	launched	from	the	console	at	the	target	directory
(OPENCV_BUILD)	set	during	the	configuration	with	CMake	(that	is,	step	1	from	the	previous
list).	The	command	should	be	as	follows:

OPENCV_BUILD>mingw32-make

This	command	launches	a	build	process	using	the	generated	files	by	CMake.	Compilation
typically	takes	several	minutes.	If	the	compilation	ends	without	errors,	the	installation
continues	with	the	execution	of	the	following	command:

OPENCV_BUILD>mingw32-make	install

This	command	copies	the	OpenCV	binaries	to	the	following	directory:

C:\opencv-buildQt\install

If	something	goes	wrong	during	the	compilation,	we	should	return	to	CMake	to	change	the
options	selected	in	the	previous	steps.	Installation	ends	by	adding	the	location	of	the
library	binaries	(DLL	files)	to	the	Path	environment	variable.	In	our	setup,	this	directory
is	located	at	OPENCV_BUILD\install\x64\mingw\bin.

To	check	the	success	of	the	installation	process,	it	is	possible	to	run	some	of	the	examples
compiled	along	with	the	library	(if	the	BUILD_EXAMPLES	option	was	set	with
CMake).	The	code	samples	can	be	found	at
OPENCV_BUILD\install\x64\mingw\samples\cpp.

www.allitebooks.com

http://www.allitebooks.org

Canny	edge	detection	sample

The	preceding	screenshot	shows	the	output	window	for	the	sample	cpp-example-
edge.exe	file,	which	demonstrates	the	Canny	edge	detection	on	the	fruits.jpg	input	file
included	with	the	source	OpenCV	distribution.

In	the	next	section,	we	summarize	the	recipe	used	to	set	up	OpenCV	2.4.9	in	our	Windows
7-x32	platform	with	Qt	5.2.1	(MinGW	4.8).

Quick	recipe	for	setting	up	OpenCV
The	whole	process	for	setting	up	OpenCV	can	be	done	using	the	following	steps:

1.	 Download	and	install	Qt5	(available	at	http://qt-project.org/).
2.	 Add	the	MinGW	bin	directory	(for	g++	and	gmake)	to	the	Path	environment	variable

(for	example,	C:\Qt\Qt5.2.1\Tools\mingw48_32\bin\).
3.	 Add	the	Qt	bin	directory	(for	DLLs)	to	the	Path	environment	variable	(for	example,

C:\Qt\Qt5.2.1\5.2.1\mingw48_32\bin\).
4.	 Download	and	install	CMake	(available	at	http://www.cmake.org/).
5.	 Download	OpenCV	archive	(available	at	http://opencv.org/).
6.	 Extract	the	downloaded	archive	to	an	OPENCV_SRC	directory.
7.	 Configure	the	OpenCV	build	project	with	CMake	using	the	following	steps:

1.	 Choose	the	source	(OPENCV_SCR)	and	target	(OPENCV_BUILD)	directories.
2.	 Mark	the	Grouped	and	Advanced	checkboxes	and	click	on	Configure.
3.	 Choose	a	compiler.
4.	 Set	the	BUILD_EXAMPLES	and	WITH_QT	options,	and	finally	click	on	the

Configure	button.
5.	 Set	the	following	Qt	directories:	Qt5Concurrent_DIR,	Qt5Core_DIR,

Qt5Gui_DIR,	Qt5OpenGL_DIR,	Qt5Test_DIR,	Qt5Widgets_DIR.	Then,	click	on
Configure	again.

6.	 If	no	errors	are	reported	(marked	in	red	in	the	CMake	window),	you	can	click	on
the	Generate	button.	If	some	error	is	reported,	the	wrong	options	should	be
corrected	and	the	Configure	steps	should	be	repeated.	Close	CMake	after	the
Generate	step.

8.	 Open	a	console	under	the	OPENCV_BUILD	directory	and	run	the	mingw32-make
command	to	start	the	compilation.

9.	 If	the	build	process	doesn’t	produce	an	error,	run	mingw32-make	install	on	the
command	line.

10.	 Add	the	OpenCV	bin	directory	(for	DLLs)	to	the	Path	environment	variable	(for
example,	OPENCV_BUILD\install\x64\mingw\bin\).

To	check	the	right	installation	of	the	OpenCV	library,	you	can	run	some	of	the	examples
included	at	OPENCV_BUILD\install\x64\mingw\samples\cpp.

http://qt-project.org/
http://www.cmake.org/
http://opencv.org/

API	concepts	and	basic	datatypes
After	installation,	preparing	a	new	OpenCV	code	project	is	quite	a	straightforward	process
that	requires	including	the	header	files	and	instructing	the	compiler	to	find	the	files	and
libraries	used	in	the	project.

OpenCV	is	composed	of	several	modules,	grouping	related	functionalities.	Each	module
has	an	associated	header	file	(for	example,	core.hpp)	located	in	the	directory	with	the
same	name	as	that	of	the	module	(that	is,	OPENCV_BUILD\install\include\opencv2\
<module>).	The	supplied	modules	with	the	current	version	of	OpenCV	are	as	follows:

core:	This	module	defines	the	basic	(core)	functions	used	by	all	the	other	modules
and	fundamental	data	structures,	including	the	dense	multidimensional	array,	Mat.
highgui:	This	module	provides	simple	user	interface	(UI)	capabilities	and	an	easy
interface	for	video	and	image	capturing.	Building	the	library	with	the	Qt	option
allows	UI	compatibility	with	such	frameworks.
imgproc:	This	module	includes	image-processing	functions	that	include	filtering
(linear	and	nonlinear),	geometric	transformations,	color	space	conversion,	and	so	on.
features2d:	This	module	includes	functions	for	feature	detection	(corners	and	planar
objects),	feature	description,	feature	matching,	and	so	on.
objdetect:	This	module	includes	functions	for	object	detection	and	instances	of	the
predefined	detection	classes	(for	example,	face,	eyes,	smile,	people,	cars,	and	so	on).
video:	This	module	supplies	the	functionality	of	video	analysis	(motion	estimation,
background	extraction,	and	object	tracking).
gpu:	This	module	provides	a	collection	of	GPU-accelerated	algorithms	for	some
functions	in	the	other	OpenCV	modules.
ml:	This	module	includes	functions	to	implement	machine-learning	tools	such	as
statistical	classification,	regression,	and	data	clustering.
Some	other	less	usual	miscellaneous	modules	oriented	are	camera	calibration,
clustering,	computational	photography,	images	stitching,	OpenCL-accelerated	CV,
super	resolution,	and	others.

All	OpenCV	classes	and	functions	are	in	the	cv	namespace.	Consequently,	we	will	have
the	following	two	options	in	our	source	code:

Add	the	using	namespace	cv	declaration	after	including	the	header	files	(this	is	the
option	used	in	all	the	code	samples	in	this	book).
Append	the	cv::	specifier	as	a	prefix	to	all	the	OpenCV	classes,	functions,	and	data
structures	that	we	use.	This	option	is	recommended	if	the	external	names	provided	by
OpenCV	conflict	with	the	standard	template	library	(STL)	or	other	libraries.

The	DataType	class	defines	the	primitive	datatypes	for	OpenCV.	The	primitive	datatypes
can	be	bool,	unsigned	char,	signed	char,	unsigned	short,	signed	short,	int,	float,
double,	or	a	tuple	of	values	of	one	of	these	primitive	types.	Any	primitive	type	can	be
defined	by	an	identifier	in	the	following	form:

CV_<bit	depth>{U|S|F}C(<number	of	channels>)

In	the	preceding	code,	U,	S,	and	F	stand	for	unsigned,	signed,	and	float	respectively.	For
the	single	channel	arrays,	the	following	enumeration	is	applied	describing	the	datatypes:

enum	{CV_8U=0,	CV_8S=1,	CV_16U=2,	CV_16S=3,	CV_32S=4,	CV_32F=5,	CV_64F=6};

The	following	diagram	shows	a	graphical	representation	of	a	single	channel	(4	x	4)	array
with	8	bits	of	unsigned	integers	(CV_8U).	In	this	case,	each	element	should	have	a	value
from	zero	to	255,	which	may	be	represented	by	a	grayscale	image.

Single	channel	array	of	8	bit	unsigned	integers	for	a	greyscale	image

We	can	define	all	of	the	preceding	datatypes	for	multichannel	arrays	(up	to	512	channels).
The	following	diagram	illustrates	a	graphical	representation	of	three	channels	4	x	4	array
of	8	bits	of	unsigned	integers	(CV_8UC3).	In	this	example,	the	array	consists	of	tuples	of
three	elements	corresponding	to	an	RGB	image.

A	three-channel	array	of	8	bit	unsigned	integers	for	an	RGB	image

Note
Here,	it	should	be	noted	that	the	following	three	declarations	are	equivalent:	CV_8U,
CV_8UC1,	and	CV_8UC(1).

The	OpenCV	Mat	class	is	used	for	dense	n-dimensional	single	or	multichannel	arrays.	It
can	store	real	or	complex-valued	vectors	and	matrices,	colored	or	grayscale	images,
histograms,	point	clouds,	and	so	on.	There	are	many	different	ways	to	create	a	Mat	object,
the	most	popular	being	the	constructor	where	the	size	and	type	of	the	array	are	specified	as
follows:

Mat(nrows,	ncols,	type[,	fillValue])

The	initial	value	for	the	array	elements	might	be	set	by	the	Scalar	class	as	a	typical	four-
element	vector	(for	the	RGB	and	transparency	components	of	the	image	stored	in	the
array).	Next,	we	show	some	usage	examples	of	Mat	as	follows:

Mat	img_A(640,	480,	CV_8U,	Scalar(255));	//	white	image

//	640	x	480	single-channel	array	with	8	bits	of	unsigned	integers

//	(up	to	255	values,	valid	for	a	grayscale	image,	for	example,

//	255=white)

…

Mat	img_B(Size(800,	600),	CV_8UC3,	Scalar(0,255,0));	//	Green	image

//	800	x	600	three	channel	array	with	8	bits	of	unsigned	integers

//	(up	to	24	bits	color	depth,	valid	for	a	RGB	color	image)

Note

Note	that	OpenCV	allocates	colored	RGB	images	to	a	three	channel	(and	a	fourth	for	the
transparency,	that	is,	alpha	channel)	array,	following	the	BGR	order	with	the	higher	values
corresponding	to	brighter	pixels.

The	Mat	class	is	the	main	data	structure	that	stores	and	manipulates	images.	OpenCV	has
implemented	mechanisms	to	allocate	and	release	memory	automatically	for	these	data
structures.	However,	the	programmer	should	still	take	special	care	when	data	structures
share	the	same	buffer	memory.

Many	functions	in	OpenCV	process	dense	single	or	multichannel	arrays	usually	using	the
Mat	class.	However,	in	some	cases,	a	different	datatype	may	be	convenient,	such	as
std::vector<>,	Matx<>,	Vec<>,	or	Scalar.	For	this	purpose,	OpenCV	provides	the	proxy
classes,	InputArray	and	OutputArray,	which	allow	any	of	the	previous	types	to	be	used
as	parameters	for	functions.

Our	first	program	–	reading	and	writing
images	and	videos
To	prepare	the	examples	for	this	book,	we	used	the	Qt	Creator	IDE	(included	in	the	Qt	5.2
bundle)	and	OpenCV	2.4.9	compiled	with	MinGW	g++	4.8	and	Qt	functionality.	Qt
Creator	is	a	free	multiplatform	IDE	with	very	helpful	features	for	C++	programming.
However,	the	user	can	choose	the	tool	chain	to	build	the	executables	that	best	fit	its	needs.

Our	first	Qt	Creator	project	with	OpenCV	will	be	quite	a	simple	flip-image	tool,	named
flipImage.	This	tool	reads	a	color	image	file	and	transforms	it	into	a	grayscale	image,
flipped	and	saved	into	an	output	file.

For	this	application,	we	choose	to	create	a	new	code	project	by	navigating	to	File	|	New
File	or	File	|	Project…,	and	then	navigate	to	Non-Qt	Project	|	Plain	C++	Project.	Then,
we	have	to	choose	a	project	name	and	location.	The	next	step	is	to	pick	a	kit	(that	is,
compiler)	for	the	project	(in	our	case,	Desktop	Qt	5.2.1	MinGW	32	bit)	and	location	for
the	binaries	generated.	Usually,	two	possible	build	configurations	(profiles)	are	used:
debug	and	release.	These	profiles	set	the	appropriate	flags	to	build	and	run	the	binaries.

When	a	Qt	Creator	project	is	created,	two	special	files	(with	the	.pro	and	.pro.user
extension)	are	generated	to	configure	the	build	and	run	processes.	The	build	process	is
determined	by	the	kit	chosen	during	the	creation	of	the	project.	With	the	Desktop	Qt	5.2.1
MinGW	32	bit	kit,	this	process	relies	on	the	qmake	and	mingw32-make	tools.	With	the
.pro	files	as	input,	qmake	generates	the	makefiles	for	Make	(that	is,	mingw32-make)	that
drive	the	build	process	for	each	profile	(that	is,	release	and	debug).

The	qmake	project	file
For	our	flipImage	sample	project,	the	flipImage.pro	file	looks	like	the	following	code:

TARGET:	flipImage

TEMPLATE	=	app

CONFIG	+=	console

CONFIG	-=	app_bundle

CONFIG	-=	qt

SOURCES	+=	\

				flipImage.cpp

INCLUDEPATH	+=	C:\\opencv-buildQt\\install\\include

LIBS	+=	-LC:\\opencv-buildQt\\install\\x64\mingw\\lib	\

				-lopencv_core249.dll	\

				-lopencv_highgui249.dll

The	preceding	file	illustrates	the	options	that	qmake	needs	to	generate	the	appropriate
makefiles	to	build	the	binaries	for	our	project.	Each	line	starts	with	a	tag	indicating	an
option	(TARGET,	CONFIG,	SOURCES,	INCLUDEPATH,	and	LIBS)	followed	with	a	mark	to	add
(+=)	or	remove	(-=)	the	value	of	the	option.	In	this	sample	project,	we	deal	with	the	non-
Qt	console	application.	The	executable	file	is	flipImage.exe	(TARGET)	and	the	source	file
is	flipImage.cpp	(SOURCES).	Since	this	project	is	an	OpenCV	application,	the	two	last
tags	point	out	to	the	location	of	the	header	files	(INCLUDEPATH)	and	the	OpenCV	libraries
(LIBS)	used	by	this	particular	project	(for	example,	core	and	highgui).	Note	that	a
backslash	at	the	end	of	the	line	denotes	continuation	in	the	next	line.	In	Windows,	path
backslashes	should	be	duplicated,	as	shown	in	the	preceding	example.

The	following	code	shows	the	source	code	for	the	flipImage	project:

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[])

{

				int	flip_code=0;

				Mat	out_image;	//	Output	image

				if	(argc	!=	4)	{//Check	args.	number

								cout	<<	"Usage:	<cmd>	<flip_code>	<file_in>	<file_out>\n";

								return	-1;

				}

				Mat	in_image	=	imread(argv[2],	CV_LOAD_IMAGE_GRAYSCALE);

				if	(in_image.empty())	{	//	Check	if	read

								cout	<<	"Error!	Input	image	cannot	be	read…\n";

								return	-1;

				}

				sscanf(argv[1],	"%d",	&flip_code);	//	Read	flip	code

				flip(in_image,	out_image,	flip_code);

				imwrite(argv[3],	out_image);	//	Write	image	to	file

				namedWindow("Flipped…");	//	Creates	a	window

				imshow(win,	out_image);	//	Shows	output	image	on	window

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();	//	Wait	infinitely	for	key	press

				return	0;

}

After	building	the	project,	we	can	run	the	flipImage	application	from	the	following
command	line:

CV_SAMPLES/flipImage_build/debug>flipImage.exe	-1	lena.jpg	lena_f.jpg

The	following	screenshot	shows	the	window	with	the	output	image	after	flipping	on	both
the	axes	(horizontal	and	vertical):

Input	image	(left)	and	output	image	after	the	flipImage	tool	has	been	applied	(right)

The	source	code	starts	with	the	inclusion	of	the	header	files	(core.hpp	and	highgui.hpp)
associated	with	the	modules	used	by	the	application.	Note	that	it	is	also	possible	to	include
only	the	opencv.hpp	header	since	it	will	in	turn	include	all	the	header	files	of	OpenCV.

The	flipImage	example	gets	the	flip	code	and	two	file	names	(for	the	input	and	output
images)	as	the	command-line	arguments.	These	arguments	are	obtained	from	the	argv[]
variable.	The	following	example	illustrates	several	essential	tasks	in	an	OpenCV
application:

1.	 Read	an	image	from	the	file	(imread)	to	a	Mat	class	and	check	whether	the	target
variable	is	not	empty	(Mat::empty).

2.	 Call	a	procedure	(for	example,	flip)	with	the	proxy	classes,	InputArray	(in_image)

and	OutputArray	(out_image).
3.	 Write	an	image	to	a	file	(imwrite).
4.	 Create	an	output	window	(namedWindow)	and	show	(imshow)	an	image	on	it.
5.	 Wait	for	a	key	(waitKey).

The	code	explanation	is	given	as	follows:

Mat	imread(const	string&	filename,	int	flags=1):	This	function	loads	an
image	from	the	specified	file	and	returns	it.	It	also	returns	an	empty	matrix	if	the
image	cannot	be	read.	It	supports	the	most	usual	image	formats	of	the	files,	detected
by	their	content	rather	than	by	their	extension.	The	flags	parameter	indicates	the
color	of	the	image	loaded	in	the	memory,	which	may	differ	from	the	original	color	of
the	image	stored	in	the	file.	In	the	example	code,	this	function	is	used	as	follows:

Mat	in_image	=	imread(argv[2],	CV_LOAD_IMAGE_GRAYSCALE);

Here,	the	filename	is	obtained	from	the	command-line	arguments	(the	second
argument	after	the	command	name).	The	CV_LOAD_IMAGE_GRAYSCALE	flag	indicates
that	the	image	should	be	loaded	in	the	memory	as	an	8	bit	grayscale	image.	For	a
description	of	the	available	tags,	it	is	recommended	to	read	the	OpenCV	online
documentation	(available	at	http://docs.opencv.org/).

bool	imwrite(const	string&	filename,	InputArray	img,	const	vector<int>&

params=vector<int>()):	This	function	writes	an	image	to	a	given	file	where	some
optional	format	parameters	are	specified	after	the	second	argument.	The	format	of	the
output	file	is	determined	by	the	file	extension.	In	our	example	code,	this	function	is
used	without	the	format	parameters	as	follows:

imwrite(argv[3],	out_image);

void	namedWindow(const	string&	winname,	int	flags=WINDOW_AUTOSIZE):	This
function	creates	a	window	without	displaying	it.	The	first	argument	is	a	string	used	as
a	name	for	the	window	and	its	identifier.	The	second	argument	is	a	flag	or	flag
combination,	which	controls	some	window	properties	(for	example,	enable	resize).
Next,	we	show	how	this	function	is	used	in	the	example	using	a	constant	string	as	a
name	for	the	created	window,	as	follows:

namedWindow("Flipped	…");	//	Creates	a	window

Compiling	OpenCV	with	Qt	adds	some	new	functionality	to	the	highgui	module
(more	on	that	later).	Then,	the	window	created	with	Qt	and	the	namedWindow	function
uses	the	default	flags:	CV_WINDOW_AUTOSIZE,	CV_WINDOW_KEEPRATIO,	or
CV_GUI_EXPANDED.

void	imshow(const	string&	winname,	InputArray	mat):	This	function	displays
an	array	(image)	in	a	window	with	the	properties	set	previously	with	the	specified
flags	when	the	window	was	created.	In	the	example,	this	function	is	used	as	follows:

imshow(win,	out_image);	//	Shows	output	image	on	window

http://docs.opencv.org/

int	waitKey(int	delay=0):	This	function	waits	for	a	key	press	or	the	milliseconds
specified	by	delay	(if	delay	is	greater	than	zero).	If	delay	is	less	than	or	equal	to
zero,	it	waits	infinitely.	It	returns	the	key	code	if	pressed	or	-1	if	a	key	is	not	pressed
after	the	delay.	This	function	has	to	be	used	after	creating	and	activating	a	window.	In
the	example	code,	it	is	used	as	follows:

waitKey();	//	Wait	infinitely	for	key	press

Reading	and	playing	a	video	file
A	video	deals	with	moving	images	rather	than	still	images,	that	is,	display	of	a	frame
sequence	at	a	proper	rate	(FPS	or	frames	per	second).	The	following	showVideo	example
illustrates	how	to	read	and	play	a	video	file	with	OpenCV:

//…	(omitted	for	simplicity)

int	main(int	argc,	char	*argv[])

{

				Mat	frame;	//	Container	for	each	frame

				VideoCapture	vid(argv[1]);	//	Open	original	video	file

				if	(!vid.isOpened())	//	Check	whether	the	file	was	opened

								return	-1;

				int	fps	=	(int)vid.get(CV_CAP_PROP_FPS);

				namedWindow(argv[1]);	//	Creates	a	window

				while	(1)	{

								if	(!vid.read(frame))	//	Check	end	of	the	video	file

												break;

								imshow(argv[1],	frame);	//	Show	current	frame	on	window

								if	(waitKey(1000/fps)	>=	0)

												break;

				}

				return	0;

}

The	code	explanation	is	given	as	follows:

VideoCapture::VideoCapture(const	string&	filename)	–	This	class	constructor
provides	a	C++	API	to	grab	a	video	from	the	files	and	cameras.	The	constructor	can
have	one	argument,	either	a	filename	or	a	device	index	for	a	camera.	In	our	code
example,	it	is	used	with	a	filename	obtained	from	the	command-line	arguments	as
follows:

VideoCapture	vid(argv[1]);

double	VideoCapture::get(int	propId)	–	This	method	returns	the	specified
VideoCapture	property.	If	a	property	is	not	supported	by	the	backend	used	by	the
VideoCapture	class,	the	value	returned	is	0.	In	the	following	example,	this	method	is
used	to	get	the	frames	per	second	of	the	video	file:

int	fps	=	(int)vid.get(CV_CAP_PROP_FPS);

Since	the	method	returns	a	double	value,	an	explicit	cast	to	int	is	done.

bool	VideoCapture::read(Mat&	image)	–	This	method	grabs,	decodes,	and	returns
a	video	frame	from	the	VideoCapture	object.	The	frame	is	stored	in	a	Mat	variable.	If
it	fails	(for	example,	when	the	end	of	the	file	is	reached),	it	returns	false.	In	the	code
example,	this	method	is	used	as	follows,	also	checking	the	end	of	file	condition:

if	(!vid.read(frame))	//	Check	end	of	the	video	file

break;

In	the	preceding	example,	the	waitKey	function	is	used	with	a	computed	number	of
milliseconds	(1000/fps)	trying	to	play	the	video	file	at	the	same	rate	it	was	originally
recorded.	Playing	a	video	at	a	faster/slower	rate	(more/less	fps)	than	that	will	produce	a
faster/slower	playback.

Live	input	from	a	camera
Usually,	the	computer	vision	problems	we	face	are	related	with	processing	live	video	input
from	one	or	several	cameras.	In	this	section,	we	will	describe	the	recLiveVid	example,
which	grabs	a	video	stream	from	a	webcam	(connected	to	our	computer),	displays	the
stream	in	a	window,	and	records	it	in	a	file	(recorded.avi).	By	default,	in	the	following
example,	the	video	capture	is	taken	from	the	camera	with	cam_id=0.	However,	it	is
possible	to	handle	a	second	camera	(cam_id=1)	and	grab	the	video	from	it,	setting	an
argument	at	the	command	line:

//…	(omitted	for	brevity)

int	main(int	argc,	char	*argv[])

{

				Mat	frame;

				const	char	win_name[]="Live	Video…";

				const	char	file_out[]="recorded.avi";

				int	cam_id=0;	//	Webcam	connected	to	the	USB	port

				double	fps=20;

				if	(argc	==	2)

								sscanf(argv[1],	"%d",	&cam_id);

				VideoCapture	inVid(cam_id);	//	Open	camera	with	cam_id

				if	(!inVid.isOpened())

								return	-1;

				int	width	=	(int)inVid.get(CV_CAP_PROP_FRAME_WIDTH);

				int	height	=	(int)inVid.get(CV_CAP_PROP_FRAME_HEIGHT);

				VideoWriter	recVid(file_out,	CV_FOURCC('F','F','D','S'),	fps,	

Size(width,	height));

				if	(!recVid.isOpened())	

								return	-1;

				namedWindow(win_name);

				while	(1)	{

								inVid	>>	frame;	//	Read	frame	from	camera

								recVid	<<	frame;	//	Write	frame	to	video	file

								imshow(win_name,	frame);	//	Show	frame

								if	(waitKey(1000/fps)	>=	0)

												break;

				}

				inVid.release();	//	Close	camera

				return	0;

}

The	code	explanation	is	given	as	follows:

VideoCapture::VideoCapture(int	device)	–	This	class	constructor	initializes	a
VideoCapture	object	to	receive	a	video	from	a	camera	rather	than	a	file.	In	the
following	code	example,	it	is	used	with	a	camera	identifier:

VideoCapture	inVid(cam_id);	//	Open	camera	with	cam_id

VideoWriter::VideoWriter(const	string&	filename,	int	fourcc,	double

fps,	Size	frameSize,	bool	isColor=true)	–	This	class	constructor	creates	an
object	to	write	a	video	stream	to	a	file	with	the	name	passed	as	the	first	argument.
The	second	argument	identifies	the	video	codec	with	a	code	of	four	single	characters
(for	example,	in	the	previous	sample	code,	FFDS	stands	for	ffdshow).	Obviously,
only	codecs	actually	installed	in	the	local	system	can	be	used.	The	third	argument
indicates	the	frames	per	second	of	the	recording.	This	property	can	be	obtained	from
the	VideoCapture	object	with	the	VideoCapture::get	method,	although	it	may
return	0	if	the	property	is	not	supported	by	the	backend.	The	frameSize	argument
indicates	the	total	size	for	each	frame	of	the	video	that	is	going	to	be	written.	This
size	should	be	the	same	as	the	input	video	grabbed.	Finally,	the	last	argument	allows
writing	the	frame	in	color	(default)	or	in	grayscale.	In	the	example	code,	the
constructor	is	used	with	the	ffdshow	codec	and	the	size	of	the	video	capture	is	as
follows:

int	width	=	(int)inVid.get(CV_CAP_PROP_FRAME_WIDTH);

int	height	=	(int)inVid.get(CV_CAP_PROP_FRAME_HEIGHT);

VideoWriter	recVid(file_out,	CV_FOURCC('F','F','D','S'),	

fps,Size(width,	height));

void	VideoCapture::release()	–	This	method	closes	the	capturing	device
(webcam)	or	the	video	file.	This	method	is	always	called	implicitly	at	the	end	of	the
program.	However,	in	the	preceding	example,	it	is	called	explicitly	to	avoid	wrong
termination	of	the	output	file	(only	noticeable	when	playing	the	recorded	video).

Summary
This	chapter	started	with	an	explanation	of	how	to	build	and	install	the	OpenCV	library
with	Qt	(using	CMake,	the	GNU	g++	compiler,	and	GNU	Make).	Then,	it	is	given	a	quick
look	to	the	modules	organization	of	the	library	with	an	easy	explanation	of	its	basic	API
concepts.	The	chapter	follows	up	with	a	more	detailed	revision	of	the	fundamental	data
structures	to	store	arrays	and	manipulate	images.	Also,	three	examples	of	code,	such	as
flipImage,	showVideo	,	and	recLiveVid	are	explained	to	illustrate	the	basic	use	of	the
OpenCV	library.	The	next	chapter	will	introduce	you	to	the	two	mainstream	options
available	to	provide	graphical	user	interface	capabilities	for	OpenCV	programs.

Chapter	2.	Something	We	Look	At	–
Graphical	User	Interfaces
In	this	chapter,	we	will	cover	the	main	user	interface	capabilities	included	with	the
OpenCV	library.	We	will	start	with	the	user	interface	functions	included	in	the	highgui
module.	Then,	we	will	deal	with	the	insertion	of	objects	(such	as	text	and	geometrical
shapes)	on	the	displayed	windows	to	point	out	some	specific	characteristics	on	images.
Finally,	the	chapter	addresses	the	new	Qt	functions	included	in	OpenCV	to	enrich	the	user
experience.

Using	OpenCV’s	highgui	module
The	highgui	module	has	been	designed	to	provide	an	easy	way	to	visualize	the	results	and
try	the	functionality	of	developed	applications	with	OpenCV.	As	we	saw	in	the	previous
chapter,	this	module	supplies	functions	to	perform	the	following	operations:

Reading	images	and	videos	from	files	and	live	cameras	(imread)	through	a
VideoCapture	object.
Writing	images	and	videos	from	memory	to	disk	(imwrite)	through	a	VideoWriter
object.
Creating	a	window	that	can	display	images	and	video	frames	(namedWindow	and
imshow).
Fetching	and	handling	events	when	a	key	is	pressed	(waitKey).

Of	course,	the	module	contains	more	functions	to	enhance	the	user	interaction	with	the
software	applications.	Some	of	them	will	be	explained	in	this	chapter.	In	the	following
tbContrast	code	example,	we	can	read	an	image	file	and	two	windows	are	created:	the
first	one	shows	the	original	image	and	the	other	is	the	resulting	image	after	increasing	or
decreasing	the	contrast	to	the	original	image	applying	a	quite	simple	scaling	operation.
The	following	example	shows	how	to	create	a	trackbar	in	the	window	to	easily	change	the
contrast	factor	(scale)	in	the	image.	Let’s	see	the	code:

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char*	argv[])	{

				const	char	in_win[]="Orig.	image";

				const	char	out_win[]="Image	converted…(no	saved)";

				int	TBvalContrast=50;	//	Initial	value	of	the	TrackBar

				Mat	out_img;

				if	(argc	!=	2)	{

								cout	<<	"Usage:	<cmd><input	image_file>"	<<	endl;

								return	-1;

				}

				Mat	in_img	=	imread(argv[1]);	//	Open	and	read	the	image

				if	(in_img.empty())	{

								cout	<<	"Error!!!	Image	cannot	be	loaded…"	<<	endl;

								return	-1;

				}

				namedWindow(in_win);	//	Creates	window	for	orig.	image

				moveWindow(in_win,	0,	0);	//	Move	window	to	pos.	(0,	0)

				imshow(in_win,	in_img);	//	Shows	original	image

				namedWindow(out_win);

				createTrackbar("Contrast",	out_win,	&TBvalContrast,	100);

				cout	<<	"Press	Esc	key	to	exit…"	<<	endl;

				while	(true)	{

				in_img.convertTo(out_img,	-1,	TBvalContrast/50.0);

								imshow(out_win,	out_img);

								if	(waitKey(50)	==	27)	//	If	Esc	key	pressed	breaks

												break;

				}

				return	0;

}

The	following	screenshot	shows	the	original	image	(fruits.jpg)	and	the	same	image	with
increased	contrast	obtained	with	the	tbContrast	application.

Original	image	and	the	image	with	increased	contrast

Note
To	avoid	repetition	in	the	examples,	only	the	remarkable	new	portions	of	code	are
explained.

The	code	explanation	is	given	as	follows:

void	moveWindow(const	string&	winname,	int	x,	int	y):	This	function	moves
the	window	to	the	specified	screen	(x,	y)	position	being	the	origin	point	(0,	0)	at	the
upper-left	corner.	When	a	window	is	created	and	displayed,	its	default	position	is	at
the	center	of	the	screen.	That	behavior	is	quite	convenient	if	only	one	window	is
displayed.	However,	if	several	windows	have	to	be	shown,	they	are	overlapped	and
should	be	moved	in	order	to	see	their	content.	In	the	example,	this	function	is	used	as
follows:

moveWindow(in_win,0,0);

Now,	the	window	that	shows	the	original	image	is	moved,	after	its	creation,	to	the

upper-left	corner	(origin)	of	the	screen	while	the	converted	imaged	is	located	at	its
default	position	(center	of	the	screen).

intcreateTrackbar(const	string&trackbarname,	const	string&winname,

int*value,	intrange,	TrackbarCallbackonChange=0,	void*userdata=0):	This
function	creates	a	trackbar	(a	slider)	attached	to	the	window	with	the	specified	name
and	range.	The	position	of	the	slider	is	synchronized	with	the	value	variable.
Moreover,	it	is	possible	to	implement	a	callback	function	for	being	called	after	the
slider	moves.	In	this	call,	a	pointer	to	the	user	data	is	passed	as	argument.	In	our
code,	this	function	is	used	as	follows:

createTrackbar("Contrast",	out_win,	&TBvalContrast,	100);

Note
A	callback	is	a	function	passed	as	an	argument	to	another	function.	The	callback
function	is	passed	as	a	pointer	to	the	code,	which	is	executed	when	an	expected	event
occurs.

In	this	code,	the	trackbar	is	called	"Contrast"	without	a	callback	function	linked	to
it.	Initially,	the	slider	is	located	at	the	middle	(50)	of	the	full	range	(100).	This	range
allows	a	maximum	scale	factor	of	2.0	(100/50).

void	Mat::convertTo(OutputArray	m,	int	rtype,	double	alpha=1,	double

beta=0)	const:	This	function	converts	an	array	to	another	data	type	with	an
optional	scaling.	If	rtype	is	negative,	the	output	matrix	will	have	the	same	type	as	the
input.	The	applied	scaling	applied	formula	is	as	follows:

m(x,	y)	=	alfa(*this)(x,	y)	+	beta,

In	this	code,	a	final	implicit	cast	(saturate_cast<>)	is	applied	to	avoid	possible
overflows.	In	the	tbContrast	example,	this	function	is	used	inside	an	infinite	loop:

while	(true)	{

				in_img.convertTo(out_img,	-1,	TBvalContrast/50.0);

				imshow(out_win,	out_img);

				if	(waitKey(50)	==	27)	//	If	Esc	key	pressed	breaks

								break;

}

In	the	previous	chapter,	we	saw	code	examples	that	can	create	an	implicit	infinite	loop
waiting	for	a	pressed	key	with	the	function	call	waitKey	(without	arguments).	The	events
on	the	application	main	window	(for	example,	trackbars,	mouse,	and	so	on)	are	caught	and
handled	inside	of	that	loop.	On	the	contrary,	in	this	example,	we	create	an	infinite	loop
with	a	while	statement	applying	the	contrast	change	with	the	convertTo	function	with	a
scale	factor	from	0.0	(slider	at	0)	to	2.0	(slider	at	100).	The	infinite	loop	breaks	when	the
Esc	key	(ASCII	code	27)	is	pressed.	The	implemented	contrast	method	is	quite	simple
because	the	new	values	for	the	pixels	are	calculated	by	multiplying	the	original	value	by	a
factor	greater	than	1.0	to	increase	contrast	and	a	factor	smaller	than	1.0	to	decrease
contrast.	In	this	method,	when	a	pixel	value	exceeds	255	(in	any	channel),	a	rounding
(saturate	cast)	has	to	be	done.

Note
In	the	next	chapter,	we	will	explain	a	more	sophisticated	algorithm	to	improve	the	image
contrast	using	the	image	histogram	equalization.

Then,	in	the	tbContrastCallB	example,	we	show	the	same	functionality,	but	using	a
trackbarcallback	function	that	is	called	every	time	the	slider	is	moved.	Note	that	the
events	are	handled	when	the	waitKey	function	is	called.	The	application	ends	if	you	press
any	key.	The	code	is	as	follows:

//…	(omitted	for	brevity)

#define	IN_WIN	"Orig.	image"

#define	OUT_WIN	"Image	converted…(no	saved)"

Mat	in_img,	out_img;

//	CallBack	function	for	contrast	TrackBar

void	updateContrast(int	TBvalContrast,	void	*userData=0)	{

				in_img.convertTo(out_img,	-1,	TBvalContrast/50.0);

				imshow(OUT_WIN,	out_img);

				return;

}

int	main(int	argc,	char*	argv[])	{

				int	TBvalContrast=50;	//	Value	of	the	TrackBar

				//	(omitted	for	simplicity)

				in_img	=	imread(argv[1]);	//	Open	and	read	the	image

				//	(omitted	for	simplicity)

				in_img.copyTo(out_img);	//	Copy	orig.	image	to	final	img

				namedWindow(IN_WIN);	//	Creates	window	for	orig.	image

				moveWindow(IN_WIN,	0,	0);	//	Move	window	to	pos.	(0,	0)

				imshow(IN_WIN,	in_img);	//	Shows	original	image

				namedWindow(OUT_WIN);	//	Creates	window	for	converted	image

				createTrackbar("Contrast",	OUT_WIN,	&TBvalContrast,	100,

																			updateContrast);

				imshow(OUT_WIN,	out_img);	//	Shows	converted	image

				cout	<<	"Press	any	key	to	exit…"	<<	endl;

				waitKey();

				return	0;

}

In	this	example,	a	void	pointer	to	the	updatedContrast	function	is	passed	as	argument	to
the	createTrackbar	function:

createTrackbar("Contrast",	OUT_WIN,	&TBvalContrast,	100,

updateContrast);

The	callback	function	gets	as	its	first	argument	the	value	of	the	slider	in	the	trackbar	and	a
void	pointer	to	other	user	data.	The	new	pixels	values	for	the	image	will	be	calculated	in
this	function.

Note

In	this	example	(and	subsequent	ones),	some	portions	of	code	are	not	shown	for	brevity
because	the	omitted	code	is	the	same	as	that	in	previous	examples.

Using	a	callback	function	cause	a	few	changes	in	this	new	code	because	the	accessible
data	inside	this	function	has	to	be	defined	with	global	scope.	Then,	more	complexity	is
avoided	on	the	datatypes	passed	to	the	callback	function	as	follows:

Windows	names	are	defined	symbols	(for	example,	#define	IN_WIN).	In	the	previous
example	(tbContrast),	the	window	names	are	stored	in	local	variables	(strings).
In	this	case,	the	Mat	variables	for	the	original	(in_img)	and	converted	(out_img)
images	are	declared	as	global	variables.

Tip
Sometimes	in	this	book,	the	sample	code	uses	global	variables	for	simplicity.	Be
extremely	cautious	with	global	variables	since	they	can	be	changed	anywhere	in	the	code.

The	two	different	implementations	shown	in	the	previous	example	produce	the	same
results.	However,	it	should	be	noted	that	after	using	a	callback	function,	the	resulting
application	(tbContrastCallB)	is	more	efficient	because	the	math	operations	for	the
image	conversion	only	take	place	at	the	change	of	the	trackbar	slide	(when	the	callback	is
executed).	In	the	first	version	(tbContrast),	the	convertTo	function	is	called	inside	the
while	loop	even	if	the	TBvalContrast	variable	doesn’t	change.

Text	and	drawing
In	the	previous	section,	we	used	a	simple	user	interface	to	get	input	values	by	a	trackbar.
However,	in	many	applications,	the	user	has	to	point	locations	and	regions	on	the	image
and	mark	them	with	text	labels.	For	this	purpose,	the	highgui	module	provides	a	set	of
drawing	functions	along	with	mouse	event	handling.

The	drawThings	code	example	shows	an	easy	application	to	mark	positions	on	an	input
image.	The	positions	are	marked	with	a	red	circle	and	a	black	text	label	next	to	it.	The
following	screenshot	displays	the	window	with	the	input	image	and	the	marked	positions
on	it.	To	mark	each	position	on	the	image,	the	user	uses	has	to	click	the	left	mouse	button
over	it.	In	other	application,	the	marked	position	could	be	the	obtained	points	or	regions
from	an	algorithm	applied	to	the	input	image.

