
T H E E X P E R T ’S V O I C E ® I N C+ +

Options and
Derivatives
Programming
in C++

Algorithms and Programming
Techniques for the Financial Industry
—
Carlos Oliveira

www.allitebooks.com

http://www.allitebooks.org

 Options and Derivatives
Programming in C++

 Algorithms and Programming Techniques
for the Financial Industry

 Carlos Oliveira

www.allitebooks.com

http://www.allitebooks.org

Options and Derivatives Programming in C++

Carlos Oliveira
Monmouth Junction, New Jersey
USA

ISBN-13 (pbk): 978-1-4842-1813-6 ISBN-13 (electronic): 978-1-4842-1814-3
DOI 10.1007/978-1-4842-1814-3

Library of Congress Control Number: 2016954432

Copyright © 2016 by Carlos Oliveira

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Don Reamey
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 To my family, my real source of inspiration.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer ...xv

Introduction ...xvii

 ■Chapter 1: Options Concepts ... 1

 ■Chapter 2: Financial Derivatives .. 19

 ■Chapter 3: Basic Algorithms .. 35

 ■Chapter 4: Object-Oriented Techniques ... 67

 ■Chapter 5: Design Patterns for Options Processing .. 85

 ■Chapter 6: Template-Based Techniques .. 101

 ■Chapter 7: STL for Derivatives Programming .. 115

 ■Chapter 8: Functional Programming Techniques... 127

 ■Chapter 9: Linear Algebra Algorithms ... 143

 ■Chapter 10: Algorithms for Numerical Analysis .. 161

 ■Chapter 11: Models Based on Differential Equations .. 175

 ■Chapter 12: Basic Models for Options Pricing ... 189

 ■Chapter 13: Monte Carlo Methods ... 207

 ■Chapter 14: Using C++ Libraries for Finance .. 223

 ■Chapter 15: Credit Derivatives ... 241

Index ... 255

v

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author ... xiii

About the Technical Reviewer ...xv

Introduction ...xvii

 ■Chapter 1: Options Concepts ... 1

Basic Defi nitions .. 2

Option Greeks ... 6

Using C++ for Options Programming ... 8

Availability .. 8

Performance ... 9

Standardization .. 9

Expressiveness ... 10

Modeling Options in C++ ... 10

Creating Well-Behaving Classes ... 10

Computing Option Value at Expiration .. 12

Complete Listing ... 13

Building and Testing ... 16

Further References ... 18

Conclusion .. 18

 ■Chapter 2: Financial Derivatives .. 19

Models for Derivative Pricing ... 19

Credit Default Swaps .. 21

Collateralized Debt Obligations ... 22

vii

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

FX Derivatives ... 23

Derivative Modeling Equations ... 23

Numerical Models ... 24

Binomial Trees .. 24

Simulation Models .. 25

Using the STL ... 26

Generating a Random Walk .. 27

Complete Listing ... 29

Building and Testing ... 32

Further References ... 33

Conclusion .. 34

 ■Chapter 3: Basic Algorithms .. 35

Date and Time Handling ... 35

Date Operations .. 36

Complete Listings ... 39

A Compact Date Representation .. 48

Complete Listings ... 49

Building and Testing ... 53

Working with Networks .. 53

Creating a Dictionary Class .. 54

Calculating a Shortest Path .. 56

Complete Listings ... 58

Building and Testing ... 66

Conclusion .. 66

 ■Chapter 4: Object-Oriented Techniques ... 67

OO Programming Concepts .. 67

Encapsulation ... 69

Inheritance .. 72

Polymorphism ... 72

Polymorphism and Virtual Tables .. 75

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Virtual Functions and Virtual Destructors ... 76

Abstract Functions .. 78

Building Class Hierarchies .. 80

Object Composition... 82

Conclusion .. 83

 ■Chapter 5: Design Patterns for Options Processing .. 85

Introduction to Design Patterns .. 86

The Factory Method Design Pattern ... 87

The Singleton Pattern ... 90

Clearing House Implementation in C++ ... 91

The Observer Design Pattern ... 93

Complete Code ... 96

Conclusion .. 100

 ■Chapter 6: Template-Based Techniques .. 101

Introduction to Templates ... 101

Compilation-Time Polymorphism ... 103

Template Functions .. 104

Implementing Recursive Functions .. 106

Recursive Functions and Template Classes ... 108

Containers and Smart Pointers .. 109

Avoiding Lengthy Template Instantiations .. 111

Pre-Instantiating Templates .. 111

Conclusion .. 113

 ■Chapter 7: STL for Derivatives Programming .. 115

Introduction to Algorithms in the STL ... 115

Sorting .. 116

Presenting Frequency Data .. 119

Copying Container Data .. 121

Finding Elements .. 123

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

Selecting Option Data ... 124

Conclusion .. 126

 ■Chapter 8: Functional Programming Techniques... 127

Functional Programming Concepts .. 128

Function Objects .. 128

Functional Predicates in the STL .. 131

The Bind Function .. 133

Lambda Functions in C++11 .. 135

Complete Code ... 137

Conclusion .. 142

 ■Chapter 9: Linear Algebra Algorithms ... 143

Vector Operations ... 143

Scalar-to-Vector Operations ... 144

Vector-to-Vector Operations ... 146

Matrix Implementation ... 148

Using the uBLAS Library ... 154

Complete Code ... 156

Conclusion .. 160

 ■Chapter 10: Algorithms for Numerical Analysis .. 161

Representing Mathematical Functions ... 161

Using Horner’s Method ... 163

Finding Roots of Equations ... 165

Newton’s Method .. 165

Integration .. 170

Conclusion .. 173

 ■Chapter 11: Models Based on Differential Equations .. 175

General Differential Equations .. 175

Ordinary Differential Equations .. 176

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xi

Euler’s Method ... 177

Implementing the Method .. 178

The Runge-Kutta Method ... 182

Runge-Kutta Implementation ... 183

Complete Code ... 185

Conclusion .. 187

 ■Chapter 12: Basic Models for Options Pricing ... 189

Lattice Models .. 189

Binomial Model .. 190

Binomial Model Implementation ... 192

Pricing American-Style Options .. 195

Solving the Black-Scholes Model ... 197

Numerical Solution of the Model .. 198

Complete Code ... 202

Conclusion .. 205

 ■Chapter 13: Monte Carlo Methods ... 207

Introduction to Monte Carlo Methods ... 207

Random Number Generation .. 208

Probability Distributions ... 210

Using Common Probability Distributions .. 213

Creating Random Walks ... 218

Conclusion .. 221

 ■Chapter 14: Using C++ Libraries for Finance .. 223

Boost Libraries ... 223

Installing Boost ... 225

Solving ODEs with Boost .. 225

Solving a Simple ODE ... 227

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xii

The QuantLib Library .. 229

Handling Dates ... 230

Working with Calendars.. 231

Computing Solutions for Black-Scholes Equations .. 233

Creating a C++ Interface .. 235

Complete Code ... 237

Conclusion .. 240

 ■Chapter 15: Credit Derivatives ... 241

Introduction to Credit Derivatives ... 241

Modeling Credit Derivatives ... 242

Using Barrier Options ... 243

A Solver Class for Barrier Options .. 244

Barrier Option Classes in QuantLib ... 245

An Example Using QuantLib .. 247

Complete Code ... 249

Conclusion .. 253

Index ... 255

 About the Author

 Carlos Oliveira works in the area of quantitative finance, with more than
10 years of experience in creating scientific and financial models in C++.
During his career, Carlos has developed several large-scale applications for
financial companies such as Bloomberg L.P. and Incapital LLC. Oliveira
obtained a PhD in Operations Research and Systems Engineering from the
University of Florida, an MSc in Computer Science from UFC (Brazil), and
a BSc in Computer Science from UECE (Brazil). He has also performs
academic research in the field of combinatorial optimization, with
applications in diverse areas such as finance, telecommunications,
computational biology, and logistics. Oliveira has written more than
30 academic papers on optimization and authored three books, including
Practical C++ Financial Programming (Apress, 2015).

xiii

 About the Technical Reviewer

 Don Reamey is currently a Senior Engineering Manager at Apptio
Corporation. Previously he worked at Microsoft as a Principal Software
Engineer and Program Manager. Don also managed engineering teams at
TIBCO Software and Bank of America. He enjoys learning and creating
new programming languages, creating web-based applications, and
playing guitar and weight lifting.

xv

 Introduction

 On Wall Street, the use of algorithmic trading and other computational techniques has skyrocketed in the
last few years, as can be seen from the public interest in automated trading as well as the profits generated
by these strategies. This growing trend demonstrates the importance of using software to analyze and trade
markets in diverse areas of finance. One particular area that has been growing in importance during the last
decade is options and derivatives trading.

 Initially used only as a niche investment strategy, derivatives have become one of the most common
instruments for investors in all areas. Likewise, the interest in automated trading and analysis of such
instruments has also increased considerably.

 Along with scientists and economists, software engineers have also greatly contributed to the
development of advanced computational techniques using financial derivatives. Such techniques have been
used at banks, hedge funds, pension funds, and other financial institutions. In fact, every day new systems
are developed to give a trading advantage to the players in this industry.

 This books attempts to provide the basic programming knowledge needed by C++ programmers
working with options and derivatives in the financial industry. This is a hands-on book for programmers
who want to learn how C++ is used to develop solutions for options and derivatives trading. In the book’s
chapters, you’ll explore the main algorithms and programming techniques used in the implementation of
systems and solutions for trading options and other derivatives.

 Because of stringent performance characteristics, most of these trading systems are developed using
C++ as the main implementation language. This makes the topic of this book relevant to everyone interested
in programming skills used in the financial industry in general.

 In Options and Derivatives Programming in C++, I cover the features of the language that are more
frequently used to write financial software for options and derivatives. These features include the STL,
templates, functional programming, and support for numerical libraries. New features introduced in the latest
updates of the C++ standard are also covered, including additional functional techniques such as lambda
functions, automatic type detection, custom literals, and improved initialization strategies for C++ objects.

 I also provide how-to examples that cover the major tools and concepts used to build working solutions
for quantitative finance. The book teaches you how to employ advanced C++ concepts as well as the basic
building libraries used by modern C++ developers, such as the STL, Boost, and QuantLib. It also discusses
how to create correct and efficient applications, leveraging knowledge of object-oriented and template-
based programming. I assume only a basic knowledge of C and C++ and extensively use concepts already
mastered by developers who are fluent in these languages.

 In the process of writing this book, I was also concerned with providing value for readers who are trying
to use their current programming knowledge in order to become proficient at the style of programming used
in large banks, hedge funds, and other investment institutions. Therefore, the topics covered in the book
are introduced in a logical and structured way. Even novice programmers will be able to absorb the most
important topics and competencies necessary to develop C++ for the problems occurring on the analysis of
options and other financial derivatives.

xvii

 ■ INTRODUCTION

xviii

 Audience
 This book is intended for readers who already have a working knowledge of programing in C, C++, or
another mainstream language. These are usually professionals or advanced students in computer science,
engineering, and mathematics, who have interest in learning about options and derivatives programming
using the C++ language, for personal or for professional reasons. The book is also directed at practitioners of
C++ programming in financial institutions, who would use the book as a ready-to-use reference of software
development algorithms and best practices for this important area of finance.

 Many readers are interested in a book that would describe how modern C++ techniques are used to
solve practical problems arising when considering options on financial instruments and other derivatives.
Being a multi-paradigm language, C++ usage may be slightly different in each area, so the skills that are
useful for developing desktop applications, for example, are not necessarily the same ones used to write
high-performance software.

 A large part of high-performance financial applications are written in C++, which means that
programmers who want to enter this lucrative market need to acquire a working knowledge of specific parts
of the language. This book attempts to give developers who want to develop their knowledge effectively this
choice, while learning one of the most sought-after and marketable skillsets for modern financial application
and high-performance software development.

 This book is also targeted at students and new developers who have some experience with the C++
language and want to leverage that knowledge into financial software development. This book is written with
the goal of reaching readers who need a concise, algorithms-based strategy, providing basic information
through well-targeted examples and ready-to-use solutions. Readers will be able to directly apply the
concepts and sample code to some of the most common problems faced regarding the analysis of options
and derivative contracts.

 What You Will Learn
 Here is a sample of topics that are covered in the following chapters:

• Fundamental problems in the options and derivatives market

• Options market models

• Derivative valuation problems

• Trading strategies for options and derivatives

• Pricing algorithms for derivatives

• Binomial method

• Differential equations method

• Black-Scholes model

• Quantitative finance algorithms for options and derivatives

• Linear algebra techniques

• Interpolation

• Calculating roots

• Numerical solution for PDEs

 ■ INTRODUCTION

xix

• Important features of C++ language as used in quantitative financial programming,
such as

• Templates

• STL containers

• STL algorithms

• Boost libraries

• QuantLib

• New features of C++11 and C++14

 Book Contents
 Here is a quick overview of the major topics covered in each chapter.

• Chapter 1 : “Options Concepts.” An option is a standard financial contract that
derives its value from an underlying asset such as a stock. Options can be used to
pursue multiple economic objectives, such as hedging against variations on the
underlying asset, or speculating on the future price of a stock. Chapter 1 presents the
basic concepts of options, including their advantages and challenges. It also explains
how options can be modeled using C++. The main topics covered in this chapter are
as follows:

• Basic definitions of options

• An introduction to options strategies

• Describing options with Greeks

• Sample code for options handling

• Chapter 2 : “Financial Derivatives.” A derivative is a general term for a contract
whose price is based on an underlying asset. In the previous decades, the financial
industry created and popularized a large number of derivatives. Pricing and trading
these derivatives is a large part of the work performed by trading desks throughout
the world. Derivatives have been created based on diverse assets such as foreign
currency, mortgage contracts, and credit default swaps. This chapter explores this
type of financial instrument and presents a few C++ techniques to model specific
derivatives. The main topics covered in this chapter are as follows:

• Credit default swaps

• Forex derivatives

• Interest rate derivatives

• Exotic derivatives

http://dx.doi.org/10.1007/978-1-4842-1814-3_1
http://dx.doi.org/10.1007/978-1-4842-1814-3_1
http://dx.doi.org/10.1007/978-1-4842-1814-3_2

 ■ INTRODUCTION

xx

• Chapter 3 : “Basic Algorithms.” To become a proficient C++ developer, it is essential
to have good knowledge of the basic algorithms used in your application area.
Some basic algorithms for tasks such as vector processing, date and time handling,
and data access and storage are useful in almost all applications involving options
and other financial derivatives. This chapter surveys such algorithms and their
implementation in C++, including the following topics:

• Date and time handling

• Vector processing

• Graphs and networks

• Fast data processing

• Chapter 4 : “Object-Oriented Techniques.” For the last 30 years, object-oriented
techniques have become the standard for software development. Since C++ fully
supports OO programming, it is imperative that you have a good understanding of
OO techniques in order to solve the problems presented by options and derivatives.
I present summary of what you need to become proficient in the relevant OO
techniques used in the financial industry. Some of the topics covered in this chapter are:

• Problem partitioning

• Designing solutions using OO strategies

• OO implementation in C++

• Reusing OO components

• Chapter 5 : “Design Patterns for Options Processing.” Design patterns are a set of
common programming practices that can be used to simplify the solution of recurring
problems. With the use of OO techniques, design patterns can be cleanly implemented
as a set of classes that interact toward the solution of a common goal. In this chapter,
you learn about the most common design pattern employed when working with
financial options and derivatives, with specific examples. It covers the following topics:

• The importance of design patterns

• Factory pattern

• Visitor pattern

• Singleton pattern

• Less common patterns

• Chapter 6 : “Template-Based Techniques.” C++ templates allow programmers to write
code that works without modification on different data types. Through the careful
use of templates, C++ programmers can write code with high performance and low
overhead, without the need to employ more computationally expensive object-
oriented techniques. This chapter explores a few template-oriented practices used in
the solution of options and derivatives-based financial problems.

• Motivating the use of templates

• Compile-time algorithms

• Containers and smart pointers

• Template libraries

http://dx.doi.org/10.1007/978-1-4842-1814-3_3
http://dx.doi.org/10.1007/978-1-4842-1814-3_4
http://dx.doi.org/10.1007/978-1-4842-1814-3_5
http://dx.doi.org/10.1007/978-1-4842-1814-3_6

 ■ INTRODUCTION

xxi

• Chapter 7 : “STL for Derivatives Programming.” Modern financial programming in
C++ makes heavy use of template-based algorithms. Many of the basic template
algorithms are implemented in the standard template library (STL). This chapter
discusses the STL and how it can be used in quantitative finance projects, in
particular to solve options and financial derivative problems. You will get a clear
understanding of how the STL interacts with other parts of the system, and how it
imposes a certain structure on classes developed in C++.

• STL-based algorithms

• Functional techniques on STL

• STL containers

• Smart pointers

• Chapter 8 : “Functional Programming Techniques.” Functional programming is
a technique that focuses on the direct use of functions as first-class objects. This
means that you are allowed to create, store, and call functions as if they were just
another variable of the system. Recently, functional techniques in C++ have been
greatly improved with the adoption of the new standard (C++11), particularly with
the introduction of lambda functions. The following topics are explored in this
chapter:

• Lambdas

• Functional templates

• Functions as first-class objects

• Managing state in functional programming

• Functional techniques for options processing

• Chapter 9 : “Linear Algebra Algorithms.” Linear algebra techniques are used
throughout the area of financial engineering, and in particular in the analysis of
options and other financial derivatives. Therefore, it is important to understand how
the traditional methods of linear algebra can be applied in C++. With this goal in
mind, I present a few examples that illustrate how to use some of the most common
linear algebra algorithms. In this chapter, you will also learn how to integrate existing
LA libraries into your code.

• Implementing matrices

• Matrix decomposition

• Computing determinants

• Solving linear systems of equations

http://dx.doi.org/10.1007/978-1-4842-1814-3_7
http://dx.doi.org/10.1007/978-1-4842-1814-3_8
http://dx.doi.org/10.1007/978-1-4842-1814-3_9

 ■ INTRODUCTION

xxii

• Chapter 10 : “Algorithms for Numerical Analysis.” Equations are some of the building
blocks of financial algorithms for options and financial derivatives, and it is important
to be able to efficiently calculate the solution for such mathematical models. In
this chapter, you will see programming recipes for different methods of calculating
equation roots and integrating functions, along with explanations of how they work
and when they should be used. I also discuss numerical error and stability issues that
present a challenge for developers in the area of quantitative financial programming.

• Basic numerical algorithms

• Root-finding algorithms

• Integration algorithms

• Reducing errors in numeric algorithms

• Chapter 11 : “Models Based on Differential Equations.” Differential equations are at
the heart of many techniques using in the analysis of derivatives. There are several
processes for solving and analyzing PDEs that can be implemented in C++. This
chapter presents programming recipes that cover aspects of PDE-based option
modeling and application in C++. Topics covered include the following:

• Basic techniques for differential equations

• Ordinary differential equations

• Partial difference equations

• Numerical algorithms for differential equations

• Chapter 12 : “Basic Models for Options Pricing.” Options pricing is the task of
determining the fair value of a particular option, given a set of parameters that
exactly determine the option type. This chapter discusses some of the most popular
models for options pricing. They include tree-based methods, such as binomial
and trinomial trees. It also discusses the famous Black-Scholes model, which is
frequently used as the basis for the analysis of most options and derivative contracts.

• Binomial trees

• Trinomial trees

• Black-Scholes model

• Implementation strategies

• Chapter 13 : “Monte Carlo Methods.” Among other programming techniques for equity
markets, Monte Carlo simulation has a special place due to its wide applicability and
easy implementation. These methods can be used to forecast prices or to validate
options buying strategies, for example. In This chapter provides programming recipes
that can be used as part of simulation-based algorithms applied to options pricing.

• Probability distributions

• Random number generation

• Stochastic models for options

• Random walks

• Improving performance

http://dx.doi.org/10.1007/978-1-4842-1814-3_10
http://dx.doi.org/10.1007/978-1-4842-1814-3_11
http://dx.doi.org/10.1007/978-1-4842-1814-3_12
http://dx.doi.org/10.1007/978-1-4842-1814-3_13

 ■ INTRODUCTION

xxiii

• Chapter 14 : “Using C++ Libraries for Finance.” Writing good financial code is not an
individual task. You frequently have to use libraries created by other developers and
integrate them into your own work. In the world of quantitative finance, a number of
C++ libraries have been used with great success. This chapter reviews some of these
libraries and explains how they can be integrated into your own derivative-based
applications. Some of the topics covered include the following:

• Standard library tools

• QuantLib

• Boost math

• Boost lambda

• Chapter 15 : “Credit Derivatives.” Credit derivatives are an increasingly popular
type of financial derivative that aims at reducing credit risk—that is, the risk of
default posed by contracts established with a counterparty. Credit derivatives can
be modeled using some of the tools already discussed for options, although credit
derivative have their own peculiarities. This chapter describes how to create the C++
code needed to quantitatively analyze such financial contracts. Here are some of the
topics discussed:

• General concepts of credit derivatives

• Modeling the problem

• C++ algorithms for derivative pricing

• Improving algorithm efficiency

 Example Code
 The examples given in this book have all been tested on MacOS X using the Xcode 7 IDE. The code uses only
standard C++ techniques, so you should be able to build the given examples using any standards-compliant
C++ compiler that implements the C++11 standard. For example, gcc is available on most platforms, and
Microsoft Visual Studio will also work on Windows.

 If you use MacOS X and don’t have Xcode installed in your computer yet, you can download it for free
from Apple’s developer web site at http://developer.apple.com .

 If you instead prefer to use MinGW on Windows, you can download the MinGW distribution from the
web site http://www.mingw.org .

 Once MinGW is installed, start the command prompt from the MinGW program group in the Start
menu. Then, you can type gcc to check that the compiler is properly installed.

 To download the source code for all examples in this book, visit the web page of the author at
 http://coliveira.net .

http://dx.doi.org/10.1007/978-1-4842-1814-3_14
http://dx.doi.org/10.1007/978-1-4842-1814-3_15
http://developer.apple.com/
http://www.mingw.org/
http://coliveira.net/

1© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_1

 CHAPTER 1

 Options Concepts

 In the last few decades, software development has become an integral part of the investment industry.
Advances in trading infrastructure, as well as the need for increased volume and liquidity, has caused
financial institutions to adopt computational techniques in their day-to-day operations. This means
that there are many opportunities for computer scientists specializing in the design and development of
automated strategies for trading and analyzing options and other financial derivatives.

 Options are among the several investment vehicles that are currently traded using automated methods,
as you will learn in the following chapters. Given the mathematical structure of options and related
derivatives, it is possible to explore their features in a controlled way, which is ideal for the application of
computational algorithms. In this book, I present many of the computational techniques used to develop
strategies in order to trade options and other derivatives.

 An option is a standard financial contract that derives its value from an underlying asset such as
common stock or commodities. Options can be used to pursue multiple economic objectives, such as
hedging against large variations on the underlying asset, or speculating on the future price of a stock. This
chapter presents the basic concepts of options, along with supporting definitions. I also give an overview of
the use of C++ in the financial industry, and how options can be modeled using C++.

 The following concepts are explored in the next sections:

• Basic definitions: You will learn fundamental definitions about options contracts and
how they are used in the investment industry.

• Fundamental option strategies: Due to their flexibility, options can be combined in
a surprising large number of investment strategies . You will learn about some of the
most common option strategies, and how to model them using C++.

• Option Greeks: One of the advantages of options investing is that it promotes a very
analytical view of financial decisions. Each option is defined by a set of variables
called Greeks , which reflect the properties of an option contract at each moment in
time.

• Delta hedging : One of the ways to use options is to create a hedge for some other
underlying asset positions. This is called delta hedging, and it is widely used in the
financial industry. You will see how this investment technique works and how it can
be modeled using C++.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1814-3_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1814-3_1

CHAPTER 1 ■ OPTIONS CONCEPTS

2

 Basic Definitions
 Let’s start with an overview of concepts and programming problems presented by options in the financial
industry. Options are specialized trading instruments, and therefore require their users to be familiar
with a number of details about their operation. In this section, I introduce some basic definitions about
options and their associated ideas. Before starting, take a quick look at Table 1-1 for a summary of the most
commonly used concepts. These concepts are defined in more detail in the remaining parts of this section.

 Table 1-1. Basic Concepts in Options Trading

 Concept Definition

 Call An option contract that gives its owner the right to buy the underlying asset for a
predetermined price.

 Put An option contract that gives its owner the right to sell the underlying asset for a
predetermined price.

 Underlying Asset whose price is used as the base of the options contract.

 Strike price The price at which option owners can buy or sell the underlying asset under the
options contract.

 Expiration The last date of the options contract.

 Settlement The act of exercising the options contract at the expiration date.

 Intrinsic value Amount of option value that is directly derived from the underlying price.

 Break-even price The price at which an investor will start to make a profit in the option.

 Exercise The act of buying of selling the option underlying under the price determined by the
option contract.

 American option An option style where option owners can exercise the option at any moment between
option purchase and option expiration.

 European option An option style where option owners can exercise the option only at expiration time.

 ATM (At The Money): Refers to options that have a strike price close to the current price
for the underlying.

 OTM (Out of The Money): Refers to options that have a strike price above (for calls) or
below (for puts) the current price of the underlying asset. These options have no
intrinsic value.

 ITM (In The Money): Refers to options that have a strike price below (for calls) or above
(for puts) the current price of the underlying asset. These options have an intrinsic
value.

 Options can be classified according to several criteria. The features of the options determine every
aspect of how they can be used, such as the quantity of underlying assets, the strike price, and the expiration,
among others. There are two main types of Options processing: calls and puts. A call is a standard contract
that gives its owner the right (but not the obligation) to buy an underlying instrument at a particular
price. Similarly, a put is standard contract that gives its owner the right (but not the obligation) to sell an
underlying instrument at a predetermined price.

CHAPTER 1 ■ OPTIONS CONCEPTS

3

 The strike price is the price at which the option can be exercised. For example, a call for IBM stock with
strike $100 gives its owner the right to buy IBM stock at the price of $100. If the current price of IBM is greater
than $100, the owner of such an option has the right to buy the stock at a price that is lower than the current
price, which means that the call has a higher value as the value of IBM stock increases. This situation is
exemplified in Figure 1-1 . If the current price is lower than $100 at expiration, the value of the option is zero,
since there is no profit in exercising the contract.

 Figure 1-1. Profit chart for a call option

 As you have seen in this example, if you buy an option, you have an unlimited gain and your losses are
limited to the value paid originally. This is advantageous when you’re trying to limit losses in a particular
investment scenario. As long as you are okay with losing a limited amount of money paid for the option,
you can profit from the unlimited upside potential of a call (if the underlying grows in price). Put options
don’t have unlimited profit potential since the maximum gain happens when the underlying price is zero.
However, they still benefit from the well-defined, limited loss versus the possible large gains.

 Expiration : The expiration is the moment when the option contract ends its validity and a final value
exchange can be performed. Each option will have a particular, predefined expiration. For example, certain
index-based options expire in the morning of the third Friday of the month. Most stock-based options expire
in practice at the end of the third Friday of the month (although they will list the Saturday as the formal
expiration day). More recently, several weekly-based option contracts have been made available for some
of the most traded stocks and indices. Each options contract makes it clear when expiration is due, and
investors need to plan accordingly on what to do before the expiration date.

CHAPTER 1 ■ OPTIONS CONCEPTS

4

 Settlement : The settlement is the agreed-on result of the option transaction at the specific time when
the option contract expires. The particular details of the settlement depend on the type of underlying asset.
For example, options on common stock settle at expiration day, when the owner of the option needs to
decide to sell (for puts) or buy (for calls) a certain quantity of stock. For index-based options, the settlement
is normally performed directly in cash, determined as the cash equivalent for a certain number of units of
the index. Some options on futures may require the settlement on the underlying commodity, such as grain,
oil, or sugar. Investors need to be aware of the requirement settlement for different option contracts. Trading
brokerages will typically let investors know about the steps required to settle the options they’re currently
holding.

 Selling Options: An investor can buy or sell a call option. When doing so, it is important to understand
the difference between these two situations. For option buyers, the goal is to profit from the possible increase
(in the case of calls) or the decrease (in the case of puts) in value for the underlying. For option sellers , on
the other hand, the goal is to profit from the lack of movement (increase for calls or decrease for puts). So, for
example, if you sell calls against a stock, the intent is to profit in the case that the stock decreases in price or
stays at the same price until expiration. If you sell a put option, the goal is to profit when the stock increases
in price or stays at the same price until expiration.

 Option exercise : An option contract can be used to buy or sell the underlying asset as dictated by
the contract specification. This process of using the option to trade the underlying asset is called option
exercising. If the option is a call, you can exercise it and buy the underlying asset at the specified price. If the
option is a put, you can use the option to sell the underlying asset at the previously specified price. The price
at which the option is exercised is defined by the contract. For example, a call option for AAPL stock with a
$100 strike allows its owner to buy the stock for the strike price, independent of the current price of AAPL.

 Exercise style : Options contracts can have different exercise styles based on when exercising is allowed.
There are two main types:

• American options : Can be exercised at any time until expiration. That is, the owner
of the option can decide to exercise it at any moment, as long as the option has not
expired.

• European options : Can be exercised only upon expiration date. This style is more
common for contracts that are settled directly on cash, such as index-based options.

 An option is defined as a derivative of an underlying instrument. The underlying instrument is the asset
whose price is used as the basic value for an option contract. There is no fixed restriction on the type of
asset used and the underlying asset for an option contract, but in practice options tend to be defined based
on openly traded securities. Examples of securities that can be used as the underlying asset for commonly
traded option contracts include the following:

• Common stock : Probably the most common way to use options is to trade call or
put options on common stock. In this way, you can profit largely from small price
changes in stocks of public companies.

• Indices : An index, such as the Dow Industrials or the NASDAQ 100, can be used as
the underlying for an options contract. Options based on indices are traditionally
settled on cash (as explained below), and each unit of value corresponds to multiples
of the current index value.

• Currencies : A currency, usually traded using Forex platforms, can also be used as the
underlying for option contracts. Common currencies such as the U.S. Dollar, Euro,
Japanese Yen, and Swiss Franc are traded 24 hours a day. The related options are
traded on lots of currencies, which are defined according to the relative prices of the
target currencies. Expiration varies similarly to stock options.

CHAPTER 1 ■ OPTIONS CONCEPTS

5

• Commodities : Options can also be written on commodities contracts. A commodity
is a common product that can be traded in large quantities, including agricultural
products such as corn, coffee, and sugar; fuels such as gasoline and crude oil; and
even index-based underlying assets such as the S&P 500. Options can be used to
trade such commodities and trading exchanges now offer options for many of the
commodity types.

• Futures : These are contracts for the future delivery of a particular asset. Many of the
commodity types discussed previously are traded using future contracts, including
gasoline, crude oil, sugar, coffee, and other products. The structure of future
contracts is defined to simplify the trade of products that will only be available in a
due period, such as next fall, for example.

• ETFs (Exchange Traded Funds) and ETN (Exchange Traded Notes): More recently, an
increasing number of funds have started to trade using the same rules applicable to
common stocks in standard exchanges. Such funds are responsible for maintaining
a basket of assets, and their shares are traded daily on exchanges. Examples of
well-known ETFs include funds that hold components of the S&P 500, sectors of the
economy, and even commodities and currency.

 Options trading has traditionally been done on stock exchanges, just like other forms of stock and future
trading. One of the most prominent options exchange is the Chicago Board Options Exchange. Many other
exchanges provide support and liquidity for the trading of options for many of the instruments listed here.

 The techniques described in this book are useful for options with any of these underlying instruments.
Therefore, you don’t need to worry if the algorithms are applied to stock options of the futures options,
as long as you consider the possible peculiarities of these different contracts, such as their expiration and
exercise.

 Options can also be classified according to the relation between the strike price and the price of the
underlying asset. There are three cases that are typically considered:

• An option is said to be out of the money (OTM) when the strike price is above the
current price of the underlying asset (for call options) or when the strike price is
below the current price of the underlying asset (for put options).

• An option is said to be at the money (ATM) when the strike price is close to the
current price of the underlying asset.

• An option is said to be in the money (ITM) when the strike price is below the current
price of the underlying asset (for call options) or when the strike price is above the
current price of the underlying asset (for put options).

 Notice that OTM options are cheaper than a similar ATM option, since the OTM options (being away
from the current price of the underlying) have a lower chance of profit than ATM options. Similarly, ATM
options are cheaper than ITM options, because ATM options have less probability of making money than
other ITM options. Notice that, when considering the relation between strike price and underlying price, the
option price reflects the probability that the option will generate any profit.

 A related concept is the intrinsic value of an option. The intrinsic value is the part of the value of an
option that can be derived from the difference between strike price and the price of the underlying asset.
For example, consider an ITM call option for a particular stock with a strike of $100. Assume that the current
price for that stock is $102. Therefore, the price of the option must include the $2 difference between the
strike and the price of the underlying, since the holder of a call option can exercise it and have an immediate
profit of $2. Similarly, ITM put options have intrinsic value when the current price of the underlying is above
the strike price, using the same reasoning.

CHAPTER 1 ■ OPTIONS CONCEPTS

6

 The break-even price is the price of the underlying at which the owner of an option will start to make a
profit. The break-even price has to include not only the potential profit derived from the intrinsic value, but
also the cost paid for the option. Therefore, for an investor to make a profit on a call option, the price of the
underlying asset has to rise above the strike plus any cost paid for the option (and similarly it has to drop
below the strike minus the option cost for put options). For example, if an $100 MSFT call option has a cost
of $1, then the investor will have a net profit only when the price of MSFT rises above $101 (and this without
considering transaction costs).

 As part of the larger picture of investing, options have assumed an important role due to their flexibility
and their profit potential. As a result, new programming problems introduced by the use of options have
come to the forefront of the investment industry, including banks, hedge funds, and other financial
institutions. As you will see in the next section, C++ is the ideal language to create efficient and elegant
solutions to the programming problems occurring with options investing.

 Option Greeks
 One of the characteristics of derivatives is the determination of quantitative measures that can be essential
in the analysis and pricing of the derivative product. In the case of options, the quantitative measures are
called Greeks , because most of these measures are named after Greek letters. Many of these Greek quantities
correspond to the variation of the price with respect to one or more variables, such as time, strike, or
underlying price.

 The most well known option Greek is delta . The delta of an option is defined as the amount of change in
the price of an option when the underlying changes by one unit. Therefore, delta represents a rate of change
of the option in relation to the change in the underlying, and it is essential to understand price variation in
options. Consider, for example, an option for IBM stock that expires in 30 days. The strike price is $100, and
the stock is currently trading at $100. Suppose that the price of the stock increases by $1. It is interesting to
calculate the expected change in the option price. It turns out that when the underlying price is close to the
strike price, the delta of an option is close to 0.5. Expressing this in terms of probabilities, it means the value
of the stock is equality probable to go up or down. Therefore, it makes sense that the change per unit of price
will be just half of the change in the underlying asset.

 The value of delta increases as the option becomes more and more in the money. In that case, the delta
gets close to one, since each dollar of change will have a larger impact in the intrinsic value of the option.
Conversely, the value of delta decreases as the option becomes more and more out of the money. In that
case, delta gets closer to zero, since each dollar of change will have less impact on the value of an option that
is out of the money.

 The second option Greek that is related to delta is gamma . The gamma of an option is described as
the rate of change of delta with a unit change in price of the underlying. As you have seen, delta changes in
different ways when the option is in the money, out of the money, or at the money. But the rate of change
of delta will also vary depending on other factors. For example, delta will change more quickly if the option
is close to expiration, because there is so little time for a movement to happen. To see why this happen,
consider an option delta 30 days before expiration and one that is one day before expiration. Delta is also
dependent on time, because an option close to expiration has less probability of change. As a result, the
delta will move from zero to one slowly if there are 30 days to go, because there is still plenty of time left
for other changes. But an option with only one day left will quickly move from close to zero delta to near
one, since there is no time left for future changes. This is described by saying that the first option has lower
gamma than the second option. Other factors such as volatility can also change an option gamma. Figure 1-2
illustrates the value of gamma for a particular option at different times before expiration.

CHAPTER 1 ■ OPTIONS CONCEPTS

7

 Another option Greek that is closely related to time is theta . The theta of an option is proportional to the
time left to expiration, and its value decays when it gets closer to the expiration date. You can think of theta
as a measure of time potential for the option. For option buyers, higher theta is a desirable feature, since
buyers want more probability of changes for their options. On the other hand, option sellers benefit from
decreased theta, so short-term options are ideal for sellers due to the lower theta.

 Finally, we have an option Greek that is not really named after a Greek letter: vega . The vega of an
option measures the amount of volatility of the underlying asset that is priced into an option. The higher the
volatility, the more expensive an option has to be in order to account for the increased possibility of pricing
changes. The differential equations that define the price of an option (as you will see in future chapters)
take into account this volatility. Vega can be used to determine how much relative volatility is embedded in
the option price, and an important use of this measure is to help option buyers and sellers determine if this
implied volatility is consistent with their expectations for the future of the underlying prices.

 There are other option Greeks that have been used in the academic community and in some financial
application; however, they are not as widespread as the ones mentioned here. You can see a summary of the
most commonly used option Greeks in Table 1-2 .

 Figure 1-2. Value of gamma at different dates before expiration

CHAPTER 1 ■ OPTIONS CONCEPTS

8

 Using C++ for Options Programming
 C++ has unique features that make it especially useful for programming software for the financial industry.
Over the years, developers have migrated to C++ as a practical way to meet the requirements of numeric,
real-time algorithms used by the investment community. When it comes to creating decision support
software for fast-paced investment strategies, it is very difficult to beat the C++ programming language in the
areas of performance and flexibility.

 While it is true that several programming languages are available for the implementation of financial
software, very few of them provide the combination of advantages available when using C++. Let’s look at
some of the areas where C++ provides a unique advantage when compared to other programming languages
that could be used to implement investment software.

 Availability
 When looking for a programming language to implement investment software, one of the first concerns
you need to address is the ability to run the code in a variety of computational environments. Targets for
such investment software can range from small and mobile processors to large-scale parallel systems
and supercomputers. Moreover, it is not uncommon to have to interact with different operating systems,
including the common software platforms based on Linux, Windows, and MacOS X.

 Because modern computer systems are so heterogeneous, it makes economic sense to use languages
that can be employed in a large variety of hardware and software configurations with little or no source
code modifications. Financial programmers also work on different platforms, which makes it even more
interesting to use software that can run in different computers and operating systems with little or no
changes.

 A strong characteristic of C++ is its wide availability over different platforms. Due to its early success
as a multi-paradigm language, C++ has been ported to nearly any imaginable software and hardware
combination. While other mainstream languages such as Java require the implementation of a complex
runtime environment for proper operation, C++ was designed from the beginning with simplicity and
portability in mind. The language does not require a runtime system, and only a minimal support system,
provided by the C++ standard library, needs to work in order to support a new target. Therefore, it is
relatively easy to port C++ compilers and build systems to new platforms with minimal changes.

 Another advantage is the availability of multiple compilers provided by commercial vendors as well as
free software. Given the importance of C++ software, it is possible to find compilers with both free and under
commercial licenses, so that you can use the scheme that best suits your objectives. Open source developers
can use state-of-the-art free compilers such as gcc and LLVM cc. Commercial groups, on the other hand, can
take advantage of compilers licensed by companies such as Intel and IBM.

 Table 1-2. Option Greeks and Their Common Meanings

 Greek Meaning

 Delta The rate of change of the option value with respect to the price of the underlying asset.

 Gamma The rate of change of delta with respect to the price of the underlying asset.

 Rho The change of the price of the option with respect to changes in interest rates.

 Theta The rate of change in the option value with respect to time left to expiration.

 Vega The rate of change of the option value with respect to the volatility of the underlying asset.

 Lambda The rate of change in the option value with respect to percent changes in the price of the
underlying asset.

CHAPTER 1 ■ OPTIONS CONCEPTS

9

 Performance
 It is fact that programmers using C++ benefit from the high performance provided by the language. Because
C++ was explicitly designed to require a minimum amount of overhead in most platforms, typical C++
programs run very efficiently, even without further optimization steps. Programs naturally coded in C++ will
frequently outperform code created in other languages, even when this software has been heavily optimized.

 Part of the performance advantage provided by C++ is a result of mature compilers and other building
tools. Since C++ is such a well-established language, major companies as well as well-known open source
projects have created optimized compilers for the language. Common examples include gcc, Visual C++,
LLVM cc, and Intel cc. Such compilers provide huge speed improvements in typical running time, frequently
beating non-optimized (and even optimized) code that is produced by other languages.

 When considering performance, C++ shares the same philosophy of the C programming language.
The general idea is to provide high-level features, while avoiding whenever possible any overhead on the
implementation of such features on common processors. This means that the features provided by C++
generally match very closely with low-level processor instructions.

 Other solutions for improved performance in C++ include the use of templates in addition to runtime
polymorphism. With templates, the compiler can generate code that matches the types used in a particular
algorithm exactly. In this way, programs can avoid the large overhead of polymorphic code, which need to
made different runtime decisions depending on the particular type. Programmers can control algorithms in
a much finer grained scale when using templates, while still retaining the ability to use high-level types.

 Last but not least, C++ simplifies the use of memory and other resources with the help of smart pointers
and other techniques based on RAII (Resource Acquisition Is Initialization). These techniques allow C++
programs to control memory usage without having to rely on a runtime GC (garbage collection) system. By
using such strategies, C++ programmers can considerably reduce the overhead of frequently used dynamic
algorithms, without the need to resort to manual bookkeeping of memory and other resources.

 Standardization
 Another great advantage of C++ is that it’s based on an international standard, which is recognized
by practically every software vendor. Unlike some languages that are practically defined by an actual
implementation or controlled by a powerful company, C++ has for decades being defined as the result of the
C++ committee, with representatives from major companies and organizations that have an interest in the
future development of the language.

 In fact, some of the big financial companies also have representatives in the C++ committee. This
means that the future of C++ is not controlled by a single institution, such as what happens with Java
(controlled by Oracle), C# (controlled by Microsoft), or Objective-C and Swift (controlled by Apple). The fact
that the standards committee has members from several organizations protects its users from commercial
manipulation that would benefit a single company, to the detriment of the larger community of users.

 The C++ standards committee has been effective in improving the language in ways that address many
of the modern needs of programmers. For example, the last two version of the language standard (C++11
and C++14) introduced many changes that simplify common aspects of programming, such as simpler
initialization methods, more advanced type detection, and generalized control structures.

 The standard library has also been the target of many improvements over the last few years. A main
focus has been the introduction of containers and smart pointers, which can be used to simplify a large part
of modern applications. The standard library also has been augmented to support parallel and multithreaded
algorithms, using primitives that can be reused on different operating systems and architectures.

 It is necessary to remember that the standardization process has a few drawbacks too. One of the issues
is the time it takes to introduce new features. Since the standardization process requires a lot of organization
and formal meetings, it takes several years before a new version of the standard is approved. Also, there
is the risk of including features that go against the previous design of the language. In this case, however,
the committee has been very careful in introducing only features that have been thoroughly tested and
considered to improve the language according to its philosophy.

CHAPTER 1 ■ OPTIONS CONCEPTS

10

 In general, having a standardized language has certainly helped the C++ community to grow and
improve the whole programming ecosystem over the last few decades. This is just another reason why
financial developers have embraced C++ as a language suitable for the implementation of options and
derivative-based financial algorithms.

 Expressiveness
 Last, but not least, C++ is multi-paradigm language that provides the expressiveness and features necessary
for the implementation of complex software projects. Unlike some languages, which define themselves
as following a single programming paradigm (such as object-oriented or functional), C++ allows use of
multiple paradigms in a single application. In this way, you can use the best approach for problem solving,
independent of the necessary implementation techniques: object-oriented programming, functional
programming, template-based programming, or just simple structured programming.

 Because C++ allows programmers to express themselves using different paradigms, it makes easier
to find a solution that matches the problem at hand, instead of requiring changes to the way you think in
order to match the requirements of the language. For example, a language such as Java, which is designed
as object-oriented, requires programmers to create code based on objects and classes even when this does
not match the underlying requirements of the problem. In C++, on the other hand, you have a choice of
using OO techniques as well as functional or even more traditional structured techniques, if this is what your
algorithm requires.

 The fact that you can use different techniques for different parts of your application also improves your
ability to concentrate on algorithms, instead of on programing techniques. Sometimes using a template-
based strategy is the easiest way to achieve a particular algorithmic goal, and C++ allows you to do that
without getting in your way. Other parts of the application may benefit from using objects, such as the GUI
code. In each case, it is important to be able to express algorithms in the most natural way.

 In this book, you will have the opportunity to use many of the features of C++ in different contexts. It
will be clear that some features such as object-oriented programming are best used with a particular class of
problems, whereas functional techniques may be the best approach in other situations. The fact that the C++
language provides the flexibility to tackle such problems is a distinct advantage.

 Modeling Options in C++
 In this section, you will learn how to code a basic class that can later be used as a starting point for options
analysis and trading. In this first example, you will see a C++ class that can be used as the basis for a
framework for options value calculation. The class is name GenericOption , since it can be used for any type
of underlying, and for calls and puts. Before I present how the class works, let’s review a basic concept of
class design that is unique to the C++ language, and which will be followed in the examples of this book.

 Creating Well-Behaving Classes
 One of the most important parts of designing classes for C++ is to make sure that they can combine
appropriately with other libraries in the system. In particular, the C++ standard library, which includes
the STL (standard template library), is the most important set of classes that you will encounter when
developing C++ applications. It is essential that your classes play well with the classes and templates
provided by the standard library.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ OPTIONS CONCEPTS

11

 To work properly with other parts of the C++ library, classes need to define (or use the default definition
for) the four special member functions. These member functions are mainly used to create and copy objects,
and are required in general to guarantee their proper behavior. These four special member functions are:

• The constructor : Each class can have one or more constructors that define how
to initialize objects of the class. The constructor is named after the class, and it
can be overloaded so that you can create classes with different parameters. The
constructor that receives no parameters is also known as the default constructor,
and the compiler automatically creates it if you don’t supply one. Most of the time
you should avoid using the default constructor because it doesn’t properly initialize
the native C++ types, such as the double and int variables. To avoid such issues, you
should always provide a constructor for new classes.

• The copy constructor : This specialized constructor performs a initialization similar
function; however, it is called only when creating objects from an existing object.
The C++ compiler can also generate a default copy constructor, which copies the
values stored in the original object into the new object. However, the default copy
constructor also has a problem: it doesn’t know the semantics of some values stored
in the object. This causes problems when you’re storing a pointer to allocated
memory or some object that shouldn’t be copied. To avoid such problems, you
should provide your own definition for the copy constructor. The best way to avoid
such issues is to always write a copy constructor for new classes.

• The destructor : A destructor defines how data used by the class is released when the
object is destroyed. Like the other special member functions, the compiler generates
a default empty constructor. You should add your own constructor to properly
handle the release of private data.

• The assignment operator : When copying data between objects, the assignment
operator is invoked automatically. Even though this special method is not equivalent
to a constructor, it does similar work. Therefore, you should apply the same strategy
when dealing with the assignment operator and make sure that it properly handles
initialization and copies the required data members.

 To avoid potential problems with C++ classes, it is best to include these four member functions in
all the classes you create. They are pretty straightforward. The only member function that needs further
explanation is the assignment operator. Suppose that you’re implementing a class called CppClass . The
assignment operator would read as follows:

 GenericOption &GenericOption::operator=(const GenericOption &p)
 {
 if (this != &p)
 {
 m_type = p.m_type;
 m_strike = p.m_strike;
 }
 return *this;
 }

CHAPTER 1 ■ OPTIONS CONCEPTS

12

 The reason for this check is that you don’t want to perform the private data member assignment unless
the objects in the left and right side of the assignment operator are different:

 if (this != &p)

 While performing the auto-assignment might not be a problem for some types of variables (especially
for native types), it can be time consuming for complex objects that need to perform several steps during
initialization and release. For example, if a member is a large matrix, the assignment may trigger an
expensive copy operation that is unnecessary.

 Computing Option Value at Expiration
 The example class GenericOption provides only the minimum necessary to calculate the value of options
at expiration. The first thing you should notice about this class is that it follows the recommended practice
described in the previous section. Therefore it contains a constructor, a copy regular constructor, a
destructor, and an assignment operator.

 The main constructor of GenericOption does very little and is responsible only for the initialization of
private variables. Although this is normal in a simple class, using constructors with very few responsibilities
is a pattern that should be adopted in most cases. Since constructors are used in many places in the C++
language, it is important to make them as fast as possible and relegate any complex operations to member
functions that can be called after the object is created.

 ■ Tip Avoid complex constructors in the classes you design. Constructors are frequently called for the
creation of temporary objects and when passing parameters by value, for example. Complex constructors can
make your code run slower and make classes harder to maintain.

 There are two types of options recognized by the GenericOption class. This is defined by the
enumeration OptionType , which contains the values OptionType_Call and OptionType_Put . Depending
on the value passed to the constructor, the object will behave accordingly as a call or as a put option. The
constructor also requires the strike value of the option and the cost of the option when it was bought. You
will see later in this book how this option cost can be calculated from other parameters, but for now you can
assume that the cost of the option is provided by the exchange.

 The main functionality of the class is contained in two member functions: valueAtExpiration and
 profitAtExpiration . The first member function simply calculates the value of the option at the time of
expiration, which in this case is the same as the intrinsic value. To perform this calculation, it needs to know
the current price of the underlying asset. The member function valueAtExpiraton first needs to determine
if the option is a put or a call. In the case of a put, it takes the difference between the current price and the
strike price as the value, with the value being zero when the strike is lower than the current price. In the
case of a call, this calculation is reversed, with the value being zero when the strike price is higher than the
current price. The full calculation can be coded as follows:

 double GenericOption::valueAtExpiration(double underlyingAtExpiration)
 {
 double value = 0.0;

 if (m_type == OptionType_Call)
 {

CHAPTER 1 ■ OPTIONS CONCEPTS

13

 if (m_strike < underlyingAtExpiration)
 {
 value = underlyingAtExpiration - m_strike;
 }
 }
 else // it is an OptionType_Put
 {
 if (m_strike > underlyingAtExpiration)
 {
 value = m_strike - underlyingAtExpiration;
 }
 }
 return value;
 }

 The profitAtExpiration function is similar to valueAtExpiration , but it also considers the price
that was paid by the option. Thus, a profit in the option is achieved only after it surpasses the break-even
price (for call options). The calculation uses the m_cost member variable to determine the price paid by the
option, and it returns the net profit of the option (without considering transaction costs). The function can
be coded as follows:

 double GenericOption::profitAtExpiration(double underlyingAtExpiration)
 {
 double value = 0.0;
 double finalValue = valueAtExpiration(underlyingAtExpiration);
 if (finalValue > m_cost)
 {
 value = finalValue - m_cost;
 }
 return value;
 }

 Complete Listing
 The complete code for the example described previously is shown in Listing 1-1 . The code is split into a
header file called GenericOption.h and an implementation file called GenericOption.cpp .

 Listing 1-1. Interface of the GenericOption class

 //
 // GenericOption.h

 #ifndef __CppOptions__GenericOption__
 #define __CppOptions__GenericOption__

 #include <stdio.h>

CHAPTER 1 ■ OPTIONS CONCEPTS

14

 //
 // option types based on direction: call or put
 enum OptionType {
 OptionType_Call,
 OptionType_Put
 };

 //
 // class the represents a generic option
 //
 class GenericOption {
 public:
 GenericOption(double strike, OptionType type, double cost);
 GenericOption(const GenericOption &p);
 ~GenericOption();
 GenericOption &operator=(const GenericOption &p);

 double valueAtExpiration(double underlyingAtExpiration);
 double profitAtExpiration(double underlyingAtExpiration);
 private:
 double m_strike;
 OptionType m_type;
 double m_cost;
 };

 #endif /* defined(__CppOptions__GenericOption__) */

 Listing 1-2. Implementation of the GenericOption class

 //
 // GenericOption.cpp

 #include "GenericOption.h"

 using std::cout;
 using std::endl;

 GenericOption::GenericOption(double strike, OptionType type, double cost)
 : m_strike(strike),
 m_type(type),
 m_cost(cost)
 {

 }

 GenericOption::GenericOption(const GenericOption &p)
 : m_strike(p.m_strike),
 m_type(p.m_type),
 m_cost(p.m_cost)
 {

 }

CHAPTER 1 ■ OPTIONS CONCEPTS

15

 GenericOption::~GenericOption()
 {
 }

 //
 // assignment operator
 GenericOption &GenericOption::operator=(const GenericOption &p)
 {
 if (this != &p)
 {
 m_type = p.m_type;
 m_strike = p.m_strike;
 m_cost = p.m_cost;
 }
 return *this;
 }

 //
 // Computes the value of the option at expiration date.
 // Value depends on the type of option (CALL or PUT) and strike.
 //
 double GenericOption::valueAtExpiration(double underlyingAtExpiration)
 {
 double value = 0.0;

 if (m_type == OptionType_Call)
 {
 if (m_strike < underlyingAtExpiration)
 {
 value = underlyingAtExpiration - m_strike;
 }
 }
 else // it is an OptionType_Put
 {
 if (m_strike > underlyingAtExpiration)
 {
 value = m_strike - underlyingAtExpiration;
 }
 }
 return value;
 }

 //
 // return the profit (value at expiration minus option cost)
 //
 double GenericOption::profitAtExpiration(double underlyingAtExpiration)
 {
 double value = 0.0;
 double finalValue = valueAtExpiration(underlyingAtExpiration);

CHAPTER 1 ■ OPTIONS CONCEPTS

16

 if (finalValue > m_cost)
 {
 value = finalValue - m_cost;
 }
 return value;
 }

 int main()
 {
 GenericOption option(100.0, OptionType_Put, 1.1);
 double price1 = 120.0;
 double value = option.valueAtExpiration(price1);
 cout << " For 100PUT, value at expiration for price "
 << price1
 << " is "
 << value << endl;
 double price2 = 85.0;
 value = option.valueAtExpiration(85.0);
 cout << " For 100PUT, value at expiration for price "
 << price2
 << " is "
 << value << endl;

 // test profitAtExpiration
 auto limit = 120.0;
 for (auto price = 80.0; price <= limit; price += 0.1)
 {
 value = option.profitAtExpiration(price);
 cout << price << ", " << value << endl;
 }

 return 0;
 }

 Building and Testing
 To compile the code presented in the last section, you need a standards compliant C++ compiler. I have
tested this code with gcc and LLVM cc, although most compilers should work without any problems. Here
are the commands that I used to compile this on my machine:

 gcc –o GenericOption.o –c GenericOption.cpp

 gcc –o GenericOption GenericOption.o

CHAPTER 1 ■ OPTIONS CONCEPTS

17

 The executable file can then be used to run the sample application like this (I used the bash shell to run
the application on UNIX):

 $./GenericOption

 For 100PUT, value at expiration for price 120 is 0
 For 100PUT, value at expiration for price 85 is 15

 80, 20
 80.1, 19.9
 80.2, 19.8
 80.3, 19.7
 80.4, 19.6
 80.5, 19.5
 80.6, 19.4
 80.7, 19.3
 ...

