

Oracle SOA Suite Developer's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2009

Production Reference: 1120309

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-55-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Credits

Authors

Matt Wright

Antony Reynolds

Reviewers

Jason Jones

Phil McLaughlin

Acquisition Editor

Bansari Barot

Development Editor

Swapna V. Verlekar

Technical Editor

Gagandeep Singh

Editorial Team Leader

Akshara Aware

Production Editorial Manager

Abhijeet Deobhakta

Project Team Leader

Lata Basantani

Project Coordinator

Rajashree Hamine

Indexer

Rekha Nair

Proofreader

Laura Booth

Production Coordinator

Rajni R. Thorat

Cover Work

Rajni R. Thorat

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Foreword
Over the past several years, we have seen a growing momentum in the adoption
of Service-Oriented Architectures, which continues to accelerate. At this point in
its evolution, SOA has started to cross the chasm between the early-adopter,
bleeding-edge IT architects and the mainstream IT and software development
community. And what enables this progression to continue gathering steam is
the sharing of knowledge, experiences, and lessons learned between the early
adopters in the community and those following their footsteps. As such, I am
very enthusiastic about Oracle SOA Suite Developer Guide because Matt Wright and
Antony Reynolds are exactly the right people to share this knowledge with us.

I joined Oracle in 2004 through the acquisition of Collaxa, which is where the Oracle
BPEL Process Manager came from. At Collaxa, I was responsible for all the interfaces
between our SOA products and our customers and the developer community. It
was very clear, shortly after the acquisition, that the Oracle field was going to be a
tremendous asset to the adoption of our products, our customers' success, and to
the advancement of SOA in general.

As Oracle became a leader in the SOA space over the next several years, building
out a full SOA platform through continued development and further acquisitions,
Antony and Matt continued to stand out as leaders among the special community
of Oracle SOA field representatives. Along the way, they built a knowledge base
that enabled customers to get over (and better yet, avoid…) common hurdles,
and feed customer requirements back into the engineering organization. We are
highly appreciative of the fact that they have undertaken the monumental task of
incorporating this knowledge into a book that is built on the existing documentation,
and will provide great value to experienced SOA practitioners and newbies alike.

SOA is about more than just tools, a fact that is clear even to those of us who work
for software vendors. However, to be effective with any software development
products, requires detailed knowledge of the products, APIs, features, and
capabilities. Antony and Matt cover these basics in this book in great detail.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

But even more importantly, developers need to know about edge cases, design
patterns, and how these products fit into the full development life cycle. This
information comes best from real-world experiences with the products, even more
than from the people who build a product. It is particularly valuable that Antony
and Matt focus the majority of the content in this book on deeper topics such as
SOA exception handling, full life cycle support for testing, security, and migration
across environments. If I had a quarter for every customer who has asked me, over
the past eight years, about best practices to move their SOA composites from dev
to test to production… well, let's just say you can save your quarters and read
Chapter 18 instead.

Finally, even as SOA adoption matures, it is still important to understand why you
are adopting SOA, what the expected benefits are, and to measure your progress
toward those as objectively as possible. Today, most people state goals such as:

Developer productivity for system-to-system integration•	

Greater interoperability between systems•	

Flexibility and agility that reduces the costs associated with maintenance and •	
changing requirements
Service re-use•	

Scalability•	

Enhanced business visibility and administration•	

I believe that this book, coming from pragmatic practitioners in the field, will
specifically help developers realize these benefits from their SOA implementations
by providing clear and useful information on Oracle's SOA platform.

On behalf of the Oracle SOA Engineering and Product Management team, as well
as all the customers and partners who have asked for this book, we heartily thank
Antony and Matt for the investment of their time and energy, and hope that this
book helps you achieve your SOA goals.

David Shaffer
Vice President, Product Management
Oracle Integration
david.shaffer@oracle.com

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

About the authors

Matt Wright has been involved with standards-based Service-Oriented
Architecture (SOA) since shortly after the initial submission of SOAP 1.1 to the
W3C in 2000, and has worked with some of the early adopters of BPEL since its
initial release in 2002. Since then, he has been a passionate exponent of SOA and
has been engaged in some of the earliest SOA-based implementations across EMEA
and APAC.

He is currently a Director of Product Management for Oracle Fusion Middleware
in APAC, where he is responsible for working with organizations to educate and
enable them in realizing the full business benefits of SOA in solving complex
business problems. As a recognized authority on SOA, Matt is also responsible
for evangelizing the Oracle SOA message and is a regular speaker and instructor
at private and public events. He also enjoys writing and publishes his own blog
(http://blogs.bpel-people.com). Matt holds a B.Sc. (Eng) in Computer Science
from Imperial College, University of London.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

It seems a long time ago that I first suggested to Antony that we
write this book. Since that day there have been numerous twists
and turns, not least the acquisition of BEA which resulted in many
revisions and re-writes. Having Antony as my co-author throughout
this process was invaluable; Antony's continued conviction and
enthusiasm throughout was instrumental in ensuring the book
finally made the light of day.

Throughout this process, everyone at Oracle has been very
supportive. I would like to make a special mention to Andy Gale
for guiding us in the right direction when we first suggested the
idea and to John Deeb for his continual support and encouragement
throughout. I would also like to express my gratitude to everyone in
the SOA Development team; in particular to David Shaffer, Demed
L'Her, Manoj Das, Neil Wyse, Ralf Mueller, and Mohamed Ashfar
who contributed to this book in many ways.

A major part in the quality of any book is down to the reviewers, so
I would like to say a big thank you to Phil McLaughlin, Jason Jones,
and James Oliver for all their incredibly valuable feedback, which
has made this a clearer and simpler book to read.

The staff at Packt Publishing Pvt. Ltd. helped a great deal to make
this book a reality. I would like to thank Rajashree Hamine the
Project Coordinator, Swapna Verlekar the Development Editor,
and Gagandeep Singh the Technical Editor.

Finally, writing a book is challenging at the best of times, to do
it whilst re-locating half way round the world from the UK to
Australia probably isn't the best timing! So I would like to say a
special thank you to my wife Natasha and my children Elliot and
Kimberley for their constant support and understanding throughout
this period.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Antony Reynolds has worked in the IT industry for more than 24 years,
since getting a job to maintain yield calculations for a Zinc smelter while still an
undergraduate. After graduating from the University of Bristol with a degree in
Maths and Computer Science he worked first for a software house, IPL in Bath,
England, before joining the travel reservations system Galileo as a development
team lead. At Galileo he was involved in development and maintenance of
workstation products before joining the architecture group. Galileo gave him the
opportunity to work in Colorado and Illinois where he developed a love for the
Rockies and Chicago style deep pan pizza. He joined Oracle in 1998 as a sales
consultant and has worked with a number of customers in that time, including
a large retail bank's Internet banking project for which he served as chief design
authority and security architect.

Antony currently is lucky to work with customers on the early stages of many
interesting projects, providing advice on sizing models and architecture for the
SOA Suite.

Outside of work Antony is a bishop in the Church of Jesus Christ of Latter Day Saints
(Mormons) and is responsible for a congregation of 350. His wife and four children
make sure that he also spends time with them, playing games, watching movies, and
acting as an auxiliary taxi service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

 About the reviewers

Jason Jones is a software architect specializing in SOA and Java technologies.
Since 2003, Jason has worked for Zirous, an Oracle Certified Partner, where he
currently holds the position of Senior System Architect. In 2007, Jason was named an
Oracle ACE Director, a prestigious international group of Oracle experts. Jason has
been accepted as a speaker at Oracle OpenWorld, IOUG COLLABORATE, ODTUG
Kaleidoscope, and has a published article on OTN.

Jason's more than 8 years of experience in IT that includes SOA technologies such
as BPEL, ESB, SOAP, WS-Security, XML, and Enterprise Java technologies such
as Spring, Struts, JMS, JPA, Hibernate, and EJBs among many others. Jason is a
Sun Certified Java Programmer (SCJP), Sun Certified Web Component Developer
(SCWCD), and holds a BS in Computer Science from Iowa State University.

Jason's blog can be found at realjavasoa.blogspot.com.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[ii]

BPA Suite 23
BPM Suite 24
Portals and WebCenter 24
Enterprise manager SOA management pack 24

Summary 24
Chapter 2: Writing Your First Service 25

Installing SOA Suite 25
Writing our first BPEL process 26

Creating an application 27
Creating a BPEL project 29

Assigning values to variables 32
Deploying the process 34
Testing the BPEL process 35

Writing our first proxy service 39
Writing the Echo proxy service 40
Creating a change session 41
Creating a project 42

Creating project folders 43
Creating service WSDL 44

Importing a WSDL 45
Creating our business service 48
Creating our proxy service 51

Creating message flow 53
Activating the Echo proxy service 54
Testing our proxy service 55

Summary 59
Chapter 3: Service Enabling Existing Systems 61

Types of systems 61
Web service interfaces 62
Technology interfaces 62
Application interfaces 64

Java Connector Architecture 64
Creating services from files 64

A payroll use case 65
Reading a payroll file 65

Starting the wizard 65
Naming the service 66
Identifying the operation 67
Defining the file location 69
Selecting specific files 70
Detecting that the file is available 71
Message format 72
Finishing the wizards 81

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[iv]

Mapping service interfaces 120
Applying canonical form in the service bus 126

An important optimization 127
Summary 127

Chapter 5: Using BPEL to Build Composite
Services and Business Processes 129

Basic structure of a BPEL process 130
Core BPEL process 130

Variables 131
Partner Links 132
Messaging activities 132

Synchronous messaging 132
Asynchronous messaging 133

A simple composite service 134
Creating our Stock Quote service 135

Import StockService schema 136
Calling the external web services 138

Calling the web service 140
Assigning values to variables 142
Testing the process 144
Calling the exchange rate web service 144
Assigning constant values to variables 144
Using the Expression builder 145

Asynchronous service 150
Using the Wait activity 152

Improving the stock trade service 154
Creating the while loop 154
Checking the price 156
Using the Switch activity 157

Summary 160
Chapter 6: Adding in Human Workflow 161

Workflow overview 161
Leave approval workflow 162

Creating our workflow process 162
Defining the workflow task 163
Specifying task parameters 165
Creating the user interface to process the task 169
Running the workflow process 170

Processing tasks with the worklist application 171
Improving the workflow 173

Dynamic task assignment 173
Assigning tasks to multiple users or groups 175

Cancelling or modifying a task 176
Withdrawing a task 176

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[v]

Modifying a task 176
Difference between task owner and initiator 176

Requesting additional information about a task 177
Managing the assignment of tasks 178

Reassigning reportee tasks 178
Reassigning your own task 180
Delegating tasks 181
Escalating tasks 181

Using rules to automatically manage tasks 181
Setting up a sample rule 182

Summary 184
Chapter 7: Using Business Rules to Define Decision Points 185

Business Rule concepts 186
Leave approval rule 186

Using the Rule Author 186
Creating a Rule Repository 187
Creating a dictionary 188
Defining facts 188

Creating XML Facts 189
Using aliases 192
Hiding facts and properties 192
Saving the rule dictionary 192

Creating a rule set 193
Adding a rule to our rule set 194
Defining the test for the pattern 196

Creating a Decision Service 199
Creating a Rule Engine Connection 200

Using a file based repository 200
Using a WebDAV repository 201

Creating a Decision Service 202
Adding a Decide activity 204

Assigning facts 205
Using functions 206

Importing Java classes as facts 207
Creating a function 208
Invoking a function from within a rule 210

Summary 212
Chapter 8: Building Real-time Dashboards 213

How BAM differs from traditional business intelligence 213
Oracle BAM scenarios 214
BAM architecture 215

Logical view 215
Physical view 215

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[vi]

Capture 216
Store 216
Process 217
Deliver 217

BAM platform anomaly 218
User interface 218

Monitoring process state 219
Defining data objects 220

A digression on populating data object fields 224
Instrumenting BPEL 224
Testing the events 231
Creating a simple dashboard 231

Monitoring process status 233
Monitoring KPIs 237
Summary 239

Chapter 9: oBay Introduction 241
oBay requirements 242

User registration 242
User login 242

Selling items 243
List a new item 243
Cancel listing 245
Completing the sale 245
View account 246

Buying items 247
Search for items 247
Bidding on items 247

Defining our blueprint for SOA 249
Architecture goals 249
Typical SOA architecture 250

Application services layer 252
Virtual services layer 253
Business services layer 254
Business process 257
User Interface layer 258

One additional layer 259
Where the SOA Suite fits 260

oBay high-level architecture 262
oBay Application services 262

Workflow services 263
External web services 263
oBay developed services 263

oBay internal virtual services 263
oBay business services 264

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[vii]

oBay business processes 264
oBay user interface 264

Downloading and installing oBay application 265
Summary 265

Chapter 10: Designing the Service Contract 267
Using XML Schema to define business objects 268

Modelling data in XML 268
Data decomposition 268
Data hierarchy 269
Data semantics 270
Use attributes for metadata 270

Schema guidelines 271
Element naming 271
Namespace considerations 273

Partitioning the canonical model 279
Single namespace 280
Multiple namespaces 281
Chameleon namespaces 282

Using WSDL to define business services 286
Use document (literal) wrapped 286
Building your abstract WSDL document 287

WSDL namespace 287
Defining the 'wrapper' elements 287
Defining the 'message' elements 289
Defining the 'portType' element 289

Using XML Schema and the WSDL within BPEL PM 290
Sharing XML Schemas across BPEL processes 290

Deploying schemas to the BPEL server 290
Importing schemas 291
Updating the schema URL 291

Importing the WSDL document into BPEL PM 291
Adding the PartnerLink definition to the abstract WSDL 293

Sharing XML Schemas in the service bus 294
Importing the WSDL document into the service bus 294

Strategies for managing change 297
Major and minor versions 297

Service implementation versioning 298
Schema versioning 298

Change schema location 299
Update schema version attribute 299
Resist changing the schema namespace 299

WSDL versioning 300
Incorporating changes to the canonical model 300
Changes to the physical contract 301

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[viii]

Updating the service endpoint 301
Managing the service lifecycle 302

Summary 303
Chapter 11: Building Business Services 305

Build versus reuse 305
Adapters and web service wrappers 306

Adapters 306
Service wrappers 306

Reusing existing functionality directly 307
Exposing a PL/SQL stored procedure as a service 307

Launching the PL/SQL web service wizard 308
Choosing the level of Java Enterprise Edition support 308
Selecting a database connection and defining service bindings 309
Determine message style 310
Select stored procedures and functions to expose 310

Modifying existing functionality using service bus 313
Converting an existing service to canonical form 313

Create a new service interface 314
Adding the non-canonical service 319
More complex conversions 321

Exposing a Java class as a service 321
Wrapping the Java code 321
Launching the Web Service wizard 322
Select deployment platform 323
Select service name 323
Select message format 324
Provide custom serializers 325
Mapping 326
Select methods 326

Creating services from scratch 327
Creating a Java service from a WSDL 328

Starting the wizard 328
Choosing the WSDL 329
Choosing the mapping options 329
The generated Java 331

Summary 332
Chapter 12: Building Validation into Services 333

Using XML Schema validation 334
Strongly typed services 334
Loosely typed services 336
Combined approach 337
Using schema validation within BPEL PM 338

Validation of inbound documents 338
Validation of outbound documents 338
Validation between BPEL processes 338

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[x]

Triggering a compensation handler 372
Adding a compensate activity 372

Returning faults 373
Asynchronous considerations 374

Using the fault management framework 375
Defining a fault policy 375

Defining fault policy conditions 376
Defining fault policy actions 378

Binding fault policies 382
Binding fault polices at the process level 382
Binding fault policies at the domain level 383
Binding resolution 384

Human intervention in BPEL Console 384
Change the input variable contents and retry 385
Set the output variable and continue 386

Handling faults within the service bus 387
Handling faults in synchronous proxy services 388

Raising an error 388
Defining an error handler 389
Getting the qualified fault name 392
Handling unexpected faults 393
Returning a SOAP Fault 394
Adding a Service Error Handler 395
Handling permanent faults 396
Handling transient faults 399

Handling faults in one-way proxy services 400
Summary 401

Chapter 14: Message Interaction Patterns 403
Message routing 403

WS-Addressing 404
Request message with WS-Addressing 405
Response message with WS-Addressing 405
Additional message exchanges 406

Using BPEL correlation sets 406
Using correlation sets for multiple process interactions 407

Defining a correlation set property 407
Defining correlation set 409
Using correlation sets 410
Defining property aliases 412

Message aggregation 415
Message routing 417

Correlating the callback 417
Specifying the reply to address 418

Creating a proxy process 418
Using the pick activity 419

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[xi]

Defining the correlation sets 421
Completing the aggregation 421

Scheduling services 423
Defining the schedule file 423
Using FlowN 425

Accessing branch specific data in FlowN 426
Dynamic Partner Links 427

Define common interface 427
Define Job Partner Link 428
Create endpoint reference 428
Update Endpoint 429

Re-cycling the scheduling file 430
Summary 431

Chapter 15: Workflow Patterns 433
Managing multiple participants in a workflow 433

Using multiple assignment and routing policies 434
Determining the outcome by a group vote 434

Using multiple Human Tasks 437
Linking individual Human Tasks 437

Using the workflow API 438
Defining the order fulfillment Human Task 440

Specifying task parameters 440
Specifying the routing policy 442
Notification settings 443

Querying task instances 444
Defining a Partner Link for the Task Query Service 444
User authentication 447
Querying tasks 448
Flex fields 450
Populating Flex Fields 451
Accessing Flex fields 452

Getting task details 455
Updating a task instance 456

Defining a PartnerLink for the Task Service 457
Using the updateTask operation 458

Summary 460
Chapter 16: Using Business Rules to Implement Services 461

How the rule engine works 461
Asserting facts 462
Executing the ruleset 462

Rule activation 462
Rule firing 463

Retrieve result 463

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[xiii]