Next,	we	show	the	example	code	where	some	pieces	of	code	have	been	omitted	for
simplicity,	since	they	are	duplicated	in	other	previous	examples:

				//	(omitted	for	simplicity)

#define	IN_WIN	"Drawing…"

Mat	img;

//	CallBack	Function	for	mouse	events

void	cbMouse(int	event,	int	x,	int	y,	int	flags,	void*	userdata)	{

static	int	imark=0;

				char	textm[]	=	"mark999";

				if	(event	==	EVENT_LBUTTONDOWN)	{	//	Left	mouse	button	pressed

circle(img,	Point(x,	y),	4,	Scalar(0,0,255),	2);

imark++;//	Increment	the	number	of	marks

sprintf(textm,	"mark	%d",	imark);//	Set	the	mark	text

putText(img,	textm,	Point(x+6,	y),	FONT_HERSHEY_PLAIN,

																1,	Scalar(0,0,0),2);

imshow(IN_WIN,	img);	//	Show	final	image

				}

				return;

}

int	main(int	argc,	char*	argv[])	{

				//	(omitted	for	brevity)	

				img	=	imread(argv[1]);	//open	and	read	the	image

				//	(omitted	for	brevity)

				namedWindow(IN_WIN);

				setMouseCallback(IN_WIN,	cbMouse,	NULL);

				imshow(IN_WIN,	img);

				cout	<<	"Pres	any	key	to	exit…"	<<	endl;

				waitKey();

				return	0;

}

The	code	explanation	is	given	as	follows:

void	setMouseCallback(const	string&	winname,	MouseCallback	onMouse,

void*	userdata=0):	This	function	sets	an	event	mouse	handler	for	the	specified
window.	In	this	function,	the	second	argument	is	the	callback	function	executed
whenever	a	mouse	event	occurs.	The	final	argument	is	a	void	pointer	to	the	data
passed	as	argument	to	that	function.	In	our	code,	this	function	is	used	as	follows:

setMouseCallback(IN_WIN,	cbMouse,	NULL);

In	this	case,	rather	than	use	a	global	variable	for	the	name	of	the	window,	a	defined
symbol	with	global	scope	has	been	preferred	(IN_WIN).

Image	with	circles	and	text	on	it

The	mouse	handler	itself	is	declared	as	follows:

void	cbMouse(int	event,	int	x,	int	y,	int	flags,	void*	userdata)

Here,	event	indicates	the	mouse	event	type,	x	and	y	are	the	coordinates	for	the
location	of	the	event	at	the	window,	and	flags	is	the	specific	condition	whenever	an
event	occurs.	In	this	example,	the	unique	captured	mouse	event	is	the	left	mouse
click	(EVENT_LBUTTONDOWN).

The	following	enumerations	define	the	events	and	flags	handled	in	the	mouse
callback	functions:

enum{

		EVENT_MOUSEMOVE						=0,

				EVENT_LBUTTONDOWN				=1,

				EVENT_RBUTTONDOWN				=2,

				EVENT_MBUTTONDOWN				=3,

				EVENT_LBUTTONUP						=4,

				EVENT_RBUTTONUP						=5,

				EVENT_MBUTTONUP						=6,

				EVENT_LBUTTONDBLCLK		=7,

				EVENT_RBUTTONDBLCLK		=8,

				EVENT_MBUTTONDBLCLK		=9};

enum	{

				EVENT_FLAG_LBUTTON			=1,

				EVENT_FLAG_RBUTTON			=2,

				EVENT_FLAG_MBUTTON			=4,

				EVENT_FLAG_CTRLKEY			=8,

				EVENT_FLAG_SHIFTKEY		=16,

				EVENT_FLAG_ALTKEY				=32};

void	circle(Mat&	img,	Point	center,	int	radius,	const	Scalar&	color,

int	thickness=1,	int	lineType=8,	int	shift=0):	This	function	draws	a	circle
over	the	image	with	the	specified	radius	(in	pixels)	and	color	at	the	position	marked
by	its	center.	Moreover,	a	thickness	value	for	the	line	and	other	additional
parameters	can	be	set.	The	usage	of	this	function	in	the	example	is	as	follows:

circle(img,	Point(x,	y),	4,	Scalar(0,0,255),	2);

The	center	of	the	circle	is	the	point	where	the	mouse	is	clicked.	The	radius	has	4
pixels	and	the	color	is	pure	red	(Scalar(0,	0,	255))	with	a	line	thickness	of	2
pixels.

Note
Remember	that	OpenCV	uses	a	BGR	color	scheme	and	the	Scalar	class	is	used	to
represent	the	three	(or	four	if	opacity	channel	is	considered)	channels	of	each	pixel
with	greater	values	for	a	brighter	one	(or	more	opaque).

Other	drawing	functions	included	in	the	highgui	module	allow	us	to	draw	ellipses,
lines,	rectangles,	and	polygons.

void	putText(Mat&	image,	const	string&	text,	Point	org,	int	fontFace,

double	fontScale,	Scalar	color,	int	thickness=1,	int	lineType=8,	bool

bottomLeftOrigin=false):	This	function	draws	a	text	string	in	the	image	at	the
specified	position	(org)	with	the	properties	set	by	the	arguments	fontFace,
fontScale,	color,	thickness,	and	lineType.	It	is	possible	to	set	the	coordinates
origin	at	the	bottom-left	corner	with	the	last	argument	(bottomLeftOrigin).	In	the
example,	this	function	is	used	as	follows:

imark++;	//	Increment	the	number	of	marks

sprintf(textm,	"mark	%d",	imark);	//	Set	the	mark	text

putText(img,	textm,	Point(x+6,	y),	FONT_HERSHEY_PLAIN,

1.0,	Scalar(0,0,0),2);

In	the	drawThings	example,	we	draw	a	text	"mark"	followed	by	an	increasing
number	that	points	out	the	mark	order.	To	store	the	mark	order,	we	used	a	static
variable	(imark)	that	maintains	its	value	between	the	calls.	The	putText	function
draws	the	text	at	the	location	where	the	mouse	click	occurs	with	a	6-pixels	shift	on	x
axis.	The	font	face	is	specified	by	the	flag	FONT_HERSHEY_PLAIN	and	is	drawn	without
scale	(1.0),	black	color	(Scalar(0,	0,	0)),	and	2	pixels	thickness.

The	available	flags	for	the	font	face	are	defined	by	the	enumeration:

enum{

				FONT_HERSHEY_SIMPLEX	=	0,

				FONT_HERSHEY_PLAIN	=	1,

				FONT_HERSHEY_DUPLEX	=	2,

				FONT_HERSHEY_COMPLEX	=	3,

				FONT_HERSHEY_TRIPLEX	=	4,

				FONT_HERSHEY_COMPLEX_SMALL	=	5,

				FONT_HERSHEY_SCRIPT_SIMPLEX	=	6,

				FONT_HERSHEY_SCRIPT_COMPLEX	=	7,

				FONT_ITALIC	=	16};

Selecting	regions
Many	computer	vision	applications	require	to	focus	interest	inside	local	regions	of	the
images.	In	that	case,	it	is	a	very	useful	user	tool	to	select	the	desired	regions	of	interest
(ROI).	In	the	drawRs	example,	we	show	how	to	select,	with	the	mouse,	rectangular
regions	in	the	image	to	locally	increase	the	contrast	inside	these	regions	(as	shown	in	the
following	screenshot).	For	better	control	over	region	selection,	we	implement	a	click-and-
drag	behavior	to	reshape	the	rectangular	boundary	of	each	region.

Output	image	with	increased	contrast	in	some	rectangular	regions

For	the	sake	of	simplicity,	only	the	code	corresponding	to	the	function	callback	for	mouse
events	is	shown,	since	the	rest	is	quite	similar	in	the	previous	examples.	The	code	is	as
follows:

void	cbMouse(int	event,	int	x,	int	y,	int	flags,	void*	userdata)	{

		static	Point	p1,	p2;	//	Static	vars	hold	values	between	calls

		static	bool	p2set	=	false;

		if	(event	==	EVENT_LBUTTONDOWN)	{	//	Left	mouse	button	pressed

						p1	=	Point(x,	y);	//	Set	orig.	point

						p2set	=	false;

		}	else	if	(event	==	EVENT_MOUSEMOVE	&&

flags	==	EVENT_FLAG_LBUTTON)	{

						if	(x	>orig_img.size().width)	//	Check	out	of	bounds

										x	=	orig_img.size().width;

						else	if	(x	<	0)

										x	=	0;

						if	(y	>orig_img.size().height)	//	Check	out	of	bounds

										y	=	orig_img.size().height;

						else	if	(y	<	0)

										y	=	0;

						p2	=	Point(x,	y);	//	Set	final	point

						p2set	=	true;

orig_img.copyTo(tmp_img);	//	Copy	orig.	to	temp.	image

rectangle(tmp_img,	p1,	p2,	Scalar(0,	0,	255));

						imshow(IN_WIN,	tmp_img);	//	Draw	temporal	image	with	rect.

		}	else	if	(event	==	EVENT_LBUTTONUP	&&	p2set)	{

Mat	submat	=	orig_img(Rect(p1,	p2));	//	Set	region

						submat.convertTo(submat,	-1,	2.0);	//	Compute	contrast

			rectangle(orig_img,	p1,	p2,	Scalar(0,	0,	255));

						imshow(IN_WIN,	orig_img);	//	Show	image

		}

		return;

}

The	callback	function	declares	static	its	local	variables,	so	they	maintain	their	values
between	calls.	The	variables,	p1	and	p2,	store	the	points	for	defining	the	rectangular	region
of	interest,	and	p2set	holds	the	Boolean	(bool)	value	that	indicates	if	point	p2	is	set.
When	p2set	is	true,	a	new	selected	region	can	be	drawn	and	its	new	values	computed.

The	mouse	callback	function	handles	the	following	events:

EVENT_LBUTTONDOWN:	This	button	is	also	called	left	button	down.	The	initial	position
(p1)	is	set	to	Point(x,	y)	where	the	event	occurs.	Also,	the	p2set	variable	is	set	to
false.
EVENT_MOUSEMOVE	&&	EVENT_FLAG_LBUTTON:	Move	the	mouse	with	the	left	button
down.	First,	the	boundaries	should	be	checked	so	that	we	can	correct	coordinates	and
avoid	errors	just	in	case	the	final	point	is	out	of	the	window.	Then,	the	temporal	p2
point	is	set	to	the	final	position	of	the	mouse	and	p2set	is	set	to	true.	Finally,	a
temporal	image	is	shown	in	the	window	with	the	rectangle	drawn	on	it.
EVENT_LBUTTONUP:	This	button	is	also	called	left	button	up	and	is	valid	only	if	p2set
is	true.The	final	region	is	selected.	Then	a	subarray	can	be	pointed	in	the	original

image	for	further	computation.	After	that,	a	rectangle	around	the	final	region	is	drawn
in	the	original	image	and	the	result	is	shown	into	the	application	window.

Next,	we	take	a	closer	look	at	the	code:

Size	Mat::size()	const:	Returns	the	matrix	size	(Size(cols,	rows)):	This
function	is	used	to	get	the	bounds	of	the	image	(orig_img)	as	follows:

if	(x	>	orig_img.size().width)	//	Check	out	bounds

												x	=	orig_img.size().width;

								else	if	(x	<	0)

												x	=	0;

								if	(y	>	orig_img.size().height)	//	Check	out	bounds

												y	=	orig_img.size().height;

Since	Mat::size()	returns	a	Size	object,	we	can	access	its	members	width	and
height	to	obtain	the	greatest	values	for	x	and	y	in	the	image	(orig_img)	and	compare
those	with	the	coordinates	where	the	mouse	event	take	place.

void	Mat::copyTo(OutputArray	m)	const:	This	method	copies	the	matrix	to
another	one,	reallocating	new	size	and	type	if	it	is	needed.	Before	copying,	the
following	method	invokes:

m.create(this->size(),	this->type());

In	the	example,	the	following	method	is	employed	to	make	a	temporal	copy	of	the
original	image:

orig_img.copyTo(tmp_img);	//	Copy	orig.	to	temp.	image

The	rectangle	that	defines	the	selected	region	is	drawn	over	this	temporal	image.

void	rectangle(Mat&	img,	Point	pt1,	Point	pt2,	const	Scalar&	color,	int

thickness=1,	int	lineType=8,	int	shift=0):	This	function	draws	a	rectangle
defined	by	points	pt1	and	pt2	over	the	image	(img)	with	the	specified	color,
thickness,	and	lineType.	In	the	code	example,	this	function	is	used	twice.	First,	to
draw	a	red	(Scalar(0,	0,	255))	rectangle	on	the	temporal	image	(tmp_img)	around
the	selected	area,	and	then	to	draw	the	boundaries	of	the	final	selected	region	in	the
original	image	(orig_img):

rectangle(tmp_img,	p1,	p2,	Scalar(0,	0	,255));

//…

rectangle(orig_img,	p1,	p2,	Scalar(0,	0,	255));

Mat::Mat(const	Mat&	m,	const	Rect&	roi):	The	constructor	takes	a	submatrix	of
m	limited	by	the	rectangle	(roi)	that	represents	a	region	of	interest	in	the	image	stored
in	m.	This	constructor	is	applied,	in	the	code	example,	to	get	the	rectangular	region
whose	contrast	has	to	be	converted:

Mat	submat	=	orig_img(Rect(p1,	p2));//	Set	subarray	on	orig.	image

Using	Qt-based	functions
While	highgui	will	be	sufficient	for	most	purposes,	the	Qt	UI	framework	(available	at
http://qt-project.org/)	can	be	leveraged	in	OpenCV	to	develop	richer	user	interfaces.	A
number	of	OpenCV’s	user	interface	functions	use	the	Qt	library	behind	the	scenes.	In
order	to	use	these	functions,	OpenCV	must	have	been	compiled	with	the	WITH_QT	option.

Note	that	Qt	is	a	class	and	widget	library	that	allows	the	creation	of	full-fledged
applications	with	rich,	event-driven	user	interfaces.	In	this	section,	however,	we	will
mainly	focus	on	specific	Qt-based	functions	within	OpenCV.	Programming	with	Qt	is	out
of	the	scope	of	this	book.

With	Qt	support	on,	windows	created	with	the	namedWindow	function	will	automatically
look	like	what	is	shown	in	the	following	screenshot.	There	is	a	toolbar	with	useful
functions	such	as	pan,	zoom,	and	save	image.	Windows	also	display	a	status	bar	at	the
bottom	with	the	current	mouse	location	and	RGB	value	under	that	pixel.	Right-clicking	on
the	image	will	display	a	pop-up	menu	with	the	same	toolbar	options.

Window	displayed	with	Qt	support	enabled

http://qt-project.org/

Text	overlays	and	status	bar
Text	can	be	displayed	on	a	line	across	the	top	of	the	image.	This	is	very	useful	to	show
frames	per	second,	number	of	detections,	filenames,	and	so	on.	The	main	function	is
displayOverlay(const	string&	winname,	const	string&	text,	int	delayms=0).
The	function	expects	a	window	identifier	and	the	text	to	display.	Multiple	lines	are
allowed	by	using	the	\n	character	in	the	text	string.	The	text	will	be	displayed	in	the	center
and	has	a	fixed	size.	The	delayms	parameter	allows	to	display	the	text	only	for	a	specified
amount	of	milliseconds	(0=forever).

We	can	also	display	user	text	in	the	status	bar.	This	text	will	replace	the	default	x	and	y
coordinates	and	RGB	value	under	the	current	pixel.	The	displayStatusBar(const
string&	winname,	const	string&	text,	int	delayms=0)	function	has	the	same
parameters	as	the	previous	displayOverlay	function.	When	the	delay	has	passed,	the
default	status	bar	text	will	be	displayed.

The	properties	dialog
One	of	the	most	useful	features	of	OpenCV’s	Qt-based	functions	is	the	properties	dialog
window.	This	window	can	be	used	to	place	trackbars	and	buttons.	Again,	this	comes	in
handy	while	tuning	parameters	for	our	application.	The	properties	dialog	window	can	be
accessed	by	pressing	the	last	button	in	the	toolbar	(as	shown	in	the	preceding	screenshot)
or	by	pressing	Ctrl	+	P.	The	window	will	only	be	accessible	if	trackbars	or	button	have
been	assigned	to	it.	To	create	a	trackbar	for	the	properties	dialog,	simply	use	the
createTrackbar	function	passing	an	empty	string	(not	NULL)	as	the	window	name.

Buttons	can	also	be	added	to	the	properties	dialog.	Since	both	the	original	window	and	the
dialog	windows	can	be	visible	at	the	same	time,	this	can	be	useful	to	activate/deactivate
features	in	our	application	and	see	the	results	immediately.	To	add	buttons	to	the	dialog,
use	the	createButton(const	string&	button_name,	ButtonCallback	on_change,
void*	userdata=NULL,inttype=CV_PUSH_BUTTON,	bool	initial_button_state=0)

function.	The	first	parameter	is	the	button	label	(that	is,	the	text	to	be	displayed	in	the
button).	Every	time	the	button	changes	its	state,	the	on_change	callback	function	will	be
called.	This	should	be	in	the	form	void	on_change(intstate,	void	*userdata).	The
userdata	pointer	passed	to	createButton	will	be	passed	to	this	callback	function	every
time	it	is	called.	The	state	parameter	signals	the	button	change	and	it	will	have	a	different
value	for	each	type	of	button,	given	by	parameter	types:

CV_PUSH_BUTTON:	Push	button
CV_CHECKBOX:	Checkbox	button;	the	state	will	be	either	1	or	0
CV_RADIOBOX:	Radiobox	button;	the	state	will	be	either	1	or	0

For	the	first	two	types,	the	callback	is	called	once	on	each	press.	For	the	radiobox	button,
it	is	called	both	for	the	button	just	clicked	and	for	the	button	that	goes	unclicked.

Buttons	are	organized	into	button	bars.	Button	bars	occupy	one	row	in	the	dialog	window.
Each	new	button	is	added	to	the	right	of	the	last	one.	Trackbars	take	up	an	entire	row,	so
button	bars	are	terminated	when	a	trackbar	is	added.	The	following	propertyDlgButtons
example	shows	how	buttons	and	trackbars	are	laid	out	in	the	properties	dialog:

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

Mat	image;

const	char	win[]="Flip	image";

void	on_flipV(int	state,	void	*p)

{

				flip(image,	image,	0);		//	flip	vertical

				imshow(win,	image);

}

void	on_flipH(int	state,	void	*p)

{

				flip(image,	image,	1);		//	flip	horizontal

				imshow(win,	image);

}

void	on_negative(int	state,	void	*p)

{

				bitwise_not(image,	image);		//	invert	all	channels

				imshow(win,	image);

}

int	main(int	argc,	char	*argv[])

{

				if	(argc	!=	2)	{//Check	args.

								cout	<<	"Usage:	<cmd><file_in>\n";

								return	-1;

				}

				image	=	imread(argv[1]);

				if	(image.empty())	{

								cout	<<	"Error!	Input	image	cannot	be	read…\n";

								return	-1;

				}

				namedWindow(win);

				imshow(win,	image);

				displayOverlay(win,	argv[1],	0);

				createButton("Flip	Vertical",	on_flipV,	NULL,	CV_PUSH_BUTTON);

				createButton("Flip	Horizontal",	on_flipH,	NULL,	CV_PUSH_BUTTON);

				int	v=0;

				createTrackbar("trackbar1",	"",	&v,	255);

				createButton("Negative",	on_negative,	NULL,	CV_CHECKBOX);

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();

				return	0;

}

This	code	is	similar	to	the	flipImage	example	in	the	previous	chapter.	In	this	example,	an
image	filename	is	passed	as	an	argument.	A	properties	window	is	created	with	two	buttons
for	vertical	and	horizontal	flipping,	a	dummy	trackbar,	and	a	checkbox	button	to	invert
color	intensities.	The	callback	functions	on_flipV	and	on_flipH	simply	flip	the	current
image	and	show	the	result	(we	use	a	global	image	variable	for	this),	while	the	callback
function	on_negative	logically	inverts	color	intensities	and	shows	the	result.	Note	that	the
trackbar	is	not	really	being	used;	it	is	used	to	show	the	line	feed	effect.	The	following
screenshot	shows	the	result:

The	propertyDlgButtons	example

Windows	properties
As	mentioned	previously,	by	default,	all	new	windows	will	look	like	what’s	shown	in	the
screenshot	in	the	Using	Qt-based	functions	section.	Still,	we	can	display	windows	in	the
non-Qt	format	by	passing	the	CV_GUI_NORMAL	option	to	namedWindow.	On	the	other	hand,
window	size	parameters	can	be	retrieved	and	set	using	the	double
getWindowProperty(const	string&	winname,	int	prop_id)	and	setWindowProperty
(const	string&	winname,	int	prop_id,double	prop_value)	functions.	The	following
table	shows	the	properties	that	can	be	changed:

Property	(prop_id) Description Possible	values

CV_WND_PROP_FULLSCREEN Displays	a	fullscreen	or	regular	window CV_WINDOW_NORMAL	or
CV_WINDOW_FULLSCREEN

CV_WND_PROP_AUTOSIZE
Window	automatically	resizes	to	fit	the	displayed
image

CV_WINDOW_NORMAL	or
CV_WINDOW_AUTOSIZE

CV_WND_PROP_ASPECTRATIO
Allows	resized	windows	to	have	any	ratio	or	fixed
original	ratio

CV_WINDOW_FREERATIO	or
CV_WINDOW_KEEPRATIO

More	importantly,	window	properties	can	be	saved.	This	includes	not	only	size	and
location,	but	also	flags,	trackbar	values,	zoom,	and	panning	location.	To	save	and	load
window	properties,	use	the	saveWindowParameters(const	string&	windowName)	and
loadWindowParameters(const	string&	windowName)	functions.

Qt	images
If	we	want	to	use	the	Qt	libraries	extensively	in	our	project	(that	is,	beyond	OpenCV’s	Qt-
based	functions),	we	have	to	find	a	way	to	convert	OpenCV’s	images	to	the	format	used
by	Qt	(QImage).	This	can	be	done	by	using	the	following	function:

QImage*	Mat2Qt(const	Mat	&image)

{

Mat	temp=image.clone();

cvtColor(image,	temp,	CV_BGR2RGB);

QImage	*imgQt=	new	QImage((const	unsigned	char*)

(temp.data),temp.cols,temp.rows,QImage::Format_RGB888);

return	imgQt;

}

This	function	creates	a	Qt	image	using	OpenCV’s	image	data.	Note	that	a	conversion	is
first	necessary,	since	Qt	uses	RGB	images	while	OpenCV	uses	BGR	order.

Finally,	to	display	the	image	with	Qt,	we	have	at	least	two	options:

Create	a	class	that	extends	the	QWidget	class	and	implements	paint	events.
Create	a	label	and	set	it	to	draw	an	image	(using	the	setPixMap	method).

Summary
In	this	chapter,	we	provided	a	deeper	view	of	the	highgui	module	functionality	to	enrich
the	user	experience.	The	main	elements	supplied	by	OpenCV	to	build	graphical	user
interfaces	are	shown	in	some	code	samples.	Moreover,	we	reviewed	the	new	Qt
functionality	inside	OpenCV.

The	chapter’s	examples	cover	topics	such	as	tbarContrast,	tbarContrastCallB,
drawThings,	drawRs,	and	propertyDlgButtons.

The	next	chapter	will	cover	the	implementation	of	the	most	usual	methods	used	for	image
processing,	such	as	brightness	control,	contrast	and	color	conversion,	retina	filtering,	and
geometrical	transformations.

Chapter	3.	First	Things	First	–	Image
Processing
Image	processing	refers	to	digital	processing	of	any	two-dimensional	data	(a	picture)	by	a
computer	by	applying	signal	processing	methods.	Image	processing	has	a	broad	spectrum
of	applications,	such	as	image	representation,	image	enhancement	or	sharpening,	image
restoration	by	means	of	filtering,	and	geometrical	correction.	These	applications	are
usually	the	first	stage	and	input	to	the	following	stages	in	a	computer	vision	system.	In
OpenCV,	there	is	a	specific	module,	imgproc,	for	image	processing.	In	this	chapter,	we
will	cover	the	most	important	and	frequently	used	methods	available	in	the	library,	that	is,
pixel-level	access,	histogram	manipulation,	image	equalization,	brightness	and	contracts
modeling,	color	spaces,	filtering,	and	arithmetic	and	geometrical	transforms.

www.allitebooks.com

http://www.allitebooks.org

Pixel-level	access	and	common	operations
One	of	the	most	fundamental	operations	in	image	processing	is	pixel-level	access.	Since
an	image	is	contained	in	the	Mat	matrix	type,	there	is	a	generic	access	form	that	uses	the
at<>	template	function.	In	order	to	use	it,	we	have	to	specify	the	type	of	matrix	cells,	for
example:

Mat	src1	=	imread("stuff.jpg",	CV_LOAD_IMAGE_GRAYSCALE);

uchar	pixel1=src1.at<uchar>(0,0);

cout	<<	"First	pixel:	"	<<	(unsigned	int)pixel1	<<	endl;

Mat	src2	=	imread("stuff.jpg",	CV_LOAD_IMAGE_COLOR);

Vec3b	pixel2	=	src2.at<Vec3b>(0,0);

cout	<<	"First	pixel	(B):"	<<	(unsigned	int)pixel2[0]	<<	endl;

cout	<<	"First	pixel	(G):"	<<	(unsigned	int)pixel2[1]	<<	endl;

cout	<<	"First	pixel	(R):"	<<	(unsigned	int)pixel2[2]	<<	endl;

Note	that	color	images	use	the	Vec3b	type,	which	is	an	array	of	three	unsigned	chars.
Images	with	a	fourth	alpha	(transparency)	channel	would	be	accessed	using	the	type
Vec4b.	The	Scalar	type	represents	a	1	to	4-element	vector	and	can	also	be	used	in	all
these	cases.	Note	that	at<>	can	be	also	used	to	change	pixel	values	(that	is,	on	the	left-
hand	side	of	an	assignment).

Apart	from	pixel	access,	there	are	a	number	of	common	operations	for	which	we	should
know	the	corresponding	snippets.	The	following	table	shows	these	common	operations:

Operation Code	example

Obtain	size	of	matrix
Size	siz=src.size();

cout	<<	"width:	"	<<	siz.width	<<	endl;

cout	<<	"height:	"	<<	siz.height	<<	endl;

Obtain	number	of	channels int	nc=src.channels();

Obtain	pixel	data	type int	d=src.depth();

Set	matrix	values

src.setTo(0);	//for	one-channel	src

Or

src.setTo(Scalar(b,g,r));	//	for	three-channel	

src

Create	a	copy	of	the	matrix Mat	dst=src.clone();

Create	a	copy	of	the	matrix	(with	optional	mask) src.copy(dst,	mask);

Reference	a	submatrix Mat	dst=src(Range(r1,r2),Range(c1,c2));

Create	a	new	matrix	from	a	submatrix	(that	is,	image
crop)

Rect	roi(r1,c2,	width,	height);

Mat	dst=src(roi).clone();

Note	the	difference	in	the	last	two	rows:	in	the	last	row,	a	new	matrix	is	created.	The	case
of	the	penultimate	row	only	creates	a	reference	to	a	submatrix	within	src,	but	data	is	not

actually	copied.

Tip
The	most	common	operations,	including	additional	iterator-based	pixel	access	methods,
are	summarized	in	the	OpenCV	2.4	Cheat	Sheet,	which	can	be	downloaded	from
http://docs.opencv.org/trunk/opencv_cheatsheet.pdf.

http://docs.opencv.org/trunk/opencv_cheatsheet.pdf

Image	histogram
An	image	histogram	represents	the	frequency	of	the	occurrence	of	the	various	gray	levels
or	colors	in	the	image,	in	case	of	2D	and	3D	histograms	respectively.	Therefore,	the
histogram	is	similar	to	the	probability	density	function	of	the	different	pixel	values,	that	is,
the	gray	levels,	present	in	the	image.	In	OpenCV,	the	image	histogram	may	be	calculated
with	the	function	void	calcHist(const	Mat*	images,	int	nimages,	const	int*
channels,	InputArray	mask,	OutputArray	hist,	int	dims,	const	int*	histSize,

const	float**	ranges,	bool	uniform=true,	bool	accumulate=false).	The	first
parameter	is	a	pointer	to	the	input	image.	It	is	possible	to	calculate	the	histogram	of	more
than	one	input	image.	This	allows	you	to	compare	image	histograms	and	calculate	the
joint	histogram	of	several	images.	The	second	parameter	is	the	number	of	source	images.
The	third	input	parameter	is	the	list	of	the	channels	used	to	compute	the	histogram.	It	is
possible	to	calculate	the	histogram	of	more	than	one	channel	of	the	same	color	image.
Thus,	in	this	case,	the	nimages	value	will	be	1	and	the	const	int*	channels	parameter
will	be	an	array	with	the	list	of	channel	numbers.

The	number	of	channels	goes	from	zero	to	two.	The	parameter	InputArray	mask	is	an
optional	mask	to	indicate	the	array	elements	(image	pixels)	counted	in	the	histogram.	The
fifth	parameter	is	the	output	histogram.	The	parameter	int	dims	is	the	histogram
dimensionality	that	must	be	positive	and	not	greater	than	32	(CV_MAX_DIMS).	A	histogram
can	be	n-dimensional	according	to	the	number	of	bins	used	to	quantize	the	pixel	values	of
the	image.	The	parameter	const	int*	histSize	is	the	array	of	histogram	sizes	in	each
dimension.	It	allows	us	to	compute	histograms	with	non-uniform	binning	(or
quantification).	The	const	float**	ranges	parameter	is	the	array	of	the	dims	arrays	of
the	histogram	bin	boundaries	in	each	dimension.	The	last	two	parameters	have	Boolean
values	and	by	default	are	true	and	false	respectively.	They	indicate	that	the	histogram	is
uniform	and	non-accumulative.

The	following	ImgHisto	example	shows	how	to	calculate	and	display	the	one-dimensional
histogram	of	a	2D	image:

#include	"opencv2/imgproc/imgproc.hpp"	//	a	dedicated	include	file

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	cv;

using	namespace	std;

int	main(int	argc,	char	*argv[])

{

				int	histSize	=	255;

				long	int	dim;

				Mat	hist,	image;

				//Read	original	image

				Mat	src	=	imread("fruits.jpg");

				//Convert	color	image	to	gray	level	image

				cvtColor(src,	image,	CV_RGB2GRAY);

				//Create	three	windows

				namedWindow("Source",	0);

				namedWindow("Gray	Level	Image",	0);

				namedWindow("Histogram",	WINDOW_AUTOSIZE);

				imshow("Source",	src);

				imshow("Gray	Level	Image",	image);

				calcHist(&image,	1,	0,	Mat(),	hist,	1,	&histSize,	0);

				dim=image.rows	*image.cols;

				Mat	histImage	=	Mat::ones(255,	255,	CV_8U)*255;

				normalize(hist,	hist,	0,	histImage.rows,	CV_MINMAX,	CV_32F);

				histImage	=	Scalar::all(255);

				int	binW	=	cvRound((double)histImage.cols/histSize);

				for(int	i	=	0;	i	<	histSize;	i++)

				rectangle(histImage,	Point(i*binW,	histImage.rows),	Point((i+1)*binW,	

histImage.rows	–	cvRound(hist.at<float>(i))),	Scalar::all(0),	-1,	8,	0);

				imshow("Histogram",	histImage);

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();	//	Wait	for	key	press

				return	0;

}

The	code	explanation	is	given	here:	the	example	creates	three	windows	with	the	source
image,	the	grayscale	image,	and	the	result	of	the	1D	histogram.	The	1D	histogram	is
shown	as	a	bar	diagram	for	the	255	gray	values.	Thus,	first	the	color	pixels	are	converted
into	gray	values	using	the	cvtColor	function.	The	gray	values	are	then	normalized	using
the	normalize	function	between	0	and	the	maximum	gray	level	value.	Then	the	1D
histogram	is	calculated	by	discretizing	the	colors	in	the	image	into	a	number	of	bins	and
counting	the	number	of	image	pixels	in	each	bin.	The	following	screenshot	shows	the
output	of	the	example.	Note	that	a	new	include	file,	imgproc.hpp,	dedicated	to	image
processing	is	needed.

Output	of	the	histogram	example

Histogram	equalization
Once	the	image	histogram	is	calculated,	it	can	be	modelled	so	that	the	image	is	modified
and	the	histogram	has	a	different	shape.	This	is	useful	to	change	the	low-contrast	levels	of
images	with	narrow	histograms,	since	this	will	spread	out	the	gray	levels	and	thus	enhance
the	contrast.	Histogram	modeling,	also	known	as	histogram	transfer,	is	a	powerful
technique	for	image	enhancement.	In	histogram	equalization,	the	goal	is	to	obtain	a
uniform	histogram	for	the	output	image.	That	is,	a	flat	histogram	where	each	pixel	value
has	the	same	probability.	In	OpenCV,	histogram	equalization	is	performed	with	the
function	void	equalizeHist(InputArray	src,	OutputArray	dst).	The	first	parameter
is	the	input	image	and	the	second	one	is	the	output	image	with	the	histogram	equalized.

The	following	EqualizeHist_Demo	example	shows	how	to	calculate	and	display	the
histogram	equalized	and	the	effect	on	the	two-dimensional	image:

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/imgproc/imgproc.hpp"

#include	<iostream>

#include	<stdio.h>

using	namespace	cv;

using	namespace	std;

int	main(int,	char	*argv[])

{

		Mat	src,	image,	hist;

		int	histSize	=	255;

		long	int	dim;

		//Read	original	image

		src	=	imread("fruits.jpg");

		//Convert	to	grayscale

		cvtColor(src,	src,	COLOR_BGR2GRAY);

		//Apply	Histogram	Equalization

		equalizeHist(src,	image);

		//Display	results

		namedWindow("Source	image",	0);

		namedWindow("Equalized	Image",	0);

		imshow("Source	image",	src);

		imshow("Equalized	Image",	image);

		//Calculate	Histogram	of	the	Equalized	Image	and	display

		calcHist(&image,	1,	0,	Mat(),	hist,	1,	&histSize,	0);

		dim=image.rows	*image.cols;

		Mat	histImage	=	Mat::ones(255,	255,	CV_8U)*255;

		normalize(hist,	hist,	0,	histImage.rows,	CV_MINMAX,	CV_32F);

		histImage	=	Scalar::all(255);

		int	binW	=	cvRound((double)histImage.cols/histSize);

		for(int	i	=	0;	i	<	histSize;	i++)

		rectangle(histImage,	Point(i*binW,	histImage.rows),	Point((i+1)*binW,	

histImage.rows	–	cvRound(hist.at<float>(i))),	Scalar::all(0),	-1,	8,	0);

		namedWindow("Histogram	Equalized	Image",	WINDOW_AUTOSIZE);

		imshow("Histogram	Equalized	Image",	histImage);

	

		waitKey();//	Exits	the	program

		return	0;

}

The	code	explanation	is	given	as	follows.	The	example	first	reads	the	original	image	and
converts	it	to	grayscale.	Then,	histogram	equalization	is	performed	using	the
equalizeHist	function.	Finally,	the	histogram	of	the	equalized	image	is	shown	together
with	the	two	previous	images.	The	following	screenshot	shows	the	output	of	the	example,
where	three	windows	are	created	with	the	grayscale	image,	the	equalized	image,	and	its
histogram:

Output	of	the	histogram	equalization	example

Brightness	and	contrast	modeling
The	brightness	of	an	object	is	the	perceived	luminance	or	intensity	and	depends	on	the
luminance	of	the	environment.	Two	objects	in	different	environments	could	have	the	same
luminance	but	different	brightness.	The	reason	is	that	the	human	visual	perception	is
sensitive	to	luminance	contrast	rather	than	absolute	luminance.	Contrast	is	the	difference
in	luminance	and/or	color	that	makes	an	object	distinguishable	compared	to	other	objects
within	the	same	field	of	view.	The	maximum	contrast	of	an	image	is	known	as	the	contrast
ratio	or	dynamic	range.

It	is	possible	to	modify	the	brightness	and	contrast	of	an	image	by	means	of	point-wise
operations.	Point	operations	map	a	given	gray	pixel	value	into	a	different	gray	level
according	to	a	transform	previously	defined.	In	OpenCV,	point	operations	may	be
performed	with	the	function	void	Mat::convertTo(OutputArray	m,	int	rtype,
double	alpha=1,	double	beta=0).	The	convertTo	function	converts	an	image	array	to
another	data	type	with	optional	scaling.	The	first	parameter	is	the	output	image	and	the
second	parameter	is	the	output	matrix	type,	that	is,	the	depth,	since	the	number	of	channels
is	the	same	as	the	input	image.	Thus,	the	source	pixel	values	I(x,y)	are	converted	to	the
target	data	type	with	the	new	value	(I(x,y)	*	alpha	+	beta).

The	following	BrightnessContrast	example	shows	how	to	perform	an	image	pixel
(point)	operation	to	modify	brightness	and	contrast:

#include	"opencv2/imgproc/imgproc.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	cv;

using	namespace	std;

int	init_brightness		=	100;

int	init_contrast	=	100;

Mat	image;

/*	brightness	and	contrast	function	to	highlight	the	image*/

void	updateBrightnessContrast(int,	void*)

{

				int	histSize	=	255;

				int	var_brightness	=	init_brightness		-	100;

				int	var_contrast	=	init_contrast	-	100;

				double	a,	b;

				if(var_contrast	>	0)

				{

								double	delta	=	127.*var_contrast/100;

								a	=	255./(255.	-	delta*2);

								b	=	a*(var_brightness	-	delta);

				}

				else

				{

								double	delta	=	-128.*var_contrast/100;

								a	=	(256.-delta*2)/255.;

								b	=	a*var_brightness	+	delta;

				}

				Mat	dst,	hist;

				image.convertTo(dst,	CV_8U,	a,	b);

				imshow("image",	dst);

				calcHist(&dst,	1,	0,	Mat(),	hist,	1,	&histSize,	0);

				Mat	histImage	=	Mat::ones(200,	320,	CV_8U)*255;

				normalize(hist,	hist,	0,	histImage.rows,	CV_MINMAX,	CV_32F);

				histImage	=	Scalar::all(255);

				int	binW	=	cvRound((double)histImage.cols/histSize);

				for(int	i	=	0;	i	<	histSize;	i++)

								rectangle(histImage,	Point(i*binW,	histImage.rows),	

Point((i+1)*binW,	histImage.rows	–	cvRound(hist.at<float>(i))),	

Scalar::all(0),	-1,	8,	0);

							imshow("histogram",	histImage);

			}

const	char*	keys	=	{

				"{1|	|fruits.jpg|input	image	file}"

};

int	main(int	argc,	const	char**	argv)

				{

								CommandLineParser	parser(argc,	argv,	keys);

								string	inputImage	=	parser.get<string>("1");

								//Read	the	input	image.

								image	=	imread(inputImage,	0);

								namedWindow("image",	0);

								namedWindow("histogram",	0);

								createTrackbar("brightness",	"image",	&init_brightness	,	200,	

updateBrightnessContrast);

								createTrackbar("contrast",	"image",	&init_contrast,	200,	

updateBrightnessContrast);

								updateBrightnessContrast(0,	0);

				waitKey();

				return	0;

}

The	code	explanation	is	given	here:	the	example	creates	two	windows	with	the	grayscale
image	and	its	histogram.	The	new	values	for	the	brightness	and	contrast	are	selected	by
the	user	using	the	function	createTrackbar.	This	function	attaches	two	sliders	or	range

controls	to	the	image	for	brightness	and	contrast.	The	following	screenshot	shows	the
output	of	the	BrightnessContrast	example	for	a	value	of	148	for	brightness	and	81	for
contrast:

Output	of	the	brightness	and	contrast	image	modification

Histogram	matching	and	LUT
The	histogram	may	also	be	used	to	modify	the	color	of	an	image.	Histogram	matching	is	a
method	of	color	adjustment	between	two	color	images.	Given	a	reference	image	and	a
target	image,	the	result	(destination	image)	will	be	equal	to	the	target	image	except	that	its
(three)	histograms	will	look	like	those	of	the	reference	image.	This	effect	is	known	as
color	mapping	or	color	transfer.