 You can check the output to determine if the results match your expectations. I used the data to create a
chart with the results, as shown in Figure 1-3 . Since the example is a put, notice that the profit is negative for
any price higher than the break-even price of $98.90. Below that value, the profit rises steadily, attaining its
maximum value at price $0 (not shown in the chart).

 Figure 1-3. Profit chart calculated with the GenericOption class for sample option with strike price $100

CHAPTER 1 ■ OPTIONS CONCEPTS

18

 Further References
 In this chapter, I provided an introduction to most common concepts of options investing, and how C++
programmers can model them. You can turn to several other sources for further clarity on the concepts
introduced in this chapter. If you need additional information on options and related financial investments,
here are a few books that cover not only the basics but also the mathematical details of options investing:

• Option Volatility & Pricing , by Sheldon Natenberg, McGraw Hill, 1994. This is the
standard reference on options and their properties. This book explains in great
detail how options are defined, how option Greeks work, and their basic economic
interpretation.

• Investment Science, by David Luenberger, Oxford University Press, 1998. This is an
undergraduate-level book that describes the basic theory of investment. Most of
the book explains the fundamentals of fixed income investments, but the included
algorithms can be used for other common problems in finance.

• Mathematics for Finance, by Marek Capinski and Tomasz Zastawniak, Springer
Press, 2011. This book is more for the mathematically inclined. It explains not only
the basics of fixed income investments, but also gives a lot of mathematical methods
that are useful in their analysis. Many of these techniques are also used in analysis of
options-based investments.

• Investments by Zvi Bodie, Alex Kane, and Alan J. Marcus, McGraw Hill/Irwin, 2004.
This is a standard textbook on investment theory that explains, among other topics,
the ideas behind equity-based investments and their derivatives.

 Conclusion
 In this chapter, I provided an overview of the themes and ideas that will be discussed in the remainder of
the book. Options are basic financial vehicles that can serve multiple investment goals such as providing
risk protection, supplying short-term income, or serving as a speculation method based on perceived future
prices of a financial instrument.

 I started with a basic description of options and how they fit in the landscape of the investment
industry. You learned the most important properties of options and how they define standard contracts
that are traded by stock, futures, and commodity exchanges. I also described how this information may be
useful to software engineers who want to create solutions for the financial industry using C++ as the main
implementation language.

 You have seen how options can be described by options Greeks, a set of standard attributes associated
with option contracts that can be used to determine several properties of the option. In particular, these
option Greeks are useful for evaluating the price at which options should be bought and sold, as you will see
in the algorithms introduced in the later part of this book.

 This chapter also discussed the advantages of C++ as a language for financial and options-related
programming. Many of the features of C++ make it an ideal language to implement algorithms and large-
scale software packages to analyze and trade options. You have seen an example C++ class that can be used
to compute the profit or loss for a single option contract.

 In the next chapter, you will learn about derivatives in general and how they expand on the ideas of
common options. You will also see how such financial derivatives can be modeled using the C++ language.

19© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_2

CHAPTER 2

Financial Derivatives

Derivative is a general term for contracts that have their price based on the properties of an underlying asset.
In particular, options are a standardized type of derivatives that give the right to buy or sell the underlying
asset at a particular price. Unlike options, however, general derivatives include a large number of non-
standard features that allow them to be created even for illiquid assets such as corporate credit risk or real
estate mortgages.

In the last decades, the financial industry has created and popularized a multitude of derivatives
to collateralize disparate assets, including items such as fixed income instruments, mortgage-backed
securities, and risk of default. Pricing and trading these derivatives is a large part of the work performed daily
in the trading desks of large banks and by quantitative programmers throughout the world.

This chapter focuses on characteristics of general derivatives and presents a few C++ techniques that
are useful to model specific aspects of these financial instruments. The topics in this chapter also introduce
you to what you will learn in more depth in the remainder of this book. The main topics covered in the
chapter are:

•	 Models for derivative pricing: You will learn the basic ideas used to determine the
price of various derivatives along with a few examples of how they work.

•	 Credit default swaps: A particular type of derivative where investors want to buy
protection against the default of a third-party institution.

•	 Interest rate derivatives: A derivative in which the underlying asset is an interest rate
that is paid in predefined time periods.

•	 FX derivatives: A quick introduction to some exotic derivative contracts.

•	 A Monte Carlo model for derivatives: You will explore a simple computation of Monte
Carlo models for pricing derivatives.

•	 Using the STL for derivative pricing: Using the STL makes it possible to create fast
containers for generic objects, without incurring runtime inefficiencies.

Models for Derivative Pricing
In the last chapter you learned some basic information about options and how to use C++ to work with these
simple contracts. Recall that an option is a kind of financial derivative that is traded on exchanges and uses a
standard agreement between buyers and sellers. General derivatives, however, are not restricted to the fixed
requirements of a simple option contract. In this chapter, you will learn about more complex derivatives,
including how they are handled in the financial community.

Chapter 2 ■ Financial Derivatives

20

In its general sense, a financial derivative is just a contract that assigns a value to a particular set of
rights linked to an underlying asset. For example, options give the right to buy or sell an asset such as a stock
or a commodity. But more complex derivatives can be created if you just a more exotic transaction between
buyers and sellers. For example, credit default swaps are contractual exchanges that require a payment to
occur only when a particular entity is in default. For another example, collateralized debt obligations will
require payments that depend on the risk level of certain borrowers.

The common aspect shared between different derivatives is the way their prices are modeled, that is,
the mathematical characteristics of price changes for these instruments. All derivatives that are traded in the
market can be analyzed using a generalized random walk model that was discovered and applied in the 20th
century by American economists. Such a model for derivative pricing and their associated mathematical
equations were developed and popularized by Robert Merton, in a work that was itself a generalization of
the Nobel prize winning Black-Scholes model for options pricing.

In a random walk model, the prices of securities are studied under the assumption that the changes are
random. That is, prices can move up or down by a random value that is given by a normal distribution, as
shown in Figure 2-1. While this is only an approximation of the complex market behavior, it is so close to what
has been observed in the marketplace that models based on random walks have been extremely successful.
These models have been frequently used in the financial industry to accurately determine prices for options
and more complex derivatives. As a result, most of what you will learn in this book is in some way or another
related to how to explore this pricing model when creating software to analyze and trade derivatives.

Figure 2-1.  An example of random walk

The first thing to understand about the random walk model for derivative pricing is that it results in a
set of equations that determine the behavior of prices as time passes. This equation is, by the nature of its
assumptions probabilistic, but it can be solved to give a value for the fair price of a particular investment
instrument.

Chapter 2 ■ Financial Derivatives

21

The fair price, according to economic assumptions, is the price at which neither the sellers nor the
buyers would have an unfair advantage. In other words, both sides in the transaction are satisfied with the
result, and there is no known way to extract more value from one of the sides in the transaction without
breaking this equilibrium. Because the model used is probabilistic, this also means that each side of the
transaction has the same probability of making money after the transaction is concluded. This fair price
element of the model allows you to calculate a fixed value using only a probabilistic assumption about future
expectations.

Table 2-1.  A List of Common Derivatives

Derivative Type Description

Credit default swaps A contract that pays its holder in the case of a default of a target
corporation.

Collateralized debt obligations A financial product where debt is paid to investors according to levels of
risk collateral from borrowers.

FX derivatives A derivative where the underlying asset is composed of foreign
currencies, with prices varying according foreign exchange trading.

Interest rate Derivatives A derivative in which the underlying asset is an interest rate that is paid
in predefined time periods.

Mortgage-backed security A type of derivative that is defined in terms of mortgage contracts.

Energy derivative Derivative in which the underlying asset is an energy product or asset,
such as oil, natural gas, coal, or electricity.

Inflation derivative Derivative contracts that have a price defined by the level of inflation in
a particular economy.

Another consequence of fair prices is that the resulting model allows no arbitrage. Arbitrage is a
method of making money in financial markets where you buy some asset for a price and immediately sell
it for a higher price for a sure profit. This kind of arbitrage cannot be allowed in a financial model, because
it indicates that the original price was unfair for at least one of the participants. It also corresponds to the
known fact that, in liquid and free markets, opportunities for arbitrage will be non-existent or disappear as
soon as they are identified.

Credit Default Swaps
A credit default swap is a derivative that allows investors to bet on the solvency of a particular institution.
In this case, the underlying asset is defined as the value of a business minus the liabilities it currently has.
Solvency is then defined as the situation in which the value of the business is superior to its liabilities.

Credit default swaps have been used as a way to protect large corporations against the risk of default
of a counterpart, which is a common risk suffered by contracts with large institutions. For example, the
2008 financial meltdown proved that counterpart risk is very difficult to avoid when only a few participants
dominate a large part of the market. The ability to use mathematical techniques to model this type of risk is
therefore very important for institutions that deal with such large-scale operations.

In the recent years, most banks and other investment institutions have become active in the
development of CDS models as a way to mitigate such risks. Much of the software for solving CDS pricing
models is based on modern C++, which you will learn in the next chapters.

Chapter 2 ■ Financial Derivatives

22

Collateralized Debt Obligations
A collateralized debt obligation is a financial derivative product based on the cash flow of a collection of
loans. The collateralization process makes it possible to split the cash flows among different investors based
on the characteristics of individual loan originations.

In particular, CDOs are used to split cash flows based on risk of loans. Parts of the cash flow are
classified as low risk (for example, loans that are labeled as AAA by credit rating institutions) and sold for
higher profit, while other parts of the package are sold as higher-risk investments. CDOs have acquired a bad
public reputation during the financial crisis, but they remain a valuable tool for defining the risk associated
with particular investment classes.

CDO pricing relies heavily on the derivative pricing techniques that will be discussed in this book. The
development of Black-Scholes-Merton methods gave institutions the ability to price more complicated
products using similar ideas. By extending these pricing methods to collateralized loans, quantitative trading
desks have been able to create a complete new category of financial products that are now used by most
banks and other financial institutions.

Figure 2-2.  Securitization levels of mortgage loans during the 90s and 2000s (from the official government
publication, “Financial Crisis Inquiry Commission Report”)

Chapter 2 ■ Financial Derivatives

23

FX Derivatives
Derivatives based on foreign currencies are a relatively simple extension of the ideas already used on
options. The underlying price is defined by foreign exchanges. The basic difference between such products
and standard options is that they depend on the price variation of two currencies.

FX derivatives have an important role in markets that rely on foreign trade. For example, it is used in
the production planning of companies that need protection against variations in currency prices. Most
global companies that buy or sell products in a foreign market will use FX derivatives as a tool to avoid the
unpredictability of currency fluctuations.

FX derivatives can also be an investment vehicle. Hedge funds have for a long time used foreign
exchange products as a way to hedge against possible losses in foreign investments. They can also be used to
speculate on the rise or fall of foreign currencies as compared to the local currencies. For all these reasons,
the pace of development of mathematical models for FX derivatives has been significant in the industry.
Because of the right volatility and near real-time needs of FX traders, C++ has become the language of choice
for developing applications that handle FX derivative pricing.

Derivative Modeling Equations
The equations that have been used to model the future price of derivatives are generally called the Black-
Scholes-Merton equations. These equations, which are based on similar differential equations from physics,
describe the properties of pricing models when considering a number of input parameters. Here are the
most commonly used parameters for these differential equations:

•	 The price of the underlying asset: This is the price of the asset that is the basis for the
derivative. In the case of stock options, this is the price of the stock at the present
time.

•	 The current interest rates: Interest rates have an important role in the modeling
of derivatives, because they are the safest way to get a return on your money. The
price of a derivative has to take in consideration the prevailing interest rates and the
money that the investor could be earning in a risk-free investment.

•	 The strike price: The price at which a transfer of value will happen. For call options,
this is the price above which a profit is made. More complex models will have
different definitions for the strike price.

•	 Volatility: The volatility for the underlying asset is very important in derivative
models, because it determines how fast the underlying prices move. This
information then can be used to calculate the probabilities that are part of the
general model for the derivative price. Volatilities are described in terms of the
standard deviation.

•	 Time left in the contract: Time is another important variable, because the more time
that’s left to expiration, the higher the probability that the underlying asset will move
in price. This directly affects the probability of profit for the derivative.

These parameters are used as part of the differential equation that determines the price of a derivative.
Here is the basic equation that is generally called the Black-Scholes model:

∂
∂

+
∂
∂

+
∂
∂

=
V

t
S

V

S
rS

V

S
rV

1

2
2 2

2

2
σ

Chapter 2 ■ Financial Derivatives

24

The differential equation determines the relationship between the following quantities:

•	 V: The price of the derivative

•	 t: The time

•	 σ: The volatility

•	 S: The price of the underlying asset

•	 r: The current interest rate

This equation can be extended for different purposes, depending on the type of contract you want to
price. For example, when working with options, this equation will result in a formula that returns the price
of a call or put option, which will depend on the desired strike. Moreover, the exact formula will change
depending on the type of exercise: either an American- or European-style option. You will see in later
chapters a few examples of how the general equation can be used with different derivatives.

Numerical Models
As discussed in the previous section, the existing models for options pricing are based on the Black-Scholes
equation, which describes the variation of derivative prices with time, along with a number of other
parameters. Later, Merton successfully expanded this model to deal with other derivatives. All these models
share the fact that prices are assumed to be random and change according to a predefined probability
distribution.

In order to solve these models, you have to develop a few techniques to extract the desired prices, given
the set of input parameters required by the equations. There are two main strategies that have been devised
for this purpose: numerical methods and simulation methods.

Numerical methods refer to a set of mathematical and computational techniques to solve, or at least
approximate, differential equations. While numerical methods were invented to solve problems in physics
and engineering, they have been recently used with success to solve pricing problems for options and
derivatives. Many of the techniques studied in this book are targeted at solving one or more parts of the
derivative-pricing models previously described.

Examples of mathematical tools that are used in the numerical solution of complex derivative models
include linear algebra, optimization, and approximation methods, probability, numerical root calculation,
and finite difference methods. These mathematical tools can be used in isolation or combined to form more
complex algorithms for the solution of Black-Scholes equations.

The other side of numerical models is the development of fast algorithms. While the mathematical
tools are important, they need to be implemented in a fast and efficient manner to be used in financial
applications. Pricing models frequently need to be solved very frequently, and the performance and
accuracy of solutions can make the difference between a profitable and a losing financial transaction.

Binomial Trees
Another technique used to determine the price of derivatives is the method of binomial trees. A binomial
tree is a technique to organize the computation necessary to determine derivative prices in a step-by-step
fashion. The root of the tree is the original price. At each node, there are two possible directions for the new
price, which can be calculated using a few equations.

Chapter 2 ■ Financial Derivatives

25

Once the complete tree has been calculated, it is possible to answer questions about the fair price of the
derivative at particular strike prices and time periods. The complete algorithm for binomial trees has three
main steps:

•	 The forward phase: This phase is where the tree is constructed, starting at time zero
with the initial price. Then, the total time is divided into discrete steps and at each
step a new set of nodes is created. The nodes represent the two directions in which
the underlying price can change. This phase starts when the tree nodes reach the
maturity date.

•	 The payoff phase: In this phase the profit (payout) of each node is calculated. The
calculation starts from the maturity date, since the profit in that case is easy to
calculate.

•	 The backward phase: In this phase, the computation of the payout continues moving
backwards in time, using the values calculated in the previous phase as the starting
point. This process continues until the initial node is reached.

Simulation Models
Simulation models, also called Monte Carlo models, are a different approach to solve problems involving
differential equations, such as the equations necessary for derivative pricing. The main motivation behind
simulation models is that the equations for derivative pricing generally don’t have a closed mathematical
solution. In that case, a possible strategy is to run a simulation of the price evolution, while considering that
price changes according to the random distribution assumed by the Black-Scholes equations.

Monte Carlo methods have a long history. Since the development of probability theory, researchers
have found that simulating a random event is a good way to learn about a certain physical or engineering
model. With the introduction of modern computers, it is now possible to perform very complex simulation
in an efficient way. This is an area where using C++ is a big advantage, since simulation accuracy is directly
related to the number of repetitions of a basic random experiment.

To find the price of a derivative security, the basic step is to develop a random walk model for the
security. As discussed previously, derivatives are based on the idea that underlying prices are always moving
in an unpredictable, random way. A Monte Carlo algorithm will use this property to simulate the movements
of the underlying asset for a large number of times. The random fluctuations are determined with a random
number generator, according to the parameters that have been previously observed for the asset, such as
volatility, current interest rate, and observed price of the underlying instrument.

If the simulation is properly performed, a Monte Carlo algorithm will converge to a particular value of
derivative price, according to the assumptions of the Black-Scholes equation. The interpretation of these
simulated runs can be used to determine the price of a particular contract.

Another consideration is that numeric and Monte Carlo methods are not necessarily exclusive options.
You can code numerical methods to solve a particular pricing problem, while at the same time using Monte
Carlo method for confirmation of the results. You can also start using Monte Carlo methods to explore
different scenarios, and then code a more precise numerical algorithm to find the solution of the more
interesting scenarios. Still another possibility is to use numerical algorithms to solve particular sub-problems,
and use a Monte Carlo simulation to put these values together in a more complicated scenario. In summary,
there are many ways to combine numerical algorithms and simulation to achieve the desired results.

Chapter 2 ■ Financial Derivatives

26

Using the STL
One of the main goals of C++ is to provide efficient and high-level code for applications. One of the tools
used by programmers to achieve this goal is the Standard Template Library (STL). With the STL, it is possible
to create fast containers for generic objects, without incurring runtime inefficiencies.

The STL provides a list of software components that you can use in several contexts. The library can be
described as having three main groups of templates:

•	 Containers: A container is a template that provides generic logic for a group of
objects. They typically implement traditional data structures using the facilities
provided by templates. Table 2-2 displays a quick list of containers provided with the
STL and a short description of each one.

•	 Iterators: Along with containers, you also need data structures to manipulate data.
This is possible in the STL by using iterators. With an iterator, you can easily access
individual elements in a container and perform common operations such as adding,
removing, and modifying single elements.

•	 Algorithms: The last major piece of the STL is a set of algorithms that have been
optimized to each container. Because templates are parameterized, the algorithms
in the STL can be specialized for each container, so that users can have the fastest
algorithm for each container while using the same interface. This means that you
just need to learn a small set of algorithms that are applicable to several containers.
The STL templates will guarantee that you’re using the most efficient version for that
particular container. Table 2-3 displays a quick list of algorithms in the STL.

Table 2-2.  List of STL Containers

Container Description

std::vector A dynamically allocated array of elements, where members are guaranteed to be
allocated contiguously.

std::list A linked list data structure.

std::map An associative data structure, where elements are associated with keys of a particular
type.

std::multimap A version of std::map template that can also contain repeated elements.

std::queue A first-in last-out template.

std::dqueue A double queue, where elements can be added or removed from both sides of the
queue.

std::set A data structure that contains ordered values and provides quick lookup
functionalities.

std::multiset A set where elements can appear more than once.

Chapter 2 ■ Financial Derivatives

27

Generating a Random Walk
This section describes a simple way to generate random walks in C++. While the method presented is not
optimal, it shows most of the elements necessary to create realistic random walks. In the later chapters, you
learn about the statistical techniques that can be used to create more realistic random walks, suitable for
derivative pricing algorithms.

The class is called RandomWalkGenerator and it exposes a main member function called
generateWalk(). The class has the responsibility of creating a sequence of numbers that represent a random
walk. This means that starting on a particular value (the initial price), the sequence will change according
to random increments, as determined by the given step parameter. Finally, the size of the sequence (which
corresponds to the time to expiration of a contract) is also given as a parameter to the class. This results in a
class with the following signature to the constructor:

RandomWalkGenerator(int size, double start, double step);

The main member function performs the task of sequentially generating new steps in the price
simulation. The function receives no parameters and uses the member data already stored in the
RandomWalkGenerator class.

The way this member function operates is based on the std::vector container, which is used to store
all the intermediate prices created by the Monte Carlo process. The constructor used in this case is the
default constructor, which results in an empty vector. The vector is then populated inside the for loop using
the vector::push_back, a member function that adds a new element at the end of the vector and resizes the
vector if more space is necessary. The fragment uses the value returned by computeRandomStep(), starting
from the previous price stored in the variable prev.

Table 2-3.  List of STL Algorithms

Algorithm Description

std::for_each Performs a given function for each element of the target container.

std::find Searches the container for a given element, given a range indicating the beginning
and end of the region.

std::find_if Similar to std::find, but searches the container for a given element satisfying a
given predicate.

std::find_first_of Searches the container for the first match of a particular element, given a range of
elements.

std::count Counts the number of elements in the container that matches the given parameter.

std::count_if Counts the number of elements in the container that satisfies a given predicate.

std::copy Copies elements from a given origin position to a destination.

std::move Moves elements from a given origin position to a destination position.

std::reverse Reverses the current order of the container.

std::sort Sorts the container according to a comparison function.

std::binary_search Performs binary search for a particular element on a given container.

Chapter 2 ■ Financial Derivatives

28

std::vector<double> RandomWalkGenerator::generateWalk()
{
 vector<double> walk;
 double prev = m_initialPrice;

 for (int i=0; i<m_numSteps; ++i)
 {
 double val = computeRandomStep(prev);
 walk.push_back(val);
 prev = val;
 }
 return walk;
}

Finally, you can see the computeRandomStep member function, which generates a new random price
according to the simulation arguments. The idea used in this example is that there is a 1/3 chance that the
price will change up, down, or stay the same. I use a simple random number generator to return uniformly
generated numbers (rand is not the best choice for such applications, but you’ll learn about better options
in a latter chapter). The result is that you have a “three-sided coin” that determines the direction of the next
step in the simulation. Here is the complete code for this member function:

double RandomWalkGenerator::computeRandomStep(double currentPrice)
{
 const int num_directions = 3;
 int r = rand() % directions;
 double option_value = currentPrice;

 if (r == 0)
 {
 option_value += (m_stepSize * val);
 }
 else if (r == 1)
 {
 option_value -= (m_stepSize * val);
 }
 return option_value;
}

Finally, I present a test stub that can be used to verify the code. It is always a great idea to perform some
testing of the algorithm as you implement it. This kind of testing can be used to avoid obvious mistakes as
you code an algorithm. The test case is to generate a random walk starting from price $30, for 100 steps with
a step size of $0.01. Here is the code that’s used:

int main()
{
 // 100 steps starting at $30
 RandomWalkGenerator rw(100, 30, 0.01);
 vector<double> walk = rw.generateWalk();

Chapter 2 ■ Financial Derivatives

29

 for (int i=0; i<walk.size(); ++i)
 {
 cout << ", " << i << ", " << walk[i] << cout::endl;
 }
 cout << endl;
 return 0;
}

Complete Listing
The complete code for the example is listed next. The code is split into a header file called GenericOption.h
and an implementation file called GenericOption.cpp.

Listing 2-1.  Interface of the RandomWalkGenerator class

//
// RandomWalkGenerator.h
//
// Interface for random walk generator class.

#ifndef __CppOptions__RandomWalkGenerator__
#define __CppOptions__RandomWalkGenerator__

// the class uses a vector to hold the elements
// of the random walk, so they can be later plotted.
#include <vector>

//
// Simple random walk generating class. This class can be
// used for price simulation purposes.
//
class RandomWalkGenerator {
public:
 //
 // class constructors
 RandomWalkGenerator(int size, double start, double step);
 RandomWalkGenerator(const RandomWalkGenerator &p);

 // destructor
 ~RandomWalkGenerator();

 // assignment operator
 RandomWalkGenerator &operator=(const RandomWalkGenerator &p);

 // main method that returns a vector with values of the random walk
 std::vector<double> generateWalk();

 // returns a single step of the random walk
 double computeRandomStep(double currentPrice);

Chapter 2 ■ Financial Derivatives

30

private:
 int m_numSteps; // the number of steps
 double m_stepSize; // size of each step (in percentage points)
 double m_initialPrice; // starting price
};

#endif /* defined(__CppOptions__RandomWalkGenerator__) */

Listing 2-2.  Implementation of the RandomWalkGenerator class

//
// RandomWalkGenerator.cpp
//
// Simple random walk implementation.

#include "RandomWalkGenerator.h"

#include <cstdlib>
#include <iostream>

using std::vector;
using std::cout;
using std::endl;

//
// Constructor. The supplied parameters represent the number of elements in the
// random walk, the initial price, and the step size for the random walk.
//
RandomWalkGenerator::RandomWalkGenerator(int size, double start, double step)
: m_numSteps(size),
m_stepSize(step),
m_initialPrice(start)
{
}

RandomWalkGenerator::RandomWalkGenerator(const RandomWalkGenerator &p)
: m_numSteps(p.m_numSteps),
m_stepSize(p.m_stepSize),
m_initialPrice(p.m_initialPrice)
{
}

RandomWalkGenerator::~RandomWalkGenerator()
{
}

RandomWalkGenerator &RandomWalkGenerator::operator=(const RandomWalkGenerator &p)
{

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Financial Derivatives

31

 if (this != &p)
 {
 m_numSteps = p.m_numSteps;
 m_stepSize = p.m_stepSize;
 m_initialPrice = p.m_initialPrice;
 }
 return *this;
}

//
// returns a single step of the random walk
//
double RandomWalkGenerator::computeRandomStep(double currentPrice)
{
 const int num_directions = 3;
 int r = rand() % num_directions;
 double val = currentPrice;
 if (r == 0)
 {
 val += (m_stepSize * val);
 }
 else if (r == 1)
 {
 val -= (m_stepSize * val);
 }
 return val;
}

//
// This is the main method. It will generate random numbers within
// the constraints set in the constructor.
//
std::vector<double> RandomWalkGenerator::generateWalk()
{
 vector<double> walk;
 double prev = m_initialPrice;

 for (int i=0; i<m_numSteps; ++i)
 {
 double val = computeRandomStep(prev);
 walk.push_back(val);
 prev = val;
 }
 return walk;
}

//
// This is a testing stub. It generates a sequence of random points.
//

Chapter 2 ■ Financial Derivatives

32

int main()
{
 // 100 steps starting at $30
 RandomWalkGenerator rw(100, 30, 0.01);
 vector<double> walk = rw.generateWalk();

 for (int i=0; i<walk.size(); ++i)
 {
 cout << ", " << i << ", " << walk[i] << cout::endl;
 }
 cout << endl;
 return 0;
}

Building and Testing
You can build the code presented in the last section using any standards compliant C++ compiler. The code
was tested on Linux and MacOS X. You can use a compiler such as gcc, which is freely available on all major
platforms. The commands used in this case were:

gcc –o RandomWalkGenerator.o –c RandomWalkGenerator.cpp

gcc –o RandomWalkGenerator RandomWalkGenerator.o

The code contains a test stub that generates a sample random walk. You can run the application to see
the sequence of random prices created by the RandomWalkGenerator class. Here is sample output from my
machine:

$./RandomWalkGenerator

0, 29.7,
1, 29.403,
2, 29.403,
3, 29.403,
4, 29.109,
5, 29.109,
6, 29.4001,
7, 29.4001,
8, 29.4001,
9, 29.1061,
10, 29.3971,
...

Using the data provided in this sample output, it is easy to create a chart that shows the price behavior
over a simulated period of time, as shown in Figure 2-3. Notice how this simple output is close to the
behavior of a traded asset. You will later learn to change the parameters in this type of simulation so that it
more closely resembles a particular asset class.

Chapter 2 ■ Financial Derivatives

33

Further References
Derivatives are a broad subject, and several books have been written on theoretical and practical aspects of
these investment vehicles. Here is a quick list of references that can be used to get additional information on
this topic.

•	 Practical C++ Financial Programming, by C. Oliveira. This book covers most of the
basic algorithms necessary for derivatives pricing. Examples in C++ are provided in
each chapter.

•	 The “Financial Crisis Inquiry Commission Report,” which is a publication of the
U.S. government (available at http://www.gpo.gov/fdsys/pkg/GPO-FCIC/pdf/
GPO-FCIC.pdf) provides an overview of derivatives trading activity that lead to the
financial crisis of 2008.

•	 Options, Futures, and Other Derivatives, by John C. Hull. This is the standard
textbook introduction to derivatives.

•	 Derivatives Markets, by Robert L. McDonald. This book provides an in-depth look at
the several markets in which financial derivative methods have been applied.

Figure 2-3.  Profit chart A random walk produced by the application RandomWalkGenerator

http://www.gpo.gov/fdsys/pkg/GPO-FCIC/pdf/GPO-FCIC.pdf
http://www.gpo.gov/fdsys/pkg/GPO-FCIC/pdf/GPO-FCIC.pdf

Chapter 2 ■ Financial Derivatives

34

Conclusion
This chapter introduced the main ideas about general derivatives. Derivatives allow investors and traders
to enter into contracts that are based on a particular asset, while having some of their rights defined by
associated price levels of the underlying asset and other parameters, such as interest rates, volatility, and
time to expiration. The concepts behind derivatives make it possible to create financial products that
uniquely target different patterns of risk and reward. Derivatives can be used to mitigate the risk associated
with many credit and asset based transactions. They can also be used to make risky bets on particular
markets.

You have seen the basic models used for derivative pricing. These models are ultimately based on the
equations developed by Black, Scholes, and Merton. These partial derivative equations determine with
precision the price of the derivative as time passes, while making a small number of assumptions about
the underlying asset. The main assumption used is that the changes in the underlying asset are randomly
distributed, with known volatility.

I described the main approaches for solution derivative pricing models. In general terms, you will be
able to apply numerical algorithms, based on the exact solution of mathematical equations, binary tree
techniques, or Monte Carlo methods, which are simulation algorithms that replicate the price movements of
the desired financial asset.

As an example of C++ programming for derivative pricing, I introduced a C++ class that implements
a random walk. This class illustrates how Monte Carlo methods operate, and will be later used as a basic
algorithm for more complex pricing methods.

The next chapter introduces other basic algorithms used in the implementation of option and derivative
pricing models. You will see how these algorithms can be efficiently coded in C++. I also reviewed some of
the most used C++ libraries in finance.

35© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_3

 CHAPTER 3

 Basic Algorithms

 To become a proficient software developer, it is essential that you understand the basic algorithms used
in your application area. This is especially applicable to financial derivatives, where some basic problems
and algorithms are recurring. In this chapter, I examine some common algorithms encountered in C++
applications for analyzing and processing options and derivatives.

 Some of the basic algorithms in this area involve recurring tasks such as time series processing, date
and time handling, and data access and storage. While these algorithms are useful in most applications,
they are especially important in code that handles options and other financial derivatives. This chapter will
also prepare you for the type of C++ coding skills that are necessary for more advanced topics covered in the
following chapters.

 The chapter is organized so that you survey some basic algorithms and their implementation in C++,
including the following topics:

• Date and handling: Date representations are important for many of the underlying
algorithms used in financial engineering. You will learn about the main operations
performed on dates, and how they can be implemented in C++.

• Compact date implementation: Another aspect of date processing is the efficient
memory use for long-time series. I discuss some of the alternative representations
for date objects and explain how they can be implemented in C++.

• Networks and graphs: Data elements and their relationships are often described as
a network of connections. This is true for many of the data entities used in financial
analysis. You will see a quick overview of networks and their representation using
C++ and the STL, along with an example of their use.

 Date and Time Handling
 Among the basic algorithms and data structures used on financial algorithms, data handling is one of the
most commonly used. Dates are needed to process time series, which can span time periods ranging from
a few minutes to several years. For this reason, it is important to use date-handing data structures that
are efficient and accurate so that you don’t need to worry about the correctness of financial calculations
depending on dates.

 In this section, you’ll learn about the most common ways to represent dates in C++ applications. This
will also help you choose a date representation that matches the requirements of your particular application.
The first thing is to realize that there are several ways to represent dates in a computer program. The simplest
technique is to use a class that stores the values for day, month, and year. This is the representation used for
the Date class, as explained in this section. A more compact representation of dates will be presented in the
next section.

CHAPTER 3 ■ BASIC ALGORITHMS

36

 Date Operations
 A number of operations are commonly required on dates. Table 3-1 presents some of the most common date
operations that will be discussed in this chapter.

 Table 3-1. List of Common Operations Performed on Date Objects

 Operation Description

 add Add a certain number of days to the current date.

 subtract Subtract a certain number of days from the current date.

 addTradingDays Add a number of trading days to the current date.

 subtractTradingDays Subtract a number of trading days from the current date.

 dateDifference Return the difference in days from the current date.

 tradingDateDifference Return the difference in trading days from the current date.

 dayOfTheWeek Return the day of the week corresponding to the current date.

 isWeekDay True if the date is a weekday.

 isHoliday True if the date is a holiday.

 isTradingDay True if the date is a trading day.

 nextDay Increment the current date to the next valid day.

 nextTradingDay Increment the current date to the next valid trading day.

 The Date class implements the operations described in Table 3-1 . The declaration for the Date class is
the following:

 class Date {
 public:
 Date(int year, int month, int day);
 Date(const Date &p);
 ~Date();
 Date &operator=(const Date &p);

 void setHolidays(const std::vector<Date> &days);
 std::string month();
 std::string dayOfWeek();

 void add(int numDays);
 void addTradingDays(int numDays);
 void subtract(int numDays);
 void subtractTradingDays(int numDays);
 int dateDifference(const Date &date);
 int tradingDateDifference(const Date &date);
 DayOfTheWeek dayOfTheWeek();
 bool isHoliday();
 bool isWeekDay();
 Date nextTradingDay();

CHAPTER 3 ■ BASIC ALGORITHMS

37

 bool isLeapYear();
 bool isTradingDay();
 void print();

 Date &operator ++();
 Date &operator --();
 bool operator<(const Date &d) const;
 bool operator==(const Date &d);
 private:
 int m_year;
 int m_month;
 int m_day;
 DayOfTheWeek m_weekDay;
 std::vector<Date> m_holidays;
 };

 Notice that the date members store the year, month, and day, which are passed to the constructor.
There are two other data members: m_weekDay , which stores the current day of the week (if it is known), and
 m_holidays , which stores a list of given holidays.

 The day of the week is calculated by adding days starting from January 1st, 1900, which was a Monday.
This process is improved by storing the result on m_weekDay so that it doesn’t need to be recomputed. The
member function is implemented as follows:

 DayOfTheWeek Date::dayOfTheWeek()
 {
 if (m_weekDay != DayOfTheWeek_UNKNOWN) return m_weekDay;

 int day = 1;
 Date d(1900, 1, 1);
 for (;d < *this; ++d)
 {
 if (day == 6) day = 0;
 else day++;
 }
 m_weekDay = static_cast<DayOfTheWeek>(day);
 return m_weekDay;
 }

 Another important member function used throughout the class is operator++ . This function will
update the object so that it represents the next valid date. In most cases, only the m_day field needs to be
incremented. However, when the day is 28, 29, 30, or 31, both the month and day need to be updated. Then,
the right thing to do depends on the month, as shown in the following code fragment:

 if (m_day == 31)
 {
 m_day = 1;
 m_month++;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

38

 else if (m_day == 30 &&
 std::find(monthsWithThirtyOneDays.begin(),
 monthsWithThirtyOneDays.end(), m_month)
 == monthsWithThirtyOneDays.end())
 {
 m_day = 1;
 m_month++;
 }
 else if (m_day == 29 && m_month == 2)
 {
 m_day = 1;
 m_month++;
 }

 // ...

 Here, monthsWithThirtyOneDays is a vector containing a set of months that have 31 days. Other tests are
analogous to this example. Similarly, operator-- adjusts the object to the previous valid date. If the current
day is 1, it finds the right date based on the number of days in the previous month.

 The isTradingDay member function returns true if the current date is not a holiday or a weekend day:

 bool Date::isTradingDay()
 {
 if (!isWeekDay()) return false;
 if (m_holidays.size() == 0) return true;
 if (isHoliday()) return false;
 return true;
 }

 Most other functions are implemented based on these primitive functions. For example, here is how
you can add days to the current date:

 void Date::add(int numDays)
 {
 for (int i=0; i<numDays; ++i)
 {
 ++*this;
 }
 }

 And here is how you can add trading days to the current date. First, you find the first trading day starting
from the given date. Then, for each trading day add one to the current date and skip all next non-trading
days. The implementation is as follows:

 void Date:: addTradingDays (int numDays)
 {
 while (!isTradingDay())
 {
 ++*this;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

39

 for (int i=0; i<numDays; ++i)
 {
 ++*this;
 while (!isTradingDay())
 {
 ++*this;
 }
 }
 }

 Complete Listings
 Here you can find the complete code for the Date class. Listing 3-1 contains the header file and Listing 3-2
shows the implementation file for Date .

 Listing 3-1. Interface of the Date Class

 //
 // Date. h

 #ifndef __CppOptions__Date__
 #define __CppOptions__Date__

 #include <vector>

 enum DayOfTheWeek {
 DayOfTheWeek_Sunday,
 DayOfTheWeek_Monday,
 DayOfTheWeek_Tuesday,
 DayOfTheWeek_Wednesday,
 DayOfTheWeek_Thursday,
 DayOfTheWeek_Friday,
 DayOfTheWeek_Saturday,
 DayOfTheWeek_UNKNOWN
 };

 enum Month {
 Month_January = 1,
 Month_February,
 Month_March,
 Month_April,
 Month_May,
 Month_June,
 Month_July,
 Month_August,
 Month_September,
 Month_October,
 Month_November,
 Month_December,
 };

CHAPTER 3 ■ BASIC ALGORITHMS

40

 class Date {
 public:
 Date(int year, int month, int day);
 Date(const Date &p);
 ~Date();
 Date &operator=(const Date &p);

 void setHolidays(const std::vector<Date> &days);
 std::string month();
 std::string dayOfWeek();

 void add(int numDays);
 void addTradingDays(int numDays);
 void subtract(int numDays);
 void subtractTradingDays(int numDays);
 int dateDifference(const Date &date);
 int tradingDateDifference(const Date &date);
 DayOfTheWeek dayOfTheWeek();
 bool isHoliday();
 bool isWeekDay();
 Date nextTradingDay();
 bool isLeapYear();
 bool isTradingDay();
 void print();

 Date &operator ++();
 Date &operator --();
 bool operator<(const Date &d) const;
 bool operator==(const Date &d);
 private:
 int m_year;
 int m_month;
 int m_day;
 DayOfTheWeek m_weekDay;
 std::vector<Date> m_holidays;
 };

 #endif /* defined(__CppOptions__Date__) */

 Listing 3-2. Implementation File of the Date Class

 //
 // Date.cpp
 // CppOptions

 #include "Date.h"

 #include <string>
 #include <iostream>

 using std::cout;
 using std::endl;

CHAPTER 3 ■ BASIC ALGORITHMS

41

 using std::string;

 Date::Date(int year, int month, int day)
 : m_year(year),
 m_month(month),
 m_day(day),
 m_weekDay(DayOfTheWeek_UNKNOWN)
 {
 }

 Date::~Date()
 {
 }

 Date::Date(const Date &p)
 : m_year(p.m_year),
 m_month(p.m_month),
 m_day(p.m_day),
 m_weekDay(p.m_weekDay),
 m_holidays(p.m_holidays)
 {
 }

 Date &Date::operator=(const Date &p)
 {
 if (&p != this)
 {
 m_day = p.m_day;
 m_month = p.m_month;
 m_year = p.m_year;
 m_weekDay = p.m_weekDay;
 m_holidays = p.m_holidays;
 }
 return *this;
 }

 bool Date::operator<(const Date &d) const
 {
 if (m_year < d.m_year) return true;
 if (m_year == d.m_year && m_month < d.m_month) return true;
 if (m_year == d.m_year && m_month == d.m_month && m_day < d.m_day) return true;
 return false;
 }

 bool Date::operator==(const Date &d)
 {
 return d.m_day == m_day && d.m_month == m_month && d.m_year == m_year;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

42

 void Date::setHolidays(const std::vector<Date> &days)
 {
 m_holidays = days;
 }

 bool Date::isHoliday()
 {
 return std::find(m_holidays.begin(), m_holidays.end(), *this) != m_holidays.end();
 }

 std::string Date::month()
 {
 switch (m_month) {
 case Month_January: return "January";
 case Month_February: return "February";
 case Month_March: return "March";
 case Month_April: return "April";
 case Month_May: return "May";
 case Month_June: return "June";
 case Month_July: return "July";
 case Month_August: return "August";
 case Month_September: return "September";
 case Month_October: return "October";
 case Month_November: return "November";
 case Month_December: return "December";
 default: throw std::runtime_error("unknown month");
 }
 return "";
 }

 #define self this

 std::string Date::dayOfWeek()
 {
 switch (this->dayOfTheWeek()) {
 case DayOfTheWeek_Sunday: return "Sunday";
 case DayOfTheWeek_Monday: return "Monday";
 case DayOfTheWeek_Tuesday: return "Tuesday";
 case DayOfTheWeek_Wednesday: return "Wednesday";
 case DayOfTheWeek_Thursday: return "Thursday";
 case DayOfTheWeek_Friday: return "Friday";
 case DayOfTheWeek_Saturday: return "Saturday";
 default: throw std::runtime_error("unknown day of week");
 }
 }

 void Date::add(int numDays)
 {
 for (int i=0; i<numDays; ++i)
 {
 ++*this;
 }
 }

CHAPTER 3 ■ BASIC ALGORITHMS

43

 void Date::addTradingDays(int numDays)
 {
 while (!isTradingDay())
 {
 ++*this;
 }
 for (int i=0; i<numDays; ++i)
 {
 ++*this;
 while (!isTradingDay())
 {
 ++*this;
 }
 }
 }

 void Date::subtract(int numDays)
 {
 for (int i=0; i<numDays; ++i)
 {
 --*this;
 }
 }

 void Date::subtractTradingDays(int numDays)
 {
 while (!isTradingDay())
 {
 --*this;
 }
 for (int i=0; i<numDays; ++i)
 {
 --*this;
 while (!isTradingDay())
 {
 --*this;
 }
 }
 }

 int Date::dateDifference(const Date &date)
 {
 Date d = *this;
 if (d < date)
 {
 int diff=0;
 while (d < date)
 {
 ++d;
 ++diff;
 }
 return diff;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

44

 int diff=0;
 while (date < d)
 {
 --d;
 --diff;
 }
 return diff;
 }

 int Date::tradingDateDifference(const Date &date)
 {
 Date d = *this;
 if (d < date)
 {
 int diff=0;
 while (!d.isTradingDay()) ++d;
 while (d < date)
 {
 ++d;
 ++diff;
 while (!d.isTradingDay()) ++d;
 }
 return diff;
 }

 int diff=0;
 while (!d.isTradingDay()) --d;
 while (date < d)
 {
 --d;
 --diff;
 while (!d.isTradingDay()) --d;
 }
 return diff;
 }

 DayOfTheWeek Date::dayOfTheWeek()
 {
 if (m_weekDay != DayOfTheWeek_UNKNOWN) return m_weekDay;

 int day = 1;
 Date d(1900, 1, 1);
 for (;d < *this; ++d)
 {
 if (day == 6) day = 0;
 else day++;
 }
 m_weekDay = static_cast<DayOfTheWeek>(day);
 return m_weekDay;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

45

 bool Date::isWeekDay()
 {
 DayOfTheWeek dayOfWeek = dayOfTheWeek();
 if (dayOfWeek == DayOfTheWeek_Sunday || dayOfWeek == DayOfTheWeek_Saturday)
 {
 return false;
 }
 return true;
 }

 bool Date::isTradingDay()
 {
 if (!isWeekDay()) return false;
 if (m_holidays.size() == 0) return true;
 if (isHoliday()) return false;
 return true;
 }

 Date Date::nextTradingDay()
 {
 Date d = *this;
 if (d.isTradingDay())
 {
 return ++d;
 }
 while (!d.isTradingDay())
 {
 ++d;
 }
 return d;
 }

 bool Date::isLeapYear()
 {
 if (m_year % 4 != 0) return false;
 if (m_year % 100 != 0) return true;
 if (m_year % 400 != 0) return false;
 return true;
 }

 Date &Date::operator--()
 {
 if (m_weekDay != DayOfTheWeek_UNKNOWN) // update weekday
 {
 if (m_weekDay == DayOfTheWeek_Sunday)
 m_weekDay = DayOfTheWeek_Saturday;
 else
 m_weekDay = static_cast<DayOfTheWeek>(m_weekDay - 1);
 }

CHAPTER 3 ■ BASIC ALGORITHMS

46

 if (m_day > 1)
 {
 m_day--;
 return *this;
 }

 if (m_month == Month_January)
 {
 m_month = Month_December;
 m_day = 31;
 m_year--;
 return *this;
 }

 m_month--;

 if (m_month == Month_February)
 {
 m_day = isLeapYear() ? 29 : 28;
 return *this;
 }

 // list of months with 31 days
 std::vector<int> monthsWithThirtyOneDays = { 1, 3, 5, 7, 8, 10, 12 };
 if (std::find(monthsWithThirtyOneDays.begin(),
 monthsWithThirtyOneDays.end(), m_month)
 != monthsWithThirtyOneDays.end())
 {
 m_day = 31;
 }
 else
 {
 m_day = 30;
 }
 return *this;
 }

 Date &Date::operator++()
 {
 // list of months with 31 days
 std::vector<int> monthsWithThirtyOneDays = { 1, 3, 5, 7, 8, 10, 12 };

 if (m_day == 31)
 {
 m_day = 1;
 m_month++;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

47

 else if (m_day == 30 &&
 std::find(monthsWithThirtyOneDays.begin(),
 monthsWithThirtyOneDays.end(), m_month)
 == monthsWithThirtyOneDays.end())
 {
 m_day = 1;
 m_month++;
 }
 else if (m_day == 29 && m_month == 2)
 {
 m_day = 1;
 m_month++;
 }
 else if (m_day == 28 && m_month == 2 && !isLeapYear())
 {
 m_day = 1;
 m_month++;
 }
 else
 {
 m_day++;
 }

 if (m_month > 12)
 {
 m_month = 1;
 m_year++;
 }

 if (m_weekDay != DayOfTheWeek_UNKNOWN) // update weekday
 {
 if (m_weekDay == DayOfTheWeek_Saturday)
 m_weekDay = DayOfTheWeek_Sunday;
 else
 m_weekDay = static_cast<DayOfTheWeek>(m_weekDay + 1);
 }
 return *this;
 }

 void Date::print()
 {
 cout << m_year << "/" << m_month << "/" << m_day << endl;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

48

 int main()
 {
 Date d(2015, 9, 12);
 DayOfTheWeek wd = d.dayOfTheWeek();
 cout << " day of the week: " << wd << " " << d.dayOfWeek() << endl;
 d.print();

 d.add(25);
 d.print();

 d.addTradingDays(120);
 d.print();
 cout << " day of the week: " << d.dayOfTheWeek() << " " << d.dayOfWeek() << endl;

 return 0;
 }

 A Compact Date Representation
 While the Date class presented in the previous section is an adequate implementation of the concept of
dates in C++, it still may not be perfect for all applications. One problem with it is that you need to use
integers to store each of the different parts of the date, which includes year, month, and day. In the common
64-bit CPU, this takes 24 bytes, which is lot of space for such a small piece of information.

 There are a few ways that you can improve the memory use for Date objects. In this section I explain
how to do this using a simple format for date storage that uses a character string. If you use four bytes for
the year and two bytes for the month as well as the day, the required memory is reduced to just 8 bytes. This
format is also commonly used as a date stamp in several applications, so it is easy to verify the correctness of
a particular date.

 To show how this implementation works, I created a new class called DateCompact , which is a compact
representation of Date objects. I only present a few of the operations required from this data type, but you
can implement all other methods provided in the Date class using the underlying representation provided
by DateCompact .

 The only date member of class DateCompact is a string, declared as

 char m_date[8];

 Dates are stored using the following member functions:

 void setYear(int y) ;
 void setMonth(int m) ;
 void setDay(int d) ;

 These dates can be retrieved using three corresponding methods:

 int year() ;
 int month() ;
 int day() ;

CHAPTER 3 ■ BASIC ALGORITHMS

49

 For example, to store the year, you just need to convert the given number into a four-character string:

 void DateCompact ::setYear(int year)
 {
 m_date[3] = '0' + (year % 10); year /= 10;
 m_date[2] = '0' + (year % 10); year /= 10;
 m_date[1] = '0' + (year % 10); year /= 10;
 m_date[0] = '0' + (year % 10);
 }

 You need to add each number to the character '0' so that the resulting string is printable. The reverse
process is easy, you just need to add the characters in the right way:

 int DateCompact ::year()
 {
 // (x - '0') computes the numeric value corresponding to the each character.
 return 1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0')
 + 10 * (m_date[2] - '0') + (m_date[3] - '0');
 }

 The comparison operators can be easily implemented with the help of the strncmp function from the C
string library. The function strncmp returns a negative number if the first argument is lexicographically less
than the first, a positive number if the first argument is greater than the second, and 0 if the two strings are
equal. For example, the equality operator can be implemented as follows:

 bool DateCompact ::operator==(const DateCompact &d) const
 {
 return strncmp(m_date, d.m_date, 8) == 0;
 }

 Similarly, the less than operator has the following implementation:

 bool DateCompact ::operator<(const DateCompact &d) const
 {
 // strcmp returns negative values if the first argument is less than the second.
 return strncmp(m_date, d.m_date, 8) < 0;
 }

 Complete Listings
 The full code for the DateCompact class, described in the previous section, is presented in Listings 3-3 and 3-4 .

 Listing 3-3. Interface of the DateCompact Class

 //
 // DateCompact.h

 #ifndef __CppOptions__DateCompact__
 #define __CppOptions__DateCompact__

CHAPTER 3 ■ BASIC ALGORITHMS

50

 //
 // a compact representation for dates, using a character string
 //
 class DateCompact {
 public:
 DateCompact(int year, int month, int day);
 DateCompact(const DateCompact &p);
 ~DateCompact();
 DateCompact &operator=(const DateCompact &p);

 void setYear(int y);
 void setMonth(int m);
 void setDay(int d);

 int year();
 int month();
 int day();

 void print();

 bool operator==(const DateCompact &d) const;
 bool operator<(const DateCompact &d) const;

 private:
 char m_date[8];
 };

 #endif /* defined(__CppOptions__DateCompact__) */

 Listing 3-4. Implementation of the DateCompact Class

 //
 // DateCompact.cpp
 //
 // Implementation for the DateCompact class

 #include "DateCompact.h"

 #include <cstring>
 #include <iostream>

 using std::cout;
 using std::endl;

 DateCompact::DateCompact(int year, int month, int day)
 {
 setYear(year);
 setMonth(month);
 setDay(day);
 }

CHAPTER 3 ■ BASIC ALGORITHMS

51

 DateCompact::DateCompact(const DateCompact &p)
 {
 strcpy(m_date, p.m_date);
 }

 DateCompact::~DateCompact()
 {
 }

 DateCompact &DateCompact::operator=(const DateCompact &p)
 {
 if (&p != this)
 {
 strcpy(m_date, p.m_date);
 }
 return *this;
 }

 //
 // Use string comparison to determine if the dates are equal
 //
 bool DateCompact::operator==(const DateCompact &d) const
 {
 return strncmp(m_date, d.m_date, 8) == 0;
 }

 // Use the strncmp function to determine if a date is less than the other.
 bool DateCompact::operator<(const DateCompact &d) const
 {
 // strcmp returns negative values if the first argument is less than the second.
 return strncmp(m_date, d.m_date, 8) < 0;
 }

 //
 // Functions to calculate the year, month, and days as integers,
 // based on the characters contained in the string 'm_date'.
 //

 int DateCompact::year()
 {
 // (x - '0') computes the numeric value corresponding to the each character.
 return 1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0')
 + 10 * (m_date[2] - '0') + (m_date[3] - '0');
 }

 int DateCompact::month()
 {
 return 10 * (m_date[4] - '0') + (m_date[5] - '0');
 }

CHAPTER 3 ■ BASIC ALGORITHMS

52

 int DateCompact::day()
 {
 return 10 * (m_date[6] - '0') + (m_date[7] - '0');
 }

 void DateCompact::print()
 {
 // copy the m_date string into a NULL terminated string (with 9 characters).
 char s[9];
 strncpy(s, m_date, 8);
 s[8] = '\0'; // properly terminate the string
 cout << s << endl;
 }

 //
 // calculate the string corresponding to the given numeric parameter.
 //

 void DateCompact::setYear(int year)
 {
 m_date[3] = '0' + (year % 10);
 year /= 10;
 m_date[2] = '0' + (year % 10);
 year /= 10;
 m_date[1] = '0' + (year % 10);
 year /= 10;
 m_date[0] = '0' + (year % 10);
 }

 void DateCompact::setMonth(int month)
 {
 m_date[5] = '0' + (month % 10); month /= 10;
 m_date[4] = '0' + (month % 10); month /= 10;

 }

 void DateCompact::setDay(int day)
 {
 m_date[7] = '0' + (day % 10); day /= 10;
 m_date[6] = '0' + (day % 10); day /= 10;
 }

 #include "Date.h"

 int main()
 {
 DateCompact d(2008, 3, 17);
 DateCompact e(2008, 5, 11);
 cout << " size of DateCompact: " << sizeof(DateCompact) << endl;

 d.print();
 e.print();

CHAPTER 3 ■ BASIC ALGORITHMS

53

 if (d < e)
 {
 cout << " d is less than e " << endl;
 }
 else
 {
 cout << " d is not less than e " << endl;
 }

 Date date(2008, 3, 17);
 cout << " size of Date: " << sizeof(Date) << endl;

 return 0;
 }

 Building and Testing
 The previous code can be built using any standards-compliant C++ compiler. Here are the commands used
to build the application on MacOS X using gcc:

 gcc –o DateCompact.o –c DateCompact.cpp
 gcc –o Date.o –c Date.cpp

 gcc –o main DateCompact.o Date.o

 The main function provides a quick test of the DateCompact class, which also compares the size of
the objects created using DateCompact and Date . Notice how Date occupies much more memory than
 DateCompact .

 ./DateCompact
 size of DateCompact: 8
 20080317
 20080511
 d is less than e
 size of Date: 48

 Working with Networks
 Network structures commonly appear in many fields of software development. Such networks are ideal
for representing the connections between entities such as objects or more abstract concepts. In financial
applications, for example, elements of a network may represent stocks or other asset classes. Connections
between elements of the network may represent correlation between assets, among other uses. In this
section, I give an overview of networks and explain how they can be presented in C++ applications. A
particular example demonstrates the way in which such algorithms can be designed and implemented.

 The problem presented here is called word production . A word is a sequence of characters, and it can
represent stock tickers in a financial application, for example. Therefore, IBM and CAT may be viewed as
application-specific words. These elements are then stored in a dictionary of useful words. The production
problem determines how a word can be derived from another using a dictionary. For example, the word
CAT can be derived from the word CAR by just changing a single letter. Complex string production can
be performed by using multiple productions. Therefore, it is possible to connect several elements of a
dictionary using a set of links, where each link represents a single word production.