Java bindings 496
Creating a Java binding 496

Service bus bindings 499
Summary 500

Chapter 18: Packaging and Deployment 503
The need for packaging 503

Problems with moving between environments 503
Types of interface 504

Web interfaces 504
Command line interfaces 504

SOA Suite packaging 504
Oracle Service Bus 505
Oracle BPEL Process Manager 506

Deploying a BPEL process using the BPEL Console 506
Deploying a BPEL process using 'ant' 507
Enabling web service endpoint and WSDL location alteration 509
Enabling adapter configuration 510
XML Schema locations 511
XSL imports 511
BPEL deployment framework 512

Oracle Web Services Manager (OWSM) 516
Oracle rules 520
Business activity monitoring 520

Commands 520
Selecting items 521
Using iCommand 521

Deployment architectures 523
SOA Suite deployment architectures 523

Using an external web server or load balancer 524
Web services manager 526

Console and monitor 527
Oracle Service Bus 528
Business activity monitoring 528
Local hostnames 529

Summary 529
Chapter 19: Testing Composite Applications 531

SOA Suite testing model 531
One-off testing 532

Testing BPEL processes 532
Testing the service bus 535

Automated testing 536
The BPEL test framework 536

BPEL test suites 537

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[xiv]

Data validation 538
Deploying the test suite 542
Running the test suites 542
Partner link handling in test cases 544
Simulation of process to process interactions 546
Baseline scripts 546

Regression testing 547
System testing 547
Composite testing 548
Component testing 549
Unit testing 549
Performance testing 550
User interface testing 550
Summary 550

Chapter 20: Defining Security and Management Policies 553
Security and management challenges in the SOA environment 553

Evolution of security and management 553
Added complications of SOA environment 555

Security impacts of SOA 555
Management and monitoring impacts of SOA 556

Securing services 557
Security outside the SOA Suite 557

Network security 557
Preventing message interception 557
Restricting access to services 558

Declarative security versus explicit security 558
Security as a facet 558
Security as a service 558

Web Services Manager model 559
Policies 560
Agents and gateways 560

Distinctive benefits of gateways and agents 561
Service bus model 563

Creating gateways and agents 563
Creating a gateway 564

Registering gateway services 566
Creating an agent 570
Enabling agent services 572

Defining policies 573
Creating a new policy template to perform basic authentication 575

Creating the template 576
Extracting Credentials 577
Authenticating a user 579
Authorizing a user 580

Table of Contents

[xv]

Saving the pipeline template 581
Creating a new policy 582

Creating an agent policy 583
Creating a gateway policy 586

Applying a policy through Service Bus Console 587
Service accounts 587
Using a service account 589
Managing service bus user accounts 591
Service bus roles 592
Using a role to protect a proxy service 595

Final thoughts on security 596
Monitoring services 596

Monitoring overall service statistics in OWSM 597
Defining a Service Level Agreement in OWSM 598
Other monitoring and measuring features in OWSM 599
Monitoring in service bus 599

Creating an Alert Destination 600
Enabling service monitoring 600
Creating an alert rule 601
Monitoring the service 604

What makes a good SLA 604
Summary 605

Index 607

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface
Service-oriented architecture is not just changing how we approach application
integration, but the mindset of software development as well.

Applications as we know them are becoming a thing of the past. In the future we
will increasingly think of services and how those services are assembled to build
complete "composite" applications that can be modified easily and quickly to adapt
to a continually evolving business environment.

This is the vision of a standards-based service-oriented architecture (SOA),
where the IT infrastructure is continuously adapted to keep up with the pace
of business change.

Oracle is at the forefront of this vision, with the Oracle SOA Suite providing the most
comprehensive, proven, and integrated tool kit for building SOA based applications.

This is no idle boast. Oracle Fusion Applications (the re-implementation of
Oracle's E-Business Suite, Siebel, PeopleSoft, and JD Edwards Enterprise as a
single application) is probably the largest composite application being built
today and it has the Oracle SOA platform at its core.

Developers and architects using the Oracle SOA Suite, whether working on integration
projects, building new bespoke applications, or specializing in large implementations
of Oracle Applications will need a book that provides a hands-on guide on how best to
harness and apply this technology. This book will enable them to do just that.

The initial section of the book is aimed at providing the reader with an overview
of the Oracle SOA Suite and its various components, followed by a hands on
introduction to each of them. This will provide the reader with a good feel for
each of the components and how to use them.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[2]

Once the reader is familiar with various pieces of the SOA Suite and what they do,
the next question will typically be:

What is the best way to combine/use all of these different components to implement
a real world SOA solution?

Answering this question is the goal of the next section. Using a working example
of an online auction site (oBay), it leads the reader through key SOA design
considerations in implementing a robust solution that is designed for change.
It explores topics such as:

How to design sustainable service contracts, that is, ones that easily •	
accommodate future change.
How best to leverage functionality from existing systems when building •	
business services, while still providing flexibility to plug in an alternate
service provider at a later point.
What is the right way to implement new services.•	

When to use rules to implement specialized services for greater flexibility.•	

The use of different interaction patterns and when to use each one.•	

Strategies for data validation and error handling, whether system errors •	
or business errors.
Key considerations when implementing "Human Workflow".•	

Before an application is complete and moves from development into production,
it must also meet non-functional criteria such as security, availability, and scalability
requirements. The final section addresses these issues and covers considerations
such as the packaging, deployment, testing, security, and administration of
composite applications as well as the overall deployment of the infrastructure.
Topics addressed include:

Guidelines on packaging an application for easy deployment and movement •	
from development to the test and production environments.
Tips on building automated test suites that start at the component level and •	
allow for testing of individual components and the complete assembly.
Where are the most effective places to apply security and what options are •	
available for securing the system.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface.

[3]

What this book covers
The book is divided into three sections. Let us have a look at these three sections
in detail.

Section 1: Getting started
This section provides an overview of the various components of the Oracle SOA Suite
and gives the reader a fast-paced, hands-on introduction to each of the key components.

Chapter 1 gives an initial tour of the constituent parts, which make up the Oracle SOA
Suite as well as detailing related elements of the Oracle Fusion Middleware stack and
how they relate to the SOA Suite.

Chapter 2 provides an initial look at the Oracle BPEL Process Manager and Oracle
Service Bus, by stepping us through the process of developing, deploying, and
running our first service.

Chapter 3 looks at a number of key technology adapters and how we can use them
to service enable existing systems.

Chapter 4 describes how we can use the Oracle Service Bus to build services that
are implementation agnostic. Doing so allows us to change the service location,
communication protocol, or even replace a service implementation with another,
with no impact on the client.

Chapter 5 describes how we can use BPEL to assemble services to build composite
services as well as how we can link together a number of services to build a
long-running business process. It also introduces the concepts of synchronous
and asynchronous services.

Chapter 6 looks at how human tasks can be managed through workflow activities
embedded within a BPEL process.

One of the key motivations behind SOA is Agility, the ability of an organization
to respond rapidly to changes in market conditions and hence gain a competitive
advantage.

Chapter 7 introduces the concept of externalizing "decision points" in a BPEL process
as business rules, allowing us to change the flow through a process without having
to make any changes to the deployed process.

Chapter 8 examines how Business Activity Monitoring (BAM) can be used to give
business users a real-time view into how the business process is performing.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[4]

Section 2: Putting it all together
This section uses the example of an online auction site (oBay) to illustrate how
to use the various components of the SOA Suite to implement a real-world SOA
based solution.

Each chapter covers a specific area that needs to be considered when developing
a SOA based solution, such as the design of the service contract, validation, error
handling, and message interaction patterns.

To highlight and demonstrate key design considerations, chapters use examples
based on key parts of the oBay application to illustrate what's been covered,
as well as providing a step-by-step guide on how to implement these techniques.

Chapter 9 introduces oBay and details the overall business requirements of the online
auction site. Next, we present our outline for a typical SOA architecture, highlighting
some of the key design considerations behind this. Finally, we use this to derive the
overall architecture for oBay.

The first step in building a sustainable SOA based solution, that is, one that easily
accommodates future change, is careful design of the service contracts. Chapter 10
gives guidance on designing these contracts and provides strategies for managing
change when it occurs.

Once we know what service we require, we need to select the appropriate way of
providing it. In Chapter 11, we examine different approaches to this, either through
service enabling an existing application, using someone else's service, or building the
service from scratch.

A common question with SOA is "Where do I put my validation?" At first glance this
may seem like an obvious question, but once we consider the layered approach to
SOA, it soon becomes clear that there are a number of choices each with their own
advantages and disadvantages. Chapter 12 provides us with guidelines on where to
put our validation and how to implement it.

Chapter 13 examines strategies for handling errors in SOA based systems. It covers
system errors such as a network connection going down meaning a web service is
temporarily unavailable, and business errors such as service being invoked with
invalid data.

In every business process messages are exchanged between participants. So far, we
have only looked at simple interactions, that is a single request followed by a reply,
whether synchronous or asynchronous.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface.

[5]

In Chapter 14, we look at messaging in a lot more detail. In particular, how we handle
more complex interactions such as multiple requests and responses, unscheduled
events, timeouts, and message correlation (both system and business).

In Chapter 15, we look at workflows involving complex chains of approval,
including parallel approvers and the different options that are available. We
also look at how we can use the Workflow Service API to integrate workflow
into a user's existing user interface as an alternative to accessing it through the
out of the box worklist application.

The Rules engine uses the Rete Algorithm, which was developed by researchers into
Artificial Intelligence in the 1970s. In Chapter 16, we look at some of Rete's unique
qualities, and how we can use them to implement particular categories of first class
business services.

When we talk about web services, most people assume that we are going to
bind (that is, connect to) the service using SOAP over HTTP. Indeed, this is
often the case; however, Oracle SOA Suite supports binding to web services over
multiple protocols. Chapter 17 looks at the different bindings supported and the
various advantages they have, including better support for transactions and
improved performance.

Section 3: Other considerations
This final section covers other considerations such as the packaging, deployment,
testing, security, and administration of composite applications as well as the overall
deployment of the infrastructure.

Chapter 18 examines how to package up the various artifacts that make up
a composite application in order to enable easy deployment into multiple
environments such as test and production. We also look at suitable deployment
topologies for the SOA Suite based on run-time requirements for high availability,
disaster recovery, and scalability.

Chapter 19 looks at how to create, deploy, and run test cases that automate the
testing of composite applications. Testing is dealt with at several levels: unit
testing, component testing, and finally assembly testing.

Chapter 20 examines how we can centrally define policies that govern the operation
of web services, such as security and access policies, auditing policies, and the
management of service level agreements.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface.

[7]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/3551_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[8]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide the location address or website name immediately so we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Introduction to Oracle
SOA Suite

The Oracle SOA Suite is a large and complex piece of software. In this chapter we
will provide a roadmap for your use of the SOA Suite. After a review of the basic
principles of SOA we will look at how the SOA Suite provides support for those
principles through its many different components. Following this journey through
the components of SOA Suite, we will introduce Oracle JDeveloper as the primary
development tool that is used to build applications for deployment into the SOA Suite.

Service-oriented architecture in short
Service-oriented architecture (SOA) has evolved to allow greater flexibility in
adapting the IT infrastructure to satisfy the needs of business. Let's examine what
SOA means by examining the components of its title.

Service
A service is a term that is understood both by the business and IT. It has some
key characteristics:

Encapsulation•	 : A service creates delineation between the service provider
and the service consumer. It identifies what will be provided.
Interface•	 : It is defined in terms of inputs and outputs. How the service is
provided is not of concern to the consumer, only to the provider. The service
is defined by its interface.

•	 Contract or service level agreements: There may be quality of service
attributes associated with the service, such as performance characteristics,
availability constraints, or cost.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Introduction to Oracle SOA Suite

[10]

The break-out box uses the example of a laundry service to make the
characteristics of a service more concrete. Later we will map these characteristics
onto specific technologies.

A clean example

Consider a laundry service. The service provider is a laundry company,
and the service consumer a corporation or individual with washing to
be done.

The input to the company is a basket of dirty laundry. Additional input
parameters may be a request to iron the laundry as well as wash it, or to
starch the collars. The output is a basket of clean washing with whatever
optional additional services such as starching or ironing were specified.
This defines the interface.

Quality of service may specify that the washing must be returned within
24 or 48 hours. Additional quality of service attributes may specify that
the service is unavailable from 5PM Friday until 8AM Monday. These
service level agreements may be characterized as policies to be applied
to the service.

An important thing about services is that they can be understood by both
business analysts and IT implementers. This leads to the first key benefit of
service-oriented architecture.

SOA makes it possible for IT and the business to speak the same
language, that of services.

Services allow us to have a common vocabulary between IT and the business.

Orientation
When we are building our systems we are looking at them from a service point of
view or orientation. This implies that we are oriented or interested in the following:

Granularity•	 : The level of service interface or number of interactions required
with the service, typically characterized as course grained or fine grained.

•	 Collaboration: Services may be combined together to create higher level or
composite services.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Introduction to Oracle SOA Suite

[12]

Extending Antony's house
My wife and I designed our current house. We built in the ability to
convert the loft into extra rooms and also allowed for a conservatory to
be added. This added to the cost of the build but these were foreseen
extensions. The costs of actually adding the conservatory and two extra
loft rooms were low because the architecture allowed for this. In a similar
way it is relatively easy to architect for foreseen extensions, such as
additional related services and processes that must be supported by the
business. When we wanted to add a playroom and another bathroom,
this was more complex and costly as we had not allowed for it in the
original architecture. Fortunately our original design was sufficiently
flexible to allow for these additions but the cost was higher. In a similar
way the measure of the strength of a service-oriented architecture is the
way in which it copes with unforeseen demands, such as new types of
business process and service that were not foreseen when the architecture
was laid down. A well architected solution will be able to accommodate
unexpected extensions at a manageable cost.

A consistent architecture when coupled with implementation in SOA Standards
gives us another key benefit—inter-operability.

SOA allows us to build more inter-operable systems by being based on
standards agreed by all the major technology vendors.

SOA is not about any specific technology. The principles of service-orientation can be
applied equally well using assembler as they can in a high level language. However, as
with all development it is easiest to use a model that is supported by tools and is both
inter-operable and portable across vendors. SOA is widely associated with the web
service or WS-* standards presided over by groups like OASIS. This use of common
standards allows SOA to be inter-operable between vendor technology stacks.

Why SOA is different
A few years ago distributed object technology in the guise of CORBA and COM+
were going to provide benefits of reuse. Prior to that third and fourth generation
languages such as C++ and Smalltalk based on object technology were to provide
the same benefit. Even earlier the same claims were made for structured
programming. So why is SOA different?

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[13]

Terminology
The use of terms such as "services" and "processes" allows business and IT to talk
about items in the same way, improving communication and reducing impedance
mismatch between the two. The importance of this is greater than what it appears
initially, because it drives IT to build and structure its systems around the business
rather than vice versa.

Inter-operability
In the past there have been competing platforms for the latest software development
fad. This manifested itself as CORBA and COM+, Smalltalk and C++, Pascal and
C. This time around the standards are not based upon the physical implementation
but upon the service interfaces and wire protocols. In addition these standards are
generally text based to avoid issues around conversion between binary forms. This
allows services implemented in C# under Windows to inter-operate with Java or
PL/SQL services running on Oracle SOA Suite under Windows, Linux or UNIX.
The major players like Oracle, Microsoft, IBM, SAP, and others are agreed on how
to inter-operate together. This agreement has always been missing in the past.

WS Basic Profile
There is an old IT joke that standards are great, there are so many to
choose from! Fortunately this has been recognized by the SOA vendors
and they have collaborated to create a basic profile, or collection of
standards, that focus on inter-operability. This is known as WS Basic
Profile and details the key web service standards that all vendors should
implement to allow for inter-operability. SOA Suite supports this basic
profile as well as additional standards.

Extension and evolution
SOA recognizes that there are existing assets in the IT landscape and does not
force these to be replaced, preferring instead to encapsulate and later extend these
resources. SOA may be viewed as a boundary technology that reverses many of
the earlier development trends. Instead of specifying how systems are built at the
lowest level it focuses on how services are described and how they inter-operate in
a standards-based world.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[15]

Out of the box the SOA Suite includes licenses for the following adapters:

File Adapter•	

FTP Adapter•	

Database Adapter•	

JMS Adapter•	

MQ Adapter•	

AQ Adapter•	

The database adapter and the file adapter are explored in more detail in Chapter 3
and Chapter 11. There is also support for other non-SOAP transports and styles such
as plain HTTP, REST, plain TCP/IP, and Java.

Services are the most important part of service-oriented architecture and in this
book we focus on how to define their interfaces and how to best assemble services
together to create composite services with a value beyond the functionality on a
single atomic service.

ESB—service abstraction layer
To avoid service location dependencies it is desirable to access services through an
Enterprise Service Bus (ESB). This provides a layer of abstraction over the service
and allows transformation of data between formats. The ESB is aware of the physical
endpoint locations of services and acts to virtualize services.

Service Virtualisation (ESB)
Routing and Transformation

Interface Interface Interface

Service Service Service

Services may be viewed as being plugged into the service bus.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[17]

Service Virtualisation (ESB)
Routing and Transformation

Interface Interface Interface

Service Service Service

Service Orchestration and
Processes BPEL

Human
Workflow
Service

Rules
Service

Business Process Execution Language is the standard way to describe processes in
the SOA world, a task often referred to as service orchestration. The BPEL Process
Manager in SOA Suite includes support for the BPEL 1.1 standard with some
constructs from BPEL 2.0 also being supported. BPEL allows multiple services to be
linked to each other as part of a single managed process. The processes may be short
running, seconds and minutes, or long running, hours and days.

The BPEL standard says nothing about how people interact with it, but BPEL Process
Manager includes a Human Workflow component that provides support for human
interaction with processes.

The BPEL Process Manager may also be purchased as a standalone component, in
which case it ships with the Human Workflow support and the same adapters as
included in the SOA Suite.

We explore the BPEL Process Manager in more detail in Chapter 5 and Chapter 14.
Human workflow is examined in Chapter 6 and Chapter 15.