The	histogram	matching	algorithm	is	run	over	each	of	the	three	color	histograms
independently.	For	each	channel,	the	cumulative	distribution	function	(cdf)	has	to	be
calculated.	For	a	given	channel,	let	Fr	be	the	cdf	of	the	reference	image	and	Ft	be	the	cdf
of	the	target	image.	Then,	for	each	pixel	v	in	the	reference	image,	we	find	the	gray	level	w,
for	which	Fr(v)=Ft(w).	The	pixel	with	value	v	is	thus	changed	to	w.

Next,	we	provide	another	example	of	histograms	in	which	we	use	a	technique	called
histogram	matching.	The	example	also	uses	look-up	tables	(LUT).	A	look-up	table
transformation	assigns	a	new	pixel	value	to	each	pixel	in	the	input	image	(there	is	a	good
explanation	and	example	of	an	LUT	at
http://docs.opencv.org/doc/tutorials/core/how_to_scan_images/how_to_scan_images.html).
The	new	values	are	given	by	a	table.	Thus,	the	first	entry	in	this	table	gives	the	new	value
for	pixel	value	0,	the	second	the	new	value	for	pixel	value	1,	and	so	on.	Assuming	we	use
a	source	and	destination	image,	the	transform	is	then	given	by	Dst(x,y)=LUT(Src(x,y)).

The	OpenCV	function	for	performing	a	look-up	table	transformation	is	LUT(InputArray
src,	InputArray	lut,	OutputArray	dst,	int	interpolation=0).	The	parameter	src
is	an	8-bit	image.	The	table	is	given	in	the	parameter	lut,	which	has	256	elements.	The
table	has	either	one	channel	or	the	same	number	of	channels	as	the	source	image.

The	following	is	the	histMatching	example:

#include	"opencv2/opencv.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

void	histMatch(const	Mat	&reference,	const	Mat	&target,	Mat	&result){

				float	const	HISTMATCH	=	0.000001;

				double	min,	max;

				vector<Mat>	ref_channels;

				split(reference,	ref_channels);

				vector<Mat>	tgt_channels;

				split(target,	tgt_channels);

				int	histSize	=	256;

				float	range[]	=	{0,	256};

				const	float*	histRange	=	{	range	};

				bool	uniform	=	true;

				//For	every	channel	(B,	G,	R)

http://docs.opencv.org/doc/tutorials/core/how_to_scan_images/how_to_scan_images.html

				for	(int	i=0	;	i<3	;	i++)

				{

									Mat	ref_hist,	tgt_hist;

									Mat	ref_hist_accum,	tgt_hist_accum;

								//Calculate	histograms

								calcHist(&ref_channels[i],	1,	0,	Mat(),	ref_hist,	1,	&histSize,	

&histRange,	uniform,	false);

								calcHist(&tgt_channels[i],	1,	0,	Mat(),	tgt_hist,	1,	&histSize,	

&histRange,	uniform,	false);

								//Normalize	histograms

								minMaxLoc(ref_hist,	&min,	&max);

								if	(max==0)	continue;

								ref_hist	=	ref_hist	/	max;

								minMaxLoc(tgt_hist,	&min,	&max);

								if	(max==0)	continue;

								tgt_hist	=	tgt_hist	/	max;

								//Calculate	accumulated	histograms

								ref_hist.copyTo(ref_hist_accum);

								tgt_hist.copyTo(tgt_hist_accum);

								float	*	src_cdf_data	=	ref_hist_accum.ptr<float>();

								float	*	dst_cdf_data	=	tgt_hist_accum.ptr<float>();

								for	(int	j=1	;	j	<	256	;	j++)

								{

												src_cdf_data[j]	=	src_cdf_data[j]	+	src_cdf_data[j-1];

												dst_cdf_data[j]	=	dst_cdf_data[j]	+	dst_cdf_data[j-1];

								}

								//Normalize	accumulated

								minMaxLoc(ref_hist_accum,	&min,	&max);

								ref_hist_accum	=	ref_hist_accum	/	max;

								minMaxLoc(tgt_hist_accum,	&min,	&max);

								tgt_hist_accum	=	tgt_hist_accum	/	max;

								//Result	max

								Mat	Mv(1,	256,	CV_8UC1);

								uchar	*	M	=	Mv.ptr<uchar>();

								uchar	last	=	0;

								for	(int	j=0	;	j	<	tgt_hist_accum.rows	;	j++)

								{

												float	F1	=	dst_cdf_data[j];

												for	(uchar	k=last	;	k	<	ref_hist_accum.rows	;	k++)

												{

																float	F2	=	src_cdf_data[k];

																if	(std::abs(F2	-	F1)	<	HISTMATCH	||		F2	>	F1)

																{

																				M[j]	=	k;

																				last	=	k;

																				break;

																}

												}

								}

								Mat	lut(1,	256,	CV_8UC1,	M);

								LUT(tgt_channels[i],	lut,	tgt_channels[i]);

				}

				//Merge	the	three	channels	into	the	result	image

				merge(tgt_channels,	result);

}

int	main(int	argc,	char	*argv[])

{

				//Read	original	image	and	clone	it	to	contain	results

				Mat	ref	=	imread("baboon.jpg",	CV_LOAD_IMAGE_COLOR);

				Mat	tgt	=	imread("lena.jpg",	CV_LOAD_IMAGE_COLOR);

				Mat	dst	=	tgt.clone();

				//Create	three	windows

				namedWindow("Reference",	WINDOW_AUTOSIZE);

				namedWindow("Target",	WINDOW_AUTOSIZE);

				namedWindow("Result",	WINDOW_AUTOSIZE);

				imshow("Reference",	ref);

				imshow("Target",	tgt);

				histMatch(ref,	tgt,	dst);

				imshow("Result",	dst);

				//	Position	windows	on	screen

				moveWindow("Reference",	0,0);

				moveWindow("Target",	ref.cols,0);

				moveWindow("Result",	ref.cols+tgt.cols,0);

				waitKey();	//	Wait	for	key	press

				return	0;

}

The	code	explanation	is	given	here:	the	example	first	reads	the	reference	and	target
images.	The	output	image	is	also	allocated.	The	main	function	is	histMatch.	In	it,	the
reference	and	target	images	are	first	split	into	the	three	color	channels.	Then,	for	every
channel,	we	obtain	the	normalized	histograms	of	reference	and	target	images,	followed	by
the	respective	cdfs.	Next,	the	histogram	matching	transformation	is	performed.

Finally,	we	apply	the	new	pixel	values	using	the	look-up	table.	Note	that	the
transformation	could	also	be	applied	by	iterating	over	every	pixel	in	the	result	image.	The
look-up	table	option	is,	however,	much	faster.	The	following	screenshot	shows	the	output
of	the	sample.	The	color	palette	of	the	reference	image	(the	baboon.jpg	image)	is
transferred	to	the	target	image.

Output	of	the	histMatching	example

Conversion	from	RGB	to	other	color
spaces
The	color	of	an	image	may	also	be	modified	by	changing	the	color	space.	In	OpenCV,	six
color	models	are	available	and	it	is	possible	to	convert	from	one	to	another	by	using	the
cvtColor	function.

Note
The	default	color	format	in	OpenCV	is	often	referred	to	as	RGB	but	it	is	actually	BGR
(the	channels	are	reversed).

The	function	void	cvtColor(InputArray	src,	OutputArray	dst,	int	code,	int
dstCn=0)	has	the	input	and	output	images	as	the	first	and	second	parameters.	The	third
parameter	is	the	color	space	conversion	code	and	the	last	parameter	is	the	number	of
channels	in	the	output	image;	if	this	parameter	is	0,	the	number	of	channels	is	obtained
automatically	from	the	input	image.

The	following	color_channels	example	shows	how	to	convert	from	RGB	to	HSV,	Luv,
Lab,	YCrCb,	and	XYZ	color	spaces:

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/imgproc/imgproc.hpp"

using	namespace	cv;

using	namespace	std;

int	main(){

				Mat	image,	HSV,	Luv,	Lab,	YCrCb,	XYZ;

				//Read	image

				image	=	imread("HappyFish.jpg",	CV_LOAD_IMAGE_COLOR);

				//Convert	RGB	image	to	different	color	spaces

				cvtColor(image,	HSV,	CV_RGB2HSV);

				cvtColor(image,	Luv,	CV_RGB2Luv);

				cvtColor(image,	Lab,	CV_RGB2Lab);

				cvtColor(image,	YCrCb,	CV_RGB2YCrCb);

				cvtColor(image,	XYZ,	CV_RGB2XYZ);

				//Create	windows	and	display	results

				namedWindow("Source	Image",	0);

				namedWindow("Result	HSV	Image",	0);

				namedWindow("Result	Luv	Image",	0);

				namedWindow("Result	Lab	Image",	0);

				namedWindow("Result	YCrCb	Image",	0);

				namedWindow("Result	XYZ	Image",	0);

				imshow("Source	Image",	image);

				imshow("Result	HSV	Image",		HSV);

				imshow("Result	Luv	Image",	Luv);

				imshow("Result	Lab	Image",	Lab);

				imshow("Result	YCrCb	Image",	YCrCb);

				imshow("Result	XYZ	Image",	XYZ);

				waitKey();	//Wait	for	key	press

				return	0;		//End	the	program

}

The	code	explanation	is	given	here:	the	first	example	reads	the	original	image	and	makes
the	conversion	into	five	different	color	models.	The	original	image	in	RGB	and	the	results
are	then	displayed.	The	following	screenshot	shows	the	output	of	the	sample:

Output	of	the	different	color	spaces

Filtering	with	the	retina	model
Image	restoration	is	concerned	with	filtering	the	digital	image	to	minimize	the	effect	of
degradations.	Degradation	is	produced	by	the	sensing	environment	during	image
acquisition	by	optical	or	electronic	devices.	The	effectiveness	of	image	filtering	depends
on	the	extent	and	the	accuracy	of	the	knowledge	of	the	degradation	process	as	well	as	on
the	filter	design.

In	OpenCV,	there	are	several	isotropic	and	anisotropic	filters	available	operating	on	both
spatial	and	frequency	domains.	One	of	the	most	recent	filters	is	the	retina	filter,	which	is
based	on	a	model	of	the	human	visual	system.	There	is	a	class	named	Retina	to	perform
spatio-temporal	filtering	modeling	the	two	main	retina	information	channels,	which	are
parvocellular	(parvo)	due	to	foveal	vision	and	magnocellular	(magno)	due	to	peripheral
vision.	The	parvo	channel	is	related	to	detail	extraction	while	the	magno	channel	is
dedicated	to	motion	analysis.

The	Retina	class	may	be	applied	on	still	images,	images	sequences,	and	video	sequences
to	perform	motion	analysis.	Here	we	present	a	simplified	version	of	the	retinademo
algorithm	provided	in	OpenCV.	The	algorithm	Filter_Retina.cpp	presented	here
demonstrates	the	use	of	the	retina	model	images,	which	can	be	used	to	perform	texture
analysis	with	enhanced	signal-to-noise	ratio	and	enhanced	details	that	are	robust	against
input	image	luminance	ranges.	The	main	properties	of	the	human	retina	model	are	as
follows:

Spectral	whitening	(mid-frequency	detail	enhancement)
High-frequency	spatio-temporal	noise	reduction	(temporal	noise	and	high-frequency
spatial	noise	are	minimized)
Low-frequency	luminance	reduction	(luminance	range	compression):	High-
luminance	regions	do	not	hide	details	in	darker	regions	anymore
Local	logarithmic	luminance	compression	allows	details	to	be	enhanced	even	in	low-
light	conditions

Note
For	more	information,	refer	to	Using	Human	Visual	System	Modeling	for	bio-inspired	low
level	image	processing,	Benoit	A.,	Caplier	A.,	Durette	B.,	Herault	J.,	Elsevier,	Computer
Vision	and	Image	Understanding	114	(2010),	pp.	758-773.	DOI	at
http://dx.doi.org/10.1016/j.cviu.2010.01.011.

The	following	is	the	code	for	the	example:

#include	"opencv2/opencv.hpp"

using	namespace	cv;

using	namespace	std;

int	main(int	argc,	char*	argv[])

{

				//Declare	input	image	and	retina	output	buffers

				Mat	src,	retinaOutput_parvo,	retinaOutput_magno;

http://dx.doi.org/10.1016/j.cviu.2010.01.011

				src	=		imread("starry_night.jpg",	1);	//	load	image	in	RGB

				//Create	a	retina	instance	with	default	parameters	setup

				Ptr<	Retina>	myRetina;

				//Allocate	"classical"	retina	:

				myRetina	=	new		Retina(src.size());

				//Save	default	retina	parameters	file

				myRetina->write("RetinaDefaultParameters.xml");

				//The	retina	parameters	may	be	reload	using	method	"setup"

				//Uncomment	to	load	parameters	if	file	exists

				//myRetina->setup("RetinaSpecificParameters.xml");

				myRetina->clearBuffers();

				//Several	iteration	of	the	filter	may	be	done

				for(int	iter	=	1;	iter	<	6;	iter++){

								//	run	retina	filter

								myRetina->run(src);

								//	Retrieve	and	display	retina	output

								myRetina->getParvo(retinaOutput_parvo);

								myRetina->getMagno(retinaOutput_magno);

								//Create	windows	and	display	results

								namedWindow("Source	Image",	0);

								namedWindow("Retina	Parvo",	0);

								namedWindow("Retina	Magno",	0);

								imshow("Source	Image",	src);

								imshow("Retina	Parvo",	retinaOutput_parvo);

								imshow("Retina	Magno",	retinaOutput_magno);

				}

				cout<<"Retina	demo	end"<<	endl;			//	Program	end	message

				waitKey();

				return	0;

}

The	code	explanation	is	given	here:	the	example	first	reads	the	input	image	and	obtains	the
retina	model	of	the	image	using	classical	parameters	for	the	model.	The	retina	can	be
settled	up	with	various	parameters;	by	default,	the	retina	cancels	mean	luminance	and
enforces	all	details	of	the	visual	scene.	The	filter	is	then	run	five	times	and	the	parvo	and
magno	images	and	its	details	are	shown.	The	following	screenshot	shows	the	output	of	the
retina	model	filter	after	the	five	iterations:

Output	of	the	retina	filter	after	five	iterations

Arithmetic	and	geometrical	transforms
An	arithmetic	transform	changes	the	value	of	an	image	pixel	and	it	is	applied	point	to
point,	whereas	a	geometrical	transform	changes	the	position	of	the	image	pixels.	Thus,
points	in	an	image	get	a	new	position	in	the	output	image	without	changing	their	intensity
values.	Examples	of	arithmetic	transforms	may	be	addition,	subtraction,	and	division
between	images.	Examples	of	geometrical	transforms	are	scaling,	translation,	and	rotation
of	images.	More	complex	transformations	are	to	solve	the	barrel	and	cushion	deformations
of	an	image	produced	by	an	optical	lens.

In	OpenCV,	there	are	several	functions	to	perform	arithmetic	and	geometrical	transforms.
Here	we	show	two	examples	for	image	addition	and	perspective	transformation	by	means
of	the	functions	addWeighted	and	warpPerspective	respectively.

Arithmetic	transform
The	function	addWeighted	performs	a	linear	combination	of	two	images,	that	is,	addition
of	two	weighted	images	to	carry	out	a	linear	blending.	The	function	void
addWeighted(InputArray	src1,	double	alpha,	InputArray	src2,	double	beta,

double	gamma,	OutputArray	dst,	int	dtype=-1)	has	two	input	images	as	the	first	and
third	parameters	with	their	weights	(second	and	fourth	parameter).	Then,	the	output	image
is	the	sixth	parameter.	The	fifth	parameter,	gamma,	is	a	scalar	added	to	each	sum.	The	last
parameter	dtype	is	optional	and	refers	to	the	depth	of	the	output	image;	when	both	input
images	have	the	same	depth,	it	can	be	set	to	-1.

The	following	LinearBlend	example	shows	how	to	perform	a	linear	blending	between
two	images:

#include	"opencv2/highgui/highgui.hpp"

using	namespace	cv;

using	namespace	std;

int	main()

{

				double	alpha	=	0.5,	beta,	input;

				Mat	src1,	src2,	dst;

				//Read	images	(same	size	and	type)

				src1	=	imread("baboon.jpg");

				src2	=	imread("lena.jpg");

					//Create	windows

				namedWindow("Final	Linear	Blend",	CV_WINDOW_AUTOSIZE);

				//Perform	a	loop	with	101	iteration	for	linear	blending

				for(int	k	=	0;	k	<=	100;	++k){

								alpha	=	(double)k/100;

								beta		=	1	-	alpha;

								addWeighted(src2,	alpha,	src1,	beta,	0.0,	dst);

								imshow("Final	Linear	Blend",	dst);

								cvWaitKey(50);

				}

				namedWindow("Original	Image	1",	CV_WINDOW_AUTOSIZE);

				namedWindow("Original	Image	2",	CV_WINDOW_AUTOSIZE);

				imshow("Original	Image	1",	src1);

				imshow("Original	Image	2",	src2);

				cvWaitKey();	//	Wait	for	key	press

				return	0;			//	End

}

The	code	explanation	is	given	here:	the	example	first	reads	two	images,	src1=
baboon.jpg	and	src2=	lena.jpg,	and	then	performs	a	total	of	101	linear	combinations
with	different	values	of	the	weights	alpha	and	beta.	The	first	linear	combination	or	blend
is	with	alpha	equal	to	zero,	and	therefore	it	is	the	src1	image.	The	value	of	alpha

increases	in	the	loop	while	the	value	of	beta	decreases.	Therefore,	the	src2	image	is
combined	and	superimposed	onto	the	src1	image.	This	produces	a	morphing	effect	and
the	baboon.jpg	image	gradually	changes	into	a	different	image,	that	is,	into	lena.jpg.
The	following	screenshot	shows	the	output	of	several	linear	blending	steps	at	iterations	1,
10,	20,	30,	40,	50,	70,	85,	and	100:

Output	of	different	lineal	blending	between	two	images

Geometrical	transforms
The	function	warpPerspective,	void	ocl::warpPerspective(const	oclMat&	src,
oclMat&	dst,	const	Mat&	M,	Size	dsize,	int	flags=INTER_LINEAR)	performs	a
perspective	transformation	on	an	image.	It	has	the	input	or	source	image	src	as	the	first
parameter	and	the	output	or	destination	image	dst	as	the	second	parameter.	Then,	the	third
parameter	is	a	2	x	3	transformation	matrix	obtained	from	the	getPerspectiveTransform
function,	which	calculates	a	perspective	transform	from	the	positions	of	four	points	in	the
two	images	in	four	pairs	of	corresponding	points.	The	fourth	parameter	of
warpPerspective	is	the	size	of	the	output	image	and	the	last	parameter	is	the	interpolation
method.	By	default,	the	interpolation	method	is	linear,	INTER_LINEAR;	other	methods
supported	are	nearest	neighbor	INTER_NEAREST	and	cubic	INTER_CUBIC.

The	following	Geometrical_Transform	example	performs	a	perspective	transformation	to
the	input	image	img.jpg.

Note
For	full	details	of	the	example,	refer	to	N.	Amin,	Automatic	perspective	correction	for
quadrilateral	objects,	at	https://opencv-code.com/tutorials/automatic-perspective-
correction-for-quadrilateral-objects/.

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/imgproc/imgproc.hpp"

#include	<iostream>

#include	<stdio.h>

using	namespace	cv;

using	namespace	std;

Point2f	centerpoint(0,0);

Point2f	computeIntersect(Vec4i	a,Vec4i	b){

				int	x1	=	a[0],	y1	=	a[1],	x2	=	a[2],	y2	=	a[3],	x3	=	b[0],	y3	=	b[1],	

x4	=	b[2],	y4	=	b[3];

				if	(float	d	=	((float)(x1	-	x2)	*	(y3	-	y4))	-	((y1	-	y2)	*	(x3	-	x4)))

				{

								Point2f	pnt;

								pnt.x	=	((x1	*	y2	-	y1	*	x2)	*	(x3	-	x4)	-	(x1	-	x2)	*	(x3	*	y4	-	

y3	*	x4))	/	d;

								pnt.y	=	((x1	*	y2	-	y1	*	x2)	*	(y3	-	y4)	-	(y1	-	y2)	*	(x3	*	y4	-	

y3	*	x4))	/	d;

								return	pnt;

				}

				else

				return	Point2f(-1,	-1);

}

void	sortCorners(vector<Point2f>&	corner_points,	Point2f	centerpoint)

{

				vector<Point2f>	top,	bot;

https://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/

				for	(int	i	=	0;	i	<	corner_points.size();	i++)

				{

								if	(corner_points[i].y	<	centerpoint.y)

								top.push_back(corner_points[i]);

								else

								bot.push_back(corner_points[i]);

				}

				Point2f	tl	=	top[0].x	>	top[1].x	?	top[1]	:	top[0];

				Point2f	tr	=	top[0].x	>	top[1].x	?	top[0]	:	top[1];

				Point2f	bl	=	bot[0].x	>	bot[1].x	?	bot[1]	:	bot[0];

				Point2f	br	=	bot[0].x	>	bot[1].x	?	bot[0]	:	bot[1];

				corner_points.clear();

				corner_points.push_back(tl);

				corner_points.push_back(tr);

				corner_points.push_back(br);

				corner_points.push_back(bl);

}

int	main(){

				Mat	src	=	imread("img.jpg");

				if	(src.empty())

				return	-1;

				Mat	dst	=	src.clone();

				Mat	bw;

				cvtColor(src,	bw,	CV_BGR2GRAY);

				Canny(bw,	bw,	100,	100,	3);

				vector<Vec4i>	lines;

				HoughLinesP(bw,	lines,	1,	CV_PI/180,	70,	30,	10);

				vector<Point2f>	corner_points;

				for	(int	i	=	0;	i	<	lines.size();	i++)

				{

								for	(int	j	=	i+1;	j	<	lines.size();	j++)

								{

												Point2f	pnt	=	computeIntersect(lines[i],	lines[j]);

												if	(pnt.x	>=	0	&&	pnt.y	>=	0)

												corner_points.push_back(pnt);

								}

				}

				vector<Point2f>	approx;

				approxPolyDP(Mat(corner_points),	approx,	arcLength(Mat(corner_points),	

true)	*	0.02,	true);

				if	(approx.size()	!=	4)

				{

								cout	<<	"The	object	is	not	quadrilateral!"	<<	endl;

								return	-1;

				}

				//Get	center	point

				for	(int	i	=	0;	i	<	corner_points.size();	i++)

				centerpoint	+=	corner_points[i];

				centerpoint	*=	(1.	/	corner_points.size());

				sortCorners(corner_points,	centerpoint);

				//Draw	lines

				for	(int	i	=	0;	i	<	lines.size();	i++)

				{

								Vec4i	v	=	lines[i];

								line(dst,	Point(v[0],	v[1]),	Point(v[2],	v[3]),	CV_RGB(0,255,0));

				}

				//Draw	corner	points

				circle(dst,	corner_points[0],	3,	CV_RGB(255,0,0),	2);

				circle(dst,	corner_points[1],	3,	CV_RGB(0,255,0),	2);

				circle(dst,	corner_points[2],	3,	CV_RGB(0,0,255),	2);

				circle(dst,	corner_points[3],	3,	CV_RGB(255,255,255),	2);

				//Draw	mass	center	points

				circle(dst,	centerpoint,	3,	CV_RGB(255,255,0),	2);

				//Calculate	corresponding	points	for	corner	points

				Mat	quad	=	Mat::zeros(src.rows,	src.cols/2,	CV_8UC3);

				vector<Point2f>	quad_pnts;

				quad_pnts.push_back(Point2f(0,	0));

				quad_pnts.push_back(Point2f(quad.cols,	0));

				quad_pnts.push_back(Point2f(quad.cols,	quad.rows));

				quad_pnts.push_back(Point2f(0,	quad.rows));

				//	Draw	corresponding	points

				circle(dst,	quad_pnts[0],	3,	CV_RGB(255,0,0),	2);

				circle(dst,	quad_pnts[1],	3,	CV_RGB(0,255,0),	2);

				circle(dst,	quad_pnts[2],	3,	CV_RGB(0,0,255),	2);

				circle(dst,	quad_pnts[3],	3,	CV_RGB(255,255,255),	2);

				Mat	transmtx	=	getPerspectiveTransform(corner_points,	quad_pnts);

				warpPerspective(src,	quad,	transmtx,	quad.size());

				//Create	windows	and	display	results

				namedWindow("Original	Image",	CV_WINDOW_AUTOSIZE);

				namedWindow("Selected	Points",	CV_WINDOW_AUTOSIZE);

				namedWindow("Corrected	Perspertive",	CV_WINDOW_AUTOSIZE);

				imshow("Original	Image",	src);

				imshow("Selected	Points",	dst);

				imshow("Corrected	Perspertive",	quad);

				waitKey();	//Wait	for	key	press

				return	0;		//End

}

The	code	explanation	is	given	here:	the	example	first	reads	the	input	image	(img.jpg)	and
calculates	the	key	points	of	the	region	of	interest	or	object	to	perform	the	perspective
transformation.	The	key	points	are	the	corner	points	of	the	object.	The	algorithm	only

works	for	quadrilateral	objects.	The	methods	to	calculate	corners	(Canny	operator	and
Hough	transforms)	are	explained	in	Chapter	4,	What’s	in	the	Image,	Segmentation.	The
points	corresponding	to	the	object	corners	are	the	corners	of	the	output	image.	These
points	are	shown	with	circles	on	the	original	image.	The	dimension	of	the	output	image	is
set	to	the	same	height	and	half	the	width	of	the	input	image.	Finally,	the	image	with	the
corrected	object	is	visualized.	The	perspective	correction	uses	a	linear	transform,
INTER_LINEAR.	The	following	screenshot	shows	the	output	of	the	algorithm:

Output	of	the	geometrical	transform	performed	to	correct	the	perspective

Summary
This	chapter	has	covered	the	most	common	image	processing	methods	used	in	computer
vision.	Image	processing	is	often	the	step	performed	just	before	further	computer	vision
applications.	It	has	many	methods	and	is	usually	applied	for	image	corrections	and
enhancement	such	as	image	histograms,	image	equalization,	brightness	and	contrast
modeling,	image	color	conversion	by	means	of	histogram	matching	and	color	space
transformations,	filtering	using	the	model	of	the	human	retina,	and	arithmetic	and
geometrical	transforms.

The	next	chapter	will	cover	the	next	stage	in	a	computer	vision	system,	that	is,	the
segmentation	process.	We	will	see	how	to	extract	regions	of	interest	within	an	image.

What	else?
Other	important	functions	in	OpenCV	for	image	processing	are	related	to	filtering.	These
functions	have	been	omitted	in	the	chapter	since	they	are	straightforward.	OpenCV
includes	an	example	that	shows	how	to	use	the	main	filters
([opencv_source_code]/samples/cpp/filter2D_demo.cpp).	The	main	filter	functions
are:

GaussianBlur	for	a	Gaussian	filter
medianBlur	for	a	median	filter
bilateralFilter	for	anisotropic	filtering
blur	for	a	homogeneous	blur

Chapter	4.	What’s	in	the	Image?
Segmentation
Segmentation	is	any	process	that	partitions	an	image	into	multiple	regions	or	segments.
These	will	typically	correspond	to	meaningful	regions	or	objects,	such	as	face,	car,	road,
sky,	grass,	and	so	on.	Segmentation	is	one	of	the	most	important	stages	in	a	computer
vision	system.	In	OpenCV,	there	is	no	specific	module	for	segmentation,	though	a	number
of	ready-to-use	methods	are	available	in	other	modules	(most	of	them	in	imgproc).	In	this
chapter,	we	will	cover	the	most	important	and	frequently	used	methods	available	in	the
library.	In	some	cases,	additional	processing	will	have	to	be	added	to	improve	the	results
or	obtain	seeds	(this	refers	to	rough	segments	that	allow	an	algorithm	to	perform	a
complete	segmentation).	In	this	chapter	we	will	look	at	the	following	major	segmentation
methods:	thresholding,	contours	and	connected	components,	flood	filling,	watershed
segmentation,	and	the	GrabCut	algorithm.

Thresholding
Thresholding	is	one	of	the	simplest	yet	most	useful	segmentation	operations.	We	can
safely	say	that	you	will	end	up	using	some	sort	of	thresholding	in	almost	any	image-
processing	application.	We	consider	it	a	segmentation	operation	since	it	partitions	an
image	into	two	regions,	typically,	an	object	and	its	background.	In	OpenCV,	thresholding
is	performed	with	the	function	double	threshold(InputArray	src,	OutputArray	dst,
double	thresh,	double	maxval,	int	type).

The	first	two	parameters	are	the	input	and	output	images,	respectively.	The	third	input
parameter	is	the	threshold	chosen.	The	meaning	of	maxval	is	controlled	by	the	type	of
thresholding	we	want	to	perform.	The	following	table	shows	the	operation	performed	for
each	type:

Type dst(x,y)

THRESH_BINARY maxval	if	src(x,y)	is	greater	than	thresh	and	0	if	otherwise

THRESH_BINARY_INV 0	if	src(x,y)	is	greater	than	thresh	and	maxval	if	otherwise

THRESH_TRUNC thresh	if	src(x,y)	is	greater	than	thresh	and	src(x,y)	if	otherwise

THRESH_TOZERO src(x,y)	if	src(x,y)	is	greater	than	thresh	and	0	if	otherwise

THRESH_TOZERO_INV 0	if	src(x,y)	is	greater	than	thresh	and	src(x,y)	if	otherwise

While	in	previous	OpenCV	books	(and	the	available	reference	manual)	each	type	of
thresholding	is	illustrated	with	the	help	of	1D	signal	plots,	our	experience	shows	that
numbers	and	gray	levels	allow	you	to	grasp	the	concept	faster.	The	following	table	shows
the	effect	of	the	different	threshold	types	using	a	single-line	image	as	an	example	input:

The	special	value	THRESH_OTSU	may	be	combined	with	the	previous	values	(with	the	OR
operator).	In	such	cases,	the	threshold	value	is	automatically	estimated	by	the	function
(using	Otsu’s	algorithm).	This	function	returns	the	estimated	threshold	value.

Note
Otsu’s	method	obtains	a	threshold	that	best	separates	the	background	from	the
foreground’s	pixels	(in	an	interclass/intraclass	variance	ratio	sense).	See	the	full
explanation	and	demos	at
http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html.

While	the	function	described	uses	a	single	threshold	for	the	whole	image,	adaptive
thresholding	estimates	a	different	threshold	for	each	pixel.	This	produces	a	better	result
when	the	input	image	is	less	homogeneous	(with	unevenly	illuminated	regions,	for
example).	The	function	to	perform	adaptive	thresholding	is	as	follows:

http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html

adaptiveThreshold(InputArray	src,	OutputArray	dst,	double	maxValue,	int	

adaptiveMethod,	int	thresholdType,	int	blockSize,	double	C)

This	function	is	similar	to	the	previous	one.	The	parameter	thresholdType	must	be	either
THRESH_BINARY	or	THRESH_BINARY_INV.	This	function	computes	a	threshold	for	each	pixel
by	computing	a	weighted	average	of	pixels	in	a	neighborhood	minus	a	constant	(C).	When
thresholdType	is	ADAPTIVE_THRESH_MEAN_C,	the	threshold	computed	is	the	mean
of	the	neighborhood	(that	is,	all	the	elements	are	weighted	equally).When	thresholdType
is	ADAPTIVE_THRESH_GAUSSIAN_C,	the	pixels	in	the	neighborhood	are	weighted
according	to	a	Gaussian	function.

The	following	thresholding	example	shows	how	to	perform	thresholding	operations	on
an	image:

#include	"opencv2/opencv.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

Mat	src,	dst,	adaptDst;

int	threshold_value,	block_size,	C;

void	thresholding(int,	void*)

{

		threshold(src,	dst,	threshold_value,	255,	THRESH_BINARY);

		imshow("Thresholding",	dst);

}

void	adaptThreshAndShow()

{

				adaptiveThreshold(src,	adaptDst,	255,	CV_ADAPTIVE_THRESH_MEAN_C,	

THRESH_BINARY,	block_size,	C);

				imshow("Adaptive	Thresholding",	adaptDst);

}

void	adaptiveThresholding1(int,	void*)

{

		static	int	prev_block_size=block_size;

		if	((block_size%2)==0)				//	make	sure	that	block_size	is	odd

		{

						if	(block_size>prev_block_size)	block_size++;

						if	(block_size<prev_block_size)	block_size--;

		}

		if	(block_size<=1)	block_size=3;		//	check	block_size	min	value

		adaptThreshAndShow();

}

void	adaptiveThresholding2(int,	void*)

{

				adaptThreshAndShow();

}

int	main(int	argc,	char	*argv[])

{

				//Read	original	image	and	clone	it	to	contain	results

				src	=	imread("left12.jpg",	CV_LOAD_IMAGE_GRAYSCALE);

				dst=src.clone();

				adaptDst=src.clone();

				//Create	3	windows

				namedWindow("Source",	WINDOW_AUTOSIZE);

				namedWindow("Thresholding",	WINDOW_AUTOSIZE);

				namedWindow("Adaptive	Thresholding",	WINDOW_AUTOSIZE);

				imshow("Source",	src);

				//Create	trackbars

				threshold_value=127;

				block_size=7;

				C=10;

				createTrackbar("threshold",	"Thresholding",	&threshold_value,	255,	

thresholding);

				createTrackbar("block_size",	"Adaptive	Thresholding",	&block_size,	25,	

adaptiveThresholding1);

				createTrackbar("C",	"Adaptive	Thresholding",	&C,	255,	

adaptiveThresholding2);

				//Perform	operations	a	first	time

				thresholding(threshold_value,0);

				adaptiveThresholding1(block_size,	0);

				adaptiveThresholding2(C,	0);

				//	Position	windows	on	screen

				moveWindow("Source",	0,0);

				moveWindow("Thresholding",	src.cols,0);

				moveWindow("Adaptive	Thresholding",	2*src.cols,0);

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();	//	Wait	for	key	press

				return	0;

}

The	example	in	the	preceding	code	creates	three	windows	with	the	source	image,	which	is
loaded	in	grayscale,	and	the	result	of	thresholding	and	adaptive	thresholding.	Then,	it
creates	three	trackbars:	one	associated	to	the	thresholding	result	window	(to	handle	the
threshold	value)	and	two	associated	to	the	adaptive	thresholding	result	window	(to	handle
the	block’s	size	and	the	value	of	the	constant	C).	Note	that	since	two	callback	functions	are
necessary	in	this	case,	and	we	do	not	want	to	repeat	code,	the	call	to	adaptiveThreshold
is	embedded	in	the	function,	adaptThreshAndShow.

Next,	a	call	is	made	to	the	functions	that	perform	the	operations	using	default	parameter
values.	Finally,	the	moveWindow	function	from	highgui	is	used	to	reposition	the	windows
on	the	screen	(otherwise	they	will	be	displayed	on	top	of	each	other,	and	only	the	third	one
will	be	visible).	Also,	note	that	the	first	six	lines	in	the	function	adaptiveThresholding1
are	needed	to	keep	an	odd	value	in	the	parameter	block_size.	The	following	screenshot
shows	the	output	of	the	example:

Output	of	the	thresholding	example

Note
The	function	inRange(InputArray	src,	InputArray	lowerb,	InputArray	upperb,
OutputArray	dst)	is	also	useful	for	thresholding	as	it	checks	whether	the	pixels	lie
between	lower	and	upper	thresholds.	Both	lowerb	and	upperb	must	be	provided	using
Scalar,	as	in	inRange(src,	Scalar(bl,gl,rl),	Scalar(bh,gh,rh),	tgt);.

Contours	and	connected	components
Contour	extraction	operations	can	be	considered	halfway	between	feature	extraction	and
segmentation,	since	a	binary	image	is	produced	in	which	image	contours	are	separated
from	other	homogeneous	regions.	Contours	will	typically	correspond	to	object	boundaries.

While	a	number	of	simple	methods	detect	edges	in	images	(for	example,	the	Sobel	and
Laplace	filters),	the	Canny	method	is	a	robust	algorithm	for	doing	this.

Note
This	method	uses	two	thresholds	to	decide	whether	a	pixel	is	an	edge.	In	what	is	called	a
hysteresis	procedure,	a	lower	and	an	upper	threshold	are	used	(see
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html).
Since	OpenCV	already	includes	a	good	example	of	the	Canny	edge	detector	(in
[opencv_source_code]/samples/cpp/edge.cpp),	we	do	not	include	one	here	(but	see	the
following	floodFill	example).	Instead,	we	will	go	on	to	describe	other	highly	useful
functions	based	on	detected	edges.

To	detect	straight	lines,	the	Hough	transform	is	a	classical	method.	While	the	Hough
transform	method	is	available	in	OpenCV	(the	functions	HoughLines	and	HoughLinesP,
for	example,	[opencv_source_code]/samples/cpp/houghlines.cpp),	the	more	recent
Line	Segment	Detector	(LSD)	method	is	generally	a	more	robust	one.	LSD	works	by
finding	alignments	of	high-gradient	magnitude	pixels,	given	its	alignment	tolerance
feature.	This	method	has	been	shown	to	be	more	robust	and	faster	than	the	best	previous
Hough-based	detector	(Progressive	Probabilistic	Hough	Transform).

The	LSD	method	is	not	available	in	the	2.4.9	release	of	OpenCV;	although,	at	the	time	of
this	writing,	it	is	already	available	in	the	code	source’s	repository	in	GitHub.	The	method
will	be	available	in	Version	3.0.	A	short	example
([opencv_source_code]/samples/cpp/lsd_lines.cpp)	in	the	library	covers	this
functionality.	However,	we	will	provide	an	additional	example	that	shows	different
features.

Note
To	test	the	latest	source	code	available	in	GitHub,	go	to	https://github.com/itseez/opencv
and	download	the	library	code	as	a	ZIP	file.	Then,	unzip	it	to	a	local	folder	and	follow	the
same	steps	described	in	Chapter	1,	Getting	Started,	to	compile	and	install	the	library.

The	LSD	detector	is	a	C++	class.	The	function	cv::Ptr<LineSegmentDetector>
cv::createLineSegmentDetector	(int	_refine=LSD_REFINE_STD,	double

_scale=0.8,	double_sigma_scale=0.6,	double	_quant=2.0,	double	_ang_th=22.5,

double	_log_eps=0,	double	_density_th=0.7,	int	_n_bins=1024)	creates	an	object
of	the	class	and	returns	a	pointer	to	it.	Note	that	several	arguments	define	the	detector
created.	The	meaning	of	those	parameters	requires	you	to	know	the	underlying	algorithm,
which	is	out	of	the	scope	of	this	book.	Fortunately,	the	default	values	will	suffice	for	most
purposes,	so	we	refer	the	reader	to	the	reference	manual	(for	Version	3.0	of	the	library)	for
special	cases.	Having	said	that,	the	first	parameter	scale	roughly	controls	the	number	of

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
https://github.com/itseez/opencv

lines	that	are	returned.	The	input	image	is	automatically	rescaled	by	this	factor.	At	lower
resolutions,	fewer	lines	are	detected.