CHAPTER 3 ■ BASIC ALGORITHMS

54

 In the string-production problem, you are given a starting word and a destination word. You also have a
dictionary of words (for example, a set of stock tickers that you may be interested in trading). Then, the goal
is to find the shortest set of productions that can connect the initial word to the final word. For a concrete
example, consider the dictionary containing the words LOB, DAG, LOG, CAR, DOG, CAT, COB, CAB, and
CAG. If you start from the word CAT and end with the word DOG, a possible solution to the problem is this
sequence:

 CAT, CAG, DAG, and DOG

 This is not the only solution, but it has minimum size (three productions). Another candidate solution is:

 CAT, CAB, COB, LOB, LOG, DOG

 However, this is not the shortest solution. For simplicity, it is assumed that all words in the dictionary
have the same size.

 Creating a Dictionary Class
 The first step to solve this problem is to find a representation for the Dictionary object. I created a class that
stores the set of words using a vector called m_ values . Here is the class definition:

 class Dictionary {
 public:
 Dictionary(int wordSize);
 ~Dictionary() {}
 Dictionary &operator=(const Dictionary &p); // not implemented
 // ...
 void addElement(const std::string &s);
 void buildAdjancencyMatrix();
 bool contains(const std::string &s);
 const std::vector<std::vector<bool> > &adjList();
 int elemPosition(const std::string &s);
 int size() { return (int)m_values.size(); }
 std::string elemAtPos(int i);
 private:
 std::vector<std::string> m_values;
 std::map<std::string, int> m_valuePositions;
 std::vector<std::vector<bool> > m_adjacencyList;
 int m_wordSize;
 };

 There are other three member variables. m_ wordSize is used to store the size of words in the dictionary.
The m_ valuePositions and m_ adjacentList variables are explained later.

CHAPTER 3 ■ BASIC ALGORITHMS

55

 The first step in the implementation is to define member functions that add elements to the dictionary.
For example, this is how you add new words:

 void Dictionary::addElement(const string &s)
 {
 if (s.size() != m_wordSize)
 {
 throw std::runtime_error("invalid string size");
 }
 m_values.push_back(s);
 m_valuePositions[s] = (int)m_values.size() - 1;
 cout << " added " << s << endl;
 }

 You can use member functions in std::vector to interact with the underlying m_values collection. In
this case, the function uses push_back to add new words of the right size. Notice that when a word is stored,
the position of the word is also stored in a std::map named m_valuePositions .

 The member function elementAtPos returns the word stored in a certain position of the m_values vector :

 string Dictionary::elemAtPos(int i)
 {
 return m_values[i];
 }

 The member function contains returns true if a word is already stored in the dictionary. It uses the find
member function of std::map , which when given a map m , returns the value associated with the given key
when the element is found, or the value m.end() when the element is not in the map.

 bool Dictionary::contains(const string &s)
 {
 return m_valuePositions.find(s) != m_valuePositions.end();
 }

 Another feature of the Dictionary class is that it returns the position of an element that has been stored
in the vector m_values . To speed up this process, Dictionary uses std::map m_valuePositions , which
maps between strings and their respective positions. Using this map, it is possible to define the member
function elemPosition . The implementation is straightforward:

 int Dictionary::elemPosition(const string &s)
 {
 return m_valuePositions[s];
 }

 Finally, the Dictionary class is responsible for building an adjacency matrix . That is, a matrix that
stores the connectivity information for the network of words stored in this dictionary. The way this works is
that the matrix has the size n by n, where n is the number of words stored. The entries A

 ij
 in the matrix are

true or false, and true means that the words stored at positions i and j differ by just one character.

CHAPTER 3 ■ BASIC ALGORITHMS

56

 The first thing that you need to do is create the adjacency matrix for the given set of words stored in the
dictionary. This is done using the buildAdjacencyMatrix member function:

 void Dictionary::buildAdjancencyMatrix()
 {
 m_adjacencyList.clear();
 int n = (int)m_values.size();
 for (int i=0; i<n; ++i)
 {
 m_adjacencyList.push_back(vector<bool>(n));
 for (int j=0; j<n; ++j)
 {
 if (diffByOne(m_values[i], m_values[j]))
 {
 m_adjacencyList[i][j] = true;
 }
 }
 }
 }

 The original adjacency data is cleared and a loop is run through each pair of words stored in m_values .
Then, the algorithm checks if the words differ by just one character using the diffByOne member function.
If that is true, then the algorithm can set the value of the adjacency to true. The diffByOne algorithm is also
straightforward:

 bool diffByOne(const string &a, const string &b)
 {
 if (a.size() != b.size()) return false;
 int ndiff = 0;
 for (unsigned i=0; i<a.length(); ++i)
 {
 if (a[i] != b[i]) ndiff++;
 }
 return ndiff == 1;
 }

 You just need to count the number of different characters occurring in both strings. The function
returns true only if the number of differences is equal to one.

 Calculating a Shortest Path
 The challenging part of this algorithm is to find the shortest path between the two given nodes of the
network, represented by the initial and final words. There are a few alternative algorithms to find a shortest
path, but this implementation uses the well-known Dijkstra’s algorithm. The central idea of this algorithm is
to maintain the known distances starting from the initial node. Then, at each iteration you can look for the
neighbors of each node and see if at least one can reduce the known shortest path by traversing that node.
If that is possible, then the shortest path starting from that node is updated. This process continues until all
nodes in the network have been considered.

CHAPTER 3 ■ BASIC ALGORITHMS

57

 I present a simple implementation of this algorithm in the StringProduction class. The definition of
the class is as follows:

 class StringProduction {
 public:
 StringProduction(Dictionary &d);
 StringProduction(const StringProduction &p);
 ~StringProduction();
 StringProduction &operator=(const StringProduction &p);

 bool produces(const std::string &src, const std::string &dest, std::vector<std::string>
&path);
 void shortest_path(int v, int dest, int n, std::vector<std::string> &path);
 std::vector<int> recoverPath(int src, int dest, const std::vector<int> &P,
std::vector<int> &path);
 private:
 Dictionary &m_dic;
 };

 The StringProduction class keeps a reference to a dictionary, which contains all the nodes in the
network for use by the shortest path algorithm. The central member function for this class is shortest_path ,
which returns the shortest path between the two given words (which should be part of the underlying
dictionary). The first part of the function initializes the data structures used:

 // initialize the set of distances and the set of nodes
 for (int i = 0; i <n; i++) {
 Q.insert(i);
 if (i != v) {
 dist[i] = INF;
 }
 }

 The object named Q has type std::set , and it can quickly add and remove elements that will later be
checked by the algorithm. The loop is just adding all nodes to Q and setting the initial distances in the vector
 dist to a large number (INF). The only exception is the distance between the initial node v and itself, which
is known to be zero.

 Another important part of the algorithm is the so-called relaxation step, where the distance is updated
to the latest known shortest-path value:

 for (int i=0; i<n; ++i){

 if (A[u][i]) { // this is a neighbor
 int d = dist [u] + 1;
 if (d < dist[i]) {
 dist[i] = d;
 prev[i] = u;
 }
 }
 }
 }

CHAPTER 3 ■ BASIC ALGORITHMS

58

 The vector prev stores the node that is known to be the previous one in the shortest path sequence.
The last part of the algorithm is the path-recovery step, where the complete path is retrieved using the
information stored in prev :

 vector<int> npath;
 recoverPath(v, dest, prev, npath);
 for (unsigned i=0; i<npath.size(); ++i) {
 path.push_back(m_dic.elemAtPos(npath[i]));
 }

 This algorithm uses the member function called recoverPath to find the numeric sequence of nodes
used in the shortest path. The for loop then uses that numeric sequence to recover the words from the
dictionary. The implementation of the recoverPath method iterates through the previous nodes to construct
a sequence:

 vector<int> StringProduction::recoverPath(
 int src, int dest, const vector<int> &P, vector<int> &path){
 int v = dest;
 while (v != src) {
 path.push_back(v);
 v = P[v];
 }
 path.push_back(src);
 std::reverse(path.begin(),path.end());
 return path;
 }

 Finally, the produces member function uses the algorithm explained previously to find and return the
shortest production. First, it checks that the initial and destination words are stored in the dictionary. Then,
the function shortest_ path is called with the right parameters. The word sequence is returned using the
parameter path . The return value is true if there is a valid sequence with a size greater than zero.

 bool StringProduction::produces(const string &src, const string &dest, vector<string> &path)
{

 if (!m_dic.contains(src) || !m_dic.contains(dest)) return false;

 shortest_path(m_dic.elemPosition(src), m_dic.elemPosition(dest), m_dic.size(), path);

 return path.size() > 0;
 }

 Complete Listings
 Here is the complete listing for the network-based algorithm described in the preceding section. There are
five files that contain the full solution. Two files are used for the Dictionary class. Two other files are used
for the StringProduction class. Finally, a main file is provided so that you can run a test on the two classes.
The files are displayed in Listings 3-5 to 3-9 .

CHAPTER 3 ■ BASIC ALGORITHMS

59

 Listing 3-5. Interface of the Dictionary Class

 //
 // Dictionary.h

 #ifndef __StringProduction__Dictionary__
 #define __StringProduction__Dictionary__

 #include <string>
 #include <vector>
 #include <map>

 //
 // stores the words in the dictionary and provides an adjacency matrix for the words
 class Dictionary {
 public:
 Dictionary(int wordSize);
 ~Dictionary() {}
 Dictionary &operator=(const Dictionary &p); // not implemented
 private:
 Dictionary(const Dictionary &p); // not implemented
 public:
 void addElement(const std::string &s);
 void buildAdjancencyMatrix();
 bool contains(const std::string &s);
 const std::vector<std::vector<bool> > &adjList();
 int elemPosition(const std::string &s);
 int size() { return (int)m_values.size(); }
 std::string elemAtPos(int i);
 private:
 std::vector<std::string> m_values;
 std::map<std::string, int> m_valuePositions;
 std::vector<std::vector<bool> > m_adjacencyList;
 int m_wordSize;
 };

 #endif /* defined(__StringProduction__Dictionary__) */

 Listing 3-6. Implementation of the Dictionary Class

 //
 // Dictionary.cpp

 #include "Dictionary.h"

 #include <iostream>
 #include <vector>
 #include <map>
 #include <set>
 #include <queue>

CHAPTER 3 ■ BASIC ALGORITHMS

60

 using std::string;
 using std::vector;
 using std::set;
 using std::map;
 using std::cout;
 using std::endl;
 using std::cerr;

 Dictionary::Dictionary(int wordSize)
 : m_values(),
 m_valuePositions(),
 m_adjacencyList(),
 m_wordSize(wordSize)
 {
 }

 const std::vector<std::vector<bool> > &Dictionary::adjList()
 {
 return m_adjacencyList;
 }

 Dictionary &Dictionary::operator=(const Dictionary &p)
 {
 if (&p != this)
 {
 m_adjacencyList = p.m_adjacencyList;
 m_valuePositions = p.m_valuePositions;
 m_values = p.m_values;
 m_wordSize = p.m_wordSize;
 }
 return *this;
 }

 //
 // true if the words a and b differ by just one character
 //
 bool diffByOne(const string &a, const string &b)
 {
 if (a.size() != b.size()) return false;
 int ndiff = 0;
 for (unsigned i=0; i<a.length(); ++i)
 {
 if (a[i] != b[i]) ndiff++;
 }
 return ndiff == 1;
 }

 bool Dictionary::contains(const string &s)
 {
 return m_valuePositions.find(s) != m_valuePositions.end();
 }

CHAPTER 3 ■ BASIC ALGORITHMS

61

 int Dictionary::elemPosition(const string &s)
 {
 return m_valuePositions[s];
 }

 void Dictionary::addElement(const string &s)
 {
 if (s.size() != m_wordSize)
 {
 throw std::runtime_error("invalid string size");
 }
 m_values.push_back(s);
 m_valuePositions[s] = (int)m_values.size() - 1;
 cout << " added " << s << endl;
 }

 string Dictionary::elemAtPos(int i)
 {
 return m_values[i];
 }

 void Dictionary::buildAdjancencyMatrix()
 {
 m_adjacencyList.clear();
 int n = (int)m_values.size();
 for (int i=0; i<n; ++i)
 {
 m_adjacencyList.push_back(vector<bool>(n));
 for (int j=0; j<n; ++j)
 {
 if (diffByOne(m_values[i], m_values[j]))
 {
 m_adjacencyList[i][j] = 1;
 }
 }
 }
 }

 Listing 3-7. Interface of the StringProduction Class

 //
 // StringProduction.h

 #ifndef __StringProduction__StringProduction__
 #define __StringProduction__StringProduction__

 #include <vector>

 class Dictionary;

CHAPTER 3 ■ BASIC ALGORITHMS

62

 class StringProduction {
 public:
 StringProduction(Dictionary &d);
 StringProduction(const StringProduction &p);
 ~StringProduction();
 StringProduction &operator=(const StringProduction &p);

 bool produces(const std::string &src, const std::string &dest, std::vector<std::string>
&path);
 void shortest_path(int v, int dest, int n, std::vector<std::string> &path);
 std::vector<int> recoverPath(int src, int dest, const std::vector<int> &P,
std::vector<int> &path);
 private:
 Dictionary &m_dic;
 };

 #endif /* defined(__StringProduction__StringProduction__) */

 Listing 3-8. Implementation of the StringProduction Class

 //
 // StringProduction.cpp

 #include "StringProduction.h"

 #include "Dictionary.h"

 #include <map>
 #include <set>

 using std::vector;
 using std::string;
 using std::map;
 using std::set;

 StringProduction::StringProduction(Dictionary &d)
 : m_dic(d)
 {
 }

 StringProduction::StringProduction(const StringProduction &p)
 : m_dic(p.m_dic)
 {
 }

 StringProduction::~StringProduction()
 {
 }

CHAPTER 3 ■ BASIC ALGORITHMS

63

 StringProduction &StringProduction::operator=(const StringProduction &p)
 {
 if (&p != this) {
 m_dic = p.m_dic;
 }
 return *this;
 }

 //
 // recovers the path from a list of previous nodes (P)
 vector<int> StringProduction::recoverPath(int src, int dest, const vector<int> &P,
vector<int> &path){
 int v = dest;
 while (v != src) {
 path.push_back(v);
 v = P[v];
 }
 path.push_back(src);
 std::reverse(path.begin(),path.end());
 return path;
 }

 //
 // computes the shortest path.
 // node v is the source, dest is destination. If the path can be found, it is stored on
parameter path
 void StringProduction::shortest_path(int v, int dest, int n, vector<string> &path)
 {
 const std::vector<std::vector<bool> > &A = m_dic.adjList(); // get the adjacency matrix
 path.clear();

 vector<int> dist(n, 0);
 vector<int> prev(n, 0);
 set<int> Q; // set of nodes
 const int INF = INT_MAX; // a large number

 // initialize the set of distances and the set of nodes
 for (int i = 0; i <n; i++) {
 Q.insert(i);
 if (i != v) {
 dist[i] = INF;
 }
 }

CHAPTER 3 ■ BASIC ALGORITHMS

64

 // this is Dijkstra’s algorithm
 while (!Q.empty()) {

 int min = INF;
 int u = -1;
 for (set<int>::iterator it = Q.begin(); it != Q.end(); ++it) {
 // find the minimum value in queue
 if (dist[*it] < min) {
 min = dist[*it];
 u = *it;
 }
 }

 Q.erase(u); // remove min vertex u from set

 // relaxation step
 for (int i=0; i<n; ++i){

 if (A[u][i]) { // this is a neighbor
 int d = dist [u] + 1;
 if (d < dist[i]) {
 dist[i] = d;
 prev[i] = u;
 }
 }
 }
 }

 // recover the path from vector prev
 vector<int> npath;
 recoverPath(v, dest, prev, npath);
 for (unsigned i=0; i<npath.size(); ++i) {
 path.push_back(m_dic.elemAtPos(npath[i]));
 }

 }

 //
 // returns true if the word src produces dest using the dictionary dic
 // If true, then path will contain the path between src and dest
 //
 bool StringProduction::produces(const string &src, const string &dest, vector<string> &path)
{

 if (!m_dic.contains(src) || !m_dic.contains(dest)) return false;

 shortest_path(m_dic.elemPosition(src), m_dic.elemPosition(dest), m_dic.size(), path);

 return path.size() > 0;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

65

 Listing 3-9. The main Function with a Simple Test for the StringProduction Class

 //
 // main.cpp
 // StringProduction
 //

 #include "StringProduction.h"
 #include "Dictionary.h"

 #include <iostream>

 using std::vector;
 using std::string;
 using std::cout;
 using std::endl;

 //
 // main function is a test case for the algorithm.
 //
 int main(int argc, const char * argv[]) {

 if (argc != 3) {
 cout << "prog word1 word2" << endl;
 return 1;
 }

 Dictionary dic(3);
 dic.addElement("lob");
 dic.addElement("dag");
 dic.addElement("log");
 dic.addElement("car");
 dic.addElement("dog");
 dic.addElement("cat");
 dic.addElement("cob");
 dic.addElement("cab");
 dic.addElement("cag");

 dic.buildAdjancencyMatrix();

 vector<string> path;
 StringProduction sp(dic);
 if (sp.produces(argv[1], argv[2], path)) {
 cout << " -- the first string produces the second" << endl;
 cout << " -- that path has size " << path.size() << ":\n";
 for (unsigned i=0; i<path.size(); ++i) {
 cout << path[i] << "; ";
 }
 } else {
 cout << " the second string does not produce the second" << endl;
 }

 return 0;
 }

CHAPTER 3 ■ BASIC ALGORITHMS

66

 Building and Testing
 You can build the code presented in the last section using any standards-compliant C++ compiler. I tested
the code on Linux and MacOS X. The commands used to build the project in gcc are the following:

 gcc –o StringProduction.o –c StringProduction.cpp
 gcc –o Dictionary.o –c Dictionary.cpp
 gcc –o main.o –c main.cpp
 gcc –o StringProduction Dictionary.o StringProduction.o main.o

 The main function contains test code that creates a new Dictionary object, inserts a small set of words,
and uses the StringProduction class to calculate the shortest path. Here is a sample of the generated output
in my system:

 ./StringProduction cat dog

 added lob
 added dag
 added log
 added car
 added dog
 added cat
 added cob
 added cab
 added cag
 -- the first string produces the second
 -- that path has size 4:
 cat; cag; dag; dog;

 A quick note about the complexity of this algorithm. As explained, the Dijkstra’s alogrithm for shortest
paths calculation is used. The current implementation uses a matrix of adjacencies, with complexity O (n 2),
where n is number of words in the dictionary. This could be improved using more complex implementation
schemes (such as adjacency lists and priority queues); however, I decided to use the simplest data structures
in order to concentrate on the algorithm itself.

 Conclusion
 In this chapter, I presented a few basic algorithms implemented in C++. These algorithms provide examples
of how to solve computational problems using C++ and the STL. You read an overview of two interesting
problems: date calculation and shortest paths on data networks.

 The first sections dealt with date representations and their associated operations. Dates are needed
in nearly all financial- and derivative-related applications. They are an intrinsic part of time series for
prices, volatility, and other financial information. You saw how to implement commonly used functions to
manipulate dates, such as adding and subtracting dates, finding trade dates, and computing date intervals.
You also learned how to design a compact date representation, so that only a small amount of memory is
necessary to store a large number of date objects.

 Finally, I discussed the common problem of implementing a network, with nodes that represent
individual data elements and connections between these nodes. I discussed a simple problem based on a
dictionary of strings, which can represent stocks of interest, for example. Then, you learned how to create an
algorithm that calculates the shortest paths between elements of this basic dataset.

 In the next chapter, you will see more examples of using C++ for financial programming. This time,
you will learn more about object-oriented techniques, including how they can be used to create high-
performance applications to process options and derivative contracts.

67© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_4

 CHAPTER 4

 Object-Oriented Techniques

 For the last 30 years, object-oriented techniques have become the standard for software analysis and
development. Since C++ fully supports OO programming, it is essential that you have a good understanding
of OO techniques in order to solve many of the challenges presented by options and derivatives
programming.

 This chapter presents a practical summary of the programming topics you need to understand in order
to become proficient in the relevant OO concepts and techniques used in the field of options and derivatives
analysis. Some of the topics covered in this chapter include:

• Fundamental OO concepts in C++ : A quick review of OO concepts as implemented in
C++, with examples based on derivatives and options.

• Problem partitioning : How to partitioning a problem into classes and related OO
concepts, using specific C++ techniques.

• Designing a solution : How to use classes and objects to solve problems in financial
engineering.

• Reusing OO components : How to create reusable C++ components that can be
integrated to your own full-scale applications, or even distributed as an external
library.

 OO Programming Concepts
 Object-oriented programming provides set of principles that can facilitate the development of computer
software. Using OO programming techniques, you can easily organize your code and create high-level
abstractions for application logic and commonly used component libraries. In this way, OO techniques
can be used to improve and reuse existing components, as well as simplify the overall development. OO
programming promotes a way of creating software that uses logical elements operating at a higher level of
abstraction.

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

68

 When considering different styles of software programming, it is important to use tools and languages
that provide an adequate level of support for the desired programming style. C++ was designed to be a multi-
paradigm programming language (see Figure 4-1); therefore, it can properly support more than one style of
programming, including:

• Structured programming : In structured programming, code is organized in terms of
functions and data structures. Each function uses standard control flow structures,
such as for , while , do , and if/then/else , to organize code. While this programming
style was used in isolation, nowadays it is more commonly used as part of an OO or
functional approach.

• Functional programming : In this style of programming, functions are the most
important element of composition. Functions are also used as a first-class citizens:
they can be stored and passed as parameters to other functions in this programming
paradigm. The C++11 standard has improved support for functional programming,
as seen in Chapter 8 .

• Generic, or template-based programming : Templates allow programmers to create
parameterized types. Such types can be used to implement concepts that are
independent of the specific type employed. A common example is a container class
such as std::vector , which can be used to store values of any type in a sequence of
elements stored in contiguous memory.

• Object-oriented programming : A programming style where code is organized in
classes and shared in the form of objects. In the OO paradigm, objects can respond
to operations that are implemented as member functions in C++. Encapsulation and
inheritance are common mechanisms used to support the implementation of OO
systems.

 Figure 4-1. A comparison of concepts use in four programming paradigms enabled by C++

 C++ offers complete support for OO concepts. Some of these support elements have already been used
in the previous chapters of this book, including classes, objects that can be instantiated from these classes,
as well as their supporting elements such as constructors, and destructors, among others. In this chapter,
you will learn more about OO concepts that are frequently used in real-world applications, with examples
that are directly used in the implementation of options and derivatives in C++.

http://dx.doi.org/10.1007/978-1-4842-1814-3_8

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

69

 Remember that the main elements of OO programming can be summarized as follows:

• Encapsulation : This concept refers to the division of programmatic responsibilities
into different language elements. C++ offers classes that can be used to encapsulate
desired functionality in a clear way. When planning applications and coding them
in C++, it is always a good idea to determine the main concepts that need to be
represented as classes and encapsulate the related procedural code into member
functions of that class.

• Inheritance : C++ allows programmers to extend a class with new operations. This
is possible through the concept of inheritance, when a new class assumes all
operations previously available in an existing class, called its parent. Inheritance
also allows programmers to add new functionality to existing classes, through the
inclusion of new member functions that provide the required functionality.

• Polymorphism : Inherited classes in C++ extend available classes through the
addition of new member functions. Inherited classes also modify the behavior
of existing member functions that have been marked with the virtual keyword.
Polymorphism in C++ is defined through the use of virtual functions, which are then
dispatched using a virtual function table, as implemented by most compilers.

 Although C++ provides much more than pure OO programming, these elements alone can nonetheless
be used to create very complex and efficient applications in various areas, and in this case on financial
applications. In the remaining of this chapter, you will see how these OO concepts can be utilized to solve
problems occurring on financial derivatives.

 ■ Note Software development using OO techniques not only allows separation between implementation
and interface, but it also requires the clear definition of such concepts. A good C++ programmer will excel at
decomposing problems into smaller components, which can then be coded into separate classes. While I can
only give examples of this process in this book, design and analysis of OO software is a complex and important
phase that should be part of your effort during each software project.

 Encapsulation
 The idea of encapsulation is to define abstract operations that can be implemented by a single class. Once
these operations have been made available, clients of a class can use them without being exposed to the
internal details of the implementation such as variables, constants, and other internal code that is only used
locally to implement the required features .

 One of the important aspects of encapsulation is the ability to hide data, which then becomes the
member variables of the target class. Consider for example a class that represents a credit default swap . The
class should contain enough information to determine how to store and trade such financial instruments.
For an example of data that must be encapsulated into such a class, you might want to consider the
following:

• Underlying instrument : The financial instrument that is the basis for the contract. It
could be, for example, a set of bonds for a particular company, cash, or some other
pre-established financial instrument.

• Counterpart : The institution that is the target of the default swap payments. The
payment is generally made when the target institution defaults.

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

70

• Payoff value : The monetary value of the default swap contract. This payoff is
transferred between institutions if the contract payment condition is triggered.

• Term : The term of the contract, after which it ceases to exist.

• Spread cost : The recurring payment made by the buyer to maintain the contract.
Many contracts require equal payments of a spread that is due at regular periods,
such as every month or every year.

 By using encapsulation to represent a CDS contract , a C++ developer can simply create a class that
contains all these data elements. For example, here is a simple CDS class that represents the concepts
described previously.

 enum CDSUnderlying {
 CDSUnderlying_Bond,
 CDSUnderlying_Cash,
 // other values here...
 };

 class CDSContract {
 public:
 CDSContract();
 CDSContract(const CDSContract &p);
 ~CDSContract();
 CDSContract &operator=(const CDSContract &p);

 // other member functions here...

 private:
 std::string m_counterpart;
 CDSUnderlying m_underlying;
 double m_payoff;
 int m_term;
 double m_spreadCost;
 };

 With this definition, you encapsulate all the information that corresponds to a CDS contract into a
single class. Because the data members are private, this means that only the class can directly access their
state. The main advantage of such an arrangement is that no code outside the CDSContract class is allowed
to access the private data, achieving true encapsulation.

 If it is necessary to provide access to one or more data members of a class, there are two options. The
data member could be moved to the public section of the class, but this would make it possible for the data
member to change without knowledge of the CDSContract class.

 A better way of doing this is to provide an access member function in a case-by-case way. You could,
for example, allow the counterpart and payoff member variables to be accessed by other objects through
member functions, as shown here:

 class CDSContract {
 public:
 CDSContract();
 CDSContract(const CDSContract &p);
 ~CDSContract();
 CDSContract &operator=(const CDSContract &p);

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

71

 std::string counterpart() { return m_counterpart; }
 void setCounterpart(const std::string &s) { m_counterpart = s; }
 double payoff() { return m_payoff; }
 void setPayoff(double payoff) { m_payoff = payoff; }

 private:
 std::string m_counterpart;
 CDSUnderlying m_underlying;
 double m_payoff;
 int m_term;
 double m_spreadCost;
 };

 Using this strategy, any change happening to the m_counterpart and m_payoff will occur only through
an operation on the CDSContract class. This means that the class can react to any changes in these values,
providing proper encapsulation of that data. For example, suppose that you want to reset the payoff value
whenever the counterpart for the CDS contracts changes. This could be done the following way:

 class CDSContract {
 public:
 // ...

 std::string counterpart() { return m_counterpart; }
 void setCounterpart(const std::string &s);
 double payoff() { return m_payoff; }
 void setPayoff(double payoff) { m_payoff = payoff; }

 private:
 std::string m_counterpart;
 CDSUnderlying m_underlying;
 double m_payoff;
 int m_term;
 double m_spreadCost;

 static double kStandardPayoff;
 };

 void CDSContract::setCounterpart(const std::string &s)
 {
 m_counterpart = s;
 setPayoff(kStandardPayoff);
 }

 Whenever the counterpart for the contract changes, the class reacts by resetting the payoff to a standard
value (defined by the constant kStandardPayoff). That would not be possible if the m_counterpart data
member were not properly encapsulated into the CDSContract class.

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

72

 Inheritance
 The benefits of encapsulation make it easy to implement and maintain code written in C++. However, it is
commonly necessary to extend that code to handle situations that could not be anticipated by the designer
of the original class. In that case, you can use inheritance as a powerful way to adapt your classes to new
requirements.

 With the use of inheritance , it is possible to create a new class that contains the same data and behavior
as an existing class. The new class is called a derived class and the original class is called a base or parent
class . For example, a loan only credit default swap is a CDS where the protection is based on secured loans
made on the target entity.

 This useful type of CDS could be modeled as a new class that inherits from the original CDSContract
class. If you need to create a derived class LoanOnlyCDSContract from a base class CDSContract , the C++
syntax would be the following:

 class LoanOnlyCDSContract : public CDSContract {
 public:

 // constructors go here
 void changeLoanSource(const std::string &source);

 private:
 std::string m_loanSource;
 };

 The public keyword is used to indicate that the public interface of the base class CDSContract is still
available to the new class. The changeLoanSource member function is used to determine the source of the
loan used by the CDS contract. The loan source is then stored in the m_loanSource member variable.

 Notice that inheritance creates a new class that has access to all of the public and protected interfaces
of the base class. So, you still can call any method from the original CDSContract class when working with
 LoanOnlyCDSContract . On the other hand, private functions and data members are not available to the
derived class. If you envision that a class could be used as the base for a hierarchy, it should provide access
to some of the non-public interface using protect variables and functions. As a result, inheritance also
requires a certain level of cooperation between base and derived classes.

 ■ Note Inheritance requires that the new class be used in a context similar to the original class. Therefore,
inheritance shouldn’t be used to create classes that have just a superficial similarity to the original class. In
particular, a class that inherits from a base class could be used in the same code as the original class. If this is
not true for the new class you need, it is better to create a separate class with a specialized interface.

 Inheritance is the base technology used to accomplish many of the other techniques available in OO
programming. Therefore, ideas such as polymorphism and abstract functions are possible due to the use of
inheritance.

 Polymorphism
 While inheritance in itself provides a useful extension mechanism, its biggest advantage is the possibility
of changing the original behavior of the base class in specific situations. In C++, this is enabled by using the
 virtual keyword to mark member functions that have polymorphic behavior.

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

73

 For example, suppose that the CDSContract class is required to calculate the contract value at a
particular date. This operation can be performed at the class level, but it will be slightly different for each
particular implementation. Concrete implementations of the class may want to take into consideration
particular factors that are not available at the base class level, such as differences in underlying, contract
structures, and calculation models.

 For these and other reasons, determining the best way to calculate the contract value may not be
possible at the base class, and it must be delegated to derived class. Such derived class will possess
additional data that can be used to compute the contract price with more precision than what is possible on
the base class.

 This behavioral change can be performed in the derived classes if you use C++ virtual mechanism.
Syntactically, this polymorphic behavior can be implemented as long as the member function is modified
with the virtual keyword in the original class. The virtual keyword is a C++ tool that allows functions to
behave differently according to the concrete instance that is executing the function call.

 For example, to support the required polymorphic behavior to calculate the contract value, the
 CDSContract base class should be coded as follows.

 class CDSContract {
 public:
 CDSContract();
 CDSContract(const CDSContract &p);
 ~CDSContract();
 CDSContract &operator=(const CDSContract &p);

 std::string counterpart() { return m_counterpart; }
 void setCounterpart(const std::string &s);
 double payoff() { return m_payoff; }
 void setPayoff(double payoff) { m_payoff = payoff; }
 virtual double computeCurrentValue(const Date &d);

 private:
 std::string m_counterpart;
 CDSUnderlying m_underlying;
 double m_payoff;
 int m_term;
 double m_spreadCost;

 static double kStandardPayoff;
 };

 The virtual double computeCurrentValue(const Date &d); line declares a new member function
that can be overridden by derived classes.

 ■ Note Virtual methods need to be recognized by the compiler. Therefore, the virtual keyword has to
appear directly in the base class, not only in the derived classes. If a member function is supposed to have
polymorphic behavior, you have to use virtual to signal this information to the compiler. Overriding a non-
 virtual member function doesn’t create a polymorphic object and will result in a warning in most compilers.

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

74

 The classes derived from CDSContract can implement the virtual member function declared
previously, so that it can be invoked when instances of that derived class are created. Here how this can be
done for the LoanOnlyCDSContract subclass.

 The isTradingDay member function returns true if the current date is not a holiday or a weekend day:

 class LoanOnlyCDSContract : public CDSContract {
 public:
 // constructors go here
 void changeLoanSource(const std::string &s);
 virtual double computeCurrentValue(const Date &d);

 private:
 std::string m_loanSource;
 };

 The implementation for a virtual function, both in the base class as well as the derived classes, is not
different from the syntax used in other member functions. It is used in the compiler to determine the correct
way to handle virtual functions that are called.

 The use of a virtual function is determined by its polymorphic invocation through pointers and
references. For example, consider the following code using CDSContract and LoanOnlyCDSContract :

 void useContract(bool isLOContract, Date ¤tDate)
 {
 CDSContract *contract = nullptr;
 if (isLOContract)
 {
 contract = new LoanOnlyCDSContract();
 }
 else
 {
 contract = new CDSContract(); // normal CDS contract
 }

 contract->computeCurrentValue(currentDate);
 delete contract;
 }

 The useContract function is passed two arguments: the Boolean value isLOContract , which indicates
that the contract used is a loan-only CDS. The second argument is the current date for use of the contract.
The first line in the function:

 CDSContract *contract = nullptr;

 determines the base class of the object that will be created. As with any OO object in C++, a pointer
(or reference) to a base class can be used to point to objects of any descent class. In this case, a pointer to the
 CDSContract class (being the base class) can also be used to point to objects of type LoanOnlyCDSContract .
The pointer is initialized to nullptr .

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

75

 ■ Note The keyword nullptr was introduced in the C++11 standard. It provides a way to initialize pointers
with a null value without the use of a macro such NULL (which is used in C but normally avoided in C++), or the
value 0, which can be easily confused with a numeric expression.

 The next lines determine the exact type that will be instantiated. If the isLOContract flag is set to true, a
new object of type LoanOnlyCDSContract is created using the new keyword. Otherwise, the function creates
an object of type CDSContract as the default value. In a more complex application, types should not be
encoded using flags, but passed as a parameter or supplied by some of the part of the application.

 The next line

 contract->computeCurrentValue(currentDate);

 uses the pointer contract to perform a polymorphic call to computeCurrentValue . The polymorphic
call mechanism will determine the correct implementation for the member function, depending on the
exact class of the instance pointed to by the contract pointer. The next section explains how this mechanism
works in practice, and how it affects the creation and use of objects in C++.

 Polymorphism and Virtual Tables
 The first step in using polymorphism via virtual functions is to understand how they differ from regular
member functions. When a virtual function is called, the compiler has to determine the type of call and
translate it into binary code that will perform the call to the correct implementation. This is done in C++
using the so-called virtual table mechanism .

 A virtual table is a vector of functions that is created for each class that uses at least one virtual function.
The virtual table stores the addresses of virtual functions that have been declared for that particular type, as
shown in Figure 4-2 .

 Figure 4-2. Virtual functions shared by classes A, B, and C and stored in their respective virtual function
tables

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

76

 As shown in Figure 4-2 , class A is the base class and it contains a number of virtual functions, here
denoted by the names f1 to f5 . The slots in these tables store pointers to the implementation used by the
class. Two other classes—B and C—are declared as derived classes via a public interface. This makes classes
B and C inherit each a virtual table that contains at least the same function pointers (derived classes can add
more virtual functions if they wish to do so).

 Each class can define its own version of the virtual function, and as a result the pointer to that function
is stored in the corresponding location of the virtual table. The virtual table is populated in the compiler as it
creates the data structures necessary for each class. At execution time, the virtual table is available for code
executed by each of the classes defined in this example.

 During runtime, the code generated by the C++ compiler can retrieve the location in the table where the
function pointer is stored. Then the function is called with the given parameters. First, the compiler retrieves
the location of the virtual table associated with the class. Then, the compiler finds the function pointer at a
predefined displacement from the beginning of the table. Finally, the program makes an indirect call using
the function pointer stored at that location.

 If you use this information to understand how C++ code works, you can see how the CDSContract
and its derived class would execute a call to the computeCurrentValue member function, as shown in the
following line of code:

 contract->computeCurrentValue(currentDate);

 The first step performed by the implementation is to find the virtual table for the particular object that
is stored in the contract pointer. Then, the slot corresponding to the virtual function computeCurrentValue
is searched, usually at a fixed distance from the beginning of the vector as determined by the compiler.
Finally, the function pointer retrieved in this way is called indirectly, resulting in a function call to the correct
implementation.

 Although the sequence of steps necessary to call a virtual function appear to be complex, modern
compilers can generate very efficient code using the virtual table technique. By means of code optimization,
virtual function calls frequently end up as just a call to a function pointer.

 Virtual Functions and Virtual Destructors
 Another member function that can be annotated with the virtual keyword is the destructor. As you may
remember, a destructor is called automatically (in the code generated by the compiler) when an object goes
out of scope, with the objective of reclaiming resources used by the object.

 The destructor may also be used through the keyword delete . When a delete is used, the code calls the
destructor and frees the memory used by the object up to that moment. As a result, the pointer is not valid
after the delete is called.

 It is important to consider the role of the destructor when virtual functions are part of a class. The
reason is that object cleanup is a class-specific activity, which needs to be overridden for each individual
derived class that contains additional resources (such as memory, network connections, or graphical
contexts). As a result, the destructor usually has different implementations that are necessary to perform the
proper cleanup and de-allocation activities.

 For these reasons, the correct way to handle destructors in polymorphic classes is to use the virtual
mechanism in their definition. This provides the means for each subclass to call a specific destructor even
when called from a base pointer.

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

77

 For example, consider what happens when the destructor in the base class is not virtual.

 class CDSContract {
 public:
 CDSContract();
 CDSContract(const CDSContract &p);
 ~CDSContract() { std::cout << " base class delete " << std::endl; }
 CDSContract &operator=(const CDSContract &p);

 std::string counterpart() { return m_counterpart; }
 void setCounterpart(const std::string &s);
 double payoff() { return m_payoff; }
 void setPayoff(double payoff) { m_payoff = payoff; }
 virtual double computeCurrentValue(const Date &d);

 // ...
 };

 The derived class LoanOnlyCDSContract would have the following simple definition, which just prints
an informational message:

 class LoanOnlyCDSContract : public CDSContract {
 public:
 LoanOnlyCDSContract() { std::cout << " derived class delete " << std::endl; }
 // constructors go here
 void changeLoanSource(const std::string &s);
 virtual double computeCurrentValue(const Date &d);

 private:
 std::string m_loanSource;
 };

 If called from client code, these definitions may result in undefined behavior. For example, consider the
following fragment:

 void useBasePtr(CDSContract *contract, Date ¤tDate)
 {
 contract->computeCurrentValue(currentDate);
 delete contract;
 }

 This code receives a pointer of type CDSContract , uses it to call a virtual function, and then uses the
 delete operator on it. When called in the following way:

 void callBasePtr()
 {
 Date date(1,1,2010);
 useBasePtr(new LoanOnlyCDSContract(), date);
 }

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

78

 The code has undefined behavior, because the compiler cannot guarantee that the destructor of the
derived class will be found and executed. From the compiler point of view, a non-virtual destructor doesn’t
need to be called when the object is destroyed.

 To fix this problem, the right thing to do is to declare the destructor as virtual in the base class. A simple
change in this definition can accomplish this:

 class CDSContract {
 public:
 CDSContract() {}
 CDSContract(const CDSContract &p);
 virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
 CDSContract &operator=(const CDSContract &p);

 // ... other members here

 };

 Once a virtual destructor has been declared in the base class, all descendant classes will also contain
a virtual destructor, independent of using the virtual keyword. This is guaranteed by the presence of a
virtual table containing the address of the destructor, as described in the previous section. The result of the
 callBasePtr function after this change is guaranteed to be the following:

 $./CDSApp
 derived class delete
 base class delete

 Abstract Functions
 Another mechanism used to implement polymorphism in C++ are abstract functions . Such abstract
functions are closely related to virtual functions, but their presence marks the containing class as an abstract
class, which cannot be directly instantiated.

 An abstract class is frequently used when a function should be provided in derived classes, but there
is no clear default behavior that could be provided by the base class. This is a common situation when a
base class provides only the framework for an algorithm, with details that are purposefully left unspecified.
The idea is that the derived classes will necessarily provide the missing functionality that would make the
derived classes useful for a particular application.

 The syntax for abstract functions is similar to the syntax for virtual functions. The member function is
preceded with the virtual keyword as previously seen. In addition, the syntax = 0; is used to terminate the
declaration of the abstract function. Notice that only a declaration is needed, since no implementation is
necessary for an abstract function (although it can be provided if available).

 For an example, consider that the CDSContract class has a member function to process a credit event.
In the world of credit default swaps, a credit event is what happens when a company calls for bankruptcy.
Processing this event is different for each entity and CDS type; therefore, I would like to have such a member
function as an abstract virtual function:

 class CDSContract {
 public:
 CDSContract() {}
 CDSContract(const CDSContract &p);
 virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
 CDSContract &operator=(const CDSContract &p);

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

79

 std::string counterpart() { return m_counterpart; }
 void setCounterpart(const std::string &s);
 double payoff() { return m_payoff; }
 void setPayoff(double payoff) { m_payoff = payoff; }
 virtual double computeCurrentValue(const Date &d);

 virtual void processCreditEvent() = 0;

 // ...
 };

 If a base class includes even one abstract virtual function, it becomes an abstract class that cannot be
itself instantiated. The reason is that the class can be thought of as “incomplete,” since at least one of its
virtual functions has no implementation. Given these definitions, the following code would become invalid:

 CDSContract *createSimpeleContract()
 {
 CDSContract *contract = new CDSContract(); /// Wrong: CDSContract is now Abstract
 contract->setCounterpart("IBM");
 return contract;
 }

 Once an abstract member function has been defined, the classes that are direct descents are required
to implement that function, or else they will become abstract too. For example, the descendant class
 LoanOnlyCDSContract now has to implement processCreditEvent in order to be used by client code. Even a
trivial implementation would allow LoanOnlyCDSContract to be instantiated.

 class LoanOnlyCDSContract : public CDSContract {
 public:
 LoanOnlyCDSContract() { std::cout << " derived class delete " << std::endl; }
 // constructors go here
 void changeLoanSource(const std::string &s);
 virtual double computeCurrentValue(const Date &d);

 virtual void processCreditEvent();

 private:
 std::string m_loanSource;
 };

 void LoanOnlyCDSContract::processCreditEvent()
 {
 }

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

80

 Abstract member functions can be freely used even inside the abstract class, where the body of that
member function is not defined. For example, this is a valid definition for the CDSContract::computeCurren
tValue member function:

 double CDSContract::computeCurrentValue(const Date &d)
 {
 if (!counterpart().empty())
 {
 processCreditEvent(); // make sure there is no credit event;
 }
 return calculateInternalValue(); // use an internal calculation function
 }

 Building Class Hierarchies
 One of the advantages of OO code is the ability to organize your application around conceptual frameworks
defined by classes. A class hierarchy allows the sharing of common logic that can be easily reused in other
contexts. Proper use of class hierarchy can reduce the amount of code duplication and lead to applications
that are more understandable and easy to maintain.

 A class hierarchy can be developed around important concepts used by the application. For example,
in a derivatives-based application, the class CDSContract would be a candidate to become the root of a class
hierarchy. Figure 4-3 shows a possible class hierarchy for CDS contracts, containing derived classes for the
following types of contracts:

• LoanOnlyCDSContract : CDS contracts that are based on loans to other institutions
and have special logic for processing these loans.

• HedgedCDSContract : A CDS contract type where hedging is performed using other
asset classes with the goal of reducing contract risk.

• NakedCDSContract : A particular CDS contract where the contract seller does not own
the underlying asset negotiated in the contract.

• FixedInterestCDSContract : A CDS type where the contract requires a fixed interest
rate for the duration of the specified agreement.

• VariableInterestCDSContract : A type of CDS where the contracts are defined using
variable interest rates, using a well-known benchmark for interest rates.

• TaxAdvantagedCDSContract : A particular type of CDS contract that takes advantage
of a special tax structure.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

81

 All these CDS contract derivatives would benefit from code sharing from the base class CDSContract .
As a result, common functionality such as CDS pricing, contract creation, and contract maintenance can be
stored in a central place and used by as many different types of CDS contracts as possible.

 Although creating class hierarchies is a useful technique for code maintenance and sharing, inheritance
may not be the best strategy for code organization in some cases. It is important to be able to identify the
situations in which other approaches would work better. Here are some potential disadvantages of using
 inheritance :

• Increased coupling between classes: Once you decide to use inheritance, there is a
big interdependence between classes. A small change in the base class can affect all
descendent classes. If there is a situation where the base class can vary frequently in
functionality and responsibilities, then inheritance may not be the best solution.

• Physical dependencies at compilation time: In C++, inheritance also creates a
compile-time dependency between classes. To generate correct code, the C++
compiler needs to access the definition of each base class. This may result in
increased compilation time, which is sometimes undesirable, especially in large
software projects.

• Increased information coupling: Class hierarchies may also require developers to
learn the multiple implementations of different classes at different levels. This is
necessary especially when classes are not well designed and information about their
operations is not clear.

 Figure 4-3. A class hierarchy rooted on the base class CDSContract

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

82

 Object Composition
 Another strategy to organize and code using OO techniques is object composition . Composition is an
alternative to inheritance, where you can use the behavior of an object without the dependency caused by
direct class/subclass relationship.

 To use object composition, you need to store the object that has the desired behavior as a member
variable for the containing object. This is the basic strategy, which can be implemented in at least three ways
in C++:

• Storing a pointer to an object: In this case, only a pointer to the object is stored as
part of the class. This option allows an object to be created inside the class or passed
as a parameter from a user of the class and then stored in a member variable.

• Storing a reference to an object: This option allows the class to receive a reference to
an existing object, but doesn’t allow the object to be created after the constructor
is executed. A reference in C++ cannot be reassigned, which leads to a requirement
that the stored object needs to be valid the whole time the container object exists.

• Storing the object as a member variable: In this case, the containing class assumes
responsibility for storing the required object. In this case, it is also necessary for the
compiler to know the exact size of the object stored as a member variable.

 With object composition, a class can use functionality provided by another class without the use of
 inheritance .

 For example, suppose that the CDSContract class needs a fast calculation of integrals. In this case, a
good approach is to use an object-composition strategy to access the functionality of integration, instead
of adding this functionality to the base class. You could do this, for example, by passing to the CDSContract
constructor a pointer to a MathIntegration object and storing that pointer as a member function. The code
would look like this:

 class MathIntegration;

 class CDSContract {
 public:
 CDSContract() {}
 CDSContract(MathIntegration *mipt);
 CDSContract(const CDSContract &p);
 virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
 CDSContract &operator=(const CDSContract &p);

 // other member functions here
 private:
 std::string m_counterpart;
 CDSUnderlying m_underlying;
 double m_payoff;
 int m_term;
 double m_spreadCost;
 MathIntegration *m_mipt;

 static double kStandardPayoff;
 };

CHAPTER 4 ■ OBJECT-ORIENTED TECHNIQUES

83

 When necessary, the pointer could be used to access the functionality stored in the MathIntegration
class. The best thing about this kind of design is that there is little coupling between the CDSContract and
 MathIntegration classes. Each one can evolve separately, by adding new functions as necessary, without
the need for mutual dependencies.

 Conclusion
 In this chapter, you read an overview of OO concepts provided in C++ and how they are used in the financial
development community to solve problems occurring with options and derivatives.

 The first part of this chapter summarized the basic characteristics of OO as implemented in C++,
including the main concepts of encapsulation, inheritance, and polymorphism. You learned about the
technique used in C++ to implement polymorphic behavior through virtual functions. You also saw how
virtual functions are stored in virtual tables that are created for each class that contains virtual functions.

 This chapter also presented some examples of using OO to efficiently solve common problems in
financial programming, as applied to options and derivatives. The next chapter proceeds to template-based
concepts and explains how they can be used to create high-performance solutions to problems in the area of
financial derivatives processing.

85© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_5

 CHAPTER 5

 Design Patterns for Options
Processing

 Design patterns are a set of common programming design elements that can be used to simplify the solution
of recurring problems. With the use of OO techniques, design patterns can be cleanly implemented as a set
of classes that work toward the solution of a common goal. These designs can then be reused and shared
across applications.

 Over the last few years, design patterns have been developed for common problems occurring in
several areas of programming. When designing algorithms for options and other derivatives, design patterns
can provide solutions that are elegant and reusable (when supporting libraries are employed). Thanks to the
inherent ability of the C++ language to create efficient code, these solutions also have high performance.

 In this chapter, you will learn about the most common design patterns employed when working with
financial options and derivatives, with specific examples of their usage. The chapter covers the following topics:

• Overview of design patterns : You will learn how design patterns can help in the
development of complex applications, with the ability to reuse common patterns of
programming behavior. Using design patterns can also make solutions more robust
and easier to understand, because patterns provide a common language that allows
developers to discuss complex problems. Such design techniques has also been
made available through libraries that implement some of the best known design
patterns.

• Factory method pattern : A factory method is a design pattern that allows objects to
be created in a polymorphic way, so the client doesn’t need to know the exact type
of the returned object, only the base class that provides the desired interface. It also
helps to hide a complex set of creation steps to instantiate particular classes.

• Singleton pattern : The singleton pattern is used to model situations in which you
know that only one instance of a particular class can validly exist. This is a situation
that occurs in several applications, and in finance, I present the example of a clearing
house for options trading.

• Observer pattern : Another common application of design patterns is in processing
financial events such as trades. The observer design patterns allows you to decouple
the classes that receive trading transactions from the classes that process the
results, which are the observers. Through the observer design pattern, it is possible
to simplify the logic and the amount of code necessary to support these common
operations, such as the development of a trading ledger, for example.

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

86

 Introduction to Design Patterns
 Design patterns have been introduced as a set of programming practices that simplify the implementation
of common coding problems. As you study the behavior of OO applications, there are tasks and solution
strategies that occur frequently and can be captured as a set of reusable classes.

 Object-oriented programming provides a set of principles that can facilitate the development of
computer software. Using OO programming techniques , you can easily organize your code and create high-
level abstractions for application logic and commonly used component libraries. In this way, OO techniques
can be used to improve and reuse existing components, as well as simplify the overall development. OO
programming promotes a way of creating software that uses logical elements operating at a higher level of
abstraction.

 Here are some of the most common design patterns that can be used in software development in
general and for algorithms to process options and derivatives in particular:

• Factory method : In the factory method design pattern, the objective is to hide the
complexity and introduce indirection when creating an instance of a particular class.
Instead of asking clients to perform the initialization steps, factory methods provide
a simple interface that can be called to create the object and return a reference.

• Singleton : A singleton is a class that can have at most one active instance. The
singleton design pattern is used to control access to this single object and avoid
creating copies of this unique instance.

• Observer : The observer pattern allows objects to receive notifications for important
events occurring in the system. This pattern also reduces the coupling between
objects in the system, since the generator of notification events doesn’t need to know
the details of the observers.

• Visitor : The visitor patter allows a member function of an object to be called in
response to another dynamic invocation implemented in a separate class. The
visitor pattern therefore provides the mechanism for dispatching messages based
on a combination of two objects, instead of the single object-based dispatch that is
common with OO languages.

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

87

 In the next few sections, you will see how these design patterns can be implemented in C++, with
examples of how they occur in options and derivatives applications.

 The Factory Method Design Pattern
 A factory design pattern is a technique used to indirectly create objects of a particular class. This pattern is
important because it is frequently useful to access newly allocated objects without having to directly perform
the work necessary to create them. For example, using the factory method design pattern, it is possible to
avoid the use of the new keyword to create an object, along with the parameters required by the constructor.

 The factory design pattern allows an object to be created through a member function of the desired
class, so that the client doesn’t need to create the object directly. This can be useful for the following reasons:

• Most of the time, there is no need for the client to provide parameters for
construction of the object. For example, if the objects require the allocation of
additional resources, such as a file or a network connection, the client is relieved
from acquiring these resources.

• Sometimes the object depends on internal implementation details, such as a private
class, that are not available to clients. In this case, providing a factory method is the
only way to create new instances of the object.

• The exact sequence of events necessary to create an object may change. In that case,
it is better to provide a factory method that hides this complexity. Users of the class
will not have to worry if the way the object is created is updated.

 Figure 5-1. A few common design patterns used in OO programming

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

88

• More importantly, factory methods can be used to simplify polymorphic object creation .
For example, when an object is created using the new operator, the concrete type of
the returned object has to be known by the client. On some applications this might be
undesirable, because the real type of the needed object could be any one within a set
of derived classes. Using a factory method, it is possible to delegate the creation of the
object so that the client code doesn’t need to know about the concrete type. As a result,
the returned object may be any one of the subtypes of the original type.

 Factory methods in C++ are declared as static member functions. Such a member function
doesn’t depend on a instance of the class to be executed. The syntax for member functions is simply
 ClassName::functionName() , with parameters added as needed.

 ■ Note The factory method design pattern is also used as a foundation for more complex design patterns. For
example, you will notice that other patterns such as singleton use a factory method to control the creation of
new instances of a particular class.

 In options and derivatives applications, the factory method is commonly used. A situation where the
use of a factory method is desirable is when you need to load data objects. The data source used can vary
from a local file to a URL, and the parsing of that data is not an important part of the overall algorithm. In
that case, abstracting the creation of the data source can be an important application of the factory method.

 In the example that follows, you can see how a DataSource class can be implemented. The goal of this
class is to hide the process of creating a new data source, so the clients have no access to the real constructor
of the class. Instead, clients need to use a factory method, which is implemented as a static member function
of the DataSource class.

 When using factory methods, it is frequently useful to hide the real implementation of the constructor.
This can be done through careful use of the private modifier . The goal is to grant access to the constructor
only to the class itself (and to any declared friends of the class). This is done to the standard constructor as
well as to the copy constructor.

 The interface to the DataSource class is presented in Listing 5-1 . Both constructors and the assignment
operator are declared as private. The destructor, however, needs to be accessible so that the delete keyword
can be called on allocated objects. The readData member function is an interface for the main responsibility
attributed to this class, and its implementation will vary according to the read data source used. The
 createInstance member function is a static function that creates and returns new instances of the data
type, functioning as the factory method.

 Listing 5-1. Declaration of the DataSource Class

 //
 // DataSource.hpp

 #ifndef DataSource_hpp
 #define DataSource_hpp

 #include <string>

 class DataSource {
 private:
 DataSource(const std::string &name);
 DataSource(const DataSource &p);
 DataSource &operator=(const DataSource &p);

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

89

 public:
 ~DataSource(); // must be public so clients can use delete

 static DataSource *createInstance();

 void readData();

 private:
 std::string m_dataName;
 };

 The implementation of the DataSource class is shown in Listing 5-2 . The constructors and destructor
are standard, considering the fact that the constructor is private. The interesting part of the DataSource
implementation is the getInstance method, which returns a new data source. This implementation receives
only one parameter that is created by the method, but consider the general case in which a list of complex or
implementation-dependent objects need to be retrieved in order to call the new operator for the DataSource
class.

 ■ Note At the end of getInstance , the member function returns a pointer to the newly created object.
Another option is to return a smart pointer, such as std::shared_ptr , which would make it easier to manage
the lifetime of the allocated object.