Oracle also package the BPEL Process Manager with the Oracle Business Process
Management (BPM) Suite. This package includes the former Aqualogic BPM
product (acquired when BEA bought Fuego), now known as Oracle BPM. Oracle
position BPEL as a system-centric process engine with support for human workflow
while BPM is positioned as human-centric process engine with support for
system interaction.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[19]

The Oracle Web Services Manager has several roles to play within an SOA. Firstly
it serves as a policy enforcement point for security, ensuring that only requests that
comply with policy are accepted. Secondly it provides a monitoring service to ensure
that services are compliant with their service level agreements.

Security policy may also be applied through the Service Bus although policy
definition is currently different between the Service Bus and OWSM the direction is
for Oracle to have a common policy management in a future release.

Applying security policies is covered in Chapter 20.

Active monitoring–BAM
It is important in SOA to track what is happening in real time. Some business
processes require such real-time monitoring. Users such as financial traders, risk
assessors, and security services may need instant notification of business events that
have occurred.

Business Activity Monitoring is part of the SOA Suite and provides a real time view
of processes and services data to end users. BAM is covered in Chapter 8.

Business to business—B2B
Although we can use adapters to talk to remote systems, we often need additional
features to support external services, either as clients or providers. For example,
we may need to verify that there is a contract in place before accepting or sending
messages to a partner. Management of agreements or contracts is a key additional
piece of functionality that is provided by Oracle B2B. B2B can be thought of as
a special kind of adapter that, in addition to support for B2B protocols such as
EDIFACT/ANSI X12 or RosettaNet, it also supports agreement management.
Agreement management allows control over the partners and interfaces used at any
given point in time. We will not cover B2B in this book as the B2B space is a little at
the edge of most SOA deployments.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Introduction to Oracle SOA Suite

[20]

Complex Event Processing—CEP
As our services execute we will often generate events. These events can be monitored
and processed using the complex event processor. The difference between event
and message processing is that messages generally require some action on their own
with little or minimal additional context. Events on the other hand often require
us to monitor several of them to spot and respond to trends. For example, we may
treat a stock sale as a message when we need to record it and reconcile it with the
accounting system. We may also want to treat the stock sale as an event, in which
we wish to monitor the overall market movements in a single stock or in related
stocks to decide whether we should buy or sell. The complex event processor allows
us to do time based and series based analysis of data. We will not talk about CEP in
this book as it is a complex part of the SOA suite that requires a complementary but
different approach to the other SOA components.

SOA Suite architecture
We will now examine how Oracle SOA Suite provides the services identified above.

Top level
The SOA Suite is built on top of a Java Enterprise Edition (Java EE) infrastructure.
Although SOA Suite is certified with several different Java EE servers, including
IBM WebSphere, it will most commonly be used with the Oracle WebLogic Server.
Currently the SOA Suite is provided with an integrated install for Oracles OC4J
container but this is changing to make WebLogic the primary platform. The Oracle
WebLogic Server (WLS) will probably always be the first available Java EE platform
for SOA suite and is the only platform that will be provided bundled with SOA Suite
to simplify installation. For the rest of this book we will assume that you are running
SOA Suite on Oracle WebLogic Server. If there are any significant differences when
running on non-Oracle application servers we will highlight them in the text.

SQL Database

Oracle SOA
Suite

Java
Application

Server

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[21]

In addition to a Java EE application server the SOA Suite also requires a database.
The SOA Suite is designed to run against any SQL database, but certification for
non-Oracle databases has been slow in coming. The database is used to maintain
configuration information and also records of runtime interactions. Currently
SOA Suite on Windows ships with an Oracle Lite database which is suitable for
development use only. There is also the option to use a full Oracle Database on
Windows, and this is required for non-Windows platforms. Oracle Database XE
can be used with the SOA Suite.

Component view
In a previous section, we examined the individual components of the SOA Suite and
here we show them in context with the Java EE container and the database.

SQL Database

Oracle SOA Suite

Java Application Server

BPEL BAM Rules CEP

ESB OSBOWSM

B2BAdapters

All the services execute within the context of the JEE container (except for BAM
which is a Windows application in 10.1.3), although they may use that container
in different ways. BPEL listens for events and updates processes based upon those
events. Adapters typically make use of the Java EE containers connector architecture
(JCA) to provide connectivity and notifications. OWSM acts as a filter when used
in embedded mode, and as a separate application when used as a gateway. Note
that the Oracle Service Bus (OSB) is only available when the application server is a
WebLogic server.

Implementation view
Oracle has put a lot of effort into making SOA Suite consistent in its use of underlying
services. A number of lower level services are reused consistently across components.

At the lowest level connectivity services such as adapters, JMS, and Web Service
Invocation Framework are shared by higher level components.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Introduction to Oracle SOA Suite

[22]

A service layer exposes higher level functions. BPEL Process Manager is implemented
by a combination of a BPEL engine and access to the Human Workflow engine. Rules
is another shared service that is available to BPEL or other components.

Oracle SOA Suite

BAM B2B BPEL ESB Rules CEP
Human

Workflow

Service Layer

Transformation Policies Registry

Infrastructure Layer

WSIF SOAP JMS Adapters

Binding Layer

A recursive example
The SOA Suite architecture is a good example of service-oriented design principles
being applied. Common services have been identified and extracted to be shared
across many components. The high-level services such as BPEL and ESB share some
common services such as transformation and adapter services running on a standard
Java EE container.

JDeveloper
Everything we have spoken of so far has been related to the executable or runtime
environment. Specialist tools are required to take advantage of this environment.
It is possible to hand craft the assemblies and descriptors required to build a SOA
Suite application but it is not a practical proposition. Fortunately Oracle provide
JDeveloper free of charge to allow developers to build SOA Suite applications.

JDeveloper is actually a separate tool but it has been developed in conjunction
with SOA Suite so that virtually all facilities of SOA Suite are accessible through
JDeveloper. The one exception to this is the Oracle Service Bus which in the
current release does not have support in JDeveloper but instead has a different
tool, WebLogic Workspace Studio. Although JDeveloper started life as a Java
development tool, many users now never touch the Java side of JDeveloper,
doing all their work in the SOA Suite components.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[23]

JDeveloper may be characterized as a model based, wizard driven development
environment. Re-entrant wizards are used to guide the construction of many artifacts
of the SOA Suite, including adapters and transformation.

JDeveloper has a consistent view that the code is also the model, so that graphical
views are always in synch with the underlying code. It is possible to exercise some
functionality of SOA Suite using the Eclipse platform, but to get full value out of
SOA Suite it is really necessary to use JDeveloper. However, the Eclipse platform
does provide the basis for the Service Bus designer, the Workspace Studio. There
are some aspects of development which may be supported in both tools but easier
in one than the other; for example, Workspace Studio provides a better WSDL editor
than JDeveloper.

Other components
We have now touched on all the major components of the SOA Suite. However, there
are a few items that are either of more limited interest or are outside the SOA Suite
but closely related to it.

Service repository and registry
Oracle have a service repository and registry product that is integrated with the
SOA Suite but separate from it. The repository acts as a central repository for all
SOA artifacts and can be used to support both developers and deployers in tracking
dependencies betweens components both deployed and in development. The
repository can publish SOA artifacts such as service definitions and locations to the
service registry. The Oracle Service registry may be used to categorize and index
services created. Users may then browse the registry to locate services. The service
registry may also be used as a runtime location service for service endpoints.

BPA Suite
The Oracle BPA Suite is targeted at Business Process Analysts who want a powerful
repository based tool to model their business processes. BPA Suite is not an easy
product to learn, like all modeling tools there is a price to pay for the descriptive
power available. Of interest to SOA Suite developers is the ability for the BPA Suite
and SOA Suite to exchange process models. Processes created in BPA Suite may be
exported to SOA Suite for concrete implementation. Simulation of processes in BPA
Suite may be used as a useful guide for process improvement.

Links between BPA Suite and SOA Suite are growing stronger over time and it
provides a valuable bridge between business analysts and IT architects.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Introduction to Oracle SOA Suite

[24]

BPM Suite
Business Process Management Suite is focused on modeling and execution of
business processes. As mentioned it includes BPEL Process Manager to provide
strong system-centric support for business processes but the primary focus of the
suite is on modeling and executing processes in the BPM Designer and BPM Server.

Portals and WebCenter
SOA Suite has no real end user interface outside the Human Workflow service.
Front ends may be built using JDeveloper directly or they may be crafted as part of
Oracle Portal, Oracle WebCenter or another Portal or front end builder. A number of
portlets are provided to expose views of SOA Suite to end users through the portal.
These are principally related to human workflow but also include some views onto
BPEL process status. Portals can also take advantage of WSDL interfaces to provide a
user interface onto services exposed by the SOA Suite.

Enterprise manager SOA management pack
Oracles preferred management framework is Oracle Enterprise Manager. This is
provided as a base set of functionality with a large number of management packs
which provide additional functionality. The SOA Management Pack extends
Enterprise Manager to provide monitoring and management of artifacts within
the SOA Suite.

Summary
As we have seen there are a lot of components to SOA Suite and although Oracle
has done a lot to provide consistent usage patterns there is still a lot to learn
about each component. The rest of this book takes a solution-oriented approach
to SOA Suite rather than a component approach. We will examine the individual
components in the context of the role they serve and how they are used to enable
service-oriented architecture.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[26]

To download the installation guide, go to the support page of Packt Publishing
(www.packtpub.com/support); from here follow the instructions to download a ZIP
file containing the code for the book. Included in the ZIP will be a PDF Document
named SoaSuiteInstallation.pdf.

This document details the quickest and easiest way to get the SOA Suite up and
running. It covers the following:

Where to download the SOA Suite and any other required components•	

How to install and configure the SOA Suite•	

How to install and run the oBay application, as well as the other code •	
samples that come with this book

Writing our first BPEL process
Ensure that the Oracle SOA Suite has started (as described in the above mentioned
installation guide) and start JDeveloper. When you start JDeveloper for the first time,
it will be pretty empty as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[30]

This will launch the project gallery window, where we can specify the type of project
we want to create. Select BPEL Process Project as shown in the following screenshot:

This will launch the BPEL Project Creation Wizard as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[32]

The first activity is used to receive the initial request from the client invoking our
BPEL process; on receipt of this request it will populate the variable inputVariable
with the content of the request.

The last activity is used to send a response back to the client, the content of this
response will contain the content of outputVariable.

For the purpose of our simple Echo process, we just need to copy the content of the
input variable to the output variable.

Assigning values to variables
In BPEL the <assign> activity is used to update the values of variables with new
data. The assign activity typically consists of one or more copy operations. Each copy
consists of a target variable, that is the variable that you wish to assign a value to and
a source; this can either be another variable or an XPath expression.

To insert an Assign activity, drag one from the Component pallet on to our
BPEL process at the point just after the receiveInput activity, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[33]

To configure the Assign activity, double-click on it to open up its configuration
window. Click on the Create menu and select Copy Operation… as shown in the
following screenshot:

This will present us with the Create Copy Operation window as shown:

Writing Your First Service

[36]

This will bring up the login screen for BPEL Control; log in as bpeladmin (default
password welcome1). This will take us to the BPEL Control Dashboard as shown in
the following screenshot:

The Dashboard provides us with a summary report on a BPEL domain. On the
left hand side we have a list of deployed processes, which includes the two default
processes created by BPEL as well as the Echo process that we have just deployed.

On the right hand-side it lists BPEL processes that are currently executing and the
most recently completed processes. At the moment this is empty as we haven't run
any yet.

From here click on the process name, that is Echo; this will take us to the
Initiate screen for running a test instance of our process, as we can see in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[37]

When we created our process, JDeveloper automatically created a WSDL file which
contained the single operation (that is process). However, it's quite common to
define processes that have multiple operations, as we will see later in this book.

The Operation drop-down allows us to specify which operation we want to invoke;
in our case, it's automatically defaulted to process.

When you select the operation to invoke, the console will generate an HTML Form,
with a field for each element in the message payload of the operation (as defined by
the WSDL for the process). Here we can enter into each field the value that we want
to submit.

For operations with large message payloads, it can be simpler to just enter the XML
source. If you select the XML Source radio button, the console will replace the form
with a free text area, with a skeleton XML fragment into which we can insert the
required values.

You may have noticed that in the previous screenshot we have checked the box Save
Test; this will cause BPEL PM to save our test values. So next time we initiate a test
process, those values will be pre-populated in the form, which we can then modify if
required. This can be quite useful if we have several fields as it can save us the hassle
of rekeying them every time.

To execute a test instance of our process, enter some text in the input field and click
Post XML Message. This will cause the Console to generate a SOAP message and
use it to invoke our Echo process.

Upon successful execution of the process, our test page will be updated to show the
response returned by our process. Here we can see that the result element contains
our original initial input string as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[38]

If we click on the Visual Flow link, this will display details of the process instance,
along with a graphic audit trail showing the activities that have been executed, as
shown in the following screenshot:

Clicking on any of the activities in the audit trail will pop up a window displaying
details of the actions performed by that activity. In the following figure we can see
details of the message sent by the replyOutput activity.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[39]

If you close this and return to the Dashboard tab in BPEL Control, you will see that
our process is listed under the Recently Completed BPEL Process Instances section.
If you click on the instance ID it will take you back to the process audit trail.

This completes development of our first BPEL process; the next step is to call it via
the service bus. In preparation for this, we will need the URL for the WSDL of our
process. To obtain this, from the BPEL Dashboard click on the Echo process, and
then the WSDL tab; this will display a link for the WSDL location and Endpoint as
shown in the following screenshot:

If you click on this link, the BPEL Console will open a window showing details of the
WSDL. Make a note of the WSDL location as we will need this in a moment.

Writing our first proxy service
Rather than allow clients to directly invoke our Echo process, best practice dictates
that we provide access to this service via an intermediary or proxy, whose role is to
route the request to the actual endpoint. This results in a far more loosely coupled
solution, which is key if we are to realize many of the benefits of SOA.

In this section, we are going to use the Oracle Service Bus to implement a proxy Echo
service, which sits between the Client and our Echo BPEL Process as illustrated in
the following figure:

Client

Oracle Service Bus

Echo
Proxy Service

Echo
Business Service

Oracle BPEL PM

Echo BPEL
Process

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[40]

It is useful to examine the above scenario to understand how messages are processed
by OSB. The Service Bus defines two types of services:

A•	 proxy service
A business service•	

The proxy service is an intermediary service that sits between the client and the
actual end service being invoked (that is our BPEL process in the previous example).

On receipt of a request, the proxy service may perform a number of actions on the
request, such as validating, transforming, or enriching it before routing it to the
appropriate business service.

Within the Oracle Service Bus, a business service is a definition of an external service
for which OSB is a client. This defines to OSB how to invoke the external service and
includes details such as the service interface, transport, security, and so on.

In the above example we have defined an Echo Proxy Service, which routes
messages to the Echo Business Service, which then invokes our Echo BPEL Process.
The response from the Echo BPEL Process follows the reverse path, with the proxy
service returning the final response to the original client.

Writing the Echo proxy service
Ensure that the Oracle Service Bus has started and then open up the Service
Bus Console. Either do this from the programs menu in Windows, using the
following path:

Oracle Weblogic | User Projects | OSB | Oracle Service Bus Admin Console

Or alternatively, open up a browser and enter the URL:

http://<hostname>:<port>/sbconsole

Hostname represents the name of the machine on which OSB is running and port
represents the port number. So if OSB is running on your local machine using the
default port, enter the following URL in your browser:

http://localhost:7001/sbconsole

This will bring up the login screen for the Service Bus Console; log in as weblogic
(default password weblogic). By default the OSB Console will display the
Dashboard view which provides a summary of the overall health of the system.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[44]

We are going to create the project folders BusinessService, ProxyService, and
WSDL, into which we will place our various resources. To create the first of these, in
the Folders section enter BusinessService as the folder name (circled in the previous
screenshot) and click Add Folder. This will create a new folder and update the list of
folders to reflect this.

Once created, follow the same process to create the remaining folders; your list of
folders will now look as follows:

Creating service WSDL
Before we can create either our proxy or business service we need to define the
WSDL on which the service will be based. For this we are going to use the WSDL
of our Echo BPEL process that we created earlier in this chapter.

Before importing the WSDL, we need to ensure that we are in the right folder within
our project; to do this click on the WSDL folder in our Folders list. On doing this
the project view will be updated to show us the content of this folder, which is
currently empty. In addition the project summary section of our project view will
be updated to show that we are now within the WSDL folder, as circled in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[45]

If we look at the Project Explorer in the navigation bar, we can see it has been
updated to show our location within the projects structure. By clicking on any project
or folder in here the console will take us to the project view for that location.

Importing a WSDL
To import the Echo WSDL into our project, click on the drop down next to Create
Resource in the Resources section and select Resources from URL as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[46]

This will bring up the page for loading resources from a URL as shown in the
following screenshot:

A WSDL can also be imported from the file system by selecting the WSDL
option from the Create Resource drop down.

In the URL/Path enter the URL for our Echo WSDL. This is the WSDL Location we
made a note of earlier (in the WSDL tab for the Echo process in the BPEL Console)
and should look like the following:

http://<hostname>:<port>/orabpel/default/Echo/1.0/Echo?wsdl

Enter an appropriate value for the Resource Name (for example Echo), select a
Resource Type of WSDL and click Next.

This will bring up the Load Resources window, which will list the resources that
OSB is ready to import.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[48]

Creating our business service
We are now ready to create our Echo business service. Click on the Business Service
folder within the Project Explorer to go to the project view for this folder.

In the Resources section click on the drop down next to Create Resource and select
Business Service. This will bring up the General Configuration page for creating a
business service as shown in the following screenshot:

Here we specify the name of our business service (i.e. EchoBS) and an optional
description. Next we need to specify the Service Type. As we are creating our service
based on a WSDL select WSDL Web Service.

Next click the Browse button; this will launch a window from where we can select
the WSDL for the business service, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[49]

By default, this window will list all WSDL resources defined to the service bus,
though you can restrict the list by defining search criteria.