Note
The	cv::Ptr<>	type	is	a	template	class	for	wrapping	pointers.	This	template	is	available	in
the	2.x	API	to	facilitate	automatic	deallocation	using	reference	counting.	The	cv::	Ptr<>
type	is	analogous	to	std::unique_ptr.

Detection	itself	is	accomplished	with	the	method	LineSegmentDetector::detect(const
InputArray	_image,	OutputArray	_lines,	OutputArray	width=noArray(),

OutputArray	prec=noArray(),	OutputArraynfa=noArray()).	The	first	parameter	is	the
input	image,	while	the	_lines	array	will	be	filled	with	a	(STL)	vector	of	Vec4i	objects
that	represent	the	(x,	y)	location	of	one	end	of	the	line	followed	by	the	location	of	the
other	end.	The	optional	parameters	width,	prec,	and	noArray	return	additional
information	about	the	lines	detected.	The	first	one,	width,	contains	the	estimated	line
widths.	Lines	can	be	drawn	with	the	convenient	(yet	simple)	method	called
LineSegmentDetector::drawSegments(InputOutputArray	_image,	InputArray

lines).	Lines	will	be	drawn	on	top	of	the	input,	namely,	_image.

The	following	lineSegmentDetector	example	shows	the	detector	in	action:

#include	"opencv2/opencv.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

vector<Vec4i>	lines;

vector<float>	widths;

Mat	input_image,	output;

inline	float	line_length(const	Point	&a,	const	Point	&b)

{

				return	(sqrt((b.x-a.x)*(b.x-a.x)	+	(b.y-a.y)*(b.y-a.y)));

}

void	MyDrawSegments(Mat	&image,	const	vector<Vec4i>&lines,	const	

vector<float>&widths,

const	Scalar&	color,	const	float	length_threshold)

{

				Mat	gray;

				if	(image.channels()	==	1)

				{

								gray	=	image;

				}

				else	if	(image.channels()	==	3)

				{

								cvtColor(image,	gray,	COLOR_BGR2GRAY);

				}

				//	Create	a	3	channel	image	in	order	to	draw	colored	lines

				std::vector<Mat>	planes;

				planes.push_back(gray);

				planes.push_back(gray);

				planes.push_back(gray);

				merge(planes,	image);

				//	Draw	segments	if	length	exceeds	threshold	given

				for(int	i	=	0;	i	<	lines.size();	++i)

				{

								const	Vec4i&	v	=	lines[i];

								Point	a(v[0],	v[1]);

								Point	b(v[2],	v[3]);

								if	(line_length(a,b)	>	length_threshold)	line(image,	a,	b,	color,	

widths[i]);

				}

}

void	thresholding(int	threshold,	void*)

{

				input_image.copyTo(output);

				MyDrawSegments(output,	lines,	widths,	Scalar(0,	255,	0),	threshold);

				imshow("Detected	lines",	output);

}

int	main(int	argc,	char**	argv)

{

				input_image	=	imread("building.jpg",	IMREAD_GRAYSCALE);

				//	Create	an	LSD	detector	object

	Ptr<LineSegmentDetector>	ls	=	createLineSegmentDetector();

				//	Detect	the	lines

ls->detect(input_image,	lines,	widths);

				//	Create	window	to	show	found	lines

				output=input_image.clone();

				namedWindow("Detected	lines",	WINDOW_AUTOSIZE);

				//	Create	trackbar	for	line	length	threshold

				int	threshold_value=50;

				createTrackbar("Line	length	threshold",	"Detected	lines",	

&threshold_value,	1000,	thresholding);

				thresholding(threshold_value,	0);

				waitKey();

				return	0;

}

The	preceding	example	creates	a	window	with	the	source	image,	which	is	loaded	in
grayscale,	and	shows	the	drawSegments	method.	However,	it	allows	you	to	impose	a
segment	length	threshold	and	specify	the	line	colors	(drawSegments	will	draw	all	the	lines
in	red).	Besides,	lines	will	be	drawn	with	a	thickness	given	by	the	widths	estimated	by	the
detector.	A	trackbar	is	associated	with	the	main	window	to	control	the	length	of	the
threshold.	The	following	screenshot	shows	an	output	of	the	example:

Output	of	the	lineSegmentDetector	example

Circles	can	be	detected	using	the	function	HoughCircles(InputArray	image,
OutputArray	circles,	int	method,	double	dp,	double	minDist,	double

param1=100,	double	param2=100,	intminRadius=0,	int	maxRadius=0).	The	first
parameter	is	a	grayscale	input	image.	Output	parameter	circles	will	be	filled	with	a	vector
of	Vec3f	objects.	Each	object	represents	the	(center_x,	center_y,	radius)	components
of	a	circle.	The	last	two	parameters	represent	the	minimum	and	maximum	search	radii,	so
they	have	an	effect	on	the	number	of	circles	detected.	OpenCV	already	contains	a
straightforward	example	of	this	function,
[opencv_source_code]/samples/cpp/houghcircles.cpp.	The	example	detects	circles
with	a	radius	between	1	and	30	and	displays	them	on	top	of	the	input	image.

Segmentation	algorithms	typically	form	connected	components,	that	is,	the	regions	of
connected	pixels	in	a	binary	image.	In	the	following	section,	we	show	how	to	obtain
connected	components	and	their	contours	from	a	binary	image.	Contours	can	be	retrieved
using	the	now	classical	function,	findContours.	Examples	of	this	function	are	available	in
the	reference	manual	(also	see	the	[opencv_source_code]/samples/cpp/contours2.cpp

and	[opencv_source_code]/samples/cpp/segment_objects.cpp	examples).	Also	note
that	in	the	3.0	release	of	OpenCV	(and	in	the	code	already	available	in	the	GitHub
repository),	the	class	ShapeDistanceExtractor	allows	you	to	compare	the	contours	with
the	Shape	Context	descriptor	(an	example	of	this	is	available	at
[opencv_source_code]/samples/cpp/shape_example.cpp)	and	the	Hausdorff	distance.
This	class	is	in	a	new	module	of	the	library	called	shape.	Shape	transformations	are	also
available	through	the	class	ShapeTransformer	(example,
[opencv_source_code]/samples/cpp/shape_transformation.cpp).

The	new	functions	connectedComponents	and	connectedComponentsWithStats	retrieve
connected	components.	These	functions	will	be	part	of	the	3.0	release,	and	they	are
already	available	in	the	GitHub	repository.	An	example	of	this	is	included	in	OpenCV	that
shows	how	to	use	the	first	one,
[opencv_source_code]/samples/cpp/connected_components.cpp.

Note
The	connected	component	that	labels	the	functionality	was	actually	removed	in	previous
OpenCV	2.4.x	versions	and	has	now	been	added	again.

We	provide	another	example	(connectedComponents)	that	shows	how	to	use	the	second
function,	int	connectedComponentsWithStats(InputArray	image,	OutputArray
labels,	OutputArray	stats,	OutputArray	centroids,	int	connectivity=8,

intltype=CV_32S),	which	provides	useful	statistics	about	each	connected	component.
These	statistics	are	accessed	via	stats(label,	column)	where	the	column	can	be	the
following	table:

CC_STAT_LEFT	 The	leftmost	(x)	coordinate	that	is	the	inclusive	start	of	the	bounding	box	in	the	horizontal	direction

CC_STAT_TOP	 The	topmost	(y)	coordinate	that	is	the	inclusive	start	of	the	bounding	box	in	the	vertical	direction

CC_STAT_WIDTH	 The	horizontal	size	of	the	bounding	box

CC_STAT_HEIGHT	 The	vertical	size	of	the	bounding	box

CC_STAT_AREA	 The	total	area	(in	pixels)	of	the	connected	component

The	following	is	the	code	for	the	example:

#include	<opencv2/core/utility.hpp>

#include	"opencv2/imgproc.hpp"

#include	"opencv2/highgui.hpp"

#include	<iostream>

using	namespace	cv;

using	namespace	std;

Mat	img;

int	threshval	=	227;

static	void	on_trackbar(int,	void*)

{

				Mat	bw	=	threshval	<	128	?	(img	<	threshval)	:	(img	>	threshval);

				Mat	labelImage(img.size(),	CV_32S);

				Mat	stats,	centroids;

				int	nLabels	=	connectedComponentsWithStats(bw,	labelImage,	stats,	

centroids);

				//	Show	connected	components	with	random	colors

				std::vector<Vec3b>	colors(nLabels);

				colors[0]	=	Vec3b(0,	0,	0);//background

				for(int	label	=	1;	label	<	nLabels;	++label){

								colors[label]	=	Vec3b((rand()&200),	(rand()&200),	(rand()&200));

				}

				Mat	dst(img.size(),	CV_8UC3);

				for(int	r	=	0;	r	<	dst.rows;	++r){

								for(int	c	=	0;	c	<	dst.cols;	++c){

												int	label	=	labelImage.at<int>(r,	c);

												Vec3b	&pixel	=	dst.at<Vec3b>(r,	c);

												pixel	=	colors[label];

									}

					}

				//	Text	labels	with	area	of	each	cc	(except	background)

				for	(int	i=1;	i<	nLabels;i++)

				{

								float	a=stats.at<int>(i,CC_STAT_AREA);

								Point	org(centroids.at<double>(i,0),	centroids.at<double>(i,1));

								String	txtarea;

								std::ostringstream	buff;

								buff	<<	a;

								txtarea=buff.str();

								putText(dst,	txtarea,	org,FONT_HERSHEY_COMPLEX_SMALL,	1,	

Scalar(255,255,255),	1);

				}

				imshow("Connected	Components",	dst);

}

int	main(int	argc,	const	char**	argv)

{

				img	=	imread("stuff.jpg",	0);

				namedWindow("Connected	Components",	1);

				createTrackbar("Threshold",	"Connected	Components",	&threshval,	255,	

on_trackbar);

				on_trackbar(threshval,	0);

				waitKey(0);

				return	0;

}

The	preceding	example	creates	a	window	with	an	associated	trackbar.	The	trackbar
controls	the	threshold	to	apply	to	the	source	image.	Inside	the	on_trackbar	function,	a
call	is	made	to	connectedComponentsWithStats	using	the	result	of	the	thresholding.	This
is	followed	by	two	sections	of	the	code.	The	first	section	fills	the	pixels	that	correspond	to
each	connected	component	with	a	random	color.	The	pixels	that	belong	to	each	component

are	in	labelImage	(a	labelImage	output	is	also	given	by	the	function
connectedComponents).	The	second	part	displays	a	text	with	the	area	of	each	component.
This	text	is	positioned	at	the	centroid	of	each	component.	The	following	screenshot	shows
the	output	of	the	example:

The	output	of	the	connectedComponents	example

Flood	fill
The	flood	fill	operation	fills	the	connected	components	with	a	given	color.	Starting	from	a
seed	point,	the	neighboring	pixels	are	colored	with	a	uniform	color.	The	neighboring
pixels	can	be	within	a	specified	range	of	the	current	pixel.	The	flood	fill	function	is	int
floodFill(InputOutputArray	image,	Point	seedPoint,	Scalar	newVal,	Rect*

rect=0,	Scalar	loDiff=Scalar(),	Scalar	upDiff=Scalar(),int	flags=4).	The
parameters	loDiff	and	upDiff	represent	the	range	to	check	for	every	neighboring	pixel
(note	that	3-channel	difference	thresholds	can	be	specified).	The	parameter	newVal	is	the
color	to	apply	to	the	pixels	that	are	in	range.	The	lower	part	of	the	parameter	flags
contains	the	pixel’s	connectivity	value	to	use	(4	or	8).	The	upper	part	defines	the	mode	of
the	operation.

Depending	on	this	mode,	the	flood	fill	function	will	color	a	neighboring	pixel	in	the	input
image	if	it	is	within	the	specified	range	(given	by	loDiff	and	upDiff)	of	either	the	current
pixel	or	if	the	neighboring	pixel	is	within	the	specified	range	of	the	original	seed’s	value.
The	function	can	also	be	called	with	a	mask	image	as	the	second	parameter.	If	specified,
the	flood-filling	operation	will	not	go	across	non-zero	pixels	in	the	mask.	Note	that	the
mask	should	be	a	single-channel	8-bit	image	that	is	2	pixels	wider	and	2	pixels	taller	than
the	input	image.

The	upper	bit	of	flags	can	be	0	or	a	combination	of	the	following:

FLOODFILL_FIXED_RANGE:	If	set,	the	difference	between	the	current	pixel	and	seed
pixel	is	considered.	Otherwise,	the	difference	between	neighbor	pixels	is	considered.
FLOODFILL_MASK_ONLY:	If	set,	the	function	does	not	change	the	image	(newVal	is
ignored)	but	fills	the	mask.

In	OpenCV’s	flood	fill	example	([opencv_source_code]/samples/cpp/ffilldemo.cpp),
the	mask	is	used	only	as	an	output	parameter.	In	our	floodFill	example,	shown	as	the
following	code,	we	will	use	it	as	an	input	parameter	in	order	to	constrain	the	filling.	The
idea	is	to	use	the	output	of	an	edge	detector	as	a	mask.	This	should	stop	the	filling	process
at	the	edges:

#include	"opencv2/opencv.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

Mat	image,	image1,	image_orig;

int	loDiff	=	20,	upDiff	=	30;

int	loCanny=10,	upCanny=150;

void	onMouse(int	event,	int	x,	int	y,	int,	void*)

{

				if(event	!=	CV_EVENT_LBUTTONDOWN)	return;

				Point	seed	=	Point(x,y);

				int	flags	=	4	+	CV_FLOODFILL_FIXED_RANGE;

				int	b	=	(unsigned)theRNG()	&	255;

				int	g	=	(unsigned)theRNG()	&	255;

				int	r	=	(unsigned)theRNG()	&	255;

				Rect	ccomp;

				Scalar	newVal	=	Scalar(b,	g,	r);

				Mat	dst	=	image;

				//	flood	fill

				floodFill(dst,	seed,	newVal,	&ccomp,	Scalar(loDiff,	loDiff,	loDiff),	

Scalar(upDiff,	upDiff,	upDiff),	flags);

				imshow("image",	dst);

				//	Using	Canny	edges	as	mask

				Mat	mask;

				Canny(image_orig,	mask,	loCanny,	upCanny);

				imshow("Canny	edges",	mask);

				copyMakeBorder(mask,	mask,	1,	1,	1,	1,	cv::BORDER_REPLICATE);

				Mat	dst1	=	image1;

				floodFill(dst1,	mask,	seed,	newVal,	&ccomp,	Scalar(loDiff,	loDiff,	

loDiff),	Scalar(upDiff,	upDiff,	upDiff),	flags);

				imshow("FF	with	Canny",	dst1);

				moveWindow("Canny	edges",	image.cols,0);

				moveWindow("FF	with	Canny",	2*image.cols,0);

}

int	main(int	argc,	char	*argv[])

{

				//	Read	original	image	and	clone	it	to	contain	results

				image	=	imread("lena.jpg",	CV_LOAD_IMAGE_COLOR);

				image_orig=image.clone();

				image1=image.clone();

				namedWindow("image",	WINDOW_AUTOSIZE);

				imshow("image",	image);

				createTrackbar("lo_diff",	"image",	&loDiff,	255,	0);

				createTrackbar("up_diff",	"image",	&upDiff,	255,	0);

				createTrackbar("lo_Canny",	"image",	&loCanny,	255,	0);

				createTrackbar("up_Canny",	"image",	&upCanny,	255,	0);

				setMouseCallback("image",	onMouse,	0);

				moveWindow("image",	0,0);

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();	//	Wait	for	key	press

				return	0;

}

The	preceding	example	reads	and	displays	a	color	image	and	then	creates	four	trackbars.
The	first	two	trackbars	control	loDiff	and	upDiffvalues	for	the	floodFill	function.	The
other	two	trackbars	control	the	lower	and	upper	threshold	parameters	for	the	Canny	edge
detector.	In	this	example,	the	user	can	click	anywhere	on	the	input	image.	The	click
position	will	be	used	as	a	seed	point	to	perform	a	flood	fill	operation.	Actually,	upon	each

click,	two	calls	are	made	to	the	floodFill	function.	The	first	one	simply	fills	a	region
using	a	random	color.	The	second	one	uses	a	mask	created	from	the	output	of	the	Canny
edge	detector.	Note	that	the	copyMakeBorder	function	is	necessary	to	form	a	1-pixel	wide
border	around	the	mask.	The	following	screenshot	shows	the	output	of	this	example:

Output	of	the	floodFill	example

Note	that	the	output	that	uses	Canny	edges	(right)	has	filled	in	less	pixels	than	the	standard
operation	(left).

Watershed	segmentation
Watershed	is	a	segmentation	method	that	is	known	for	its	efficiency.	The	method
essentially	starts	from	user-specified	starting	(seed)	points	from	which	regions	grow.
Assuming	that	good	starting	seeds	can	be	provided,	the	resulting	segmentations	are	useful
for	many	purposes.

Note
For	more	details	and	examples	about	the	watershed	transform	for	image	segmentation,	see
http://cmm.ensmp.fr/~beucher/wtshed.html.

The	function	watershed(InputArray	image,	InputOutputArray	markers)	accepts	a	3-
channel	input	image	and	an	image	called	markers	with	the	seeds.	The	latter	has	to	be	a	32-
bit	single-channel	image.	Seeds	may	be	specified	in	markers	as	connected	components
with	positive	values	(0	cannot	be	used	as	a	value	for	seeds).	As	an	output	argument,	each
pixel	in	markers	will	be	set	to	a	value	of	the	seed	components	or	-1	at	boundaries	between
the	regions.	OpenCV	includes	a	watershed	example
([opencv_source_code]/samples/cpp/watershed.cpp)	in	which	the	user	has	to	draw	the
seed’s	regions.

Obviously,	the	selection	of	the	seed	regions	is	important.	Ideally,	seeds	will	be	selected
automatically	without	user	intervention.	A	typical	use	of	watershed	is	to	first	threshold	the
image	to	separate	the	object	from	the	background,	apply	the	distance	transform,	and	then
use	the	local	maxima	of	the	distance	transform	image	as	seed	points	for	segmentation.
However,	the	first	thresholding	step	is	critical,	as	parts	of	the	object	may	be	considered	as
the	background.	In	this	case,	the	object	seed	region	will	be	too	small	and	segmentation
will	be	poor.	On	the	other	hand,	to	perform	a	watershed	segmentation,	we	need	seeds	for
the	background	too.	While	we	can	use	points	over	the	corners	of	the	image	as	seeds,	this
will	not	be	sufficient.	In	this	case,	the	background	seed	region	is	too	small.	If	we	use	those
seeds,	the	object	region	given	by	the	segmentation	will	be	generally	much	larger	than	the
real	object.	In	our	following	watershed	example,	a	different	approach	is	followed	that
produces	better	results:

#include	<opencv2/core/utility.hpp>

#include	"opencv2/imgproc.hpp"

#include	"opencv2/highgui.hpp"

#include	"opencv2/core.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

void	Watershed(const	Mat	&src)

{

				Mat	dst=src.clone();

				//	Flood	fill	outer	part	of	the	image

				Point	seed(0,0);	//	top-left	corner

http://cmm.ensmp.fr/~beucher/wtshed.html

				int	loDiff=20;

				int	upDiff=20;

				int	flags=4	+	FLOODFILL_FIXED_RANGE	+	FLOODFILL_MASK_ONLY	+	(255<<8);

				Mat	mask(src.size(),	CV_8UC1);

				mask.setTo(0);

				copyMakeBorder(mask,	mask,	1,	1,	1,	1,	cv::BORDER_REPLICATE);

				Scalar	newVal;

				Rect	ccomp;

				floodFill(dst,	mask,	seed,	newVal,	&ccomp,

									Scalar(loDiff,	loDiff,	loDiff),	Scalar(upDiff,	upDiff,	upDiff),	

flags);

				//	Flood	fill	inner	part	of	the	image

				seed.x=(float)src.cols/2;			//	image	center	x

				seed.y=(float)src.rows/2;			//	image	center	y

				Mat	mask1=mask.clone();

				mask1.setTo(0);

				floodFill(dst,	mask1,	seed,	newVal,	&ccomp,

										Scalar(loDiff,	loDiff,	loDiff),	Scalar(upDiff,	upDiff,	upDiff),	

flags);

				//	Form	image	with	the	two	seed	regions

				Mat	Mask	=	mask.clone();

				mask=mask/2;

				Mask	=	mask	|	mask1;

				imshow("Seed	regions",	Mask);

				moveWindow("Seed	regions",	src.cols,	0);

				//	Perform	watershed

				Mat	labelImage(src.size(),	CV_32SC1);

				labelImage=Mask(Rect(1,1,	src.cols,	src.rows));

				labelImage.convertTo(labelImage,	CV_32SC1);

				watershed(src,	labelImage);

				labelImage.convertTo(labelImage,	CV_8U);

				imshow("Watershed",	labelImage);

				moveWindow("Watershed",	2*src.cols,	0);

}

int	main(int	argc,	char	*argv[])

{

				//	Read	original	image	and	clone	it	to	contain	results

				Mat	src	=	imread("hand_sample2.jpg",	IMREAD_COLOR);

				//	Create	3	windows

				namedWindow("Source",	WINDOW_AUTOSIZE);

				imshow("Source",	src);

				Watershed(src);

				//	Position	windows	on	screen

				moveWindow("Source",	0,0);

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();	//	Wait	for	key	press

				return	0;

}

The	Watershed	function	in	the	preceding	code	performs	three	steps.	First,	a	background
seed	region	is	obtained	by	performing	a	flood	fill.	The	flood	fill	seed	is	the	upper	left
corner	of	the	image,	that	is,	pixel	(0,	0).	Next,	another	flood	fill	is	performed	to	obtain	an
object’s	(hand	in	the	sample	image)	seed	region.	The	seed	for	this	flood	fill	is	taken	as	the
center	of	the	image.	Then,	a	seed	region	image	is	formed	by	performing	an	OR	operation
between	the	previous	two	flood	fill	results.	The	resulting	image	is	used	as	the	seed	image
for	the	watershed	operation.	See	the	output	of	the	example	in	the	following	screenshot
where	the	seed	image	is	shown	at	the	center	of	the	figure:

The	output	of	the	watershed	example

GrabCut
GrabCut	is	an	excellent	iterative	background/foreground	segmentation	algorithm	that	is
available	since	Version	2.1	of	OpenCV.	GrabCut	is	especially	useful	to	separate	objects
from	the	background	with	minimal	additional	information	(a	bounding	rectangle	is
sufficient	in	most	cases).	However,	it	is	computationally	intensive,	and	so	it	is	only
appropriate	to	segment	still	images.

Note
GrabCut	is	the	underlying	algorithm	for	the	Background	Removal	tool	in	Microsoft	Office
2010.	This	algorithm	was	first	proposed	by	researchers	at	Microsoft	Research	Cambridge.
Starting	with	a	user-provided	bounding	box	of	the	object	to	segment,	the	algorithm
estimates	the	color	distributions	of	both	the	target	object	and	the	background.	This
estimate	is	further	refined	by	minimizing	an	energy	function	in	which	connected	regions
that	have	the	same	label	receive	more	weight.

The	main	function	is	grabCut(InputArray	img,	InputOutputArray	mask,	Rect	rect,
InputOutputArray	bgdModel,	InputOutputArray	fgdModel,	int	iterCount,	int

mode=GC_EVAL).	The	parameters	bgdModel	and	fgdModel	are	only	used	internally	by	the
function	(though	they	have	to	be	declared).	The	iterCount	variable	is	the	number	of
iterations	to	be	performed.	In	our	experience,	few	iterations	of	the	algorithm	are	required
to	produce	good	segmentations.	The	algorithm	is	aided	by	a	bounding	rectangle,	a	mask
image,	or	both.	The	option	chosen	is	indicated	in	the	mode	parameter,	which	can	be
GC_INIT_WITH_RECT,	GC_INIT_WITH_MASK,	or	an	OR	combination	of	the	two.	In	the	former
case,	rect	defines	the	rectangle.	Pixels	outside	the	rectangle	are	considered	as	the	obvious
background.	In	the	latter	case,	the	mask	is	an	8-bit	image	in	which	pixels	may	have	the
following	values:

GC_BGD:	This	defines	an	obvious	background	pixel
GC_FGD:	This	defines	an	obvious	foreground	(object)	pixel
GC_PR_BGD:	This	defines	a	possible	background	pixel
GC_PR_FGD:	This	defines	a	possible	foreground	pixel

The	image	mask	is	also	the	output	image	with	the	resulting	segmentation,	which	is	derived
using	those	same	previous	values.	OpenCV	includes	an	example	of	GrabCut
([opencv_source_code]/samples/cpp/grabcut.cpp)	in	which	the	user	can	draw	a
bounding	rectangle	as	well	as	foreground	and	background	pixels.

The	following	grabcut	example	uses	the	algorithm	with	an	initial	bounding	rectangle	and
then	copies	the	resulting	foreground	onto	another	position	in	the	same	image:

#include	"opencv2/opencv.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[])

{

				//	Read	original	image	and	clone	it

				Mat	src	=	imread("stuff.jpg");

				Mat	tgt	=	src.clone();

				//	Create	source	window

				namedWindow("Source",	WINDOW_AUTOSIZE);

				imshow("Source",	src);

				moveWindow("Source",	0,0);

				//	GrabCut	segmentation

				Rect	rectangle(180,279,60,60);		//	coin	position

				Mat	result;																					//	segmentation	result

				Mat	bgModel,fgModel;												//	used	internally

grabCut(src,	result,	rectangle,	bgModel,fgModel,	1,	GC_INIT_WITH_RECT);

				result=(result	&	GC_FGD);			//	leave	only	obvious	foreground

				//	Translation	operation

				Mat	aff=Mat::eye(2,3,CV_32FC1);

				aff.at<float>(0,2)=50;

				warpAffine(tgt,	src,	aff,	result.size());

				warpAffine(result,	result,	aff,	result.size());

				src.copyTo(tgt,	result);

				//	Show	target	window

				imshow("Target",	tgt);

				moveWindow("Target",	src.cols,	0);

				cout	<<	"Press	any	key	to	exit…\n";

				waitKey();	//	Wait	for	key	press

				return	0;

}

The	preceding	example	simply	uses	a	fixed	rectangle	around	the	coin	in	the	source	image
(see	the	fifth	screenshot	in	this	chapter)	and	performs	the	segmentation.	The	result	image
will	contain	values	between	0	(GC_BGD)	and	3	(GC_PR_FGD).	The	ensuing	AND	operation	is
needed	to	convert	values	other	than	GC_FGD	to	zero	and	thus	get	a	binary	foreground	mask.
Then,	both	the	source	image	and	the	mask	are	translated	by	50	pixels	in	the	horizontal.	An
affine	warping	operation	is	used	with	an	identity	matrix	in	which	only	the	x	translation
component	is	changed.

Finally,	the	translated	image	is	copied	onto	the	target	image,	using	the	(also	translated)
mask.	Both	source	and	target	images	are	shown	in	the	following	screenshot.	Increasing	the
number	of	iterations	did	not	have	any	significant	effect	in	this	particular	example:

Source	and	target	images	in	the	GrabCut	example

Summary
This	chapter	has	covered	one	of	the	most	important	subjects	in	computer	vision.
Segmentation	is	often	one	of	the	first	steps,	and	also,	it	is	typically	one	of	the	trickiest.	In
this	chapter,	we	have	provided	the	reader	with	insight	and	samples	to	use	the	most	useful
segmentation	methods	in	OpenCV,	such	as	thresholding,	contours	and	connected
components,	flood	filling	of	regions,	the	watershed	segmentation	method,	and	the
GrabCut	method.

What	else?
The	meanshift	segmentation	(the	function	pyrMeanShiftFiltering)	has	been	omitted.
OpenCV	includes	an	example	showing	how	to	use	this	function
([opencv_source_code]/samples/cpp/meanshift_segmentation.cpp).This	method	is,
however,	relatively	slow	and	tends	to	produce	oversegmented	results.

Background/foreground	segmentations	can	also	be	achieved	using	video,	which	will	be
covered	in	Chapter	7,	What	Is	He	Doing?	Motion.

Chapter	5.	Focusing	on	the	Interesting	2D
Features
In	most	images,	the	most	useful	information	is	around	certain	zones	that	typically
correspond	to	salient	points	and	regions.	In	most	applications,	local	processing	around
these	salient	points	is	sufficient	as	long	as	these	points	are	stable	and	distinctive.	In	this
chapter,	we	will	cover	a	basic	introduction	to	the	2D	salient	points	and	features	offered	by
OpenCV.	It	is	important	to	note	the	difference	between	detectors	and	descriptors.
Detectors	only	extract	interest	points	(local	features)	on	an	image,	while	descriptors
obtain	relevant	information	about	the	neighborhood	of	these	points.	Descriptors,	as	their
name	suggests,	describe	the	image	by	proper	features.	They	describe	an	interest	point	in	a
way	that	is	invariant	to	change	in	lighting	and	to	small	perspective	deformations.	This	can
be	used	to	match	them	with	other	descriptors	(typically	extracted	from	other	images).	For
this	purpose,	matchers	are	used.	This,	in	turn,	can	be	used	to	detect	objects	and	infer	the
camera	transformation	between	two	images.	First,	we	show	the	internal	structure	of	the
interest	points	and	provide	an	explanation	of	the	2D	features	and	descriptor	extraction.
Finally,	the	chapter	deals	with	matching,	that	is,	putting	2D	features	of	different	images
into	correspondence.

Interest	points
Local	features,	also	called	interest	points,	are	characterized	by	sudden	changes	of	intensity
in	the	region.	These	local	features	are	usually	classified	in	edges,	corners,	and	blobs.
OpenCV	encapsulates	interesting	point	information	in	the	KeyPoint	class,	which	contains
the	following	data:

The	coordinates	of	the	interest	point	(the	Point2f	type)
Diameter	of	the	meaningful	keypoint	neighborhood
Orientation	of	the	keypoint
Strength	of	the	keypoint,	which	depends	on	the	keypoint	detector	that	is	selected
Pyramid	layer	(octave)	from	which	the	keypoint	has	been	extracted;	octaves	are	used
in	some	descriptors	such	as	SIFT,	SURF,	FREAK,	or	BRISK
Object	ID	used	to	perform	clustering

Feature	detectors
OpenCV	handles	several	local	feature	detector	implementations	through	the
FeatureDetector	abstract	class	and	its	Ptr<FeatureDetector>
FeatureDetector::create(const	string&	detectorType)	method	or	through	the
algorithm	class	directly.	In	the	first	case,	the	type	of	detector	is	specified	(see	the
following	diagram	where	the	detectors	used	in	this	chapter	are	indicated	in	red	color).
Detectors	and	the	types	of	local	features	that	they	detect	are	as	follows:

FAST	(FastFeatureDetector):	This	feature	detects	corners	and	blobs
STAR	(StarFeatureDetector):	This	feature	detects	edges,	corners,	and	blobs
SIFT	(SiftFeatureDetector):	This	feature	detects	corners	and	blobs	(part	of	the
nonfree	module)
SURF	(SurfFeatureDetector):	This	feature	detects	corners	and	blobs	(part	of	the
nonfree	module)
ORB	(OrbFeatureDetector):	This	feature	detects	corners	and	blobs
BRISK	(BRISK):	This	feature	detects	corners	and	blobs
MSER	(MserFeatureDetector):	This	feature	detects	blobs
GFTT	(GoodFeaturesToTrackDetector):	This	feature	detects	edges	and	corners
HARRIS	(GoodFeaturesToTrackDetector):	This	feature	detects	edges	and	corners
(with	the	Harris	detector	enabled)
Dense	(DenseFeatureDetector):	This	feature	detects	the	features	that	are	distributed
densely	and	regularly	on	the	image
SimpleBlob	(SimpleBlobDetector):	This	feature	detects	blobs

2D	feature	detectors	in	OpenCV

We	should	note	that	some	of	these	detectors,	such	as	SIFT,	SURF,	ORB,	and	BRISK,	are	also
descriptors.

Keypoint	detection	is	performed	by	the	void	FeatureDetector::detect(const	Mat&
image,	vector<KeyPoint>&	keypoints,	const	Mat&	mask)	function,	which	is	another
method	of	the	FeatureDetector	class.	The	first	parameter	is	the	input	image	where	the
keypoints	will	be	detected.	The	second	parameter	corresponds	to	the	vector	where	the
keypoints	will	be	stored.	The	last	parameter	is	optional	and	represents	an	input	mask
image	in	which	we	can	specify	where	to	look	for	keypoints.

Note
Matthieu	Labbé	has	implemented	a	Qt-based	open	source	application	where	you	can	test
OpenCV’s	corner	detectors,	feature	extractors,	and	matching	algorithms	in	a	nice	GUI.	It

is	available	at	https://code.google.com/p/find-object/.

The	first	interest	points	were	historically	corners.	In	1977,	Moravec	defined	corners	as
interest	points	where	there	is	a	large	intensity	variation	in	several	directions	(45	degrees).
These	interest	points	were	used	by	Moravec	to	find	matching	regions	in	consecutive	image
frames.	Later,	in	1988,	Harris	improved	Moravec’s	algorithm	using	the	Taylor	expansion
to	approximate	the	shifted	intensity	variation.	Afterwards,	other	detectors	appeared,	such
as	the	detector	based	on	difference	of	Gaussians	(DoG)	and	determinant	of	the	Hessian
(DoH)	(for	example,	SIFT	or	SURF,	respectively)	or	the	detector	based	on	Moravec’s
algorithm,	but	considering	continuous	intensity	values	in	a	pixel	neighborhood	such	as
FAST	or	BRISK	(scale-space	FAST).

Note
Lu,	in	her	personal	blog,	LittleCheeseCake,	explains	some	of	the	most	popular	detectors
and	descriptors	in	detail.	The	blog	is	available	at
http://littlecheesecake.me/blog/13804625/feature-detectors-and-descriptors.

https://code.google.com/p/find-object/
http://littlecheesecake.me/blog/13804625/feature-detectors-and-descriptors

The	FAST	detector
The	corner	detector	is	based	on	the	Features	from	Accelerated	Segment	Test	(FAST)
algorithm.	It	was	designed	to	be	very	efficient,	targeting	real-time	applications.	The
method	is	based	on	considering	a	circle	of	16	pixels	(neighborhood)	around	a	candidate
corner	p.	The	FAST	detector	will	consider	p	as	a	corner	if	there	is	a	set	of	contiguous
pixels	in	the	neighborhood	that	all	are	brighter	than	p+T	or	darker	than	p-T,	T	being	a
threshold	value.	This	threshold	must	be	properly	selected.

OpenCV	implements	the	FAST	detector	in	the	FastFeatureDetector()	class,	which	is	a
wrapper	class	for	the	FAST()	method.	To	use	this	class,	we	must	include	the
features2d.hpp	header	file	in	our	code.

Next,	we	show	a	code	example	where	the	corners	are	detected	using	the	FAST	method	with
different	threshold	values.	The	FASTDetector	code	example	is	shown	as	follows:

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/imgproc/imgproc.hpp"

#include	"opencv2/features2d/features2d.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[])

{

				//Load	original	image	and	convert	to	gray	scale

				Mat	in_img	=	imread("book.png");

				cvtColor(in_img,	in_img,	COLOR_BGR2GRAY);

		

				//Create	a	keypoint	vectors

				vector<KeyPoint>	keypoints1,keypoints2;

				//FAST	detector	with	threshold	value	of	80	and	100

				FastFeatureDetector	detector1(80);

				FastFeatureDetector	detector2(100);

				//Compute	keypoints	in	in_img	with	detector1	and	detector2

				detector1.detect(in_img,	keypoints1);

				detector2.detect(in_img,	keypoints2);

				Mat	out_img1,	out_img2;

				//Draw	keypoints1	and	keypoints2

				drawKeypoints(in_img,keypoints1,out_img1,Scalar::all(-1),0);

				drawKeypoints(in_img,keypoints2,out_img2,Scalar::all(-1),0);

				//Show	keypoints	detected	by	detector1	and	detector2

				imshow("out_img1",	out_img1);

				imshow("out_img2",	out_img2);

				waitKey(0);

				return	0;

}

The	explanation	of	the	code	is	given	as	follows.	In	this	and	the	following	examples,	we

usually	perform	the	following	three	steps:

1.	 Create	the	2D	feature	detector.
2.	 Detect	keypoints	in	the	image.
3.	 Draw	the	keypoints	obtained.

In	our	sample,	FastFeatureDetector(int	threshold=1,	bool	nonmaxSuppression=
true,	type=FastFeatureDetector::TYPE_9_16)	is	the	function	where	the	detector
parameters,	such	as	threshold	value,	non-maximum	suppression,	and	neighborhoods,	are
defined.

The	following	three	types	of	neighborhoods	can	be	selected:

FastFeatureDetector::TYPE_9_16

FastFeatureDetector::TYPE_7_12

FastFeatureDetector::TYPE_5_8

These	neighborhoods	define	the	number	of	neighbors	(16,	12,	or	8)	and	the	total	number
of	contiguous	pixels	(9,	7,	or	5)	needed	to	consider	the	corner	(keypoint)	valid.	An
example	of	TYPE_9_16	is	shown	in	the	next	screenshot.

In	our	code,	the	threshold	values	80	and	100	have	been	selected,	while	the	rest	of	the
parameters	have	their	default	values,	nonmaxSuppression=true	and
type=FastFeatureDetector::TYPE_9_16,	as	shown:

FastFeatureDetector	detector1(80);

FastFeatureDetector	detector2(100);

Keypoints	are	detected	and	saved	using	the	void	detect(const	Mat&	image,
vector<KeyPoint>&	keypoints,	const	Mat&	mask=Mat())	function.	In	our	case,	we
create	the	following	two	FAST	feature	detectors:

detector1	saves	its	keypoints	in	the	keypoints1	vector
detector2	saves	its	keypoints	in	the	keypoints2

The	void	drawKeypoints(const	Mat&	image,	const	vector<KeyPoint>&	keypoints,
Mat&	outImage,	const	Scalar&	color=Scalar::all(-1),	int

flags=DrawMatchesFlags::DEFAULT)	function	draws	the	keypoints	in	the	image.	The
color	parameter	allows	us	to	define	a	color	of	keypoints,	and	with	the	Scalar::	all(-1)
option,	each	keypoint	will	be	drawn	with	a	different	color.

The	keypoints	are	drawn	using	the	two	threshold	values	on	the	image.	We	will	notice	a
small	difference	in	the	number	of	keypoints	detected.	This	is	due	to	the	threshold	value	in
each	case.	The	following	screenshot	shows	a	corner	detected	in	the	sample	with	a
threshold	value	of	80,	which	is	not	detected	with	a	threshold	value	of	100:

Keypoint	detected	with	a	threshold	value	of	80	(in	the	left-hand	side).	The	same	corner	is
not	detected	with	a	threshold	value	of	100	(in	the	right-hand	side).