 Listing 5-2. Implementation of the DataSource Class

 #endif /* DataSource_hpp */

 //
 // DataSource.cpp

 #include "DataSource.hpp"

 DataSource::DataSource(const std::string &name)
 : m_dataName(name)
 {
 }

 DataSource::DataSource(const DataSource &p)
 : m_dataName(p.m_dataName)
 {
 }

 DataSource &DataSource::operator=(const DataSource &p)
 {
 if (this != &p)
 {
 m_dataName = p.m_dataName;
 }
 return *this;
 }

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

90

 DataSource::~DataSource()
 {
 }

 DataSource *DataSource::createInstance()
 {
 std::string sourceName;
 // complex method used here to find sourceName and other construction parameters
 DataSource *ds = new DataSource(sourceName);
 return ds;
 }

 void DataSource::readData()
 {
 // read data here ...
 }

 void useDataSource()
 {
 // DataSource *source = new DataSource(""); // this will not work!
 DataSource *source = DataSource::createInstance();
 source->readData();
 // do something else with data
 delete source;
 }

 The Singleton Pattern
 One of the simplest and most used design patterns is the singleton. With this design pattern, a single object
is used to represent a whole class, so that there is a central location where services managed by that class can
be directed.

 Unlike standard classes, a singleton class represents a single resource that cannot be replicated.
Because of this, the singleton pattern restricts the ability to create new objects of a particular class, using
a few techniques that will be discussed latter in this section. C++ provides all the features necessary to
implement singleton patterns with high performance.

 In programming, the notion of an entity that is unique across the application is frequently encountered.
An example in options programming is an entity called a clearing house . A clearing house is an institution
that provides clearing services for trades on options and derivatives. The clearing house makes sure that
every trade has collateral so that counterpart risk is reduced, among other attributions. For example, if a
trader sells options in a particular instrument, the clearing house will make sure that the trader has enough
margin to satisfy the requirements of that particular trade.

 While a clearing house provides important services in the trading industry, most applications need
to connect to a single clearing house. Thus, creating a single object to represent the clearing house is an
obvious implementation technique for this situation. Table 5-1 presents a few examples of objects that could
be modeled using a singleton.

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

91

 To implement a singleton in C++, the first step is to make sure that there is only one object of that class
in the application. To do this, it is necessary to disallow the creation of new objects of that particular class.
You can take advantage of the ability provided by C++ to make class members inaccessible to users of the
class through the private keyword. Users then cannot use the new keyword to generate new objects of that
particular class.

 On the other hand, it is necessary to create some mechanism for clients to access an instance of the
singleton class. This is usually done using a static member function that returns the single existing object,
or creates a new object if necessary before returning it. Using such an access member function, clients can
access the public interface of the singleton object. At the same time, they’re not allowed to create or manage
the lifecycle of that object.

 Clearing House Implementation in C++
 A possible implementation for the clearing house class using the singleton pattern is presented in Listings
 5-1 and 5-2 . The class has two parts: the first part deals with the management of the singleton object. This
is done through the definition of private constructor and destructors, as well as the presence of a static
member function getClearingHouse , which returns a reference to the singleton instance.

 The second part of the implementation deals with the responsibilities of the clearing house,
represented here as the member function clearTrade . This function receives as an argument a Trade object,
which is not defined here but contains all the data associated with the transaction.

 Listing 5-3 shows the interface, which follows the singleton design pattern. Listing 5-4 contains the
implementation of the member functions declared in the class interface, as well as the static member
variable s_clearingHouse .

 Listing 5-3. Header File for the ClearingHouse Class, Which Implements the Singleton Design Pattern

 //
 // DesignPatterns.hpp
 // CppOptions

 #ifndef DesignPatterns_hpp
 #define DesignPatterns_hpp

 class Trade {
 //
 };

 Table 5-1. Example Objects that Can Be Implemented as a Singleton Design Pattern

 Object Notes

 Clearing house (finance) A single clearing house is used for all trades.

 Root window (GUI) Each GUI application communicates with only one root window.

 Operating system An object representing operating system services is unique through the
application.

 Company CEO An object representing the CEO has only one instance.

 Memory allocator (system
services)

 Each application uses a single memory allocator, which can be represented
by a singleton.

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

92

 class ClearingHouse {
 private: // these are all private because this is a singleton
 ClearingHouse();
 // the copy constructor is not implemented
 ClearingHouse(const ClearingHouse &p);
 ~ClearingHouse();
 // assignment operator is not implemented
 ClearingHouse &operator=(const ClearingHouse &p);

 public:
 static ClearingHouse &getClearingHouse();

 void clearTrade(const Trade &);

 private:
 static ClearingHouse *s_clearingHouse;
 };

 #endif /* DesignPatterns_hpp */

 The implementation file contains the member function ClearingHouse::getClearingHouse . This
function first checks the static variable s_clearingHouse to determine if it has been previously allocated. If
the object doesn’t exist, then the static function can create a new object, store it for further use, and return a
reference.

 The function useClearingHouse is an example of how the ClearingHouse class can be used. The
first step is to have a variable hold a reference to the singleton object. Then, by calling the static function
 getClearingHouse , you can access the singleton. In this example, the singleton is used to process another
trade through the member function clearTrade .

 Listing 5-4. Implementation File for ClearingHouse Class, Which Uses the Singleton Design Pattern

 //
 // DesignPatterns.cpp

 #include "DesignPatterns.hpp"

 ClearingHouse *ClearingHouse::s_clearingHouse = nullptr;

 ClearingHouse::ClearingHouse() // private constructor, cannot be used by clients
 {
 }

 ClearingHouse::~ClearingHouse() // this is private and cannot be used by clients
 {
 }

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

93

 ClearingHouse &ClearingHouse::getClearingHouse()
 {
 if (!s_clearingHouse)
 {
 s_clearingHouse = new ClearingHouse();
 }
 return *s_clearingHouse;
 }

 void ClearingHouse::clearTrade(const Trade &t)
 {
 // trade is processed here
 }

 void useClearingHouse()
 {
 Trade trade;
 ClearingHouse &ch = ClearingHouse::getClearingHouse();
 ch.clearTrade(trade);
 }

 The Observer Design Pattern
 A frequent situation that occurs in complex systems is the occurrence of events that trigger further actions.
For example, an event that happens on financial systems is the completion of an options trade. When a new
trade is completed, several actions need to be performed to update the system and reflect the new positions
in the ledger.

 The observer design pattern is a very powerful strategy to manage event updates, based on a standard
technique that gives clients the ability to listen to events and updates to a particular object and react
accordingly.

 There are two parts of the observer design pattern (see Figure 5-2). First there is an observer, which
implements an abstract interface capable of receiving notifications. The abstract interface consists of a single
member function, called notify . This member function is called by the second part of the design pattern,
the Subject , when a new event occurs (the arrow between them means that the observer has a reference to
the Subject object).

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

94

 The Subject class has at least three member functions that enable the functionality of the observer
design pattern. The first function is addObsever , which takes as a parameter a reference to an observer
object. The addObserver function maintains the reference in an internal list of objects that are interested in
receiving notifications.

 The second member function in the subject interface is removeObserver , which simply removes a given
observer from the notification list. Finally, there is a member function called triggerNotifications that is
used to send the notifications to all objects that registered with the Subject class.

 The observer design pattern can readily implemented in C++ using abstract classes. You can see a
sample implementation in Listings 5-5 and 5-6 . The first class that is considered is the Observer class . This
class has the purpose of providing a simple interface for the observer. Its only non-trivial member function
is notify , which is an abstract function called by the subject when a new event occurs. As a result, any class
deriving from observer needs to process the notification in a user-defined way.

 The interface is the following :

 class Observer {
 public:

 // constructor and destructor definitions

 virtual void notify() = 0;

 };

 ■ Note Consider how the Observer class is independent of any implementation detail for the trading ledger
system. This definition could be reused as part of a design pattern’s library. Similar techniques can be used to
simplify the creation of other design patterns as well.

 Figure 5-2. Simplified scheme of the observer design pattern

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

95

 Next, it is necessary to define a class that implements the abstract observer interface. In this case, the
goal is to implement a trade observer , which can be specified in the following way:

 class TradeObserver : public Observer {
 public:
 TradeObserver(TradingLedger *t);
 TradeObserver(const TradeObserver &p);
 ~TradeObserver();
 TradeObserver &operator=(const TradeObserver &p);

 void notify();
 void processNewTrade();
 private:
 Trade m_trade;
 TradingLedger *m_ledger;
 };

 The constructor for this class receives as a parameter a pointer to the TradingLedger object, which will
be defined later. The class provides an implementation for notifications and a member function to process
new trades. These two member functions are implemented as follows.

 void TradeObserver::notify()
 {
 this->processNewTrade();
 }

 void TradeObserver::processNewTrade()
 {
 m_trade = m_ledger->getLastTrade();
 // do trading processing here
 }

 Here, the notification implementation just calls the processNewTrade function , which stores the trade
returned by the ledger object.

 Finally, you can also see a definition for the TradingLedger class . The class contains the three
member functions that comply with the subject interface (addObserver , removeObserver , and
 triggerNotifications). The class also contains two simple member functions to add and return trades, as
shown in the following definitions:

 class TradingLedger {
 public:
 TradingLedger();
 TradingLedger(const TradingLedger &p);
 ~TradingLedger();
 TradingLedger &operator=(const TradingLedger &p);

 void addObserver(std::shared_ptr<Observer> observer);
 void removeObserver(std::shared_ptr<Observer> observer);
 void triggerNotifications();

 void addTrade(const Trade &t);
 const Trade &getLastTrade();

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

96

 private:
 std::set<std::shared_ptr<Observer>> m_observers;
 Trade m_trade;
 };

 The addObserver and removeObserver functions operate with std::shared_ptr templates for the
observer object. The goal is to avoid unnecessary memory issues by delegating the memory deallocation
to shared pointers from the standard library. These two functions operate as an interface to the internal
 m_observers container.

 The triggerNotification function can be implemented as follows:

 void TradingLedger::triggerNotifications()
 {
 for (auto i : m_observers)
 {
 i->notify();
 }
 }

 It simply loops through all elements stored in the m_observers set and sends a notification to these
registered objects. Each such object that implements the observer interface can now respond to the event as
needed.

 Complete Code
 The complete example previously described can be seen in Listings 5-5 and 5-6 . The first file contains only
the interface for the main classes used in the system. Listing 5-6 shows the implementation of these classes,
along with a sample main function that creates the ledger and two observer objects.

 Listing 5-5. Header File Containing Interfaces for the Observer Design Pattern

 //
 // Observer.hpp

 #ifndef Observer_hpp
 #define Observer_hpp

 #include <set>
 #include <memory>

 class Observer {
 public:
 Observer();
 Observer(const Observer &p);
 ~Observer();
 Observer &operator=(const Observer &p); // not implemented

 virtual void notify() = 0;

 };

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

97

 class Trade {
 //
 // Implementation not shown here
 };

 class TradingLedger;

 class TradeObserver : public Observer {
 public:
 TradeObserver(TradingLedger *t);
 TradeObserver(const TradeObserver &p);
 ~TradeObserver();
 TradeObserver &operator=(const TradeObserver &p);

 void notify();
 void processNewTrade();
 private:
 Trade m_trade;
 TradingLedger *m_ledger;
 };

 class TradingLedger {
 public:
 TradingLedger();
 TradingLedger(const TradingLedger &p);
 ~TradingLedger();
 TradingLedger &operator=(const TradingLedger &p);

 void addObserver(std::shared_ptr<Observer> observer);
 void removeObserver(std::shared_ptr<Observer> observer);
 void triggerNotifications();

 void addTrade(const Trade &t);
 const Trade &getLastTrade();

 private:
 std::set<std::shared_ptr<Observer>> m_observers;
 Trade m_trade;
 };

 #endif /* Observer_hpp */

 Listing 5-6. Implementation File with C++ Definitions for the Observer Design Pattern

 //
 // Observer.cpp

 #include "Observer.hpp"

 using std::shared_ptr;

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

98

 typedef shared_ptr<Observer> PObserver;
 typedef shared_ptr<TradeObserver> PTradeObserver;

 Observer::Observer()
 {
 }

 Observer::Observer(const Observer &p)
 {
 }

 Observer::~Observer()
 {
 }

 void Observer::notify()
 {
 }

 TradeObserver::TradeObserver(TradingLedger *t)
 : m_ledger(t)
 {
 }

 TradeObserver::TradeObserver(const TradeObserver &p)
 : m_trade(p.m_trade),
 m_ledger(p.m_ledger)
 {
 }

 TradeObserver::~TradeObserver()
 {
 }

 TradeObserver &TradeObserver::operator=(const TradeObserver &p)
 {
 if (this != &p)
 {
 m_trade = p.m_trade;
 m_ledger = p.m_ledger;
 }
 return *this;
 }

 void TradeObserver::notify()
 {
 this->processNewTrade();
 }

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

99

 void TradeObserver::processNewTrade()
 {
 m_trade = m_ledger->getLastTrade();
 // do trading processing here
 }

 // -- TradingLedger implementation

 TradingLedger::TradingLedger()
 {
 }

 TradingLedger::TradingLedger(const TradingLedger &p)
 : m_observers(p.m_observers),
 m_trade(p.m_trade)
 {
 }

 TradingLedger::~TradingLedger()
 {
 }

 TradingLedger &TradingLedger::operator=(const TradingLedger &p)
 {
 if (this != &p)
 {
 m_observers = p.m_observers;
 m_trade = p.m_trade;
 }
 return *this;
 }

 void TradingLedger::addObserver(PObserver observer)
 {
 m_observers.insert(observer);
 }

 void TradingLedger::removeObserver(PObserver observer)
 {
 if (m_observers.find(observer) != m_observers.end())
 {
 m_observers.erase(observer);
 }
 }

 void TradingLedger::triggerNotifications()
 {
 for (auto i : m_observers)
 {
 i->notify();
 }
 }

CHAPTER 5 ■ DESIGN PATTERNS FOR OPTIONS PROCESSING

100

 void TradingLedger::addTrade(const Trade &t)
 {
 m_trade = t;
 this->triggerNotifications();
 }

 const Trade &TradingLedger::getLastTrade()
 {
 return m_trade;
 }

 //
 // Simple test stub for the TradingLedger and TradeObserver classes.
 int main()
 {
 TradingLedger tl;
 PTradeObserver observer1 = PTradeObserver(new TradeObserver(&tl));
 PTradeObserver observer2 = PTradeObserver(new TradeObserver(&tl));
 tl.addObserver(observer1);
 tl.addObserver(observer2);

 // perform trading system here

 Trade aTrade;
 tl.addTrade(aTrade);

 // observers should receive a notification at this point
 return 0;
 }

 Conclusion
 Design patterns are commonly used to develop reusable code, especially when OO techniques are
employed. C++ provides strong support for the creation of classes that follow designed patterns such as the
ones discussed in the preceding sections.

 In this chapter, you saw examples and implementation in C++ for three common design patterns. First,
I presented an overview of design patterns, listing some of the patterns that are most commonly used in
the implementation of algorithms for options and derivatives. Then, you learned about the factory method
design pattern, which is one of the easiest and most widely used patterns of OO programming.

 The singleton pattern is used when it is necessary to enforce the existence of a single instance for a
particular class. You saw the example of a clearing house implementation, where the single instance must be
accessible to all clients in the application.

 The observer pattern is a third example of how to implement such designs in C++. You saw how this pattern
can be employed to solve the problem of trading processing. Using this design pattern, it is possible to decouple
the classes that receive the events from specific classes that listen to the events and perform further processing.

 While object-oriented design patterns provide several elegant solutions for commonly found problems
in financial programming, there are situations in which a non-OO strategy may be a better solution. In
these situations, C++ promotes the use of templates , an implementation technique in which the compiler is
allowed to generate code based on parameterized types. In the next chapter, you will see several examples in
which template-based algorithms can be used to improve the performance and flexibility of algorithms for
options and derivatives trading.

101© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_6

 CHAPTER 6

 Template-Based Techniques

 C++ templates allow programmers to write generic code, which works without modification on different
datatypes. Through the careful use of templates, C++ programmers can write expressive code with high
performance and low overhead, without needing to rely exclusively on more computationally expensive
object-oriented techniques, such as the design patterns presented in the previous chapter.

 This chapter explores a few template-based programming practices that can be used to solve options-
and derivatives-based financial problems. Here are some of the topics discussed in this chapter:

• Understanding the use of templates: You will learn about the basics of templates,
including their syntax and how they can be implemented as template functions or
template classes.

• Using compile-time algorithms: This is a quick overview of how compile-time
algorithms work, with some examples such as recursive algorithms, which allow
compile-time definitions that depend on themselves recursively.

• Containers and smart pointers: One of the most common uses of templates is to
maintain containers of objects. Smart pointers are also frequently employed to
simplify the code necessary for memory management.

• Best practices: You will learn a few best practices that will improve your
template-based code.

 Introduction to Templates
 A template is a way to generate parameterized code, so that different versions of the same programming
definition (a class or a function) can be generated for the each given parameter. A combination of
parameters can also be used when more than one parameter is required. In C++, the parameters passed to a
template may be a concrete datatype (native or user-defined datatypes) or an integer number, as you will see
in the following examples.

 You have already seen how to use basic templates in some of the previous examples that employed
standard template library containers. Such containers include vectors, maps, and sets, as provided by the
C++ standard library. In this section, you will learn more about the implementation of new templates and
the features they can provide to application programmers.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

102

 One of the applications of templates is to perform compile-time calculations. Performing some
operations at compilation time instead of at runtime is a performance-enhancing technique that can save a
lot of CPU and make your application run more smoothly. Examples of such cases include the use of integer
recursive functions, conditional code that depends on particular datatypes, and container objects and smart
pointers.

• Recursive functions: A recursive function based on integer numbers can be easily
calculated using compile-time techniques. For example, some numeric algorithms
depend on the use of factorials of numbers, which may be known at compilation
time. Transforming a runtime computation into a compile-time transformation is an
easy way to make your algorithms run faster.

• Compile-time polymorphism: Another example of compile-time performance
enhancement is the removal of conditional code based on types. When different
operations need to be performed for different types, the standard procedure in OO
code is to create a hierarchy that provides a different implementation for each type
involved. With templates, you can replace this type of runtime polymorphism with
compilation-time polymorphism. In that case, the right template is executed based
on the type that is already known at compilation time, and as a result no decision is
necessary at runtime.

• Container objects: Container objects provide a big advantage to using templates.
The STL provides several containers based on templates that streamline the task of
storing objects using different memory allocation strategies. For example, std::map s
allow programmers to map from a key type to a value type in a generic way. The use
of templates also simplifies common tasks such as iterating through the elements of
the container. Since templates know the type of objects stored, there is no need to
use a cast or other polymorphic techniques such as is used by OO code.

• Smart pointers: Finally, templates also give C++ the ability to automatically
manage memory using smart pointers . A smart pointer is a template that has the
sole purpose of managing an object that has been passed as a pointer. The exact
semantics of a smart pointer changes according to the particular template and the
desired results, including for example the ability to use reference counting, or to be
owned by a single client. The standard C++ library provides a small number of smart
pointers, such as std::auto_ptr , std::unique_ptr , and std::shared_ptr , among
others.

 ■ Note A possible disadvantage of templates is the possibility of duplication of code in the resulting binary
application. For example, if a large template has a type parameter, the compiler needs to duplicate it for
each different type with which it is used. This has the potential of creating bloated executables with several
redundant compiled templates. Thankfully, modern computers have enough memory that this is not a common
concern, but as application sizes grow, software developers need to consider this issue.

 In the next few sections, you will see some examples of template-based techniques, and learn how these
techniques can be effectively implemented in C++.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

103

 Compilation-Time Polymorphism
 One of the techniques you learned in the previous chapter is the use of polymorphism based on object-
oriented features such as the virtual keyword. One of the advantages of templates is that they can be used
to work with different types, while at the same time they avoid the need for runtime checking that is inherent
to the use of polymorphic classes.

 With templates, you can use compile-time polymorphism in several situations where types can be
known by the compiler. This makes it possible to write code that’s independent of the type used, while at the
same time avoid the expense of runtime lookups.

 An example that is commonly used in financial code is applying mathematical operations to different
datasets. This can be done is several ways, but templates can be used to make the process efficient and
transparent to the programmer. Consider the operation of normalizing a dataset. To apply such an operation
to different sets, you could create a Normalize template, as demonstrated in the following code. First, you
assume that there are two implementations available for the normalization operation, one for vectors and
another for sets:

 void array_normalize(std::vector<double> &array);

 void set_normalize(std::set<double> &set);

 The next part of this example shows the main template class, called Normalization . This class provides
the main declaration used. In a more complete implementation, Normalization would contain a number of
static definitions other than a single function, but that is enough to demonstrate the usefulness of the class
template.

 The member function normalize performs the work of normalization in a generic way; therefore, it
must receive as argument a type that is a template parameter:

 template <class T>
 class Normalization
 {
 public:
 typedef T Type;
 static void normalize(T &arg);
 };

 Now, you’re ready to implement as many specializations of the normalize function as necessary.
I present two specializations here, one using a vector of doubles, and another using a set of doubles.
These two implementations use the regular functions that have been declared previously, and their
implementations are now shown here.

 template <>
 void Normalization<std::vector<double>>::normalize(std::vector<double> &a)
 {
 array_normalize(a);
 }

 template <>
 void Normalization<std::set<double>>::normalize(std::set<double> &a)
 {
 set_normalize(a);
 }

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

104

 ■ Note Consider how the parameter list for the template is empty. This syntax indicates that this is a
specialization of a previously defined member function.

 Notice how these definitions are independent of the original class definition. This means that if you
create a new type of normalization function that can be applied to a particular type, the only thing you
need to do is declare a new template specialization that uses that function. Therefore, the Normalization
class is essentially an open definition that can be extended by any library that decides to implement a new
normalization strategy. And this can be done without any runtime overhead, since the right normalization
strategy will be chosen during compilation.

 Finally, I present a template function that simplifies a call to the normalization member function. This
template function is called normalize and just calls the desired static member function:

 template <class T>
 void normalize(T &val)
 {
 Normalization<T>::normalize(val);
 }

 Here is an example of how such a function can be called for different types. The compiler will generate
optimal code by deciding which specialization of the class to use and will make the call without runtime
overhead:

 void use_normalize()
 {
 std::set<double> set;
 std::vector<double> array;

 normalize(set);
 normalize(array);
 }

 Template Functions
 A template function is C++ function that can be parameterized with the use of one or more types or integral
values. Using template functions you can write generic functions that work with any combination of the
original parameters, expanding the domain of application for the code contained in the original function.

 Consider as a first example the function returning the maximum value between the two given
parameters. It is easy to write such a function for a particular datatype. For example, for integer parameters,
this function can be written as:

 int int_max(int a, int b)
 {
 if (a > b)
 {
 return a;
 }

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

105

 else
 {
 return b;
 }
 }

 To create a generic version of this function, you just need to create a template function that is
parameterized on the types used in the parameter list and return values.

 template <class T>
 T generic_max(T a, T b)
 {
 if (a > b)
 {
 return a;
 }
 else
 {
 return b;
 }
 }

 With this template, you can not only compute the maximum of two integers, but you can also do the
same for any type that supports a comparison using the > operator. This even includes non-numeric types
such as strings, as you will see next.

 The string case is interesting in this example, because it also involves the discussion of partial
specialization. A partial specialization is a version of a template where one or more of the parameters have
been substituted by concrete types or values. You can specialize the generic_max template function to
handle zero terminated strings using a different implementation, as follows:

 template <>
 const char * generic_max(const char *a, const char *b)
 {
 if (strcmp(a, b) > 0)
 {
 return a;
 }
 else
 {
 return b;
 }
 }

 This syntax indicates that this is a specialization of the previously defined generic_max function. The
parameter type const char * is substituted directly in the function implementation. This function in
particular uses the strcmp function from the C standard library to determine if a string is less than another.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

106

 Implementing Recursive Functions
 One of the applications of compile-time computation through templates is the implementation of recursive
functions . A recursive function is one in which the result of the operation for a particular value can be
calculated based on the application of the same function.

 The reason that it is possible to use templates for computing recursive functions is the ability of these
C++ templates to take integral numbers as arguments. For example, a trivial template that prints a static
value can be defined using the number as a template argument:

 template <int N>
 void printNumberPlusOne()
 {
 int a = N + 1;
 std::cout << a << std::endl;
 }

 void usePrintTemplate()
 {
 printNumberPlusOne<10>();
 }

 Here, the integer N is passed not as a function argument, but as a compile-time parameter. This means
that at runtime the value of N is already known as a constant value, which makes the operation much more
efficient than a normal parameter passing.

 This example can be further expanded, using a recursive strategy to print N numbers at compilation
time. Here is a simple version that does this recursively:

 template<int N>
 void printNumberRecursive() // general case
 {
 std::cout << N << " ";
 printNumberRecursive<N-1>();
 }

 template<>
 void printNumberRecursive<0>() // base case
 {
 std::cout << std::endl;
 }

 void usePrintRecursive()
 {
 printNumberRecursive<10>();
 }

 This template is implemented as a general case and a specialization (base case). The general recursion
case is what should be done in most cases, which in this case is print the given template parameter N and call
the same template with a small number N-1 . The base case is what should happen to cause the recursion
to stop. In this example, the recursion stops when the value 0 is reached, in which case the template simply
prints a new line.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

107

 Taken together, these two cases for the printNumberRecursive template can print the numbers from N
to 0 using only compilation-time expression. This means that all calculations have already been computed
in the compiler, dramatically cutting down the computation effort at runtime.

 You can use the same strategy to compute more complex and useful recursive functions. Table 6-1 shows
a few common recursive functions that involve integer numbers and that can be easily implemented using
C++ templates. Notice how these functions use their own definitions in order to compute the next value.

 Table 6-1. Common Integer Recursive Functions

 Recursive Function Description

 Factorial Calculate factorials of the form 1×2×3×...×n.

 Fibonacci Calculate the general recursion F (n) = F (n – 1) + F (n – 2).

 Triangular numbers Calculate the number of items in triangular formation.

 Binomial coefficients Calculate the coefficients of polynomial equations of the form (ax + b) n .

 In a more complete example, consider the implementation of the summation of the first N integer
values, for a given parameter N . You can do this with a template function that recursively calls itself. Thanks
to templates, the compiler can calculate such values during compilation time. Here is an implementation of
such a function:

 template <int N>
 int intSum()
 {
 return N + intSum<N-1>();
 }

 template <>
 int intSum<0>()
 {
 return 0;
 }

 void useIntSum()
 {
 std::cout << intSum<20>() << std::endl;
 }

 As before, there is a general case for most values of N and a base case that is used when the parameter
is 0 . The general case defines the template and its integer parameter. The base case is a template
specialization, so the exact argument value needs to be provided.

 The intSum template in the general case returns the sum of the argument that was originally passed
and adds to that the value of intSum for N-1 . Since all these calculations are based on constant values at
compilation time, the result is computed using the compiler itself.

 The specialization of intSum deals with the base case that terminates the recursion. When the argument
is 0 , the value 0 is returned as the value of the sum. The function useIntSum instantiates the template,
passing the value 20 as its parameter. The result is then printed to the standard output.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

108

 Recursive Functions and Template Classes
 Recursive functions can also be implemented using template classes , instead of simple functions. This
is recommended when additional information is supposed to be stored with the result of the function. A
template class can also receive as a parameter an integer number, along with specializations based on that
template parameter.

 Consider an example template class that computes the factorial of a number. The logic of this type of
computation is very similar to the functions you have seen before. However, it gives you an opportunity to
see how a template class works in this situation.

 template <long N>
 class Factorial
 {
 public:
 enum
 {
 Argument = N
 };
 static long value();
 };

 template <long N>
 long Factorial<N>::value()
 {
 return N * Factorial<N-1>::value();
 }

 template <>
 long Factorial<0>::value()
 {
 return 1;
 }

 void useFactorial()
 {
 Factorial<8> fact;
 std::cout << " factorial for argument " << fact.Argument << " is "
 << fact.value() << std::endl;
 }

 The class Factorial shows how a template class can store interesting values as part of the class
definition. The enumeration at the beginning of the class definition contains a value called Argument , which
stores the argument for further use. This exemplifies a feature that cannot be achieved by a simple function,
since the use of a class can allow any value to be stored as an enumeration of a static variable. The way the
template is expanded by the compiler is shown in Figure 6-1 .

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

109

 The Factorial class also contains a static function that computes the desired factorial number. As in
the previous examples, the function is implemented with a general case for any integer number, and a base
case, which is used when the 0 value is passed.

 The useFactorial function shows how to invoke the Factorial class for a particular compile-time
computation. The factorial of the value 8 is desired, so it is passed as the single argument to the template
class. The next line uses the Argument enumeration value so it can retrieve the passed argument.

 The value of the factorial is finally accessed using the value member function. Notice that, as usual with
templates, the value function is calculated at compilation time and the result is replaced with the compiler
at that particular point.

 Containers and Smart Pointers
 One of the most important applications of templates in C++ is the creation of data containers . A container is
a template-based object that maintains and provides access to other underlying objects or data structures.
For example, a common container used in C++ is std::vector , which is a representation of sequential
memory that can be accessed using a numeric index. Other more complex containers are provided in the
STL and in third-party libraries that are commonly used in financial applications.

 Here are some of the best-known STL containers , and the types of arguments that they expect in the
standard library. A short list of available containers is displayed in Table 6-2 .

 ■ Note All STL containers receive as a parameter a default Allocator type, which determines how objects
are allocated, such as using the global heap or some other pre-allocated local memory. If this type is not
supplied, the standard allocator for the new keyword is used when creating objects.

• std::vector<T, Allocator> : The type T passed to std::vector represents the main
type of each element stored in the vector. This container guarantees that elements
will be stored sequentially.

 Figure 6-1. An example of computation using template specialization. The general case of the Factorial
template is instantiated with the integer 3, and new instantiations are used until the specialization for
Factorial<0> is reached

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

110

• std::map<K, T, allocator> : This template requires two parameters. The first
parameter represents the type of the key and should be an immutable object. The
second type represents the object stored for each key. Maps have variations, such as
 std::unordered_map , where entries are unordered, and std::multimap , where each
key can have more than one associated entry.

• std::queue<T, Allocator> : A std::queue provides a first-in first-out mechanism,
and the argument T is the type of elements stored in this container. This container
also has a variant called std::dequeue , which allows elements to be removed from
the front or back of the queue.

• std::stack<T, Allocator> : A template object that stores elements in a first-in last-
out mechanism. The elements are typically allocated sequentially.

 Table 6-2. Common STL Containers and Their Parameters

 Container Type Description

 std::vector Container in which elements are stored in sequential mode. Each element must have
the same type, as determined by the template parameter.

 std::map A container where each element is associated with a unique key. The container allows
searching by keys.

 std::queue A first-in first-out container that has elements of the same type, the type being the
parameter to the template.

 std::array A simple sequential group of elements that can be indexed by a number. The element
type is passed as a template argument.

 std::list A linked list where each object has the same type.

 std:set A container that stores an unordered list of objects. Elements of set can be retrieved
efficiently.

 std::stack A first-in last-out container where each element has the same type, as determined by
the template parameter.

 The second important application of templates in the C++ standard library is in the implementation of
smart pointers. A smart pointer enables you to manage the memory of objects allocated in the heap. It does
this through particular strategies such as using reference counting, or restricting the access to the pointer
and deleting the associated memory at the end of the current scope (as is the case with std::auto_ptr).

 Smart pointers are possible due to the ability to generate specific code for each datatype passed as
parameter. Thus, a std::shared_ptr<OptionsContract> , for example, can be created to manage objects of
type OptionsContract .

 Table 6-3 presents a few of the most common smart pointer templates. Some of these templates have
been available as part of the standard C++ library since C++11.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

111

 Avoiding Lengthy Template Instantiations
 C++ templates are a powerful mechanism that can be used to create generic code. With templates, it is
also possible to remove undesirable code duplication, since the same code can then be applied to data of
different types.

 On the flip side, however, templates can also create problems due to the potential they have to slow
down compilation times. Because all the code in a template is generally available to the compiler when
processing translation units, it is difficult to provide separate compilation for templates. An example of a
library that is victim of this behavior is boost, where typically all the functionality is included in the header
files. These header files are then included each time the library is referenced in an implementation file,
resulting in long build times.

 Despite these shortcomings, in some situations it is possible to reduce the amount of work done by the
compiler on behalf of templates. This section shows a simple technique that can be used to achieve faster
template compilation speeds when desired instantiations are known ahead of time.

 Pre-Instantiating Templates
 Certain templates are used in only a reduced number of cases by design. For example, consider a numeric
library that creates code for different types of floating point numbers. Each class in the library can be
instantiated with a particular floating point type, such as double , long double , or float . Consider for
instance the following definition:

 // file mathop.h

 //
 // The template class for mathematical operations
 //
 template <class T>
 class MathOperations
 {
 public:
 static T squared(T value)
 {
 return value * value;
 }

 // ...
 };

 Table 6-3. Common Smart Pointer Templates

 Smart Pointer Description

 std:auto_ptr A smart pointer that provides automatic deallocation with single ownership
semantics.

 std:shared_ptr A smart pointer that provides a reference counted memory management, with shared
ownership semantics.

 std::unique_ptr A smart pointer that provides unique ownership of an object.

 std::weak_ptr A shared pointer that represents a weak reference to an object allocated in the heap.

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

112

 This class can be used in the following way:

 #include <mathop.h>

 MathOperations<double> mathOps;

 double value = 2.5;

 cout << "result: " << mathOps.squared(2.5) << endl;

 Unfortunately, because the MathOperations class is a template class, you have to include its complete
definition as part of the header file, where it can be found in the compiler whenever the class is instantiated.

 One possible way to reduce the size of the header file is to pre-instantiate the template for the types that
you know in advance.

 The first step is to remove the implementation from the header file . This is clearly possible, since you
can implement class member functions outside the class declaration (whether the class is a template or not).
Then, you need to add the implementation to a separate source file. Once this step is done, client code can
use the template class interface, but will not be able to generate code. Therefore, for this to work, you need to
instantiate the templates on the implementation file.

 // file mathop.h

 //
 // The template class included by the applications
 //
 template <class T>
 class MathOperations
 {
 public:
 static T squared(T value);
 // ...
 };

 // file mathop.cpp

 //
 // template member function definition
 //
 template <class T>
 T MathOperations<T>::squared(T value)
 {
 return value * value;
 }

 //
 // function used to instantiate code for specific datatypes
 //

CHAPTER 6 ■ TEMPLATE-BASED TECHNIQUES

113

 void instantiateMathOps()
 {
 double d = MathOperations<double>::squared(2.0);
 float f = MathOperations<float>::squared(2.0);
 int i = MathOperations<int>::squared(2);
 long l = MathOperations<long>::squared(2);
 char c = MathOperations<char>::squared(2);
 }

 In this example, I chose to instantiate five versions of the original template for numeric types. The main
limitation of this technique, as I mentioned, is that your clients will not be able to generate templates for the
additional types they may want to use. However, in a few situations you may really want to restrict how these
templates are used, and this technique works as desired.

 Conclusion
 While object-oriented design patterns provide several elegant methods for the solution of commonly found
problems in financial programming, there are cases in which a non-OO strategy may be more indicated. In
these situations, C++ promotes the use of templates, an implementation technique in which the compiler is
allowed to generate code based on parameterized types.

 In this chapter, you learned how to create new template classes and functions that use the template
facilities of C++. Among other things, you saw how to create functions and classes that compute their results
at compilation time. Compilation-time polymorphism, an alternative to runtime polymorphism that uses
the code-generation capabilities of C++ templates, was also discussed.

 The next chapter continues exploring templates in C++ with a more detailed view of the standard
template library and its algorithms.

115© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_7

 CHAPTER 7

 STL for Derivatives Programming

 Modern financial programming in C++ makes heavy use of template-based algorithms. Many of the basic
algorithms related to trading options and their derivatives are implemented in terms of function and class
templates. This is done due to the superior advantages of templates in performance as well as their ability to
improve code reuse.

 Several template-based algorithms are implemented right into the standard template library (STL),
which is one of the main parts of C++ standard library. Therefore, it is important to become familiar with the
concepts of algorithms in the STL, and to understand how they can be used and extended to more complex
applications.

 In this chapter, I discuss STL algorithms and how they can be employed in quantitative finance and
other programming projects. In particular, I attempt to cover how these template-based algorithms are
used in practice to solve common problems with options and other financial derivatives. After reading this
chapter, you will get a better understanding of how the STL interacts with other parts of the C++ libraries,
and how it imposes a certain structure on classes developed in the language.

 Here are some of the concepts discussed in this chapter:

• STL-based algorithms: Here I present an introduction to the basic concepts
of algorithms in the STL, how they interact with the container, and their basic
performance characteristics.

• Functional techniques on STL: The STL algorithms can simplify your code with the
use of a functional style of programming, whereby you can use functions as a first-
class object of abstraction.

• Working on STL containers: STL algorithms have been developed so that they
work in tandem with containers. You need to understand the usage patterns of
STL algorithms and how they can efficiently employ the most common containers
provided by the standard C++ library.

• Efficient iterators: Another way in which algorithms interact with containers is
through the use of iterators. Developers can use iterators in flexible ways, thanks to
the support available in the STL algorithms.

 Introduction to Algorithms in the STL
 The STL offers a set of templates that can be used to solve some of the most common problems encountered
in C++ programming. Among such templates you will find a list of algorithms that implement tasks such as
copying, sorting, selecting, iterating, and adding elements to generic collections such as vectors, sets, maps,
and their variations.

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

116

 With STL algorithms, C++ designers created a set of template functions that manipulate generic
collections. Once these algorithms have been implemented as templates, developers are free to use them for
any class that satisfies the functional requirements of its container. For example, based on the STL, you can
create vectors of any custom class and apply template algorithms such as sort and reverse to manipulate
these objects, without having to write any additional code. Table 7-1 presents a list of algorithm types
available in the STL.

 Table 7-1. A List of Algorithm Types Available in the STL

 Algorithm Type Description

 Conditional testing Performs a test of a given condition against elements of a container. Algorithms
include all_of , any_of , and none_of .

 Iteration Performs an operation for each element of a container, such as the for_each
algorithm.

 Searching Finds elements in a container: find , find_if , find_if_not , find_first_of , and
 search .

 Counting Returns the number of elements in a container: count and count_if .

 Sorting Puts the elements of the container in a defined order: sort , stable_sort , and
 partial_sort .

 Partitioning Partitions the container into two ranges according to a given property: partition ,
 partition_copy , and partition_stable .

 Merge Performs the merge of two containers that have been previously sorted: merge ,
 set_union , set_intersection , and set_difference .

 Binary search Implements a binary search for each STL container: lower_bound , upper_bound ,
and binary_search .

 The generic algorithms in the STL can be imported into a C++ application using the <algorithm>
header file. Most of these algorithms are implemented directly as templates in the header file, so they can be
available to any client code.

 The next few sections describe a few common tasks that are implemented as STL algorithms and
explain how they can be used from client code, including financial applications.

 Sorting
 Sorting is a basic activity that is common to many algorithms. Therefore, it is used to employ high-
performance sorting algorithms without much effort. Reusing sorting algorithms also allow programmers to
avoid recreating well known algorithms and the possibility of introducing mistakes into the implementation.
STL algorithms provide just what you need in order to apply sorting strategies to containers and other data
structures.

 The STL has a set of template algorithms that can perform sorting on many different types of containers.
The right algorithm should be selected according to the desired properties of the container and the data
stored in it. For this purpose, the library gives you several options corresponding to the different desired
tasks and their properties. As a developer, you should become acquainted with these types of sorting
algorithms. Table 7-2 lists a set of algorithms commonly available from the STL (specific implementations
might add their own variants).

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

117

 The first type of sorting template is the generic sort function. This function can be applied to a range of
values that’s stored in the container, given by two iterators—one for the start and another for the end of the
range. As normal in the STL, the container can’t beat anything that can be iterated, including arrays, vectors,
maps, sets, and other container templates. This sort of function can also take as a parameter a comparison
function, which is used to determine the proper order of objects in the collection.

 Consider, for example, a date type. The goal is to be able to sort objects of type date, which are stored
in a standard STL container. To be able to sort based on dates, however, you need to provide a comparison
function for the underlying date class. In C++, this is done through the use of a functional operator that
overloads the standard comparison operator. Here is a quick example:

 class Date {
 public:
 // other public methods here

 bool operator<(const Date &d);

 int year() const { return m_year; }
 int month() const { return m_month; }
 int day() const { return m_day; }
 private:
 int m_day;
 int m_month;
 int m_year;
 };

 bool Date::operator<(const Date &d)
 {
 if (m_year < d.m_year)
 {
 return true;
 }
 if (m_year == d.m_year and m_month < d.m_month)
 {
 return true;
 }

 Table 7-2. A List of Sorting Algorithms Available in the STL

 Sorting Algorithm Description

 sort Generic sorting algorithm that can be used on most containers. This should be
used in most cases.

 stable_sort A stable sorting procedure that maintains the relative positions of elements in the
container.

 partial_sort An algorithm that sorts only part of a given container.

 partial_sort_copy An algorithm that performs partial sorting on a copy of the original container.

 is_sorted Returns true if the given container is already sorted. This is useful when working
with an unknown container.

 nth_element An algorithm that sorts only one of the largest elements of a container.

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

118

 if (m_year == d.m_year and m_month == d.m_month and m_day < d.m_day)
 {
 return true;
 }
 return false;
 }

 bool operator<(const Date &a, const Date &b)
 {
 return a < b;
 }

 Notice that there are two versions of the < operator. The first version is written as a member function.
This is necessary so that the operator has access to the private member data of the date class . The second
version of the < operator is a free function, and it is necessary when the first argument is a constant object.
The implementation of the free function is directly based on the member function.

 void sort_dates()
 {
 vector<Date> dates;
 // initialize the dates here

 std::sort(dates.begin(), dates.end()); // perform comparison
 }

 The sort_dates function provides an example of using the standard sort template. In this version, the
default comparison is used, which in this case is implemented by the < operator. You can, however, use a
different comparison function, as shown in the following example:

 bool year_comparison(const Date &a, const Date &b)
 {
 return a.year() < b.year();
 }

 Here, the comparison is performed only using the date year fields you stored in each date object . The
comparison function can be called in the following way:

 void sort_dates()
 {
 vector<Date> dates;
 //

 std::sort(dates.begin(), dates.end(), year_comparison); // comparison by year
 }

 In this case, you need to provide the comparison function explicitly. The result of this sorting procedure
is a sequence of dates where the elements appear in increasing order of year.

 The preceding example can be used to exemplify the use of stable sorting. In a stable sort, elements that
are equal with respect to the sorting strategy appear in the same relative order. This is an important feature
in some sorting applications. Therefore, if you want to maintain the relative sorting position of dates within a
year, you should instead use the stable_sort template function.

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

119

 Presenting Frequency Data
 A simple application of sorting can be seen in the presentation of frequency data. You were given a vector
of price observations, and the goal is to present this pricing data according to the frequency in which it
appears. This is similar to a histogram, but the data is presented in increasing frequency, while in the
histogram, the frequency is presented sequentially for each data interval.

 To solve this problem, you can use STL containers and the sorting template algorithm to reorganize the
results. The resulting function is called compute frequency . The first step is to calculate the number of bins
defined by the data interval. To compute this, you’ll use the variables start , end , and step size . Here is the
complete implementation:

 //
 // stl_alg.cpp
 // Sorting algorithm for price data

 #include <algorithm>
 #include <vector>
 #include <cmath>
 #include <iostream>

 using std::vector;
 using std::cout;
 using std::endl;
 using std::pair;

 void compute_frequency(vector<double> &prices, double start, double end, double step)
 {

 int nbins = int(std::abs(end-start)/step);

 vector<pair<int, int>> count(nbins, std::make_pair(0,0));
 for (int i=0; i<nbins; ++i)
 {
 count[i].second = i;
 }

 for (int i=0; i<prices.size(); ++i)
 {
 if (start <= prices[i] && prices[i] <= end)
 {
 int pos = int((prices[i] - start)/step);
 count[pos].first++;
 }
 }

 std::sort(count.begin(), count.end());

 for (int i=0; i<nbins; ++i)
 {
 int k = count[i].second;
 cout << start + k * step << "-" << start + (k+1) * step << ": " << count[i].first;
 }
 }

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

120

 The vector count stores the frequency of each data interval. Each element of the count vector has two
members—the first member is the frequency and the second member is the relative position of the interval.
These two values are stored as a standard pair, and the sequence numbers are initialized in a for loop.

 The next step is to store the frequency counts. This is done in a loop that iterates through the given
range, adding to the frequency of each data point. Finally, after the frequencies are collected, you can sort
them using the STL sort algorithm, which in this case uses the standard person operator. Following this, the
frequencies are presented to standard output along with the respective ranges, which have been saved in the
index variable.

 int frequency_test()
 {
 vector<double> prices = {32.3, 34, 35.6, 39.2, 38.7, 31.17, 33.14 };
 compute_frequency(prices, 31.0, 39.0, 0.1);
 return 0;
 }

 To test this code, I created a simple function that calls the computer frequency function with a few
simple values. The output of the function should look like the following:

 31-31.1: 0
 31.2-31.3: 0
 31.3-31.4: 0
 31.4-31.5: 0
 33.3-33.4: 0
 // ... more data here ...
 38.9-39: 0
 31.1-31.2: 1
 32.2-32.3: 1
 33.1-33.2: 1
 34-34.1: 1
 35.6-35.7: 1
 38.7-38.8: 1

 Figure 7-1 shows a histogram computed from sample data processed by the function frequency test.
This kind of ranking function is useful when working with financial data such as price volatility.

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

121

 Copying Container Data
 Another common application of template algorithms is to copy elements from one container to another.
This can be easily done using the copy template algorithm. This algorithm can perform copies between
containers of different types using common conversion techniques already provided by the C++ language.

 For example, it is possible to copy a container of integer numbers (int) into a second container that
maintains only numbers of type double . Consider the following code:

 void copy_int_to_double()
 {
 vector<int> ivector(100, 1);
 vector<double> dvector(100);

 std::copy(ivector.begin(), ivector.end(), dvector.begin());
 }

 Figure 7-1. Histogram displaying number of values computed in sample data given function frequency_test

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

122

 Here, the two vectors ivector and dvector have different types. The fact that you have a template
algorithm means that you don’t need to write separate functions to handle every combination of types that
could be presented as an argument to the copy function.

 Another useful ability provided by this template is to copy elements from an existing container into
the standard output. To do this, you need to wrap the standard output (or any other stream) with an
 std::ostream_iterator object, which allows you to iterate though an output stream. Here is an example of
a simple way of displaying the contents of an STL container:

 void print_prices()
 {
 vector<double> prices(100);

 // initialize prices here

 std::copy(prices.begin(), prices.end(), std::ostream_iterator<double>(cout));
 }

 The print_prices function creates and initializes a vector of double s. Then it passes the begin and end
iterators for this vector as the first two parameters of find. Finally, the third argument wraps the standard
output stream into an iterator for data of type double .

 If you need to simplify the use of find (and many other similar algorithms), you could implement your
own template algorithm that extracts the correct begin and end iterators. For an example of how you can do
this, consider the following template function:

 template <class T, class S >
 typename T::const_iterator find(const T &a, S val) {
 return std::find (a.begin(), a.end(), val);
 }

 This template function receives two template parameters—the first is a container class and the second
is a value type. The find template presented here will just call std::find and make sure that the first two
arguments are the begin and end of the passed container. This code could be called similar to the previous
example:

 void find_value()
 {
 vector<int> values;
 // ... initialize the vector

 vector<int>::const_iterator result = find (values, 42); // call our template
 if (result == values.end())
 {
 cout << " the value was not found " << endl;
 }
 else
 {
 cout << " the value found is " << *result << endl;
 }
 }

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

123

 Finally, using std::copy , it is also possible to transform a container template such as list into a
different container type, such as vector . This kind of transformation allows programmers to easily convert
containers of one type into another, without having to create custom code for each case. Here is an example:

 void from_list_to_vector(const list<int> &l)
 {
 vector<int> values;

 // copy contents to destination array values
 std::copy(l.begin(), l.end(), values.begin());
 // do something with the vector
 }

 In this example, the function receives a std::list of integers and copies the content stored in the list
into a vector<int> . Since std::copy is a template that works with different container types, you can simply
rely on the standard library to perform the desired conversions.

 Finding Elements
 Finding elements in a container is another common operation that can be performed with the help of STL
algorithms. The find algorithms allow programmers to search using different options. As usual, the find
templates are optimized according to the specific container to which they are applied.

 First you have the simple find algorithm. This algorithm takes as parameters two iterators that specify
the start and end of the target data. The next parameter is a constant value that you want to find in the given
container. If the value is found, the algorithm returns an iterator pointing to the desired location. If the venue
is not found, the algorithm returns the second iterator, named last . Here is an example of how this works.

 void find_value()
 {
 vector<int> values;
 // ... initialize the vector

 vector<int>::iterator result = std::find(values.begin(), values.end(), 42);
 if (result == values.end())
 {
 cout << " the value was not found " << endl;
 }
 else
 {
 cout << " the value found is " << *result << endl;
 }
 }

 The find_value function is responsible for searching for a particular number inside a vector of integers.
The values variable is declared as a vector container and should be initialized as desired. Next, you need
to apply the find function using the beginning and end iterators returned by values. The previous example
shows how to search for a constant number. The return value of this function is then stored in a vector
iterator. If this variable corresponds to the end iterator, you know that the venue was not found. Otherwise,
the value is printed using the contents pointed to by the iterator.

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

124

 Another type of search is necessary if you use a conditional find. In this case, you should use the find_if
template function. This function enables you to use a predicate , in other words, a conditional selection
statement that is true only for the desired values.

 Supposed for example that I try to search for a particular value inside of a container, such that the value
is greater than 100. This is possible by defining a specific predicate and passing it as the last argument to
the find_if function template. This can be done as follows:

 bool greater_than_100(int num)
 {
 return num > 100;
 }

 void conditional_find()
 {
 vector<int> values;
 // ... initialize the vector

 vector<int>::iterator result = std::find_if(values.begin(), values.end(), greater_
than_100);
 if (result == values.end())
 {
 cout << " the value was not found " << endl;
 }
 else
 {
 cout << " the value found is " << *result << endl;
 }
 }

 First, I introduce a new predicate function called call_greater_than_ 100 . This function simply returns
true when the number passed as an argument is above 100. Next, you can see the function conditional_
find . This function is similar to the previous example, but it uses the find_if template function instead.
The first and second arguments to the find_if function also determine the range of values tested. The last
argument is simply a pointer to the predicate function that was presented previously.

 ■ Note The last argument of find_if can be a function or a functional object. A functional object
implements the function call operator, and therefore can be called using syntax similar to a call to a normal
function. Such functional objects are explained in the next chapter.

 Selecting Option Data
 This section shows an additional example of how STL functions can be used to speed up option data
processing. This example shows a simple implementation of options, where one of the data members is the
number of days until expiration.

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

125

 Let the option class be defined as follows:

 class StandardOption {
 public:
 StandardOption() : m_daysToExpiration() {}
 StandardOption(int days);
 StandardOption(const StandardOption &p);
 ~StandardOption();
 StandardOption &operator=(const StandardOption &p);

 int daysToExpiration() const { return m_daysToExpiration; }

 // other function members here ...
 private:
 int m_daysToExpiration;
 // other data members here ...
 };

 StandardOption::StandardOption(int days)
 : m_daysToExpiration(days)
 {
 }

 StandardOption::StandardOption(const StandardOption &p)
 : m_daysToExpiration(p.m_daysToExpiration)
 {
 }

 StandardOption::~StandardOption()
 {
 }

 StandardOption &StandardOption::operator=(const StandardOption &p)
 {
 if (this != &p)
 {
 m_daysToExpiration = p.m_daysToExpiration;
 }
 return *this;
 }

 This class presents a simplified version of a standard option. The number of days to expiration is stored
in m_daysToExpiration and is returned by the daysToExpiration member function. You can also see a few
of the standard member functions provided by the class.

 The goal of this example is—given a container of StandardOptions objects—to find a set of options that
are close to expiration (in this case, closeness is defined as a ten-day period before expiration). The first step
in this process is to define a predicate function (a function returning a Boolean value), which will be called
 is_expiring .

CHAPTER 7 ■ STL FOR DERIVATIVES PROGRAMMING

126

 bool is_expiring(const StandardOption &opt)
 {
 return opt.daysToExpiration() < 10;
 }

 This function simply determines the number of days until expiration, and if it corresponds to the given
criterion, the predicate returns true.

 This predicate can be used to find all the objects of type StandardOption that satisfy the property of
being close to expiration. Here is how this can be done, with the help of STL algorithms:

 vector<StandardOption>
 find_expiring_options(vector<StandardOption> &options)
 {
 vector<StandardOption> result(options.size());
 std::copy_if(options.begin(), options.end(), result.begin(), is_expiring);
 if (result.size())
 {
 cout << " no expiring option was found " << endl;
 }
 return result;
 }

 First, a new vector is declared to hold the results. The final size of this vector is at most the size of the
 options vector. To perform the search, you can use the std::copy_if algorithm. This template algorithm
copies values from the given range into the destination (result), whenever the element satisfies the given
predicate function. Since you are passing a function that is true only for options close to expiration, the
resulting vector will contain only near-expiration options, which are returned as the result at the end of the
function.

 Conclusion
 Templates allow programmers to create concise code that works on different data types. Given the advantage
of templates, it is possible to create generic algorithms, which are also implemented in the core STL library.
In this chapter, you learned about several template algorithms available in the C++ standard library. You also
learned how to combine these algorithms to create efficient code for financial problems.

 First, you saw how to use the most basic functional templates found in the STL. These include templates
for tasks such as sorting coping, iterating, and accumulating values restored in a STL container.

 Later, you saw examples of how to combine those functional templates into working algorithms.
Template algorithms allow programmers to take full advantage of existing high-performance programming
techniques coded by implementers of the C++ template library.

 The use of template algorithms leads to a different style of programming, which does not to rely solely
on object-oriented features. Newer versions of C++ also support functional programming. In the functional
programming style, problems are solved using combinations of functions and functional objects. In these
type of programs, functions are also treated as first-class objects. Treating functions this way can give
you a more flexible method to organize code and solve problems. In the next chapter, you will investigate
the functional style and learn how it can be used to solve financial problems occurring in options and
derivatives.

127© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_8

 CHAPTER 8

 Functional Programming
Techniques

 Functional programming is a coding strategy that focuses on the direct use of functions as first-class objects.
This means that in a functional program, you are allowed to create, store, and call functions, and otherwise
use them as if they were just another variable of the system. Functional code also simplifies programming
decisions because it avoids changing state and mutable data. This type of functional manipulation allows
programs to more closely express the desired behavior of the system and is particularly suitable to some
application areas. Functional programming is especially useful in the development of mathematical software
and in the processing of large datasets, as is the case in the analysis options and derivatives. It also can be
used with the development of multi-threaded systems, since it allows the use of lock-free code.

 While the practice of functional programming was possible in previous versions of C++, such
techniques have more recently been greatly improved with the adoption of the new language standard
(C++11 and C++14), particularly with the introduction of lambda functions. With lambda functions,
programmers can now create temporary functions in place and pass them as arguments in the call to other
functions. Such features have made it easier to apply functional programing techniques to C++ applications.