In our case, we have just the Echo WSDL, so click on this. We will now be prompted
to select a WSDL definition as shown in the following screenshot:

Here we need to select which binding or port definition we wish to use for our
Business Service; select EchoPort and click Submit.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[50]

This will return us to the General Configuration screen, with the Service Type
updated to show the details of the selected WSDL and port as shown in the
following screenshot:

Click Next; this will take us to the Transport Configuration page shown in the
following screenshot. Here we need to specify how the business service is to invoke
the external service.

As we based our business service on the EchoPort definition, the transport settings
are already pre-configured based on the content of our WSDL file.

If we had based our business service on the EchoBinding definition, the
transport configuration would still have been pre-populated except for
the Endpoint URI, which we would need to add manually.

From here click Last, this will take us to a summary page of our business service.
Click Save to create our business service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[51]

This will return us to the project view on the Business Service folder, and display
the message The Service EchoBS was created successfully. If we examine the
resources section we should see it now contains our newly created business service.

Creating our proxy service
We are now ready to create our Echo proxy service. Click on the Proxy Service folder
within the Project Explorer to go to the project view for this folder.

In the Resources section click on the drop down next to Create Resource and select
Proxy Service. This will bring up the General Configuration page for creating a
proxy service, as shown in the following screenshot:

You will notice this looks very similar to the general configuration screen for a
business service. So, as before, enter the name of our service (i.e. Echo) and an
optional description.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[52]

Next we need to specify the Service Type; we could do this in exactly the same
way that we did for our business service and base it on the Echo WSDL. However,
this time we are going to base it on our EchoBS business service, we will see why
in a moment.

For the Service Type, select Business Service as shown in the previous screenshot
and click Browse. This will launch the Select Business Service window from where
we can search for and select the business service that we want to base our proxy
service on.

By default, this window will list all business services defined to the Service Bus,
though you can restrict the list by defining search criteria.

In our case, we have just the EchoBS, so select this and click on Submit. This will
return us to the General Configuration screen, with Service Type updated as shown
in the following screenshot:

From here click Last; this will take us to a summary page of our proxy service. Click
Save to create out proxy service.

This will return us to the project view on the Proxy Service folder, and display the
message The Service Echo was created successfully.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[53]

If we examine the resources section of our project view, we should see it now
contains our newly created proxy service.

Creating message flow
Once we have created our proxy service, the next step is to specify how it should
handle requests; this is defined in the message flow of the proxy service.

The message flow defines the actions that the proxy service should perform on
receipt of a request, such as validating the payload, transforming or enriching it
before routing it to the appropriate business service.

Within the resource section of our project view, click on the Edit Message Flow icon
as circled in the previous screenshot. This will take us to the Edit Message Flow
window, where we can view and edit the message flow of our proxy service, as
shown in the following screenshot:

Chapter 2

[55]

This will bring up the Activate Session as shown in the following screenshot:

Before activating a session, it's good practice to give a description of the changes
that we've made, just in case we need to roll them back later. So enter an appropriate
description and then click on Submit as shown in the previous screenshot.

Assuming everything is okay, this will activate our changes, and the console will be
updated to list our configuration changes as shown in the following screenshot:

If you make a mistake and want to undo the changes you have activated, you can
click on the undo icon (circled in the previous screenshot), and if you change your
mind you can undo the undo.

OSB allows you to undo any of your previous sessions as long as it doesn't result in
an error in the run time configuration of the Service Bus.

Testing our proxy service
All that's left is to test our proxy service; a simple way to do this is to initiate a test
instance using the Service Bus Test Console.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[56]

To do this, we need to navigate back to the definition of our proxy service. Rather
than do this via the Project Explorer, we will use the Resource Browser. This
provides a way to view all resources based on their type.

Click on the Resource Browser section within the navigation bar, by default
it will list all proxy services defined to the Service Bus, as shown in the
following screenshot:

We can then filter this list further by specifying the appropriate search criteria.

Click on the Launch Test Console icon for the Echo proxy service (circled in the
previous screenshot). This will launch the test console, shown in the following
screenshot.

The Available Operations drop down allows us to specify which operation we want
to invoke; in our case it's automatically defaulted to process.

By default, the options Direct Call and Include Tracking are selected within the Test
Configuration section; keep these selected as they enable us to trace the state of a
message as it passes through the proxy service.

The Request Document section allows us to specify the SOAP Header and the
Payload for our service. By default these will contain a skeleton XML fragment based
on the WSDL definition of the selected operation, with default values for each field.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Writing Your First Service

[58]

Upon successful execution of the proxy, the test console will be updated to show
the response returned. Here we can see that the result element contains our original
initial input string as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing
Systems

The heart of service-oriented architecture is the creation of processes and applications
from existing services. The question arises, where do these services come from?
Within a SOA solution some services will need to be written from scratch, but most
of the functions required should already exist in some form within the IT assets of
the organization. Existing applications within the enterprise already provide many
services that simply require exposing to an SOA infrastructure. In this chapter we
will examine some ways to create services from existing applications. We refer to this
process as service enabling existing systems. After a discussion of some of the different
types of systems we will look at the specific functionality provided in the Oracle SOA
Suite that makes it easy to convert file and database interfaces into services.

Types of systems
IT systems come in all sorts of shapes and forms, some have existing web service
interfaces which can be consumed directly by an SOA infrastructure, others have
completely proprietary interfaces and others expose functionality through some
well understood but non-web service based interface. In terms of service enabling
a system it is useful to classify it by the type of interface it exposes.

Within the SOA Suite, components called adapters provide a mapping between
non-web service interfaces and the rest of the SOA Suite. These adapters allow
the SOA Suite to treat non-web service interfaces as though they had a web
service interface.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[63]

Technology Adapter Notes
Message Queues JMS Reads and posts messages to Java Messaging Service

(JMS) queues and topics.
AQ Reads and posts messages to Oracle AQ (Advanced

Queuing) queues.
MQ Reads and posts messages to IBM MQ (Message

Queue) Series queues.

In addition to the six technology adapters listed above there are other technology
adapters available, such as a CICS adapter to connect to IBM mainframes, and
an adapter to connect to systems running Oracle's Tuxedo transaction processing
system. There are many other technology adapters that may be purchased to work
with the SOA Suite.

Installed adapters are shown in the component palette of JDeveloper when Services
are selected.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[64]

Application interfaces
The technology adapters leave the task of mapping the data structures into XML in
the hands of the service enabler. This mapping of data structures is already done
when using application adapters such as those for the Oracle E-Business Suite or
SAP. These application adapters make life easier for the service enabler by hiding
underlying data formats and transport protocols.

Unfortunately the topic of application adapters is too large an area to delve into in
this book, but you should always check if an application specific adapter already
exists for the system that you want to service enable. This is because application
adapters will be easier to use than the technology adapters.

There are hundreds of third party adapters that may be purchased to provide SOA
Suite with access to functionality within packaged applications.

Java Connector Architecture
Within the SOA Suite adapters are implemented and accessed using a Java
technology known as Java Connector Architecture (JCA). JCA provides a standard
packaging and discovery methods for adapter functionality. Most of the time
SOA Suite developers will be unaware of JCA because JDeveloper wraps the JCA
interfaces in WSDL and automatically deploys them with the appropriate component
that is using them, such as a BPEL process. In the current release JCA adapters must
be deployed separately to a WebLogic server for use by the service bus.

At the time of writing, the exact details of this had not been published for
Oracle Service Bus.

Creating services from files
A common mechanism for communicating with an existing application is through a
file. File communication is either inbound meaning a file must be read, or outbound
meaning a file must be written.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[65]

A payroll use case
Consider a company that has a payroll application that produces a file detailing
payments. This file must be transformed into a file format accepted by the company's
bank and then delivered to the bank through FTP. The company wants to use SOA
technologies to perform this transfer because it allows them to perform additional
validations or enrichment of the data before sending it to the bank. In addition they
want to store the details of what was sent in a database for audit purposes. In this
scenario a file adapter could be used to take the data from the file, an FTP adapter to
deliver it to the bank and a database adapter could post it into the tables required for
audit purposes.

Reading a payroll file
Let's look at how we would read from a payroll file. Normally we will poll to check
for the arrival of a file, although it is also possible to read a file without polling. Key
points to consider beforehand are:

How often should we poll for the file?•	

Do we need to read the contents of the file?•	

Do we need to move it to a different location?•	

What do we do with the file when we have read or moved it?•	

Should we delete it?	°

Should we move it to an archive directory?	°

How large is the file and its records?•	

Does the file have one record or many?•	

We will consider all these factors as we interact with the File Adapter Wizard.

Starting the wizard
We begin by dragging the file adapter from the component palette in JDeveloper
onto either a BPEL process (see Chapter 5) or an ESB interaction (not covered in
this book as we use the Oracle Service Bus). We could also create a new adapter by
clicking File and New… in JDeveloper to bring up the New Gallery and navigating
in the tree to the Business Tier, Web Services leaf to display the same list from
which we could select the File Adapter and click OK. We would use this latter route
when creating adapters for use with the Oracle Service Bus.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[66]

This causes the File Adapter Configuration Wizard to start.

Naming the service
Clicking Next allows us to choose a name for the service that we are creating and
optionally a description. We will use the service name PayrollInputFileService. Any
name can be used as long as it has some meaning for the developers.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[67]

Identifying the operation
Clicking Next allows us to start specifying how we map the files onto a service. It is
here that we decide whether we are reading or writing the file. When reading a file
we decide if we wish to generate an event when it is available (a normal Read File
operation that requires an inbound operation to receive the message) or if we want
to read it only when requested (a Synchronous Read File operation requires an
outbound operation).

Inbound (File Read)
Calls SOA Suite

Outbound (Synchronous File Read)
SOA Suite makes call

Outbound (File Write)
SOA Suite makes call

File

File

File

BPEL or
Service Bus

BPEL or
Service Bus

BPEL or
Service Bus

Who calls who?
We usually think of services as something that we call and then get a
result. However, in reality services in a service-oriented architecture will
often initiate events. These events may be delivered to a BPEL process
which is waiting for an event, or routed to another service through the
service bus or may even initiate a whole new BPEL process. Under the
covers an adapter might need to poll to detect an event, but the service
will always be able to generate an event. With a service we either call
it to get a result or it generates an event that calls some other service
or process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[68]

The file adapter has three types of operation as outlined in the following table. We
will explore the read operation to generate events as a file is created.

Operation Type Direction Description
Read File Outbound event from

service.
Reads the file and generates one or more
events into BPEL or Service Bus when a file
appears.

Write File Inbound call to service
with no response.

Writes a file, with one or more calls from
BPEL or the Service Bus, causing records to be
written to a file.

Synchronous
Read File

Inbound call to service
returning file contents.

BPEL or Service Bus requests a file to be read,
returning nothing if the file doesn't exist.

Why ignore the contents of the file?
The file adapter has an option to not read the file contents. This is used
when the file is just a signal for some event. Do not use this feature for the
scenario where a file is written and then marked as available by another
file being written. This is explicitly handled elsewhere in the file adapter.
Instead the feature can be used as a signal of some event that has no
relevant data other than the fact that something has happened.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[69]

Defining the file location
Clicking Next takes us to the screen that allows us to configure the location of the
file. Locations can be specified as either physical (mapped directly onto the file
system) or logical (an indirection to the real location). The directory for incoming
files specifies where the adapter should look to find new files.

A key question is now what to do with the file when it appears. One option is to keep
a copy of the file in an archive directory. This is achieved by checking the Archive
processed files attribute and providing a location for the file archive. In addition
to archiving the file we need to decide if we want to delete the original file. This is
indicated by the Delete files after successful retrieval check box.

Logical versus physical locations
The file adapter allows us to have logical (Logical Name) or physical
locations (Physical Path) for files. Physical locations are easier for
developers as we embed the exact file location into the assembly with no
more work required. However, this only works if the file locations are the
same in the development, test, and production environments, particularly
unlikely if development is done on Windows but production is on Linux.
Hence for production systems it is best to use logical locations that must
be mapped onto physical locations when deployed. Chapter 18 shows
how this mapping may be different for each environment.

The screenshot shows a physical file mapping that is really only appropriate
in development.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[70]

Selecting specific files
Having defined the location where files are found, we can now advance to the next
step in the wizard. Here we describe what the filenames look like. We can describe
filenames using either wildcards (using '*' to represent a sequence of 0 or more
characters) or using Java regular expressions as described in the documentation for
the java.util.regex.Pattern class. Usually wildcards will be good enough. For
example if we want to select all files that start with PR and end with .txt then we
would use the wildcard string PR*.txt or the regular expression PR.*\.txt. As can
be seen it is generally easier to use wildcards rather than regular expressions.

The final part of this screen in the adapter wizard asks if the file contains a single
message or many messages. This is confusing because when the screen refers to
messages it really means records.

XML files
It is worth remembering that a well formed XML document can only have
a single root element, and hence an XML input file will normally only
ever have a single input record. In the case of very large XML files it is
possible to have the file adapter batch the file up into multiple messages,
in which case the root element is replicated in each message, and the
2nd level elements are treated as records. Note that this behavior cannot
currently be set using the wizard.

By default a message will contain a single record from the file. Records will be
defined in the next step of the wizard. If the file causes a BPEL process to be started
then a 1000 record file would result in 1000 BPEL processes being initiated. To
improve efficiency, records can be batched and the Publish Messages in Batches of
attribute controls the maximum number of records in a message.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[71]

Message batching
It is common for an incoming file to contain many records. How these
records are processed can impact system performance and memory
requirements, hence it is important to align the use of the records with
their likely impact on system resources.

Detecting that the file is available
The next step in the wizard allows us to configure the frequency of polling for the
inbound file. There are two parameters that can be configured here—the Polling
Frequency and the Minimum File Age.

The Polling Frequency just means the time delay between checking to see if a file
is available for processing. The adapter will check once per interval to see if the file
exists. Setting this too low can consume needless CPU resources, setting it too high
can make the system appear unresponsive. Too high and too low are very subjective
and will depend on your individual requirements. For example the polling interval
for a file that is expected to be written twice a day may be set to 3 hours, while the
interval for a file that is expected to be written every hour may be set to 15 minutes.

Minimum File Age specifies how old a file must be before it is processed by the
adapter. This setting allows a file to be completely written before it is read. For
example a large file may take 5 minutes to write out from the original application. If
the file is read 3 minutes after it has been created then it is possible for the adapter
to run out of records to read and assume the file has been processed when in reality
the application is still writing to the file. Setting a minimum age to 10 minutes would
avoid this problem by giving the application at least 10 minutes to write the file.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[72]

Message format
The penultimate step in the file adapter is to set up the format of records or messages
in the file. This is one of the most critical steps as this defines the format of messages
generated by a file.

Messages may be opaque, meaning that they are passed around as black boxes. This
may be appropriate with a Microsoft Word file for example that must merely be
transported from point A to point B without being examined. This is indicated by the
Native format translation is not required check box.

If the document is already in XML format then we can just specify a schema and an
expected root element and the job is done. Normally the file is some non-XML format
that must be mapped onto an XML Schema generated through the native format
builder wizard invoked through the Define Schema for Native Format button.

Defining a native format schema
Invoking the Native Format Builder wizard brings up an initial start screen that
leads on to the first step in the wizard, choosing the type of format as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[73]

This allows us to identify the overall record structure. If we have an existing schema
document that describes the record structure then we can point to that. More usually
we will need to determine the type of structure of the file ourselves. The choices
available are:

D•	 elimited: Such as CSV files (Comma Separated Values) or records with
spaces or '+' signs for separators.
Fixed Length•	 : Files whose records consist of fixed length fields. Be careful
not to confuse these with space separated files as if a value does not fill the
entire field then it will usually be padded with spaces.
DTD•	 : XML Data Type Definition XML files that will be mapped onto an
XML Schema description of the file content.

•	 Cobol Copybook: Files that have usually been produced by a COBOL
system, often originating from a mainframe.

We will look at a delimited file as it is one of the most common formats.

Although, we are using the separator file type the steps involved are basically
the same for most file types including the fixed length field format, which is also
extremely common.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[74]

Using a sample file
To make it easier to describe the format of the incoming file the wizard asks us to
specify a file to use a sample. If necessary we can skip rows in the file and determine
the number of records to read. Obviously reading a very large number of records
may take a while and if all the variability on the file is in the first 10 records then
there is no point in wasting time reading any more sample records.

Setting the character needs to be done carefully, particularly in international
environments where non-ASCII character sets may be common.

After selecting a sample file the wizard will display an initial view of the file with a
guess at the field separators.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[75]

Record structure
The next step of the wizard allows us to describe how the records appear in the file.

The first option of File contains only one record allows us to process the file as
a single message. This can be useful when the file has multiple records, all the
same format, that we want to read in as single message. Use of this option
disables batching.

The next option of File contains multiple records instances allows batching to take
place. Records are either of the same type or of different types. They can only be
marked of different types if they can be distinguished based on the first field in the
record. In other words to choose the Multiple records of different types the first
field in all the records must be a record type identifier. In the example shown the first
field is either an H for Header records or an R for Records.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[76]

Choosing a root element
The next step allows us to define the target namespace and root element of the
schema that we are generating.

Don't forget that when using the Native Format Builder wizard we
are just creating an XML Schema document that describes the native
(non-XML) format data. Most of the time this schema is transparent to
us, but at times the XML constructs have to emerge, such as identifying
a name for a root element. The file is described using an XML Schema
extension known as NXSD.

As we can see the root element is mandatory. This root element acts as a wrapper for
the records in a message. If message batching is set to 1 then each wrapper will have
a single sub-element, the record. If message is set to greater than 1 then each wrapper
will have at least one and possibly more sub-elements, each sub-element being a
record. There can never be more sub-elements than the batch size.

Chapter 3

[77]

Message delimiters
Having described the overall structure of the file we can now drill down into the
individual fields. To do this we first specify the message delimiters.