The	difference	is	due	to	the	fact	that	the	FAST	feature	detectors	are	created	with	the
default	type,	that	is,	TYPE_9_16.	In	the	example,	the	p	pixel	takes	a	value	of	228,	so	at	least
nine	contiguous	pixels	must	be	brighter	than	p+T	or	darker	than	p-T.	The	following
screenshot	shows	the	neighborhood	pixel	values	in	this	specific	keypoint.	The	condition	of
nine	contiguous	pixels	is	met	if	we	use	a	threshold	value	of	80.	However,	the	condition	is
not	met	with	a	threshold	value	of	100:

Keypoint	pixel	values	and	contiguous	pixels	all	darker	than	p-T	(228-80=148)	with	a
threshold	value	of	80

The	SURF	detector
The	Speeded	Up	Robust	Features	(SURF)	detector	is	based	on	a	Hessian	matrix	to	find
the	interest	points.	For	this	purpose,	SURF	divides	the	image	in	different	scales	(levels	and
octaves)	using	second-order	Gaussian	kernels	and	approximates	these	kernels	with	a
simple	box	filter.	This	filter	box	is	mostly	interpolated	in	scale	and	space	in	order	to
provide	the	detector	with	the	scale-invariance	properties.	SURF	is	a	faster	approximation
of	the	classic	Scale	Invariant	Feature	Transform	(SIFT)	detector.	Both	the	SURF	and
SIFT	detectors	are	patented,	so	OpenCV	includes	them	separately	in	their
nonfree/nonfree.hpp	header	file.

The	following	SURFDetector	code	shows	an	example	where	the	keypoints	are	detected
using	the	SURF	detector	with	a	different	number	of	Gaussian	pyramid	octaves:

//…	(omitted	for	simplicity)

#include	"opencv2/nonfree/nonfree.hpp"

int	main(int	argc,	char	*argv[])

{

				//Load	image	and	convert	to	gray	scale	(omitted	for

				//simplicity)

				//Create	a	keypoint	vectors

				vector<KeyPoint>	keypoints1,keypoints2;

				

				//SURF	detector1	and	detector2	with	2	and	5	Gaussian	pyramid

				//octaves	respectively

				SurfFeatureDetector	detector1(3500,	2,	2,	false,	false);

				SurfFeatureDetector	detector2(3500,	5,	2,	false,	false);

				//Compute	keypoints	in	in_img	with	detector1	and	detector2

				detector1.detect(in_img,	keypoints1);

				detector2.detect(in_img,	keypoints2);

				Mat	out_img1,	out_img2;

				//Draw	keypoints1	and	keypoints2

				drawKeypoints(in_img,keypoints1,out_img1,Scalar::all(-1),	

DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

				drawKeypoints(in_img,keypoints2,out_img2,Scalar::all(-1),	

DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

//Show	the	2	final	images	(omitted	for	simplicity)

return	0;

}

Note
In	the	preceding	example	(and	subsequent	ones),	some	portions	of	code	are	not	repeated
for	simplicity	because	they	are	the	same	as	in	previous	examples.

The	explanation	of	the	code	is	given	as	follows.	SURFFeatureDetector(double
hessianThreshold,	int	nOctaves,	int	nOctaveLayers,	bool	extended,	bool

upright)	is	the	main	function	used	to	create	a	SURF	detector	where	we	can	define	the

parameter	values	of	the	detector,	such	as	the	Hessian	threshold,	the	number	of	Gaussian
pyramid	octaves,	number	of	images	within	each	octave	of	a	Gaussian	pyramid,	number	of
elements	in	the	descriptor,	and	the	orientation	of	each	feature.

A	high	threshold	value	extracts	less	keypoints	but	with	more	accuracy.	A	low	threshold
value	extracts	more	keypoints	but	with	less	accuracy.	In	this	case,	we	have	used	a	large
Hessian	threshold	(3500)	to	show	a	reduced	number	of	keypoints	in	the	image.	Also,	the
number	of	octaves	changes	for	each	image	(2	and	5,	respectively).	A	larger	number	of
octaves	also	select	keypoints	with	a	larger	size.	The	following	screenshot	shows	the	result:

The	SURF	detector	with	two	Gaussian	pyramid	octaves	(in	the	left-hand	side)	and	the
SURF	detector	with	five	Gaussian	pyramid	octaves	(in	the	right-hand	side)

Again,	we	use	the	drawKeypoints	function	to	draw	the	keypoints	detected,	but	in	this
case,	as	the	SURF	detector	has	orientation	properties,	the	DrawMatchesFlags	parameter	is
defined	as	DRAW_RICH_KEYPOINTS.	Then,	the	drawKeypoints	function	draws	each	keypoint
with	its	size	and	orientation.

The	ORB	detector
Binary	Robust	Independent	Elementary	Features	(BRIEF)	is	a	descriptor	based	on
binary	strings;	it	does	not	find	interest	points.	The	Oriented	FAST	and	Rotated	BRIEF
(ORB)	detector	is	a	union	of	the	FAST	detector	and	BRIEF	descriptor	and	is	considered
an	alternative	to	the	patented	SIFT	and	SURF	detectors.	The	ORB	detector	uses	the	FAST
detector	with	pyramids	to	detect	interest	points	and	then	uses	the	HARRIS	algorithm	to
rank	the	features	and	retain	the	best	ones.	OpenCV	also	allows	us	to	use	the	FAST
algorithm	to	rank	the	features,	but	normally,	this	produces	less	stable	keypoints.	The
following	ORBDetector	code	shows	a	simple	and	clear	example	of	this	difference:

int	main(int	argc,	char	*argv[])

{

				//Load	image	and	convert	to	gray	scale	(omitted	for

				//simplicity)

				

				//Create	a	keypoint	vectors

				vector<KeyPoint>	keypoints1,keypoints2;

				//ORB	detector	with	FAST	(detector1)	and	HARRIS	(detector2)

				//score	to	rank	the	features

				OrbFeatureDetector	detector1(300,	1.1f,	2,	31,0,	2,	ORB::FAST_SCORE,	

31);

				OrbFeatureDetector	detector2(300,	1.1f,	2,	31,0,	2,	ORB::HARRIS_SCORE,	

31);

				

				//Compute	keypoints	in	in_img	with	detector1	and	detector2

				detector1.detect(in_img,	keypoints1);

				detector2.detect(in_img,	keypoints2);

				

				Mat	out_img1,	out_img2;

				//Draw	keypoints1	and	keypoints2

				drawKeypoints(in_img,keypoints1,out_img1,Scalar::all(-1),	

DrawMatchesFlags::DEFAULT);

				drawKeypoints(in_img,keypoints2,out_img2,Scalar::all(-1),	

DrawMatchesFlags::DEFAULT);

				//Show	the	2	final	images	(omitted	for	simplicity)

				return	0;

}

The	ORB	detector	with	the	FAST	algorithm	to	select	the	300	best	features	(in	the	left-hand
side)	and	the	HARRIS	detector	to	select	the	300	best	features	(in	the	right-hand	side)

The	explanation	of	the	code	is	given	as	follows.	The	OrbFeatureDetector(int
nfeatures=500,	float	scaleFactor=1.2f,	int	nlevels=8,	int	edgeThreshold=31,

int	firstLevel=0,	int	WTA_K=2,	int	scoreType=ORB::	HARRIS_SCORE,	int

patchSize=31)	function	is	the	class	constructor	where	we	can	specify	the	maximum
number	of	features	to	retain	the	scale,	number	of	levels,	and	type	of	detector
(HARRIS_SCORE	or	FAST_SCORE)	used	to	rank	the	features.

The	following	proposed	code	example	shows	the	difference	between	the	HARRIS	and
FAST	algorithms	to	rank	features;	the	result	is	shown	in	the	preceding	screenshot:

OrbFeatureDetector	detector1(300,	1.1f,	2,	31,0,	2,	ORB::FAST_SCORE,	31);

OrbFeatureDetector	detector2(300,	1.1f,	2,	31,0,	2,	ORB::HARRIS_SCORE,	31);

The	HARRIS	corner	detector	is	used	more	than	FAST	to	rank	features,	because	it	rejects
edges	and	provides	a	reasonable	score.	The	rest	of	the	functions	are	the	same	as	in	the
previous	detector	examples,	keypoint	detection	and	drawing.

The	KAZE	and	AKAZE	detectors
The	KAZE	and	AKAZE	detectors	will	be	included	in	the	upcoming	OpenCV	3.0.

Tip
OpenCV	3.0	is	not	yet	available.	Again,	if	you	want	to	test	this	code	and	use	the	KAZE
and	AKAZE	features,	you	can	work	with	the	latest	version	already	available	in	the
OpenCV	git	repository	at	http://code.opencv.org/projects/opencv/repository.

The	KAZE	detector	is	a	method	that	can	detect	2D	features	in	a	nonlinear	scale	space.
This	method	allows	us	to	keep	important	image	details	and	remove	noise.	Additive
Operator	Splitting	(AOS)	schemes	are	used	for	nonlinear	scale	space.	AOS	schemes	are
efficient,	stable,	and	parallelizable.	The	algorithm	computes	the	response	of	a	Hessian
matrix	at	multiple	scale	levels	to	detect	keypoints.	On	the	other	hand,	the	Accelerated-
KAZE	(AKAZE)	feature	detector	uses	fast	explicit	diffusion	to	build	a	nonlinear	scale
space.

Next,	in	the	KAZEDetector	code,	we	see	an	example	of	the	new	KAZE	and	AKAZE
feature	detectors:

int	main(int	argc,	char	*argv[])

{

				//Load	image	and	convert	to	gray	scale	(omitted	for

				//simplicity)

				//Create	a	keypoint	vectors

				vector<KeyPoint>	keypoints1,keypoints2;

				

				//Create	KAZE	and	AKAZE	detectors

				KAZE	detector1(true,true);

				AKAZE	detector2(cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT,0,3);

				//Compute	keypoints	in	in_img	with	detector1	and	detector2

				detector1.detect(in_img,	keypoints1);

				detector2.detect(in_img,	keypoints2,cv::Mat());

				Mat	out_img1,	out_img2;

				//Draw	keypoints1	and	keypoints2

				drawKeypoints(in_img,keypoints1,out_img1,Scalar::all(-1),	

DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

				drawKeypoints(in_img,keypoints2,out_img2,Scalar::all(-1),	

DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

				//Show	the	2	final	images	(omitted	for	simplicity)

				return	0;

}

The	KAZE::KAZE(bool	extended,	bool	upright)	function	is	the	KAZE	class	constructor
in	which	two	parameters	can	be	selected:	extended	and	upright.	The	extended	parameter
adds	the	option	to	select	between	64	or	128	descriptors,	while	the	upright	parameter
allows	us	to	select	rotation	or	no	invariant.	In	this	case,	we	use	both	parameters	with	a
true	value.

http://code.opencv.org/projects/opencv/repository

On	the	other	hand,	the	AKAZE::AKAZE(DESCRIPTOR_TYPE	descriptor_type,	int
descriptor_size=0,	int	descriptor_channels=3)	function	is	the	AKAZE	class
constructor.	This	function	gets	the	descriptor	type,	descriptor	size,	and	the	channels	as
input	arguments.	For	the	descriptor	type,	the	following	enumeration	is	applied:

enum	DESCRIPTOR_TYPE	{DESCRIPTOR_KAZE_UPRIGHT	=	2,	DESCRIPTOR_KAZE	=	3,	

DESCRIPTOR_MLDB_UPRIGHT	=	4,	DESCRIPTOR_MLDB	=	5	};

The	following	screenshot	shows	the	results	obtained	with	this	example:

The	KAZE	detector	(in	the	left-hand	side)	and	the	AKAZE	detector	(in	the	right-hand	side)

Note
Eugene	Khvedchenya’s	Computer	Vision	Talks	blog	contains	useful	reports	that	compare
different	keypoints	in	terms	of	robustness	and	efficiency.	See	the	posts	at	http://computer-
vision-talks.com/articles/2012-08-18-a-battle-of-three-descriptors-surf-freak-and-brisk/
and	http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-
feature-detection-algorithms/.

http://computer-vision-talks.com/articles/2012-08-18-a-battle-of-three-descriptors-surf-freak-and-brisk/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/

Feature	descriptor	extractors
Descriptors	describe	local	image	regions	and	are	invariant	to	image	transformations	such
as	rotation,	scale	or	translation.	They	provide	a	measure	and	distance	function	for	a	small
patch	around	an	interest	point.	Therefore,	whenever	the	similarity	between	two	image
patches	needs	to	be	estimated,	we	compute	their	descriptors	and	measure	their	distance.	In
OpenCV,	the	basic	Mat	type	is	used	to	represent	a	collection	of	descriptors,	where	each
row	is	a	keypoint	descriptor.

There	are	the	following	two	possibilities	to	use	a	feature	descriptor	extractor:

The	DescriptorExtractor	common	interface
The	algorithm	class	directly

(See	the	following	diagram	where	the	descriptors	used	in	this	chapter	are	indicated	in	red
color.)

The	common	interface	allows	us	to	switch	easily	between	different	algorithms.	This	can
be	very	useful	when	choosing	an	algorithm	to	solve	a	problem,	as	the	results	of	each
algorithm	can	be	compared	with	no	effort.	On	the	other	hand,	depending	on	the	algorithm,
there	are	several	parameters	that	can	be	tweaked	only	using	its	class.

2D	feature	descriptors	in	OpenCV

The	Ptr<DescriptorExtractor>	DescriptorExtractor::create(const	String&
descriptorExtractorType)	function	creates	a	new	descriptor	extractor	of	the	selected

type.	Descriptors	can	be	grouped	in	two	families:	float	and	binary.	Float	descriptors	store
float	values	in	a	vector;	this	can	lead	to	a	high	memory	usage.	On	the	other	hand,	binary
descriptors	store	binary	strings,	thus	enabling	faster	processing	times	and	a	reduced
memory	footprint.	The	current	implementation	supports	the	following	types:

SIFT:	This	implementation	supports	the	float	descriptor
SURF:	This	implementation	supports	the	float	descriptor
BRIEF:	This	implementation	supports	the	binary	descriptor
BRISK:	This	implementation	supports	the	binary	descriptor
ORB:	This	implementation	supports	the	binary	descriptor
FREAK:	This	implementation	supports	the	binary	descriptor
KAZE:	This	implementation	supports	the	binary	descriptor	(new	in	OpenCV	3.0)
AKAZE:	This	implementation	supports	the	binary	descriptor	(new	in	OpenCV	3.0)

The	other	important	function	of	DescriptorExtractor	is	void
DescriptorExtractor::compute(InputArray	image,	vector<KeyPoint>&	keypoints,

OutputArray	descriptors),	which	computes	the	descriptors	for	a	set	of	keypoints
detected	in	an	image	on	the	previous	step.	There	is	a	variant	of	the	function	that	accepts	an
image	set.

Tip
Note	that	it	is	possible	to	mix	feature	detectors	and	descriptor	extractors	from	different
algorithms.	However,	it	is	recommended	that	you	use	both	methods	from	the	same
algorithm,	as	they	should	fit	better	together.

Descriptor	matchers
DescriptorMatcher	is	an	abstract	base	class	to	match	keypoint	descriptors	that,	as
happens	with	DescriptorExtractor,	make	programs	more	flexible	than	using	matchers
directly.	With	the	Ptr<DescriptorMatcher>	DescriptorMatcher::create(const
string&	descriptorMatcherType)	function,	we	can	create	a	descriptor	matcher	of	the
desired	type.	The	following	are	the	supported	types:

BruteForce-L1:	This	is	used	for	float	descriptors.	It	uses	L1	distance	and	is	efficient
and	fast.
BruteForce:	This	is	used	for	float	descriptors.	It	uses	L2	distance	and	can	be	better
than	L1,	but	it	needs	more	CPU	usage.
BruteForce-SL2:	This	is	used	for	float	descriptors	and	avoids	square	root
computation	from	L2,	which	requires	high	CPU	usage.
BruteForce-Hamming:	This	is	used	for	binary	descriptors	and	calculates	the
Hamming	distance	between	the	compared	descriptors.
BruteForce-Hamming(2):	This	is	used	for	binary	descriptors	(2	bits	version).
FlannBased:	This	is	used	for	float	descriptors	and	is	faster	than	brute	force	by	pre-
computing	acceleration	structures	(as	in	DB	engines)	at	the	cost	of	using	more
memory.

The	void	DescriptorMatcher::match(InputArray	queryDescriptors,	InputArray
trainDescriptors,	vector<DMatch>&	matches,	InputArray	mask=noArray())	and
void	DescriptorMatcher::knnMatch(InputArray	queryDescriptors,	InputArray

trainDescriptors,	vector<vector<DMatch>>&	matches,	int	k,	InputArray

mask=noArray(),	bool	compactResult=false)	functions	give	the	best	k	matches	for
each	descriptor,	k	being	1	for	the	first	function.

The	void	DescriptorMatcher::radiusMatch(InputArray	queryDescriptors,
InputArray	trainDescriptors,	vector<vector<DMatch>>&	matches,	float

maxDistance,	InputArray	mask=noArray(),	bool	compactResult=false)	function
also	finds	the	matches	for	each	query	descriptor	but	not	farther	than	the	specified	distance.
The	major	drawback	of	this	method	is	that	the	magnitude	of	this	distance	is	not
normalized,	and	it	depends	on	the	feature	extractor	and	descriptor	used.

Tip
In	order	to	get	the	best	results,	we	recommend	that	you	use	matchers	along	with
descriptors	of	the	same	type.	Although	it	is	possible	to	mix	binary	descriptors	with	float
matchers	and	the	other	way	around,	the	results	might	be	inaccurate.

Matching	the	SURF	descriptors
SURF	descriptors	belong	to	the	family	of	oriented	gradients	descriptors.	They	encode
statistical	knowledge	about	the	geometrical	shapes	present	in	the	patch	(via	histograms	of
oriented	gradients/Haar-like	features).	They	are	considered	as	a	more	efficient	substitution
for	SIFT.	They	are	the	best	known	multiscale	feature	description	approaches,	and	their
accuracy	has	been	widely	tested.	They	have	two	main	drawbacks	though:

They	are	patented
They	are	slower	than	binary	descriptors

There	is	a	common	pipeline	in	every	descriptor	matching	application	that	uses	the
components	explained	earlier	in	this	chapter.	It	performs	the	following	steps:

1.	 Compute	interest	points	in	both	images.
2.	 Extract	descriptors	from	the	two	generated	interest	point	sets.
3.	 Use	a	matcher	to	find	connections	between	descriptors.
4.	 Filter	the	results	to	remove	bad	matches.

The	following	is	the	matchingSURF	example	that	follows	this	pipeline:

#include	<iostream>

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/nonfree/nonfree.hpp"

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char**	argv)

{

				Mat	img_orig	=	imread(argv[1],IMREAD_GRAYSCALE);

				Mat	img_fragment	=	imread(argv[2],	IMREAD_GRAYSCALE);

				if(img_orig.empty()	||	img_fragment.empty())

				{

								cerr	<<	"	Failed	to	load	images."	<<	endl;

								return	-1;

				}

					//Step	1:	Detect	keypoints	using	SURF	Detector

					vector<KeyPoint>	keypoints1,	keypoints2;

					Ptr<FeatureDetector>	detector	=	FeatureDetector::create("SURF");

					detector->detect(img_orig,	keypoints1);

					detector->detect(img_fragment,	keypoints2);

					//Step	2:	Compute	descriptors	using	SURF	Extractor

					Ptr<DescriptorExtractor>	extractor	=	

DescriptorExtractor::create("SURF");

					Mat	descriptors1,	descriptors2;

					extractor->compute(img_orig,	keypoints1,	descriptors1);

					extractor->compute(img_fragment,	keypoints2,	descriptors2);

					//Step	3:	Match	descriptors	using	a	FlannBased	Matcher

					Ptr<DescriptorMatcher>	matcher	=	

DescriptorMatcher::create("FlannBased");

					vector<DMatch>	matches12;

					vector<DMatch>	matches21;

					vector<DMatch>	good_matches;

					matcher->match(descriptors1,	descriptors2,	matches12);

					matcher->match(descriptors2,	descriptors1,	matches21);

					//Step	4:	Filter	results	using	cross-checking

					for(size_t	i	=	0;	i	<	matches12.size();	i++)

					{

									DMatch	forward	=	matches12[i];

									DMatch	backward	=	matches21[forward.trainIdx];

									if(backward.trainIdx	==	forward.queryIdx)

													good_matches.push_back(forward);

					}

					//Draw	the	results

					Mat	img_result_matches;

					drawMatches(img_orig,	keypoints1,	img_fragment,	keypoints2,	

good_matches,	img_result_matches);

					imshow("Matching	SURF	Descriptors",	img_result_matches);

					waitKey(0);

					return	0;

	}

The	explanation	of	the	code	is	given	as	follows.	As	we	described	earlier,	following	the
application	pipeline	implies	performing	these	steps:

1.	 The	first	step	to	be	performed	is	to	detect	interest	points	in	the	input	images.	In	this
example,	the	common	interface	is	used	to	create	a	SURF	detector	with	the	line
Ptr<FeatureDetector>	detector	=	FeatureDetector::create("SURF").

2.	 After	that,	the	interest	points	are	detected,	and	a	descriptor	extractor	is	created	using
the	common	interface	Ptr<DescriptorExtractor>	extractor	=
DescriptorExtractor::create("SURF").	The	SURF	algorithm	is	also	used	to
compute	the	descriptors.

3.	 The	next	step	is	to	match	the	descriptors	of	both	images,	and	for	this	purpose,	a
descriptor	matcher	is	created	using	the	common	interface,	too.	The	line,
Ptr<DescriptorMatcher>	matcher	=

DescriptorMatcher::create("FlannBased"),	creates	a	new	matcher	based	on	the
Flann	algorithm,	which	is	used	to	match	the	descriptors	in	the	following	way:

matcher->match(descriptors1,	descriptors2,	matches12)

4.	 Finally,	the	results	are	filtered.	Note	that	two	matching	sets	are	computed,	as	a	cross-
checking	filter	is	performed	afterwards.	This	filtering	only	stores	the	matches	that
appear	in	both	sets	when	using	the	input	images	as	query	and	train	images.	In	the
following	screenshot,	we	can	see	the	difference	when	a	filter	is	used	to	discard
matches:

Results	after	matching	SURF	descriptors	with	and	without	a	filter

Matching	the	AKAZE	descriptors
KAZE	and	AKAZE	are	novel	descriptors	included	in	the	upcoming	OpenCV	3.0.
According	to	published	tests,	both	outperform	the	previous	detectors	included	in	the
library	by	improving	repeatability	and	distinctiveness	for	common	2D	image-matching
applications.	AKAZE	is	much	faster	than	KAZE	while	obtaining	comparable	results,	so	if
speed	is	critical	in	an	application,	AKAZE	should	be	used.

The	following	matchingAKAZE	example	matches	descriptors	of	this	novel	algorithm:

#include	<iostream>

#include	"opencv2/core/core.hpp"

#include	"opencv2/features2d/features2d.hpp"

#include	"opencv2/highgui/highgui.hpp"

using	namespace	cv;

using	namespace	std;

int	main(int	argc,	char**	argv)

{

		Mat	img_orig	=	imread(argv[1],	IMREAD_GRAYSCALE);

		Mat	img_cam	=	imread(argv[2],	IMREAD_GRAYSCALE);

		if(!img_orig.data	||	!img_cam.data)

		{

				cerr	<<	"	Failed	to	load	images."	<<	endl;

				return	-1;

		}

		//Step	1:	Detect	the	keypoints	using	AKAZE	Detector

		Ptr<FeatureDetector>	detector	=	FeatureDetector::create("AKAZE");

		std::vector<KeyPoint>	keypoints1,	keypoints2;

		detector->detect(img_orig,	keypoints1);

		detector->detect(img_cam,	keypoints2);

		//Step	2:	Compute	descriptors	using	AKAZE	Extractor

		Ptr<DescriptorExtractor>	extractor	=	

DescriptorExtractor::create("AKAZE");

		Mat	descriptors1,	descriptors2;

		extractor->compute(img_orig,	keypoints1,	descriptors1);

		extractor->compute(img_cam,	keypoints2,	descriptors2);

		//Step	3:	Match	descriptors	using	a	BruteForce-Hamming	Matcher

		Ptr<DescriptorMatcher>	matcher	=	DescriptorMatcher::create("BruteForce-

Hamming");

		vector<vector<DMatch>	>	matches;

		vector<DMatch>	good_matches;

		matcher.knnMatch(descriptors1,	descriptors2,	matches,	2);

		//Step	4:	Filter	results	using	ratio-test

		float	ratioT	=	0.6;

		for(int	i	=	0;	i	<	(int)	matches.size();	i++)

		{

						if((matches[i][0].distance	<	ratioT*(matches[i][1].distance))	&&	

((int)	matches[i].size()<=2	&&	(int)	matches[i].size()>0))

						{

										good_matches.push_back(matches[i][0]);

						}

		}

		//Draw	the	results

		Mat	img_result_matches;

		drawMatches(img_orig,	keypoints1,	img_cam,	keypoints2,	good_matches,	

img_result_matches);

		imshow("Matching	AKAZE	Descriptors",	img_result_matches);

		waitKey(0);

		return	0;

}

The	explanation	of	the	code	is	given	as	follows.	The	first	two	steps	are	quite	similar	to	the
previous	example;	the	feature	detector	and	descriptor	extractor	are	created	through	their
common	interfaces.	We	only	change	the	string	parameter	passed	to	the	constructor,	as	this
time,	the	AKAZE	algorithm	is	used.

Note
A	BruteForce	matcher	that	uses	Hamming	distance	is	used	this	time,	as	AKAZE	is	a
binary	descriptor.

It	is	created	by	executing	Ptr<DescriptorMatcher>	matcher	=
DescriptorMatcher::create("BruteForce-Hamming").	The
matcher.knnMatch(descriptors1,	descriptors2,	matches,	2)	function	computes	the
matches	between	the	image	descriptors.	It	is	noteworthy	to	mention	the	last	integer
parameter,	as	it	is	necessary	for	the	filter	processing	executed	afterwards.	This	filtering	is
called	Ratio	Test,	and	it	computes	the	goodness	of	the	best	match	between	the	goodness	of
the	second	best	match.	To	be	considered	as	a	good	match,	this	value	must	be	higher	than	a
certain	ratio,	which	can	be	set	in	a	range	of	values	between	0	and	1.	If	the	ratio	tends	to	be
0,	the	correspondence	between	descriptors	is	stronger.

In	the	following	screenshot,	we	can	see	the	output	when	matching	a	book	cover	in	an
image	where	the	book	appears	rotated:

Matching	AKAZE	descriptors	in	a	rotated	image

The	following	screenshot	shows	the	result	when	the	book	does	not	appear	in	the	second
image:

Matching	AKAZE	descriptors	when	the	train	image	does	not	appear

Summary
In	this	chapter,	we	have	covered	a	widely	used	OpenCV	component.	Local	features	are	a
key	part	of	relevant	computer	vision	algorithms	such	as	object	recognition,	object
tracking,	image	stitching,	and	camera	calibration.	An	introduction	and	several	samples
have	been	provided,	thus	covering	interest	points	detection	using	different	algorithms,
extraction	of	descriptors	from	interest	points,	matching	descriptors,	and	filtering	the
results.

What	else?
The	powerful	Bag-of-Words	object	categorization	framework	has	not	been	included.	This
is	actually	an	additional	step	to	what	we	have	covered	in	this	chapter,	as	extracted
descriptors	are	clustered	and	used	to	perform	categorization.	A	complete	sample	can	be
found	at	[opencv_source_code]/samples/cpp/bagofwords_classification.cpp.

Chapter	6.	Where’s	Wally?	Object
Detection
This	chapter	explains	how	to	use	the	different	options	included	in	the	OpenCV	object
detection	module.	With	the	sample	code	included,	it	is	possible	to	use	Cascade	and	Latent
SVM	detectors	as	well	as	create	custom	cascade	detectors	for	a	specific	object	detection
application.	Additionally,	the	new	Scene	Text	Detector	included	in	OpenCV	3	is	explained
in	the	chapter.

Object	detection
Object	detection	deals	with	the	process	of	locating	instances	of	a	certain	class	of	real-
world	objects,	such	as	faces,	cars,	pedestrians,	and	buildings	in	images	or	videos.
Detection	algorithms	typically	start	by	extracting	features	from	two	sets	of	images.	One	of
these	sets	contains	images	from	the	desired	object	and	the	other	one	contains	background
images	where	the	searched	object	is	not	present.	Then,	the	detector	is	trained	based	on
these	features	to	recognize	future	instances	of	the	object	class.

Note
Fingerprint	recognition,	now	included	in	some	laptops	and	smartphones,	or	face	detection,
seen	in	most	digital	cameras,	are	everyday	examples	of	object	detection	applications.

Detecting	objects	with	OpenCV
OpenCV	has	a	number	of	object	detection	algorithms	implemented	in	its	objdetect
module.	In	this	module,	Cascade	and	Latent	SVM	detectors	are	implemented	together
with	the	new	Scene	Text	Detector	added	in	OpenCV	3.	All	of	these	algorithms	are
relatively	efficient	and	obtain	accurate	results.

Cascades	are	beautiful
Most	objects’	detection	problems,	such	as	face/person	detection	or	lesion	detection	in
medicine,	require	searching	for	the	object	in	many	image	patches.	However,	examining	all
image	zones	and	computing	the	feature	set	for	each	zone	are	time-consuming	tasks.
Cascade	detectors	are	widely	used	because	of	their	high	efficiency	in	doing	this.

Cascade	detectors	consist	of	various	boosting	stages.	The	boosting	algorithm	selects	the
best	feature	set	to	create	and	combine	a	number	of	weak	tree	classifiers.	Thus,	boosting	is
not	only	a	detector	but	also	a	feature	selection	method.	Each	stage	is	usually	trained	to
detect	nearly	100	percent	of	objects	correctly	and	discard	at	least	50	percent	of	the
background	images.	Therefore,	background	images,	which	represent	a	larger	number	of
images,	need	less	processing	time	as	they	are	discarded	at	the	early	stages	of	the	cascade.
Moreover,	the	concluding	cascade	stages	use	more	features	than	earlier	stages,	and	even
then	only	objects	and	difficult	background	images	require	more	time	to	be	evaluated.

Discrete	AdaBoost	(Adaptive	Boosting),	Real	AdaBoost,	Gentle	AdaBoost,	and
LogitBoost	are	all	implemented	in	OpenCV	as	boosting	stages.	On	the	other	hand,	it	is
possible	to	use	Haar-like,	Local	Binary	Patterns	(LBP)	and	Histograms	of	Oriented
Gradients	(HOG)	features	together	with	the	different	boosting	algorithms.

All	these	advantages	and	available	techniques	make	cascades	very	useful	for	building
practical	detection	applications.

Object	detection	using	cascades
OpenCV	comes	with	several	pretrained	cascade	detectors	for	the	most	common	detection
problems.	They	are	located	under	the	OPENCV_SOURCE\data	directory.	The	following	is	a
list	of	some	of	them	and	their	corresponding	subdirectories:

Subdirectory	haarcascades:

haarcascade_frontalface_default.xml

haarcascade_eye.xml

haarcascade_mcs_nose.xml

haarcascade_mcs_mouth.xml

haarcascade_upperbody.xml

haarcascade_lowerbody.xml

haarcascade_fullbody.xml

Subdirectory	lbpcascades:

lbpcascade_frontalface.xml

lbpcascade_profileface.xml

lbpcascade_silverware.xml

Subdirectory	hogcascades:

hogcascade_pedestrians.xml

The	following	pedestrianDetection	example	serves	to	illustrate	how	to	use	a	cascade
detector	and	localize	pedestrians	in	a	video	file	with	OpenCV:

#include	"opencv2/core/core.hpp"

#include	"opencv2/objdetect/objdetect.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/imgproc/imgproc.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[]){

				CascadeClassifier	cascade(argv[1]);

				if	(cascade.empty())

								return	-1;

				VideoCapture	vid(argv[2]);

				if	(!vid.isOpened()){

								cout<<"Error.	The	video	cannot	be	opened."<<endl;

								return	-1;

				}

				namedWindow("Pedestrian	Detection");

				Mat	frame;

				while(1)	{

								if	(!vid.read(frame))

												break;

								Mat	frame_gray;

								if(frame.channels()>1){

												cvtColor(frame,	frame_gray,	CV_BGR2GRAY);

												equalizeHist(frame_gray,	frame_gray);

								}else{

												frame_gray	=	frame;

								}

								vector<Rect>	pedestrians;

								cascade.detectMultiScale(frame_gray,	pedestrians,	1.1,	2,	0,	

Size(30,	30),	Size(150,	150));

								for(size_t	i	=	0;	i	<	pedestrians.size();	i++)	{

												Point	center(pedestrians[i].x	+	

																										pedestrians[i].width*0.5,	

																										pedestrians[i].y	+	

																										pedestrians[i].height*0.5);

												ellipse(frame,	center,	Size(pedestrians[i].width*0.5,

																					pedestrians[i].height*0.5),	0,	0,	360,	

																					Scalar(255,	0,	255),	4,	8,	0);

								}

								imshow("Pedestrian	Detection",	frame);

								if(waitKey(100)	>=	0)

												break;

				}

				return	0;

}

The	code	explanation	is	as	follows:

CascadeClassifier:	This	class	provides	all	the	methods	needed	when	working	with
cascades.	An	object	from	this	class	represents	a	trained	cascade	detector.
constructor	CascadeClassifier::	CascadeClassifier(const	string&

filename):	This	class	initializes	the	object	instance	and	loads	the	information	of	the
cascade	detector	stored	in	the	system	file	indicated	by	the	variable	filename.

Note
Note	that	the	method	bool	CascadeClassifier::load(const	string&	filename)
is	actually	called	implicitly	after	the	constructor.

bool	CascadeClassifier::	empty():	This	method	checks	if	a	cascade	detector	has
been	loaded.
cvtColor	and	equalizeHist:	These	methods	are	required	for	image	grayscale
conversion	and	equalization.	Since	the	cascade	detector	is	trained	with	grayscale
images	and	input	images	can	be	in	different	formats,	it	is	necessary	to	convert	them
to	the	correct	color	space	and	equalize	their	histograms	in	order	to	obtain	better
results.	This	is	done	by	the	following	code	that	uses	the	cvtColor	and	equalizeHist
functions:

Mat	frame_gray;

if(frame.channels()>1){

				cvtColor(frame,	frame_gray,	CV_BGR2GRAY);

				equalizeHist(frame_gray,	frame_gray);

}else{

				frame_gray	=	frame;

}

void	CascadeClassifier::detectMultiScale(const	Mat&	image,

vector<Rect>&	objects,	double	scaleFactor=1.1,	int	minNeighbors=3,	int

flags=0,	Size	minSize=Size(),	Size	maxSize=Size()):	This	method	examines
the	image	in	the	image	variable	applying	the	loaded	cascade	and	insert	all	detected
objects	in	objects.	Detections	are	stored	in	a	vector	of	rectangles	of	type	Rect.	The
parameters	scaleFactor	and	minNeighbors	indicates	how	much	the	image	size	is
reduced	at	each	image	scale	considered	and	the	minimum	number	of	neighbors	that
indicate	a	positive	detection.	Detections	are	bound	by	the	minimum	and	maximum
sizes,	indicated	by	minSize	and	maxSize.	Finally,	the	parameter	flags	is	not	used
when	using	cascades	created	with	opencv_traincascade.

Tip
After	obtaining	the	vector	that	stores	the	detected	objects,	it	is	easy	to	show	them
over	the	original	images	by	reading	the	coordinates	of	each	rectangle,	represented	by
objects	of	the	class	Rect,	and	drawing	a	polygon	in	the	indicated	zones.

The	following	screenshot	shows	the	result	of	applying	the	hogcascade_pedestrians.xml
pretrained	HOG-based	pedestrian	detector	over	the	frames	of	the	768x576.avi	video,
which	is	stored	in	the	OPENCV_SCR/samples	folder.

Pedestrian	detection	using	the	OpenCV-trained	HOG	cascade	detector

There	are	several	projects	and	contributions	to	the	OpenCV	community	that	solve	other
detection-related	problems	that	involve	not	only	detecting	the	object	but	also
distinguishing	its	state.	One	example	of	this	type	of	detectors	is	the	smile	detector
included	in	OpenCV	since	Version	2.4.4.	The	code	can	be	found	in	the	file
OPENCV_SCR/samples/c/smiledetect.cpp,	and	the	XML	that	stores	the	cascade	detector,
haarcascade_smile.xml,	can	be	found	in	OPENCV_SCR/data/haarcascades.	This	code
first	detects	the	frontal	face	using	the	pretrained	cascade	stored	in
haarcascade_frontalface_alt.xml	and	then	detects	the	smiling	mouth	pattern	at	the
bottom	part	of	the	image.	Finally,	the	intensity	of	the	smile	is	calculated	based	on	the
number	of	neighbors	detected.

Training	your	own	cascade
Although	OpenCV	provides	pretrained	cascades,	in	some	cases	it	is	necessary	to	train	a
cascade	detector	to	look	for	a	specific	object.	For	these	cases,	OpenCV	comes	with	tools
to	help	train	a	cascade,	generating	all	the	data	needed	during	the	training	process	and	the
final	files	with	the	detector	information.	These	are	usually	stored	in	the
OPENCV_BUILD\install\x64\mingw\bin	directory.	Some	of	the	applications	are	listed	as
follows:

opencv_haartraining:	This	application	is	historically	the	first	version	of	the
application	for	creating	cascades.
opencv_traincascade:	This	application	is	the	latest	version	of	the	application	for
creating	cascades.
opencv_createsamples:	This	application	is	used	to	create	the	.vec	file	with	the
images	that	contain	instances	of	the	object.	The	file	generated	is	accepted	by	both	the
preceding	training	executables.
opencv_performance:	This	application	may	be	used	to	evaluate	a	cascade	trained
with	the	opencv_haartraining	tool.	It	uses	a	set	of	marked	images	to	obtain
information	about	the	evaluation,	for	example,	the	false	alarm	or	the	detection	rates.

Since	opencv_haartraining	is	the	older	version	of	the	program	and	it	comes	with	fewer
features	than	opencv_traincascade,	only	the	latter	will	be	described	here.

Here,	the	cascade	training	process	is	explained	using	the	MIT	CBCL	face	database.	This
database	contains	face	and	background	images	of	19	x	19	pixels	arranged	as	shown	in	the
following	screenshot:

Image	file	organization

Note
This	section	explains	the	training	process	on	Windows.	For	Linux	and	Mac	OS	X,	the
process	is	similar	but	takes	into	account	the	specific	aspects	of	the	operating	system.	More
information	on	training	cascade	detectors	in	Linux	and	Mac	OS	X	can	be	found	at
http://opencvuser.blogspot.co.uk/2011/08/creating-haar-cascade-classifier-aka.html	and
http://kaflurbaleen.blogspot.co.uk/2012/11/how-to-train-your-classifier-on-mac.html
respectively.

The	training	process	involves	the	following	steps:

http://opencvuser.blogspot.co.uk/2011/08/creating-haar-cascade-classifier-aka.html
http://kaflurbaleen.blogspot.co.uk/2012/11/how-to-train-your-classifier-on-mac.html

1.	 Setting	the	current	directory:	In	the	Command	Prompt	window,	set	the	current
directory	to	the	directory	in	which	training	images	are	stored.	For	example,	if	the
directory	is	C:\chapter6\images,	use	the	following	command:

>cd	C:\chapter6\images

2.	 Creating	the	background	images	information	text	file:	If	background	images	are
stored	in	C:\chapter6\images\train\non-face	and	their	format	is	.pgm,	it	is
possible	to	create	the	text	file	required	by	OpenCV	using	the	following	command:

>for	%i	in	(C:\chapter6\images\train\non-face*.pgm)	do	@echo	%i	>>	

train_non-face.txt

The	following	screenshot	shows	the	contents	of	the	background	image	information
file.	This	file	contains	the	path	of	the	background	images:

Background	images	information	file

3.	 Creating	the	object	images	file:	This	involves	the	following	two	steps:

1.	 Creating	the	.dat	file	with	the	object	coordinates.	In	this	particular	database,
object	images	only	contain	one	instance	of	the	object	and	it	is	located	in	the
center	of	the	image	and	scaled	to	occupy	the	entire	image.	Therefore,	the
number	of	objects	per	image	is	1	and	the	object	coordinates	are	0	0	19	19,
which	are	the	initial	point	and	the	width	and	height	of	the	rectangle	that	contains
the	object.