 In this chapter, you will learn how to use functional programming strategies to solve typical problems
that occur in algorithms for trading options and derivatives. The following topics are explored in this chapter:

• Functional objects : A functional object allows an instance of a class to be called with
the same syntax as a function, by defining the function call operator.

• Functional templates : The STL has support for functional programming through
the use of functional templates. With them, programmers can pass functions as
parameters, as well as compose functions with other functions.

• Lambda functions : With the introduction of C++11, a new syntax was created to
represent unnamed functions, also known as lambda functions . You will see how to
use lambdas in C++ and learn how they simplify the creation and maintenance of
functional code.

• Functional techniques for options processing: Throughout the chapter, you will see
examples of how these functional programming techniques can be effectively used
to solve some problems occurring in the analysis of options and derivatives.

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

128

 Functional Programming Concepts
 Functional programming has its roots in the analysis of mathematical algorithms, where functions are the
main abstraction. Such functions are typically used to compute results based on mathematical properties
of numbers. Functions can be used to express mathematical algorithms, as well as used as an effective
abstraction for the creation of complex algorithms in several areas.

 In particular, functional programming uses functions as building blocks to create solutions for
computational problems. With this programming technique, you can call functions, as well as perform
operations on these functions such as composition, partial application, currying, filtering, among others.
You will see examples of this later in this chapter.

 Here are a few advantages of using functional programming:

• It is possible to compose functions to achieve complex behavior from simple initial
functions. Functional composition can be more easily done when functions are
treated as a first-class object, instead of as an isolated element of the language.

• Functional programming doesn’t depend on complex states stored inside objects.
Functions are generally transparent, and they depend on arguments that are passed
at each function call. In comparison, objects are complex and store a lot of context
that may be hard to understand. The use of functional programming techniques
favor the creation of simpler code with less state, since the state needs to be passed
at each function call.

• Operations such as memoization can be easily performed when functions are first-
class objects. With memoization, it is possible to cache the values of function calls,
so that the next time a result can be immediately returned. This can be done because
functions don’t store any mutable state.

• No complex hierarchy of objects is necessary. Unlike OO programming, functional
techniques are not based on hierarchies, and therefore require no knowledge of the
internal relationships of classes. Functions are independent of each other and can be
applied in any sequence.

 In the next few sections, you will see examples of these functional concepts applied to C++ through
different techniques. First, you will see how to use function objects for this purpose. Then, you will see
how to use external libraries such as boost::lambda . Finally, you will see how to implement functional
programming techniques using C++ lambda functions.

 Function Objects
 The first step toward working with functional programming in C++ is to use a flexible representation for
functions. One of the most common techniques for doing this is to use function objects. A function object
(also known as a functor) is a C++ concept that allows programmers to create class instances that behave
as if they were functions. The key for this concept to work is the overloading of the function call operator
(represented in C++ by a pair of matching parentheses).

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

129

 The function call operator can be defined as a member function in each class that needs to simulate
a function call. The function call operator is called automatically from the compiler when the function
call syntax is used. Consider the following example of how this process works. The OptionComparion
class defines instances of a function object that compares two options (defined here using the class
 SimpleOption), as defined here:

 // a simple option representation
 class SimpleOption {
 public:
 // other definitions here
 int daysToExpiration() const { return m_daysToExpiration; }
 private:
 int m_daysToExpiration;
 };

 The first part of the code declares a class that contains options data. In this example, SimpleOption
contains only the number of days to expiration. In a normal application, this class would contain a complete
representation of the attributes of an option.

 class OptionComparison {
 public:
 OptionComparison(bool directionLess);
 OptionComparison(const OptionComparison &p);
 ~OptionComparison();
 OptionComparison &operator=(const OptionComparison &p);

 bool operator()(const SimpleOption &o1, const SimpleOption &o2);
 private:
 bool m_directionLess;
 };

 The OptionComparison class is the main focus of this example, since it declares a datatype that can be
used as a comparison function.

 For the purposes here, the most important part of OptionComparison is the declaration of a function
to handle the function call syntax, using operator() . In this example, the arguments passed to the function
call operator are two objects of type SimpleOption that you want to compare. The following code shows the
details of the implementation for OptionComparison class:

 OptionComparison::OptionComparison(bool directionLess)
 : m_directionLess(directionLess)
 {
 }

 OptionComparison::OptionComparison(const OptionComparison &p)
 : m_directionLess(p.m_directionLess)
 {
 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

130

 OptionComparison::~OptionComparison()
 {
 }

 OptionComparison &OptionComparison::operator=(const OptionComparison &p)
 {
 if (this != &p)
 {
 m_directionLess = p.m_directionLess;
 }
 return *this;
 }

 bool OptionComparison::operator()(const SimpleOption &o1, const SimpleOption &o2)
 {
 bool result = false;

 // check components of opt1 and opt2. In practice this could be more complex.
 if (m_directionLess)
 {
 result = o1.daysToExpiration() < o2.daysToExpiration();
 }
 else
 {
 result = o1.daysToExpiration() > o2.daysToExpiration();
 }
 return result;
 }

 The first part of the implementation contains a few standard member functions that are required by
C++. The next part of the implementation, containing operator() , shows how the comparison functionality
is handled by this class. In this simple case, the class considers the m_directionLess flag to determine if a
 less than test should be used. Otherwise, the function uses a greater than test and returns the results.

 The following function shows how to use OptionComparison :

 void test_compare()
 {
 OptionComparison comparison(true);

 SimpleOption a, b;
 // ...
 // Initialize options a and b here...

 if (comparison(a, b))
 {
 std::cout << " a is less than b " << std::endl;
 }
 else
 {
 std::cout << " b is less than a " << std::endl;
 }
 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

131

 The first line of test_compare creates a new instance of the comparator object. Then, the code creates
two SimpleOption objects and initializes it as necessary. The comparison object is then called as if it were a
function, using the operator () .

 The strategy displayed previously can be used to simulate functions with different signatures by creating
the appropriate version of the operator () . Also, a single class can decide to implement several versions of
the operator() , depending on the ways it wants to be called.

 Functional Predicates in the STL
 As you saw in the previous section, objects can be used to simulate functions in C++ through the definition
(or overloading) of the function call operator. This flexible mechanism can be used to create code that
behaves as a function but encapsulates complex properties, as any object can do.

 Based on the use of function objects, you can build a different style of programming. To facilitate the
creation of functional code, the authors of the STL provide a set of basic function templates and classes that
automate many common tasks. Some of these template functions are listed on Table 8-1 .

 Table 8-1. List of Functional Templates Provided by the STL

 Functional Template Description

 equal_to Compares two parameters and determines equality between them.

 greater Compares the two given parameters and returns true if the first parameter is
greater than the second.

 greater_equal Compares the two given parameters and returns true if the first parameter is
greater than or equal to the second.

 less Compares the two given parameters and returns true if the first parameter is
less than the second.

 less_equal Compares the two given parameters and returns true if the first parameter is
less than or equal to the second.

 logical_and Receives two Boolean parameters and returns true if both parameters evaluate
to true.

 logical_or Receives two Boolean parameters and returns true if at least one of the
parameters evaluates to true.

 logical_not Receives a Boolean parameter and returns true if the parameter evaluates to
false.

 plus A functional template that receives two numeric parameters and returns their
sum.

 minus A functional template that receives two numeric parameters and returns the
first minus the second.

 negate A functional template that receives a single numeric parameter and returns the
negative of that value.

 divides A functional template that receives two numeric parameters and returns the
value of the first parameter divided by the second.

 bind Receives a function or functional object as a parameter and binds the
parameters to that function to constant values or to variable placeholders.

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

132

 The goal of the functional objects included in the STL is to provide a set of basic operations for
creating new functional objects. Notice that through the combination of the given objects, it is possible to
create complex functions to encode application-dependent logic. You can freely combine these functional
templates to define larger expressions in a way that represents the desired functionality.

 ■ Note Be aware of the differences between using functional objects and normal C++ operations. A C++
computation specified with operators such as * and + cannot be passed as parameters to other functions,
because they are immediately executed in place. Functional objects, on the other hand, form expressions
that can be passed to other functions. Moreover, the process of putting these functional objects together is
performed be the compiler. This ability to create complex expressions and pass them to other functional objects
and templates makes these STL templates useful for the purpose of functional programming.

 Consider the following examples of using these functional templates in C++. The first example shows
how to use these functional templates to create a sorting predicate.

 #include <functional>

 void test_operator()
 {
 using namespace std;

 vector<int> numbers = { 3, 4, 2, 1, 6 };

 sort(numbers.begin(), numbers.end(), greater<int>());

 }

 Here, you first create a sequence of integer values and store it in the variable numbers . In this case, the
code is taking advantage of the initialization syntax of C++11, which allows for the sequence type to be left
unspecified, while the result is stored in a std:: vector .

 The next step is to call std::sort on the sequence of numbers. As you have seen before, the last
argument of std::sort is a comparison function. Here, you can pass a functional object declared in
 functional.h , therefore freeing you from having to define a separate function.

 Another simple application is to transform two sequences into a third sequence. For example, one can
use the plus function to add elements from two lists:

 void test_transform()
 {
 using namespace std;

 auto list1 = { 3, 4, 2, 1, 6 };
 auto list2 = { 4, 1, 5, 3, 2 };

 vector<int> result(list1.size());

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

133

 transform(list1.begin(), list1.end(), list2.begin(), result.begin(), plus<int>());

 // use transformed list here...

 copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));

 // prints 7, 5, 7, 4, 8,
 }

 This example shows you how to take two lists and perform an arithmetic operation with its respective
elements. The operation in this case is the plus functional template, which adds two values and returns the
sum. The first step is to create the two sequences. You can use the auto keyword to simplify the declaration
of these sequences; they will be represented as vectors of integers. A result vector is also necessary, as
declared in the next line of code.

 The next step is to use the std::transform function to perform a transformation from the two source
sequences into the destination sequence. Each step of the transformation uses the std::plus function. The
result of this process is then sent to the standard output using the std::copy template function.

 You could modify this example to perform any of the arithmetical or logical operations available in the
functional header file, including adding, subtracting, multiplying, and dividing. More complex operations
could be performed by combining these operations.

 ■ Note In general, the transform function template is very useful when you want to perform a common
operation to a list of elements. By using transform , you can reduce the number of explicit for loops in your
code, making the resulting program easier to understand.

 The Bind Function
 In the last section you saw that several common operations are provided in the standard library using the
mechanisms of functional programming. With these templates, you can write transformations to lists of data
without having to program explicit loops or use other imperative programming techniques.

 However, just using the primitive operations such as subtract and divide is not enough to create
complex application logic. Another thing that you can do using the techniques of functional programming is
bind parameter values for a given function, so that you can have a new, modified function as a result.

 Consider, for example, the std::plus<T> function provided in the functional header file. It can be
used to add two numbers and can be applied to members of separate containers using the transform
function template. A simple modification of this function is to have a constant number as the first
parameter, so that the resulting function is in fact adding a constant value each time it is applied. Functional
programming allows functions to be modified in this way, before they are applied to the required data.

 The solution in the STL is provided through the std:: bind function . With std::bind , you can bind a
particular value to one of the arguments of a given template function. By doing this, you can create as many
different functions as there are new combinations of arguments.

 To use std::bind , you need to determine the function to be modified, then a sequence of values
that will be bound to the function arguments. Among these bound parameters, you can also refer to the
arguments supplied by the user of the function, at the time that the function is called. These arguments are
called placeholder arguments , and named as the special variables _1 , _2 , _3 , and so on.

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

134

 Consider the following example of the std::bind function:

 void use_bind()
 {
 using namespace std;
 using namespace std::placeholders;

 auto list1 = { 3, 4, 2, 1, 6 };

 vector<int> result(list1.size());

 // add 3 to each element of the list
 transform(list1.begin(), list1.end(), result.begin(), bind(plus<int>(), _1, 3));

 copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));

 // prints 6, 7, 5, 4, 9,
 }

 In this example, the goal is to use a modification of the std::plus function , so that each element of the
list is added to the value 3 , resulting in a new vector with the results. The example is similar to what you have
seen in the previous code fragment, but the bind template now modifies the plus function.

 The first two lines of the example are importing std and std::placeholders namespaces. The
 std::placeholder namespace allows you to write the name of placeholders variables _1 or _2 . Then, the
original list is created and a result vector is allocated.

 The transform function performs the desired changes, and bind is used to create the operation
applied to each element of the list1 vector. As seen in the previous example, there are two arguments for
 std::plus . These arguments need to be specified in sequence. This is indicated with the second and third
parameters of std::bind . The first argument is supposed to be the placeholder for the first parameter. The
second argument is bound to a constant number.

 The std::bind template can be used in more complex situations. For example, it can be used to find
member functions for existing classes. The following example shows how bind can be used to create a
variation of a member function for the SimpleOption class.

 class SimpleOption {
 public:
 // other definitions here

 double getInTheMoneyProbability(int numDays, double currentUnderlyingPrice) const;

 };

 auto computeInTheMoneyProblExample(const std::vector<SimpleOption> &options) ->
std::vector<double>
 {
 using namespace std;
 using namespace std::placeholders;

 double currentPrice = 100.0;

 vector<double> probabilities(options.size());

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

135

 auto inTheMoneyCalc = bind(&SimpleOption::getInTheMoneyProbability, _1, 2,
currentPrice);

 transform(options.begin(), options.end(), probabilities.begin(), inTheMoneyCalc);

 return probabilities;
 }

 This assumes that SimpleOption contains a member function that calculates the probability that
a particular option will be in the money, given a number of days before expiration and the current
underlying price. Moreover, the goal is to create function that will receive a vector of options and return
the associated probabilities for the specific case of two days before expiration. The function is called
 getInTheMoneyProblExample in the previous fragment.

 To do this using the STL functional algorithms, you need to find a way to express the desired condition
as a functional object and pass the resulting object to std::transform . This can done with the help of
 std::bind . The idea is to use std::bind to bind the value of the first argument, which in this case is the
number 2 . Then, the placeholder _1 indicates that the argument passed to the resulting function is used as
the second argument to getInTheMoneyProbability . The bound function is then saved to a variable called
 inTheMoneyCalc and used as an argument to transform , applied to the options vector.

 Lambda Functions in C++11
 As you saw in the previous sections, classes, templates, and objects can be used to represent functions and
other functional objects. Unfortunately, using classes for functional programming requires you to define
a function outside the current place where it is being used, thus making the process more difficult than it
needs to be. Functional templates such as std::plus and std::multiplies help make this easier, but it is
still not as easy as writing standard C++ code.

 Other languages such as Lisp and Python have simplified this task with the concept of unnamed
functions, also called lambdas . These unmanned functions can be passed as parameters to other functions
and objects, and can be freely combined into more complex functions. This way, functional programming
techniques become much easier to implement and test, when compared to languages in which functions
can be created only as a static entity.

 One of the big changes in C++11 was the introduction of lambda functions as a syntactical element.
With the addition of lambda functions, it is now possible to create unnamed functions that can be saved
as variables or passed as parameters to other functions. This considerably simplifies the task of applying
functional techniques in C++ programs, as you will see in the next few examples.

 A C++ lambda is a piece of C++ code that can be saved and/or passed as a parameter to other functions.
With lambdas, the compiler has enough information to understand that the function will run later, probably
in an environment that is independent of the current function.

 The syntax of lambda functions starts with a pair of square brackets, followed by arguments and a block
of code. Here is an example:

 void use_lambda()
 {
 auto fun = [](double x, double y) { return x + y; };

 double res = fun(4, 5);

 std::cout << " result is " << res << std::endl;
 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

136

 Here, the lambda function is introduced by [] , followed by parameters of type double . The function
simply adds the two given parameters. The compiler can deduce the result type for this lambda function.
However, you can also declare the return type as part of the code, using the -> syntax:

 auto fun = [](double x, double y) -> double { return x + y; };

 Lambda functions can also refer to variables that have been declared outside the block of the lambda
function. This makes them much more convenient than standard functions, which are independent of the
surrounding variables. This process is called lambda capture , and it allows a lambda function to access the
data stored even in a local variable, after the current function has returned.

 There are two types of lambda capture:

• Lambda capture by value: Allows lambda functions to use the value stored in a
variable that is accessible at the moment of the lambda declaration. The value can be
used even after the original variable no longer exists. This is indicated by adding the
name of the variable inside the square brackets that introduce the lambda function.

• Lambda capture by reference: This allows a lambda function to modify the variable
itself, instead of just using its value. This type of capture is indicated with an &
operator before the name of the desired variable.

 Here is an example of both cases of lambda capture.

 void use_lambda2()
 {
 int offset = 5;

 auto fun1 = [offset](double x, double y) { return x + y + offset; };
 auto fun2 = [&offset](double x, double y) { return x + y + offset; };

 double res = fun1(4, 5);

 std::cout << " result is " << res << std::endl;

 offset = 10;
 std::cout << " result of fun1 is " << fun1(4, 5) << std::endl;
 std::cout << " result of fun2 is " << fun2(4, 5) << std::endl;
 }

 The function named fun1 has been created with a capture to the offset variable. This capture is by
value only, so it will always reflect the original value of that variable, in this case the number 5. The second
lambda function fun2 captures the variable offset by reference. This means that each time fun2 is called, it
will use a reference to the updated value of the offset. When the variable offset changes from 5 to 10, this will
change the results produced by fun2 , but will not change the results of the application of fun1 , as shown in
the following output:

 result is 14
 result of fun1 is 14
 result of fun2 is 19

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

137

 A lambda function can also be passed as an argument to other functions. When this happens, the
compiler creates a template object of type std::function<> that stores all the information used by the lambda
function. You can create new functions that receive lambdas and freely use them in your code. The compiler
will automatically convert a lambda into an object during the function call. Consider the following example:

 void use_function(std::function<int(int,int)> f)
 {
 auto res = f(2,3);

 std::cout << " the function returns the value " << res << std::endl;
 }

 This function just received a std::function object and displays its result when applied to the values 2
and 3. The important part of this code is noticing that std::function defines both the return type as well as
the types for each of the parameters of the given function. You can see how this information is used in the
compiler with two sample lambda functions that are passed to use_function as follows:

 void test_use_function()
 {
 auto f1 = [] (int a, int b) { return a + b; };
 auto f2 = [] (int a, int b) { return a * b; };

 use_function(f1);
 use_function(f2);
 }

 When called, test_use_function will produce the following results, as expected:

 the function returns the value 5
 the function returns the value 6

 Complete Code
 The complete code for this chapter is implemented in the Functional.hpp and Functional.cpp files. The
functional techniques presented here have as dependencies only the main STL header files.

 //
 // Functional.hpp

 #ifndef Functional_hpp
 #define Functional_hpp

 class SimpleOption {
 public:
 // other definitions here
 int daysToExpiration() const { return m_daysToExpiration; }

 double getInTheMoneyProbability(int numDays, double currentUnderlyingPrice) const ;
 private:
 int m_daysToExpiration;
 };

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

138

 class OptionComparison {
 public:
 OptionComparison(bool directionLess);
 OptionComparison(const OptionComparison &p);
 ~OptionComparison();
 OptionComparison &operator=(const OptionComparison &p);

 bool operator()(const SimpleOption &o1, const SimpleOption &o2);
 private:
 bool m_directionLess;
 };

 #endif /* Functional_hpp */

 //
 // Functional.cpp

 #include "Functional.hpp"

 #include <iostream>
 #include <vector>

 #include <functional> // for functional STL code

 //
 // Class SimpleOption
 //

 double SimpleOption::getInTheMoneyProbability(int numDays, double currentUnderlyingPrice)
const
 {
 return 0; // implementation here
 }

 //
 // Class OptionComparison
 //

 OptionComparison::OptionComparison(bool directionLess)
 : m_directionLess(directionLess)
 {
 }

 OptionComparison::OptionComparison(const OptionComparison &p)
 : m_directionLess(p.m_directionLess)
 {
 }

 OptionComparison::~OptionComparison()
 {
 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

139

 OptionComparison &OptionComparison::operator=(const OptionComparison &p)
 {
 if (this != &p)
 {
 m_directionLess = p.m_directionLess;
 }
 return *this;
 }

 bool OptionComparison::operator()(const SimpleOption &o1, const SimpleOption &o2)
 {
 bool result = false;

 // check components of opt1 and opt2. In practice this could be more complex.
 if (m_directionLess)
 {
 result = o1.daysToExpiration() < o2.daysToExpiration();
 }
 else
 {
 result = o1.daysToExpiration() > o2.daysToExpiration();
 }
 return result;
 }

 void test_compare()
 {
 OptionComparison comparison(true);

 SimpleOption a, b;
 // ...

 if (comparison(a, b))
 {
 std::cout << " a is less than b " << std::endl;
 }
 else
 {
 std::cout << " b is less than a " << std::endl;
 }
 }

 void test_operator()
 {
 using namespace std;

 vector<int> numbers = { 3, 4, 2, 1, 6 };

 sort(numbers.begin(), numbers.end(), greater<int>());

 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

140

 void test_transform()
 {
 using namespace std;

 auto list1 = { 3, 4, 2, 1, 6 };
 auto list2 = { 4, 1, 5, 3, 2 };

 vector<int> result(list1.size());

 transform(list1.begin(), list1.end(), list2.begin(), result.begin(), plus<int>());

 // use transformed list here...

 copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));

 // prints 7, 5, 7, 4, 8,
 }

 void use_bind()
 {
 using namespace std;
 using namespace std::placeholders;

 auto list1 = { 3, 4, 2, 1, 6 };

 vector<int> result(list1.size());

 // add 3 to each element of the list
 transform(list1.begin(), list1.end(), result.begin(), bind(plus<int>(), _1, 3));

 copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));

 // prints 6, 7, 5, 4, 9,
 }

 auto computeInTheMoneyProblExample(const std::vector<SimpleOption> &options) ->
std::vector<double>
 {
 using namespace std;
 using namespace std::placeholders;

 double currentPrice = 100.0;

 vector<double> probabilities(options.size());

 auto inTheMoneyCalc = bind(&SimpleOption::getInTheMoneyProbability, _1, 2,
currentPrice);

 transform(options.begin(), options.end(), probabilities.begin(), inTheMoneyCalc);

 return probabilities;
 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

141

 void use_lambda()
 {
 auto fun = [](double x, double y) -> double { return x + y; };

 double res = fun(4, 5);

 std::cout << " result is " << res << std::endl;
 }

 void use_lambda2()
 {
 int offset = 5;

 auto fun1 = [offset](double x, double y) -> double { return x + y + offset; };
 auto fun2 = [&offset](double x, double y) -> double { return x + y + offset; };

 double res = fun1(4, 5);

 std::cout << " result is " << res << std::endl;

 offset = 10;
 std::cout << " result of fun1 is " << fun1(4, 5) << std::endl;
 std::cout << " result of fun2 is " << fun2(4, 5) << std::endl;
 }

 void use_function(std::function<int(int,int)> f)
 {
 auto res = f(2,3);

 std::cout << " the function returns the value " << res << std::endl;
 }

 void test_use_function()
 {
 auto f1 = [] (int a, int b) { return a + b; };
 auto f2 = [] (int a, int b) { return a * b; };

 use_function(f1);
 use_function(f2);
 }

 //
 // The main entry point for the test application
 //
 int main()
 {
 test_use_function();
 return 0;
 }

CHAPTER 8 ■ FUNCTIONAL PROGRAMMING TECHNIQUES

142

 You can compile this code using any standards-compliant compiler, such as gcc (which is available for
all major platforms). The following command line can be used to compile the application called Functional :

 g++ -std=gnu++11 -o Functional Functional.cpp

 Conclusion
 Using templates is a good way to organize your code into generic functions that work across different
datatypes. However, it’s only when you start to compose these functions that you start to reap the benefits of
a functional programming style. Functional tools in the STL and other libraries allow programmers to use
functions as first-class objects.

 In this chapter, you learned a few of the techniques available for programmers who want to explore
functional programming in C++. Some of these techniques include the use of functional objects, which
implement the function call operator to simulate native functions. The STL provides several template
functions that support the use of functional objects.

 You have also seen how to create and use lambda functions, a new syntactical element introduced in
C++11. With lambda functions, programmers can create unnamed functions that can be saved as variables
or passed as parameters to other functions. Even more interestingly, such lambda functions can refer to
variables that occur in the environment in which they were created. In this way, lambda functions reduce
the need to create additional classes just for the purpose of simulating function calls.

 This chapter concludes the book’s overview of C++ programming techniques used on derivatives
programming. In the next chapter, you will start to learn about mathematical tools that can be used to price
and analyze options and other derivatives. In particular, you will learn about linear programming methods
and their C++ implementations.

143© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_9

CHAPTER 9

Linear Algebra Algorithms

Linear algebra techniques are used throughout the area of financial engineering, and in particular in the
analysis of options and other financial derivatives. These techniques are used for example to calculate the
value of large portfolios, or to quickly price derivative instruments. This chapter contains an overview of LA
algorithms and their implementation in C++.

Linear algebra algorithms consist of simple operations on sets of values arranged as vectors or matrices.
There is a rich mathematical theory behind the use of vectors and matrices. Although it is out of the scope
here to explain this mathematical theory, it is nonetheless important to understand how such algorithm can
be implemented in C++.

It is important to understand how the traditional methods of linear algebra can be applied in C++.
As a high-performance language, C++ has been used by software engineers to efficiently encode numeric
algorithms, such as the ones used in linear algebra. With this goal in mind, this chapter presents a few
examples that illustrate how to use some of the most common linear algebra algorithms. In this chapter, you
will also learn how to integrate existing LA libraries into your code.

•	 Vector operations: Operations on vectors are some of the most common ways to
explore linear algebra algorithms.

•	 Implementing matrices: A matrix is a set of numbers ordered in a two-dimensional
array. Even though matrices are very common, there is no standard support for
matrices in the C++ library. In this chapter, you will see how to easily create a matrix
class that supports all the most common matrix operations.

•	 Using linear algebra libraries: There is a set of LA functions that have become a de-
facto standard in the world of numerical computing. You will see the BLAS (Basic
Linear Algebra Subroutines) and their implementations, which provide the basic
functions used in most LA software (both free and commercial) available nowadays.

Vector Operations
As you can see, LA is concerned about the mathematical properties of vector spaces. Many of the operations
either produce vectors or take vectors as their arguments. Therefore, the first step to properly use LA
algorithms is to have a good implementation of vectors.

On the positive side, the C++ standard library already contains an optimized container called
std::vector, which you have used extensively in the last few chapters. On the other hand, std::vector
doesn’t implement some of the most important operations that are conventionally used in linear algebra
algorithms. The first step in implementing such an algorithm is therefore to provide such operations.

Chapter 9 ■ Linear Algebra Algorithms

144

There are two kinds of mathematical operations that are needed when using vectors:

•	 Operations between numbers and vectors: Some mathematical operations involve a
single number (also called a scalar number) and a vector as arguments. For example,
you may need to multiply a vector by a scalar, or add the same number to every entry
in the vector. Such operations are not available in std::vector, but are so common
that they should be supported by any LA software package.

•	 Operations between two or more vectors: Another class or mathematical operations
take two or more vectors and calculate a result based on their values. A common
example is a vector product, where all members in both vectors are pairwise multiplied
and finally added. Other operations like vector summation are also commonly used.

The next few examples will show how to implement some of these operations using the existing
containers of the STL, such as std::vector.

Scalar-to-Vector Operations
Scalar operations on vectors allow a vector to be modified by a single scalar number. The two most common
scalar operations are scalar addition and scalar multiplication. You can use these operations as building
blocks for more complex operations, which will be explored in the following sections.

Because the std::vector class is already part of the STL, the strategy used here is to create free
functions (not members of a particular class) that operate on vector containers. This way, you are free to
continue to use the well known functions available for std::vector when necessary. You can also overload
these functions with other types if you feel the need to extend these definitions.

The scalar addition to vectors consists in adding the same constant number to each component of the
vector. This can be implemented in the following way:

typedef std::vector<double> Vector;

Vector add(double num, const Vector &v)
{
 int n = (int)v.size();
 Vector result(n);
 for (int i=0; i<n; ++i)
 {
 result[i] = v[i] + num;
 }
 return result;
}

The first statement is a typedef that allows you to use the type name Vector instead of std::vector
in this and the other examples in this chapter. Another advantage of using such a typedef in numerical
algorithms like this is the possibility of changing the definition of Vector if necessary. In such a case, all the
code would still compile to comply with another vector type with few or no changes.

The add function creates a new Vector with a size equal to the length of the argument vector. Then, it
fills the resulting vector with the original plus the number in the first argument. Next, you can see the scalar
multiplication operation:

Vector multiply(double num, const Vector &v)
{
 int n = (int)v.size();

Chapter 9 ■ Linear Algebra Algorithms

145

 Vector result(n);
 for (int i=0; i<n; ++i)
 {
 result[i] = v[i] * num;
 }
 return result;
}

The multiply function is implemented similarly to add. It receives a double number and a vector. The
resulting vector is created as the same size as the argument v. The resultant vector is computed element by
element to comply with the definition of the scalar product operation.

These two functions create and return a new vector. This is an effective way to perform the operations,
but it can be less than optimal when used in inner loops of complex algorithms. One way to speed up this
process is to create a version of these functions that modify the vector in place. That is, one of the vectors is
passed using a non-const reference, and it is modified to contain the result of the calculation.

Here is the scalar addition function, implemented as an in-place modifying operation:

void in_place_add(double num, Vector &v)
{
 int n = (int)v.size();
 for (int i=0; i<n; ++i)
 {
 v[i] += num;
 }
}

As you can see, this is the equivalent of the += operator, but applied to a vector and a scalar number
argument. A similar implementation also works for the scalar product operation:

void in_place_multiply(double num, Vector &v)
{
 int n = (int)v.size();
 for (int i=0; i<n; ++i)
 {
 v[i] *= num;
 }
}

Last, you can take advantage of C++ operator overloading when defining these functions. With operator
overloading, you can write code much more naturally, so instead of typing

multiply(5, add(10, a));

(assuming that a is a vector), you can type

5 * (10 * a);

which is much easier to understand and maintain. You can create operator versions of the previous
functions using the following definitions:

inline Vector operator +(double num, const Vector &v)
{
 return add(num, v);
}

Chapter 9 ■ Linear Algebra Algorithms

146

inline Vector operator *(double num, const Vector &v)
{
 return multiply(num, v);
}

inline void operator +=(double num, Vector &v)
{
 in_place_add(num, v);
}

inline void operator *=(double num, Vector &v)
{
 in_place_multiply(num, v);
}

Because these are inline functions, they don’t add any runtime penalty to the functions that have
already been defined. In fact, you can think about these definitions as shortcuts to the full definition of the
vector operators, so that they are easy to type.

Vector-to-Vector Operations
The vector-to-vector operations allow you to form mathematical expressions involving two or more vectors.
The most common such operations are vector addition and vector product. They can be implemented using
strategies similar to the ones used previously.

First, you will see the implementation of vector addition:

Vector add(const Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 Vector result(n);
 for (int i=0; i<n; ++i)
 {
 result[i] = v1[i] + v2[i];
 }
 return result;
}

Here, the function allocates a resultant vector, which is populated using element-wise addition of vector
entries.

void in_place_add(Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 v1[i] += v2[i];
 }
}

Chapter 9 ■ Linear Algebra Algorithms

147

Next, you can apply the same strategy to the implementation of vector products:

double prod(const Vector &v1, const Vector &v2)
{
 double result = 0;
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 result += v1[i] * v2[i];
 }
 return result;
}

Just as you can use in-place operations for scalar-to-vector functions, you can also implement vector-
to-vector operations in place, therefore saving some of the effort needed to create temporary data structures.
Here are the versions of these two functions designed for in-place updates:

void in_place_add(Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 v1[i] += v2[i];
 }
}

void in_place_product(Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 v1[i] *= v2[i];
 }
}

Finally, you can also simplify the use of these vector operations with the help of C++ operator
overloading. Instead of typing a complex set of function calls, it is much more elegant to apply the standard
addition and multiplication operations whenever possible. Therefore, you can use the following inline
definitions to call the given vector operations without any runtime performance penalty:

inline Vector operator +(const Vector &v1, const Vector &v2)
{
 return add(v1, v2);
}

inline void operator +=(Vector &v1, const Vector &v2)
{
 in_place_add(v1, v2);
}

Chapter 9 ■ Linear Algebra Algorithms

148

inline double operator *(const Vector &v1, const Vector &v2)
{
 return prod(v1, v2);
}

inline void operator *=(Vector &v1, const Vector &v2)
{
 in_place_add(v1, v2);
}

The next operation I want to discuss is a very common function defined over a single vector. The norm of
a vector can be defined as the square root of the vector product of a vector with itself. Basically, the norm of a
vector is a numeric quantity that can be applied to describe the whole vector. You can very easily implement
a norm in the following way:

double norm(const Vector &v)
{
 double result = 0;
 int n = (int)v.size();
 for (int i=0; i<n; ++i)
 {
 result += v[i] * v[i];
 }
 return std::sqrt(result);
}

Matrix Implementation
In the previous section, you learned about the most basic level of linear algebra functions, dealing with
single numbers and vectors. A second level of operations is defined on a two-dimensional arrangement of
numbers, also known as a matrix. Matrices arise naturally as the result of linear algebra calculations, and
they provide a convenient way to manipulate data.

Matrices are fundamental to the implementation of linear algebra algorithms that are frequently used
in the analysis of options and other derivatives. Unfortunately, C++ does not support matrices directly.
Programmers need to create a separate abstraction to represent a matrix or use some third-party library that
contains such a datatype.

For the purpose of illustrating linear algebra and related algorithms, a Matrix class will be introduced
in this section. This Matrix datatype implements some of the most common operations that are needed in a
financial application. However, the Matrix class presented here doesn’t include all the necessary checks that
a robust implementation would require, and some of these features are left as exercise for the reader.

In particular, the Matrix class presented in this section offers the following abilities:

•	 Creation of square and rectangular matrices, which handle the allocation of memory
for a two-dimensional container of real (floating-pointing) numbers.

•	 Copy constructor and assignment operator that support the basic copy operations
used in C++ libraries.

•	 Indexing operator, so that values can be accessed with the familiar square bracket
notation.

•	 Common linear algebra operations, such as transpose, add, and multiply,
implemented as member functions.

Chapter 9 ■ Linear Algebra Algorithms

149

The first step in defining a matrix class is to define the basic organization of the stored data. In this
class, the data is stored as a sequence of rows, making maximum use of the existing vector container to help
manage the data.

The header file is presented in Listing 9-1, and it includes the class declaration and a few free operators
that simplify the use of the class.

Listing 9-1.  Declarations for the Matrix Class

//
// Matrix.h
//

#ifndef __FinancialSamples__Matrix__
#define __FinancialSamples__Matrix__

#include <vector>

class Matrix {
public:
 typedef std::vector<double> Row;

 Matrix(int size);
 Matrix(int size1, int size2);
 Matrix(const Matrix &s);
 ~Matrix();
 Matrix &operator=(const Matrix &s);

 void transpose();
 double trace();
 void add(const Matrix &s);
 void subtract(const Matrix &s);
 void multiply(const Matrix &s);
 void multiply(double num);

 Row & operator[](int pos);
 int numRows() const;
private:
 std::vector<Row> m_rows;
};

// free operators
//
Matrix operator+(const Matrix &s1, const Matrix &s2);
Matrix operator-(const Matrix &s1, const Matrix &s2);
Matrix operator*(const Matrix &s1, const Matrix &s2);

#endif /* defined(__FinancialSamples__Matrix__) */

Notice that a Row is defined as a std::vector of double numbers, using a typedef. Next, you see the
usual definitions for constructors, destructors, and the assignment operator.

Chapter 9 ■ Linear Algebra Algorithms

150

The Matrix class contains a few common operations, implemented as member functions. Last, you see
a few operator overloads, so that the class can be comfortably used along with other linear algebra types
discussed previously.

The first part of the Matrix class implementation is concerned with the constructors. The class has two
constructors: the first constructor creates a square matrix, that is, one that has the same number of rows and
columns. This is done by instantiating each row of the matrix and adding it to the top-level m_rows vector,
until the complete matrix has been allocated.

//
// Matrix.cpp
//

#include "Matrix.h"

#include <stdexcept>

Matrix::Matrix(int size)
{
 for (int i=0; i<size; ++i)
 {
 std::vector<double> row(size, 0);
 m_rows.push_back(row);
 }
}

The second way to create a matrix is to give a number of rows and a number of columns, therefore
creating a rectangular matrix. The underlying algorithm is similar to the previous case:

Matrix::Matrix(int size, int size2)
{
 for (int i=0; i<size; ++i)
 {
 std::vector<double> row(size2, 0);
 m_rows.push_back(row);
 }
}

The next constructor allows you to make a copy of an existing matrix. It simply takes advantages of how
vectors copy all of their contents by default. The destructor is also trivial, because of the use of std::vector
to manage the data.

Matrix::Matrix(const Matrix &s)
: m_rows(s.m_rows)
{
}

Matrix::~Matrix()
{
}

Chapter 9 ■ Linear Algebra Algorithms

151

The assignment operator also takes advantage of the use of an std::vector. The only thing it needs to
do is copy the underlying m_rows data member.

Matrix &Matrix::operator=(const Matrix &s)
{
 if (this != &s)
 {
 m_rows = s.m_rows;
 }
 return *this;
}

The Matrix class provides an easy way to access elements, using square brackets. For this purpose, it
needs to define the operator[] member function. Because an std::vector is returned, the result can also
be accessed using square brackets. Therefore, if a is an object of class Matrix, users of this class can just type
a[2][3] to access the forth element of the third row.

Matrix::Row &Matrix::operator[](int pos)
{
 return m_rows[pos];
}

Transposition is one of the most common operations in a matrix. The goal of transposition is to convert
rows into columns, changing the orientation of the data stored. This class does this by creating a new set of
rows, where each new row contains the elements of the corresponding column. At the end, you just need
to replace the existing rows with this new set of rows. This is done using the swap member function of the
underlying std::vector. This way, you don’t need to worry about the details of data allocation, taking full
advantage of STL data management techniques.

void Matrix::transpose()
{
 std::vector<Row> rows;
 for (unsigned i=0;i <m_rows[0].size(); ++i)
 {
 std::vector<double> row;
 for (unsigned j=0; j<m_rows.size(); ++j)
 {
 row[j] = m_rows[j][i];
 }
 rows.push_back(row);
 }
 m_rows.swap(rows);
}

Next, the Matrix class contains another very common operation called trace. The trace of a matrix is
defined as the summation of elements in the diagonal positions of the matrix. That is, for a given matrix a,
you need to sum all elements a[i][i], or in mathematical notation:

Trace A A
i

n

i i() =
=
å

1
,

Chapter 9 ■ Linear Algebra Algorithms

152

This function is not defined for non-square matrices.

double Matrix::trace()
{
 if (m_rows.size() != m_rows[0].size())
 {
 throw new std::runtime_error("invalid matrix dimensions");
 }
 double total = 0;
 for (unsigned i=0; i<m_rows.size(); ++i)
 {
 total += m_rows[i][i];
 }
 return total;
}

The add member function implements matrix addition. Just as with vector addition, matrix addition
performs the element-wise summation of entries in the matrix. This operation is defined only when the two
matrices have the same dimensions, otherwise a runtime exception is thrown.

void Matrix::add(const Matrix &s)
{
 if (m_rows.size() != s.m_rows.size() ||
 m_rows[0].size() != s.m_rows[0].size())
 {
 throw new std::runtime_error("invalid matrix dimensions");
 }
 for (unsigned i=0; i<m_rows.size(); ++i)
 {
 for (unsigned j=0; j<m_rows[0].size(); ++j)
 {
 m_rows[i][j] += s.m_rows[i][j];
 }
 }
}

The subtract operation is similar to addition. It is here just to avoid the need to multiply the whole
matrix by -1 in order to do a simple subtraction.

void Matrix::subtract(const Matrix &s)
{
 if (m_rows.size() != s.m_rows.size() ||
 m_rows[0].size() != s.m_rows[0].size())
 {
 throw new std::runtime_error("invalid matrix dimensions");
 }
 for (unsigned i=0; i<m_rows.size(); ++i)
 {
 for (unsigned j=0; j<m_rows[0].size(); ++j)
 {
 m_rows[i][j] -= s.m_rows[i][j];
 }
 }
}

Chapter 9 ■ Linear Algebra Algorithms

153

The product operation is implemented by the member function multiply. When you’re multiplying two
matrices, the resulting matrix has entries that correspond to the vector product of the i-th row and the j-th
column. In mathematical notation, this is represented as:

A B A B
i j

k

n

ik kj´() =
=
å,

1

The multiply member function updates the matrix in place; therefore, it just needs to create a new set
of rows and swap the results at the end of the function.

void Matrix::multiply(const Matrix &s)
{
 if (m_rows[0].size() != s.m_rows.size())
 {
 throw new std::runtime_error("invalid matrix dimensions");
 }
 std::vector<Row> rows;
 for (unsigned i=0; i<m_rows.size(); ++i)
 {
 std::vector<double> row;
 for (unsigned j=0; j<s.m_rows.size(); ++j)
 {
 double Mij = 0;
 for (unsigned k=0; k<m_rows[0].size(); ++k)
 {
 Mij += m_rows[i][k] * s.m_rows[k][j];
 }
 row.push_back(Mij);
 }
 rows.push_back(row);
 }
 m_rows.swap(rows);
}

The Matrix class also defines a multiply member function that performs multiplication by a scalar
number. This is analogous to the scalar multiplication of vectors and multiplies each element of the matrix
by the same number.

void Matrix::multiply(double num)
{
 for (unsigned i=0; i<m_rows.size(); ++i)
 {
 for (unsigned j=0; j<m_rows[0].size(); ++j)
 {
 m_rows[i][j] *= num;
 }
 }
}

Chapter 9 ■ Linear Algebra Algorithms

154

The numRows member function just returns the number of rows in the matrix.

int Matrix::numRows() const
{
 return (int)m_rows.size();
}

Finally, three operations are defined that simplify the use of the class. These operators use the in-place
implementations you have saw previously, and they allow the use of convenient expressions involving
matrices. These operators just give you an idea of how this works in practice; you can extend these
definitions to include other common operators, such as /, +=, and *=, for example.

Matrix operator+(const Matrix &s1, const Matrix &s2)
{
 Matrix s(s1);
 s.subtract(s2);
 return s;
}

Matrix operator-(const Matrix &s1, const Matrix &s2)
{
 Matrix s(s1);
 s.subtract(s2);
 return s;
}

Matrix operator*(const Matrix &s1, const Matrix &s2)
{
 Matrix s(s1);
 s.multiply(s2);
 return s;
}

Using the uBLAS Library
In the previous sections, you saw simple implementations of linear algebra concepts in C++. While they are
useful for the examples provided in this book, sometimes you will be required to create high-performance
implementations of complex numerical algorithms involving vectors and matrices. In such cases, it is useful
to use well-tested and optimized libraries that provide linear algebra related code.

The most used library for linear algebra algorithms is the LAPACK. Originally written in Fortran,
LAPACK (linear algebra package) aims at providing high performing and well-tested algorithms for basic
operations involving vectors and matrices.

One interesting aspect of LAPACK is that it relies on another library called BLAS (Basic Linear Algebra
Subprograms) to implement basic vector and matrix routines. The result is that BLAS became a standard for
implementing vector and matrix routines. Several versions of BLAS have been released, providing optimized
performance for specific architectures. BLAS has also versions targeting C and C++ that are used in many
commercial products and other applications that need extensive support for numerical algorithms.

BLAS defines three levels of routines for support of linear algebra algorithms:

•	 BLAS Level 1 supports only vector-to-scalar and vector-to-vector operations. It is the
most basic level of support, upon which other levels may be built.

Chapter 9 ■ Linear Algebra Algorithms

155

•	 BLAS Level 2 offers optimized routines for vector-to-matrix calculations.

•	 BLAS Level 3 expands the previous levels to support matrix-to-matrix calculations,
including operations such as matrix multiplication.

There are several implementations of BLAS, both in Fortran as well as in C++. Boost uBLAS is an
implementation that is free and mostly compatible with the original BLAS library. It contains the same three
support levels listed previously.

For an example of how to use uBLAS, assume that you want to access a fast implementation of the pre-
multiply operations. That is, given a vector and a matrix, you want to write an algorithm that multiplies the
vector by the matrix, giving a vector as a result.

To solve this problem, you can import the uBLAS libraries and create a function that receives two
arguments: a vector and a matrix object. Here is a possible implementation for this function:

#include "Matrix.h"

#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>

namespace ublas = boost::numeric::ublas;

std::vector<double> preMultiply(const std::vector<double> &v, Matrix &m)
{
 using namespace ublas;
 ublas::vector<double> vec;
 std::copy(v.begin(), v.end(), vec.end());

 int d1 = m.numRows();
 int d2 = (int)m[0].size();
 ublas::matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)
 {
 for (int j = 0; j < d2; ++j)
 {
 M(i,j) = m[i][j];
 }
 }

 vector<double> pv = prod(vec, M);

 std::vector<double> result;
 std::copy(pv.begin(), pv.end(), result.end());
 return result;
}

The first step is to include the header files for the boost numeric libraries. (You also need to make sure
that the program will link to the necessary libraries; check your boost documentation for details.) Then, a
function called preMultiply is defined, receiving a vector and a matrix as its parameters.

Chapter 9 ■ Linear Algebra Algorithms

156

One of the first things this function needs to do is convert the parameters into the types required by the
uBLAS library. In particular, uBLAS provides the vector<double> and matrix<double> types. You need to
convert your data to these types before calling any uBLAS functions.

Once the data has been prepared, you may call the prod function from uBLAS, which knows how to
calculate the product of a vector and a matrix. The result is then saved into an std::vector container and
returned to the caller.

Complete Code
This section contains the complete code for the vector operations. These functions may be used as the basis
for a complete LA package, which is a common requirement in the analysis of options and derivatives.

The code is spread over two source files—LAVectors.hpp is the header file and LAVectors.cpp is the
implementation file—which you’ll find in Listings 9-2 and 9-3.

Listing 9-2.  Header File LAVectors.hpp

//
// LAVectors.hpp

#ifndef LAVectors_hpp
#define LAVectors_hpp

#include <vector>

typedef std::vector<double> Vector;

// scalar by vector operations

Vector add(double num, const Vector &v);
Vector multiply(double num, const Vector &v);

void in_place_add(double num, Vector &v);
void in_place_multiply(double num, Vector &v);

inline Vector operator +(double num, const Vector &v)
{
 return add(num, v);
}

inline Vector operator *(double num, const Vector &v)
{
 return multiply(num, v);
}

inline void operator +=(double num, Vector &v)
{
 in_place_add(num, v);
}

Chapter 9 ■ Linear Algebra Algorithms

157

inline void operator *=(double num, Vector &v)
{
 in_place_multiply(num, v);
}

// vector to vector operations

Vector add(const Vector &v1, const Vector &v2);
void in_place_add(Vector &v1, const Vector &v2);

double product(const Vector &v1, const Vector &v2);
void in_place_product(Vector &v1, const Vector &v2);

inline Vector operator +(const Vector &v1, const Vector &v2)
{
 return add(v1, v2);
}

inline void operator +=(Vector &v1, const Vector &v2)
{
 in_place_add(v1, v2);
}

inline double operator *(const Vector &v1, const Vector &v2)
{
 return product(v1, v2);
}

inline void operator *=(Vector &v1, const Vector &v2)
{
 in_place_add(v1, v2);
}

double norm(const Vector &v);

#include <stdio.h>

#endif /* LAVectors_hpp */

Listing 9-3.  Implementation File LAVectors.cpp

//
// LAVectors.cpp

#include "LAVectors.hpp"

#include <cmath>

Chapter 9 ■ Linear Algebra Algorithms

158

//
// adds a scalar number to a vector "v"
//
Vector add(double num, const Vector &v)
{
 int n = (int)v.size();
 Vector result(n);
 for (int i=0; i<n; ++i)
 {
 result[i] = v[i] + num;
 }
 return result;
}

//
// pre-multiply a number "num" by the given vector "v"
//
Vector multiply(double num, const Vector &v)
{
 int n = (int)v.size();
 Vector result(n);
 for (int i=0; i<n; ++i)
 {
 result[i] = v[i] * num;
 }
 return result;
}

//
// perform vector addition in place (modifying the given vector)
//
void in_place_add(double num, Vector &v)
{
 int n = (int)v.size();
 for (int i=0; i<n; ++i)
 {
 v[i] += num;
 }
}

//
// perform matrix multiplication in place (modifying the given vector)
//
void in_place_multiply(double num, Vector &v)
{
 int n = (int)v.size();
 for (int i=0; i<n; ++i)
 {
 v[i] *= num;
 }
}

Chapter 9 ■ Linear Algebra Algorithms

159

//
// perform vector addition of two vectors (v1 and v2)
//
Vector add(const Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 Vector result(n);
 for (int i=0; i<n; ++i)
 {
 result[i] = v1[i] + v2[i];
 }
 return result;
}

//
// performs the vector product of vectors v1 and v2
//
double product(const Vector &v1, const Vector &v2)
{
 double result = 0;
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 result += v1[i] * v2[i];
 }
 return result;
}

//
// in place addition of vectors v1 and v2
//
void in_place_add(Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 v1[i] += v2[i];
 }
}

//
// in place product of vectors v1 and v2
//
void in_place_product(Vector &v1, const Vector &v2)
{
 int n = (int)v1.size();
 for (int i=0; i<n; ++i)
 {
 v1[i] *= v2[i];
 }
}

Chapter 9 ■ Linear Algebra Algorithms

160

//
// computes the norm of a vector
//
double norm(const Vector &v)
{
 double result = 0;
 int n = (int)v.size();
 for (int i=0; i<n; ++i)
 {
 result += v[i] * v[i];
 }
 return std::sqrt(result);
}

Conclusion
In this chapter, you learned about linear algebra algorithms that are commonly used in the development of
software for the analysis of options and other derivatives. Linear algebra provides many of the techniques
that are applied to important problems such as option pricing and the numerical approximation of certain
derivatives occurring in finance.

First, you learned about the basic algorithms that involve a vector and a scalar number. These
operations can be implemented in C++ using functions that are applied to standard vectors, as you saw in
the given examples.

Next, you learned how to implement a useful matrix datatype. Matrices are not directly provided by the
STL, but you can take advantage of existing support by vectors as a building block for matrix representations.
You also learned about the basic operations that can be performed over matrix objects.

Finally, I discussed linear algebra libraries that provide some of the functionality discussed in the
previous sections. In particular, BLAS has been created and improved by some of the greatest specialists in
the implementation of numeric algorithms. The BLAS library is organized into different levels of support for
linear algebra algorithms. You saw an example of how to take advantage of this highly optimized library to
improve the performance of your own LA code.

In the next chapter, you will learn about another building block for financial derivatives: numeric
algorithms used to solve mathematical equations. This type of algorithms is at the core of many techniques
used in the pricing of options and more exotic derivatives, as you will see in the next few chapters.

161© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_10

CHAPTER 10

Algorithms for Numerical Analysis

Equation solving is one of the main building blocks for financial algorithms used in the analysis of options
and financial derivatives. This happens because of the nature of options pricing, which is based on the
Black-Scholes pricing model. Many of the techniques that involve options pricing require the efficient
solution of equations and other mathematical formulations.

Given the importance of mathematical techniques in the pricing of such derivatives, it is important
to be able to calculate the solution for particular mathematical models. Although this is a vast area of
numerical programming, I will present a few illustrations of numerical algorithms that can be used as a
starting point for developing your own C++ code.

In this chapter, you will see programming examples for a few fundamental algorithms in numerical
programming. In particular, you will learn techniques to calculate equation roots and integrate functions in
C++, with a discussion of how they work and how they are applied. The chapter also discusses numerical error
and stability issues that present a challenge for developers in the area of quantitative financial programming.

•	 Mathematical function representation: I initially discuss a representation for
mathematical functions that can be used as the starting point for algorithms that
manipulate these mathematical abstractions.

•	 Root finding algorithms: One of the most common types of numerical algorithms,
root finding techniques are used to find one or more roots of an equation, which are
the points where the equations have zero value.

•	 Integration algorithms: Another common type of numerical algorithms, integration
techniques are used to calculate the numerical value of an integral (which can also
be described as the area under a function for single dimensional equations).

•	 Numerical examples in C++: This chapter also includes C++ code that implements
many of these concepts, with concrete examples of how to code these algorithms.

Representing Mathematical Functions
The first step in this short overview of numerical algorithms is to find a reasonable way to represent mathematical
functions in C++. As you saw in the previous chapter, functions can be easily represented in C++ using functional
objects, which declare a function call operator as one of its member functions. Using this strategy, it is possible to
convert a class instance into a callable object, with semantics similar to native functions.

A similar strategy can be used to represent mathematical functions. The main difference between
generic C++ and mathematical functions is that the latter operate only over numeric domains, more
commonly using float or double values.

In the following example, a new MathFunction class is declared using this strategy. The declaration
of MathFunction as an abstract interface allows programmers to extend this definition as necessary to
represent concrete functions, as you will see next.

Chapter 10 ■ Algorithms for Numerical Analysis

162

The abstract class can be defined as presented in Listing 10-1.

Listing 10-1.  Definition for the Abstract Class MathFunction

#include <iostream>
#include <vector>

using std::cout;
using std::endl;

class MathFunction {
public:

 virtual ~MathFunction() {}
 virtual double operator()(double x) = 0;
private:
 // this just an interface
};

■■ Note  Because MathFunction is a polymorphic base class, it needs to define its own virtual destructor. This is
necessary because clients will receive pointers or references to the base class. Without a virtual destructor, the compiler
cannot determine the right destructor to be called, and as a result such objects will not be properly cleaned up.

The great thing about using this type of interface class is that once you have a class like MathFunction,
you can start writing code that uses it directly. Your code is insulated from any worries about the exact
representation of objects. For example, consider a useful class called PolynomialFunction, which
implements the interface described by MathFunction:

//
// Polynomial has the form c_1 x^n + c_2 x^n-1 + + c_n-1 x^1 + c_n
//
class PolynomialFunction : public MathFunction {
public:
 PolynomialFunction(const std::vector<double> &coef);
 PolynomialFunction(const PolynomialFunction &p);
 virtual ~PolynomialFunction();
 virtual PolynomialFunction &operator=(const PolynomialFunction &p);

 virtual double operator()(double x) override;
private:
 std::vector<double> m_coefficients;
};

The PolynomialFunction class derives from MathFunction so that it can implement the same interface.
However, it is only usable to represent polynomial functions, that is, functions that are determined by a
polynomial of the form

f x c x c x c x cn n
n n() = + + + +-
-1 2

1
1

1�

Chapter 10 ■ Algorithms for Numerical Analysis

163

The polynomial is determined using the coefficients passed as vectors to the constructor of
PolynomialFunction. The constructors are responsible for updating the m_coefficients data member
using this information.

PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)
: m_coefficients(coef)
{
}

PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)
: m_coefficients(p.m_coefficients)
{
}

PolynomialFunction::~PolynomialFunction()
{
}

PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)
{
 if (this != &p)
 {
 m_coefficients = p.m_coefficients;
 }
 return *this;
}

Using Horner’s Method
The main part of the PolynomialFunction class is the implementation for the method call operator. Since
this class represents a polynomial, this operator needs to receive a real number x and evaluate the function
at that particular point. This is done using the so-called Horner’s method.

Horner’s method is just a quick way to evaluate a polynomial, so that you don’t need to explicitly
evaluate the terms xi, for i from 1 to n. This can be done using a loop, where at each step you add a
coefficient and multiply the result by x. A simple implementation of this idea can be done as follows:

double PolynomialFunction::operator()(double x)
{
 int n = (int)m_coefficients.size();
 double y = 0;
 int i;
 for (i=0; i<n-1; ++i)
 {
 y += m_coefficients[i];
 y *= x;
 }
 if (i < n) {
 y += m_coefficients[i];
 }
 return y;
}

Chapter 10 ■ Algorithms for Numerical Analysis

164

To test these classes, you create a sample function that evaluates a polynomial function in a particular
range. The function tested here is simply x2 in the real range of –2 to 2. The function also prints the results so
that you can visualize the data.

int test_poly_function()
{
 PolynomialFunction f({ 1, 0, 0 });

 double begin = -2, end = 2;
 double step = (end - begin) / 100.0;
 for (int i=0; i<100; ++i)
 {
 cout << begin + step * i << ", ";
 }
 cout << endl;
 for (int i=0; i<100; ++i)
 {
 cout << f(begin + step * i) << ", ";
 }

 return 0;
}

I ran this function and plotted the results as a graph of the function. Figure 10-1 shows the output of
the plot.

Figure 10-1.  Plot of results printed by the test_poly_function function

Chapter 10 ■ Algorithms for Numerical Analysis

165

Finding Roots of Equations
Once you have a good representation for mathematical functions, it becomes possible to solve a few numerical
problems. The first one I discuss is this section is finding the roots of an equation, a common problem that
occurs as part of several numerical algorithms. Finding roots of an equation consists of determining one or
more points in a numerical domain (usually the real numbers) where the equation has a value of zero.

This problem has a long history in mathematics, and for some types of equations it is possible to
calculate their roots exactly. For example, you can find such roots for polynomials in general. For other
equations, however, this problem can be too complicated to solve using analytical methods, which leads to
the need for an algorithm capable of generating approximate solutions to such equations.

A number of numerical algorithms have been proposed in the mathematical literature to find the
roots of equations. In this section, you see how to do this using Newton’s method, which is one of the most
common algorithms for this problem, and learn how it can be implemented in C++.

Newton’s Method
Newton’s method is based on the use of the derivative as an approximation to the function on a particular
neighborhood. To understand how this method works, notice that the derivative of a function at a particular
point is known to be the slope of a line segment that is tangent to the function.

Using this property, it is very easy to improve the approximation to the equation root with a new point
that is determined by the tangent. Newton’s method will essentially iterate through this process, until the
difference between successive approximations is very small.

This method can be readily implemented in C++ using the tools that you already have. The first part
consists of creating a class that encapsulates the necessary data for the approximation procedure. Here is the
definition for the NewtonMethod class:

#include "MathFunction.hpp"

//
// a Newton method implementation.
//
class NewtonMethod {
public:
 // Takes as parameter the function and its derivatives
 //
 NewtonMethod(MathFunction &f, MathFunction &derivative);
 NewtonMethod(MathFunction &f, MathFunction &derivative, double error);
 NewtonMethod(const NewtonMethod &p);
 virtual ~NewtonMethod();
 NewtonMethod &operator=(const NewtonMethod &p);

 double getFunctionRoot(double initialValue);
private:
 MathFunction &m_f;
 MathFunction &m_derivative;
 double m_error;
};

The NewtonMethod class contains the commonly used member functions and in addition it provides a
function called getFunctionRoot, which receives as a parameter an initial value (a first guess that will work
as a starting point).

Chapter 10 ■ Algorithms for Numerical Analysis

166

The class stores as its data a reference to the function for which you want to find roots, and another
reference to its derivative. Although it is technically possible to find the derivative for most functions, the
techniques to do this in a generic way are beyond the capabilities of this class, so you need to receive the
derivative as a constructor parameter and store it.

#include <iostream>
#include <cmath>

using std::endl;
using std::cout;

namespace {
 const double DEFAULT_ERROR = 0.0001;
}

NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative)
: m_f(f),
m_derivative(derivative),
m_error(DEFAULT_ERROR)
{
}

NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative, double error)
: m_f(f),
m_derivative(derivative),
m_error(error)
{
}

NewtonMethod::NewtonMethod(const NewtonMethod &p)
: m_f(p.m_f),
m_derivative(p.m_derivative),
m_error(p.m_error)
{
}

NewtonMethod::~NewtonMethod()
{
}

NewtonMethod &NewtonMethod::operator=(const NewtonMethod &p)
{
 if (this != &p)
 {
 m_f = p.m_f;
 m_derivative = p.m_derivative;
 m_error = p.m_error;
 }
 return *this;
}

Chapter 10 ■ Algorithms for Numerical Analysis

167

These member functions are necessary just to maintain the state of NewtonMethod objects. The m_f
member stores the function that needs to be solved. The m_derivative member stores a reference to the
derivative of the main function. You can also tweak the expected error of the solutions found by this class
using the m_error member function. If the error is not supplied, this class uses the value stored in the
DEFAULT_ERROR error constant.

Next, you’re ready for the implementation of Newton’s method using the given infrastructure. The
getFunctionRoot function provides the necessary code for finding the root of the equation. This member
function is essentially a loop in which at each step a new approximation for the function root is provided.
The loop ends when the absolute difference between the two last approximations is at least equal to the
acceptable error:

double NewtonMethod::getFunctionRoot(double x0)
{
 double x1 = x0;
 do
 {
 x0 = x1;
 cout << " x0 is " << x0 << endl; // this line just for demonstration
 double d = m_derivative(x0);
 double y = m_f(x0);
 x1 = x0 - y / d;
 }
 while (std::abs(x0 - x1) > m_error);
 return x1;
}

Inside the main loop, the steps are:

	 1.	 Find the value at the derivative at the current estimate point using the
m_derivative member.

	 2.	 Find the value of the function itself at the current estimate, using the m_f
member.

	 3.	 The derivative gives the slope d of the tangent, which can now be used to
calculate another estimate point starting from the previous estimate. The
equation for this new estimate is given by

x x
f x

f x1 0
0

0

= -
()
()¢

where
x

0

 is the previous estimate and x
1
 is the new estimate.

You can use a few sample functions to test the accuracy of this method. I created a SampleFunction
class for this purpose. This class inherits publicly the MathFunction interface and can be used to compute
the function f(x) = (x–1)3, which has 1 as a root solution.

class SampleFunction : public MathFunction {
public:
 virtual ~SampleFunction();
 virtual double operator()(double value);
}.

Chapter 10 ■ Algorithms for Numerical Analysis

168

SampleFunction::~SampleFunction()
{
}

double SampleFunction::operator ()(double x)
{
 return (x-1)*(x-1)*(x-1);
}

To use this class with NewtonMethod, you also need to supply its derivative. I have implemented the
Derivative class, which again is derived from MathFunction. Simple math shows you that the derivative is
given by f'(x) = 3(x–1)2.

class Derivative : public MathFunction {
public:
 virtual ~Derivative();
 virtual double operator()(double value);
};

// represents the derivative of the sample function
Derivative::~Derivative()
{
}

double Derivative::operator ()(double x)
{
 return 3*(x-1)*(x-1);
}

With these two classes, you can create a simple main function that puts them together and finds the
root of the desired function. This code instantiates both SampleFunction and Derivative objects and
creates an object of the NewtonMethod class. Finally, the code prints the value for a given initial estimate
of 100.

int main()
{
 SampleFunction f;
 Derivative df;
 NewtonMethod nm(f, df);
 cout << " the root of the function is " << nm.getFunctionRoot(100) << endl;
 return 0;
}

Running this function gives as a result a set of points, each one closer to the desired equation root. You
can view the sequence of results in Table 10-1.

Chapter 10 ■ Algorithms for Numerical Analysis

169

Table 10-1.  Sequence of Values Found by Newton’s Method
Applied to Function (x–1)3 and with Initial Guess of 100

Iteration Estimate Difference

1 100

2 67 33.00000

3 45 22.00000

4 30.3333 14.66670

5 20.5556 9.77770

6 14.037 6.51860

7 9.69136 4.34564

8 6.79424 2.89712

9 4.86283 1.93141

10 3.57522 1.28761

11 2.71681 0.85841

12 2.14454 0.57227

13 1.76303 0.38151

14 1.50868 0.25435

15 1.33912 0.16956

16 1.22608 0.11304

17 1.15072 0.07536

18 1.10048 0.05024

19 1.06699 0.03349

20 1.04466 0.02233

21 1.02977 0.01489

22 1.01985 0.00992

23 1.01323 0.00662

24 1.00882 0.00441

25 1.00588 0.00294

26 1.00392 0.00196

27 1.00261 0.00131

28 1.00174 0.00087

29 1.00116 0.00058

30 1.00077 0.00039

31 1.00052 0.00025

32 1.00034 0.00018

33 1.00023 0.00011

34 1.00015 0.00008

Chapter 10 ■ Algorithms for Numerical Analysis

170

Integration
Another problem that frequently requires the help of mathematical algorithms is the integration of
functions. The integral of a function can be visualized as the area under its graph, and it has many
applications in finance, engineering, and physics. Several algorithms used in the analysis of options need to
evaluate integrals numerically, using techniques similar to the ones covered in this section.

Functions can be integrated analytically or numerically. For some functions, it is possible to find an
analytic solution, that is, a closed formula that can be directly evaluated to compute the integral of a function
between two points. For example, polynomial functions can be easily integrated analytically, using the anti-
derivative. For example, if the function is f (x) = x2, the anti-derivative

 F x
x

C() = +
3

3

can be used to calculate the value of the integral between the two points a and b, which becomes
F (b) – F(a).

Many functions, however, are too complicated to be integrated analytically. In these cases, you need to
use numerical algorithms that slice the function into small parts and calculate the integral, while trying to
reduce the error in this process.

In this section, I present an implementation for one of the simplest integration techniques, known as
Simpson’s method. Simpson’s method is based on the decomposition of an area that needs to be integrated
into a large number of very small pieces.

First, you need to define a class that presents the interface for this solution method. The
SimpsonsIntegration class contains data members such as m_f, a reference to the function that will be
integrated, and m_numIntervals, the number of intervals used to approximate the integral.

#include "MathFunction.hpp"

class SimpsonsIntegration {
public:
 SimpsonsIntegration(MathFunction &f);
 SimpsonsIntegration(const SimpsonsIntegration &p);
 ~SimpsonsIntegration();
 SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

 double getIntegral(double a, double b);
 void setNumIntervals(int n);
private:
 MathFunction &m_f;
 int m_numIntervals;
};

The implementation for this class is in the next code fragment. The class uses a default number of
intervals, in case you don’t want to set up this value. The DEFAULT_NUM_INTERVALS constant is used for this
purpose.

#include "Integration.hpp"

#include "MathFunction.hpp"

#include <iostream>
#include <cmath>

Chapter 10 ■ Algorithms for Numerical Analysis

171

using std::cout;
using std::endl;

namespace {
 const int DEFAULT_NUM_INTERVALS = 100;
}

SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)
: m_f(f),
m_numIntervals(DEFAULT_NUM_INTERVALS)
{
}

SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration &p)
: m_f(p.m_f),
m_numIntervals(p.m_numIntervals)
{
}

SimpsonsIntegration::~SimpsonsIntegration()
{
}

SimpsonsIntegration &SimpsonsIntegration::operator=(const SimpsonsIntegration &p)
{
 if (this != &p)
 {
 m_f = p.m_f;
 m_numIntervals = p.m_numIntervals;
 }
 return *this;
}

The main part of this implementation is the getIntegral member function. The two parameters for
this function define the interval in which the integration will be performed. The intSize variable is used to
define the size of each interval used for Simpson’s method.

The algorithm operates as follows. For each slice of the required interval, you need to compute the
approximate area under the function. The formula used by Simpson’s method is

b a
f a f

a b
f b

- ()+ +æ
è
ç

ö
ø
÷+ ()ì

í
î

ü
ý
þ6

4
2

where a and b are the beginning and end points of the current interval. This rule has been observed as one
of the most effective for evaluating an integral in a short interval.

double SimpsonsIntegration::getIntegral(double a, double b)
{
 double S = 0;
 double intSize = (b - a)/m_numIntervals;
 double x = a;

Chapter 10 ■ Algorithms for Numerical Analysis

172

 for (int i=0; i<m_numIntervals; ++i)
 {
 S += (intSize / 6) * (m_f(x) + m_f(x+intSize) + 4* m_f ((x + x+intSize)/2));
 x += intSize;
 }
 return S;
}

This class also provides a method to change the number of intervals, therefore improving the accuracy
of the method (at the expense of additional running time).

void SimpsonsIntegration::setNumIntervals(int n)
{
 m_numIntervals = n;
}

To test the results of this integration method, I provide a simple mathematical function as an example.
The function to be integrated here is sin (x).

// Example function

namespace {

 class SampleFunc : public MathFunction
 {
 public:
 ~SampleFunc();
 double operator()(double x);
 };

 SampleFunc::~SampleFunc()
 {
 }

 double SampleFunc::operator()(double x)
 {
 return sin(x);
 }

}

The main function can be used as a driver to test the SimpsonsIntegration class. It creates an
instance of SimpleFunc and uses it to initialize a SimpsonsIntegration object. Then, this code will call the
function getIntegral for the interval 0.5 to 2.5. Next, the number of intervals changes to 200, and the same
calculation is performed again.

int main()
{
 SampleFunc f;
 SimpsonsIntegration si(f);
 si.setNumIntervals(200);

Chapter 10 ■ Algorithms for Numerical Analysis

173

 double integral = si.getIntegral(0.5, 2.5);
 cout << " the integral of the function is " << integral << endl;

 si.setNumIntervals(200);
 integral = si.getIntegral(0.5, 2.5);
 cout << " the integral of the function with 200 intervals is " << integral << endl;
 return 0;
}

The result of this function is the following:

 the integral of the function is 1.67876
 the integral of the function with 200 intervals is 1.67873

This is a very effective method, and with only four intervals, it possible to achieve a reasonable
approximation in this case.

Conclusion
Numerical algorithms are one of the main parts of an analytical system for options and derivatives. These
algorithms have been refined for decades, and many of them have been implemented in C++ for the purpose
of options pricing and related tasks.

In this chapter, you saw a few examples of numerical algorithms and learned how they can be efficiently
implemented. I started with an explanation of how mathematical functions can be modeled as classes that
are independent of the underlying algorithm. You also saw how to create a generic polynomial function class
that efficiently computes the value of a function at each point using Horner’s method.

Next, you learned how to find roots of equations using Newton’s method. This traditional method
employs the derivative of a function to estimate the value of the root, and continually improves this estimate
until a solution is found. You saw how this method can be relatively easily implemented using the tools
developed in the previous sections.

Finally, this chapter also covered the important problem of function integration. To find the integral of a
function, you need to evaluate a function in a given range and use those values to estimate the area covered
by the function graph. Using the algorithmic methods introduced here, you saw how to implement one of
the most common techniques for integrating functions, known as Simpson’s method.

While this chapter introduced simple numeric techniques, in the next chapter you will learn how these
techniques can be combined to solve some of the complex differential equations that are common when
analyzing options and related derivatives.

175© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_11

CHAPTER 11

Models Based on Differential
Equations

Differential equations are equations that involve in their terms both a function as well as their mathematical
derivatives. Many of these equations arise naturally from the analysis of economic models used for the
pricing of options, such as the Black-Scholes model.

Solving specific partial differential equations (PDEs) is at the core of many techniques used in the
analysis of options and related financial derivatives. As you will see in this chapter, there are several
techniques for solving and analyzing the results of PDEs that can be implemented in C++. In the next few
sections, I present programming examples that cover important aspects of differential equations-based
option modeling and their applications using C++.

Here are a few of the topics covered in this chapter:

•	 Basic techniques for solving DEs: Several techniques have been developed by
practitioners in order to find solutions for differential equations. I provide a
quick summary of these methods and explain how they can be used in financial
applications.

•	 Ordinary differential equations: ODEs are equations that contain only functions and
derivatives of one value. ODEs can be used to represent problems in several areas,
and solving them gives you an excellent basis for solving more complex differential
equations.

•	 Euler’s method for solving ODEs: Euler’s method is a traditional algorithm that can
be easily implemented in C++, providing a numerical evaluation method for a large
number of DEs.

•	 Runge-Kutta method: The RK method provides a more accurate way to determine
numerical solutions for differential equations. The RK method uses a Taylor
expansion as a way to approximate the desired equation, which makes it possible to
find solutions with fewer iterations of the algorithm.

General Differential Equations
Differential equations (DEs) are defined as equations that include one or more derivatives of a function.
They have an important role in modeling several types of phenomena occurring in diverse areas such as
physics, engineering, social sciences, and economy. In physics, for instance, differential equations are
typically used to model the dynamics of motion and forces. In economics, it is possible to use DEs to model
financial systems that involve interest rates and time decay.

Chapter 11 ■ Models Based on Differential Equations

176

Differential equations are very useful because they encode information about the rate of variation of a
particular quantity. The derivative is the concept that represents the rate of change of a function with respect to
a particular variable. The second derivative, in its turn, represents the rate of change of the first derivative with
respect to the original variable. The same strategy can be used for as many derivatives as needed by the application.

Differential equations are classified according to the terms they contain, involving functions and their
derivatives. Here are some examples of differential equations:

dy

dx
x y x+ =2 2

This is a differential equation involving quantities x and y, with a first derivative of y with respect to x
and a few other standard terms.

10 0
2

2
x
d y

dx
x
dy

dx
+ =

This is a differential equation that involves a second derivative of y with respect to x, as well as the first
derivative.

The order of a differential equation is the maximum order of the derivatives appearing in it. For
example, a first-order differential equation includes only the first derivative. A second-order differential
equation may also contain second-order derivatives, such as

d x

dt

2

2

To solve differential equations, it is frequently useful to separate them into particular categories and
develop solution techniques that can handle such specific categories. In the next sections, you will see
specific types of DEs as well as some solution techniques developed for these types of equations.

Ordinary Differential Equations
An ordinary differential equation is a type of DE in which functions of only a single (ordinary) variable are
allowed to appear. As with other types of differential equations, ODEs include variables, functions, and their
derivatives. A formal definition of an ODE is a function

F x f x f x f x f xn, , ’ , " , ,() () () ¼ ()()

that depends on a variable x, a function f (x) of x, and their derivatives. The order of the ODE is the maximum
order of derivatives appearing in the equation.

You can solve ODEs in two ways:

•	 Using analytical methods: If the function can be solved explicitly using mathematical
methods, then a closed expression can be found and used to calculate its value at
different points. This method is preferred whenever possible, because it produces
results that are usually easier to calculate and interpret. Unfortunately, it is not
always possible to find closed solutions to complex differential equations.

•	 Using numerical methods: More generally, it is difficult to find closed solutions
for several classes of ODEs. In this case, the analyst may resort to using numerical
techniques that approximate the value of the ODE for a particular value or range of
values. These numerical techniques usually involve the approximation of the value
of a complex function in a piecewise fashion, so that the solution of the differential
equation is found after a large number of small approximation steps.

Chapter 11 ■ Models Based on Differential Equations

177

Since the goal of this chapter is to consider computational techniques to solve ODEs, you will see a
few techniques to solve them numerically, using programming strategies. First, you will learn about Euler’s
method for solving ODEs. Then, you will see how this method can be implemented in C++.

Euler’s Method
One of the most common methods used for solving ODEs is called Euler’s method. It was one of the first
algorithms developed for this purpose, and was proposed by the famous XVIII century mathematician
Leonard Euler. The method belongs to a class of ODE algorithms called predictor-corrector, because it
tries to make a prediction for the next step in the evaluation, followed by successive corrections of the
current result.

The basic idea behind Euler’s is to approximate a curve determined by a differential equation through
sequential steps. First, to start the solution process, you need to represent the ODE in its most generic form:

y' = F(x,y)

Here, y = f(x) is a function that depends on the variable x, and y' is the derivative of f(x) with respect to x.
The general goal of the method is to improve the approximation step by step, using a simple formula to calculate
small increments and using the result as the next starting point. Figure 11-1 shows an example of how the
general approach works, when applied to the sample differential equation dT(t)/dt = -k ΔT.

Figure 11-1.  Euler’s method applied to function dT(t)/dt = -k ΔT, with 10 steps

Chapter 11 ■ Models Based on Differential Equations

178

Each step starts at a known place of the solution space and moves into the required direction by a small
quantity. If you denote by c the desired destination point and start moving from location x

0
 in N steps, then

the increment h can be calculated as follows

h
c x

N
=

-()0

Now, at each step of this algorithm, you will have the current location (at the beginning the location
is (x

0
, y

0
), a given parameter passed to the algorithm) and the goal is to compute the next location that

approximates the real curve. As long as h is small enough, this new location can be calculated by taking
the derivative of the curve, given by y', which represents the slope of the equation, and using a simple line
segment to move in that direction. This is fairly easy to calculate numerically, as you will see next.

The equation needed to implement this idea is the following:

y y h
f x y f x h y hf x y

t t
t t t t t= +

()+ + + ()()
-

- - - - -
1

1 1 1 1 1

2

, ,,

In other words, at each step, you’re adding to the previous result a quantity that depends on the step
size and the average value of the target function at two points: the current point and the next incremental
point. You can think of the averaging (dividing by two) as a correction of the procedure, which will make it
closer to the real value that needs to be computed.

Implementing the Method
Euler’s method can be implemented with little effort. First, you need to update the MathFunction class so
that it can also be used when a variable and an initial condition are provided. This requires that the function
call operator take two parameters instead of one, such as was presented in the last chapter. I coded this as a
class called DEMathFunction, with this interface:

class DEMathFunction : MathFunction {
public:

 virtual ~DEMathFunction() {}
 virtual double operator()(double x, double y) = 0; // version with two variables
private:
 // this just an interface
};

The new version of operator() takes as parameters the value of coordinates x and y. Now, you can
implement versions of this class for each desired function. Here is an example that will later be used with the
main implementation:

class EulerMethodSampleFunction : public DEMathFunction {
public:
 double operator()(double x, double y);
};

double EulerMethodSampleFunction::operator()(double x, double y)
{
 return 3 * x + 2 * y + 1;
}

Chapter 11 ■ Models Based on Differential Equations

179

The main class implementing Euler’s method is presented next. The interface contains a single function
called solve, which receives four parameters:

•	 The number of steps used by the algorithm

•	 The initial x value

•	 The initial y value (which represents the initial condition of the function)

•	 The target value for the ODE, which is the coordinate for which the solution is
required

The class also contains a data member to store the instance of DEMathFunction, which is used to
compute new values for the desired function.

class EulersMethod {
public:
 EulersMethod(DEMathFunction &f);
 EulersMethod(const EulersMethod &p);
 ~EulersMethod();
 EulersMethod &operator=(const EulersMethod &p);

 double solve(int n, double x0, double y0, double c);
private:
 DEMathFunction &m_f;
};

The implementation of the EulersMethod class contains the steps of the algorithm explained in
previous section. First, here are some of the required methods used by the class:

//
// EulersMethod.cpp

#include "EulersMethod.hpp"

#include <iostream>

using std::cout;
using std::endl;

EulersMethod::EulersMethod(DEMathFunction &f)
: m_f(f)
{
}

EulersMethod::EulersMethod(const EulersMethod &p)
: m_f(p.m_f)
{
}

EulersMethod::~EulersMethod()
{
}

Chapter 11 ■ Models Based on Differential Equations

180

EulersMethod &EulersMethod::operator=(const EulersMethod &p)
{
 if (this != &p)
 {
 m_f = p.m_f;
 }
 return *this;
}

Next, the solve function contains the main algorithm for Euler’s method. The algorithm assumes that
x0 is the initial coordinate and y0 is the corresponding initial value for that coordinate.

double EulersMethod::solve(int n, double x0, double y0, double c)
{
 // problem : y' = f(x,y) ; y(x0) = y0

 auto x = x0;
 auto y = y0;
 auto h = (c - x0)/n;

 cout << " h is " << h << endl;

 for (int i=0; i<n; ++i)
 {
 double F = m_f(x, y);
 auto G = m_f(x + h, y + h*F);

 cout << " F: " << F << " G: " << G << "";

 // update values of x, y
 x += h;
 y += h * (F + G)/2;

 cout << " x: " << x << " y: " << y << endl;
 }

 return y;
}

The first part of the algorithm uses the given values to calculate the desired increment h. Then, for each step
the algorithm will calculate the function at the current point (x,y), as well as at the next incremental point
(x + h,y + hF). The values of x and y are then updated according to the equation presented in the previous section.

You can quickly test the implementation with the help of the EulerMethodSampleFunction class. Here is
the sample code necessary to instantiate the class and use it to test the method:

int test_euler()
{
 EulerMethodSampleFunction f;
 EulersMethod m(f);
 double res = m.solve (100, 0, 0.25, 2);
 cout << " result is " << res << endl;
 return 0;
}

Chapter 11 ■ Models Based on Differential Equations

181

The sample function is instantiated in the first line, and the resulting function object is passed to
EulersMethod class. The member function solve is called, with a few initial parameters. The results are
printed as the last step. Table 11-1 shows the sequence of values obtained when you run the test function.

Table 11-1.  Results of Euler’s Method Iterations for the Test Code for the EulersMethod Class

i F x y i F x y i F x y

1 1.5 0.02 0.2812 34 9.72643 0.68 3.57223 67 40.5109 1.34 18.6025

2 1.6224 0.04 0.314897 35 10.1845 0.7 3.7806 68 42.2249 1.36 19.4645

3 1.74979 0.06 0.351193 36 10.6612 0.72 3.99868 69 44.0089 1.38 20.3628

4 1.88239 0.08 0.390193 37 11.1574 0.74 4.2269 70 45.8657 1.4 21.2991

5 2.02039 0.1 0.432009 38 11.6738 0.76 4.46564 71 47.7982 1.42 22.2748

6 2.16402 0.12 0.476755 39 12.2113 0.78 4.71535 72 49.8096 1.44 23.2915

7 2.31351 0.14 0.524551 40 12.7707 0.8 4.97647 73 51.903 1.46 24.3509

8 2.4691 0.16 0.575521 41 13.3529 0.82 5.24947 74 54.0818 1.48 25.4548

9 2.63104 0.18 0.629794 42 13.9589 0.84 5.53484 75 56.3496 1.5 26.6049

10 2.79959 0.2 0.687505 43 14.5897 0.86 5.83306 76 58.7098 1.52 27.8032

11 2.97501 0.22 0.748796 44 15.2461 0.88 6.14469 77 61.1664 1.54 29.0516

12 3.15759 0.24 0.81381 45 15.9294 0.9 6.47025 78 63.7232 1.56 30.3522

13 3.34762 0.26 0.882702 46 16.6405 0.92 6.81031 79 66.3843 1.58 31.707

14 3.5454 0.28 0.955628 47 17.3806 0.94 7.16548 80 69.154 1.6 33.1183

15 3.75126 0.3 1.03275 48 18.151 0.96 7.53636 81 72.0367 1.62 34.5885

16 3.96551 0.32 1.11425 49 18.9527 0.98 7.92359 82 75.037 1.64 36.1198

17 4.1885 0.34 1.2003 50 19.7872 1 8.32785 83 78.1597 1.66 37.7149

18 4.42059 0.36 1.29108 51 20.6557 1.02 8.74983 84 81.4098 1.68 39.3763

19 4.66215 0.38 1.38678 52 21.5597 1.04 9.19024 85 84.7925 1.7 41.1066

20 4.91357 0.4 1.48762 53 22.5005 1.06 9.64985 86 88.3132 1.72 42.9088

21 5.17524 0.42 1.5938 54 23.4797 1.08 10.1294 87 91.9776 1.74 44.7858

22 5.44759 0.44 1.70553 55 24.4989 1.1 10.6298 88 95.7915 1.76 46.7405

23 5.73105 0.46 1.82304 56 25.5596 1.12 11.1518 89 99.761 1.78 48.7762

24 6.02608 0.48 1.94657 57 26.6637 1.14 11.6964 90 103.892 1.8 50.8962

25 6.33314 0.5 2.07637 58 27.8127 1.16 12.2643 91 108.192 1.82 53.104

26 6.65274 0.52 2.21268 59 29.0087 1.18 12.8567 92 112.668 1.84 55.403

27 6.98537 0.54 2.35578 60 30.2535 1.2 13.4745 93 117.326 1.86 57.797

28 7.33157 0.56 2.50595 61 31.549 1.22 14.1187 94 122.174 1.88 60.29

29 7.6919 0.58 2.66346 62 32.8974 1.24 14.7904 95 127.22 1.9 62.8859

30 8.06693 0.6 2.82863 63 34.3008 1.26 15.4907 96 132.472 1.92 65.5889

31 8.45726 0.62 3.00176 64 35.7615 1.28 16.2209 97 137.938 1.94 68.4034

32 8.86351 0.64 3.18317 65 37.2817 1.3 16.982 98 143.627 1.96 71.334

33 9.28635 0.66 3.37321 66 38.864 1.32 17.7754 99 149.548 1.98 74.3854

Chapter 11 ■ Models Based on Differential Equations

182

Euler’s method is a simple technique that finds solutions to several ODE problems. However, in terms of
quality of approximation, it requires a large number of steps, which can also cause numerical errors and instability.
To avoid these problems, more precise methods have been proposed for solving ODEs, as you will learn next.

The Runge-Kutta Method
The next technique for solving ODEs is an extension of Euler’s method called the Runge-Kutta (RK) method
(named after its inventors). This technique is an effective way to improve the accuracy of Euler’s method and
reduce the possibility of the numerical errors that are common when using a linear approximation.

The main idea of the RK method is to use a higher-order approximation for the given functions, instead
of relying on linear interpolation, as you saw with the previous algorithm. By doing this, the RK method can
achieve faster convergence, in many cases using a smaller number of steps to achieve the same results. This
is an advantage both in terms of reduced computational time as well as higher accuracy.

Remember that to solve an ODE, you have to consider a very general form that is amenable to solution,
using the following relation:

y’ = f(x,y)

Here, y’ is the derivative of the function and f (x,y) is a function of variable x (the independent variable) and y.
As before, given a starting point for the calculation and the number of steps, it is possible to easily

calculate the size of the increment h for each iteration of the RK method, using the equation

h
c x

N
=

- 0

In its basic design, the RK method has the same structure of Euler’s algorithm. The main difference is how
the RK method approximates the function to generate the next step of the algorithm. While Euler’s method just
uses a linear interpolation, the RK method can use any one of a family of approximating equations.

The RK method can be implemented using one of several approximation strategies, but they are
frequently calculated as a Taylor series applied to the original function. The Taylor method is a basic tool from
calculus that provides a family of approximations for functions around a particular starting value. For example,
using the simplest Taylor approximation, you can compute the next (x,y) values in the following way:

x
t+1

 = x
t
+h

y y hf x
h

y
h
f x yt t t t t t+ = + + + ()æ

è
ç

ö
ø
÷1 2 2

, ,

Another possibility is to use higher-order approximations, that is, versions of the Taylor series that contain
additional terms. By adding more terms of higher order, it is possible to achieve a more accurate result in fewer
steps. Here is another commonly used approximation, this time based on a fourth-order expansion:

k hf x yt t1 = (),

k hf x
h

y
k

t t2
1

2 2
= + +æ

è
ç

ö
ø
÷,

k hf x
h

y
k

t t3
2

2 2
= + +æ

è
ç

ö
ø
÷,

k hf x h y kt t4 3= + +(),

y y k k k kt t+ = + + + +()1 1 2 3 4

1

6
2 2

Chapter 11 ■ Models Based on Differential Equations

183

Runge-Kutta Implementation
To implement this algorithm, it is possible to extend the Euler’s method class. To avoid dependencies
between these two methods, I decided to implement a separate class called RungeKuttaMethod.

Here is the interface of the RungeKuttaMethod class. It exposes the solve method, which is used to
compute the desired value of the function.

//
// class providing an interface for RungeKutta method

class RungeKuttaMethod {
public:
 RungeKuttaMethod(DEMathFunction &f);
 RungeKuttaMethod(const RungeKuttaMethod &p);
 ~RungeKuttaMethod();
 RungeKuttaMethod &operator=(const RungeKuttaMethod &p);
 double solve(int n, double x0, double y0, double c);
private:
 DEMathFunction &m_func;
};

First, the common member functions of RungeKuttaMethod are implemented, including the constructor
that receives the DEMathFunction reference as a parameter.

//
// RungeKutta.cpp

#include "RungeKutta.hpp"

#include <iostream>

using std::cout;
using std::endl;

RungeKuttaMethod::RungeKuttaMethod(DEMathFunction &f)
: m_func(f)
{
}

RungeKuttaMethod::RungeKuttaMethod(const RungeKuttaMethod &p)
: m_func(p.m_func)
{
}

RungeKuttaMethod::~RungeKuttaMethod()
{
}

Chapter 11 ■ Models Based on Differential Equations

184

RungeKuttaMethod &RungeKuttaMethod::operator=(const RungeKuttaMethod &p)
{
 if (this != &p)
 {
 m_func = p.m_func;
 }
 return *this;
}

The member function solve is used to compute the numerical value of the ODE, given starting
conditions and a target value. The function implements the Runge-Kutta method with fourth-degree Taylor
expansion, as described in the previous section.

The parameters for this member function are the following:

•	 The number of steps in the process, which indirectly also determines the increment
for each step

•	 The initial value for the variable x.

•	 The initial corresponding y for the given value x.

•	 The target value for which the ODE is being calculated

// Runge-Kutta method with fourth order approximation
//
double RungeKuttaMethod::solve(int n, double x0, double y0, double c)
{
 // initial conditions
 auto x = x0;
 auto y = y0;
 auto h = (c - x0)/n;

 for (int i=0; i<n; ++i)
 {
 // compute the intermediary steps
 //
 auto k1 = h * m_func(x, y);
 auto k2 = h * m_func(x + (h/2), y + (k1/2));
 auto k3 = h * m_func(x + (h/2), y + (k2/2));
 auto k4 = h * m_func(x + h, y + k3);

 // use terms to compute next step
 x += h;
 y += (k1 + 2*k2 + 2*k3 + k4)/6;
 cout << " x: " << x << " y: " << y << endl;
 }

 return y;
}

As in the previous algorithm, the RK method starts by defining the initial conditions, including the
values for the variables x and y, and the size of the step determined by h.

The RK method then proceeds to compute each iteration of the algorithm. This consists of successive
terms of approximation, as described in the previous section. These terms are then used to compute the new
values for x and y.

Chapter 11 ■ Models Based on Differential Equations

185

To test the results of the RK method implementation, I provide a simple test function. But first it is
necessary to implement a function that will be later used in the test code:

class RungeKuttaSampleFunc : public DEMathFunction {
public:

 double operator()(double x, double y);
};

double RungeKuttaSampleFunc::operator()(double x, double y)
{
 return 3 * x + 2 * y + 1;
}

The RungeKuttaSampleFunc is derived from DEMathFunction, so it can be passed as a parameter to the
RungeKuttaMethod class. It is a simple polynomial function. The test function is the following:

int test_RKMethod()
{
 RungeKuttaSampleFunc f;
 RungeKuttaMethod m(f);
 double res = m.solve (100, 0, 0.25, 2);
 cout << " result is " << res << endl;
 return 0;
}

This test code first instantiates the RungeKuttaSampleFunc class and then uses the resulting instance to
create a RungeKuttaMethod object. Next, the result of the function is computed for some test parameters.

Complete Code
The complete listing for the RungeKuttaMethod class is shown in this section. The code is divided into a
header file and an implementation file, which appear in Listings 11-1 and 11-2, respectively.

Listing 11-1.  Header File for the RungeKuttaMethod Class

//
// RungeKutta.hpp

#ifndef RungeKutta_hpp
#define RungeKutta_hpp

#include "EulersMethod.hpp"

class RungeKuttaMethod {
public:
 RungeKuttaMethod(DEMathFunction &f);
 RungeKuttaMethod(const RungeKuttaMethod &p);
 ~RungeKuttaMethod();
 RungeKuttaMethod &operator=(const RungeKuttaMethod &p);
 double solve(int n, double x0, double y0, double c);

Chapter 11 ■ Models Based on Differential Equations

186

private:
 DEMathFunction &m_func;
};

#endif /* RungeKutta_hpp */

Listing 11-2.  Implementation File for the RungeKuttaMethod Class

//
// RungeKutta.cpp

#include "RungeKutta.hpp"

#include <iostream>

using std::cout;
using std::endl;

RungeKuttaMethod::RungeKuttaMethod(DEMathFunction &f)
: m_func(f)
{
}

RungeKuttaMethod::RungeKuttaMethod(const RungeKuttaMethod &p)
: m_func(p.m_func)
{
}

RungeKuttaMethod::~RungeKuttaMethod()
{
}

RungeKuttaMethod &RungeKuttaMethod::operator=(const RungeKuttaMethod &p)
{
 if (this != &p)
 {
 m_func = p.m_func;
 }
 return *this;
}

// Runge-Kutta method with fourth order approximation
//
double RungeKuttaMethod::solve(int n, double x0, double y0, double c)
{
 // initial conditions
 auto x = x0;
 auto y = y0;
 auto h = (c - x0)/n;

Chapter 11 ■ Models Based on Differential Equations

187

 for (int i=0; i<n; ++i)
 {
 // compute the intermediary steps
 //
 auto k1 = h * m_func(x, y);
 auto k2 = h * m_func(x + (h/2), y + (k1/2));
 auto k3 = h * m_func(x + (h/2), y + (k2/2));
 auto k4 = h * m_func(x + h, y + k3);

 // use terms to compute next step
 x += h;
 y += (k1 + 2*k2 + 2*k3 + k4)/6;
 cout << " x: " << x << " y: " << y << endl;
 }

 return y;
}

/// -----

class RungeKuttaSampleFunc : public DEMathFunction {
public:

 double operator()(double x, double y);
};

double RungeKuttaSampleFunc::operator()(double x, double y)
{
 return 3 * x + 2 * y + 1;
}

int main_rkm()
{
 RungeKuttaSampleFunc f;
 RungeKuttaMethod m(f);
 double res = m.solve (100, 0, 0.25, 2);
 cout << " result is " << res << endl;
 return 0;
}

Conclusion
Solving differential equations is a task commonly required when analyzing complex financial contracts. This is
true due to the mathematical nature of options and derivatives, which are based on the Black-Scholes model.

In this chapter, you saw a few examples of differential equations, and learned how the can be effectively
solved using computational techniques. First, you learned about Euler’s method, the simplest technique
used to compute numerical solutions for ODEs. Next, you learned about the Runge-Kutta method, a
commonly used technique that provides improved accuracy over Euler’s method.

This chapter can be used as an overview of the implementation of differential equations in C++. In the
next chapter, you will take a closer look at how these mathematical models can be directly applied to option
pricing. In particular, you will see how these techniques can be used when pricing option contracts.

189© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_12

CHAPTER 12

Basic Models for Options Pricing

Options pricing is the task of determining the fair value of a particular option, given a set of parameters
that exactly determine the features of the option contract, such as its expiration date, current volatility, and
prevailing interest rates. Pricing options requires the use of efficient algorithms, because of frequent changes
in prices and market volatility. For this reason, a number of models have been employed for this task in the
area of quantitative finance.

This chapter discusses some of the most popular models for options pricing. First, there are models that
use tree-based methods, such as binomial and trinomial trees. Second, the most important mathematical
model uses the Black-Scholes model, which provides the theoretical basis for the analysis of most options
and derivative contracts.

Here is a summary of the topics discussed in this chapter:

•	 Binomial trees: A binomial tree is a technique used to compute option prices by
simulating a number of probabilistic price changes starting from the current stock
price. Such prices are organized in a tree-based structure and used to compute the
option’s corresponding price. You will see the calculations necessary to use these
tree-based algorithms for options pricing.

•	 Calculating American-style options: Options in the American style give their buyers
the ability to exercise the option at any time before expiration. This exercise style
needs to be reflected in the price of the option.

•	 Black-Scholes method: The most famous method for computing option prices is
based on the equations developed by Black and Scholes. These differential equations
can be solved using PDE techniques, which are explored later in this chapter.

•	 Implementation strategies: You will see examples of implementation techniques for
the pricing methods described previously.

Lattice Models
The goal of options pricing is to compute the fair value of an option at a particular time. This problem has
been solved theoretically by Black and Scholes, the creators of the famous PDE model that defines prices for
options. However, solving complex PDEs is not an easy job, and for this reason several methods have been
developed to perform this computational task in less time.

A common class of algorithms for computing options prices is the lattice model. A lattice model is
a technique of calculating derivative prices that divides the solution space into discrete steps. Each step
corresponds to a small time increment and corresponding price change. Starting this way from a given
starting point, this technique results in the creation of a tree of nodes that corresponding to possible price
changes.

Chapter 12 ■ Basic Models for Options Pricing

190

There are a few particular methods that have been devised based on the general strategy put forward by
lattice models. The best known such methods are:

•	 Binomial model: In the binomial model, the possible changes are organized in a
tree rooted at the given starting point (the current price). To each node of the tree,
two nodes are added representing two possible directions of movement: up (price
increases) or down (price decreases). For performance reasons, the binary tree
can also be created implicitly, where nodes are calculated only as needed for the
evaluation of the next time period.

•	 Trinomial model: The trinomial model is an extension of the binomial model and it tries
to improve the accuracy by considering nodes where the price is unchanged. Depending
on the volatility of the underlying, such models can achieve higher accuracy than
binomial models, at the expense of a slight increase in computational time.

Mixed models have also been used that combine features of the binomial and trinomial models,
producing more complex lattice models for particular uses. In this chapter, you learn how to implement a
binomial model for options pricing. The complete model is explained along with the equations frequently
used to evaluate such models.

Later, this general model is extended to handle American-style options, where the owners of the option
can exercise the option at any time before expiration. These models also show how this type of algorithm can
be efficiently coded in C++ using OO concepts. In this particular case, you will see how to use inheritance to
override parts of the class according to the desired pricing strategy.

Binomial Model
The first model that’s discussed is called the binomial model for options pricing. In this model, options
prices are evaluated interactively. Possible values are organized in a tree-based structure where the root is
the original (unknown) price and leaves are the possible prices at a particular target time.

Using this structure, the binomial model traverses the tree with the goal of computing the desired price
(the root value) starting from some known prices. The natural way of doing this is to look at the values for
the option at expiration date and use these prices to compute the value at other times. Remember that at
expiration price, the value of an option is defined by contract. For example, if you are given the current stock
price (denoted by S) and the strike price (denoted by K), then the price of a call option at expiration is given by:

p S S Kc () = -()max ,0

For a put option, the price is also straightforward and determined by contract as:

p S K Sp () = -()max ,0

The question, however, is which values of stock prices should be used in a tree-based model to make it
realistic? A possible answer to this question is that at each time step, the stock price can move either up or
down. The exact probabilities for this jump can be derived using a few mathematical assumptions, but the
expressions most commonly used are as follows.

•	 Change of value for an up move:

exp s t()
•	 Change of value for a down move:

exp -()s t

Chapter 12 ■ Basic Models for Options Pricing

191

In these two expressions, σn is a measure of the volatility of the stock (i.e., the typical amount of
movement) and t is time. These expressions allow you to construct a tree where each node contains
information about the time and the value of the stock at that moment. The tree can be visualized as shown in
Figure 12-1.

Figure 12-1.  A visualization of the binomial tree determined by possible stock prices

Now consider the task of pricing a call option at a date immediately before expiration. While the price
is initially unknown, it cannot be very far away from the price at expiration, since the time premium at this
point is very small. A way to calculate this value is to assume a probability for two events: either going up a
small amount or going down a small amount. With this probability, you can estimate the value of the option
as the expected value (the mean) based on these two possibilities.

Using these observations, you can devise a method for calculating the price of an option. The general
algorithm can be described in the following way.

•	 Calculate stock prices for the nodes of the tree, starting from the root node at time
zero and stock price given by the current known price.

•	 Apply the equations for price fluctuations to create up and down nodes starting from the
root. The goal of this phase is to calculate the stock prices for nodes at expiration time.

•	 Start to compute the option prices from the leaves of the tree. These leaves have a
known price by definition of the option contract. The value of the option depends on
three characteristics:

•	 The strike price

•	 The stock price

•	 If the option is a put or a call

•	 Then, progress from nodes at expiration date toward earlier dates, always using the
expected value based on the known probabilities. Repeat this process until you reach
the root node.

Chapter 12 ■ Basic Models for Options Pricing

192

Binomial Model Implementation
To implement an algorithm for the binomial model as previously described, I introduce a class called
BinomialModel. The class provides all the necessary steps for the calculation of option prices, along with the
ability to be extended to other open types, as you will see later.

The first step is to provide an interface to the C++ class, as shown in the next code fragment. The class
contains a number of data members that are necessary for the computation of options prices using the
binomial model approach. Here are these data members:

•	 The expiration date, denoted as m_T.

•	 The initial stock price, that is, the stock price at the root of the binomial tree, denoted
by m_S.

•	 The interest rate, which is used as one of the factors necessary to calculate future
prices, and is denoted as m_r.

•	 The volatility, which is the volatility of the underlying stock, as measured from stock
prices in the last few days and denoted by m_sigma.

•	 The dividend yield, which is the amount of dividend paid by the underlying stock
during the desired period. This quantity is denoted by m_q.

•	 The number of steps, used by the binomial method to determine the depth of the
tree. It is denoted by m_n.

•	 The type of option. This is the class record if the option type is a call or put. This
information is stored in the member variable m_call, a Boolean value.

The class BinomialModel also offers a member function that can be used to calculate the option price,
named optionPriceForStrike. This function receives as a parameter a strike value and returns the option
price corresponding to that strike.

A second function, computePriceStep, is used to compute option prices for a single step. You will see
later how this is implemented and extended for more complex option types.

class BinomialModel {
public:
 BinomialModel(const BinomialModel &p);
 virtual ~BinomialModel();
 BinomialModel &operator=(const BinomialModel &p);

 BinomialModel(double T, // expiration time
 double S, // stock price
 double r, // interest rate
 double sigma,
 double q, // dividend yield
 int n, // number of steps
 bool call
);

 double optionPriceForStrike(double K);
 virtual void computePriceStep(int i, int j, double K, vec &prices,
 double p_u, double p_d, double u);

Chapter 12 ■ Basic Models for Options Pricing

193

protected:
 double getStockPrice() { return m_S; }
private:
 double m_T; // expiration time
 double m_S; // stock price
 double m_r; // interest rate
 double m_sigma; // volatility
 double m_q; // dividend yield
 int m_n; // number of steps
 bool m_call; // true = call, false = put

};

The next few member functions are part of the constructor and destructor code. They are used to
properly initialize each of the data members in the BinomialModel class.

BinomialModel::BinomialModel(double T, double S, double r,
 double sigma,
 double q,
 int n, bool call)
: m_T(T),
 m_S(S),
 m_r(r),
 m_sigma(sigma),
 m_n(n),
 m_q(q),
 m_call(call)
{
}

BinomialModel::BinomialModel(const BinomialModel &p)
: m_T(p.m_T),
 m_S(p.m_S),
 m_r(p.m_r),
 m_sigma(p.m_sigma),
 m_n(p.m_n),
 m_q(p.m_q),
 m_call(p.m_call)
{
}

BinomialModel::~BinomialModel()
{
}

BinomialModel &BinomialModel::operator=(const BinomialModel &p)
{
 if (this != &p)
 {

Chapter 12 ■ Basic Models for Options Pricing

194

 m_T = p.m_T;
 m_S = p.m_S;
 m_r = p.m_r;
 m_sigma = p.m_sigma;
 m_n = p.m_n;
 m_q = p.m_q;
 m_call = p.m_call;
 }
 return *this;
}

The computePriceStep member function is used to compute the immediate price for a single step of
the algorithm. The indices i and j represent the position in the binomial tree. Other arguments are the
necessary parameters used to calculate the price of this step. Notice that this member function is declared as
virtual, and it can be later overridden for the use of American-style options.

void BinomialModel::computePriceStep(int i, int j, double K,
 vec &prices, double p_u, double p_d, double u)
{
 prices[i] = p_u * prices[i] + p_d * prices[i+1];
}

The main member function in the BinomialModel class is the function that computes the option price
for a given strike, determined by the parameter K. The algorithm is essentially a C++ implementation of the
ideas presented in the previous section. The first step is to calculate the price delta, using the period and the
number of steps. Next the amount of price changes in the up side are calculated using the exp(m_sigma *
sqrt(delta)) expression.

Next, the function computes the probabilities of moving up or down in the binomial tree, using the
equations described previously. The probabilities are denoted by p_u and p_d.

double BinomialModel::optionPriceForStrike(double K)
{

 double delta = m_T / m_n; // size of each step
 double u = exp(m_sigma * sqrt(delta));

 double p_u = (u * exp(-m_r * delta) - exp(-m_q * delta)) * u / (u*u - 1);
 double p_d = exp(-m_r * delta) - p_u;

 vec prices(m_n);

 // compute last day values (leafs of the tree)
 for (int i= 0; i<m_n; ++i)
 {
 if (m_call)
 {
 prices[i] = std::max(0.0, m_S * pow(u, 2*i - m_n) - K);
 }
 else
 {

Chapter 12 ■ Basic Models for Options Pricing

195

 prices[i] = std::max(0.0, K - m_S * pow(u, 2*i - m_n));
 }
 }

 for (int j = m_n-1; j>=0; --j)
 {
 for (int i = 0; i<j; ++i)
 {
 computePriceStep(i, j, K, prices, p_u, p_d, u);
 }
 }

 return prices[0];
}

The first for loop in this member function is responsible for computing the stock price at the last
level of the binomial tree. This is done using the property that defines the price of an option at expiration.
Therefore, there are two cases that need to be handled, depending on if the option is a call or a put.

The last for loop is the main computation that traverses the binomial tree from the last level to the root
node. The step calculation is performed by the computePriceStep member function. The main idea, which
you can see by looking at that member function, is to first compute the average (expected) price of the node.
This is done by taking the expected value of the known prices that have been previously calculated according
to the probabilities p_u and p_d.

After the option prices have been computed in this way, the algorithm will determine the price at the
root node. Therefore, the price required is stored in position zero of the prices vector. The last line of this
member function returns prices[0] as the desired solution.

■■ Note  The pricing strategy presented in this section works for options that cannot be exercised until the
date of expiration. This type of option is commonly known as a European-style option. For American-style
options, which can normally be exercised at any time, a slightly different pricing method needs to be used, as
shown in the next section.

Pricing American-Style Options
This section presents a slight modification of the binomial method that can be used to price American-style
option contracts. An American-style option is defined in such a way that buyers of such options can exercise
their rights (that is, buying or selling the underlying) at any time until expiration. This is in contrast to what is
called European-style options, whereby option rights can be exercised only at expiration.

You can use the AmericanBinomialModel class to price American options. Looking at the code, you can
see clearly how American options differ from European ones in terms of the option prices. The binomial
model determines this by checking the possible exercise price of the option and taking that value into
consideration if it is higher than the expected price.

The class interface is defined as follows. The public inheritance from BinomialModel allows you to share
the methods defined in that class. The resulting interface is very simple because no additional member
variables are necessary. It contains the standard copy constructor, a constructor that forwards the received
parameters to the base class, and a destructor.

Chapter 12 ■ Basic Models for Options Pricing

196

#include <vector>
#include <cmath>

using vec = std::vector<double>;

class AmericanBinomialModel : public BinomialModel {
 AmericanBinomialModel(const BinomialModel &p);
 ~AmericanBinomialModel();
 AmericanBinomialModel &operator=(const BinomialModel &p);

 AmericanBinomialModel(double T, // expiration time
 double S, // stock price
 double r, // interest rate
 double sigma,
 double q, // dividend yield
 int n, // number of steps
 bool call
);

 virtual void computePriceStep(int i, int j, double K, vec &prices,
 double p_u, double p_d, double u);
};

The constructor just needs to forward the received parameters to the base class BinomialModel.

AmericanBinomialModel::AmericanBinomialModel(const BinomialModel &p)
: BinomialModel(p)
{
}

AmericanBinomialModel::~AmericanBinomialModel()
{
}

Because there are no extra member variables, the assignment operator can use the nice trick of calling
the operator on the superclass to do the assignment work, as follows:

AmericanBinomialModel &AmericanBinomialModel::operator=(const BinomialModel &p)
{
 BinomialModel::operator=(p); // no new data members in this class
 return *this;
}

AmericanBinomialModel::AmericanBinomialModel(double T, // expiration time
 double S, // stock price
 double r, // interest rate
 double sigma,
 double q, // dividend yield
 int n, // number of steps
 bool call)
: BinomialModel(T, S, r, sigma, q, n, call)
{
}

Chapter 12 ■ Basic Models for Options Pricing

197

Next, you can see the real change that characterizes American options. The computePriceStep member
function overrides the member function in the base class and allows the price of an American option to be
calculated.

The first thing to do here is to call the member function from the superclass, so you don’t need
to repeat the same code, with potential duplication errors. Then, the function proceeds to calculate
the exercise value. This is done by taking the adjusted stock price and subtracting it from the strike
price. If the calculated exercise price is higher than the calculated price, then the price is updated with
this exercise price. In other words, at each moment the price of the option has to be the highest of the
potential value and the exercise value.

void AmericanBinomialModel::computePriceStep(int i, int j, double K, vec &prices, double
p_u, double p_d, double u)
{
 BinomialModel::computePriceStep(i, j, K, prices, p_u, p_d, u);

 // compute exercise price for American option
 //
 double exercise = K - getStockPrice() * pow(u, 2*i - j);
 if (prices[i] < exercise)
 {
 prices[i] = exercise;
 }
}

Solving the Black-Scholes Model
The previous sections explored discrete methods used to compute the price of options. These methods work
by approximating the solution through the use of price trees, where each node represents a discrete step into
the solution of the problem.

While the binomial tree method is appropriate in many situations, it is sometimes necessary to use a
more rigorous method based on the Black-Scholes partial derivative equation (PDE). The model, develop
by Black and Scholes in the 70s, provides a full mathematical description of how option prices evolved over
time and with respect to the changes in the underlying prices.

The Black-Scholes model uses a few input parameters that describe the option and the conditions
under which prices evolve. The parameters are:

•	 Expiration date

•	 Stock price

•	 Stock volatility

•	 Interest rates (paid on short term cash)

•	 Dividends paid by the underlying stock

Using these parameters, the model provides a partial derivative equation that contains the information
necessary to determine the price of the option. The result from this model can be summarized in the
following PDE:

¶
¶

+
¶
¶

+
¶
¶

=
V

t
S

V

S
rS

V

S
rV

1

2
2 2

2

2
s

Chapter 12 ■ Basic Models for Options Pricing

198

In this differential equation, the quantities represented are:

•	 V: The price of the desired derivative

•	 t: The time

•	 σ: The volatility of the underlying stock

•	 S: The stock price

•	 r: The interest rate

If you know the previous information about the underlying security, such as prices, interest rates,
and previous volatility, the Black-Scholes equation allows you to compute the value of a call or put option
based on those assumptions. The solution of this equation can be achieved using several methods, such as
simulation techniques and piecewise integration using numeric approximations. The next section presents a
simple numeric technique that can be applied to find solutions to the Black-Scholes model.