In addition to field delimiters we can also specify a record delimiter. Usually record
delimiters are new lines. If fields may also be wrapped in quotation marks then these
can be stripped off by specifying the Optionally enclosed by character.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[78]

Record type names
The wizard will identify the types of record based on the first field in each record as
shown. It is possible to ignore record types by selecting them and clicking Delete.
If this is done in error then it is possible to add them back by using the Add button.
Only fields that exist in the sample data can be added in the wizard.

Note that if we want to reset the record types screen then the Scan button will
re-scan the sample file and look for all the different record types it contains.

The Record Name field can be set by double-clicking it and providing a suitable
record name. This record name is the XML element name that encapsulates the
record content.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[79]

Field properties
Now that we have identified record and field boundaries we can drill down into the
records and define the data types and names of individual fields. This is done for
each record type in turn. We can select which records to define by selecting them
from the Record Name drop-down box or by clicking the Next Record Type button.

It is important to be as liberal as possible when defining field data types because
any mismatches will cause errors that will need to be handled. Being liberal in our
record definitions will allow us to validate the messages, as described in Chapter 12,
without raising system errors.

The Name column represents the element name of this field. The wizard will
attempt to guess the type of the field but it is important to always check this because
the sample data you are using may not include all possibilities. A common error
is for identification numbers to be tagged as integers when they should really be
strings—accept integer types only when they are likely to have arithmetic operations
performed on them.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[81]

Finishing the wizards
Up to this point no work has been saved except for the XML Schema mapping the
file content onto an XML structure. The rest of the adapter settings are not saved and
the endpoint is not set up until the Finish button is clicked on the completion screen
as shown in the following screenshot. Note that the file generated is a Web Service
Description Language (WSDL) file.

Throttling the file and FTP adapter
The file and FTP adapters can consume a lot of resources when processing large files
(thousands of records) because they keep sending messages with batches of records
until the file is processed, not waiting for the records to be processed. This behavior
can be altered by forcing them to wait until a message is processed before sending
another message. This is done by making the following changes to the WSDL
generated by the wizard. This changes the one-way read operation into a two-way
read operation that will not complete until a reply is generated by our code in BPEL
or the Service Bus.

Creating a dummy message type
Add a new message definition to the WSDL such as the one shown:

<message name="Dummy_msg">
 <part xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 name="Dummy" type="xsd:string"/>
</message>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[83]

Choosing the operation
When we come to choose the type of operation we again notice that the screen
is different to the file adapter, having an additional File Type category. This
relates to the ASCII and binary settings of an FTP session. ASCII causes the FTP
transfer to adapt to changes in character encoding between the two systems. For
example converting between EBCDIC and ASCII or altering line feeds between
systems. When using text files it is generally a good idea to select the ASCII format.
When sending binary files it is vital that the binary file type is used to avoid any
unfortunate and unwanted transformations.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Service Enabling Existing Systems

[84]

Selecting the file destination
Choosing where the file is created is the same for both the FTP and the File Adapter.
Again there is a choice of physical or logical paths. The file naming convention
allows us some control over the name of the output file. In addition to the %SEQ%
symbol that inserts a unique sequence number it is also possible to insert a date or
date time string into the filename. Note that in the current release you cannot have
both a date time string and a sequence string in the file naming convention.

Note that when using a date time string as part of the filename, files with
the same date time string will overwrite each other, if this is the case then
consider using a sequence number instead.

When producing an output file we can either keep appending to a single file,
which will keep growing without limit, or we can create new files dependant on
attributes of the data being written. This is the normal way of working for non-XML
files and a new output file will be generated when one or more records are written to
the adapter.

The criteria for deciding to write to a new file are as follows:

Number of Messages Equals•	 forces the file to be written when the given
number of messages is reached. This can be thought of as batching the output
so that we reduce the number of files created.
Elapsed Time Exceeds•	 puts a time limit on how long the adapter will keep
the file open. This places an upper time limit on creating an output file.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[85]

File Size Exceeds•	 allows us to limit the size of files. As soon as a message
causes the file to exceed the given size then no more messages will be
appended to this file.

These criteria can all be applied together and as soon as one of them is satisfied a
new file will be created.

Writing XML files
When writing XML files care should be taken to have only a single
message per file as otherwise there will be multiple XML root elements in
the document that will make it an invalid XML document.

Completing the FTP file writer service
The next step in the wizard is to define the actual record formats. This is exactly the
same as when creating an input file. If we don't have an existing XML Schema for the
output file then we can use the wizard to create one if we have a sample file to use.

Finally, again remember to run through the wizard to the end and click finish rather
than cancel or our entire configuration will be lost.

Moving, copying, and deleting files
Sometimes we will just want an adapter to move, copy, or delete a file without
reading the file. We will use the ability of the file adapter to move a file in
Chapter 14—Message Interaction Patterns, to set up a scheduler service within
the SOA suite.

The following steps will configure an outbound file or FTP adapter to move, copy,
or delete a file without reading it.

Generate an adapter
Use the file or FTP adapter wizard to generate an outbound adapter, file write or FTP
put operation. The data content should be marked as opaque, so that there is no need
to understand the content of the file. Once this has been done we will modify the
WSDL generated to add additional operations.

Service Enabling Existing Systems

[86]

Modify the port type
Modify the port type of the adapter to include the additional operations required as
shown below. Use the same message type as the Put or Write operations generated
by the wizard.

<portType name="Write_ptt">
 <operation name="Write">
 <input message="tns:Write_msg"/>
 </operation>

 <operation name="Move">
 <input message="tns:Write_msg"/>
 </operation>

</portType>

Note that the following operation names are supported:

Move•	
Copy•	
Delete•	

Modify the binding
Bindings describe how the service description maps onto the physical service
implementation. They are covered in more detail in Chapter 17—The Importance of
Bindings. For now we will just modify the binding to add the additional operations
needed and map them to the appropriate implementation as shown below:

<binding name="Write_binding" type="tns:Write_ptt">
 <jca:binding />
 <operation name="Write">
 <jca:operation PhysicalDirectory="C:\FileTransfer\Outbound"
 InteractionSpec="oracle.tip.adapter.file.outbound.
 FileInteractionSpec"
 FileNamingConvention="fred_%SEQ%.txt"
 NumberMessages="1"
 OpaqueSchema="true" >
 </jca:operation>
 <input>
 <jca:header message="hdr:OutboundHeader_msg"
 part="outboundHeader"/>
 </input>
</operation>

 <operation name="Move">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.file.outbound.
 FileIoInteractionSpec"
 SourcePhysicalDirectory="C:\FileTransfer\Inbound"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[87]

 SourceFileName="test.txt"
 TargetPhysicalDirectory="C:\FileTransfer\Outbound"
 TargetFileName="test.txt"
 Type="MOVE">
 </jca:operation>
 <input>
 <jca:header message="hdr:OutboundHeader_msg"
 part="outboundHeader"/>
 </input>

 </operation>
</binding>

Note that the following types are supported for use with the equivalent operation
names; observe that operation names are mixed case and types are uppercase:

MOVE•	
COPY•	
DELETE•	

For the FTP adapter the InteractionSpec property is oracle.tip.adapter.ftp.
outbound.FTPIoInteractionSpec.

Add additional header properties
In order to allow run time configuration of the source and destination locations
it is necessary to modify the adapter header file that is provided by the wizard,
ftpAdapterOutboundheader.wsdl or fileAdapterOutboundHeader.wsdl.

We need to add the source destination locations as properties in the header as
shown below:

<element name="OutboundFileHeaderType">
 <complexType>

 <sequence>
 <element name="fileName" type="string"/>

 <element name="sourceDirectory" type="string"/>
 <element name="sourceFileName" type="string"/>
 <element name="targetDirectory" type="string"/>
 <element name="targetFileName" type="string"/>

 </sequence>
 </complexType>
</element>

These elements in the adapter header can be used to dynamically select at run time
the locations to be used for the move, copy or delete operation.

Service Enabling Existing Systems

[88]

With the above modifications the move, copy, or delete operations will appear as
additional operations on the service that can be invoked from the service bus or
within BPEL.

Adapter headers
In addition to the data associated with the service being provided by the adapter,
sometimes referred to as the payload of the service, it is also possible to configure
or obtain information about the operation of an adapter through header messages.
Adapter header files are generated by the adapter wizard and may be modified to
alter the operation of the adapter as was shown in the previous section on moving
and copying files with the file adapter.

To use an adapter from within BPEL we first need to create a message variable of
the correct type by selecting it from the Project WSDL files in the type chooser. See
Chapter 5 for details on creating BPEL variables and using the invoke statement.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[89]

We can then use the header by assigning appropriate values to the fields within the
header, such as the filename, before adding it to an invoke statement in BPEL. In
JDeveloper the invoke statement property dialog has an Adapters tab that can be
used to specify the header variable to be used in the invocation.

Testing the file adapters
We can test the adapters by using them within a BPEL process such as the one shown
in the following screenshot. Building a BPEL process is covered in Chapter 5. This
uses the two services we have just described and links them with a copy operation
that transforms data from one format to the other.

Service Enabling Existing Systems

[90]

Creating services from databases
In the following sections, we will have a look at how to create services from databases.

Writing to a database
Along with files, databases are one of the most common ways of interfacing
with existing applications and providing them with a service interface. Before
we configure a database adapter we first need to create a new database connection
within JDeveloper. This is done by creating a Database Connection from the
New Gallery.

Choosing a database connection brings up the database connection wizard which
allows us to enter the connection details of our database.

Selecting the database schema
With an established database connection we can now create a service based on a
database table. We will create a service that updates the database with the payroll
details. The model for the database tables is shown in the following screenshot:

Now we have our database connection. We can run the Database Adapter Wizard by
dragging the database adapter icon from the tool palette onto a BPEL process or ESB.
This starts the database adapter wizard and after giving the service a name we come
to the Service Connection screen as shown:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[91]

This allows us to choose a local connection in JDeveloper to use and also to select the
JNDI location in the run time environment of the database connection. Note that this
JNDI connection must be configured as part of the database adapter in the default
application in a similar way to configuration of the FTP adapter.

How connections are resolved by the database adapter
When the adapter tries to connect to the database it first tries to use the
JNDI name provided, which should map to a JCA connection factory
in the application server. If this name does not exist then the adapter
will use the database connection details from the JDeveloper database
connection that was used in the wizard. This behavior is very convenient
for development environments because it means that you can deploy and
test the adapters in development without having to configure the JCA
connection factories.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[93]

Poling for new or changed records is the only way for the database adapter to
generate messages to be consumed in a BPEL process or the service bus. For this
exercise we will select insert/update for the operation.

Identifying tables to be operated on
The next step in the wizard asks which table is the root table, or beginning of the
query. To select this, we first click the Import Tables… button to bring up the Import
Tables dialog.

Once we have imported the tables we need, we then select the PAYROLLITEM table
as the root table. We do this because each record will create a new PAYROLLITEM
entry. All operations through the database adapter must be done with a root table;
any other tables must be referencable from this root table.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services
In the previous chapter we explored how we can take functionality in our existing
applications and expose them as services. When we do this we often find that the
service interface we create is tightly coupled to the underlying implementation.
We can make our architecture more robust by reducing this coupling. By defining
our interface around our architecture rather than around our existing application
interfaces, we can reduce coupling. We can also reduce coupling by using a routing
service to avoid physical location dependencies. In this chapter we will explore how
service virtualization through the Service Bus of the Oracle SOA Suite can be used to
deliver more loosely coupled services.

Coupling
Coupling is a measure of how dependent one service is upon another. The more
closely one service depends on another service, the more tightly coupled they are.
There have been a number of efforts to formalize metrics for coupling and they all
revolve around the same basic items. These are:

Number of input data items•	 : This is basically the number of input
parameters of the service.
Number of output data items•	 : It is the output data of the service.
Dependencies on other services•	 : It is the number of services called by
this service.
Dependencies of other services on this service•	 : It is the number of services
that invoke this service.
Use of shared global data•	 : It is the number of shared data items used by this
service. This may include database tables or shared files.
Temporal dependencies•	 : Dependencies on other services being available at
specific times.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[98]

Let us examine how each of these measures may be applied to our service interface.
The principles below are relevant to all services, but widely reused services have a
special need for all of the items.

Number of input data items
A service should only accept, as input, the data items required to perform the service
being requested. Additional information should not be passed into the service
because this creates unnecessary dependencies on the input formats. This economy
of input allows the service to focus on only the function it is intended to provide and
does not require it to understand unnecessary data formats. The best way to isolate
the service from changes in data formats that it does not use is not to require the
service to be aware of those data formats.

For example, a credit rating service should only require sufficient information to
identify the individual being rated. Additional information such as the amount of
credit being requested or the type of goods or services for which a loan is required is
not necessary for the credit rating service to perform its job.

Services should accept only the data required to perform their function
and nothing more.

When talking about reducing the number of data items input or output from a
service, we are talking about the service implementation, not a logical service
interface that may be implemented using a canonical data model. The canonical data
model may have additional attributes not required by a particular service, but these
should not be part of the physical service interface.

Number of output data items
In the same way that a service should not accept inputs that are unnecessary for
the function it performs, a service should not return data that is related only to
its internal operation. Exposing such data as part of the response data will create
dependencies on the internal implementation of the service that are not necessary.

Sometimes a service needs to maintain state between requests. State implies that
state information must be maintained at least in the client of the service, so that it can
identify the state required to the service when making further requests, but often the
state information in the client is just an index into the state information held in the
service. We will return to this subject later in this chapter.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[99]

Services should not return public data that relates to their own internal
processing.

Dependencies on other services
Generally reuse of other services to create a new composite service is a good thing.
However dependencies on other services does increase the degree of coupling
because there is a risk that changes in those services may impact the composite
service and hence any services with dependencies on the composite service. We can
reduce the risk that this poses by limiting our use of functionality in other services to
just that required by the composite.

Services should reduce the functionality required of other services to the
minimum required for their own functionality.

For example, a dispatching service may decide to validate the address it receives.
If this functionality is not specified as being required, because for example all
addresses are validated elsewhere, then the dispatching service has an unnecessary
dependency that may cause problems in the future.

Dependencies of other services on this
service
Having a widely used service is great for reuse but the greater the number of services
that make use of this service then the greater impact a change in this service will
have on other services. Extra care must be taken with widely reused services to
ensure that their interfaces are as stable as possible. This stability can be provided by
following the guidelines in this section.

Widely reused services should focus their interface on just the
functionality needed by clients and avoid exposing any unnecessary
functions or data.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[101]

Reducing coupling in stateful services
A stateful service maintains context for a given client between invocations. When
using stateful services, we always need to return some kind of state information
to the client. To avoid unnecessary coupling, this state information should always
be opaque. By opaque we mean that it should have no meaning to the client other
than as a reference that must be returned to the service when requesting follow on
operations. We will examine how this may be accomplished later in this section.

A common use of state information in a service is to preserve the position in a
search that returns more results than can reasonably be returned in a single
response. Another use of state information might be to perform correlation between
services that have multiple interactions such as between a bidding service and a
bidding client.

Whatever the reason, the first question when confronted with the need for state in a
service is to investigate ways to remove the state requirement. If there is definitely a
need for state to be maintained then there are two approaches that can followed by
the service:

Externalize all state and return it to the client.•	

Maintain state within the service and return a reference to the client.•	

In the first case it is necessary to package up the required state information and
return it to the client. Because the client should be unaware of the format of this data
it must be returned as an opaque type. This is best done as an <any> element in the
schema for returning the response to the client. An <any> element may be used to
hold any type of data from simple strings through to complex structured types.

For example if a listing service returns only twenty items at a time then it must pass
back sufficient information to enable it to retrieve the next twenty items in the query.

In the XML Schema example below we have the XML data definitions to support two
operations on a listing service. These are:

searchItems•	
nextItems•	

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[102]

The searchItems operation will take a searchItemsRequest element for input
and return a searchItemsResponse element. The searchItemsResponse has
within it a searchState element. This element is a sequence that has an unlimited
number of arbitrary elements. This can be used by the service to store sufficient
state to allow it to deliver the next twenty items in the response. It is important
to realize that this state does not have to be understood by the client of the
service. The client of the service just has to copy the searchState element to the
continueSearchItemsRequest element to retrieve the next set of 20 results.

searchItemsRequest

category
type xsd:string

searchString
type xsd:string

continueSearchItemsRequest searchState

searchItemsResponse

itemResponse
0:20

searchState

0:
any

0:
any

searchState
0:

any

itemTitle
type xsd:string

itemDescription
type xsd:string

auctionID
type xsd:string

expires
type xsd:string

targetNamespace http://www.soasuite.book
<schema>

The approach above has the advantage that the service may still be stateless,
although it gives the appearance of being stateful. The sample schema shown in the
following figure could be used to allow the service to resume the search where it left
off without the need for any internal state information in the service. By storing the
state information (the original request and the index of the next item to be returned)
within the response, the service can retrieve the next set of items without having
to maintain any state within itself. Obviously the service for purposes of efficiency
could maintain some internal state, such as a database cursor, for a period of time,
but this is not necessary.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[103]

targetNamespace http://www.soasuite.book/SearchState

<schema>

category
type xsd:string

searchString
type xsd:string

req:searchItemsRequest

nextItemIndex
type xsd:int

<import>

schemeLocation
namespace http://www.soasuite.book

ListItems.xsd

externalizedSearchState

searchItemsRequest

An alternative approach to state management is to keep the state information within
the service itself. This still requires some state information to be returned to the
client, but only a reference to the internal state information is required. In this case
there are a couple of options for dealing with this reference.

One is to take state management outside of the request/response messages and
make it part of the wider service contract, either through the use of WS-Correlation
or an HTTP cookie for example. This approach has the advantage that the service
can generally take advantage of state management functions of the platform, such as
support for Java services to use the HTTP session state.