If	object	images	are	stored	in	C:\chapter6\images\train\face,	it	is	possible	to
use	the	following	command	to	generate	the	file:

>for	%i	in	(C:\chapter6\images\train\face*.pgm)	do	@echo	%i	1	0	0	

19	19	>>	train_face.dat

The	content	of	the	.dat	file	can	be	seen	in	the	following	screenshot:

Object	images	file

2.	 After	creating	the	.dat	file	with	the	object	coordinates,	it	is	necessary	to	create
the	.vec	file	that	is	needed	by	OpenCV.	This	step	can	be	performed	using	the
opencv_createsamples	program	with	the	arguments	–info	(.dat	file);	-vec
(.vec	output	file	name);	-num	(number	of	images);	-w	and	–h	(output	image
width	and	height);	and	–maxxangle,	-maxyangle,	and	-maxzangle	(image
rotation	angles).	To	see	more	options,	execute	opencv_createsamples	without
arguments.	In	this	case,	the	command	used	is:

>opencv_createsamples	-info	train_face.dat	-vec	train_face.vec	-num	

2429	-w	19	-h	19	-maxxangle	0	-maxyangle	0	-maxzangle	0

Tip
OpenCV	includes	a	sample	.vec	file	with	facial	images	of	size	24	x	24	pixels.

4.	 Training	the	cascade:	Finally,	use	the	opencv_traincascade	executable	and	train
the	cascade	detector.	The	command	used	in	this	case	is:

>opencv_traincascade	-data	C:\chapter6\trainedCascade	-vec	

train_face.vec	-bg	train_non-face.txt	-numPos	242	-numNeg	454	-

numStages	10	-w	19	-h	19

The	arguments	indicate	the	output	directory	(-data),	the	.vec	file	(-vec),	the
background	information	file	(-bg),	the	number	of	positive	and	negative	images	to
train	each	stage	(-numPos	and	–numNeg),	the	maximum	number	of	stages	(-
numStages),	and	the	width	and	height	of	the	images	(-w	and	–h).

The	output	of	the	training	process	is:

PARAMETERS:

cascadeDirName:	C:\chapter6\trainedCascade

vecFileName:	train_face.vec

bgFileName:	train_non-face.txt

numPos:	242

numNeg:	454

numStages:	10

precalcValBufSize[Mb]	:	256

precalcIdxBufSize[Mb]	:	256

stageType:	BOOST

featureType:	HAAR

sampleWidth:	19

sampleHeight:	19

boostType:	GAB

minHitRate:	0.995

maxFalseAlarmRate:	0.5

weightTrimRate:	0.95

maxDepth:	1

maxWeakCount:	100

mode:	BASIC

=====	TRAINING	0-stage	=====

<BEGIN

POS	count	:	consumed			242	:	242

NEG	count	:	acceptanceRatio				454	:	1

Precalculation	time:	4.524

+----+---------+---------+

|		N	|				HR			|				FA			|

+----+---------+---------+

|			1|								1|								1|

+----+---------+---------+

|			2|								1|								1|

+----+---------+---------+

|			3|	0.995868|	0.314978|

+----+---------+---------+

END>

Training	until	now	has	taken	0	days	0	hours	0	minutes	9	seconds.

.	.	.	Stages	1,	2,	3,	and	4…

=====	TRAINING	5-stage	=====

<BEGIN

POS	count	:	consumed			242	:	247

NEG	count	:	acceptanceRatio				454	:	0.000220059

Required	leaf	false	alarm	rate	achieved.	Branch	training	terminated.

Finally,	the	XML	files	of	the	cascade	are	stored	in	the	output	directory.	These	files	are
cascade.xml,	params.xml,	and	a	set	of	stageX.xml	files	where	X	is	the	stage	number.

Latent	SVM
Latent	SVM	is	a	detector	that	uses	HOG	features	and	a	star-structured,	part-based	model
consisting	of	a	root	filter	and	a	set	of	part	filters	to	represent	an	object	category.	HOGs	are
feature	descriptors	that	are	obtained	by	counting	the	occurrences	of	gradient	orientations
in	localized	portions	of	an	image.	On	the	other	hand,	a	variant	of	support	vector
machines	(SVM)	classifiers	are	used	in	this	detector	to	train	models	using	partially
labeled	data.	The	basic	idea	of	an	SVM	is	constructing	a	hyperplane	or	set	of	hyperplanes
in	high-dimensional	space.	These	hyperplanes	are	obtained	to	have	the	largest	distance	to
the	nearest	training	data	point	(functional	margin	in	order	to	achieve	low	generalization
errors).	Like	cascade	detectors,	Latent	SVM	uses	a	sliding	window	with	different	initial
positions	and	scales	where	the	algorithm	is	applied	in	order	to	detect	if	there	is	an	object
inside.

One	of	the	advantages	of	the	OpenCV	Latent	SVM	implementation	is	that	it	allows	the
detection	of	multiple	object	categories	by	combining	several	simple	pretrained	detectors
within	the	same	multiobject	detector	instance.

The	following	latentDetection	example	illustrates	how	to	use	a	Latent	SVM	detector	for
localizing	objects	from	a	category	in	an	image:

#include	"opencv2/core/core.hpp"

#include	"opencv2/objdetect/objdetect.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	<iostream>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char*	argv[]){

				String	model	=	argv[1];

				vector<String>	models;

				models.push_back(model);

				vector<String>	names;

				names.push_back("category");

				LatentSvmDetector	detector(models	,	names);

				if(detector.empty())	{

								cout	<<	"Model	cannot	be	loaded"	<<	endl;

								return	-1;

				}

				String	img	=	argv[2];

				Mat	image	=	imread(img);

				if(image.empty()){

								cout	<<	"Image	cannot	be	loaded"	<<	endl;

								return	-1;

				}

				vector<LatentSvmDetector::ObjectDetection>	detections;

				detector.detect(image,	detections,	0.1,	1);

				for(size_t	i	=	0;	i	<	detections.size();	i++)	{

								Point	center(detections[i].rect.x	+	

																						detections[i].rect.width*0.5,	

																						detections[i].rect.y	+	

																						detections[i].rect.height*0.5);

								ellipse(image,	center,	Size(detections[i].rect.width*0.5,	

																	detections[i].rect.height*0.5),	0,	0,	360,	

																	Scalar(255,	0,	255),	4,	8,	0);

				}

				imshow("result",	image);

				waitKey(0);

				return	0;

}

The	code	explanation	is	as	follows:

LatentSvmDetector:	This	class	has	an	object	that	represents	a	Latent	SVM	detector
composed	of	one	or	more	pretrained	detectors.
constructor	LatentSvmDetector::LatentSvmDetector(const	vector<String>&

filenames,	const	vector<string>&	classNames=vector<String>()):	This	class
initializes	the	object	instance	and	loads	the	information	of	the	detectors	stored	in	the
system	paths	indicated	by	the	vector	filenames.	The	second	parameter,	the	vector
classNames,	contains	the	category	names.	The	method	bool
LatentSvmDetector::load(const	vector<string>&	filenames,	const

vector<string>&	classNames=vector<string>())	is	called	implicitly	after	the
constructor.
void	LatentSvmDetector::detect(const	Mat&	image,

vector<ObjectDetection>&	objectDetections,	float	overlapThreshold	=

0.5f,	int	numThreads	=	-1):	This	method	examines	the	image	in	the	variable
image	by	applying	the	simple	or	combined	detector	on	it	and	puts	all	detected	objects
in	objectDetections.	All	detections	are	stored	in	a	vector	of	the	ObjectDetection
struct.	This	structure	has	the	following	three	variables:

The	bounding	box	of	the	detection	(rect)
The	confidence	level	(score)
The	category	ID	(classID)

The	parameter	overlapThreshold	is	the	threshold	for	the	non-maximum	suppression
algorithm	for	eliminating	overlapped	detections.	Finally,	numThreads	is	the	number
of	threads	used	in	the	parallel	version	of	the	algorithm.

The	following	screenshot	shows	a	cat	detected	using	the	previous	code	and	the	files
cat.xml	and	cat.png,	and	cars	detected	using	car.xml	and	cars.png.	These	files	are
included	in	the	OpenCV	extra	data	that	can	be	found	in	the	official	repository.	Thus,	it	is
possible	to	run	the	program	using	the	following	command:

>latentDetection.exe	xmlfile	imagefile

In	the	previous	command,	xmlfile	is	the	Latent	SVM	detector	and	imagefile	is	the
image	that	has	to	be	examined.

Note
OpenCV	extra	data	provides	more	samples	and	test	files	that	can	be	used	by	users	to	create

and	test	their	own	projects	while	saving	time.	It	can	be	found	at
https://github.com/Itseez/opencv_extra.

In	addition	to	the	car	and	cat	detectors,	OpenCV	provides	pretrained	detectors	for	the	rest
of	the	classes	defined	in	The	PASCAL	Visual	Object	Classes	Challenge	2007
(http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007).	These	detectors	are	as
follows:

aeroplane.xml

bicycle.xml

bird.xml

boat.xml

bottle.xml

bus.xml

car.xml

cat.xml

chair.xml

cow.xml

diningtable.xml

dog.xml

horse.xml

motorbike.xml

person.xml

pottedplant.xml

sheep.xml

sofa.xml

train.xml

tvmonitor.xml

https://github.com/Itseez/opencv_extra
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007

The	detection	of	a	cat	and	some	cars	using	Latent	SVM

Tip
The	false	positive	rate	can	be	adjusted	by	changing	the	value	of	the	overlapThreshold
parameter.

Scene	text	detection
The	scene	text	detection	algorithm	builds	a	component	tree	of	an	image	by	thresholding	it
step-by-step	from	0	to	255.	To	enhance	the	results,	this	process	is	done	for	each	color
channel,	intensity,	and	gradient	magnitude	images.	After	that,	the	connected	components
obtained	from	successive	levels	are	hierarchically	organized	depending	on	their	inclusion
relationship	as	shown	in	the	following	diagram.	This	tree	organization	may	contain	a	huge
number	of	regions:

Tree	organization	example

Thus,	the	algorithm	selects	some	regions	following	two	stages.	Firstly,	area,	perimeter,
bounding	box,	and	Euler	number	descriptors	are	computed	for	each	region	and	used	in
order	to	estimate	the	class-condition	probability.	External	regions	with	local	maximum
probabilities	are	selected	if	their	values	are	above	a	global	limit	and	the	difference
between	their	local	maximum	and	minimum	is	also	above	a	specified	limit.

The	second	stage	consists	of	classifying	the	external	regions	selected	in	the	first	stage	into
character	and	non-character	classes	using	whole	area	ratio,	convex	hull	ratio,	and	the
number	of	outer	boundary	inflexion	points	as	features.

Finally,	the	external	regions	selected	are	grouped	to	obtain	words,	lines,	or	paragraphs.
This	part	of	the	algorithm	uses	a	perceptual-organization-based	clustering	analysis.

The	following	textDetection	example	illustrates	how	to	use	the	Scene	Text	Detection
algorithm	and	localize	text	in	an	image:

#include	"opencv2/opencv.hpp"

#include	"opencv2/objdetect.hpp"

#include	"opencv2/highgui.hpp"

#include	"opencv2/imgproc.hpp"

#include	<vector>

#include	<iostream>

#include	<iomanip>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	const	char	*	argv[]){

				Mat	src	=	imread(argv[1]);

				vector<Mat>	channels;

				computeNMChannels(src,	channels);

				//Negative	images	from	RGB	channels

				channels.push_back(255-channels[0]);

				channels.push_back(255-channels[1]);	

				channels.push_back(255-channels[2]);

				channels.push_back(255-channels[3]);

				for	(int	c	=	0;	c	<	channels.size();	c++){

								stringstream	ss;

								ss	<<	"Channel:	"	<<	c;

								imshow(ss.str(),channels.at(c));

				}

				Ptr<ERFilter>	er_filter1	=	createERFilterNM1(

																																			loadClassifierNM1(argv[2]),

																																			16,	0.00015f,	0.13f,	0.2f,

true,	0.1f);

				Ptr<ERFilter>	er_filter2	=	createERFilterNM2(

																																			loadClassifierNM2(argv[3]),		0.5);

				vector<vector<ERStat>	>	regions(channels.size());

				//	Apply	filters	to	each	channel

				for	(int	c=0;	c<(int)channels.size();	c++){

								er_filter1->run(channels[c],	regions[c]);

								er_filter2->run(channels[c],	regions[c]);

				}

				for	(int	c=0;	c<(int)channels.size();	c++){

								Mat	dst	=	Mat::zeros(channels[0].rows	+	

																														2,	channels[0].cols	+	2,	CV_8UC1);

								//	Show	ERs

								for	(int	r=0;	r<(int)regions[c].size();	r++)

								{

												ERStat	er	=	regions[c][r];

												if	(er.parent	!=	NULL){

																int	newMaskVal	=	255;

																int	flags	=	4	+	(newMaskVal	<<	8)	+	

																																	FLOODFILL_FIXED_RANGE	+	

																																	FLOODFILL_MASK_ONLY;

																floodFill(channels[c],	dst,	Point(er.pixel	%	

																											channels[c].cols,er.pixel	/	

																											channels[c].cols),	Scalar(255),	0,	

																											Scalar(er.level),	Scalar(0),	flags);

												}

								}

								stringstream	ss;

								ss	<<	"Regions/Channel:	"	<<	c;

								imshow(ss.str(),	dst);

				}

				vector<Rect>	groups;

				erGrouping(channels,	regions,	argv[4],	0.5,	groups);

				for	(int	i=(int)groups.size()-1;	i>=0;	i--)

				{

								if	(src.type()	==	CV_8UC3)

												rectangle(src,groups.at(i).tl(),	groups.at(i).br(),	

																							Scalar(0,	255,	255),	3,	8);

								else

												rectangle(src,groups.at(i).tl(),	groups.at(i).br(),	

																							Scalar(255),	3,	8);

				}

				imshow("grouping",src);

				waitKey(-1);

				er_filter1.release();

				er_filter2.release();

				regions.clear();

				groups.clear();

}

The	code	explanation	is	as	follows:

void	computeNMChannels(InputArray	_src,	OutputArrayOfArrays	_channels,

int	_mode=ERFILTER_NM_RGBLGrad):	This	function	computes	different	channels
from	the	image	in	_src	to	be	processed	independently	in	order	to	obtain	high
localization	recall.	These	channels	are	red	(R),	green	(G),	blue	(B),	lightness	(L),	and
gradient	magnitude	(∇)	by	default	(_mode=ERFILTER_NM_RGBLGrad),	it	is	intensity	(I),
hue	(H),	saturation	(S),	and	gradient	magnitude	(∇)	if	_mode=ERFILTER_NM_IHSGrad.
Finally,	the	computed	channels	are	saved	in	the	_channels	parameter.
Ptr<ERFilter>	createERFilterNM1(const	Ptr<ERFilter::Callback>&	cb,	int

thresholdDelta	=	1,	float	minArea	=	0.00025,	float	maxArea	=	0.13,

float	minProbability	=	0.4,	bool	nonMaxSuppression	=	true,	float

minProbabilityDiff	=	0.1):	This	function	creates	an	Extremal	Region	Filter	for
the	classifier	of	the	first	stage	defined	by	the	algorithm.	The	first	parameter	loads	the
classifier	by	means	of	the	function	loadClassifierNM1(const	std::string&
filename).	The	thresholdDelta	variable	indicates	the	threshold	step	during	the
component	tree	obtaining	process.	The	parameters	minArea	and	maxArea	establish	the
percentages	of	the	image	size	between	which	external	regions	are	retrieved.	The
value	of	the	bool	parameter	nonMaxSuppression	is	true	when	non-maximum
suppression	is	applied	over	the	branch	probabilities,	and	false	otherwise.	Finally,	the
minProbability	and	minProbabilityDiff	parameters	control	the	minimum
probability	value	and	the	minimum	probability	difference	between	local	maxima	and
minima	values	allowed	for	retrieving	an	external	region.
Ptr<ERFilter>	createERFilterNM2(const	Ptr<ERFilter::Callback>&	cb,

float	minProbability	=	0.3):	This	function	creates	an	External	Region	Filter	for
the	classifier	of	the	second	stage	defined	by	the	algorithm.	The	first	parameter	loads
the	classifier	by	means	of	the	function	loadClassifierNM2(const	std::string&
filename).	The	other	parameter,	minProbability,	is	the	minimum	probability
allowed	for	retrieved	external	regions.
void	ERFilter::run(InputArray	image,	std::vector<ERStat>&	regions):
This	method	applies	the	cascade	classifier	loaded	by	the	filter	to	obtain	the	external
regions	either	in	the	first	or	the	second	level.	The	image	parameter	is	the	channel	that
has	to	be	examined	and	regions	is	a	vector	with	the	output	of	the	first	stage	and	also
the	input/output	of	the	second	one.

void	erGrouping(InputArrayOfArrays	src,

std::vector<std::vector<ERStat>>&	regions,	const	std::string&	filename,

float	minProbability,	std::vector<Rect>&	groups):	This	function	groups	the
external	regions	obtained.	It	uses	the	extracted	channels	(src),	the	obtained	external
regions	by	each	channel	(regions),	the	path	to	the	grouping	classifier,	and	the
minimum	probability	for	accepting	a	group	(minProbability).	Final	groups,	which
are	rectangles	from	Rect,	are	stored	in	the	vector	groups.

The	following	group	of	screenshots	shows	the	obtained	image	channels.	These	are	red	(R),
green	(G),	blue	(B),	intensity	(I),	gradient	magnitude	(∇),	inverted	red	(iR),	inverted	green
(iG),	inverted	blue	(iB),	and	inverted	intensity	(iI).	In	the	first	row,	the	R,	G,	and	B
channels	are	shown.	The	second	row	shows	the	I,	∇,	and	iR	channels.	Finally,	in	the	third
row,	the	iG,	iB,	and	iI	channels	are	shown:

Extracted	image	channels

The	following	group	of	screenshots	shows	it	is	possible	to	see	the	external	regions
extracted	from	each	channel.	Channels	R,	G,	B,	L,	and	∇	produce	more	accurate	results.	In

the	first	row,	external	regions	from	the	R,	G,	and	B	channels	are	shown.	The	second	row
shows	the	external	regions	extracted	from	the	I,	∇,	and	iR	channels.	Finally,	in	the	third
row,	the	iG,	iB,	and	iI	channels	are	shown:

External	regions	obtained	from	each	channel

Finally,	the	following	screenshot	shows	the	input	image	with	the	text	areas	grouped	into
lines	and	paragraphs:

Groups	obtained

Note
To	reproduce	these	results	or	use	the	OpenCV	Scene	Text	Detector,	it	is	possible	to	use
this	code	with	the	sample	files	provided	by	the	library.	The	input	image	and	classifier	can
be	found	in	the	OPENCV_SCR/samples/cpp	directory.	The	image	used	here	is
cenetext01.jpg.	The	first	and	second	level	classifiers	are	trained_classifierNM1.xml
and	trained_classifierNM2.xml.	Finally,	the	grouping	classifier	provided	by	OpenCV	is
trained_classifier_erGrouping.xml.

Summary
This	chapter	covers	the	OpenCV	objdetect	module.	It	explains	how	to	use	and	train	the
Cascade	detectors	as	well	as	how	to	use	Latent	SVM	detectors.	Moreover,	the	new	Scene
Text	Detector	included	in	OpenCV	3	has	been	explained	in	this	chapter.

Methods	for	detecting	and	tracking	objects	in	motion	are	explained	in	the	next	chapter.

What	else?
Cascade	detectors	have	been	widely	used	in	several	applications	such	as	face	recognition
and	pedestrian	detection	because	they	are	fast	and	provide	good	results.	Soft	cascades	are
a	variant	of	the	classic	cascade	detectors.	This	new	type	of	cascades	is	implemented	in
OpenCV	3	in	the	softcascade	module.	Soft	cascade	is	trained	with	AdaBoost	but	the
resulting	detector	is	composed	of	only	one	stage.	This	stage	has	several	weak	classifiers
that	are	evaluated	in	sequence.	After	evaluating	each	weak	classifier,	the	result	is
compared	with	the	corresponding	threshold.	Similar	to	the	evaluation	process	carried	out
in	multistage	cascades,	negative	non-object	instances	are	discarded	as	soon	as	possible.

Chapter	7.	What	Is	He	Doing?	Motion
In	this	chapter,	we	will	show	you	different	techniques	related	to	motion,	as	estimated	from
video	frames.	After	a	short	introduction	and	definitions,	we	will	show	you	how	to	read
video	frames	captured	from	a	camera.	Then,	we	will	tackle	the	all-important	Optical	Flow
technique.	In	the	third	section,	we	will	show	you	different	functions	that	can	be	used	for
tracking.	The	Motion	history	and	Background	subtraction	techniques	are	explained	in	the
fourth	and	fifth	sections,	respectively.	Finally,	image	alignment	with	the	ECC	method	is
explained.	Every	example	has	been	developed	and	tested	for	the	latest	version	of	OpenCV
in	GitHub.	Most	of	the	functions	can	work	in	the	previous	versions	equally,	leading	to
some	changes	that	will	be	discussed.	Most	of	the	functions	introduced	in	this	chapter	are
in	the	video	module.

Note
To	test	the	latest	source	code	available	in	GitHub,	go	to	https://github.com/itseez/opencv
and	download	the	library	code	as	a	ZIP	file.	Then	unzip	it	to	a	local	folder	and	follow	the
same	steps	described	in	Chapter	1,	Getting	Started,	to	compile	and	install	the	library.

https://github.com/itseez/opencv

Motion	history
Motion	is	a	very	important	topic	in	Computer	Vision.	Once	we	detect	and	isolate	an	object
or	person	of	interest,	we	can	extract	valuable	data	such	as	positions,	velocity,	acceleration,
and	so	on.	This	information	can	be	used	for	action	recognition,	behavior	pattern	studies,
video	stabilization,	augmented	reality,	and	so	on.

The	Optical	Flow	technique	is	a	pattern	of	an	object’s	apparent	motion.	Surfaces	and
edges	in	a	visual	scene	are	caused	by	relative	motion	between	an	observer	and	scene	or
between	the	camera	and	the	scene.	The	concept	of	the	Optical	Flow	technique	is	central	in
Computer	Vision	and	is	associated	with	techniques/tasks	such	as	motion	detection,	object
segmentation,	time-to-control	information,	focus	of	expansion	calculations,	luminance,
motion	compensated	encoding,	and	stereo	disparity	measurement.

Video	tracking	consists	of	locating	a	moving	object	(or	multiple	objects)	over	time	using
videos	captured	from	a	camera	or	file.	The	aim	of	video	tracking	is	to	associate	target
objects	in	consecutive	video	frames.	It	has	a	variety	of	uses,	some	of	which	are	video
editing,	medical	imaging,	traffic	control,	augmented	reality,	video	communication	and
compression,	security	and	surveillance,	and	human-computer	interaction.

Motion	templates	were	invented	at	the	MIT	Media	Lab	by	Bobick	and	David	in	1996.	The
use	of	the	motion	templates	is	a	simple	yet	robust	technique	that	tracks	general	movement.
OpenCV	motion	template	functions	only	work	with	single	channel	images.	A	silhouette
(or	part	of	a	silhouette)	of	an	object	is	needed.	These	silhouettes	can	be	obtained	in
different	ways.	For	example,	segmentation	techniques	can	be	used	to	detect	the	interest
object	and	then	perform	tracking	with	motion	templates.	Another	option	is	to	use	the
Background	subtraction	technique	to	detect	foreground	objects	and	then	track	them.	There
are	other	techniques	too,	although,	in	this	chapter,	we	will	see	two	examples	that	use	the
Background	subtraction	technique.

Background	subtraction	is	a	technique	by	which	an	image	foreground	or	region	of
interest	is	extracted	for	further	processing,	for	example,	people,	cars,	text,	and	so	on.	The
Background	subtraction	technique	is	a	widely	used	approach	for	detecting	moving	objects
in	videos	captured	from	static	cameras.	The	essence	of	the	Background	subtraction
technique	is	to	detect	the	moving	objects	from	differences	between	current	frames	and	a
reference	image	taken	without	target	objects	present,	which	is	usually	called	a	background
image.

Image	alignment	can	be	seen	as	a	mapping	between	the	coordinate	systems	of	two	or
more	images	taken	from	different	points	of	view.	The	first	step	is,	therefore,	the	choice	of
an	appropriate	geometric	transformation	that	adequately	models	this	mapping.	This
algorithm	can	be	used	in	a	wide	range	of	applications,	such	as	image	registration,	object
tracking,	super-resolution,	and	visual	surveillance	by	moving	cameras.

Reading	video	sequences
To	process	a	video	sequence,	we	should	be	able	to	read	each	frame.	OpenCV	has
developed	an	easy-to-use	framework	that	can	work	with	video	files	and	camera	input.

The	following	code	is	a	videoCamera	example	that	works	with	a	video	captured	from	a
video	camera.	This	example	is	a	modification	of	an	example	in	Chapter	1,	Getting	Started,
and	we	will	use	it	as	the	basic	structure	for	other	examples	in	this	chapter:

#include	"opencv2/opencv.hpp"

using	namespace	std;

using	namespace	cv;

int	videoCamera()

{

				//1-Open	the	video	camera

				VideoCapture	capture(0);

				//Check	if	video	camera	is	opened

				if(!capture.isOpened())	return	1;

				bool	finish	=	false;

				Mat	frame;

				Mat	prev_frame;

				namedWindow("Video	Camera");

				if(!capture.read(prev_frame))	return	1;

				//Convert	to	gray	image

				cvtColor(prev_frame,prev_frame,COLOR_BGR2GRAY);

				while(!finish)

				{

								//2-Read	each	frame,	if	possible

								if(!capture.read(frame))	return	1;

								//Convert	to	gray	image

								cvtColor(frame	,frame,	COLOR_BGR2GRAY);

								//Here,	we	will	put	other	functions	

								imshow("Video	Camera",	prev_frame);

								//Press	Esc	to	finish

								if(waitKey(1)==27)	finish	=	true;

								prev_frame	=	frame;

				}

				//Release	the	video	camera

				capture.release();

				return	0;

}

int	main()

{

				videoCamera();

}

The	preceding	code	example	creates	a	window	that	shows	you	the	grayscale	video’s
camera	capture.	To	initiate	the	capture,	an	instance	of	the	VideoCapture	class	has	been
created	with	the	zero-based	camera	index.	Then,	we	check	whether	the	video	capture	can
be	successfully	initiated.	Each	frame	is	then	read	from	the	video	sequence	using	the	read
method.	This	video	sequence	is	converted	to	grayscale	using	the	cvtColor	method	with
the	COLOR_BGR2GRAY	parameter	and	is	displayed	on	the	screen	until	the	user	presses	the
Esc	key.	Then,	the	video	sequence	is	finally	released.	The	previous	frame	is	stored
because	it	will	be	used	for	some	examples	that	follow.

Note
The	COLOR_BGR2GRAY	parameter	can	be	used	in	OpenCV	3.0.	In	the	previous	versions,	we
also	had	CV_BGR2GRAY.

In	the	summary,	we	have	shown	you	a	simple	method	that	works	with	video	sequences
using	a	video	camera.	Most	importantly,	we	have	learned	how	to	access	each	video	frame
and	can	now	make	any	type	of	frame	processing.

Note
With	regard	to	video	and	audio	formats	supported	by	OpenCV,	more	information	can	be
found	at	the	ffmpeg.org	website,	which	presents	a	complete	open	source	and	cross-
platform	solution	for	audio	and	video	reading,	recording,	converting,	and	streaming.	The
OpenCV	classes	that	work	with	video	files	are	built	on	top	of	this	library.	The	Xvid.org
website	offers	you	an	open	source	video	codec	library	based	on	the	MPEG-4	standard	for
video	compression.	This	codec	library	has	a	competitor	called	DivX,	which	offers	you
proprietary	but	free	codec	and	software	tools.

http://ffmpeg.org
http://Xvid.org

The	Lucas-Kanade	optical	flow
The	Lucas-Kanade	(LK)	algorithm	was	originally	proposed	in	1981,	and	it	has	become
one	of	the	most	successful	methods	available	in	Computer	Vision.	Currently,	this	method
is	typically	applied	to	a	subset	of	key	points	in	the	input	image.	This	method	assumes	that
optical	flow	is	a	necessary	constant	in	a	local	neighborhood	of	the	pixel	that	is	under
consideration	and	solves	the	basic	Optical	Flow	technique	equations	you	can	see	equation
(1),	for	each	pixel	(x,	y)	on	that	neighborhood.	The	method	also	assumes	that
displacements	between	two	consecutive	frames	are	small	and	are	approximately	a	way	to
get	an	over-constrained	system	of	the	considered	points:

I(x,	y,	t)	=	I(x	+	∆x,	y	+	∆y,	t	+	∆t)												(1)

We	will	now	focus	on	the	Pyramidal	Lucas-Kanade	method,	which	estimates	the	optical
flow	in	a	pyramid	using	the	calcOpticalFlowPyrLK()	function.	This	method	first
estimates	the	optical	flow	at	the	top	of	the	pyramid,	thus	avoiding	the	problems	caused	by
violations	of	our	assumptions	of	small	and	coherent	motion.	The	motion	estimate	from
this	first	level	is	then	used	as	the	starting	point	to	estimate	motion	at	the	next	level,	as
shown	in	the	pyramid	in	the	following	diagram:

Pyramidal	Lucas-Kanade

The	following	example	uses	the	maxMovementLK	function	to	implement	a	motion	detector:

void	maxMovementLK(Mat&	prev_frame,	Mat&	frame)

{

				//	1-Detect	right	features	to	apply	the	Optical	Flow	technique

				vector<Point2f>	initial_features;

				goodFeaturesToTrack(prev_frame,	initial_features,MAX_FEATURES,	0.1,	0.2	

);

				//	2-Set	the	parameters

				vector<Point2f>new_features;

				vector<uchar>status;

				vector<float>	err;

				TermCriteria	criteria(TermCriteria::COUNT	|	TermCriteria::EPS,	20,	

0.03);

				Size	window(10,10);

				int	max_level	=	3;

				int	flags	=	0;

				double	min_eigT	=	0.004;

				//	3-Lucas-Kanade	method	for	the	Optical	Flow	technique

				calcOpticalFlowPyrLK(prev_frame,	frame,	initial_features,	new_features,	

status,	err,	window,	max_level,	criteria,	flags,	min_eigT);

				//	4-Show	the	results

				double	max_move	=	0;

				double	movement	=	0;

				for(int	i=0;	i<initial_features.size();	i++)

				{

								Point	pointA	(initial_features[i].x,	initial_features[i].y);

								Point	pointB(new_features[i].x,	new_features[i].y);

								line(prev_frame,	pointA,	pointB,	Scalar(255,0,0),	2);

								movement	=	norm(pointA-pointB);

								if(movement	>	max_move)

												max_move	=	movement;

				}

				if(max_move	>MAX_MOVEMENT)

				{

								

putText(prev_frame,"INTRUDER",Point(100,100),FONT_ITALIC,3,Scalar(255,0,0),

5);

								imshow("Video	Camera",	prev_frame);

								cout	<<	"Press	a	key	to	continue…"	<<	endl;

								waitKey();

				}

}	

The	preceding	example	shows	you	a	window	with	each	movement.	If	there	is	a	large
movement,	a	message	is	displayed	on	the	screen.	Firstly,	we	need	to	obtain	a	set	of
appropriate	key	points	in	the	image	on	which	we	can	estimate	the	optical	flow.	The
goodFeaturesToTrack()	function	uses	the	method	that	was	originally	proposed	by	Shi
and	Tomasi	to	solve	this	problem	in	a	reliable	way,	although	you	can	also	use	other
functions	to	detect	important	and	easy-to-track	features	(see	Chapter	5,	Focusing	on	the
Interesting	2D	Features).	MAX_FEATURES	is	set	to	500	to	limit	the	number	of	key	points.
The	Lucas-Kanade	method	parameters	are	then	set	and	calcOpticalFlowPyrLK()	is
called.	When	the	function	returns,	the	status	(status)	array	is	checked	to	see	which	points
were	successfully	tracked	and	that	the	new	set	of	points	(new_features)	with	the
estimated	positions	is	used.	Lines	are	drawn	to	represent	the	motion,	and	if	there	is	a
displacement	greater	than	MAX_MOVEMENT—for	example—100,	a	message	is	shown	on	the
screen.	We	can	see	two	screen	captures,	as	follows:

Output	of	the	maxMovementLK	example

Using	the	modified	videoCamera	example,	we	have	applied	the	maxMovementLK()
function	to	detect	large	movements:

...

while(!finish)

{

			capture.read(frame);

			cvtColor(frame,frame,COLOR_BGR2GRAY);

//	Detect	Maximum	Movement	with	Lucas-Kanade	Method

			maxMovementLK(prev_frame,	frame);

...

This	method	is	computationally	efficient	because	tracking	is	only	performed	on	important
or	interesting	points.

The	Gunnar-Farneback	optical	flow
The	Gunnar-Farneback	algorithm	was	developed	to	produce	dense	Optical	Flow
technique	results	(that	is,	on	a	dense	grid	of	points).	The	first	step	is	to	approximate	each
neighborhood	of	both	frames	by	quadratic	polynomials.	Afterwards,	considering	these
quadratic	polynomials,	a	new	signal	is	constructed	by	a	global	displacement.	Finally,	this
global	displacement	is	calculated	by	equating	the	coefficients	in	the	quadratic
polynomials’	yields.

Let’s	now	see	the	implementation	of	this	method,	which	uses	the
calcOpticalFlowFarneback()function.	The	following	is	an	example
(maxMovementFarneback)	that	uses	this	function	to	detect	the	maximum	movement	as
shown	in	the	previous	example:

void	maxMovementFarneback(Mat&	prev_frame,	Mat&	frame)

{

				//	1-Set	the	Parameters

				Mat	optical_flow	=	Mat(prev_frame.size(),	COLOR_BGR2GRAY);

				double	pyr_scale	=	0.5;

				int	levels	=	3;

				int	win_size	=	5;

				int	iterations	=	5;

				int	poly_n	=	5;

				double	poly_sigma	=	1.1;

				int	flags	=	0;

				//	2-Farneback	method	for	the	Optical	Flow	technique

				calcOpticalFlowFarneback(prev_frame,	frame,	optical_flow,	pyr_scale,	

levels,	win_size,	iterations,	poly_n,	poly_sigma,	flags);

				//	3-Show	the	movements

				int	max_move	=	0;

				for	(int	i	=	1;	i	<optical_flow.rows	;	i++)

				{

								for	(int	j	=	1;	j	<optical_flow.cols	;	j++)

								{

												Point2f	&p	=	optical_flow.at<Point2f>(i,	j);

												Point	pA	=	Point(round(i	+	p.x),round(j	+	p.y));

												Point	pB	=	Point(i,	j);

												int	move	=	sqrt(p.x*p.x	+	p.y*p.y);

												if(move	>MIN_MOVEMENT)

												{

																line(prev_frame,	pA,	pB,	Scalar(255,0,0),2);

																if	(move	>	max_move)

																				max_move	=	move;

												}

								}

				}

				if(max_move	>MAX_MOVEMENT)

				{

								

putText(prev_frame,"INTRUDER",Point(100,100),FONT_ITALIC,3,Scalar(255,0,0),

5);

								imshow("Video	Camera",	prev_frame);

								cout	<<	"Press	a	key	to	continue…"	<<	endl;

								waitKey();

				}

}

This	function	receives	two	consecutive	frames,	estimates	the	optical	flow	with	different
parameters,	and	returns	an	array	with	the	same	size	as	the	input	frame,	where	each	pixel	is
actually	a	point	(Point2f)	that	represents	the	displacement	for	that	pixel.	Firstly,	different
parameters	are	set	for	this	function.	Of	course,	you	can	also	use	your	own	criteria	to
configure	the	performance.	Then,	with	these	parameters,	the	Optical	Flow	technique	is
performed	between	each	two	consecutive	frames.	Consequently,	we	obtain	an	array	with
the	estimations	for	each	pixel,	which	is	optical_flow.	Finally,	the	movements	that	are
greater	than	MIN_MOVEMENT	are	displayed	on	the	screen.	If	the	largest	movement	is	greater
than	MAX_MOVEMENT,	then	an	INTRUDER	message	is	displayed.

Understandably,	this	method	is	quite	slow	because	the	Optical	Flow	technique	is
computed	over	each	pixel	on	the	frame.	The	output	of	this	algorithm	is	similar	to	the
previous	method,	although	it’s	much	slower.

The	Mean-Shift	tracker
The	Mean-Shift	method	allows	you	to	locate	the	maximum	of	a	density	function	given
discrete	data	sampled	from	that	function.	It	is,	therefore,	useful	for	detecting	the	modes	of
this	density.	Mean-Shift	is	an	iterative	method,	and	an	initial	estimation	is	needed.

The	algorithm	can	be	used	for	visual	tracking.	In	this	case,	the	color	histogram	of	the
tracked	object	is	used	to	compute	the	confidence	map.	The	simplest	of	such	algorithm
would	create	a	confidence	map	in	the	new	image	based	on	the	object	histogram	taken	from
the	previous	image,	and	Mean-Shift	is	used	to	find	the	peak	of	the	confidence	map	near
the	object’s	previous	position.	The	confidence	map	is	a	probability	density	function	on	the
new	image,	assigning	each	pixel	of	the	new	image	a	probability,	which	is	the	probability
of	the	pixel	color	occurring	in	the	object	in	the	previous	image.	Next,	we	show	you	an
example	(trackingMeanShift)	using	this	function:

void	trackingMeanShift(Mat&	img,	Rect	search_window)

{

				//	1-Criteria	to	MeanShift	function

				TermCriteria	criteria(TermCriteria::COUNT	|	TermCriteria::EPS,	10,	1);

				//	2-Tracking	using	MeanShift

meanShift(img,	search_window,	criteria);

				//	3-Show	the	result

				rectangle(img,	search_window,	Scalar(0,255,0),	3);

}	

This	example	shows	you	a	window	with	an	initial	centered	rectangle	where	the	tracking	is
performed.	First,	the	criteria	parameter	is	set.	The	function	that	implements	the	method
needs	three	parameters:	the	main	image,	the	interest	area	that	we	want	to	search,	and	the
term	criteria	for	different	modes	of	tracking.	Finally,	a	rectangle	is	obtained	from
meanShift(),	and	search_window	is	drawn	on	the	main	image.

Using	a	modified	videoCamera	example,	we	apply	this	method	for	tracking.	A	static
window	of	the	screen	is	used	to	search.	Of	course,	you	can	manually	adjust	another
window	or	use	other	functions	to	detect	interest	objects	and	then	perform	the	tracking	on
them:

...

while(!finish)

{

			capture.read(frame);

			cvtColor(frame,frame,COLOR_BGR2GRAY);

//	Tracking	using	MeanShift	with	an	initial	search	window

		Rect	search_window(200,150,100,100);

		trackingMeanShift(prev_frame,	search_window);

...