Numerical Solution of the Model
To solve the Black-Scholes model computationally, it is necessary to apply numerical techniques to solve
the associated PDE. It is important to note that there are several methods used to compute this class of
equations, with results that depend on the required accuracy, computational effort, and implementation
difficulty.

This section explores a simple strategy to solve the Black-Scholes model. The strategy is based on what
is called the forward method for the solution of PDEs. The forward method is an extension of Euler’s method
for the solution of ODEs, as described in the previous chapter. Unlike Euler’s method, the forward method
needs to find a solution for a differential equation that contains more than one variable.

The forward method solves this problem by dividing the domain of the desired equation into smaller,
rectangular pieces, which can be easily computed. Once this is completed, the algorithm propagates those
values forward, and at each step a small area dS is considered.

For this method to work, it is necessary to provide a set of initial conditions for the PDE. In the case of
options pricing, the natural set of initial conditions is the price at expiration, which is well known for each
possible value of the stock. Therefore, the implementation of the forward in fact starts from the expiration
date and proceeds backward in time to the desired date.

The C++ solution is implemented in the BlackScholesMethod class. This class provides a simple
interface, where the main member function is called solve, and it returns the price at the desired date and
under the conditions defined by the given parameters.

class BlackScholesMethod {
public:
 BlackScholesMethod(double expiration, double maxPrice, double strike, double intRate);
 BlackScholesMethod(const BlackScholesMethod &p);
 ~BlackScholesMethod();
 BlackScholesMethod &operator=(const BlackScholesMethod &p);

 std::vector<double> solve(double volatility, int nx, int timeSteps);
private:
 double m_expiration;
 double m_maxPrice;
 double m_strike;
 double m_intRate;
};

Chapter 12 ■ Basic Models for Options Pricing

199

In the implementation file, which is listed next, you will first find the constructors and assignment
operator. These member functions just initialize the private variables, which include:

•	 Expiration date, denoted by m_expiration

•	 Maximum price that will be considered by the algorithm, denoted by m_maxPrice

•	 Strike price, denoted by m_strike

•	 Current interest rate, denoted by m_intRate

#include "BlackScholes.hpp"

#include <cmath>
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>

using std::vector;
using std::cout;
using std::endl;
using std::setw;

BlackScholesMethod::BlackScholesMethod(double expiration, double maxPrice,
 double strike, double intRate)
: m_expiration(expiration),
m_maxPrice(maxPrice),
m_strike(strike),
m_intRate(intRate)
{
}

BlackScholesMethod::BlackScholesMethod(const BlackScholesMethod &p)
: m_expiration(p.m_expiration),
m_maxPrice(p.m_maxPrice),
m_strike(p.m_strike),
m_intRate(p.m_intRate)
{
}

BlackScholesMethod::~BlackScholesMethod()
{
}

BlackScholesMethod &BlackScholesMethod::operator=(const BlackScholesMethod &p)
{
 if (this != &p)
 {
 m_expiration = p.m_expiration;
 m_maxPrice = p.m_maxPrice;
 m_strike = p.m_strike;

Chapter 12 ■ Basic Models for Options Pricing

200

 m_intRate = p.m_intRate;
 }
 return *this;
}

The solve method is the heart of the algorithm. The first part of this member function is responsible
for initializing common expressions that are used throughout the algorithm. These expressions are stored in
vectors a, b, and c. In mathematical notation, these factors can be presented as:

a nrdt nV dtn = -()()1

2
2

b rdt nV dtn = - +()1
2

c nrdt nV dtn = +()()1

2
2

The third for loop is the place where the initial conditions are prepared, by direct calculation of the
price at expiration date. The last loop is where the forward algorithm is used. Each step of the loop will
compute the contributions for that particular time period, assuming that the period j-1 is known. At the end
the u vector, where the option prices have been stored, is returned to the caller.

vector<double> BlackScholesMethod::solve(double volatility, int nx, int timeSteps)
{
 double dt = m_expiration /(double)timeSteps;
 double dx = m_maxPrice /(double)nx;

 vector<double> a(nx-1);
 vector<double> b(nx-1);
 vector<double> c(nx-1);

 int i;
 for (i = 0; i < nx - 1; i++)
 {
 b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);
 }

 for (i = 0; i < nx - 2; i++)
 {
 c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate * (i+1);
 }

 for (i = 1; i < nx - 1; i++)
 {
 a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate * (i+1);
 }

 vector<double> u((nx-1)*(timeSteps+1));

 double u0 = 0.0;

Chapter 12 ■ Basic Models for Options Pricing

201

 for (i = 0; i < nx - 1; i++)
 {
 u0 += dx;
 u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);
 }

 for (int j = 0; j < timeSteps; j++)
 {
 double t = (double)(j) * m_expiration /(double)timeSteps;

 double p = 0.5 * dt * (nx - 1) * (volatility*volatility * (nx-1) + m_intRate)
 * (m_maxPrice-m_strike * exp(-m_intRate*t));

 for (i = 0; i < nx - 1; i++)
 {
 u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
 }
 for (i = 0; i < nx - 2; i++)
 {
 u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];
 }
 for (i = 1; i < nx - 1; i++)
 {
 u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];
 }
 u[nx-2+(j+1)*(nx-1)] += p;
 }

 return u;
}

Finally, I present a simple test function that can be used to illustrate the use of the BlackScholesMethod
class. This function first initializes some parameters with reasonable values. Then, it creates a new object of
type BlackScholesMethod, passing to the constructor some of the previously defined parameters.

The blackSholes object is then used to solve the pricing problem. The result is a vector of prices, one
for each of the steps used by the algorithm (in practice, only the last value would be used). Finally, the
function prints the result so that you can inspect the convergence of the algorithm.

void test_bsmethod()
{
 auto strike = 5.0;
 auto intRate = 0.03;
 auto sigma = 0.50;
 auto t1 = 1.0;
 auto numSteps = 11;
 auto numDays = 29;
 auto maxPrice = 10.0;

 BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);
 vector<double> u = blackScholes.solve(sigma, numSteps, numDays);

Chapter 12 ■ Basic Models for Options Pricing

202

 double minPrice = .0;
 for (int i=0; i < numSteps-1; i++)
 {
 double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)/ (double)(numSteps-1);
 cout << " " << s << " " << u[i+numDays*(numSteps-1)] << endl;
 }

}

Complete Code
This section presents the complete code for the BlackScholesMethod class. The code depends only on the
STL and functions in the standard C++ library. As such, it can serve as a first step toward a complete solution
for options valuation processes.

The code is divided into a header file called BlackScholes.hpp and an associated implementation file.
These files are presented in Listings 12-1 and 12-2, respectively.

Listing 12-1.  Header File for the BlackScholesMethod Class

//
// BlackScholes.hpp

#ifndef BlackScholes_hpp
#define BlackScholes_hpp

#include <vector>

class BlackScholesMethod {
public:
 BlackScholesMethod(double expiration, double maxPrice, double strike, double intRate);
 BlackScholesMethod(const BlackScholesMethod &p);
 ~BlackScholesMethod();
 BlackScholesMethod &operator=(const BlackScholesMethod &p);

 std::vector<double> solve(double volatility, int nx, int timeSteps);
private:
 double m_expiration;
 double m_maxPrice;
 double m_strike;
 double m_intRate;
};
#endif /* BlackScholes_hpp */

Listing 12-2.  Implementation File for the BlackScholesMethod Class

//
// BlackScholes.cpp

#include "BlackScholes.hpp"

#include <cmath>
#include <algorithm>

Chapter 12 ■ Basic Models for Options Pricing

203

#include <vector>
#include <iostream>
#include <iomanip>

using std::vector;
using std::cout;
using std::endl;
using std::setw;

BlackScholesMethod::BlackScholesMethod(double expiration, double maxPrice,
 double strike, double intRate)
: m_expiration(expiration),
m_maxPrice(maxPrice),
m_strike(strike),
m_intRate(intRate)
{
}

BlackScholesMethod::BlackScholesMethod(const BlackScholesMethod &p)
: m_expiration(p.m_expiration),
m_maxPrice(p.m_maxPrice),
m_strike(p.m_strike),
m_intRate(p.m_intRate)
{
}

BlackScholesMethod::~BlackScholesMethod()
{
}

BlackScholesMethod &BlackScholesMethod::operator=(const BlackScholesMethod &p)
{
 if (this != &p)
 {
 m_expiration = p.m_expiration;
 m_maxPrice = p.m_maxPrice;
 m_strike = p.m_strike;
 m_intRate = p.m_intRate;
 }
 return *this;
}

vector<double> BlackScholesMethod::solve(double volatility, int nx, int timeSteps)
{
 double dt = m_expiration /(double)timeSteps;
 double dx = m_maxPrice /(double)nx;

 vector<double> a(nx-1);
 vector<double> b(nx-1);
 vector<double> c(nx-1);

Chapter 12 ■ Basic Models for Options Pricing

204

 int i;
 for (i = 0; i < nx - 1; i++)
 {
 b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);
 }

 for (i = 0; i < nx - 2; i++)
 {
 c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate * (i+1);
 }

 for (i = 1; i < nx - 1; i++)
 {
 a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate * (i+1);
 }

 vector<double> u((nx-1)*(timeSteps+1));

 double u0 = 0.0;
 for (i = 0; i < nx - 1; i++)
 {
 u0 += dx;
 u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);
 }

 for (int j = 0; j < timeSteps; j++)
 {
 double t = (double)(j) * m_expiration /(double)timeSteps;

 double p = 0.5 * dt * (nx - 1) * (volatility*volatility * (nx-1) + m_intRate)
 * (m_maxPrice-m_strike * exp(-m_intRate*t));

 for (i = 0; i < nx - 1; i++)
 {
 u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
 }
 for (i = 0; i < nx - 2; i++)
 {
 u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];
 }
 for (i = 1; i < nx - 1; i++)
 {
 u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];
 }
 u[nx-2+(j+1)*(nx-1)] += p;
 }

 return u;
}

int main()
{

Chapter 12 ■ Basic Models for Options Pricing

205

 auto strike = 5.0;
 auto intRate = 0.03;
 auto sigma = 0.50;
 auto t1 = 1.0;
 auto numSteps = 11;
 auto numDays = 29;
 auto maxPrice = 10.0;

 BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);
 vector<double> u = blackScholes.solve(sigma, numSteps, numDays);

 double minPrice = .0;
 for (int i=0; i < numSteps-1; i++)
 {
 double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)/ (double)(numSteps-1);
 cout << " " << s << " " << u[i+numDays*(numSteps-1)] << endl;
 }
 return 0;
}

Conclusion
Options pricing is a very common problem that needs to be solved if you need to trade these types of
financial derivatives. Because underlying prices change so frequently, it is very important that option prices
be calculated efficiently. C++ is an ideal language for encoding the solution to these pricing problems.

In this chapter, you saw an introduction to the most common strategies for options pricing. The most
popular techniques can be divided into lattice models, such as binomial trees, and PDE-based algorithms,
where the Black-Scholes model or some close variation is solved through the use of numerical methods for
PDEs.

The first sections of this chapter demonstrated the binomial method, with its assumptions and
mathematical ideas. You learned how these ideas can be used in C++ and encapsulated into a class. The
model was extended to deal with American-style options, where option buys have the ability to exercise the
option at any time before the (or at the) expiration date.

You also saw how to represent the options pricing problem in terms of the Black-Scholes model,
which uses a PDE that describes the changes in options pricing. This model is solved using a method that
discretizes the domain of the function and calculates the result in a large number of small steps.

In the next chapter, you will learn about Monte Carlo methods, another strategy that is commonly
used to solve problems in the area of mathematical finance. In particular, Monte Carlo methods can be
used to efficiently solve some difficult problems of derivative pricing without needing to directly compute
probabilities, as used by the methods discussed in this chapter.

207© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_13

CHAPTER 13

Monte Carlo Methods

Among other programming techniques used for trading equity markets, the Monte Carlo simulation has a
special place due to factors such as its wide applicability and easy implementation. These methods can be
used to implement strategies for market analysis such as price forecasting, or to validate options trading
strategies, for example.

A great advantage of the Monte Carlo methods is the fact that they can be used to study complex events
without the need to solve complicated mathematical models and equations. Using the idea of simulation
through the use of random numbers, Monte Carlo methods offer the ability to study a large class of events,
which would otherwise be difficult to analyze using exact techniques.

This chapter provides an introduction to stochastic methods and how they be used as part of
simulation-based algorithms applied to options pricing. Here are a few of the topics that will be covered in
this chapter:

•	 Random number generation: Generating random numbers is a basic step in creating
algorithms that exploit stochastic behavior. Monte Carlo methods require the use of
effective random number generation routines, which will be discussed in this chapter.

•	 Probability distributions: Monte Carlo algorithms are based on the properties of
stochastic events. Many of these events occur according to well-known probability
distributions. In C++, it is possible to generate numbers according to many popular
probability distributions, as you will learn.

•	 Random walks: A random walk is a stochastic process where a certain quantity can
randomly change with equal probability to positive or negative side. This makes
random walk very useful for modeling prices in financial markets, as well as for
simulating trading strategies.

•	 Stochastic models for options pricing: Another application of random walks is in the
determination of option prices. Using a stochastic method for this purpose is useful
if you want to avoid the use of a more complex exact or approximate model, such as
the algorithms described in the previous chapter.

Introduction to Monte Carlo Methods
A Monte Carlo algorithm is a computational procedure that uses random numbers to simulate and study
complex events. It is based on the idea that you can analyze the results of an event by repeating it several
times in different ways, with the help of a computer or other method to generate random numbers.

This idea behind Monte Carlo methods is not new, having been used for as long as probability methods
have been studied. For example, a well-known randomized procedure to determine the area of a geometric
shape is to throw darts at the figure. After a while, you can count the percentage of darts inside the shape and
use that percentage to determine the area.

Chapter 13 ■ Monte Carlo Methods

208

Despite their simplicity, Monte Carlo methods may be time consuming, and they require a large
number of repetitions to achieve their goals. The recent development of fast computers made possible to use
such methods in an increasing number of situations, making them practical and capable of finding solutions
for problems where explicit mathematical analysis is very difficult.

In general, Monte Carlo methods have been used for the solution of mathematical and computational
problems where it is difficult to perform direct observations. Algorithms based on Monte Carlo methods use
simulation strategies to determine values that normally occur as the result of random events in several areas,
including the financial markets. In fact, the application of Monte Carlo to finance methods is widespread.
You will find many algorithms used in the analysis of options and derivatives that exploit Monte Carlo
techniques. For example:

•	 Options pricing: It is possible to use randomized algorithms to determine the prices
of options and other derivatives.

•	 Trade strategy analysis: Monte Carlo methods can be used to test different trade
strategies using simulated prices. This type of analysis is invaluable, since it allows
you to test trading techniques on a large amount of data that is independent of the
existing market observations.

•	 Analysis of bonds and other fixed income investments: Bonds and their derivatives
are tied to fluctuations of interest rates over different time horizons. An effective way
to study the behavior of bonds is to construct stochastic models and use them to
perform an analysis.

•	 Portfolio analysis: Another area where Monte Carlo methods are useful is when
studying a portfolio of investments. The stochastic algorithm allows analysts to vary
the rate of exposure to diverse economic scenarios and try to determine the best
allocation for a portfolio.

In the next few sections, you will first learn the tools necessary to design and implement Monte Carlo
algorithms using the C++ language. You will also see examples of how these tools can be used to analyze
options and related instruments.

Random Number Generation
The first topic that is addressed is random number generation. True random numbers are not possible
to achieve in digital computers, but there are several techniques to create sequences of pseudo-random
numbers. These methods have been made available through the standard C++ libraries, as will be covered in
this section.

For C++ programmers, the main source of random number generation routines is the <random> header
file provided by the standard library. With these functions, you can generate pseudo-random numbers that
are well tested and that can be accessed through an easy interface.

The first thing to learn about random number generation in the standard library is the concept
of generators. A generator can be viewed as a source of pseudo-random bits, that is, an algorithm that
is capable of returning numbers that are uniformly random. The C++ library offers a small number of
generators that can be used by programmers. Here are some of the available generators:

•	 Mersenne twister: This is one of the most popular generators. It is based on an
algorithm that uses Mersenne prime numbers as the period length of the sequence
of pseudo-random numbers. The Mersenne twister algorithm is considered to be
one of the best general-purpose generators of random numbers and it is frequently
used in applications.

Chapter 13 ■ Monte Carlo Methods

209

•	 Linear congruential engine: This engine is based on a traditional algorithm that
uses simple addition, multiplication, and module operations to produce numbers
that have pseudo-random properties. This generator is indicated when you need
fast sequences of random numbers, due to its efficiency. However, the linear
congruential algorithm is known to generate numbers that possess some correlation.

•	 Subtract with carry: This is still another algorithm that is used to generate random
numbers in the standard library. The algorithm is called lagged Fibonacci, and it
uses a numeric sequence that has properties that are similar to the famous Fibonacci
sequence.

These generators represent three of the most common ways to generate random numbers. Other
techniques for random number generation have also been proposed in the scientific literature. Table 13-1
shows some of the most commonly used algorithms for random number generation.

Table 13-1.  Algorithm for Pseudo-Random Number Generation

Algorithm Description

Linear congruential Traditional method that uses modulo arithmetic.

Inversive congruential Uses the modular multiplicative inverse to generate new elements in the
sequence.

Mersenne twister Method developed in 1997; uses Mersenne primes to generate random
numbers.

WELL generators Well Equidistributed Long-Period Linear, based on the application for
operations on a binary field.

XorShift generators Fast method that uses exclusive-or operations to generate new random
numbers.

Linear feedback shift Method that uses a linear function over the existing sequence of values to
generate the next random number.

Park-Miller generator A linear congruential generator that uses multiplicative groups of integers under
the modulo operation.

The second part of the random generation library in C++ is the use of engine instantiations. These
instantiations can be viewed as a concrete implementation of a generic algorithm. For example, consider
the Mersenne twister engine, which is implemented as a template called mersenne_twister_engine.,
The easiest way to use this engine is to apply an instantiation such as the minstd_rand (minimal standard
pseudo-random number) generator. This particular instantiation is defined by the C++ standard as:

typedef linear_congruential_engine<
 uint_fast32_t,
 48271,
 0,
 2147483647> minstd_rand;

The linear_congruential_engine is a common random generator engine that is implemented by the
standard library. A list of known engine instantiations in the C++ standard library are presented in Table 13-2.
You can choose one of these instantiations as a generator for your own algorithm, or you can create a new
instantiation.

Chapter 13 ■ Monte Carlo Methods

210

■■ Note  Random number generators can be freely instantiated in the standard library. However, you should
rarely need to define a new instantiation, unless you have good knowledge about how the parameters for each
generator work together. A careful study of parameters is usually necessary to create a new generator, since
they are based on statistical properties that have been determined after careful analysis made by researchers in
the area.

The generators and their instantiations can be thought of as the original source for pseudo-random bits.
Once you have defined a source, it is possible to generate random numbers according to a given probability
distribution, as you will see in the next section.

Probability Distributions
A probability distribution is family of functions that defines the parameters for a stochastic process. For
example, the simplest distribution of random numbers is the uniform distribution, where each value
is generated with equal probability in a given range. A particular case of the uniform distribution is
Uniform[0,1], where each number is randomly generated with equal probability in the range between
0 and 1.

There are a small number of probability distributions that occur very frequently in the analysis
of natural events. These common distributions, which have been studied in several branches of
stochastic analysis, are now available as part of the C++ <random> header in standard library. For
examples of two common probability distributions, see Figure 13-1 (which shows the Normal
distribution with mean 0 and standard deviation 1) and Figure 13-2 (which shows the Exponential
distribution with mean 1).

Table 13-2.  A List of Generator Instantiations Available on the Standard Library

Generator Instantiation Parameters

default_random_engine Random engine that is provided as a default option by the library
implementation.

knuth_b Defined as typedef shuffle_order_engine <minstd_rand0,256> knuth_b;.

minstd_rand Minimal standard generator; it is an instantiation of linear_congruential_
engine.

minstd_rand0 Similar to the engine described above, with particular parameters.

mt19937 Mersenne twister generator.

mt19937_64 Mersenne twister generator for 64-bit types.

ranlux24 Uses the subtract-with-carry generator and returns values that use a 24-bit
representation.

http://www.cplusplus.com/linear_congruential_engine
http://www.cplusplus.com/linear_congruential_engine

Chapter 13 ■ Monte Carlo Methods

211

Figure 13-1.  Probabilities defined by the Normal distribution, with mean 0 and standard deviation 1

Figure 13-2.  Probabilities defined by the Exponential distribution, with mean 1

Chapter 13 ■ Monte Carlo Methods

212

Consider the most common case of generating uniform random integer numbers in a particular range.
This can be easily handled in the standard library by using the std::uniform_int_distribution template.
This template is capable of creating integer numbers that have uniform distribution as given by the two
parameters: the initial and maximum values. Here is an example of how to code a function that returns such
random integer numbers.

#include <iostream>
#include <random>

using std::cout;
using std::endl;

std::default_random_engine generator;

int get_uniform_int(int max)
{
 if (max < 1)
 {
 cout << "invalid parameter max " << max << endl;
 throw std::runtime_error("invalid parameter max");

 }
 std::uniform_int_distribution<int> uint(0,max);

 return uint(generator);
}

The first step is to define a generator to use as the source of random bits. This is done by instantiating
an engine (done at the file scope). The std::default_random_engine is the default generator selected by the
compiler’s implementation. It should be a reasonable choice, unless you want to be very specific about the
generator for your code.

The get_uniform_int function generates a random integer between 0 and max, where max is a
parameter passed to the function. The function first checks if the parameter is valid and throws an exception
when that is not the case. The function then uses the parameter to create an object of type uniform_
int_distribution. This object receives two parameters that define the distribution: the minimum and
maximum values. The resulting object is then used to generate the random number itself.

■■ Note  Traditional C and C++ code used to rely on the rand function to generate random integer numbers.
This usage is now deprecated because the algorithm used in rand() is known to have weaknesses. In
particular, the idea of using the expression (rand() % N) to generate random integer numbers in the range 0 to
N-1 has been proved to be unreliable. Even though the numbers seem random enough for most applications, it
fails when you try to perform more complex statistical analysis.

The sequence of steps to use the random number generators and distributions are therefore
summarized as follows:

•	 Find a suitable random engine and a corresponding generator according to the
needs of your application.

Chapter 13 ■ Monte Carlo Methods

213

•	 Select a generator instantiation based on the random engine you selected previously. If
you don’t have any specific requirements, the default_random_engine could be used.

•	 Select a random distribution according to the needs of your application. A common
distribution is the uniform, which produces numbers with the same probability in a
given range.

•	 Create an object of the type determined by the probability distribution. In the
previous example, you used uniform_int_distribution as the object type.

•	 The resulting object can now be called to generate pseudo-random numbers, once
the generator object is passed as the single parameter for the call. This makes it
possible to use generators of different types or, more commonly, generators that are
used for a specific function of a thread.

Using Common Probability Distributions
This section will show a few examples of common probability distributions and how they can be used in
C++. As mentioned, random numbers can be generated according to different probability functions. These
families of functions are grouped according to the parameters and shape of the distribution.

One of the simplest probability distributions is the Bernoulli distribution. This is a family of probability
distributions that model a yes/no scenario, an event that has only two results. The only parameter for this
distribution is the probability of the yes result. The simplest example of this type of model is a coin toss, with
parameter 0.5, representing a fair probability of heads or tails.

In the next code example, the function coin_toss_experiment returns a vector of Boolean values,
representing the result of a set of fair coin tosses.

#include <iostream>
#include <random>
#include <vector>

using std::cout;
using std::endl;
using std::vector;

std::default_random_engine generator;

vector<bool> coin_toss_experiment(int num_experiments)
{
 if (num_experiments < 1)
 {
 cout << "invalid number of experiments " << num_experiments << endl;
 throw std::runtime_error("invalid number of experiments");
 }

 std::bernoulli_distribution bernoulli(0.5);

 vector<bool> results;
 for (int i=0; i<num_experiments; ++i)
 {
 results.push_back(bernoulli(generator));
 }
 return results;
}

Chapter 13 ■ Monte Carlo Methods

214

In this code, the first step is to use a generator, which in this case is std::default_random_engine
allocated in the file scope, so it is available during the lifetime of the application. The coin_toss_experiment
function initially checks the validity of the parameter num_experiments, which gives the number of tries in
this random experiment.

The function then allocates a new object from the Bernoulli distribution, with parameter 0.5, which
indicates that the yes/no event occurs with even probability for each side. The random values are then
generated in the loop, where the bernoulli returns Boolean values according to the desired distribution
behavior. The values are stored in a vector<bool> container.

Another common distribution that is used to model natural events is the Poisson distribution. This
distribution arises commonly when observing the number of events that occur in a period of time, under the
assumption that these events are independent. For example, the number of customers arriving at a coffee
shop during a given period could be modeled as a Poisson distribution. The mathematical expression used
to model the probability distribution of such events is given by:

p k
e

k

k k

() =
-l
!

Here, k is the number events that are observed, and λ is the parameter that determines the results of the
experiment, which can be interpreted as the average number of events occurring in the given time period.

In the C++ standard library, the Poisson distribution is made available through the std:: poisson_
distribution template. The parameter for this distribution is the mean, usually represented as the
mathematical variable λ as in the previous equation.

The following is an example that can be used to analyze the number of customers buying in a particular
store in a time period. For instance, financial analysts perform this type of study when they need to study the
buying patterns at a particular business. The code defines a function named num_customers_experiment:

#include <iostream>
#include <random>
#include <vector>

using std::cout;
using std::endl;
using std::vector;

vector<int> num_customers_experiment(double mean, int max, int ntries)
{
 std::default_random_engine generator;

 vector<int> occurrences(max, 0);
 std::poisson_distribution<int> poisson(mean);

 for (int i=0; i<ntries; ++i)
 {
 int result = poisson(generator);
 if (result < max) {
 occurrences[result] ++;
 }

 }

 return occurrences;
}

Chapter 13 ■ Monte Carlo Methods

215

The num_customers_experiment function can generate a sequence of random values based on the
Poisson distribution and return a histogram of these values, that is, for each value it returns the number of
times this value was observed.

The algorithm is similar to what you have seen before with the Bernoulli distribution. The first part
is used to define the random generator, and it creates an object of type std::poisson_distribution. The
parameter passed represents the mean of the distribution.

The for loop in the algorithm is used to build the histogram. At each step, a number is generated
according to the Poisson distribution. Then, if the resulting number is less than the parameter max, that
value is incremented in the list of occurrences.

The num_customers_experiment function is used in the next code fragment to print the results of the
calculation. These numbers have been saved and used to create the chart displayed in Figure 13-3, which
shows the observations between 0 and 20 and the corresponding number of observations for 200 trials.

Figure 13-3.  Histogram of the data returned by function num_customers_experiment

int test_experiment()
{
 auto data = num_customers_experiment(10.5, 20, 200);

 for (int i=0; i<int(data.size()); ++i)
 {
 cout << " event " << i << " occurred " << data[i] << " times" << endl;
 }
}

The next example shows how to generate and use random values drawn from the normal distribution.
The normal distribution, also known as Gaussian distribution, is one of the most common probability
distributions used to model real world data. It is employed in data analysis, in areas ranging from drug

Chapter 13 ■ Monte Carlo Methods

216

design to sociology. The normal distribution represents the distribution of values that are naturally
measured in populations. For example, the heights of people living in a particular geographical area follow
the normal distribution.

The bell-shaped probability graph of the normal distribution is determined by the Gaussian equation,
which takes as parameters the mean and the standard deviation of a random variable. The equation is given by:

p x
x() = -
-()æ

è
çç

ö

ø
÷÷

1

2 2

2

2s p
m

s
exp

In this equation, μ is the mean value of these numbers, and σ is the standard deviation, which is a
measure of the variability of these random values.

In the following code example, you will see how to generate numbers that follow the normal
distribution. The get_normal_observations function returns a list of numbers that have been generated
according to the normal distribution according to the parameters mean and stdev.

#include <iostream>
#include <random>
#include <vector>
#include <assert.h>

using std::cout;
using std::endl;
using std::vector;

vector<double> get_normal_observations(int n, double mean, double stdev)
{
 std::default_random_engine generator;

 vector<double> values;
 std::normal_distribution<double> normaldist(mean, stdev);

 for (int i=0; i<n; ++i)
 {
 values.push_back(normaldist(generator));
 }

 return values;
}

The next function, test_normal, can be used to verify the correctness of this code. The idea of this
function is to use the generated values so that it can create a histogram of the normal-distributed data. The
first step of the algorithm is to call the get_normal_observations function and save the returned data. The
next step is to get some information about the received data, such as the minimum and maximum values.
This is done using the std::minmax_element function, which returns a pair of iterators pointing to the
minimum and maximum values in the given range.

The algorithm creates a vector with elements corresponding to “bins,” that is, smaller ranges where each
observation is recorded. The size of each such bin is stored as the variable h. The first loop then determines
the number of elements in each such range so that a histogram can be calculated.

The second loop is responsible for printing the results of the histogram. Each value is printed along with
the starting point of the corresponding range.

Chapter 13 ■ Monte Carlo Methods

217

void test_normal()
{
 vector<double> nv = get_normal_observations(1000, 8, 2);

 auto res = std::minmax_element(nv.begin(), nv.end());
 double min = *(res.first);
 double max = *(res.second);

 int N = 100;
 double h = (max - min)/double(N);
 vector<int> values(N, 0);

 for (int i=0; i<int(nv.size()); ++i)
 {
 double v = nv[i];
 int pos = int((v - min) / h);
 if (pos == N) pos--; // avoid the highest element
 values[pos]++;
 }

 for (int i=0; i<N; ++i)
 {
 cout << min + (i*h) << " " << values[i] << endl;
 }
}

The values created in this way have been plotted and are displayed in Figure 13-4. The horizontal axis
represents the value of each observation. The vertical axis represents the number of occurrences of each
observation.

Figure 13-4.  Histogram of values observed using the normal distribution with mean 8

Chapter 13 ■ Monte Carlo Methods

218

Creating Random Walks
One of the main applications of stochastic processes in finance is the study of prices under random
variations. This random process is called a random walk, since it implies that changes happen at random as
time passes. A random walk model can be used to simulate market conditions and investigate the behavior
of trades strategies, portfolios, and market participants in general. In this section, you see how to create a
simple random walk using some of the facilities provided by C++.

A random walk can be designed with the use of a few simple rules that determine the price fluctuations.
Notice the exact rules used depend on the kind of market that you need to simulate and the exact conditions
that need to be replicated. In this example, I use a few computational commands that will simplify the task;
the framework can be readily extended to implement more complex scenarios.

The random walk starts at an initial price given as a parameter to the algorithm. At each step, there are
three possibilities for the random walk:

•	 A price decrease, which occurs with probability 1/3.

•	 A price increase, also happening with probability 1/3.

•	 The price remains unchanged.

The amount of increase or decrease is given by a parameter called stepSize.
These rules are implemented in the RandomWorkModel class. The class has an interface that exposes two

member functions. getWalk returns a vector with a set of steps in the random walk.

//
// RandomWalk.hpp

#ifndef RandomWalk_hpp
#define RandomWalk_hpp

#include <vector>

// Simple random walk for price simulation
class RandomWalkModel {
public:
 RandomWalkModel(int size, double start, double step);
 RandomWalkModel(const RandomWalkModel &p);
 ~RandomWalkModel();
 RandomWalkModel &operator=(const RandomWalkModel &p);

 std::vector<double> getWalk();
private:
 int random_integer(int max);

 int m_numSteps; // number of steps
 double m_stepSize; // size of each step (in percentage)
 double m_startPrice; // starting price
};

#endif /* defined(__FinancialSamples__RandomWalk__) */

Chapter 13 ■ Monte Carlo Methods

219

The class interface also contains the following member variables:

•	 The number of steps, m_numSteps, determines the number of steps (time) in the
random walk.

•	 The initial price is defined by the m_stepSize member variable.

•	 The starting price is defined by the m_startPrice member variable.

These member variables are initialized in the constructor of RandomWalkModel, as shown in this code
listing:

//
// RandomWalk.cpp

#include "RandomWalk.hpp"

#include <cstdlib>
#include <iostream>
#include <random>

using std::vector;
using std::cout;
using std::endl;

std::default_random_engine engine;

RandomWalkModel::RandomWalkModel(int size, double start, double step)
: m_numSteps(size),
 m_stepSize(step),
 m_startPrice(start)
{
}

RandomWalkModel::RandomWalkModel(const RandomWalkModel &p)
: m_numSteps(p.m_numSteps),
 m_stepSize(p.m_stepSize),
 m_startPrice(p.m_startPrice)
{
}

RandomWalkModel::~RandomWalkModel()
{
}

RandomWalkModel &RandomWalkModel::operator=(const RandomWalkModel &p)
{
 if (this != &p)
 {
 m_numSteps = p.m_numSteps;
 m_stepSize = p.m_stepSize;
 m_startPrice = p.m_startPrice;
 }
 return *this;
}

Chapter 13 ■ Monte Carlo Methods

220

The random numbers needed by this code are generated using the random_integer member function.
This function just uses the standard library random number generator std::default_random_engine. It
also uses the uniform distribution returning integer values, as provided by the std::uniform_distribution
template class.

int RandomWalkModel::random_integer(int max)
{

 std::uniform_int_distribution<int> unif(0, max);
 return unif(engine);
}

The random walk sequence is generated by the member function getWalk. The algorithm has a single
loop that repeats the price generation according to the m_numSteps variable. Inside the loop, the code selects
a random integer between zero and 2. Depending on the result, the code makes a decision to increase,
decrease, or leave the price unchanged. Each price is then added to a vector, and the vector is returned at the
end of the function.

std::vector<double> RandomWalkModel::getWalk()
{
 vector<double> walk;
 double prev = m_startPrice;

 for (int i=0; i<m_numSteps; ++i)
 {
 int r = random_integer(3);
 cout << r << endl;
 double val = prev;
 if (r == 0) val += (m_stepSize * val);
 else if (r == 1) val -= (m_stepSize * val);
 walk.push_back(val);
 prev = val;
 }
 return walk;
}

This code can be tested using the test_random_walk function. This function simply creates a
RandomWalkModel object with 200 steps, starting at the $30 price and with steps of $0.01.

int test_random_walk()
{
 RandomWalkModel rw(200, 30, 0.01);
 vector<double> walk = rw.getWalk();
 for (int i=0; i<walk.size(); ++i)
 {
 cout << ", " << walk[i];
 }
 cout << endl;
 return 0;
}

Chapter 13 ■ Monte Carlo Methods

221

The random walk generated by the test_random_walk function was saved, and using that data I plotted
the results, as shown in Figure 13-5. Notice that, although this model is very simple, the results are not
very different from what is observed in the market. Using this kind of synthetic data, you can test trading
strategies and determine if they are profitable in such randomized scenarios.

Figure 13-5.  A random walk generated by the RandomWalkModel class with starting price $30

Conclusion
You saw in this chapter a few examples of Monte Carlo techniques, which can be used to solve complex
problems through simulation of random events. These methods are based on the use of pseudo-random
values as a tool for the probabilistic analysis of events. Such models also support the simulation of complex
mathematical models, including the evolution of stock prices, as well as their options and related derivative
instruments.

In this chapter, you learned about the building blocks of Monte Carlos methods. First, you saw to
generate pseudo-random numbers using the C++ standard library. The random numbers can also be
generated according to a pre-defined probability distribution. The C++ standard library contains some of the
best-known probability distributions, which makes it easy to integrate these features into user applications.

You also saw to implement a simple random walk model. In a random walk, values change by small
increments in either negative or positive directions. The random walk model can be used to analyze several
financial instruments, ranging from fixed income instruments to equities and derivatives.

The next chapter will cover additional library functions and classes that are commonly used to analyze
and develop solutions for options and derivatives.

223© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_14

CHAPTER 14

Using C++ Libraries for Finance

Writing good financial code is a difficult task, one that cannot be done in isolation. As a software engineer,
you frequently need to collaborate with others to achieve your development goals. You also need to use
code that has been written by other groups. In particular, developers are constantly using libraries created
by other companies or open source projects. Integrating these libraries into your own work is a major step to
improve productivity.

In the world of quantitative finance, a number of C++ libraries have been used with great success. This
chapter reviews some of these libraries and discusses how they can be integrated into your own applications.
Some of the topics covered in this chapter include the following:

•	 Boost introduction: The boost repository provides access to many C++ libraries
that are based on templates for higher efficiency. You will learn how to install and
use boost, as well as integrate particular libraries in the repository to your own
applications.

•	 Boost odeint: The odeint library is a well-tested and efficient set of algorithms for the
solution of ordinary differential equations (ODEs). You will learn about the different
algorithms contained in odeint and the different situations in which they can be
employed.

•	 QuantLib: The QuantLib library has been designed as a repository for quantitative
algorithms and assorted utilities for financial applications. Many parts of this code
can be used to simplify the process of analyzing options and derivatives. You will
learn how to use this library and see a few of the most commonly used classes and
algorithms that are available in the QuantLib repository.

Boost Libraries
In the last few years the boost project has become well known for providing high-quality libraries for C++
applications. As a result, the boost project is now the de facto repository for extensions to the STL. In fact,
many of the libraries that started as part of the boost repository have been incorporated to the C++ standard,
including, for example, std::shared_ptr and std::unique_ptr. A few of the developers working on boost
libraries have also become part of the standard C++ committee.

The boost project focuses on using the modern features of the C++ language, including, but not
exclusively, the employment of templates for high performance. Many of the libraries included in boost
provide template-based interfaces that make the resulting system much more flexible. For example, different
algorithms can be specialized at the template level, so that you can combine different algorithms through
the use of templates, when deciding on the optimal techniques to solve a specific problem. This is a much
more adaptable strategy, rather than relying on decisions made by library designers.

Chapter 14 ■ Using C++ Libraries for Finance

224

Note that boost is not a finance library. Instead, it provides a large number of features that are packaged
in a few separate libraries. However, many of the components have direct use in the implementation of
financial applications. Its components can be used to perform and simplify several tasks, such as:

•	 Solving ODEs: Ordinary differential equations appear frequently in the solution of
numerical problems in the area of finance. As you have seen, to solve some option
analysis models, it is necessary to efficiently compute the value of ODEs. The odeint
library gives you access to such functionality, as you see in the next section.

•	 uBLAS: The Basic Linear Algebra System library provides a C++ interface to an
advanced linear algebra library. uBLAS can be used to support more complex
matrix-related code, as well as the solution of systems of equations.

•	 Multi-array: Many applications require the use of multi-dimensional arrays when
working in areas such as 3D animation, weather predictions, etc. The multi-array
library provides an easy interface for the creation and manipulation of arrays that
can be indexed using multiple indices.

•	 Managing file and directories: The <filesystem> header file contains a set of
templates that can be used to manage files and directories. It handles different
operating systems, so that you don’t need to rely on system-specific libraries for
common file-based operations.

■■ Note  The filesystem library is scheduled to become part of the C++ standard library in the next few
years. Meanwhile, boost can be used to gain access to this functionality.

The boost repository contains a large set of useful libraries for C++ development, including the ones
listed previously. In its current version, there are 136 libraries that cover all types of tasks needed in modern
programing. Table 14-1 shows a list of commonly used libraries contained in the boost project repository,
including a quick explanation of their usage.

Table 14-1.  List of Commonly Used Boost Libraries

Library Description

odeint Implements algorithms to solve ordinary differential equations (ODEs).

filesystem A set of classes to manipulate files and directories in an OS-independent way.

Multi-array Provides arrays with multiple dimensions; useful for scientific code.

MPI Implements the Message Passing Interface, a standard for parallel processing.

Math A set of mathematical functions not included in the standard library.

Graph A library that extends the STL and provides containers and algorithms to handle graphs.

Functional Provides templates that simplify functional programming techniques.

Algorithm A set of generic algorithms that extends the algorithm header in the STL.

uBLAS A modern C++ implementation of BLAS (Basic Linear Algebra Subprograms).

Variant A container that safely stores a union container, capable of storing different data types.

Sort Implements several sorting strategies using templates for high performance.

Regex Provides support for regular expressions in C++.

Python A set of templates and classes that allows interaction between Python and C++ code.

Chapter 14 ■ Using C++ Libraries for Finance

225

Installing Boost
The first step in using the boost libraries is to install them on your machine. Being an open source
repository, boost packages are made available through the web and mirrored in several web sites. The
canonical web site for the repository is www.boost.org, where you can find instructions for installing boost
in several architectures and operating systems.

The most common way to install boost is to download the compressed file containing the headers
and source files. Once the files are uncompressed, you can use the main installation script that is provided,
bootstrap.sh, to build and install the software on the desired path in the local disk.

Another way to install boost libraries is to use third-party installers or package managers. For example,
if you use Linux, it is possible to install boost as a package using the local package manager, such as dpkg on
Debian systems. On Windows systems, you can also install cygwin, which contains a package manager with
several common C++ programming packages, including the boost libraries.

Installing from source is also easy. You just need to unzip the source files into a location and use that
directory as the include path for the compilation process. An advantage of boost is that most of the libraries
are implemented as header files (this is also true for most of the STL). Therefore, there is no need for any
compilation. A few libraries, however, require a compilation step that can be performed using the bootstrap
script. You will need the build step if you need to use one of the following libraries:

•	 Boost.Filesystem

•	 Boost.IOStreams

•	 Boost.ProgramOptions

•	 Boost.Python

•	 Boost.Regex

•	 Boost.Serialization

•	 Boost.Signals

•	 Boost.Thread

•	 Boost.Wave

Boost libraries are built using a C++ build system called bjam. The build script will try to find bjam in your
machine or build it. You can also download bjam from its binary distribution located in boost.org/build.

In the next few sections, you will see how to use a few libraries available from boost. First, you will see
how to solve ordinary differential equations with the odeint library.

Solving ODEs with Boost
In the previous chapter, you saw how ordinary differential equations (ODEs) can be implemented directly
using C++ code. Due to how options are defined and represented, ODEs models arise naturally in the design
of financial algorithms. As a result, being able to quickly implement such methods is a great advantage for
the quantitative software developer. Moreover, it is much easier to reuse an ODE implementation that has
already been reviewed and thoroughly tested, especially considering that numerical errors are hard to catch
in many cases.

One of the components of the boost repository, the odeint library, deals specifically with ODEs. With
odeint, you can more easily create code to integrate ODEs, choosing from a number of different algorithmic
strategies. Figure 14-1 shows a screenshot of the current web page for the odeint web site, where its
repository is maintained.

http://www.boost.org/
http://www.boost.org/doc/libs/1_35_0/libs/filesystem/index.html
http://www.boost.org/doc/libs/1_35_0/libs/iostreams/index.html
http://www.boost.org/doc/libs/1_35_0/libs/program_options/index.html
http://www.boost.org/doc/libs/1_35_0/libs/python/doc/building.html
http://www.boost.org/doc/libs/1_35_0/libs/regex/index.html
http://www.boost.org/doc/libs/1_35_0/libs/serialization/index.html
http://www.boost.org/doc/libs/1_35_0/libs/signals/index.html
http://www.boost.org/doc/libs/1_35_0/doc/html/thread.html
http://www.boost.org/doc/libs/1_35_0/libs/wave/index.html

Chapter 14 ■ Using C++ Libraries for Finance

226

Table 14-2 presents a quick list of the integration techniques available when using odeint. Some of these
techniques have been discussed in the previous chapter. Others are variations of the best-known algorithms
and can provide performance advantages for use in particular applications.

The algorithms made available in the odeint library are implemented as separate template classes. Each
class corresponds to an algorithm or algorithmic concept. The odeint library contains a set of integration
methods that can be parameterized using the provided templates. These templates make it possible to use
different strategies through the combination of the given algorithms and concepts.

Figure 14-1.  Web site of the odeint library, where you can download its latest version

Table 14-2.  List of Integration Techniques Available When Using odeint

Class Name Description

euler Original Euler’s algorithm to solve ODEs

runge_kutta4 Uses the Runge-Kutta method, with fourth-order approximation

runge_kutta_cash_karp54 Runge-Kutta method

runge_kutta_fehlberg78 Variation of Runge-Kutta that uses the Fehlberg algorithm

adams_moulton A multi-step algorithm for solving ODEs

dense_output_runge_kutta An implementation of Runge-Kutta that uses dense output

bulirsch_stoer Based on the Bulirsch-Stoer algorithm, provides higher accuracy in the
solution of complex ODEs

implicit_euler A variation of Euler’s algorithm in which the equation is given in
implicit form and requires the use of the associated Jacobian

Chapter 14 ■ Using C++ Libraries for Finance

227

One of the basic types of strategies classes available in odeint is a stepper. A stepper is used to navigate
through the solution space of the given ODE. This is an important concept because ODEs are solved
interactively, and the step size and direction determine how a particular solution strategy will behave.
Depending on the type of stepping strategy used, the resulting algorithm can perform a calculation that is
faster or more accurate. Here are the known stepper types provided by odeint:

•	 runge_kutta4

•	 euler

•	 runge_kutta_cash_karp54

•	 runge_kutta_dopri5

•	 runge_kutta_fehlberg78

•	 modified_midpoint

•	 rosenbrock4

Solving a Simple ODE
In this section, you will see how to use the concepts described previously to solve a simple ODE in the
standard form given by:

y' = f(x,y)

Here, y is a function of x, y' is the first derivative of y, and f(x, y) is a general equation that may depend
both on x and y.

To use odeint, the first step is to include the main header file containing this library, with:

#include <boost/numeric/odeint.hpp>

To solve any ODE, you need first to determine the f(x, y) part of the system, that is, the right side of the
ODE equation. In this example, you will solve for the simple equation

	
y

x

y

x
’

. /
= +

3

2 5 3 22

This is done in the following code fragment:

#include "boosttest.hpp"

#include <iostream>
#include <boost/array.hpp>

#include <boost/numeric/odeint.hpp>

//
// This is the equation at the right side of the ODE y' = f(x,y)
// It is evaluated in the inner steps of the algorithm.
//

Chapter 14 ■ Using C++ Libraries for Finance

228

void right_side_equation(double y, double &dydx, double x)
{
 dydx = 3.0/(2.5*x*x) + y/(1.5*x);
}

An optional feature of odeint algorithm is the use of an observer. The observer is a function that can
be used to inspect each step of the algorithm. Using this information, you can record the progression of the
solution, or you can perform more complex analysis if necessary. In this example, the observer simply prints
the output, which will later be used to plot the convergence of the solution.

// this function simply prints the current value of the interactive
// solution steps.
void write_cout(const double &x , const double t)
{
 cout << t << '\t' << x << endl;
}

Next, you need to define the stepper algorithm. In this case, the runge_kutta_dopri5, a basic stepper
based on the Runge-Kutta method, was selected. This can be done with a simple typedef to define the
stepper_type.

// A stepper based on Runge-Kutta algorithm.
// the state_type use is 'double'
typedef runge_kutta_dopri5<double> stepper_type;

Finally, the main function is used to integrate the ODE under the given initial conditions. The task is
performed by the integrate_adaptive function, which takes as parameters the stepper, the ODE defining
equation, state and step parameters, and a function that prints the intermediate results.

// This solves the ODE described above with initial condition x(1) = 0.
//
int main()
{
 double x = 0.0;
 auto n = integrate_adaptive(
 make_controlled(1E-12, 1E-12, stepper_type()), // instantiate the stepper
 right_side_equation, // equation
 x, // initial state
 1.0 , 10.0 , 0.1 , // start x, end x, and step size
 write_cout);
 cout << " process completed after " << n << " steps \n";
 return 0;
}

I ran this code and used the output of the observer function to plot the convergence of the results found
by the ODE solver. The plot, displayed in Figure 14-2, shows how solution values change as you move from
1.0 to 10.0 in the solution space.

Chapter 14 ■ Using C++ Libraries for Finance

229

The QuantLib Library
The second example of a library that is used in quantitative finance and options analysis is the QuantLib
library. QuantLib is a well-established repository of quantitative code for C++. The library has been tested
and used by many developers, which means that you can take advantage of the hard work that went into
creating and testing the algorithms.

Being an open source project, QuantLib is free and can be used by anyone by just downloading and
building the source code. The project also accepts contributed code, which means that many people can fix
bugs and participate in the improvement of the library.

The QuantLib contains a wide assortment of classes that simplify certain tasks that are necessary in
quantitative algorithms for finance. A few areas covered by QuantLib are the following:

•	 Date handling: Many algorithms for options and derivative analysis are based on
dates. Therefore, accurate information about trading dates, holidays, and other
calendar-specific events are very important for the correct results of such algorithms.
QuantLib provides a number of classes that encapsulates the concepts needed for
data handling in financial applications.

•	 Design patterns: The QuantLib library puts a lot of effort in following well-established
design patterns. Most algorithms use design patterns that make them easier to
understand and to maintain. For this reason, QuantLib has a rich implementation of
common design patterns, including Singleton, Observer, Singleton, Composite, and
others.

Figure 14-2.  Results of the integrate_adaptive function from the odeint library

Chapter 14 ■ Using C++ Libraries for Finance

230

•	 Monte Carlo methods: A few of the classes provided by QuantLib are used to simplify
the implementation of Monte Carlo methods. These classes make it easier to create,
for example, random paths for financial instruments, as well as similar models based
on Brownian motion.

•	 Pricing engines: Another area that is covered by QuantLib is the implementation of
efficient pricing engines for options and derivatives. The library provides several
techniques for options pricing, which are carefully packaged into C++ classes. These
pricing engines include barrier option engines, Asian option engines, basket option
engines, and vanilla option engines.

•	 Optimizers: Another utility that is frequently employed in financial applications is an
optimization engine. The QuantLib library contains a few classes dedicated to some
common optimization strategies. Using such optimization algorithms, it is possible
to quickly solve complex problems where the objective is to find the minimum or the
maximum of a given function.

In the remaining of this section, you will see a few examples using classes from QuantLib. You will learn
how to use some of the main classes available in the library and integrate them to your applications.

Handling Dates
One of the most common tasks in financial algorithms is handling dates correctly. You saw in Chapter 3 that
there are several ways to store and transform values stored as dates. The QuantLib library tries to simplify
some of these tasks with the introduction of carefully designed date and time classes.

Managing holidays is one of the most difficult problems when using dates in financial applications.
Since the number of trading days constitute part of the calculation, when computing the price of an option,
it becomes very important to have precise representations of date intervals, considering which of those days
are trading days.

First, lets consider how to use the Date class provided by QuantLib, along with some of the basic
operations defined on that class. The basic way to construct an object of type Date is to pass the desired date
in the day-month-year format. Here is an example:

 Date date1(10, Month::April, 2010);

This would create a date representing the tenth day of April, 2010. Now, using a date created in this
way, it is possible to perform operations such as addition or subtraction using the operators that have been
overloaded by QuantLib.

void testDates()
{
 Date date(10, Month::April, 2010);
 cout << "original date: " << date << endl;

 date += 2 * Days;
 cout << "after 2 days: " << date << endl;

 date += 3 * Months;
 cout << "after 3 months: " << date << endl;
}

http://dx.doi.org/10.1007/978-1-4842-1814-3_3

Chapter 14 ■ Using C++ Libraries for Finance

231

In this code, the operators are used to add a period of two days and three months, respectively, to the
original date. The Days and Month identifiers are simple data types that concisely represent a time period and
can be used to simplify the handling of intervals.

Another simple operation on dates is incrementing and decrementing. This allows you to quickly find
the next or the previous day in a sequence, without needing to check if these dates occur in different months
or years. The following code shows an example of how this works:

void nextAndPreviousDay()
{
 Date date(28, Month::February, 2010);
 cout << "original date: " << date << endl;

 date++;
 cout << "next day: " << date << endl;

 date--;
 cout << "previous day: " << date << endl;
}

Additional tools are provided to answer common questions related to dates. For example, member
functions of the Date class are used to determine if a particular date occurs in a leap year, if it occurs at the
end of the month, or if the date is a weekday. These are exemplified by the code in the following section.

Working with Calendars
Another aspect of dates that causes a lot of confusion is handling local holidays. Each country has non-
trading days that are determined by holidays, which also change according to the year in which they occur.
To handle these issues, QuantLib provides a set of Calendar objects. These calendars are localized and can
be used to determine if a particular date is a holiday.

The following example shows how to use the Calendar class in a typical C++ application:

void useCalendar()
{
 Calendar cal = UnitedStates(UnitedStates::NYSE);

 cout << " list of holidays " << endl;
 for (auto date : Calendar::holidayList(cal, Date(1, Month::Jan, 2010),
 Date(1, Month::Jan, 2012)))
 {
 cout << " " << date;
 }

 cout << " is Jan 1 2010 a business day? "
 << cal.isBusinessDay(Date(1, Month::Jan, 2010)) << endl;
 cout << " is Jan 1 2010 a holiday? "
 << cal.isHoliday(Date(1, Month::Jan, 2010)) << endl;
 cout << " is Jan 1 2010 end of month? "
 << cal.isEndOfMonth(Date(1, Month::Jan, 2010)) << endl;
}

Chapter 14 ■ Using C++ Libraries for Finance

232

The first line of the useCalendar function shows how to create a new calendar for a particular region. In
this case, the calendar corresponds to the United States, and in particular to the New York Stock Exchange.

With this calendar loaded, it is possible to answer a number of questions about dates in the United
States. For example, the next few lines show how to list all holidays with the holidayList function. The
function receives as arguments the calendar and the desired start and end date. The result is a container
with all the holidays for the given period.

The next few lines show how to use QuantLib Calendar object to answer a few common questions
related to the day of the week and the month. The first call is to isBusinessDay, and it returns true if the
given date occurs in a business day (usually Monday to Friday in most markets). The second member
function is isHoliday, which returns true only if the given date is a holiday.

Finally, you can see the member function isEndOfMonth example. This function returns true if the given
date occurs at the end of a month, which may be an important date in some kinds of financial contracts.

Another interesting feature of the Calendar class is that you can create and manage your own calendars.
This is necessary when creating code for countries that are not already covered by the library, or when you’re
working on particular institutions or markets that use a distinct calendar.

The main functions to manage calendar holidays are addHoliday and removeHoliday. With these
functions, you can create calendars that are specific to your needs. The following example code shows how
to use them:

Calendar createNewCalendar()
{
 Calendar newCal = UnitedStates(UnitedStates::NYSE);

 // Remove winter holiday
 newCal.removeHoliday(Date(25, Month::December, 2016));

 // Add international workers' day
 newCal.addHoliday (Date(1, Month::May, 2016));

 cout << " list of holidays " << endl;
 for (auto date : Calendar::holidayList(newCa
l, Date(1, Month::Jan, 2016),
 Date(31, Month::Dec, 2016)))
 {
 cout << " " << date;
 }

 return newCal;
}

This function starts with the creation of a new calendar object based on the U.S. calendar, more
specifically using the NYSE list of holidays. The function then proceeds to modify the original calendar,
adding a common holiday and adding another so the number of holidays remains the same. The code also
prints the list of holidays for the year 2016 to the standard output. Finally, the createNewCalendar function
returns the newly created calendar as the result.