Use of WS-Correlation
It is possible to use a standard correlation mechanism such as WS-
Correlation. This is used within SOA Suite by BPEL to correlate process
instances with requests. If this approach is used, however, it precludes
the use of the externalized state approach discussed earlier. This makes
it harder to swap out your service implementation with one that
externalizes all its state information. In addition to requiring your service
to always internalize state management, no matter how it is implemented,
your clients must now support WS-Correlation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[104]

The alternative is to continue to keep the state management in the request/response
messages and deal with it within the service. This keeps the client unaware of how
state is managed because the interface is exactly the same for a service that maintains
internal state and a service that externalizes all state. A sample schema for this is
shown in the following figure. Note that unlike the previous schema there is only
a service specific reference to its own internal state. The service is responsible for
maintaining all the required information internally and using the externalized
reference to locate this state information.

<shema>

targetNamespace http://www.soasuite.book/SearchState2

externalizedSearchState
type xsd:string

<import>

schemaLocation ListItems.xsd
namespace http://www.soasuite.book

The OSB (Oracle Service Bus) in SOA Suite enables us to have services use their
native state management and still expose it as service specific state management that
is more abstract and hence less tightly coupled to the way state is handled.

Some web service implementations allow for stateful web services, with state
managed in a variety of proprietary fashions. For example, the Oracle Containers
for J2EE (OC4J) used cookies for native state management, other platforms can use
different mechanisms.

We want to use native state management when we internalize session state because
it is easier to manage, and the container will do the work for us using mechanisms
native to the container. However this means that the client has to be aware that
we are using native state management because the client must make use of these
mechanisms. We want the client to be unaware of whether the service uses native
state management, its own custom state lookup mechanism, or externalizes all
session state into the messages flowing between the client and the service. The latter
two can look the same to the client and hence make it possible to switch services with
different approaches. However, the native state management explicitly requires the
client to be aware of how the state is managed.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[105]

To avoid this coupling we can use the OSB to wrap the native state management
services as shown in the following diagram. The client passes a session state element
of unknown contents back to the service façade which is provided by the OSB.
The OSB then removes the session state element and maps it onto the native state
management used by the service, such as placing the value into a session cookie.
Thus we have the benefits of using native state management without the need for
coupling the client to a particular implementation of the service. For example, an
OC4J service may use cookies to manage session state, by having the OSB move the
cookie value to a field in the message we avoid clients of the service having to deal
with the specifics of OC4J state management.

Client

Facade
(Converts

Application
TO Native State

Mgmnt)

Stateful Service
(Native State

Mgmnt)

Oracle Service Bus design tools
The Oracle Service Bus can be configured either using the Oracle Workshop for
WebLogic or the Oracle Service Bus Console.

Oracle workshop for WebLogic
Oracle Workshop for WebLogic provides tools for creating all the artifacts needed
by the Oracle Service Bus. Based on Eclipse, it provides a rich design environment
for building service routings and transformations for deployment to the service bus.
In future releases it is expected that all the service bus functionality in the Workshop
for WebLogic will be provided in JDeveloper. Note that there is some duplication
functionality between JDeveloper and Workshop for WebLogic. In some cases, such
as WSDL generation, the functionality provided in the Workshop for WebLogic is
superior to that provided by JDeveloper. In other cases, such as XSLT generation, the
functionality provided by JDeveloper is superior.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[106]

Oracle Service Bus Console
Oracle Service Bus Console provides a web-based interface for creating, managing,
and monitoring all service bus functions. In this chapter we will focus on using the
Service Bus Console. Changes to a service bus configuration are grouped together
in a session using the change center. Before any changes are made, it is necessary to
Create a session from within the change centre. When the changes are complete, they
are applied by clicking Activate. Clicking Discard will cause the changed state to
be discarded.

Service Bus overview
The Oracle SOA Suite includes the Oracle Enterprise Service Bus which runs on
multiple vendors application servers, and the Oracle Service Bus which in the
current release only runs on Oracle WebLogic Server. In the future the Oracle Service
Bus may also run on other vendors' applications servers. If you plan on deploying
SOA Suite onto non-WebLogic applications servers, then you should use the Oracle
Enterprise Service Bus. Most users however run the SOA Suite on Oracle application
servers and would be better off using the Oracle Service Bus as it is more functional
than the Oracle Enterprise Service Bus and is the stated strategic service bus for
Oracle SOA Suite. Because of its additional functionality, we will focus on the Oracle
Service Bus in this book.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[107]

Service Bus message flow
It is useful to examine how messages are processed by the service bus. Messages
normally target an endpoint in the service bus known as a proxy service. Once
received by the proxy service, the message is processed through a series of input
pipeline stages. These pipeline stages may enrich the data by calling out to other
web services, or they may transform the message as well as providing logging and
message validation. Finally, the message reaches a routing step where it is routed
to a service known as a business service. The response, if any from the service, is
then sent through the output pipeline stages which may also enrich the response or
transform it before returning a response to the invoker.

Note that there may be no pipeline stages and the router may make a choice between
multiple endpoints. Finally note that the business service is a reference to the target
service which may be hosted within the service bus or as a standalone service. The
proxy service may be thought of as the external service interface and associated
transforms required to make use of the actual business service.

Proxy
Service

Input Pipline

Output Pipline

Routing
Step

Business
Service

Virtualizing service endpoints
To begin our exploration of the Oracle Service Bus, let us start by looking at how
we can use it to virtualize service endpoints. By virtualizing a service endpoint
we mean that we can move the location of the service without affecting any of the
services' dependents.

We will use an address lookup service as our sample. To begin we create a new
Service Bus Project. After logging onto the console and before we start making
changes in the console we need to create a new session, as described in the previous
section. We can then select the Project Explorer tab and create a new project by
entering a project name and clicking the Add Project button. This creates a new
Service Bus Project within the console.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[108]

We can now start adding items to our project by clicking on the project name
either in the Project Explorer tab or in the list of projects under the project creation
dialogue. Before adding any items to the project, it is considered good practice to
organize the items into folders reflecting their type. So we will use the Add Folder
dialogue to create folders for the various artifacts we require. We will create a
ProxyService folder to hold the externally callable service provided by the service
bus, a BusinessService folder to hold the backend services called by the service bus,
and a WSDL folder to hold service definitions (WSDL) files.

Moving service location
To virtualize the address of our service we first need to add the service definition
to the project. In this case we will be adding a web service so we start by adding a
service description (WSDL file) to define the service. Before adding the WSDL file,
we select the WSDL folder in our project. We then select the appropriate resource
type from the Create Resource dialogue. We select the WSDL resource type from the
Interface section and are presented with a dialogue enabling us to load the WSDL
into the project. We then browse for the WSDL definition and then select Save to add
it to the project. This registers the WSDL with the internal service bus repository.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[109]

Note that the dialogue requires us to provide a name for the WSDL file and
optionally a description. The large blank section in the dialog is used to display the
current WSDL file details and is only populated after the WSDL file has been saved.

Endpoint address considerations
When specifying endpoints in the service bus, it is generally not a good
idea to use localhost or 127.0.0.1. Because the service bus definitions may
be deployed across multiple nodes there is no guarantee that business
service will be co-located with the service bus on every node the service
bus is deployed upon. Therefore it is best to ensure that all endpoint
addresses use actual hostnames.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[110]

Now that we have a service definition loaded, we can use this to create the business
service, or ultimate endpoint of the service. We do this by changing directory to the
BusinessService directory and creating a resource of type Business Service. This
brings up a screen allowing us to configure the business service.

We provide a name for the service and identify the type of service to be accessed.
Note that we are not limited to services described by WSDL. In addition to already
defined business and proxy services, we can base our service on XML or messaging
systems. The easiest to use is the WSDL web service. Browsing for a WSDL web
service brings up a dialogue listing all the WSDL documents known to the service
bus. We can search this list to select the WSDL document we want to use.

Chapter 4

[111]

When we select the WSDL name that we want to use, we are taken to another
dialogue that introspects the WSDL, identifies any ports or bindings and asks us
which one we wish to use. Bindings are mappings of the WSDL service onto a
physical transport mechanism such as SOAP over HTTP. Ports are the mapping of
the binding onto a physical endpoint such as a specific server. For more information
on the makeup of a WSDL file see Chapter 17—The Importance of Bindings.

Note that if we choose a port we do not have to provide physical endpoint details
later in the definition of the business service, although we may choose to do so. If we
choose a binding, because it doesn't include a physical endpoint address, we have to
provide the physical endpoint details explicitly. Once we have highlighted the port
or binding we want to use we hit the Submit button.

At this point if we have chosen a binding, we can hit last to review the final
configuration of the business service. If, however, we chose a port or we wish
to change the physical service endpoint, or add additional physical service
endpoints, then we hit the Next button to allow us to configure the physical
endpoints of the service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[113]

Now that we have created our business service we need to expose it through the
service bus by adding a proxy service. We do this in a similar fashion to creating the
business service by creating a resource of type proxy service in the ProxyService
folder. If we are only virtualizing the location of a service then the proxy service can
use the same WSDL definition as the business service. Again we can choose to use
either a port or a binding from the WSDL for a service definition. In either case the
endpoint URI is determined by the service bus, although we can change its location
and transport. Once we have created the new proxy service we then need to link the
proxy service to the business service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[115]

Dynamic Routing•	 : It allows us route to the result of an XQuery. This is
useful if the endpoint address is part of the input message.
Routing•	 : It allows us to select a single static endpoint.
Routing Table•	 : It allows us to use an XQuery to route between several
endpoints. This is useful when we want to route to different services based
on a particular attribute of the input message.

For simple service endpoint virtualization we only require the Routing option.

Selecting the Routing option then enables us to configure the route by first selecting
a service by clicking on the <Service> label. This brings up a dialog from which we
can select out target endpoint, usually a previously defined business service.

Having selected a target endpoint, we can then configure how we use that endpoint.
In the case of simple location virtualization then the proxy service and the business
service endpoint are the same and so we can just pass on the input message directly
to the business service. Later on we will look at how to transform data to allow
virtualization of the service interface.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[116]

To provide a simple pass through function we can check the Use inbound operation
for outbound checkbox. This means that the operation that is requested on the proxy
service, the inbound operation, will be invoked on the business service, the outbound
operation. Because there is no need to transform the data or perform additional
operations we can now save our message flow and activate our changes by clicking
activate in the session dialog.

Selecting a service to call
We can further virtualize our endpoint by routing different requests to different
services, based upon the values of the input message. For example, we may use one
address lookup service for addresses in our own country and another service for all
other addresses. In this case, we would use the routing table option on the add action
to provide a list of possible service destinations.

The routing table enables us to have a number of different destinations and the
message will be routed based the value of an expression. When using a routing
table all the services must be selected based on the same expression, the comparison
operators may vary but the actual value being tested against will always be the
same. If this is not the case then it may be better to use if … then … else routing.
The routing table may be thought of as a switch statement and as with all switch
statements, it is good practice to add a default case.

In the routing table we can create additional cases, each of which will have a test
associated with it. Note that we can also add the default case.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[117]

We need to specify the expression to be used for testing against. Clicking on the
<Expression> link takes us to the XQuery /XSLT Expression Editor. By selecting the
Variable Structures tab and selecting a new structure we can find the input body of
the message which enables us to select the field we wish to use as the comparison
expression in our routing table.

When selecting in the tab on the left of the screen the appropriate xpath expression
should appear in the Property Inspector window. We can then click on the XQuery
Text area of the screen prior to clicking on the Copy Property to transfer the property
xpath expression from the property inspector to the XQuery Text area. We then
complete our selection of the expression by clicking the Save button.

In the example we are going to route our service based on the country of the address.
In addition to the data in the body of the message, we could also route based on
other information from the request, or by using a message pipeline, we could base
our lookup on data external to the request.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[118]

Once we have created an expression to use as the basis of comparison for routing
then we select an operator and a value to use for the actual routing comparison. In
the example below, if the country value from the expression matches the string uk
(include the quotes) then the local address lookup service will be invoked. Any other
value will cause the default service to be invoked, as yet undefined in the following
example:

Once the routing has been defined then it can be saved as shown earlier in this chapter.

Note that we have shown a very simple routing example. The service bus is capable
of doing much more sophisticated routing decisions. A common pattern is to use a
pipeline to enrich the inbound data and then route based on the inbound data. For
example a pricing proxy service may use the inbound pipeline to look up the status
of a customer, adding that status to the data available as part of the request. The
routing service could then route high value customers to one service and low value
customers to another service, based on the looked up status. In this case the routing
is done based on a derived value rather than on a value already available in
the message.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[120]

Using canonical format gives us two transformations for each client, inbound and
outbound to canonical form; with two clients this gives us four transformations. To
this we add the server transformations to and from canonical form, of which there
are two per server giving us eight transformations. This gives us a total of twelve
transformations that must be coded up rather than sixteen if we were using native
to native transformation.

Client A
Form

Client B
Form

Service
W

Form

Service
X

Form

Service
Y

Form

Service
Z

Form

Xform A andCanonical Form

Xform B and

Canonical Form

Xform
Z

and

Canonical Form

Xform Y and

Canonical Form

Xform X and

Canonical Form
Xf

or
m

W
an

d
Ca

no
ni

ca
l F

or
m

Canonical
Form

The benefits of canonical form are most clearly seen when we deploy a new client.
Without canonical form we would need to develop eight transformations to allow
the client to work with the four different possible service implementations. With
canonical form we only need two transformations, to and from canonical form.

Let us look at how we implement canonical form in Oracle Service Bus.

Mapping service interfaces
In order to take advantage of canonical form in our service interfaces, we must have
an abstract service interface that provides the functionality we need without being
specific to any particular service implementation. Once we have this we can then use
it as the canonical service form.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[121]

We set up the initial project in the same way as we did in the previous section on
virtualizing service endpoints. The proxy should provide the canonical interface,
the business service providing the native service interface. Because the proxy and
business services are not the same interface we need to do some more work in the
route configuration.

We need to map the canonical form of the address list interface onto the native
service form of the interface. In the example, we are mapping our canonical interface
to the interface provided by a web-based address solution provided by Harte-Hanks
Global Address (http://www.qudox.com). To do this we create a new service bus
project and add the Harte-Hanks WSDL (http://webservices.globaladdress.
net/globaladdress.asmx?WSDL). We use this to define the business service. We
also add the canonical interface WSDL that we have defined and create a new proxy
with this interface. We then need to map the proxy service onto the Harte-Hanks
service by editing the message flow associated with the proxy, as we did in the
previous section.

Our mapping needs to do two things:

Map the method name on the interface to the correct method in the •	
business service.
Map the parameters in the canonical request onto the parameters needed •	
in the business service request.

For each method on the canonical interface we must map it onto a method in the
physical interface. We do this by selecting the appropriate method from the business
service operation drop-down box. We need to do this because the methods provided
in the external service do not match the method names in our canonical service. In
the example we have mapped onto the SearchAddress method.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[124]

Having providing the source data, the target, and the transformation we can then
save the repeat the whole process for the response message, in this case converting
from native to canonical form.

We can use JDeveloper to build an XSLT transformation and then upload it into the
service bus; a future release will add support for XQuery in JDeveloper similar to
that provided in Oracle Workshop for WebLogic. XSLT is an XML language that
describes how to transform one XML document into another. Fortunately most
XSLT can be created using the graphical mapping tool in JDeveloper, and so SOA
Suite developers don't have to be experts in XSLT, although it is very useful to know
how it works. Note that in our transform we may need to enhance the message
with additional information, for example the Global Address methods all require a
username and password to be provided to allow accounting of the requests to take
place. This information has no place in the canonical request format but must be
added in the transform. A sample transform is shown that does just this.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[125]

Note that we use XPath string functions to set the username and password fields. It
would be better to set these from properties or an external file as usually we would
want to use them in a number of calls to the physical service. XPath functions are
available to allow access to composite properties. We actually only need to set five
fields in the request, a country, postcode, username, password, and maximum
number of results to return. All the other fields are not necessary for the service
we are using and so are hidden from end users because they do not appear in the
canonical form of the service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Loosely Coupling Services

[126]

Applying canonical form in the service bus
When we think about canonical form and routing, we have several different
operations that may need to be performed. These are:

Conversion to/from native business service form and canonical proxy form.•	

Conversion to/from native client form to canonical proxy form.•	

Routing between multiple native services, each potentially with its own •	
message format.

The following diagram represents these different potential interactions as distinct
proxy implementations in the service. To reduce coupling and make maintenance
easier, each native service has a corresponding canonical proxy service, which
isolates the rest of the system from the actual native formats. This is shown in the
following figure in the Local-Harte-Hanks-Proxy and Local-LocalAddress-Proxy
services that transform the native service to/from canonical form. This approach
allows us to change the native address lookup implementations without impacting
anything other than the Local-*-Proxy service.

The Canonical-Address-Proxy has the job of hiding the fact that the address lookup
service is actually provided by a number of different service providers each with
their own message formats. By providing this service we can easily add additional
address providers without impacting the clients of the address lookup service.

Local-
Local-

Address-
Business-
Service

Local-
LocalAddress

-Proxy
Transform Canonical

to Native

Transform Canonical
to Native

Native-
Harte-
Hanks-

Business-
Service

Native-
Local-

Address-
Business-
Service

Local-
Harte-
Hanks-

Business-
Service

Local-Harte-
Hanks-Proxy

Route to Harte-Hanks
or LocalAddress

Native-
LocalAddress

-Service

Native-Harte-
Hanks-
Service

Canonical-
Address-

Proxy

In addition to the services shown in the figure we may have clients that are not
written to use the canonical address lookup. In this case we need to provide a proxy
that transforms the native input request to/from the canonical form. This allows us
to be isolated from the requirements of the clients of the service. If a client requires
its own interface to the address lookup service we can easily provide that through a
proxy without the need to impact the rest of the system, again reducing coupling.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[127]

An important optimization
The above approach provides a very robust way of isolating service consumers and
service requestors from the native formats and locations of their partners. However
there must be a concern about the overhead of all these additional proxy services
and also about the possibility of a client accessing a native service directly. To avoid
these problems the service bus provides a local transport mechanism that can be
specified as part of the binding of the proxy service. The local transport provides two
things for us:

It makes services only consumable by other services in the service bus; they •	
cannot be accessed externally.
It provides a highly optimized messaging transport between proxy services, •	
providing in-memory speed to avoid unnecessary overhead in service
hand-offs between proxy services.