Here,	we	can	see	the	following	two	screen	captures:

Output	of	the	trackingMeanShift	example

The	CamShift	tracker
The	CamShift	(Continuously	Adaptive	Mean	Shift)	algorithm	is	an	image	segmentation
method	that	was	introduced	by	Gary	Bradski	of	OpenCV	fame	in	1998.	It	differs	from
MeanShift	in	that	a	search	window	adjusts	itself	in	size.	If	we	have	a	well-segmented
distribution	(for	example,	face	features	that	stay	compact),	this	method	will	automatically
adjust	itself	to	the	face	sizes	as	the	person	moves	closer	or	farther	from	the	camera.

Note
We	can	find	a	CamShift	reference	at
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html.

We	will	now	see	the	following	example	(trackingCamShift)	using	this	method:

void	trackingCamShift(Mat&	img,	Rect	search_window)

{

				//1-Criteria	to	CamShift	function

				TermCriteria	criteria(TermCriteria::COUNT	|	TermCriteria::EPS,	10,	1);

				//2-Tracking	using	CamShift

				RotatedRect	found_object	=	CamShift(img,	search_window,	criteria);

				//3-Bounding	rectangle	and	show	the	result

				Rect	found_rect	=	found_object.boundingRect();

				rectangle(img,	found_rect,	Scalar(0,255,0),3);

}

This	function	structure	is	very	similar	to	the	one	in	the	preceding	section;	the	only
difference	is	that	a	bounding	rectangle	is	returned	from	CamShift().

http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html

The	Motion	templates
Motion	template	is	a	technique	in	image	processing	for	finding	a	small	part	of	an	image	or
silhouette	that	matches	a	template	image.	This	template	matcher	is	used	to	make
comparisons	with	respect	to	similarity	and	to	examine	the	likeness	or	difference.
Templates	might	potentially	require	sampling	of	a	large	number	of	points.	However,	it	is
possible	to	reduce	these	numbers	of	points	by	reducing	the	resolution	of	the	search;
another	technique	to	improve	these	templates	is	to	use	pyramid	images.

In	OpenCV’s	examples	([opencv_source_code]/samples/c/motempl.c),	a	related
program	can	be	found.

The	Motion	history	template
We	now	assume	that	we	have	a	good	silhouette	or	template.	New	silhouettes	are	then
captured	and	overlaid	using	the	current	time	stamp	as	the	weight.	These	sequentially
fading	silhouettes	record	the	history	of	the	previous	movement	and	are	thus	referred	to	as
the	Motion	history	template.	Silhouettes	whose	time	stamp	is	more	than	a	specified
DURATION	older	than	the	current	time	stamp	are	set	to	zero.	We	have	created	a	simple
example	(motionHistory)	using	the	updateMotionHistory()OpenCV	function	on	two
frames	as	follows:

void	updateMotionHistoryTemplate(Mat&	prev_frame,	Mat&	frame,	Mat&	history)

{

				//1-Calculate	the	silhouette	of	difference	between	the	two	

				//frames

				absdiff(frame,	prev_frame,	prev_frame);

				//2-Applying	a	threshold	on	the	difference	image

				double	threshold_val	=	100;	

threshold(prev_frame,prev_frame,threshold_val,255,THRESH_BINARY);

				//3-Calculate	the	current	time

				clock_t	aux_time	=	clock();

				double	current_time	=	(aux_time-INITIAL_TIME)/CLOCKS_PER_SEC;

				//4-Performing	the	Update	Motion	history	template

				updateMotionHistory(prev_frame,	history,	current_time,	DURATION);

}

Note
The	THRESH_BINARY	parameter	can	be	used	on	OpenCV	3.0.	In	the	previous	versions,	we
also	had	CV_THRESH_BINARY.

This	example	shows	you	a	window	where	the	motion	history	is	drawn.	The	first	step	is	to
obtain	a	silhouette;	the	Background	subtraction	technique	is	used	for	this.	The	difference
in	the	absolute	value	is	obtained	from	the	two	input	frames.	In	the	second	step,	a	binary
thresholding	is	applied	to	remove	noise	from	the	silhouette.	Then,	the	current	time	is
obtained.	The	final	step	is	to	perform	the	updating	of	the	Motion	history	template	using
OpenCV’s	function.

We	have	also	set	DURATION	to	5.	Note	that	it	is	necessary	to	initialize	INITIAL_TIME	and
history.	Besides,	we	can	use	this	function	call	from	the	modified	videoCamera	example
as	follows:

...

//	Calculate	the	initial	time

INITIAL_TIME	=	clock()/CLOCKS_PER_SEC;

//Create	a	Mat	to	save	the	Motion	history	template

Mat	history(prev_frame.rows,	prev_frame.cols,	CV_32FC1);

while(!finish)

{

		capture.read(frame);

		cvtColor(frame,frame,COLOR_BGR2GRAY);

//	Using	Update	Motion	history	template

		updateMotionHistoryTemplate(prev_frame,	frame,	history);

			imshow("Video	Camera",	history);

...

To	use	the	clock()	function,	which	gets	the	current	time,	we	need	to	include	<ctime>.
Some	screen	captures	will	be	shown	in	which	a	person	is	walking	in	front	of	the	camera.

Output	of	the	motionHistory	example

The	Motion	gradient
Once	the	Motion	templates	have	a	collection	of	object	silhouettes	overlaid	in	time,	we	can
obtain	the	directions	of	movement	by	computing	the	gradients	of	the	history	image.	The
following	example	(motionGradient)	computes	the	gradients:

void	motionGradientMethod(Mat&	history,	Mat&	orientations)

{

				//1-Set	the	parameters

				double	max_gradient	=	3.0;

				double	min_gradient	=	1.0;

				//The	default	3x3	Sobel	filter

				int	apertura_size	=	3;

				//Distance	to	show	the	results

				int	dist	=	20;

				Mat	mask	=	Mat::ones(history.rows,	history.cols,	CV_8UC1);

				//2-Calcule	motion	gradients

calcMotionGradient(history,	mask,	orientations,	max_gradient,	min_gradient,	

apertura_size);

				//3-Show	the	results

				Mat	result	=	Mat::zeros(orientations.rows,	orientations.cols,	

CV_32FC1);

				for	(int	i=0;i<orientations.rows;	i++)

				{

								for	(int	j=0;j<orientations.cols;	j++)

								{

												double	angle	=	360-orientations.at<float>(i,j);

												if	(angle!=360)

												{

																Point	point_a(j,	i);

																Point	point_b(round(j+	cos(angle)*dist),	round(i+	

sin(angle)*dist));

																line(result,	point_a,	point_b,	Scalar(255,0,0),	1);

												}

								}

				}

				imshow("Result",	result);

}

A	screen	capture	is	shown	with	a	person	moving	his	head	in	front	of	the	camera	(see	the
following	screenshot).	Each	line	represents	the	gradient	for	each	pixel.	Different	frames
also	overlap	at	a	t	time:

Output	of	the	motionGradient	example	(a	person	is	moving	his	head	in	front	of	the
camera).

The	preceding	example	shows	you	a	window	that	displays	the	directions	of	movement.	As
the	first	step,	the	parameters	are	set	(the	maximum	and	minimum	gradient	value	to	be
detected).	The	second	step	uses	the	calcMotionGradient()	function	to	obtain	a	matrix	of
the	gradient	direction	angles.	Finally,	to	show	the	results,	these	angles	are	drawn	on	the
screen	using	a	default	distance,	which	is	dist.	Again,	we	can	use	this	function	from	the
following	modified	videoCamera	example:

...

//Create	a	Mat	to	save	the	Motion	history	template

Mat	history(prev_frame.rows,	prev_frame.cols,	CV_32FC1);

while(!finish)

{

				capture.read(frame);

				cvtColor(frame,frame,COLOR_BGR2GRAY);

//Using	Update	Motion	history	template

				updateMotionHistoryTemplate(prev_frame,	frame,	history);

//Calculate	motion	gradients

Mat	orientations	=	Mat::ones(history.rows,	history.cols,	CV_32FC1);

motionGradientMethod(history,	orientations);

...

The	Background	subtraction	technique
The	Background	subtraction	technique	consists	of	obtaining	the	important	objects	over	a
background.

Now,	let’s	see	the	methods	available	in	OpenCV	for	the	Background	subtraction
technique.	Currently,	the	following	four	important	techniques	are	required	for	this	task:

MOG	(Mixture-of-Gaussian)
MOG2
GMG	(Geometric	MultiGrip)
KNN	(K-Nearest	Neighbors)

Next,	we	are	going	to	see	an	example	(backgroundSubKNN)	using	the	KNN	technique:

#include<opencv2/opencv.hpp>

using	namespace	cv;

using	namespace	std;

int	backGroundSubKNN()

{

				//1-Set	the	parameters	and	initializations

				Mat	frame;

				Mat	background;

				Mat	foreground;

				bool	finish	=	false;

				int	history	=	500;

				double	dist2Threshold	=	400.0;

				bool	detectShadows	=	false;

				vector<	vector<Point>>	contours;

				namedWindow("Frame");

				namedWindow("Background");

				VideoCapture	capture(0);

				//Check	if	the	video	camera	is	opened

				if(!capture.isOpened())	return	1;

				//2-Create	the	background	subtractor	KNN

				Ptr	<BackgroundSubtractorKNN>	bgKNN	=	createBackgroundSubtractorKNN	

(history,	dist2Threshold,	detectShadows);

				while(!finish)

				{

								//3-Read	every	frame	if	possible

								if(!capture.read(frame))	return	1;

								//4-Using	apply	and	getBackgroundImage	method	to	get

								//foreground	and	background	from	this	frame

								bgKNN->apply(frame,	foreground);

								bgKNN->getBackgroundImage(background);

								//5-Reduce	the	foreground	noise

								erode(foreground,	foreground,	Mat());

								dilate(foreground,	foreground,	Mat());

								//6-Find	the	foreground	contours

								findContours(foreground,contours,RETR_EXTERNAL,CHAIN_APPROX_NONE);

								drawContours(frame,contours,-1,Scalar(0,0,255),2);

								//7-Show	the	results

								imshow("Frame",	frame);

								imshow("Background",	background);

								moveWindow("Frame",	0,	100);

								moveWindow("Background",800,	100);

								//Press	Esc	to	finish

								if(waitKey(1)	==	27)	finish	=	true;

				}

				capture.release();

				return	0;

}

int	main()

{

				backGroundSubKNN();

}

Note
The	createBackgroundSubtractorKNN	method	has	only	been	included	in	Version	3.0	of
OpenCV.

The	Background	subtracted	frame	and	screen	capture	are	shown	in	the	following
screenshot	in	which	a	person	is	walking	in	front	of	the	camera:

Output	of	the	backgroundSubKNN	example

The	preceding	example	shows	you	two	windows	with	the	subtracted	background	images
and	draws	contours	of	the	person	found.	First,	parameters	are	set	as	the	distance	threshold
between	background	and	each	frame	to	detect	objects	(dist2Threshol)	and	the	disabling

of	the	shadow	detection	(detectShadows).	In	the	second	step,	using	the
createBackgroundSubtractorKNN()	function,	a	background	subtractor	is	created	and	a
smart	pointer	construct	is	used	(Ptr<>)	so	that	we	will	not	have	to	release	it.	The	third	step
is	to	read	each	frame,	if	possible.	Using	the	apply()	and	getBackgroundImage()
methods,	the	foreground	and	background	images	are	obtained.	The	fifth	step	is	to	reduce
the	foreground	noise	by	applying	a	morphological	closing	operation	(in	the	erosion
—erode()—and	dilation—dilate()—order).	Then,	contours	are	detected	on	the
foreground	image	and	then	they’re	drawn.	Finally,	the	background	and	current	frame
image	are	shown.

Image	alignment
OpenCV	now	implements	the	ECC	algorithm,	which	is	only	available	as	of	Version	3.0.
This	method	estimates	the	geometric	transformation	(warp)	between	the	input	and
template	frames	and	returns	the	warped	input	frame,	which	must	be	close	to	the	first
template.	The	estimated	transformation	is	the	one	that	maximizes	the	correlation
coefficient	between	the	template	and	the	warped	input	frame.	In	the	OpenCV	examples
([opencv_source_code]/samples/cpp/image_alignment.cpp),	a	related	program	can	be
found.

Note
The	ECC	algorithm	is	based	on	the	ECC	criterion	of	the	paper	Parametric	Image
Alignment	Using	Enhanced	Correlation	Coefficient	Maximization.	You	can	find	this	at
http://xanthippi.ceid.upatras.gr/people/evangelidis/george_files/PAMI_2008.pdf.

We	are	now	going	to	see	an	example	(findCameraMovement)	that	uses	this	ECC	technique
using	the	findTransformECC()	function:

#include	<opencv2/opencv.hpp>

using	namespace	cv;

using	namespace	std;

int	findCameraMovement()

{

				//1-Set	the	parameters	and	initializations

				bool	finish	=	false;

				Mat	frame;

				Mat	initial_frame;

				Mat	warp_matrix;

				Mat	warped_frame;

				int	warp_mode	=	MOTION_HOMOGRAPHY;

				TermCriteria	criteria(TermCriteria::COUNT	|	TermCriteria::EPS,	50,	

0.001);

				VideoCapture	capture(0);

				Rect	rec(100,50,350,350);			//Initial	rectangle

				Mat	aux_initial_frame;

				bool	follow	=	false;

				//Check	if	video	camera	is	opened

				if(!capture.isOpened())	return	1;

				//2-Initial	capture

				cout	<<	"\n	Press	'c'	key	to	continue…"	<<	endl;

				while(!follow)

				{

								if(!capture.read(initial_frame))	return	1;

								cvtColor(initial_frame	,initial_frame,	COLOR_BGR2GRAY);

								aux_initial_frame	=	initial_frame.clone();

								rectangle(aux_initial_frame,	rec,	Scalar(255,255,255),3);

								imshow("Initial	frame",	aux_initial_frame);

								if	(waitKey(1)	==	99)	follow	=	true;

http://xanthippi.ceid.upatras.gr/people/evangelidis/george_files/PAMI_2008.pdf

				}

				Mat	template_frame(rec.width,rec.height,CV_32F);

				template_frame	=	initial_frame.colRange(rec.x,	rec.x	+	

rec.width).rowRange(rec.y,	rec.y	+	rec.height);

				imshow("Template	image",	template_frame);

				while(!finish)

				{

								cout	<<	"\n	Press	a	key	to	continue…"	<<	endl;

								waitKey();

warp_matrix	=	Mat::eye(3,	3,	CV_32F);

								//3-Read	each	frame,	if	possible

								if(!capture.read(frame))	return	1;

								//Convert	to	gray	image

								cvtColor(frame	,frame,	COLOR_BGR2GRAY);

								try

								{

												//4-Use	findTransformECC	function

												findTransformECC(template_frame,	frame,	warp_matrix,	warp_mode,	

criteria);

												//5-Obtain	the	new	perspective

												warped_frame	=	Mat(template_frame.rows,	template_frame.cols,	

CV_32F);

												warpPerspective	(frame,	warped_frame,	warp_matrix,	

warped_frame.size(),	WARP_INVERSE_MAP	+	WARP_FILL_OUTLIERS);

								}

								catch(Exception	e)	{	cout	<<	"Exception:	"	<<	e.err	<<	endl;}

								imshow	("Frame",	frame);

								imshow	("Warped	frame",	warped_frame);

								//Press	Esc	to	finish

								if(waitKey(1)	==	27)	finish	=	true;

				}

				capture.release();

				return	0;

}

main()

{

				findCameraMovement();

}

Some	screen	captures	are	shown	in	the	following	screenshot.	The	left-column	frames
represent	the	initial	and	template	frames.	The	upper-right	image	is	the	current	frame	and
the	lower-right	image	is	the	warped	frame.

Output	of	the	findCameraMovement	example.

The	code	example	shows	you	four	windows:	the	initial	template,	the	initial	frame,	the
current	frame,	and	the	warped	frame.	The	first	step	is	to	set	the	initial	parameters	as
warp_mode	(MOTION_HOMOGRAPHY).	The	second	step	is	to	check	whether	the	video	camera	is
opened	and	to	obtain	a	template,	which	will	be	calculated	using	a	centered	rectangle.
When	the	C	key	is	pressed,	this	area	will	be	captured	as	the	template.	The	third	step	is	to
read	the	next	frame	and	convert	it	to	a	gray	frame.	The	findTransformECC()	function	is
applied	to	calculate	warp_matrix	with	this	matrix,	and	using	warpPerspective(),	the
camera	movement	can	be	corrected	using	warped_frame.

Summary
This	chapter	covered	an	important	subject	in	Computer	Vision.	Motion	detection	is	an
essential	task,	and	in	this	chapter,	we	have	provided	the	reader	with	the	insight	and
samples	that	are	required	for	the	most	useful	methods	available	in	OpenCV:	working	with
video	sequences	(see	the	videoCamera	example),	the	Optical	Flow	technique	(see	the
maxMovementLK	and	maxMovementFarneback	examples),	tracking	(see	the
trackingMeanShift	and	trackingCamShift	examples),	the	Motion	templates	(see	the
motionHistory	and	motionGradient	examples),	the	Background	subtraction	technique
(see	the	backgroundSubKNN	example),	and	image	alignment	(see	the	findCameraMovement
example).

What	else?
Within	the	OpenCV	libraries,	there	are	other	functions	that	deal	with	motion.	Other
Optical	Flow	technique	methods	are	implemented,	such	as	the	Horn	and	Schunk
(cvCalcOpticalFlowHS),	block	machine	(cvCalcOpticalFlowBM),	and	simple	flow
(calcOpticalFlowSF)	methods.	A	method	to	estimate	the	global	movement	is	also
available	(calcGlobalOrientation).	Finally,	there	are	other	methods	to	obtain
backgrounds	such	as	MOG	(createBackgroundSubtractorMOG),	MOG2
(createBackgroundSubtractorMOG2),	and	GMG	(createBackgroundSubtractorGMG)
methods.

Chapter	8.	Advanced	Topics
This	chapter	covers	the	less	commonly	used	topics,	such	as	machine	learning	with
multiple	classes	and	GPU-based	optimizations.	Both	the	topics	are	seeing	a	growth	in
interest	and	practical	applications,	so	they	deserve	a	complete	chapter.	We	consider	them
advanced	only	as	long	as	additional	knowledge	is	required	about	machine	learning	/
statistical	classification	and	parallelization.	We	will	start	by	explaining	some	of	the	most
well-known	classifiers	such	as	KNN,	SVM,	and	Random	Forests,	all	of	which	are
available	in	the	ml	module	and	show	how	they	work	with	different	database	formats	and
multiple	classes.	Finally,	a	set	of	classes	and	functions	to	utilize	GPU-based	computational
resources	will	be	described.

Machine	learning
Machine	learning	deals	with	techniques	that	allow	computers	to	learn	and	make	decisions
by	themselves.	A	central	concept	in	machine	learning	is	the	classifier.	A	classifier	learns
from	the	examples	in	a	dataset,	where	the	label	of	each	sample	is	known.	Usually,	we	have
two	datasets	at	hand:	training	and	test.	The	classifier	builds	a	model	using	the	training	set.
This	trained	classifier	is	expected	to	predict	the	label	of	new	unseen	samples,	so	we	finally
use	the	test	set	to	validate	it	and	assess	label	recognition	rates.

In	this	section,	we	explain	the	different	classes	and	functions	that	OpenCV	provides	for
classification,	and	simple	examples	of	their	use.	Machine	learning	classes	and	functions
for	statistical	classification,	regression,	and	clustering	of	data	are	all	included	in	the	ml
module.

The	KNN	classifier
K-nearest	neighbors	(KNN)	is	one	of	the	simplest	classifiers.	It	is	a	supervised
classification	method,	which	learns	from	available	cases	and	classifies	new	cases	by	a
minimum	distance.	K	is	the	number	of	neighbors	to	be	analyzed	in	the	decision.	The	new
data	point	to	classify	(the	query)	is	projected	to	the	same	space	as	the	learning	points,	and
its	class	is	given	by	the	most	frequent	class	among	its	KNN	from	the	training	set.

The	following	KNNClassifier	code	is	an	example	of	using	the	KNN	algorithm	to	classify
each	image	pixel	to	the	nearest	color:	black	(0,	0,	0),	white	(255,	255,	255),	blue	(255,	0,
0),	green	(0,	255,	0),	or	red	(0,	0,	255):

#include	<iostream>

#include	<opencv2/core/core.hpp>

#include	<opencv2/highgui/highgui.hpp>

#include	<opencv2/ml/ml.hpp>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[]){

//Create	Mat	for	the	training	set	and	classes

				Mat	classes(5,	1,	CV_32FC1);

				Mat	colors(5,	3,	CV_32FC1);

				//Training	set	(primary	colors)

				colors.at<float>(0,0)=0,	colors.at<float>(0,1)=0,	colors.at<float>

(0,2)=0;

				colors.at<float>(1,0)=255,	colors.at<float>(1,1)=255,	colors.at<float>

(1,2)=255;

				colors.at<float>(2,0)=255,	colors.at<float>(2,1)=0,	colors.at<float>

(2,2)=0;

				colors.at<float>(3,0)=0,	colors.at<float>(3,1)=255,	colors.at<float>

(3,2)=0;

				colors.at<float>(4,0)=0,	colors.at<float>(4,1)=0,	colors.at<float>

(4,2)=255;

				//Set	classes	to	each	training	sample

				classes.at<float>(0,0)=1;

				classes.at<float>(1,0)=2;

				classes.at<float>(2,0)=3;

				classes.at<float>(3,0)=4;

				classes.at<float>(4,0)=5;

				//KNN	classifier	(k=1)

				CvKNearest	classifier;

				classifier.train(colors,classes,Mat(),false,1,false);

				//Load	original	image

				Mat	src=imread("baboon.jpg",1);

				imshow("baboon",src);

				//Create	result	image

				Mat	dst(src.rows	,	src.cols,	CV_8UC3);

				Mat	results;

Mat	newPoint(1,3,CV_32FC1);

				//Response	for	each	pixel	and	store	the	result	in	the	result	image

				float	prediction=0;

				for(int	y	=	0;	y	<	src.rows;	++y){

						for(int	x	=	0;	x	<	src.cols;	++x){

									newPoint.at<float>(0,0)=	src.at<Vec3b>(y,	x)[0];

									newPoint.at<float>(0,1)	=	src.at<Vec3b>(y,	x)[1];

									newPoint.at<float>(0,2)	=	src.at<Vec3b>(y,	x)[2];

										prediction=classifier.find_nearest(newPoint,1,&results,	0,	0);

									dst.at<Vec3b>(y,	x)[0]=	colors.at<float>(prediction-1,0);

									dst.at<Vec3b>(y,	x)[1]=	colors.at<float>(prediction-1,1);

									dst.at<Vec3b>(y,	x)[2]=	colors.at<float>(prediction-1,2);

						}

				}

				//Show	result	image

				cv::imshow("result	KNN",dst);

				cv::waitKey(0);

				return	0;

}

Note
Remember	that	OpenCV	uses	a	BGR	color	scheme.

OpenCV	provides	the	KNN	algorithm	through	the	CvKNearest	class.	The	training
information	is	added	to	the	KNN	classifier	through	the	bool	CvKNearest::train(const
Mat&	trainData,	const	Mat&	responses,	const	Mat&	sampleIdx,	bool

isRegression,	int	maxK,	bool	updateBase)	function.	The	example	creates	a	training
set	with	five	samples,	(Mat	colors(5,	3,	CV_32FC1)),	which	represent	each	class	(color)
(Mat	classes(5,	1,	CV_32FC1));	these	are	the	first	two	input	parameters.	The
isRegression	is	parameter	is	a	Boolean	value	that	defines	whether	we	want	to	perform	a
classification	or	a	regression.	The	maxK	value	indicates	the	maximum	number	of	neighbors
that	will	be	used	in	the	test	phase.

Finally,	updateBaseparameter	allows	us	to	indicate	whether	we	want	to	train	a	new
classifier	with	the	data	or	use	it	to	update	the	previous	training	data.	Then,	the	code
sample	performs	the	test	phase	with	each	pixel	of	the	original	image	using	the	float
CvKNearest::find_nearest(const	Mat&	samples,	int	k,	Mat*	results=0,	const

float**	neighbors=0,	Mat*	neighborResponses=0,	Mat*	dist=0)	function.	The
function	tests	the	input	sample,	selecting	the	KNN,	and	finally	predicts	the	class	value	for
this	sample.

In	the	following	screenshot,	we	can	see	the	code	output	and	the	difference	between	the
original	and	the	result	images	after	this	KNN	classification:

KNN	classification	using	the	primary	colors	as	classes	(left:	the	original	image,	right:	the
result	image)

The	Random	Forest	classifier
Random	Forests	are	a	general	class	of	ensemble	building	methods	that	use	a	decision	tree
as	the	base	classifier.	The	Random	Forest	classifier	is	a	variation	of	the	Bagging	classifier
(Bootstrap	Aggregating).	The	Bagging	algorithm	is	a	method	of	classification	that
generates	weak	individual	classifiers	using	bootstrap.	Each	classifier	is	trained	on	a
random	redistribution	of	the	training	set	so	that	many	of	the	original	examples	may	be
repeated	in	each	classification.

The	principal	difference	between	Bagging	and	Random	Forest	is	that	Bagging	uses	all	the
features	in	each	tree	node	and	Random	Forest	selects	a	random	subset	of	the	features.	The
suitable	number	of	randomized	features	corresponds	to	the	square	root	of	the	total	number
of	features.	For	prediction,	a	new	sample	is	pushed	down	the	tree	and	it	is	assigned	the
class	of	the	terminal	(or	leaf)	node	in	the	tree.	This	method	is	iterated	over	all	the	trees,
and	finally,	the	average	vote	of	all	the	tree	predictions	is	considered	as	the	prediction
result.	The	following	diagram	shows	the	Random	Forest	algorithm:

The	RF	classifier

Random	Forests	are	currently	one	of	the	best	classifiers	available,	both	in	recognition
power	and	efficiency.	In	our	example	RFClassifier,	we	use	the	OpenCV	Random	Forest
classifier	and	also	the	OpenCV	CvMLData	class.	A	large	amount	of	information	is	typically
handled	in	machine	learning	problems,	and	for	this	reason,	it	is	convenient	to	use	a	.cvs
file.	The	CvMLData	class	is	used	to	load	the	training	set	information	from	such	a	file	as
follows:

//…	(omitted	for	simplicity)

int	main(int	argc,	char	*argv[]){

				CvMLData	mlData;

				mlData.read_csv("iris.csv");

				mlData.set_response_idx(4);

				//Select	75%	samples	as	training	set	and	25%	as	test	set

				CvTrainTestSplit	cvtts(0.75f,	true);

				//Split	the	iris	dataset

				mlData.set_train_test_split(&cvtts);

				//Get	training	set

				Mat	trainsindex=	mlData.get_train_sample_idx();

				cout<<"Number	of	samples	in	the	training							set:"

<<trainsindex.cols<<endl;

				//Get	test	set

				Mat	testindex=mlData.get_test_sample_idx();

				cout<<"Number	of	samples	in	the	test	set:"<<testindex.cols<<endl;

				cout<<endl;

				//Random	Forest	parameters

				CvRTParams	params	=	CvRTParams(3,	1,	0,	false,	2,	0,	false,	0,	100,	0,	

CV_TERMCRIT_ITER	|	CV_TERMCRIT_EPS);

				CvRTrees	classifierRF;

				//Taining	phase

				classifierRF.train(&mlData,params);

				std::vector<float>	train_responses,	test_responses;

				//Calculate	train	error

				cout<<"Error	on	train	samples:"<<endl;

				cout<<(float)classifierRF.calc_error(&mlData,	

CV_TRAIN_ERROR,&train_responses)<<endl;

				//Print	train	responses

				cout<<"Train	responses:"<<endl;

				for(int	i=0;i<(int)train_responses.size();i++)

								cout<<i+1<<":"<<(float)train_responses.at(i)<<"		";

				cout<<endl<<endl;

				//Calculate	test	error

				cout<<"Error	on	test	samples:"<<endl;

				cout<<(float)classifierRF.calc_error(&mlData,	

CV_TEST_ERROR,&test_responses)<<endl;

				//Print	test	responses

				cout<<"Test	responses:"<<endl;

				for(int	i=0;i<(int)test_responses.size();i++)

								cout<<i+1<<":"<<(float)test_responses.at(i)<<"		";

				cout<<endl<<endl;

				return	0;

}

Tip
The	dataset	has	been	provided	by	the	UC	Irvine	Machine	Learning	Repository,	available
at	http://archive.ics.uci.edu/ml/.	For	this	code	sample,	the	Iris	dataset	was	used.

As	we	mentioned	previously,	the	CvMLData	class	allows	you	to	load	the	dataset	from	a
.csv	file	using	the	read_csv	function	and	indicates	the	class	column	by	the
set_response_idx	function.	In	this	case,	we	use	this	dataset	to	perform	the	training	and

http://archive.ics.uci.edu/ml/

test	phases.	It	is	possible	to	split	the	dataset	into	two	disjoint	sets	for	training	and	test.	For
this,	we	use	the	CvTrainTestSplit	struct	and	the	void
CvMLData::set_train_test_split(const	CvTrainTestSplit*	spl)	function.	In	the
CvTrainTestSplit	struct,	we	indicate	the	percentage	of	samples	to	be	used	as	the	training
set	(0.75	percent	in	our	case)	and	whether	we	want	to	mix	the	indices	of	the	training	and
test	samples	from	the	dataset.	The	set_train_test_split	function	performs	the	split.
Then,	we	can	store	each	set	in	Mat	with	the	get_train_sample_idx()	and
get_test_sample_idx()functions.

The	Random	Forest	classifier	is	created	using	the	CvRTrees	class,	and	its	parameters	are
defined	by	the	CvRTParams::CvRTParams(int	max_depth,	int	min_sample_count,
float	regression_accuracy,	bool	use_surrogates,	int	max_categories,	const

float*	priors,	bool	calc_var_importance,	int	nactive_vars,	int

max_num_of_trees_in_the_forest,	float	forest_accuracy,	int	termcrit_type)

constructor.	Some	of	the	most	important	input	parameters	refer	to	the	maximum	depth	of
the	trees	(max_depth)—in	our	sample,	it	has	a	value	of	3—the	number	of	randomized
features	in	each	node	(nactive_vars),	and	the	maximum	number	of	trees	in	the	forest
(max_num_of_trees_in_the_forest).	If	we	set	the	nactive_vars	parameter	to	0,	the
number	of	randomized	features	will	be	the	square	root	of	the	total	number	of	features.

Finally,	once	the	classifier	is	trained	with	the	train	function,	we	can	obtain	the	percentage
of	misclassified	samples	using	the	float	CvRTrees::calc_error(CvMLData*	data,	int
type,	std::vector<float>*	resp=0)	method.	The	parameter	type	allows	you	to	select
the	source	of	the	error:	CV_TRAIN_ERROR	(an	error	in	the	training	samples)	or
CV_TEST_ERROR	(an	error	in	the	test	samples).

The	following	screenshot	shows	the	training	and	test	errors	and	the	classifier	responses	in
both	the	sets:

The	RF	classifier	sample	results

SVM	for	classification
The	Support	Vector	Machine	(SVM)	classifier	finds	a	discriminant	function	by
maximizing	the	geometrical	margin	between	the	classes.	Thus,	the	space	is	mapped	in
such	a	way	that	the	classes	are	as	widely	separated	as	possible.	SVM	minimizes	both	the
training	error	and	the	geometrical	margin.	Nowadays,	this	classifier	is	one	of	the	best
classifiers	available	and	has	been	applied	to	many	real-world	problems.	The	following
SVMClassifier	sample	code	performs	a	classification	using	the	SVM	classifier	and	a
dataset	of	66	image	objects.	The	dataset	is	divided	into	four	classes:	a	training	shoe	(class
1),	a	cuddly	toy	(class	2),	a	plastic	cup	(class	3),	and	a	bow	(class	4).	The	following
screenshot	shows	the	examples	of	the	four	classes.	A	total	of	56	images	and	10	images
were	used	for	the	training	and	the	test	sets,	respectively.	Images	in	the	training	set	take	the
following	name	structure:	[1-14].png	corresponds	to	class	1,	[15-28].png	to	class	2,
[29-42].png	to	class	3,	and	[43-56].png	to	class	4.	On	the	other	hand,	images	in	the	test
set	are	characterized	by	the	word	unknown	followed	by	a	number,	for	example,
unknown1.png.

Tip
The	images	of	the	four	classes	have	been	extracted	from	the	Amsterdam	Library	of
Object	Images	(ALOI)	available	at	http://aloi.science.uva.nl/.

Classes	selected	for	the	SVM	classification	example

The	SVMClassifier	sample	code	is	as	follows:

//…	(omitted	for	simplicity)

#include	<opencv2/features2d/features2d.hpp>

#include	<opencv2/nonfree/features2d.hpp>

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char	*argv[]){

http://aloi.science.uva.nl/

				Mat	groups;

				Mat	samples;

				vector<KeyPoint>	keypoints1;

				//ORB	feature	detector	with	15	interest	points

				OrbFeatureDetector	detector(15,	1.2f,	2,	31,0,	2,	ORB::HARRIS_SCORE,	

31);

				Mat	descriptors,	descriptors2;

				//SURF	feature	descriptor

				SurfDescriptorExtractor	extractor;

				//Training	samples

				for(int	i=1;	i<=56;	i++){

								stringstream	nn;

								nn	<<i<<".png";

								//Read	the	image	to	be	trained

								Mat	img=imread(nn.str());

								cvtColor(img,	img,	COLOR_BGR2GRAY);

								//Detect	interest	points

								detector.detect(img,	keypoints1);

								//Compute	SURF	descriptors

								extractor.compute(img,	keypoints1,	descriptors);

								//Organize	and	save	information	in	one	row

								samples.push_back(descriptors.reshape(1,1));

								keypoints1.clear();

				}

				//Set	the	labels	of	each	sample

				for(int	j=1;	j<=56;	j++){

								if(j<=14)		groups.push_back(1);

								else	if(j>14	&&	j<=28)		groups.push_back(2);

													else	if(j>28	&&	j<=42)		groups.push_back(3);

																		else	groups.push_back(4);

				}

				//Indicate	SVM	parameters

				CvSVMParams	params=CvSVMParams(CvSVM::C_SVC,	CvSVM::LINEAR,	0,	1,	0,	1,	

0,	0,	0,	cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,	100,	

FLT_EPSILON));

				//Create	SVM	classifier

				CvSVM	classifierSVM;

				//Train	classifier

				classifierSVM.train(samples,	groups,	Mat(),	Mat(),	params);

				//Test	samples

				for(int	i=1;	i<=10;	i++){

								stringstream	nn;

								nn	<<"unknown"<<i<<".png";

								//Read	the	image	to	be	tested

								Mat	unknown=imread(nn.str());

								cvtColor(unknown,	unknown,	COLOR_BGR2GRAY);

								//Detect	interest	points

								detector.detect(unknown,	keypoints1);

								//Compute	descriptors

								extractor.compute(unknown,	keypoints1,	descriptors2);

								//Test	sample

								float	result=classifierSVM.predict(descriptors2.reshape(1,1));

								//Print	result

								cout<<nn.str()<<":	class	"<<result<<endl;

				}

				return	0;

}

The	explanation	of	the	code	is	given	as	follows.	In	this	example,	images	are	represented
by	their	descriptors	(see	Chapter	5,	Focusing	on	the	Interesting	2D	Features).	For	each
image	in	the	training	set,	its	interest	points	are	detected	using	an	Oriented	FAST	and
Rotated	BRIEF	(ORB)	detector	(OrbFeatureDetector)	and	its	descriptors	are	computed
using	the	Speeded	Up	Robust	Features	(SURF)	descriptor	(SurfDescriptorExtractor).

An	SVM	classifier	is	created	using	the	CvSVM	class	and	its	parameters	are	set	using	the
CvSVMParams::CvSVMParams(int	svm_type,	int	kernel_type,	double	degree,

double	gamma,	double	coef0,	double	Cvalue,	double	nu,	double	p,	CvMat*

class_weights,	CvTermCriteria	term_crit)	constructor.	The	interesting	parameters	in
this	constructor	are	the	type	of	SVM	(svm_type)	and	the	type	of	kernel	(kernel_type).
The	first	specified	parameter	takes,	in	our	case,	the	CvSVM::C_SVC	value	because	an	n-
classification	(n	 	2)	with	an	imperfect	separation	of	the	classes	is	needed.	It	also	uses	a
C	penalty	value	for	atypical	values.	C	acts,	therefore,	as	a	regularizer.	The	kernel_type
parameter	indicates	the	type	of	SVM	kernel.	The	kernel	represents	the	basis	function
required	to	separate	the	cases.	For	the	SVM	classifier,	OpenCV	includes	the	following
kernels:

CvSVM::LINEAR:	The	linear	kernel
CvSVM::POLY:	The	polynomial	kernel
CvSVM::RBF:	The	radial	basis	function
CvSVM::SIGMOID:	The	sigmoid	kernel

Then,	the	classifier	builds	an	optimal	linear	discriminating	function	using	the	training	set
(with	the	train	function).	Now,	it	is	prepared	to	classify	new	unlabeled	samples.	The	test
set	is	used	for	this	purpose.	Note	that	we	also	have	to	calculate	the	ORB	detector	and	the
SURF	descriptors	for	each	image	in	the	test	set.	The	result	is	as	shown	in	the	following
screenshot,	where	all	the	classes	have	been	classified	correctly:

The	classification	result	using	SVM

What	about	GPUs?
CPUs	seem	to	have	reached	their	speed	and	thermal	power	limits.	It	has	become	complex
and	expensive	to	build	a	computer	with	several	processors.	Here	is	where	GPUs	come	into
play.	General-Purpose	Computing	on	Graphics	Processing	Units	(GPGPU)	is	a	new
programming	paradigm	that	uses	the	GPU	to	perform	computations	and	enables	the	faster
execution	of	programs	and	a	reduction	of	power	consumption.	They	include	hundreds	of
general-purpose	computing	processors	that	can	do	much	more	than	render	graphics,
especially	if	they	are	used	in	tasks	that	can	be	parallelized,	which	is	the	case	with
computer	vision	algorithms.

OpenCV	includes	support	for	the	OpenCL	and	CUDA	architectures,	with	the	latter	having
more	implemented	algorithms	and	a	better	optimization.	This	is	the	reason	why	we	are
introducing	the	CUDA	GPU	module	in	this	chapter.

Setting	up	OpenCV	with	CUDA
The	installation	guide	presented	in	Chapter	1,	Getting	Started,	needs	a	few	additional	steps
in	order	to	include	the	GPU	module.	We	assume	that	the	computer	in	which	OpenCV	is
going	to	be	installed	already	has	the	software	detailed	in	that	guide.