Another important feature of the Calendar class provided by QuantLib is the ability to determine the
number of trading days between two dates. This is done using the businessDaysBetween member function,
which returns the number of business days in a particular interval given to the function. A simple example
can demonstrate how this function works:

int getNumberOfDays(Date d1, Date d2)
{

Chapter 14 ■ Using C++ Libraries for Finance

233

 Calendar usCal = UnitedStates(UnitedStates::NYSE);

 int nDays = usCal.businessDaysBetween(d1, d2);

 cout << " the interval size is " << nDays << endl;

 return nDays;
}

In the beginning, the getNumberOfDays function creates a calendar using the U.S. locale. The next step
is to determine the number of business days between two given dates. Then, the function prints the value of
this difference and returns that value as the final result.

Computing Solutions for Black-Scholes Equations
The next example of QuantLib is directly related to the problem of pricing options. The main formula for
pricing options is derived from the Black-Scholes differential equations. This makes it really important to
have a library that can quickly solve Black-Scholes models, at least as an initial step for further analysis.

The QuantLib provides classes that are specifically designed to solve Black-Scholes models. Unlike other
ODE and PDE packages that can be used to solve general differential equations (as seen in the previous
section on boost), the QuantLib classes target efficient techniques to solve a single model in particular. This
results in a very specialized algorithm that can be relied on for the efficient solution of Black-Scholes models.

To benefit from options models used by the QuantLib, you need to instantiate two classes:

•	 A class representing the option and the associated payoff: QuantLib provides a set of
classes for this purpose. An example of such a class is PlainVanillaPayoff, which
represents a common (vanilla) option and its associated payoff.

•	 A class representing the pricing method: This class encapsulates the algorithm
that is used to compute the option price. This example is interested in the class
representing the Black-Scholes algorithm, which is named the BlackScholes
calculator.

These classes are exemplified in the following sample code, which includes a function that performs the
computation and an associated test function.

First, you need to create a simple storage area, where the necessary information for the algorithm is stored.
The BlackScholesParameters structure is used for this purpose. The structure contains the following fields:

•	 The spot price for the underlying instrument

•	 The strike price for the desired option

•	 The current interest rate

•	 The forward interest rate

•	 The volatility of the underlying instrument

The structure can be represented in the sample C++ code as:

struct BlackScholesParameters {
 double S0;
 double K;
 double rd;
 double rf;

Chapter 14 ■ Using C++ Libraries for Finance

234

 double tau;
 double vol;
};

Based on this information, it is possible to describe the use of Black-Scholes pricing method using a C++
function. The function, called callBlackScholes, receives as a parameter a single reference to a structure of
type BlackScholesParameters.

void callBlackScholes(BlackScholesParameters &bp)
{
 // create a vanilla option (standard option type)
 boost::shared_ptr<PlainVanillaPayoff>
 vanillaPut(new QuantLib::PlainVanillaPayoff(Option::Put,bp.K));

 // compute discount rates
 double cur_disc = std::exp(-bp.rd * bp.tau); // current discount rate
 double for_disc = std::exp(-bp.rf * bp.tau); // forward discount rate
 double stdev = bp.vol * std::sqrt(bp.tau); // standard deviation

 BlackScholesCalculator putPricer(vanillaPut, bp.S0, for_disc, stdev, cur_disc);

 // Print options greeks
 cout << "value:" << putPricer.value() << endl;
 cout << "delta:" << putPricer.delta() << endl;
 cout << "gamma:" << putPricer.gamma() << endl;
 cout << "vega:" << putPricer.vega(bp.tau) << endl;
 cout << "theta:" << putPricer.theta(bp.tau) << endl;
 cout << "delta Fwd:" << putPricer.deltaForward() << endl;
 cout << "gamma Fwd:" << putPricer.gammaForward() << endl;

}

This code works in the following way. The first instruction is necessary to create a new object describing
the required option. This is done with the instantiation of an object of class PlainVanilllaPayoff, which
indicates that the new option is of plain vanilla type (i.e., it is a standard option). The arguments passed
are the type of option (either a call or a put) and the strike. These two parameters determine the type of
option that you’re handling, independent of the current characteristics of the market. The object of type
PlainVanillaPayoff is stored in a shared_ptr, which automatically manages the lifetime of the object,
cleaning up the pointer at the end of the scope of the local variable.

The next part of the callBlackScholes function initializes some of the parameters necessary to use the
options pricer. The parameters include the current and forward discount rate, which are computed from
the given interest rate using an exponential transformation. Another important parameter is the standard
deviation, which measures the volatility of the underlying instrument.

Once the parameters for the options pricing model are available, you can instantiate the
BlackScholesCalculator class, passing as parameters the object that describes the option, the current
price, and the other parameters discussed previously.

Using the object of type BlackScholesCalculator, you can retrieve important information about the
option price. The most important information is clearly the value of option at a particular date, returned
by the member function value. The option Greeks also provide key information that can be used to make
decisions about the option. The Greeks calculated by the BlackScholesCalculator include the following:

•	 The delta: Represents the marginal change in value with respect to the price of the
underlying.

Chapter 14 ■ Using C++ Libraries for Finance

235

•	 The gamma: Represents the marginal change in delta with respect to the price of the
underlying.

•	 The vega: Represents the marginal change in value with respect to the change in
volatility.

•	 The theta: Represents the marginal change in value with respect to the change in
remaining time.

You can test this code using a function that uses a few common values for each of the parameters and
calls the callBlackScholes function. Here is an example of how this can be done:

void testBlackScholes()
{
 BlackScholesParameters bp;

 bp.S0 = 95.0; // current price
 bp.K = 100.0; // strike
 bp.rd = 0.026; // current rate of return
 bp.rf = 0.017; // forward rate of return
 bp.tau= 0.62; // tau (time greek)
 bp.vol= 0.193; // volatility

 callBlackScholes(bp);
}

Creating a C++ Interface
Based on the previous functions, it is easy to create a generic class that encapsulates a vanilla Black-Scholes
pricing strategy. I called this class BlackScholesPricer, and it presents a simple interface that can be called
without external references to QuantLib.

The class declaration contains a set of parameters that will be used in the constructor, as shown in the
next code listing.

class BlackScholesPricer {
public:
 �BlackScholesPricer(bool call, double price, double strike, double tau, double r, double fr,

double vol);
 BlackScholesPricer(const BlackScholesPricer &p);
 ~BlackScholesPricer();
 BlackScholesPricer &operator=(const BlackScholesPricer &p);

 double value();

 double delta();
 double gamma();
 double theta();
 double vega();
private:
 double m_price;
 double m_strike;
 double m_tau;

Chapter 14 ■ Using C++ Libraries for Finance

236

 double m_rate;
 double m_frate;
 double m_vol;
 double m_isCall;

 boost::shared_ptr<QuantLib::BlackScholesCalculator> m_calc;
};

The constructor for BlackScholesPricer is responsible for initializing all the parameters with the
passed arguments. Inside the constructor, you can see the code that initializes the payoff class. The option
payoff can be a put or a call, depending on the value of the first parameter.

Later, you will see these parameters being used to create a new BlackScholesCalculator object. This
object is stored in a shared pointer so that it can be used to answer questions about the model.

BlackScholesPricer::BlackScholesPricer(bool call, double price, double strike, double tau,
double r, double fr, double vol)
:m_price(price),
m_strike(strike),
m_tau(tau),
m_rate(r),
m_frate(fr),
m_vol(vol),
m_isCall(call)
{
 boost::shared_ptr<QuantLib::PlainVanillaPayoff>
 m_option (new QuantLib::PlainVanillaPayoff(
 call ? QuantLib::Option::Call : QuantLib::Option::Put, strike));

 // compute discount rates
 double cur_disc = std::exp(-m_rate * m_tau); // current discount rate
 double for_disc = std::exp(-m_frate * m_tau); // forward discount rate
 double stdev = m_vol * std::sqrt(m_tau); // standard deviation

 �m_calc.reset(new QuantLib::BlackScholesCalculator(m_option, m_price, for_disc, stdev,
cur_disc));

}

BlackScholesPricer::BlackScholesPricer(const BlackScholesPricer &p)
:m_price(p.m_price),
m_strike(p.m_strike),
m_tau(p.m_tau),
m_rate(p.m_rate),
m_frate(p.m_frate),
m_vol(p.m_vol),
m_isCall(p.m_isCall),
m_calc(p.m_calc)
{}

BlackScholesPricer::~BlackScholesPricer() {}

Chapter 14 ■ Using C++ Libraries for Finance

237

BlackScholesPricer &BlackScholesPricer::operator=(const BlackScholesPricer &p)
{
 if (this != &p)
 {
 m_price = p.m_price;
 m_strike = p.m_strike;
 m_tau = p.m_tau;
 m_rate = p.m_rate;
 m_frate = p.m_frate;
 m_vol = p.m_vol;
 m_isCall = p.m_isCall;
 m_calc = p.m_calc;
 }
 return *this;
}

Using these definitions, the following member functions can be used to provide access to the results
of the pricing algorithm. They rely on the m_calc member variable, which already contains this stored
information.

double BlackScholesPricer::value() { return m_calc->value(); }

double BlackScholesPricer::delta() { return m_calc->delta(); }

double BlackScholesPricer::gamma() { return m_calc->gamma(); }

double BlackScholesPricer::theta() { return m_calc->theta(m_tau); }

double BlackScholesPricer::vega() { return m_calc->vega(m_tau); }

Complete Code
Listing 14-1 shows the BlackScholesPrices class. It shows an examples of how create an interface for the
Black-Scholes component in QuantLib.

Listing 14-1.  Implementation File BlackScholesPrices.cpp

#include <ql/quantlib.hpp>

#include <ql/pricingengines/blackcalculator.hpp>

//
// The BlackScholesPricer class provides an interface to the QuantLib
// pricer component
//
class BlackScholesPricer {
public:
 �BlackScholesPricer(bool call, double price, double strike, double tau, double r, double fr,

double vol);
 BlackScholesPricer(const BlackScholesPricer &p);
 ~BlackScholesPricer();
 BlackScholesPricer &operator=(const BlackScholesPricer &p);

Chapter 14 ■ Using C++ Libraries for Finance

238

 double value();

 double delta();
 double gamma();
 double theta();
 double vega();
private:
 double m_price;
 double m_strike;
 double m_tau;
 double m_rate;
 double m_frate;
 double m_vol;
 double m_isCall;

 boost::shared_ptr<QuantLib::BlackScholesCalculator> m_calc;
};

BlackScholesPricer::BlackScholesPricer(bool call, double price, double strike, double tau,
double r, double fr, double vol)
:m_price(price),
m_strike(strike),
m_tau(tau),
m_rate(r),
m_frate(fr),
m_vol(vol),
m_isCall(call)
{
 boost::shared_ptr<QuantLib::PlainVanillaPayoff>
 �m_option (new QuantLib::PlainVanillaPayoff(call ? QuantLib::Option::Call :

QuantLib::Option::Put, strike));

 // compute discount rates
 double cur_disc = std::exp(-m_rate * m_tau); // current discount rate
 double for_disc = std::exp(-m_frate * m_tau); // forward discount rate
 double stdev = m_vol * std::sqrt(m_tau); // standard deviation

 �m_calc.reset(new QuantLib::BlackScholesCalculator(m_option, m_price, for_disc, stdev,
cur_disc));

}

BlackScholesPricer::BlackScholesPricer(const BlackScholesPricer &p)
:m_price(p.m_price),
m_strike(p.m_strike),
m_tau(p.m_tau),
m_rate(p.m_rate),
m_frate(p.m_frate),
m_vol(p.m_vol),

Chapter 14 ■ Using C++ Libraries for Finance

239

m_isCall(p.m_isCall),
m_calc(p.m_calc)
{}

BlackScholesPricer::~BlackScholesPricer() {}

BlackScholesPricer &BlackScholesPricer::operator=(const BlackScholesPricer &p)
{
 if (this != &p)
 {
 m_price = p.m_price;
 m_strike = p.m_strike;
 m_tau = p.m_tau;
 m_rate = p.m_rate;
 m_frate = p.m_frate;
 m_vol = p.m_vol;
 m_isCall = p.m_isCall;
 m_calc = p.m_calc;
 }
 return *this;
}

double BlackScholesPricer::value()
{
 return m_calc->value();
}

double BlackScholesPricer::delta()
{
 return m_calc->delta();
}

double BlackScholesPricer::gamma()
{
 return m_calc->gamma();
}

double BlackScholesPricer::theta()
{
 return m_calc->theta(m_tau);
}

double BlackScholesPricer::vega()
{
 return m_calc->vega(m_tau);
}

To compile this code, you need to install the QuantLib library for your platform and add that library to
the project. For example, using the gcc compiler, you need to use the –lQuantLib option.

Chapter 14 ■ Using C++ Libraries for Finance

240

Conclusion
Using good libraries is an important aspect of effective software development. Financial code, especially
when options and derivatives are involved, requires the use of efficient and well-tested algorithms. For this
reason, it is important that developers be acquainted with high-quality libraries that can be used to simplify
the development process.

In this chapter, you learned about some libraries, such as boost and QuantLib, which have been
successfully used to create financial applications handling options and other derivatives. The first example
was from the boost repository, which contains several special-purpose libraries that use modern C++
features. The odeint library in particular, which is contained in the boost repository, can be used to simplify
the computation of solutions to ODEs.

Another important library used in the financial software community is QuantLib. This open source
financial library provides many useful algorithms implemented in modern, efficient C++. You saw examples
of common utilities provided by QuantLib. The most common classes are for date handling. These utility
classes can handle business calendars, date intervals, and sequences in a way that makes it possible to
handle financial applications.

You also saw how to use QuantLib to quickly create options and derivative models. The
BlackScholesCalculator class encapsulates the solution to the Black-Scholes model. This model is the
basis for most techniques that can be used to analyze prices and variations of values for financial derivatives.

The next chapter will cover additional algorithms that can be used to process more complex derivatives,
with special attention to credit derivatives. These algorithms with be compared and implemented in C++.

241© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3_15

 CHAPTER 15

 Credit Derivatives

 A credit derivative is a financial contract that aims at reducing credit risk—that is, the risk of default posed
by contracts established with a business counterparty. These kinds of derivatives have become increasingly
popular in the last decade, because they allow the hedging of complex financial positions even in industries
that are not covered by mainstream markets.

 As a financial software engineer, you are interested in modeling and analyzing such credit derivative
contracts using programming code. Employing some of the methods developed in the previous chapters,
it becomes possible to write applications that simplify the pricing and evaluation of such derivative
instruments. In particular, credit derivatives can be modeled using some of the same tools that have already
been discussed for the analysis of options.

 In this chapter, you will learn how to create the C++ code that can be used in the quantitative analysis of
credit derivative contracts. Here are some of the topics discussed:

• General concepts of credit derivatives : A general exposition of what credit derivatives
are and the main types of derivatives commonly used in the marketplace.

• Modeling the problem : How to model the problems occurring in the area of credit
derivatives. I’ll present examples of how such derivatives can be modeled using tools
that have been previously used for standard options.

• Barrier options : You will learn about barrier options and how they can be used
to compute prices for large classes of credit derivatives. You will also see coding
examples of how to handle barrier options in C++.

• Using QuantLib for credit derivatives : You will find a complete example of how to
use the financial classes contained in QuantLib to implement derivatives-related
C++ code. I will present the CDSSolver class, which implements a pricing strategy for
derivatives based on barrier options.

 Introduction to Credit Derivatives
 A credit derivative is a type of financial contract that protects participants from credit risk. Credit risk,
in the large majority of the cases, refers to the risk of default (or lack of payment by other means) from
a counterpart. For example, consider a company that creates a financial operation that is backed by an
insurance contract. If this insurance contract is provided by a third party, this presents a risk of bankruptcy.
The participants of this contract want to protect against the possibility of default, so companies can create a
credit derivative that will pay a considerable amount of money if that the counterpart goes bankrupt. Such
contracts are signed with another third party, which makes the payment if the bankruptcy occurs.

CHAPTER 15 ■ CREDIT DERIVATIVES

242

 Credit derivatives can be classified according to several categories, which consider how the contract
is structured and the participants in such a contract. Here are some of the most common types of credit
derivatives that are traded in the market:

• CDO (collateralized debt obligations) : A CDO is a type of credit derivative where the
obligations paid are collateralized based on some underlying asset. This process of
collateralization creates a tiered system, where the several payers are pooled and
graded according to their credit risk. Thus, financial companies can sell different
tiers, ranging from the highest credit (AAA) to lower level that represent higher
default risk (B+ for example).

• CDS (credit default swap) : A CDS allows companies to protect themselves against the
default of a major market player. The buyer of a CDS makes one or more payments
for a predefined period of time. If a default occurs on the covered asset, the CDS
buyer is entitled to receive compensation for this credit event.

• Credit default option: A credit default option resembles an option contract, but the
underlying corresponds to the credit default against which you are seeking protection.

• CDN (credit linked note): A CDN is a financial instrument that allows a particular
type of credit risk to be transferred to other investors. Usually these notes are
structured as bonds on lower risk assets, which are used to pay creditors if the target
institution defaults.

• CMCDS (constant maturity CDS): A CMCDS works just like a CDS, but it has
different rules for the amount of the payoff received in the case of a default. With the
CMCDS, payoffs change based on considerations that are determined between the
participants of the contract. For example, the payoff may be determined according to
a particular interest rate index.

• Total return swap : This category of derivative is used to transfer financial results
between two institutions according to a predefined contract. The buyer makes one or
more payments, while it expects to receive the total return of a particular investment
as a payoff. This allows some institutions, such as hedge funds, to receive the return
of complex financial investment with the help of a second entity that transfers the
financial return at the end of the covered period.

 Modeling Credit Derivatives
 As you saw in the previous section, credit derivatives encompass a large number of financial products that
have in common the mitigation of credit risk from one entity to another. This makes it difficult to come
up with general models for such a wide class of financial instruments. In this section, you will see a few
examples of C++ models applied to a few common classes of credit derivatives.

 The first step in creating effective code for credit derivatives is to have a computer model for this type
of security. Given the diversity of CD contracts, having a proper model becomes even more important so
that other algorithms can be applied to this type of security without the need to understand the internal
complexities of each type of credit derivative.

 As a first step, you can define a simple class that can be used to store and manipulate the data
corresponding to a credit default swap. The fields in this class represent the characteristic values that define
a CDS contract . These values are the following:

• Notional : This represents the total value of the position encompassed by the
contract. The notional is usually larger than the payments due to leverage that is
allowed on derivatives contracts.

CHAPTER 15 ■ CREDIT DERIVATIVES

243

• Spread : The value paid by the buyer of the CDS. It may be paid in a particular
schedule, or in a single payment.

• Time period : Defines the time period in which the CDS is valid.

• Pay at default : A Boolean value that determines if the payoff should be made at the
time of credit default.

• Is long : A Boolean value that is true if the contract is being bought, and false if the
contract is being sold.

 In the next few sections, you will see how this information can be used to model CDS contracts with
standard techniques employed in quantitative finance. In particular, I will discuss how to analyze such
derivatives using the concept of barrier options. You will also see how to calculate the price for such barrier
options.

 Using Barrier Options
 This section I discusses how to use a technique that is frequently employed for the pricing of derivatives in
general, including credit derivatives. To simplify the discussion, I use the most basic structure for a financial
derivative so that you don’t need to worry about complex contractual issues. However, the barrier technique
described in this section can be expanded to solve a large class of commonly traded derivatives.

 The first step in understanding the solution method is to define a barrier option. A barrier option is a
special type of derivative where payoff occurs when a particular price level, or barrier , is crossed. This makes
it different from a normal option, because common options have a payoff that depends on how much the
underlying is above or below some threshold. With a barrier option, however, the payoff is paid only as the
barrier is crossed.

 Barrier options work well as a simple model for credit derivatives, because the credit event is frequently
defined as a particular barrier. For example, if the credit event is the bankruptcy of a company, the barrier to
be crossed is given by the difference between assets and liabilities in the corporation. When that barrier is
breached, the company becomes insolvent and the payoff needs to be made.

 There are two main types of barrier options, depending on how the barrier is considered as part of the
contract:

• Knock-in : This is a barrier option where the payoff is given only when the barrier is
touched before expiration.

• Knock-out : This is a barrier option where the payoff is given only when the barrier is
 not touched before expiration.

 Thus, for example, a barrier option that pays when a company claims bankruptcy is a knock-in option,
because the payment happens when the default barrier is reached. You can also classify barrier options
according to the current value in relation to the barrier:

• Down-option : This is a barrier option where the barrier is below the current value of
the underlying asset.

• Up-option : This is a barrier option where the barrier is above the current value of the
underlying asset.

 These two classifications can also be combined, so that you can have down-in options or up-out
options. Finally, these options can be calls or puts, depending on whether you are buying the right to sell
(put) or the right to buy (call) the underlying instrument.

CHAPTER 15 ■ CREDIT DERIVATIVES

244

 A Solver Class for Barrier Options
 To solve the problem, a new class called CDSSolver is defined in this section. This class contains all the
elements necessary to define a barrier option, along with the code that solves the pricing problem using
functions and classes from the QuantLib repository. The definition of the class contains the member
variables needed by the pricing algorithm:

 class CDSSolver : boost::noncopyable {
 public:

 // constructor
 CDSSolver(double val, double sigma, double divYield,
 double forwardIR, double strike, double barrier, double rebate);

 // solve the model
 std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>
 solve(QuantLib::Date maturity_date);

 // generate a grid
 void generateGrid(QuantLib::BarrierOption &option,
 QuantLib::BlackScholesMertonProcess &process,
 const std::vector<QuantLib::Size> &grid);

 private:

 double currentValue;
 double sigma;
 double divYield;
 double forwardIR;
 double strike;
 double barrier;
 double rebate;
 };

 The first thing to consider when reviewing this class is that the QuantLib code also uses boost libraries
for basic functionality, such as smart pointers. In this case, the CDSSolver uses boost::noncopyable as a
base class, which indicates that the class cannot be copied. Therefore, no copy constructor or assignment
operators are declared in CDSSolver .

 ■ Note Observe that the CDSSolver class uses shared pointers declared in boost. This is necessary because
QuantLib has boost as a direct dependency, and many of the internal smart pointers are declared in this
way. Remember, however, that C++11 also has its own version of shared_ptr , which is part of the standard
namespace. It is important to avoid confusion between shared_ptr declared in boost and in the standard library.

 There are two main member functions in the CDSSolver class . The solve function is responsible for
performing the main tasks associated with the pricing of barrier options. The generateGrid evaluates the
value of the barrier option at particular time points, as defined by the vector of times points passed as a
parameter.

CHAPTER 15 ■ CREDIT DERIVATIVES

245

 The member variables used by the CDSSolver class are the following:

• currentValue : Represents the current value of the underlying instrument.

• sigma : Represents the variance of the financial instrument.

• divYield : The dividend yield paid annually by the underlying.

• forwardIR : The forward interest rate, which is used to determine the return of cash
that is not invested in the barrier option.

• strike : The strike of the barrier option, that is, the price that determines the payoff
value.

• barrier : The price barrier that needs to be crossed to trigger the payout of the option
contract.

• rebate : Contractual rebate defined when the barrier option is created.

 These variables are later used to solve the pricing problem, as you can see in the following description
of the associated code. But first, I will provide a short introduction to the classes included in QuantLib that
are used solve this kind of pricing problem.

 Barrier Option Classes in QuantLib
 QuantLib offers support for pricing credit derivatives and related instruments. In particular, the library
contains a set of classes that can be used to price barrier options as defined in the previous section. First, I
will review some of these classes, which will later be used in a complete example of how to compute prices
for barrier options.

 The first class of importance is the Quote class . A quote is defined as one or more values that determine
the current price of an instrument. The Quote class is just the base for several classes that represent quotes
for different financial instruments. In this example, I will use a SimpleQuote to initialize the quote for the
barrier option. The following code shows how this is done:

 Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));

 This line of code uses a second class that is frequently used in QuantLib: the Handle class . A handle is a
simple container that allows objects to be referenced and changed when necessary.

 The next class used in the implementation of barrier options is YieldTermStructure . This class allows
you to specify the yield curve currently used by the markets. The yield curve is a representation of the
effective interest rates in a particular market, such as, for example, United States Treasury bonds. The curve
is formed as you consider the different interest rates for each maturity period, usually measured in years.
Figure 15-1 shows an example of the yield term structure for Treasury bonds.

 Using the YieldTermStructure class in QuantLib, it is possible to store and use this information to
compute barrier options. Depending on how the financial instrument is defined, such a yield term structure
may be represented by several interest rates, one for each desired time horizon. The YieldTermStructure
class is abstract and should be instantiated using one of their subclasses, which include:

• FlatForward : The simplest cases in which the curve is flat and no variation in
interest rate is forecasted.

• ForwardCurve : A type of yield curve that can use different rates for each time period.
This class can be used for the most common case where the interest rates for
different time periods are known.

CHAPTER 15 ■ CREDIT DERIVATIVES

246

• PiecewiseYieldCurve : A yield curve in which the different segments of the curve are
linearized.

• FittedBondDiscontCurve : A yield curve where interest rates are given indirectly, and
the yield can be fitted to represent a set of bonds.

 In the example code of the next section, I use the FlatForward class as a way to represent a simple
short-term yield structure, with no variation in interest rates. More complex yield term structures can be
easily accommodated by using one of the previous classes.

 A similar class provided by QuantLib is the BlackVolTermStructure . This class represents the volatility
term structure, and allows you to determine a particular curve that represents the implied volatility (also
known as Black volatility, which is used in the Black-Scholes equation) for the underlying instrument.
Similarly to the yield term structure, there are several options for the type of volatility term structure.
They differ in the shape of the curve, as well as in the functions that can be used to represent each part of
the curve. QuantLib also provides a number of classes that can be used to represent the different types of
volatility term structure. Here are some of them:

• BlackConstantVol : Used to represent a volatility type that is constant over the whole
period.

• BlackVarianceCurve : A type of volatility curve where different values of variance are
used to determine the volatility.

• ImpliedVolTermStructure : A volatility term structure that is defined by the implied
volatility associated with a particular instrument.

• BlackVarianceSurface : Defines a volatility curve based on a set of data points that
define a variance surface. These values are interpolated to generate the desired
variance surface.

 Figure 15-1. Example of yield structure for a U.S. Treasury bond

CHAPTER 15 ■ CREDIT DERIVATIVES

247

 Using the information stored in these classes, it is possible to describe the Black-Scholes model using
the class BlackScholesMertonProcess , which is also part of QuantLib. This class receives as parameters
the quote, a risk-free yield term structure, and a yield term representing the asset dividend. The class
constructor also receives a volatility term structure as a parameter that describes the process.

 The class StrikedTypePayoff is used to build complex payoffs. It also has a few useful derived classes,
including the following:

• PlainVanillaPayoff : Represents the most common type of payoff, described by a
single value and a strike.

• PercentageStrikePayoff : A type of payoff where the strike is given as a percentage
of the underlying price, instead of as a fixed value.

• AssetOrNothingPayoff : A payoff that is structured as a binary decision. The results
are either an asset or nothing.

• CashOrNothingPayoff : A payoff that is structured as a binary decision. The results
are either cash or nothing.

 The example code in the next section uses the PlainVanillaPayoff class . The constructor to this class
uses as parameters the option type (put or call) and a strike.

 BarrierOption is the central class used by QuantLib to model barrier options. This class can be used to
calculate the value of a particular barrier option, given a set of parameters that represent that option.

 The first parameter to the constructor of BarrierOption is the type of barrier option. As previously
described, barrier options can be of four types— UpIn , UpOut , DownIn , and DownOut —depending on the
underlying price and the type of barrier used. The next parameters are values that correspond to the barrier,
the rebate, the payoff, and the exercise.

 Finally, this example also uses a barrier options engine called FdBlackScholesBarrierEngine . This
class is used as an implementation for the pricing strategy.

 An Example Using QuantLib
 Using the classes presented in the previous section, it is possible to explain the implementation of the class
 CDSSolver . First, consider the first member function, called CDSSolver::solve . This function receives as a
parameter a Date object that represents the maturity date of the desired barrier option.

 The first step is to create a quote for the option, instantiating the SimpleQuote class and using the
current value of the underling as its single argument. Today’s date is also computed with the help of the
 Date::todaysDate member function.

 Next, the code tries to instantiate the two term structure objects, one for the dividend yield and another
for free cash interest rates. A volatility term structure object is also instantiated using the given volatility,
which is estimated using the parameter sigma .

 // solve the valuation problem using the barrier technique, from today to the maturity date
 pair<BarrierOption, BlackScholesMertonProcess>
 CDSSolver::solve(Date maturity_date)
 {
 Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));
 Date today = Date::todaysDate();

 shared_ptr<YieldTermStructure> ts1(new FlatForward(today, divYield, Thirty360()));
 shared_ptr<YieldTermStructure> ts2(new FlatForward(today, forwardIR, Thirty360()));
 shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today, NullCalendar(),sigma,

Thirty360()));

CHAPTER 15 ■ CREDIT DERIVATIVES

248

 The next part of the solve function is responsible for instantiating a process object, which uses QuantL
ib:: BlackScholesMertonProcess . Such a process requires a quote object, yield term structures for interest
rates and cash, and a volatility term structure that was previously created.

 The function also creates two new objects: a payoff object of type PlainVanillaPayoff that represents
the desired call option and a given strike. The exercise is established as a EuropeanExercise type, at the
given maturity date.

 auto process = BlackScholesMertonProcess(quote,
 Handle<YieldTermStructure>(ts1),
 Handle<YieldTermStructure>(ts2),
 Handle<BlackVolTermStructure>(vs));

 shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(Option::Type::Call, strike));
 shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

 Finally, you’re ready to create a barrier option object, which is an instance of
 QuantLib::BarrierOption . It takes as parameters the type of barrier, the barrier value, a rebate (if it is
available), and the two objects previously created: payoff and exercise .

 The next two steps are to create a generalized Black-Scholes object using the existing process and to set
the price engine of the barrier option. The price engine algorithm is responsible for price calculation, and
this example uses AnalyticBarrierEngine , which is a common algorithm available from QuantLib. The
member function CDSSolver::solve will finally return a pair that contains the option and process objects.

 auto option = BarrierOption(Barrier::Type::UpIn,
 barrier, rebate,
 payoff,
 exercise);

 auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

 option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrierEngine(pproc)));

 return std::make_pair(option, process);
 }

 The next member function implemented in the CDSSolver class is generateGrid . This function is
conceptually simple, and it just prints a grid of prices calculated from the given barrier option, using the
given BlackScholesMertonProcess and a set of points that determines the option price at a particular date.

 Essentially, the function assumes that the grid points are sorted and selects the maximum value. Then,
for each element of the grid, a new barrier engine is instantiated and used with the existing barrier option . The
price is computed using the resulting combination of option and pricing engines. The code then prints the ratio
of increase for that particular point. A backward computation is also performed for comparison purposes.

 void CDSSolver::generateGrid(BarrierOption &option, BlackScholesMertonProcess &process,
const vector<Size> &grid)
 {
 double value = option.NPV();
 Size maxG = grid[grid.size()-1]; // find maximum grid value

 for (auto g : grid)
 {

CHAPTER 15 ■ CREDIT DERIVATIVES

249

 FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholesProcess>(&process),
maxG, g);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be));

 cout << std::abs(option.NPV()/value -1);

 FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholesProcess>(&process),
g, maxG);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

 cout << std::abs(option.NPV()/value -1);
 }
 }

 Complete Code
 This section contains the complete listing of the CDSSolver class. It contains a header file (Listing 15-1),
which defines the interface for the class, and an implementation file (Listing 15-2), where the methods solve
and generateGrid are implemented.

 Listing 15-1. Header File for the CDSSolver Class

 //
 // CDS.hpp
 // CppOptions

 #ifndef CDS_hpp
 #define CDS_hpp

 #include <stdio.h>

 #include <utility>

 #include <ql/instruments/barrieroption.hpp>
 #include <ql/processes/blackscholesprocess.hpp>

 //
 // CDSSolver class, incorporates the solution to Credit Default
 class CDSSolver : boost::noncopyable {
 public:

 // constructor
 CDSSolver(double val, double sigma, double divYield,
 double forwardIR, double strike, double barrier, double rebate);

 // solve the model
 std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>
 solve(QuantLib::Date maturity_date);

 // generate a grid
 void generateGrid(QuantLib::BarrierOption &option,

CHAPTER 15 ■ CREDIT DERIVATIVES

250

 QuantLib::BlackScholesMertonProcess &process,
 const std::vector<QuantLib::Size> &grid);

 private:

 double currentValue;
 double sigma;
 double divYield;
 double forwardIR;
 double strike;
 double barrier;
 double rebate;
 };

 #endif /* CDS_hpp */

 Listing 15-2 shows the implementation file for class CDSSolver . It also contains a simple test stub called
 test_CDSSolver , which creates a new instance of CDSSolver using a few test parameters .

 Listing 15-2. Implementation File for Class CDSSolver

 //
 // CDS.cpp

 #include "CDS.h"

 #include <iostream>

 // include classes from QuantLib
 #include <ql/instruments/creditdefaultswap.hpp>
 #include <ql/instruments/barrieroption.hpp>
 #include <ql/quotes/SimpleQuote.hpp>
 #include <ql/time/daycounters/thirty360.hpp>
 #include <ql/exercise.hpp>
 #include <ql/termstructures/yield/flatforward.hpp>
 #include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
 #include <ql/processes/blackscholesprocess.hpp>
 #include <ql/pricingengines/barrier/analyticbarrierengine.hpp>
 #include <ql/pricingengines/barrier/fdblackscholesbarrierengine.hpp>

 using namespace QuantLib;

 using std::cout;
 using std::vector;
 using std::pair;

 using boost::shared_ptr;

 CDSSolver::CDSSolver(double val, double sigma, double divYield, double forwardIR,
 double strike, double barrier, double rebate)
 :
 currentValue(val),

CHAPTER 15 ■ CREDIT DERIVATIVES

251

 sigma(sigma),
 divYield(divYield),
 forwardIR(forwardIR),
 strike(strike),
 barrier(barrier),
 rebate(rebate)
 {
 }

 // solve the valuation problem using the barrier technique, from today to the maturity date
 pair<BarrierOption, BlackScholesMertonProcess>
 CDSSolver::solve(Date maturity_date)
 {
 Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));
 Date today = Date::todaysDate();

 shared_ptr<YieldTermStructure> ts1(new FlatForward(today, divYield, Thirty360()));
 shared_ptr<YieldTermStructure> ts2(new FlatForward(today, forwardIR, Thirty360()));
 shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today, NullCalendar(),sigma,

Thirty360()));

 auto process = BlackScholesMertonProcess(quote,
 Handle<YieldTermStructure>(ts1),
 Handle<YieldTermStructure>(ts2),
 Handle<BlackVolTermStructure>(vs));

 shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(Option::Type::Call, strike));
 shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

 auto option = BarrierOption(Barrier::Type::UpIn,
 barrier, rebate,
 payoff,
 exercise);

 auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

 option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrierEngine(pproc)));

 return std::make_pair(option, process);
 }

 void CDSSolver::generateGrid(BarrierOption &option, BlackScholesMertonProcess &process,
const vector<Size> &grid)
 {
 double value = option.NPV();
 Size maxG = grid[grid.size()-1]; // find maximum grid value

 for (auto g : grid)
 {
 FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholesProcess>(&process),

maxG, g);

CHAPTER 15 ■ CREDIT DERIVATIVES

252

 option.setPricingEngine(shared_ptr<PricingEngine>(&be));

 cout << std::abs(option.NPV()/value -1);

 FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholesProcess>(&process),
g, maxG);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

 cout << std::abs(option.NPV()/value -1);
 }
 }

 void test_CDSSolver()
 {
 // use a few test values

 double currentValue = 50.0;
 double sigma = 0.2;
 double divYield = 0.01;
 double forwardIR = 0.05;
 double strike = 104.0;
 double barrier = 85.0;
 double rebate = 0.0;

 CDSSolver solver(currentValue, sigma, divYield, forwardIR, strike, barrier, rebate);

 Date date(10, Month::August, 2016);

 auto result = solver.solve(date);

 std::vector<Size> grid = { 5, 10, 25, 50, 100, 1000, 2000 };
 solver.generateGrid(result.first, result.second, grid);
 }

 int main()
 {
 test_CDSSolver();
 return 0;
 }

CHAPTER 15 ■ CREDIT DERIVATIVES

253

 Conclusion
 Credit derivatives are one of the most common types of derivatives traded in world markets. In this chapter,
you learned a little more about such types of derivatives and how they can be modeled using C++.

 I initially discussed the concept of credit derivatives and the different types of financial instruments that
take part in this category of derivatives. You saw that such derivatives can be used to mitigate credit risks,
such as the bankruptcy of a counterparty or the default of a loan, for example.

 You also learned about techniques to model such derivatives. In particular, you saw barrier options as a
simplified model that can be used to analyze the behavior of such financial instruments.

 This chapter presented a complete example of credit derivatives through the use of barrier options using
QuantLib classes. The QuantLib repository contains a number of algorithms that are readily available to analyze
credit derivatives. In particular, these classes can be used to determine the fair price of certain types of derivatives.

 Another task that is frequently necessary when dealing with options and derivatives is the processing of
input and output data in common formats. The most popular format for this type of application is based on XML.
However, some other formats offer advantages as well. In the next chapter, you will learn about different strategies
to process financial data and the common formats used to transfer such information across applications.

255© Carlos Oliveira 2016
C. Oliveira, Options and Derivatives Programming in C++, DOI 10.1007/978-1-4842-1814-3

 A
 add function , 144
 addObserver function , 94, 96
 Algorithms, STL

 concepts , 115
 copying container data , 121
 fi nd_if function , 124
 fi nding elements , 123
 fi nd_value function , 123
 option data , 124

 is_expiring , 125
 StandardOption , 126
 syntax , 125

 sort function
 compute frequency , 119
 date class , 118
 date object , 118
 frequency_test , 121
 functional operator , 117
 list , 116
 vector count , 120

 types , 116

 B
 Basic Linear Algebra Subprograms

(BLAS) , 154
 Bernoulli distribution , 214
 Bind function

 SimpleOption class , 134
 std::bind function , 133
 std::plus function , 134

 Binomial model , 190
 algorithm , 191
 American-style option , 195
 binomial tree , 191
 call option price , 190
 expressions , 190
 implementation , 192

 Black-Scholes-Merton equations , 23–24
 BlackScholesMethod class , 22

 header fi le , 202
 implementation fi le , 202–205

 Black-Scholes model , 175, 189
 BlackScholesMethod class , 198
 forward method , 198
 parameters , 197
 PDE , 197

 buildAdjacencyMatrix function , 56

 C
 Call_greater_than_100 function , 124
 CDSSolver class

 header fi le , 249–250
 implementation fi le , 250–252

 C++ libraries
 boost libraries

 boosttest.hpp , 227
 fi les and directories , 224
 installation , 225
 integrate_adaptive function , 229
 integration techniques , 226
 multi-array , 224
 solving ODEs , 224–225
 std::shared_ptr , 223
 stepper , 227
 stepper_type , 228
 types , 224
 uBLAS , 224
 web site screenshot , 225

 QuantLib
 addHoliday and removeHoliday , 232
 benefi ts , 233
 BlackScholesCalculator , 234
 Black-Scholes models , 233
 BlackScholesParameters structure , 233
 BlackScholesPricer class , 237
 BlackScholesPricer interface , 235
 Calendar class , 231
 Calendar objects , 231
 callBlackScholes function , 234–235
 date handling , 229–230

 Index

■ INDEX

256

 design patterns , 229
 getNumberOfDays function , 233
 incrementing and decrementing , 231
 Monte Carlo methods , 230
 optimizers , 230
 pricing engines , 230
 useCalendar function , 232

 Collateralized debt obligations (CDO) , 242
 Constant maturity CDS (CMCDS) , 242
 Credit default swap (CDS) , 242
 Credit derivative

 barrier option , 241
 CDSSolver class , 244
 down-option , 243
 knock-in , 243
 knock-out , 243
 up-option , 243

 CDN , 242
 CDO , 242
 CDS , 242
 CMCDS , 242
 credit default option , 242
 general concepts , 241
 problem modeling , 241
 QuantLlib , 241

 barrier option , 248
 BlackScholesMertonProcess , 247–248
 BlackVolTermStructure class , 246–247
 CDSSolver class , 247, 248
 Handle class , 245
 PlainVanillaPayoff class , 247
 Quote class , 245
 SimpleQuote class , 247
 StrikedTypePayoff class , 247
 YieldTermStructure class , 245–246

 total return swap , 242
 Credit linked note (CDN) , 242

 D
 Date and time handling

 addTradingDays , 38
 fi le implementation , 40–48
 interface , 39–40
 isTradingDay function , 38
 m_day , 37
 m_holidays , 37
 monthsWithTh irtyOneDays , 38
 m_weekDay , 37
 operations implementation , 36
 operator++ function , 37

 DateCompact class
 bool DateCompact , 49
 implementation , 50

 int DateCompact , 49
 int day() method , 48
 interface , 49
 int month() method , 48
 int year() method , 48
 testing , 53
 void DateCompact , 49
 void setDay(int d) function , 48
 void setMonth(int m) function , 48
 void setYear(int y) function , 48

 date operations , 36
 DEFAULT_NUM_INTERVALS constant , 170
 DEMathFunction , 178
 Derivatives

 arbitrage , 21
 binomial trees

 backward phase , 25
 forward phase , 25
 payoff phase , 25

 Black-Scholes-Merton equations , 23–24
 code implementation , 32
 collateralized debt obligation , 21, 22
 computeRandomStep function , 28
 credit default swap , 21
 energy derivative , 21
 FX derivatives , 21, 23
 infl ation derivative , 21
 interest rate derivatives , 21
 Monte Carlo models , 25
 numerical methods , 24
 profi t chart , 33
 RandomWalkGenerator class , 27, 29
 random walk model , 20
 standard template library

 algorithms , 26–27
 containers , 26
 iterators , 26

 Dictionary class
 adjacency matrix , 55
 buildAdjacencyMatrix function , 56
 diff ByOne function , 56
 elemPosition function , 55
 implementation , 59
 interface , 59
 m_adjacentList variable , 54
 m_valuePositions , 54, 55
 m_values vector , 54, 55
 m_wordSize variable , 54
 push_back , 55
 recoverPath method , 58
 shortest_path function , 58
 StringProduction class , 57

 implementation , 62
 interface , 61
 main Function , 65

C++ libraries (cont.)

■ INDEX

257

 test code , 66
 diff ByOne function , 56
 Diff erential equations

 basic techniques , 175
 classifi cation , 176
 defi nition , 175
 Euler’s method , 175
 ODEs , 175–176
 order , 176
 PDEs , 175
 Runge-Kutta method , 175

 E
 elemPosition function , 55
 Euler’s method , 175

 DEMathFunction , 178–179
 EulerMethodSampleFunction

class , 180
 EulersMethod class , 179
 incremental point , 180
 initial coordinate values , 180
 ODEs , 177
 parameters , 179
 sequential steps , 177
 test code , 181

 Exchange Traded Funds (ETFs) , 5

 F
 Factory design pattern

 DataSource class , 88
 declaration , 88
 implementation , 89–90

 object creation , 87
 private modifi er , 88

 Functional programming , 68
 advantages , 128
 bind function , 133
 Functional.cpp fi les , 138
 Functional.hpp fi les , 137
 function objects

 comparison object , 131
 operator() , 130
 OptionComparion class , 129

 lambda function , 135
 plus function , 132
 std::vector , 132
 templates list , 131

 FX derivatives , 19

 G
 generateWalk() function , 27
 Generic/template-based programming , 68

 getFunctionRoot function , 165, 167
 get_normal_observations function , 216
 get_uniform_int function , 212

 H
 Horner’s method , 163

 I, J, K
 int day() method , 48
 int month() method , 48
 int year() method , 48
 isTradingDay function , 38, 74

 L
 Lambda capture by reference , 136
 Lambda capture by value , 136
 Lambda function

 lambda capture , 136
 syntax , 135
 test_use_function , 137
 use_function , 137

 Linear algebra algorithms
 BLAS , 154
 LA functions , 143
 LAPACK , 154
 matrix implementation , 143

 add member function , 152
 defi nition , 148
 features , 148
 matrix class declaration , 149
 m_rows vector , 150–151
 multiply member function , 153
 numRows member function , 154
 operator[] member function , 151
 product operation , 153
 rectangular matrix , 150
 subtract operation , 152
 trace operation , 151
 transposition , 151

 uBLAS libraries
 matrix object , 155
 preMultiply function , 155
 prod function , 156
 vector , 155

 vector operations , 143
 Header File LAVectors.hpp , 156
 Implementation File LAVectors.cpp , 157
 mathematical operations , 144
 scalar operations , 144
 vector-to-vector operations , 146

 Linear algebra package (LAPACK) , 154
 linear_congruential_engine , 209

■ INDEX

258

 M
 Monte Carlo methods

 advantages , 207
 bonds analysis , 208
 fi xed income investments , 208
 market analysis , 207
 options pricing , 208
 Portfolio analysis , 208
 probability distributions , 207
 random number generation , 207

 algorithms , 209
 engine instantiation , 209
 generator instantiations , 210
 linear_congruential_engine , 209
 Mersenne twister , 208
 probabilitydistribution (see Probability

distribution)
 subtract with carry , 209

 random walk , 207, 218
 stochastic models , 207
 trade strategy analysis , 208

 Monte Carlo model , 19, 25
 multiply function , 145, 153

 N
 Networks

 dictionaryclass (see Dictionary class)
 string-production , 54
 word production , 53

 num_customers_experiment function , 214–215
 Numerical programming algorithms

 integration algorithms , 161
 mathematical function representation , 161

 Horner’s method , 163
 MathFunction , 162
 PolynomialFunction , 162–163

 numerical examples in C++ , 161
 rootfi nding (see Root fi nding algorithms)

 O
 Object-oriented programming

 C++ concepts , 67
 class hierarchies , 80–81
 design patterns

 factory method , 86
 observer , 86
 singleton , 86
 visitor , 86

 encapsulation , 69
 CDS contract , 70–71
 features , 69

 inheritance , 69, 72, 81

 object composition , 82–83
 polymorphism , 69

 abstract functions , 78–80
 CDSContract class , 73
 isTradingDay member function , 74
 useContract function , 74
 virtual function , 74
 virtual keyword , 72–73, 76
 virtual destructor , 77–78
 virtual table mechanism , 75

 problem partitioning , 67
 problem solving , 67
 reusing components , 67

 Object-oriented programming , 68
 Observer design pattern

 addObsever function , 94
 header fi le , 96
 implementation fi le , 97
 Observer class , 94
 removeObserver function , 94
 simplifi ed scheme , 94
 trade observer , 95
 TradingLedger class , 95
 triggerNotifi cation function , 94, 96

 Operator++ function , 37
 Option Greeks , 6
 Options pricing

 binomial model
 algorithm , 191
 American-style option , 189, 195
 binomial tree , 191
 call option price , 190
 expressions , 190
 implementation , 192

 binomial trees , 189
 Black-Scholes model

 BlackScholesMethod class , 189, 198
 forward method , 198
 parameters , 197
 PDE , 197

 implementation strategies , 189
 lattice models , 189

 Options processing
 American options , 4
 break-even price , 6
 C++ classes

 assignment operator , 11
 copy constructor , 11
 CppClass , 11
 destructor , 11
 GenericOption class , 12–13
 profi tAtExpiration , 12–13
 profi t chart , 17
 valueAtExpiration , 12

 C++ programming language

■ INDEX

259

 availability , 8
 expressiveness , 10
 performance , 9
 standardization , 9–10

 defi nition , 1–2
 delta hedging , 1
 design patterns

 factory method , 85–86
 observer , 85–86
 OO programming techniques , 86
 overview , 85
 singleton , 85–86
 visitor , 86

 European options , 4
 expiration , 3
 features , 2
 fundamental strategies , 1
 Greeks , 1, 6
 intrinsic value , 5
 profi t chart , 3
 sellers , 4
 settlement , 4
 strike price , 3
 trading , 2

 at the money (ATM) , 5
 commodities , 5
 common stock , 4
 currencies , 4
 ETFs , 5
 futures , 5
 indices , 4
 in the money (ITM) , 5
 out of the money (OTM) , 5

 Ordinary diff erential equations
(ODEs) , 225

 analytical methods , 176
 Euler’s method , 178
 numerical methods , 176
 Runge-Kutta method , 182

 P, Q
 Partial diff erential equations (PDEs) , 175
 Placeholder arguments , 134
 Poisson distribution , 214
 preMultiply function , 155
 Probability distribution

 coin_toss_experiment function , 213
 exponential distribution , 211
 get_normal_observations function , 216
 get_uniform_int function , 212
 histogram values , 217
 normal distribution , 211
 num_customers_experiment function , 214–215

 num_experiments parameter , 214
 std:uniform_int_distribution

template , 212
 processNewTrade function , 95
 prod function , 156

 R
 RandomWorkModel class

 class interface , 219
 getWalk function , 218, 220
 member variables , 219
 m_numSteps variable , 220
 RandomWalkModel , 219–220
 test_random_walk function , 220–221

 recoverPath method , 58
 removeObserver function , 96
 Resource Acquisition Is

Initialization (RAII) , 9
 Root fi nding algorithms , 161

 Newton’s method
 derivative class , 168
 derivative objects , 168
 getFunctionRoot function , 165, 167
 NewtonMethod class , 165
 SampleFunction class , 167, 168
 sequence values , 169

 SimpsonsIntegration class , 170–173
 Runge-Kutta method , 175, 228

 class , 183, 185–187
 DEMathFunction , 183
 fourth order approximation , 184
 ODEs , 182
 RungeKuttaSampleFunc , 185
 Taylor series , 182
 test function , 185

 S
 shortest_path function , 58
 Singleton design pattern

 clearing house , 90–91
 Company CEO , 91
 memory allocator , 91
 operating system , 91
 root window , 91

 Standard template library (STL) , 10
 algorithms , 26–27 (see also

Algorithms, STL)
 containers , 26, 109–110
 iterators , 26

 Stepper types , 227
 Structured programming , 68
 swap member function , 151

■ INDEX

260

 T
 Taylor method , 182
 Templates

 compile-time polymorphism , 102–103
 container objects , 102
 data containers , 109
 defi nition , 101
 generic functions , 104–105
 header fi le , 112
 instantiation , 111
 recursive function , 102

 implementation , 106
 integer values , 107
 syntax , 106
 template classes , 108

 smart pointers , 102, 110–111
 test_normal function , 216
 test_random_walk function , 220–221
 triggerNotifi cation function , 94, 96
 Trinomial model , 190

 U
 useContract function , 74

 V, W, X, Y, Z
 virtual function , 74
 void setDay(int d) function , 48
 void setMonth(int m) function , 48
 void setYear(int y) function , 48

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Options Concepts
	Basic Definitions
	Option Greeks
	Using C++ for Options Programming
	Availability
	Performance
	Standardization
	Expressiveness

	Modeling Options in C++
	Creating Well-Behaving Classes
	Computing Option Value at Expiration
	Complete Listing
	Building and Testing

	Further References
	Conclusion

	Chapter 2: Financial Derivatives
	Models for Derivative Pricing
	Credit Default Swaps
	Collateralized Debt Obligations
	FX Derivatives
	Derivative Modeling Equations
	Numerical Models
	Binomial Trees
	Simulation Models

	Using the STL
	Generating a Random Walk
	Complete Listing
	Building and Testing

	Further References
	Conclusion

	Chapter 3: Basic Algorithms
	Date and Time Handling
	Date Operations
	Complete Listings

	A Compact Date Representation
	Complete Listings
	Building and Testing

	Working with Networks
	Creating a Dictionary Class
	Calculating a Shortest Path
	Complete Listings
	Building and Testing

	Conclusion

	Chapter 4: Object-Oriented Techniques
	OO Programming Concepts
	Encapsulation
	Inheritance
	Polymorphism
	Polymorphism and Virtual Tables
	Virtual Functions and Virtual Destructors
	Abstract Functions
	Building Class Hierarchies
	Object Composition

	Conclusion

	Chapter 5: Design Patterns for Options Processing
	Introduction to Design Patterns
	The Factory Method Design Pattern
	The Singleton Pattern
	Clearing House Implementation in C++

	The Observer Design Pattern
	Complete Code

	Conclusion

	Chapter 6: Template-Based Techniques
	Introduction to Templates
	Compilation-Time Polymorphism
	Template Functions
	Implementing Recursive Functions
	Recursive Functions and Template Classes
	Containers and Smart Pointers
	Avoiding Lengthy Template Instantiations
	Pre-Instantiating Templates

	Conclusion

	Chapter 7: STL for Derivatives Programming
	Introduction to Algorithms in the STL
	Sorting
	Presenting Frequency Data

	Copying Container Data
	Finding Elements
	Selecting Option Data
	Conclusion

	Chapter 8: Functional Programming Techniques
	Functional Programming Concepts
	Function Objects
	Functional Predicates in the STL
	The Bind Function
	Lambda Functions in C++11
	Complete Code
	Conclusion

	Chapter 9: Linear Algebra Algorithms
	Vector Operations
	Scalar-to-Vector Operations
	Vector-to-Vector Operations

	Matrix Implementation
	Using the uBLAS Library
	Complete Code
	Conclusion

	Chapter 10: Algorithms for Numerical Analysis
	Representing Mathematical Functions
	Using Horner’s Method

	Finding Roots of Equations
	Newton’s Method

	Integration
	Conclusion

	Chapter 11: Models Based on Differential Equations
	General Differential Equations
	Ordinary Differential Equations
	Euler’s Method
	Implementing the Method

	The Runge-Kutta Method
	Runge-Kutta Implementation

	Complete Code
	Conclusion

	Chapter 12: Basic Models for Options Pricing
	Lattice Models
	Binomial Model
	Binomial Model Implementation
	Pricing American-Style Options

	Solving the Black-Scholes Model
	Numerical Solution of the Model

	Complete Code
	Conclusion

	Chapter 13: Monte Carlo Methods
	Introduction to Monte Carlo Methods
	Random Number Generation
	Probability Distributions
	Using Common Probability Distributions

	Creating Random Walks
	Conclusion

	Chapter 14: Using C++ Libraries for Finance
	Boost Libraries
	Installing Boost
	Solving ODEs with Boost
	Solving a Simple ODE

	The QuantLib Library
	Handling Dates
	Working with Calendars
	Computing Solutions for Black-Scholes Equations
	Creating a C++ Interface
	Complete Code

	Conclusion

	Chapter 15: Credit Derivatives
	Introduction to Credit Derivatives
	Modeling Credit Derivatives
	Using Barrier Options
	A Solver Class for Barrier Options
	Barrier Option Classes in QuantLib
	An Example Using QuantLib

	Complete Code
	Conclusion

	Index