These optimizations mean that it is very efficient to use canonical form, and so the
service bus not only allows us great flexibility in how we decouple our services from
each other but it also provides a very efficient mechanism for us to implement that
decoupling. Note though that there is a cost involved in performing XSLT or XQuery
transformations; this cost may be viewed as the price of loose coupling.

Summary
In this chapter we have explored how we can use the Oracle Service Bus in the SOA
Suite to reduce the degree of coupling. By reducing coupling, or the dependencies
between services, our architectures become more resilient to change. In particular,
we looked at how to use the Service Bus to reduce coupling by abstracting endpoint
interface locations and formats. Crucial to this is the concept of canonical or common
data formats that reduce the amount of data transformation that is required,
particularly in bringing new services into our architecture. Finally we considered
how this abstraction can go as far as hiding the fact that we are using multiple
services concurrently by allowing us to make routing decisions at run time.

All these features are there to help us build service-oriented architectures that are
resilient to change and can easily absorb new functionality and services.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build
Composite Services and

Business Processes
In the previous two chapters, we've looked at how we can service enable functionality
embedded within existing systems. The next challenge is how to assemble these
services to build "composite" applications or business processes. This is the role of
the Web Service Business Process Execution Language or BPEL as it's commonly
referred to.

BPEL is a rich XML based language for describing the assembly of a set of existing
web services into either a composite service or a business process. Once deployed,
a BPEL process itself is actually invoked as a web service.

Thus anything that can call a web service, can also call a BPEL process, including
of course other BPEL processes. This allows you to take a nested approach to
writing BPEL processes, giving you a lot of flexibility.

In this chapter we first introduce the basic structure of a BPEL process, its key
constructs, and the difference between a synchronous and asynchronous service.

We then demonstrate through the building and refinement of two example BPEL
processes, one synchronous the other asynchronous, how to use BPEL to invoke
external web services (including other BPEL processes) to build composite services.
During this procedure we also take the opportunity to introduce the reader to many
of the key BPEL activities in more detail.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[131]

The structured activities which control the flow through the process. These include:

While•	 : It is used for implementing loops.
Switch•	 : It is a construct for implementing conditional branches.
Flow•	 : It is used for implementing branches which execute in parallel.
FlowN•	 : It is used for implementing a dynamic number of parallel branches.

There are messaging activities as well (for example Receive, Invoke, Reply,
and Pick).

The activities within a BPEL process can be sub-divided into logical groups of
activities, using the Scope activity. As well as providing a useful way to structure
and organize your process, it also enables you to define attributes such as variables,
fault handlers, and compensation handlers that just apply to the scope.

Variables
In addition each BPEL process also defines variables, which are used to hold the state
of the process as well as messages that are sent and received by the process. They can
be defined at the process level, in which case they are considered global and visible
to all parts of the process. Or it can be declared within a Scope in which case they are
only visible to activities contained within that Scope (and scopes nested within the
scope to which the variable belongs).

Variables can be one of the following types:

Simple Type•	 : It can hold any simple data type defined by XML Schema
(for example string, integer, boolean, and float).

•	 WSDL Message Type: It is used to hold the content of a WSDL Message sent
to or received from partners.

•	 Element: It can hold either a complex or simple XML Schema element
defined in either a WSDL file or a separate XML Schema.

Variables are manipulated using the <assign> activity, which can be used to
copy data from one variable to another, as well as create new data using XPath
Expressions or XSLT.

For variables which are WSDL Messages or Complex Elements we can work with
it at the sub-component level by specifying the part of the variable we would like
to work with using an XPath expression.

Using BPEL to Build Composite Services and Business Processes

[132]

Partner Links
All interaction between a process and other parties (or partners) is via web services
as defined by their corresponding WSDL files. Even though each service is fully
described by its WSDL, it fails to define the relationship between the process and the
partner, that is who the consumer of a service is and who the provider is. On first
appearance, the relationship may seem implicit; however, this is not always the case
so BPEL uses Partner Links to explicitly define this relationship.

Partner Links are defined using the <partnerLinkType> which is an extension to
WSDL (defined by the BPEL standard). Whenever you reference a web service whose
WSDL doesn't contain a <partnerLinkType>, JDeveloper will automatically ask you
whether you want it to create one for you. Assuming you answer yes it will create
this as a separate WSDL document, which then imports the original WSDL.

Messaging activities
BPEL defines three messaging activities <receive>, <reply>, and <invoke>. How
you use these depends on whether the message interaction is either synchronous or
asynchronous and whether the BPEL process is either a consumer or provider of
the service.

Synchronous messaging
With synchronous messaging, the caller will block until it has received a reply
(or times out); that is the BPEL process will wait for a reply before moving onto
the next activity.

As we can see in the diagram below, Process A uses the <invoke> activity to call a
synchronous web service (Process B in this case); once it has sent the initial request,
it blocks and waits for a corresponding reply from Process B.

Process A Process B

<invoke> <receive>

<reply>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[133]

Process B, uses the <receive> activity to receive the request; once it has processed
the request it uses the <reply> activity to send a response back to Process A.

Theoretically Process B could take as long as it wants before sending a reply, but
typically Process A will only wait a short time (for example 30 seconds) before it
times out the <invoke> operation under the assumption that something has gone
wrong. Thus if Process B is going to take a substantial period of time before replying,
then you should model the exchange as an Asynchronous Send-Receive
(see next section).

Asynchronous messaging
With asynchronous messaging, the key difference is that once the caller has sent the
request, the send operation will return immediately, and the BPEL process may then
continue with additional activities until it is ready to receive the reply, at which point
the process will block until it receives the reply (which may already be there).

If we look at the following diagram, you will notice that just like the synchronous
request Process A uses the <invoke> activity to call an asynchronous web service.
However, the difference is that it doesn't block waiting for a response, rather it
continues processing until it is ready to process the response. It then receives this
using the <receive> activity.

Process A Process B

<invoke> <receive>

<receive> <invoke>

Conversely, Process B uses a <receive> activity to receive the initial request and an
<invoke> activity to send back the corresponding response.

While at a logical level there is little difference between synchronous and
asynchronous messaging (especially if there are no activities between the <invoke>
and <receive> activity in Process A), at a technical level there is a key difference.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[135]

Let's takes a simple example: say I have a service that gives me the stock quote for
a specified company, and that I also have a service that gives me the exchange rate
between two currencies. I can use BPEL to combine these two services and provide
a service that gives the stock quote for a company in the currency of my choice.

So let's create our stock quote service; we will create a simple synchronous BPEL
process which takes two parameters, the stock ticker and the required currency.
This will then call two external services.

Creating our Stock Quote service
Before we begin, we will create a StockService application, which we will use for all
our samples in this chapter. To do this follow the same process we used to create our
first application in Chapter 2.

Next add a BPEL project to our StockService application. Specify a name of
StockQuote and select a synchronous BPEL process. However, at this stage DO
NOT click Finish.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[138]

Repeat this step for the Output Schema Element, but this time, select the
getQuoteResponse element. Click Finish and this will create our StockQuote process.

You will see that by default JDeveloper has created a skeleton BPEL process,
which contains an initial <receive> activity to receive the stock quote request,
followed by a <reply> activity to send back the result (as we discussed in the earlier
section—Synchronous messaging). In addition it will have created two variables:
inputVariable which contains the initial stock quote request and outputVariable
in which we will place the result to return to the requestor.

If you look in the Projects section of the Application navigator you will
see it contains the file StockQuote.wsdl. This contains the WSDL
description (including Partner Link extensions) for our process. If you
examine this, you will see we have a single operation: process, which is
used to call the BPEL process.

Calling the external web services
The next step is to call our external web services; for our stock quote service we are
going to use Xignite's Quotes web service which delivers delayed equity price quotes
from all U.S. stock exchanges (NYSE, NASDAQ, AMEX, NASDAQ OTC bulletin
board, and Pink Sheets).

Before you can use this service you will need to register with Xignite; to
do this or for more information on this and other services provided by
Xignite go to www.xignite.com.

To call a web service in BPEL we first need to create a Partner Link (as discussed
at the start of this chapter). So from the component pallet, select the Services drop
down and drag a PartnerLink into the Services swim lane in your BPEL process.
This will pop up the following screen:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[140]

Finally we need to specify the Partner Role and My Role. When invoking a
synchronous service, there will only be a single role defined in the WSDL, which
represents the provider of the service. So specify this for the Partner Role and leave
My Role as ----- Not Specified -----.

Best practice would dictate that rather than call the Stock Quote service
directly from within BPEL, we would invoke it via the service bus.

Calling the web service
Once we have defined a Partner Link for the web service, the next step is to call it. As
this is a synchronous service we will need to use an <invoke> activity to call it, as we
described earlier in this chapter.

On the component palette, ensure the submenu of Process Activities is selected, and
then from it drag an Invoke activity on to your BPEL process.

Next, place your mouse over the arrow next to the Invoke activity; click and hold
your mouse button and then drag the arrow over your Partner Link, then release.
This is shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[141]

This will then pop up the Edit Invoke activity window as shown in the
following screenshot:

We need to specify a number of values to configure the invoke activity, namely:

�x�� Name: This is the name we want to assign to the invoke activity, and can be
any value. So just assign a meaningful value such as GetQuote.
Partner Link�x�� : This is the Partner Link whose service we want to invoke; it
should already be set to use XigniteQuotes, as we have already linked this
activity to that Partner Link. An alternative approach would be to click on
the corresponding spotlight icon which would allow us to select from any
Partner Link already defined to the process.
Operation�x�� : Once we've specified a Partner Link, we need to specify which of
its operations we wish to invoke. This presents us with a drop down, listing
all the operations that are available; for our purpose select GetSingleQuote.
Input Variable�x�� : Here we must specify the variable which contains the data
to be passed to the web service that's being invoked. It is important that the
variable is of type Message, and that it is of the same message type expected
by the Operation (that is as defined in the WSDL file for the web service).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[142]

The simplest way to ensure this is to get JDeveloper to create the variable
for you; to do this, click on the magic wand to the right of the input variable
field. This will bring up the Create Variable window as shown below. You
will notice that JDeveloper creates a default name for the variable (based
on the name you gave the invoke operation and the operation that you are
calling), you can override this with something more meaningful (for example
QuoteInput).
Output Variable•	 : Finally, we must specify the variable into which the value
returned by the web service will be placed. As with the input variable, this
should be of type Message, and corresponds to the output message defined
in the WSDL file for the selected operation. Again the simplest way to ensure
this is to get JDeveloper to create the variable for you.

Once you've specified values for all these fields, as illustrated above, click OK.

Assigning values to variables
In our previous step, we created the variable QuoteInput, which we pass to our
invocation of GetSingleQuote. However, we have yet to initialize the variable or
assign any value to it.

To do this BPEL provides the <assign> activity, which is used to update the values
of variables with new data. The assign activity typically consists of one or more
copy operations. Each copy consists of a target variable, that is the variable that you
wish to assign a value to and a source; this can either be another variable or an
XPath expression.

For our purpose, we want to assign the stock symbol passed into our BPEL process
to our QuoteInput variable.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[144]

Testing the process
At this stage, even though the process isn't complete, we can still save, deploy, and
run our process. Do this in the same way as previously covered in Chapter 2. When
you run the process from the BPEL console you will notice that it doesn't return
anything (as we haven't specified this yet). But if you look at the audit trail you
should successfully see the GetSingleQuote operation being invoked. Assuming
this is the case, we know we have implemented that part of the process correctly.

Calling the exchange rate web service
The next step of the process is to determine the exchange rate between the
requested currency and the US dollar (the currency used by the GetSingleQuote
operation). For this we are going to use the currency convertor service provided by
webserviceX.NET.

For more information on this and other services provided by
webserviceX.NET go to www.webservicex.net.

This service provides a single operation ConversionRate, which gets the conversion
rate from one currency to another. The WSDL file for this service can be found at the
following URL:

http://www.webservicex.net/CurrencyConvertor.asmx?wsdl

For convenience we have included a local copy of the WSDL for webserviceX.NET's
Currency Convertor service, called CurrencyConvertor.wsdl, which is included
with the samples for Chapter 5.

To invoke the ConversionRate operation, we will follow the same basic steps that
we did in the previous section to invoke the GetQuickQuote operation. For the sake
of brevity we won't repeat them here, but will allow the reader to do this.

For the purpose of following the examples below, name the input variable
for the exchange rate web service ExchangeRateInput and the output
variable ExchangeRateOutput.

Assigning constant values to variables
The operation ConversionRate takes two input values:

FromCurrency•	 , which should be set to USD
ToCurrency•	 , which should be set to the currency field contained within the
inputVariable for the BPEL process

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[145]

To set the FromCurrency, create another copy operation. However for the From
value select Expression as the Type (circled in the following screenshot).

This will replace the Variable browser with a free format text box. In here you can
specify any value, within quotes, that you wish to assign to your target variable. For
our purpose we have entered 'USD', as shown in the following screenshot:

To set the value of ToCurrency, create another copy operation and copy in the value
of the currency field contained within the inputVariable.

Again at this stage, save, deploy, and run the process to validate that we are calling
the exchange rate service correctly.

Using the Expression builder
The final part of the process is now to combine the exchange rate returned by one
service with the stock price returned by the other in order to determine the stock
price in the requested currency and return that to the caller of the BPEL process.

To do this, we will again use an assign activity; so drag another assign activity onto
the process, just after our second invoke activity. Now in our previous use of the
assign activity, we have just used it to copy a value from one variable to another.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[146]

Here, it is slightly different, in that we want to combine multiple values into a single
value, and to do that we will need to write the appropriate piece of XPath. Create a
copy operation as before, but for the source type, select Expression from the drop
down as shown in the following screenshot:

Now if you want, you can type in the XPath expression manually (into the
Expression area), but it's far easier and less error prone to use the expression builder.
To do this click on the XPath expression builder icon, circled in the previous figure.
This will pop up the expression builder (shown in the following screenshot).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[147]

The expression builder provides a graphical tool for writing XPath expressions
which are executed as part of the copy operation. It consists of the following areas:

Expression•	 : The top text box contains the XPath expression, which you are
working on. You can either type data directly in here or use the Expression
Builder to insert XPath fragments in here to build up the XPath required.
BPEL Variables•	 : This part of the expression builder lets you browse the
variables defined within your BPEL process. Once you've located the variable
that you wish to use click the Insert Into Expression button and this will
insert the appropriate code fragment into the XPath Expression.

The code fragment is inserted at the point within the expression that the
cursor is currently positioned.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[148]

Functions•	 : This shows you all the different types of XPath functions that are
available to build up your XPath expression. To make it easier to locate the
required function, they are grouped into categories such as String Functions,
Mathematical Functions.
The drop-down list lets you select the category that you are interested in (for
example Advanced Functions as illustrated in the previous figure), and then
the window below that lists all the functions available with that group.
To use a particular function, select the required function and click Insert into
Expression. This will insert the appropriate XPath fragment into the XPath
Expression (again at the point that the cursor is currently positioned).
Content Preview•	 : This box displays a preview of the content that would be
inserted into the XPath Expression if you clicked the Insert into Expression
button. For example, if you had currently selected a particular BPEL variable,
it would show you the XPath to access that variable.

•	 Description: If you've currently selected a function, this box provides a
brief description of the function, as well as the expected usage and number
of parameters.

So let's use this to build our XPath expression. The expression we want to build is
a relatively simple one, namely, the stock price returned by the stock quote service
multiplied by the exchange rate returned by the exchange rate service.

To build our XPath expression, carry out the following steps:

1. First, within the BPEL Variables area, in the variable QuoteOutput locate the
element ns1:GetSingleQuoteResult/ns1:Last as shown:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[149]

2. Then click Insert into Expression to insert this into the XPath Expression.
3. Next, within the Functions area, select the Mathematical Functions category

and select the multiply function (notice the description in the Description
box as shown in the following screenshot) and insert this into the
XPath Expression.

4. Finally, back in the the BPEL Variables area, locate the element
ConversionRateResult within the variable ExchangeRateOutput and insert
that into the XPath Expression.

You should now have an XPath Expression similar to the one illustrated below; once
you are happy with this click OK.

Finally make sure you specify the target part of the Copy operation, which should be
the amount element within the outputVariable.

In order to complete the assign activity, you will need to create two more copy
operations to copy the Currency and StockSymbol specified in the inputVariable
into the equivalent values in the outputVariable.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[150]

Once done, your BPEL process should be complete, so deploy it to the BPEL engine
and run the process.

Asynchronous service
Following our stock quote service; another service would be a stock order service,
which would enable us to buy or sell a particular stock. For this service a client
would need to specify the stock, whether they wanted to buy or sell, the quantity
and the price.

It makes sense to make this an asynchronous service, since once the order had been
placed it may take seconds, minutes, hours, or even days for the order to be matched.

Now, I'm not aware of any trade services that are free to try (probably for good
reason!). However, there is no reason why we can't simulate one. To do this we will
write a simple asynchronous process.

To do this add another BPEL project to our StockService application and give it the
name of StockOrder, but specify that it is an asynchronous BPEL process.

As with the StockQuote process we also want to specify predefined elements for its
input and output. The elements we are going to use are placeOrder for the input
and placeOrderResponse for the output, the definitions for which are shown:

<xsd:element name="placeOrder" type="tPlaceOrder"/>
<xsd:element name="placeOrderResponse" type="tPlaceOrderResponse"/>

<xsd:complexType name="tPlaceOrder">
 <xsd:sequence>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="buySell" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:integer"/>
 <xsd:element name="bidPrice" type="xsd:decimal"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="tPlaceOrderResponse">
 <xsd:sequence>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="buySell" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:integer"/>
 <xsd:element name="actualPrice" type="xsd:decimal"/>
 </xsd:sequence>
</xsd:complexType>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[151]

These are also defined in the StockService.xsd that we imported for the
StockQuote process; we will also need to import it into our StockOrder process,
so that we can use it here (in Chapter 10 we will look at how we can share a schema
across multiple processes).