There	are	new	requirements	to	be	satisfied	in	order	to	compile	OpenCV	with	CUDA	on
Windows:

CUDA-capable	GPU:	This	is	the	main	requirement.	Note	that	CUDA	is	developed
by	NVIDIA	and,	consequently,	it	is	only	compatible	with	NVIDIA	graphic	cards.
Besides,	the	model	of	the	card	has	to	be	listed	at	http://developer.nvidia.com/cuda-
gpus.	The	so-called	Compute	Capability	(CC)	can	also	be	checked	on	this	website
as	it	will	be	needed	later.
Microsoft	Visual	Studio:	CUDA	is	compatible	only	with	this	Microsoft	compiler.	It
is	possible	to	install	the	Visual	Studio	Express	edition,	which	is	free.	Note	that	Visual
Studio	2013	is	still	not	compatible	with	CUDA	at	the	time	of	writing,	so	we	are	using
Visual	Studio	2012	in	this	book.
NVIDIA	CUDA	Toolkit:	This	includes	a	compiler	for	GPUs,	libraries,	tools,	and
documentation.	This	toolkit	is	available	at	https://developer.nvidia.com/cuda-
downloads.
Qt	library	for	Visual	C++	compiler:	In	Chapter	1,	Getting	Started,	the	MinGW
binaries	of	the	Qt	library	were	installed,	but	they	are	not	compatible	with	the	Visual
C++	compiler.	A	compatible	version	can	be	downloaded	using	the	package	manager
by	means	of	the	MaintenanceTool	application	located	in	C:\Qt.	A	good	choice	is	the
msvc2012	32-bit	component,	as	can	be	seen	in	the	following	screenshot.	It	is	also
necessary	to	update	the	Path	environment	with	the	new	location	(for	example,	in	our
local	system,	it	is	C:\Qt\5.2.1\msvc2012\bin).	The	Qt	library	is	included	in	the
compilation	to	take	advantage	of	its	user	interface	features.

Downloading	a	new	version	of	the	Qt	libraries

http://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads

Configuring	the	OpenCV	build
The	build	configuration	with	CMake	differs	in	some	points	from	the	typical	one	explained
in	the	first	chapter.	These	differences	are	explained	as	follows:

When	you	select	the	generator	for	the	project,	you	have	to	choose	the	Visual	Studio
compiler	version	that	corresponds	to	the	installed	environment	in	the	machine.	In	our
case,	Visual	Studio	11	is	the	correct	compiler,	as	it	corresponds	to	the	version	of	the
compiler	included	in	Visual	Studio	2012.	The	following	screenshot	shows	this
selection.
In	the	selection	of	build	options,	we	have	to	focus	on	the	CUDA-related	ones.	If	the
installation	of	the	CUDA	toolkit	was	correct,	CMake	should	automatically	detect	its
location	and	activate	the	WITH_CUDA	option.	In	addition,	the	installation	path	of	the
toolkit	is	shown	through	CUDA_TOOLKIT_ROOT_DIR.	Another	interesting	option	is
CUDA_ARCH_BIN	because	the	compilation	time	can	be	significantly	reduced	if	we	just
select	the	corresponding	version	of	our	GPU;	otherwise,	it	will	compile	the	code	for
all	the	architectures.	As	mentioned	previously,	the	version	can	be	checked	at
http://developer.nvidia.com/cuda-gpus.	The	following	screenshot	shows	the	options
set	in	our	build	configuration:

The	CMake	build	configuration

http://developer.nvidia.com/cuda-gpus

Building	and	installing	the	library
CMake	generates	several	Visual	Studio	projects	in	the	target	directory,	ALL_BUILD	being
the	essential	one.	Once	it	is	opened	in	Visual	Studio,	we	can	choose	the	build
configuration	(Debug	or	Release)	as	well	as	the	architecture	(Win32	or	Win64).	The
compilation	starts	by	pressing	F7	or	by	clicking	on	Build	Solution.	After	the	compilation
has	finished,	it	is	recommended	that	you	open	and	build	the	INSTALL	project	as	it
generates	an	install	directory	with	all	the	necessary	files.

Finally,	the	Path	system	needs	to	be	updated	with	the	location	of	the	newly	generated
binaries.	It	is	important	to	remove	the	previous	location	from	the	Path	variable	and	have
only	one	version	of	the	binaries	in	it.

Note
Qt	Creator	should	now	find	two	compilers	and	two	Qt	versions:	one	for	Visual	C++	and
one	for	MingGW.	We	have	to	choose	the	correct	kit	depending	on	the	developed
application	when	creating	a	new	project.	It	is	also	possible	to	change	the	configuration	of
an	existing	project	as	kits	are	manageable.

A	quick	recipe	for	setting	up	OpenCV	with	CUDA
The	installation	process	can	be	summarized	in	the	following	steps:

1.	 Install	Microsoft	Visual	Studio	Express	2012.
2.	 Download	and	install	the	NVIDIA	CUDA	Toolkit	(available	at

https://developer.nvidia.com/cuda-downloads).
3.	 Add	the	binaries	for	the	Visual	C++	compiler	to	the	Qt	installation	and	update	the

Path	system	with	the	new	location	(for	example,	C:\Qt\5.2.1\msvc2012\bin).
4.	 Configure	the	OpenCV	build	with	CMake.	Set	the	WITH_CUDA,	CUDA_ARCH_BIN,

WITH_QT,	and	BUILD_EXAMPLES	options.
5.	 Open	the	ALL_BUILD	Visual	Studio	project	and	build	it.	Do	the	same	operation	with

the	INSTALL	project.
6.	 Modify	the	Path	environment	variable	to	update	the	OpenCV	bin	directory	(for

example,	C:\opencv-buildCudaQt\install\x86\vc11\bin).

https://developer.nvidia.com/cuda-downloads

Our	first	GPU-based	program
In	this	section,	we	show	two	versions	of	the	same	program:	one	version	uses	the	CPU	to
perform	computations,	and	the	other	version	uses	the	GPU.	These	two	examples	are	called
edgesCPU	and	edgesGPU,	respectively,	and	allow	us	to	point	out	the	differences	when	using
the	GPU	module	in	OpenCV.

The	edgesCPU	example	is	presented	in	the	first	place:

#include	<iostream>

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/imgproc/imgproc.hpp"	

using	namespace	cv;

int	main(int	argc,	char**	argv){

if	(argc	<	2){

								std::cout	<<	"Usage:	./edgesGPU	<image>"	<<	std::endl;

								return	-1;

				}

				Mat	orig	=	imread(argv[1]);

				Mat	gray,	dst;

				bilateralFilter(orig,dst,-1,50,7);

				cvtColor(dst,gray,COLOR_BGR2GRAY);

				Canny(gray,gray,7,20);

				imshow("Canny	Filter",	gray);

				waitKey(0);

				return	0;

}

Now	the	edgesGPU	example	is	shown	as	follows:

#include	<iostream>

#include	<opencv2/core/core.hpp>

#include	<opencv2/highgui/highgui.hpp>

#include	<opencv2/gpu/gpu.hpp>

using	namespace	cv;

int	main(int	argc,	char**	argv){

		if	(argc	<	2){

								std::cout	<<	"Usage:	./edgesGPU	<image>"	<<	std::endl;

								return	-1;

				}

				Mat	orig	=	imread(argv[1]);

				gpu::GpuMat	g_orig,	g_gray,	g_dst;

				//Transfer	the	image	data	to	the	GPU

				g_orig.upload(orig);

				gpu::bilateralFilter(g_orig,g_dst,-1,50,7);

				gpu::cvtColor(g_dst,g_gray,COLOR_BGR2GRAY);

				gpu::Canny(g_gray,g_gray,7,20);

				Mat	dst;

				//Copy	the	image	back	to	the	CPU	memory

				g_gray.download(dst);

				imshow("Canny	Filter",	dst);

				waitKey(0);

				return	0;

}

The	explanation	of	the	code	is	given	as	follows.	There	are	several	differences	in	the
previous	examples,	although	they	ultimately	obtain	the	same	result,	as	shown	in	the
following	screenshot.	A	new	header	file	is	added	as	the	new	data	type	and	different
implementations	of	the	algorithms	are	used.	#include	<opencv2/gpu/gpu.hpp>	contains
the	GpuMat	data	type,	which	is	the	basic	container	that	stores	images	in	the	GPU	memory.
It	also	includes	the	specific	GPU	versions	of	the	filter	algorithms	used	in	the	second
example.

An	important	consideration	is	that	we	need	to	transfer	the	images	between	the	CPU	and
the	GPU.	This	is	achieved	with	the	g_orig.upload(orig)	and	g_gray.download(dst)
methods.	Once	the	image	is	uploaded	to	the	GPU,	we	can	apply	different	operations	to	it
that	are	executed	on	the	GPU.	In	order	to	distinguish	the	version	of	the	algorithm	that
needs	to	run,	the	gpu	namespace	is	used	as	in	gpu::bilateralFilter,	gpu::cvtColor,
and	gpu::Canny.	After	the	filters	have	been	applied,	the	image	is	copied	to	the	CPU
memory	again	and	displayed.

Regarding	performance,	the	CPU	version	runs	in	297	milliseconds,	whereas	the	GPU
version	runs	in	just	18	milliseconds.	In	other	words,	the	GPU	version	runs	16.5x	faster.

The	output	of	the	edgesCPU	and	edgesGPU	examples

Going	real	time
One	of	the	main	advantages	of	using	the	GPU	to	perform	computations	in	images	is	that
they	are	much	faster.	This	increase	in	speed	allows	you	to	run	heavy	computational
algorithms	in	real-time	applications,	such	as	stereo	vision,	pedestrian	detection,	or	dense
optical	flow.	In	the	next	matchTemplateGPU	example,	we	show	an	application	that	matches
a	template	in	a	video	sequence:

#include	<iostream>

#include	"opencv2/core/core.hpp"

#include	"opencv2/highgui/highgui.hpp"

#include	"opencv2/features2d/features2d.hpp"

#include	"opencv2/gpu/gpu.hpp"

#include	"opencv2/nonfree/gpu.hpp"

using	namespace	std;

using	namespace	cv;

int	main(int	argc,	char**	argv)

{

				Mat	img_template_cpu	=	imread(argv[1],IMREAD_GRAYSCALE);

				gpu::GpuMat	img_template;

				img_template.upload(img_template_cpu);

				//Detect	keypoints	and	compute	descriptors	of	the	template

				gpu::SURF_GPU	surf;

				gpu::GpuMat	keypoints_template,	descriptors_template;

				surf(img_template,gpu::GpuMat(),keypoints_template,							

descriptors_template);

				//Matcher	variables

				gpu::BFMatcher_GPU	matcher(NORM_L2);			

				//VideoCapture	from	the	webcam

				gpu::GpuMat	img_frame;

				gpu::GpuMat	img_frame_gray;

				Mat	img_frame_aux;

				VideoCapture	cap;

				cap.open(0);

				if	(!cap.isOpened()){

								cerr	<<	"cannot	open	camera"	<<	endl;

								return	-1;

				}

				int	nFrames	=	0;

				uint64	totalTime	=	0;

				//main	loop

				for(;;){

								int64	start	=	getTickCount();

								cap	>>	img_frame_aux;

								if	(img_frame_aux.empty())

												break;

								img_frame.upload(img_frame_aux);

								cvtColor(img_frame,img_frame_gray,	CV_BGR2GRAY);

								//Step	1:	Detect	keypoints	and	compute	descriptors

								gpu::GpuMat	keypoints_frame,	descriptors_frame;

								surf(img_frame_gray,gpu::GpuMat(),keypoints_frame,	

descriptors_frame);

								//Step	2:	Match	descriptors

								vector<vector<DMatch>>matches;								

matcher.knnMatch(descriptors_template,descriptors_frame,matches,2);

								//Step	3:	Filter	results

								vector<DMatch>	good_matches;

								float	ratioT	=	0.7;

								for(int	i	=	0;	i	<	(int)	matches.size();	i++)

								{

												if((matches[i][0].distance	<	ratioT*(matches[i][1].distance))	

&&	((int)	matches[i].size()<=2	&&	(int)	matches[i].size()>0))

												{

																good_matches.push_back(matches[i][0]);

												}

								}

								//	Step	4:	Download	results

								vector<KeyPoint>	keypoints1,	keypoints2;

								vector<float>	descriptors1,	descriptors2;

								surf.downloadKeypoints(keypoints_template,	keypoints1);

								surf.downloadKeypoints(keypoints_frame,	keypoints2);

								surf.downloadDescriptors(descriptors_template,	descriptors1);

								surf.downloadDescriptors(descriptors_frame,	descriptors2);

								//Draw	the	results

								Mat	img_result_matches;

								drawMatches(img_template_cpu,	keypoints1,	img_frame_aux,	

keypoints2,	good_matches,	img_result_matches);

								imshow("Matching	a	template",	img_result_matches);

								int64	time_elapsed	=	getTickCount()	-	start;

								double	fps	=	getTickFrequency()	/	time_elapsed;

								totalTime	+=	time_elapsed;

								nFrames++;

								cout	<<	"FPS	:	"	<<	fps	<<endl;

								int	key	=	waitKey(30);

								if	(key	==	27)

												break;;

				}

				double	meanFps	=	getTickFrequency()	/	(totalTime	/	nFrames);

				cout	<<	"Mean	FPS:	"	<<	meanFps	<<	endl;

				return	0;

}

The	explanation	of	the	code	is	given	as	follows.	As	detailed	in	Chapter	5,	Focusing	on	the
Interesting	2D	Features,	features	can	be	used	to	find	the	correspondence	between	two
images.	The	template	image,	which	is	searched	afterwards	within	every	frame,	is
processed	in	the	first	place	using	the	GPU	version	of	SURF	(gpu::SURF_GPU	surf;)	to

detect	interest	points	and	extract	descriptors.	This	is	accomplished	by	running
surf(img_template,gpu::GpuMat(),keypoints_template,	descriptors_template);.
The	same	process	is	performed	for	every	frame	taken	from	the	video	sequence.	In	order	to
match	the	descriptors	of	both	images,	a	GPU	version	of	the	BruteForce	matcher	is	also
created	with	gpu::BFMatcher_GPU	matcher(NORM_L2);.	An	extra	step	is	needed	due	to
the	fact	that	interest	points	and	descriptors	are	stored	in	the	GPU	memory,	and	they	need
to	be	downloaded	before	we	can	show	them.	That’s	why
surf.downloadKeypoints(keypoints,	keypoints);	and
surf.downloadDescriptors(descriptors,	descriptors);	are	executed.	The	following
screenshot	shows	the	example	running:

Template	matching	using	a	webcam

Performance
The	principal	motivation	for	choosing	GPU	programming	is	performance.	Therefore,	this
example	includes	time	measurements	to	compare	the	speedups	obtained	with	respect	to
the	CPU	version.	Specifically,	time	is	saved	at	the	beginning	of	the	main	loop	of	the
program	by	means	of	the	getTickCount()	method.	At	the	end	of	this	loop,	the	same
method	is	used	as	well	as	getTickFrequency,	which	helps	to	calculate	the	FPS	of	the
current	frame.	The	time	elapsed	in	each	frame	is	accumulated,	and	at	the	end	of	the
program,	the	mean	is	computed.	The	previous	example	has	an	average	latency	of	15	FPS,
whereas	the	same	example	using	CPU	data	types	and	algorithms	achieves	a	mere	0.5	FPS.
Both	examples	have	been	tested	on	the	same	hardware:	a	PC	equipped	with	an	i5-4570
processor	and	an	NVIDIA	GeForce	GTX	750	graphics	card.	Obviously,	a	speed	increment
of	30x	is	significant,	especially	when	we	just	need	to	change	a	few	lines	of	code.

Summary
In	this	chapter,	we	have	covered	two	advanced	modules	of	OpenCV:	machine	learning	and
GPU.	Machine	learning	has	the	capability	to	learn	computers	to	make	decisions.	For	this,
a	classifier	is	trained	and	validated.	This	chapter	provides	three	classification	samples:
KNN	classifier,	Random	Forest	using	a	.cvs	database,	and	SVM	using	an	image	database.
The	chapter	also	addresses	the	use	of	OpenCV	with	CUDA.	GPUs	have	a	growing	role	in
intensive	tasks	because	they	can	offload	the	CPU	and	run	parallel	tasks	such	as	those
encountered	in	computer	vision	algorithms.	Several	GPU	examples	have	been	provided:
GPU	module	installation,	a	basic	first	GPU	program,	and	real-time	template	matching.

What	else?
The	GPU	module	now	covers	most	of	the	functionalities	of	OpenCV;	so,	it	is
recommended	that	you	explore	the	library	and	check	which	algorithms	are	available.	In
addition,	the	performance_gpu	program	can	be	found	at
[opencv_build]/install/x86/vc11/samples/gpu],	which	shows	the	speedups	of	many
OpenCV	algorithms	when	using	the	GPU	version.

Index
A

Additive	Operator	Splitting	(AOS)	schemes
about	/	The	KAZE	and	AKAZE	detectors

addWeighted	function
about	/	Arithmetic	transform

AKAZE	descriptors
matching	/	Matching	the	AKAZE	descriptors

AKAZE	detector
about	/	The	KAZE	and	AKAZE	detectors

ALOI
URL	/	SVM	for	classification

anisotropic	filter	/	Filtering	with	the	retina	model
API,	OpenCV

about	/	API	concepts	and	basic	datatypes
arithmetic	transform

about	/	Arithmetic	transform

B
background	subtraction

about	/	Motion	history
overview	/	The	Background	subtraction	technique

Bagging	classifier	/	The	Random	Forest	classifier
basic	datatypes,	OpenCV

about	/	API	concepts	and	basic	datatypes
unsigned	char	/	API	concepts	and	basic	datatypes
signed	char	/	API	concepts	and	basic	datatypes
unsigned	short	/	API	concepts	and	basic	datatypes
signed	short	/	API	concepts	and	basic	datatypes
int	/	API	concepts	and	basic	datatypes
float	/	API	concepts	and	basic	datatypes
double	/	API	concepts	and	basic	datatypes

Binary	Robust	Independent	Elementary	Features	(BRIEF)
about	/	The	ORB	detector

bool	imwrite()	function	/	The	qmake	project	file
bool	VideoCapture$$read(Mat&	image)	method	/	Reading	and	playing	a	video	file
brightness

about	/	Brightness	and	contrast	modeling
BrightnessContrast	example

about	/	Brightness	and	contrast	modeling

C
calcMotionGradient()	function	/	The	Motion	gradient
calcOpticalFlowFarneback()function	/	The	Gunnar-Farneback	optical	flow
calcOpticalFlowPyrLK()	function	/	The	Lucas-Kanade	optical	flow
callback	function	/	Using	OpenCV’s	highgui	module
camera

live	video	input,	processing	from	/	Live	input	from	a	camera
CamShift	tracker

about	/	The	CamShift	tracker
references	/	The	CamShift	tracker

Canny	method
about	/	Contours	and	connected	components
URL	/	Contours	and	connected	components

CascadeClassifier	class	/	Object	detection	using	cascades
cascade	detectors

about	/	Cascades	are	beautiful
cascades

used,	for	detecting	objects	/	Object	detection	using	cascades
training	/	Training	your	own	cascade

classifier
about	/	Machine	learning

Cmake
URL	/	Compiled	versus	precompiled	library
OpenCV,	configuring	with	/	Configuring	OpenCV	with	CMake
URL,	for	downloading	/	Quick	recipe	for	setting	up	OpenCV

CMake
about	/	Building	and	installing	the	library

color	mapping
about	/	Histogram	matching	and	LUT

color	transfer
about	/	Histogram	matching	and	LUT

COLOR_BGR2GRAY	parameter	/	Reading	video	sequences
color_channels	example

about	/	Conversion	from	RGB	to	other	color	spaces
common	operations,	image	processing

about	/	Pixel-level	access	and	common	operations
reference	link	/	Pixel-level	access	and	common	operations

compiled	library,	OpenCV
versus,	precompiled	library	/	Compiled	versus	precompiled	library

configuration,	OpenCV	build	/	Configuring	the	OpenCV	build
const	int*	channels	parameter

about	/	Image	histogram
contours

overview	/	Contours	and	connected	components
contrast

about	/	Brightness	and	contrast	modeling
core	module	/	API	concepts	and	basic	datatypes
createBackgroundSubtractorKNN	method	/	The	Background	subtraction	technique
createTrackbar	function

about	/	The	properties	dialog
CUDA

OpenCV,	setting	up	with	/	Setting	up	OpenCV	with	CUDA
cumulative	distribution	function	(cdf)

about	/	Histogram	matching	and	LUT
cv$$	specifier	/	API	concepts	and	basic	datatypes
cv**Ptr<>	type	/	Contours	and	connected	components
cv	namespace	/	API	concepts	and	basic	datatypes
cvtColor	method	/	Reading	video	sequences
CV_WND_PROP_ASPECTRATIO	property	/	Windows	properties
CV_WND_PROP_AUTOSIZE	property	/	Windows	properties
CV_WND_PROP_FULLSCREEN	property	/	Windows	properties

D
2D	features

interest	points	/	Interest	points
feature	detectors	/	Feature	detectors
Feature	descriptor	extractors	/	Feature	descriptor	extractors
descriptor	matchers	/	Descriptor	matchers

DescriptorMatcher
about	/	Descriptor	matchers

detection	algorithms
about	/	Object	detection

determinant	of	the	Hessian	(DoH)	/	Feature	detectors
difference	of	Gaussians	(DoG)	/	Feature	detectors
Discrete	AdaBoost	(Adaptive	Boosting)

about	/	Cascades	are	beautiful
double	threshold()	function	/	Thresholding
double	VideoCapture$$get(int	propId)	method	/	Reading	and	playing	a	video	file
drawing

about	/	Text	and	drawing

E
ECC	algorithm

about	/	Image	alignment

F
FAST	detector

about	/	The	FAST	detector
implementing	/	The	FAST	detector

FASTDetector	code	example
about	/	The	FAST	detector

feature	descriptor	extractors
about	/	Feature	descriptor	extractors

feature	detectors
about	/	Feature	detectors
FAST	/	Feature	detectors
STAR	/	Feature	detectors
SIFT	/	Feature	detectors
SURF	/	Feature	detectors
ORB	/	Feature	detectors
BRISK	/	Feature	detectors
MSER	/	Feature	detectors
GFTT	/	Feature	detectors
HARRIS	/	Feature	detectors
Dense	/	Feature	detectors
SimpleBlob	/	Feature	detectors
FAST	detector	/	The	FAST	detector
SURF	detector	/	The	SURF	detector
ORB	detector	/	The	ORB	detector
AKAZE	detector	/	The	KAZE	and	AKAZE	detectors
KAZE	detector	/	The	KAZE	and	AKAZE	detectors

features2d	module	/	API	concepts	and	basic	datatypes
Features	from	Accelerated	Segment	Test	(FAST)	algorithm

about	/	The	FAST	detector
ffmpeg.org	website	/	Reading	video	sequences
filtering

retina	model	used	/	Filtering	with	the	retina	model
fingerprint	recognition

about	/	Object	detection
flags,	flood	fill	operation

FLOODFILL_FIXED_RANGE	/	Flood	fill
FLOODFILL_MASK_ONLY	/	Flood	fill

flipImage	sample	project
requisites	/	Our	first	program	–	reading	and	writing	images	and	videos
creating	/	Our	first	program	–	reading	and	writing	images	and	videos
qmake	project	file	/	The	qmake	project	file

flood	fill	operation
overview	/	Flood	fill

frames	per	second	(FPS)	/	Reading	and	playing	a	video	file

G
Gentle	AdaBoost

about	/	Cascades	are	beautiful
geometrical	transform

about	/	Geometrical	transforms
getPerspectiveTransform	function	/	Geometrical	transforms
goodFeaturesToTrack()	function	/	The	Lucas-Kanade	optical	flow
GPGPU

about	/	What	about	GPUs?
GPU

advantages	/	Going	real	time
implementing	/	Going	real	time

GPU-based	program
about	/	Our	first	GPU-based	program

gpu	module	/	API	concepts	and	basic	datatypes
GPU	programming

performance	/	Performance
GPUs

about	/	What	about	GPUs?
GrabCut

overview	/	GrabCut
grabCut()	function	/	GrabCut
Gunnar-Farneback	optical	flow

about	/	The	Gunnar-Farneback	optical	flow

H
HARRIS	corner	detector

about	/	The	ORB	detector
highgui	module	/	API	concepts	and	basic	datatypes

using	/	Using	OpenCV’s	highgui	module
histMatching	example

about	/	Histogram	matching	and	LUT
histogram	equalization

performing	/	Histogram	equalization
histogram	matching

about	/	Histogram	matching	and	LUT
histogram	matching	algorithm

about	/	Histogram	matching	and	LUT
Histograms	of	Oriented	Gradients	(HOG)	/	Cascades	are	beautiful
Hough	transform

about	/	Contours	and	connected	components
human	retina	model

properties	/	Filtering	with	the	retina	model

I
image	alignment

about	/	Motion	history,	Image	alignment
image	histogram

about	/	Image	histogram
image	processing

pixel-level	access	/	Pixel-level	access	and	common	operations
common	operations	/	Pixel-level	access	and	common	operations
histogram	equalization	/	Histogram	equalization
brightness	/	Brightness	and	contrast	modeling
contrast	modeling	/	Brightness	and	contrast	modeling
histogram	matching	/	Histogram	matching	and	LUT
color	spaces,	converting	/	Conversion	from	RGB	to	other	color	spaces
retina	model,	filtering	with	/	Filtering	with	the	retina	model
arithmetic	transform	/	Arithmetic	and	geometrical	transforms
geometrical	transform	/	Arithmetic	and	geometrical	transforms,	Geometrical
transforms

ImgHisto	example
about	/	Image	histogram

imgproc	module	/	API	concepts	and	basic	datatypes
InputArray	mask	parameter

about	/	Image	histogram
inRange()	function	/	Thresholding
installation,	OpenCV	/	Building	and	installing	the	library,	A	quick	recipe	for	setting
up	OpenCV	with	CUDA
installation,	OpenCV	library	/	Building	and	installing	the	library
intcreateTrackbar()	function	/	Using	OpenCV’s	highgui	module
int	dims	parameter

about	/	Image	histogram
interest	points

about	/	Interest	points
INTER_CUBIC	method	/	Geometrical	transforms
INTER_LINEAR	method	/	Geometrical	transforms
INTER_NEAREST	method	/	Geometrical	transforms
int	waitKey(int	delay=0)	function	/	The	qmake	project	file
isotropic	filters	/	Filtering	with	the	retina	model

K
KAZE	detector

about	/	The	KAZE	and	AKAZE	detectors
keypoint	detection	/	Feature	detectors
KNN	classifier

overview	/	The	KNN	classifier

L
Latent	SVM

about	/	Latent	SVM
advantages	/	Latent	SVM
example	/	Latent	SVM

LinearBlend	example
about	/	Arithmetic	transform

line	feed	effect
about	/	The	properties	dialog

lineSegmentDetector	example	/	Contours	and	connected	components
live	video	input

processing,	from	camera	/	Live	input	from	a	camera
Local	Binary	Patterns	(LBP)	/	Cascades	are	beautiful
local	features

about	/	Interest	points
LogitBoost

about	/	Cascades	are	beautiful
look-up	tables	(LUT)

about	/	Histogram	matching	and	LUT
example	/	Histogram	matching	and	LUT

LSD	detector
about	/	Contours	and	connected	components

Lucas-Kanade	optical	flow
about	/	The	Lucas-Kanade	optical	flow

M
machine	learning

about	/	Machine	learning
magnocellular	(magno)	/	Filtering	with	the	retina	model
Mat$$Mat(const	Mat&	m,	const	Rect&	roi)	constructor	/	Selecting	regions
Mat	class	/	API	concepts	and	basic	datatypes
Mat	imread(const	string&	filename,	int	flags=1)	function	/	The	qmake	project	file
maxMovementLK()	function	/	The	Lucas-Kanade	optical	flow
Mean-Shift	tracker	/	The	Mean-Shift	tracker
methods,	background	subtraction

MOG	(Mixture-of-Gaussian)	/	The	Background	subtraction	technique
MOG2	/	The	Background	subtraction	technique
GMG	(Geometric	MultiGrip)	/	The	Background	subtraction	technique
KNN	(K-Nearest	Neighbors)	/	The	Background	subtraction	technique

ml	module	/	API	concepts	and	basic	datatypes
modules,	OpenCV

core	/	API	concepts	and	basic	datatypes
highgui	/	API	concepts	and	basic	datatypes
imgproc	/	API	concepts	and	basic	datatypes
features2d	/	API	concepts	and	basic	datatypes
objdetect	/	API	concepts	and	basic	datatypes
video	/	API	concepts	and	basic	datatypes
gpu	/	API	concepts	and	basic	datatypes
ml	/	API	concepts	and	basic	datatypes

motion
about	/	Motion	history

Motion	gradient
about	/	The	Motion	gradient

Motion	history	template
about	/	Motion	history,	The	Motion	history	template

Motion	templates
about	/	Motion	history,	The	Motion	templates
Motion	history	template	/	The	Motion	history	template
Motion	gradient	/	The	Motion	gradient

mouse	callback	function
EVENT_LBUTTONDOWN	event	/	Selecting	regions
EVENT_MOUSEMOVE	&&	EVENT_FLAG_LBUTTON	event	/	Selecting
regions
EVENT_LBUTTONUP	event	/	Selecting	regions

N
NVIDIA	CUDA	Toolkit

URL	/	Setting	up	OpenCV	with	CUDA,	A	quick	recipe	for	setting	up	OpenCV
with	CUDA

O
objdetect	module	/	API	concepts	and	basic	datatypes,	Detecting	objects	with
OpenCV
object	detection

about	/	Object	detection
objects

detecting,	with	OpenCV	/	Detecting	objects	with	OpenCV
detecting,	with	cascades	/	Object	detection	using	cascades

OpenCV
about	/	Setting	up	OpenCV
URL,	for	downloading	/	Setting	up	OpenCV
setting	up	/	Setting	up	OpenCV
URL,	for	documentation	/	Setting	up	OpenCV
compiled	library,	versus	precompiled	library	/	Compiled	versus	precompiled
library
configuring,	with	Cmake	/	Configuring	OpenCV	with	CMake
setting	up,	steps	/	Quick	recipe	for	setting	up	OpenCV
API	/	API	concepts	and	basic	datatypes
basic	datatypes	/	API	concepts	and	basic	datatypes
modules	/	API	concepts	and	basic	datatypes
objects,	detecting	with	/	Detecting	objects	with	OpenCV
setting	up,	with	CUDA	/	Setting	up	OpenCV	with	CUDA
installing	/	Building	and	installing	the	library,	A	quick	recipe	for	setting	up
OpenCV	with	CUDA

OpenCV	archive
URL,	for	downloading	/	Quick	recipe	for	setting	up	OpenCV

OpenCV	build
configuring	/	Configuring	the	OpenCV	build

OpenCV	library
building	/	Building	and	installing	the	library
installing	/	Building	and	installing	the	library

opencv_createsamples	application	/	Training	your	own	cascade
opencv_haartraining	application	/	Training	your	own	cascade
opencv_performance	application	/	Training	your	own	cascade
opencv_traincascade	application	/	Training	your	own	cascade
optical	flow

Lucas-Kanade	(LK)	/	The	Lucas-Kanade	optical	flow
Gunnar-Farneback	/	The	Gunnar-Farneback	optical	flow

ORB	detector
about	/	The	ORB	detector
using	/	The	ORB	detector

Oriented	FAST	and	Rotated	BRIEF	(ORB)	/	SVM	for	classification
Otsu’s	method

URL	/	Thresholding

P
parvocellular	(parvo)	/	Filtering	with	the	retina	model
pixel-level	access

about	/	Pixel-level	access	and	common	operations
precompiled	library,	OpenCV

versus,	compiled	library	/	Compiled	versus	precompiled	library
properties	dialog

about	/	The	properties	dialog
Pyramidal	Lucas-Kanade	method	/	The	Lucas-Kanade	optical	flow

Q
qmake	project	file

about	/	The	qmake	project	file
Qt-based	functions

using	/	Using	Qt-based	functions
text	overlays	/	Text	overlays	and	status	bar
status	bar	/	Text	overlays	and	status	bar
properties	dialog	/	The	properties	dialog
window	properties	/	Windows	properties
Qt	images	/	Qt	images

Qt5
URL,	for	downloading	/	Quick	recipe	for	setting	up	OpenCV

Qt	5.2.1
URL	/	Compiled	versus	precompiled	library

Qt	Creator
about	/	Building	and	installing	the	library

Qt	images
creating	/	Qt	images

Qt	UI	framework
URL	/	Using	Qt-based	functions

R
Random	Forest	classifier

overview	/	The	Random	Forest	classifier
Rapid	Environment	Editor

URL	/	Setting	up	OpenCV
read	method	/	Reading	video	sequences
Real	AdaBoost

about	/	Cascades	are	beautiful
regions	of	interest	(ROI)

about	/	Selecting	regions
selecting	/	Selecting	regions

requisites,	for	OpenCV	setup
CUDA-capable	GPU	/	Setting	up	OpenCV	with	CUDA
Microsoft	Visual	Studio	/	Setting	up	OpenCV	with	CUDA
NVIDIA	CUDA	Toolkit	/	Setting	up	OpenCV	with	CUDA
Qt	library	for	Visual	C++	compiler	/	Setting	up	OpenCV	with	CUDA

requisites,	OpenCV	compiling	with	Qt
compatible	C++	compiler	/	Compiled	versus	precompiled	library
Qt	library	/	Compiled	versus	precompiled	library
Cmake	build	system	/	Compiled	versus	precompiled	library

Retina	class
about	/	Filtering	with	the	retina	model

retinademo	algorithm	/	Filtering	with	the	retina	model
retina	model

filtering	with	/	Filtering	with	the	retina	model

S
scene	text	detection	algorithm

about	/	Scene	text	detection
example	/	Scene	text	detection

segmentation	algorithms
about	/	Contours	and	connected	components

segmentation	methods
thresholding	/	Thresholding
contours,	and	connected	components	/	Contours	and	connected	components
flood	fill	operation	/	Flood	fill
watershed	segmentation	/	Watershed	segmentation
GrabCut	/	GrabCut

SIFT	detector
about	/	The	SURF	detector

Size	Mat$$size()	const$	Returns	the	matrix	size()	function	/	Selecting	regions
Speeded	Up	Robust	Features	(SURF)	/	SVM	for	classification
standard	template	library	(STL)	/	API	concepts	and	basic	datatypes
status	bar

about	/	Text	overlays	and	status	bar
straight	lines

detecting	/	Contours	and	connected	components
SURF	descriptors

about	/	Matching	the	SURF	descriptors
matching	/	Matching	the	SURF	descriptors

SURF	detector
about	/	The	SURF	detector
using	/	The	SURF	detector

SVM
about	/	Latent	SVM

SVM	classifier
overview	/	SVM	for	classification

T
text	labels

adding	/	Text	and	drawing
text	overlays

about	/	Text	overlays	and	status	bar
thresholding

overview	/	Thresholding
trackbar	/	Using	OpenCV’s	highgui	module
types,	descriptor	matcher

BruteForce-L1	/	Descriptor	matchers
BruteForce	/	Descriptor	matchers
BruteForce-SL2	/	Descriptor	matchers
BruteForce-Hamming	/	Descriptor	matchers
BruteForce-Hamming(2)	/	Descriptor	matchers
FlannBased	/	Descriptor	matchers

U
UC	Irvine	Machine	Learning	Repository

URL,	for	dataset	/	The	Random	Forest	classifier
user	interface	(UI)	/	API	concepts	and	basic	datatypes

V
VideoCapture$$VideoCapture()	class	constructor	/	Reading	and	playing	a	video	file
VideoCapture$$VideoCapture(int	device)	class	constructor	/	Live	input	from	a
camera
VideoCapture	class	/	Reading	video	sequences
VideoCapture	object	/	Using	OpenCV’s	highgui	module
video	file

reading	/	Reading	and	playing	a	video	file
playing	/	Reading	and	playing	a	video	file

video	module	/	API	concepts	and	basic	datatypes
video	sequences

reading	/	Reading	video	sequences
video	tracking

about	/	Motion	history
Mean-Shift	tracker	/	The	Mean-Shift	tracker
CamShift	tracker	/	The	CamShift	tracker

VideoWriter$$VideoWriter()	class	constructor	/	Live	input	from	a	camera
VideoWriter	object	/	Using	OpenCV’s	highgui	module
void	circle()	function	/	Text	and	drawing
void	cvtColor()	function	/	Conversion	from	RGB	to	other	color	spaces
void	imshow(const	string&	winname,	InputArray	mat)	function	/	The	qmake	project
file
void	Mat$$convertTo()	const	function	/	Using	OpenCV’s	highgui	module
void	Mat$$copyTo(OutputArray	m)	const	method	/	Selecting	regions
void	moveWindow()	function	/	Using	OpenCV’s	highgui	module
void	namedWindow()	function	/	The	qmake	project	file
void	putText()	function	/	Text	and	drawing
void	rectangle()	function	/	Selecting	regions
void	setMouseCallback()	function	/	Text	and	drawing
void	VideoCapture$$release()	method	/	Live	input	from	a	camera

W
waitKey	function	/	Reading	and	playing	a	video	file
warpPerspective,	void	ocl**warpPerspective	function	/	Geometrical	transforms
Watershed	function

about	/	Watershed	segmentation
watershed	segmentation

overview	/	Watershed	segmentation
watershed	transform,	image	segmentation

URL	/	Watershed	segmentation
windows	properties

about	/	Windows	properties
CV_WND_PROP_FULLSCREEN	/	Windows	properties
CV_WND_PROP_AUTOSIZE	/	Windows	properties
CV_WND_PROP_ASPECTRATIO	/	Windows	properties

X
Xvid.org	website	/	Reading	video	sequences

	OpenCV Essentials
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started
	Setting up OpenCV
	Compiled versus precompiled library
	Configuring OpenCV with CMake
	Building and installing the library
	Quick recipe for setting up OpenCV
	API concepts and basic datatypes
	Our first program – reading and writing images and videos
	The qmake project file
	Reading and playing a video file
	Live input from a camera
	Summary
	2. Something We Look At – Graphical User Interfaces
	Using OpenCV's highgui module
	Text and drawing
	Selecting regions
	Using Qt-based functions
	Text overlays and status bar
	The properties dialog
	Windows properties
	Qt images
	Summary
	3. First Things First – Image Processing
	Pixel-level access and common operations
	Image histogram
	Histogram equalization
	Brightness and contrast modeling
	Histogram matching and LUT
	Conversion from RGB to other color spaces
	Filtering with the retina model
	Arithmetic and geometrical transforms
	Arithmetic transform
	Geometrical transforms
	Summary
	What else?
	4. What's in the Image? Segmentation
	Thresholding
	Contours and connected components
	Flood fill
	Watershed segmentation
	GrabCut
	Summary
	What else?
	5. Focusing on the Interesting 2D Features
	Interest points
	Feature detectors
	The FAST detector
	The SURF detector
	The ORB detector
	The KAZE and AKAZE detectors
	Feature descriptor extractors
	Descriptor matchers
	Matching the SURF descriptors
	Matching the AKAZE descriptors
	Summary
	What else?
	6. Where's Wally? Object Detection
	Object detection
	Detecting objects with OpenCV
	Cascades are beautiful
	Object detection using cascades
	Training your own cascade
	Latent SVM
	Scene text detection
	Summary
	What else?
	7. What Is He Doing? Motion
	Motion history
	Reading video sequences
	The Lucas-Kanade optical flow
	The Gunnar-Farneback optical flow
	The Mean-Shift tracker
	The CamShift tracker
	The Motion templates
	The Motion history template
	The Motion gradient
	The Background subtraction technique
	Image alignment
	Summary
	What else?
	8. Advanced Topics
	Machine learning
	The KNN classifier
	The Random Forest classifier
	SVM for classification
	What about GPUs?
	Setting up OpenCV with CUDA
	Configuring the OpenCV build
	Building and installing the library
	A quick recipe for setting up OpenCV with CUDA
	Our first GPU-based program
	Going real time
	Performance
	Summary
	What else?
	Index