As we did when creating our StockQuote process, click on Next within the Create
BPEL Process dialogue to display the input and output elements from the process.
Then in turn for each field click on the flashlight to import the schema, bring up the
type chooser and select the appropriate element definitions. Then click Finish to
create the process.

You will see that by default JDeveloper has created a skeleton asynchronous BPEL
process, which contains an initial <receive> activity to receive the stock order
request, but this time followed by an <invoke> activity to send the result back (as
opposed to a <reply> activity used by the synchronous process).

If you look at the WSDL for the process, you will see that it defines two operations;
initiate to call the process, and onResult which will be called by the process to
send back the result. Thus the client that calls the initiate operation will need to
provide the onResult callback in order to receive the result (this is something we
will look at in more detail in Chapter 14—Message Interaction Patterns).

Now for the purpose of our simulation we will assume that the StockOrder
request is successful and the actualPrice achieved is always the bid price. So to
do this, create an assign operation, that copies all the original input values to their
corresponding output values. Deploy the process and run it from the console.

This time you will notice that no result is returned to the console, rather it displays a
message to indicate that the process is being processed asynchronously, as shown in
the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[152]

Click on the Visual Flow link to bring up the audit trail for the process and then
click on the callbackClient activity at the end of the audit trail. This will pop up a
window showing the details of the response sent by our process, as shown in the
following screenshot:

Using the Wait activity
Now you've probably spotted the most obvious flaw with this simulation, in that the
process returns a response almost immediately, which negates the whole point of
making it asynchronous.

To make it more realistic we will use the <wait> activity to wait for a period of time.
To do this drag the Wait activity from the component pallet onto your BPEL process
just before the assign activity, and then double click on it to open the Wait activity
window as shown on the next page.

The Wait activity allows you to specify that the process waits For a specified
duration of time or Until a specified deadline. In either case you specify a fixed value
or choose to specify an XPath Expression to evaluate the value at run time.

If you specify Expression, then if you click the icon to the right of it, this will
launch the Expression builder that we introduced earlier in the chapter. The result
of the expression must evaluate to a valid value of xsd:duration for periods and
xsd:dateTime for deadlines.

Chapter 5

[153]

The format of xsd:duration is PnYnMnDTnHnMnS; for example P1M would be a
duration of 1 month and P10DT1H25M would be 10 days, 1 hour, and 25 minutes.

For deadlines the expression should evaluate to a valid value of xsd:date.

The structure of xsd:dateTime is YYYY-MM-DDThh:mm:ss+hh:mm, where the +hh:mm
is optional and is the time period offset from UTC (or GMT if you prefer), obviously
the offset can be negative or positive.

For example 2008-08-19T17:37:47-05:00 is the time 17:37:47 on August 19th 2008,
5 hours behind UTC (that is Eastern Standard Time in the US).

For our purposes we just need to wait for a relatively short period of time, so set it to
wait for one minute.

By default, Wait will wait for a period of one day. So after you've changed
the Mins field to 1, ensure that Days field is set to 0. I've often had people
complaining that the BPEL process has been waiting more than a minute
and something has gone wrong!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[154]

Now save, deploy and run the process. If you now look at the audit trail of the
process you will see it has paused on the Wait activity (which will be highlighted
in orange).

Improving the stock trade service
We have a very trivial trade service, which always results in a successful trade after
1 minute. Let's see if we can make it a bit more "realistic".

We will modify the process to call the StockQuote service and compare the actual
price against the requested price. If the quote we get back matches or is better than
the price specified, then we will return a successful trade (at the quoted price).
Otherwise we will wait a minute and loop back round and try again.

Creating the while loop
The bulk of this process will now be contained within a while loop, so from the Process
Activities list of the Component Pallet drag a while activity into the process.

Click on the plus symbol to expand the while activity; it will now display an area
where you can drop a sequence of one or more activities that will be executed every
time the process iterates through the loop.

We want to iterate through the loop until the trade has been fulfilled, so let's create
a variable of type xsd:Boolean called tradeFullfilled and use an assign
statement before the while loop to set its value to false.

The first step is to create a variable of type xsd:Boolean. Up to now we've used
JDeveloper to automatically create the variables we've required, typically as part
of the process of defining an invoke activity. However, that's not an option here.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[156]

Here we simply specify the Name of the variable (for example tradeFullfilled)
and its type. In our case we want an xsd:Boolean, so select Simple Type and click
the flashlight to the right of it.

This will bring up the Type Chooser, which will list all the simple built in data types
defined by XML Schema. Select Boolean and then click OK.

We need to initialize the variable to false, so drag an assign statement on to your
process just before the while loop. Use the function false(), under the category
Logical Function to achieve this.

Next we need to set the condition on the while loop, so that it will execute only while
tradeFulfilled equals false. Double click on the while loop; this will open the
While activity window, as shown in the following screenshot:

We must now specify an XPath expression which will evaluate to either true or
false. If you click on the expression builder icon (circled in the previous screenshot),
this will launch the Expression builder. Use this to build the following expression:

bpws:getVariableData('tradeFullfilled') = false()

Once we are happy with this click OK.

Checking the price
The first activity we need to perform within the while loop is to get a quote for
the stock that we are trading. For this we will use the stock quote process we
created earlier.

The approach is very similar to the one used when calling an external web service (as
we did when implementing the StockQuote process). Create a Partner Link as before,
but this time click on the Service Explorer icon, circled in the following diagram:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[157]

This will launh the Service Explorer window, which allows us to browse all the
services defined to the SOA Suite. Expand the BPEL Services node and locate the
StockQuote process as shown below in the following screenshot. Select this and
click OK.

From here implement the required steps to invoke the process operation of the
StockQuote process, making sure that they are included within the while loop.

Using the Switch activity
Remember our requirement is that we return success if the price matches or is better
than the one specified in the order. Obviously whether the price is better depends on
whether we are selling or buying. If we are selling we need the price to be equal to or
greater than the asking price; whereas if we are buying we need the price to be equal
to or less than the asking price.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[158]

So for this we will introduce the <switch> activity. Drag a <switch> activity from
the Process Activities list of the Component Pallet on to your process, and then
click on the plus symbol to expand the <switch> activity. By default it will have two
branches as illustrated in the following screenshot:

The first branch contains a <case> condition, with a corresponding area where you
can drop a sequence of one or more activities that will be executed if the condition
evaluates to true.

The second branch contains an <otherwise> sub-activity, with a corresponding area
for activities. The activities in this branch will only be executed if all case conditions
evaluate to false.

We want to cater for two separate tests (one for buying, the other for selling), so click
on the Add Switch Case arrow (highlighted in the previous diagram) to add another
<case> branch.

Next we need to define the test condition for each <case>. To do this, click on the
corresponding ExpressionBuilder icon to launch the expression builder (circled in
the previous screenshot). For the first one use the expression builder to create
the following:

bpws:getVariableData ('inputVariable','payload',
'/ns1:PlaceOrder/ns1:BuySell') = 'Buy' and

bpws:getVariableData ('inputVariable', 'payload',
'/ns1:PlaceOrder/ns1:BidPrice') >=

bpws:getVariableData ('StockQuoteOutput', 'payload',
'/ns3:GetQuoteResult/ns3:Amount')

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[159]

For the second branch, use the expression builder to define the following:

bpws:getVariableData ('inputVariable','payload',
'/ns1:PlaceOrder/ns1:BuySell') = 'Sell' and

bpws:getVariableData ('inputVariable', 'payload',
'/ns1:PlaceOrder/ns1:BidPrice') <=

bpws:getVariableData ('StockQuoteOutput', 'payload',
'/ns3:GetQuoteResult/ns3:Amount')

Once we have defined the condition for each case, we just need to create a
single <assign> activity in each branch. This needs to set all the values in the
outputVariable to the corresponding values in the inputVariable, except for the
ActualPrice element, which we should set to the value returned by the StockQuote
process. Finally we also need to set tradeFullfilled to true, so that we exit the
while loop.

The simplest way to do this is drag the original <assign> we created in the first
version of this process and drag it onto the first branch and then modify it as
appropriate. Then create a similar assign activity in the second.

You've probably noticed that you could actually combine the two tests
into a single test; however we took this approach to illustrate how you
can add multiple branches to a switch.

If we don't have a match, then we want to wait a minute and then circle back round
the while loop and try again. As we've already defined a <wait> activity, simply
drag this from its current position within the process, into the Activity area for the
<otherwise> activity.

That completes the process, so try deploying it and running it from the console.

The other obvious thing is that this process could potentially run forever
if we don't get a stock quote in our favor. One way to solve this would be
to put the while activity in a scope and then set a timeout period on the
scope so that it would only run for so long.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using BPEL to Build Composite Services and Business Processes

[160]

Summary
In this chapter we've gone beyond individual services and looked at how we can
use BPEL to quickly assemble these services into composite services. Using this
same approach we can also implement end-to-end business processes or complete
composite applications (something we will do in the second section of this book).

You may have also noticed that although BPEL provides a rich set of constructs for
describing the assembly of a set of existing services, it doesn't try to reinvent the
wheel where functionality is already provided by existing SOA standards. Rather
it has been designed to fit naturally with and leverage the existing XML and web
services specifications, such as XML Schema, XPath, XSLT, and of course WSDL
and SOAP.

This chapter should have given you a solid introduction into the basic structure of
a BPEL process, its key constructs, and the difference between a synchronous and
asynchronous service. Building the examples will help to re-enforce this as well as
give you an excellent grasp of how to use JDeveloper to build BPEL processes.

Even though this chapter will have given you a good introduction to BPEL, we
haven't yet looked at much of its advanced functionality, such as its ability to handle
long-running processes, its fault and exception management, and how it uses
compensation to undo events in the case of failures. These are areas we will cover
in more detail within later chapters of this book.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[162]

On the right hand side we have the user who carries out the task. Tasks can either
be directly assigned to a user, or to a group to which the user belongs; in which case
they need to claim the task before they can work on it. When working on a task, a
user typically does this via the Worklist Application, a web-based application that
is included as part of the SOA Suite.

Sitting between the BPEL process and the Worklist Application is the Human
Workflow Service; this is responsible for routing the task to the appropriate user
or group, managing the lifecycle of a task until it completes and returning the
result to the initiator (that is the BPEL process in the previous diagram).

Leave approval workflow
For our first workflow, we will create a very simple BPEL process which takes
a leave request, creates a simple approval task for the individual's manager who
can then either approve or reject the request.

Note, during installation of the SOA Suite, a sample user community is installed for
use with the identity service, which we will use for the workflow examples within
this book (see the BPEL Process Managers Administrators Guide for details of the
sample user community). In a production deployment you would typically configure
the identity service to use an LDAP Repository such as Oracle Internet Directory or
Active Directory.

Creating our workflow process
The first step is to create a simple asynchronous leave approval BPEL process. The
input and output schema elements for the process are defined in LeaveRequest.xsd,
as shown (note the schema is also provided in the sample folder for Chapter 6).

<?xml version="1.0" encoding="windows-1252"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.packtpub.com/LeaveRequest"
 targetNamespace="http://schemas.packtpub.com/LeaveRequest"
 elementFormDefault="qualified" >

 <xsd:element name="leaveRequest" type="tLeaveRequest"/>

 <xsd:complexType name="tLeaveRequest">
 <xsd:sequence>
 <xsd:element name="employeeId" type="xsd:string"/>
 <xsd:element name="fullName" type="xsd:string" />
 <xsd:element name="startDate" type="xsd:date" />
 <xsd:element name="endDate" type="xsd:date" />
 <xsd:element name="leaveType" type="xsd:string" />

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[164]

Press the Magic Wand button (circled in the previous screenshot) to create a new
task (if coming back to edit a previously created workflow, then press the pencil
button to edit the task details).

This will bring up Add Human Task Wizard. Give the task a meaningful name
(for example LeaveRequest) and click OK.

This will open up the task definition form as a new tab within JDeveloper
(shown in the following figure) where you can configure the task.

At first glance it may look quite complicated; however, for what we want to do it's
pretty straightforward.

The key things we need to define for the task are its title, what its possible outcomes
are (that is Leave Request Approved or Rejected), the parameters (or payload) of the
task, and who to route or assign it to.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[166]

Specifying task assignment and routing policy
Finally we need to specify who is going to approve the task; we do this by creating
an Assignment and Routing Policy. In the Human Task Definition window, shown
previously (see the section Defining the workflow task), click on the + symbol to
the right of the Assignment and Routing Policy section. This should bring up the
following window:

By default Single Approver is selected as the default routing type which is fine for
our purpose (we will examine the other types in more detail in Chapter 15). Labels
are used to provide a meaningful description of the routing rules, and are also
useful if we specify multiple participants for a task. So for our purpose, just enter a
meaningful value (for example Manager Approval).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[167]

We now need to specify who the task is going to be assigned to. We can either assign
a task to a specific user or a group. For our purpose we are going to assume that the
CEO of the company is required to approve every holiday, so we will always assign
it to cdickens. Probably not ideal! But we will re-visit this later in the chapter to look
at how we can make it more realistic.

You can type this value in directly to the userID's field or press the flash light to
bring up the identity look-up dialog. This allows you to search and browse the users
and groups defined to the identity service.

Once you've specified the assignment, the task definition should have been updated
to contain a routing policy. Select Save on JDeveloper to make sure you save the task
definition, as they are not saved as part of your BPEL Process.

If you look at your project structure, you will see a new folder has been added to it,
in our case LeaveRequest (ringed in the following screenshot). This folder contains
the task metadata file which we've just defined and the schema for the task payload
which is based on the parameters we specified for the task.

Anytime we want to edit the task definition, just double click on the
LeaveRequest.task file to open it in JDeveloper.

Initializing the workflow parameter
So far we have defined our task and integrated it into our BPEL process; however
we still need to specify the actual content of the workflow parameter. To do this, go
back to the BPEL process and double click on the Human Task. This will re-open the
BPEL Human Task configuration window (shown in screenshot) which is where we
bind the task definition that we've defined to the BPEL process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[168]

You will notice now that we have a Task Parameter defined for the Human
Task which we need to map to a BPEL variable. Click on the spotlight for the
LeaveRequest parameter and this will bring up the Task Parameters window,
which allows you to browse the variables defined to the BPEL process; select the
LeaveRequest element passed in as part of the inputVariable for the BPEL process.

You may also have noticed that the Task Title has defaulted to the value we
specified earlier as part of the task definition. We want to make the task title a bit
friendlier, first type in (without the quotes):

'Leave Request for '

Then click on the icon to the right of the Task Title field. This will launch the now
familiar expression builder. Here, from the inputVariable just select the element:

/ns1:LeaveRequest/ns1:fullName

This expression will be appended to the end of our title text embedded between
<% and %>, to give the following:

Leave Request for <%bpws:getVariableData('inputVariable', 'payload',
 '/ns1:LeaveRequest/ns1:fullName')%>

At run time the BPEL process will evaluate the expression between <% and %>,
substituting the result. For now we won't specify a task initiator as this is optional,
and we will leave the priority set to three.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[169]

Creating the user interface to process the task
So far we have defined the task that needs to be carried out and plugged it into
a simple BPEL process. What we need to do next is implement the part of the
user interface that allows someone to view the details of our specific task and
then either approve or reject the leave request.

Out of the box the SOA Suite provides the worklist application, which provides all
the main workflow user interface screens and provides a framework in which to plug
your task specific interface component. This can be developed from scratch if you
want, but the simplest way is to get JDeveloper to generate it automatically for you
based on the schema definition of the payload.

To do this go back to the Application navigator in JDeveloper to browse the content
of your project, and locate the new LeaveRequest folder that was added when we
defined the task, right-click on it and select Auto Generate Simple Task Form.

This will generate a web-based form, which JDeveloper will place in the Web
Content folder of the LeaveApproval project, just below the Resources folder. The
web-based form is generated as a JSP (Java Server Page), which we can customize in
JDeveloper as required to give a better look and feel.

Your process is now complete, so deploy it to the server in the normal way.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[170]

Running the workflow process
Log into the BPEL Console and launch the process; ensure you specify a valid
employee ID (such as jcooper). This will launch the BPEL process, which in turn will
create the Leave Request task.

If you browse the audit trail for the process, you will see the process is paused at the
LeaveRequest activity, as shown in the following screenshot:

If click on the LeaveRequest activity this bring up the Activity Audit Trail for
the workflow task showing that it is assigned to cdickens as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[171]

At the moment the process will wait forever, until the task is either approved or
rejected; to do that we need to log in to the worklist application to process the task.

Processing tasks with the worklist
application
Launch the worklist application (Oracle BPEL Process Manager | WorkList
Application) and login as cdickens (password welcome1). This will bring you into
the My Tasks tab, which provides access to your various work queues. By default it
displays our inbox, which lists all the tasks currently allocated to us (or any groups
that we belong to). We can then filter this based on keywords, task status, and priority.

The application also provides a number of other views, known as work queues, onto
our tasks, which enable us to quickly identify high priority tasks, tasks due soon, or
new tasks. In addition, we can also define our own views.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[172]

Here you should see the leave request task created by our process; click on the
task number and it will open up a Task Details page, like the one shown in the
following screenshot:

If we study this, we can see it is made up of the following five areas:

•	 Task Action: Contains the actions that can be performed on a task. This is
split into two sets. The first contains the outcomes that we defined in the task
definition (that is approve or reject). The second defines standard actions
available for tasks such as escalate and delegate, which we will examine later.

•	 Task Header: Contains the standard header information about the task,
a summary of which was in our work queue.
Task Payload•	 : This contains the task specific payload, in our case details
of the leave request. This may be editable, depending on how we configure
the task.
Task Comments•	 : Here we can add comments or attach documents to
the task. This can be useful especially when a task is exchanged between
multiple participants.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[173]

Task History•	 : Provides a history of when the task was created, who it's been
assigned to and so on. This is useful as it provides a complete audit trail of
the task. Note, this is also available in the BPEL Console.

For our purpose, we just want to approve or reject the task, so select the appropriate
action from the drop down and select Go. This will action the task and take you back
to the Worklist application homepage. You will see the task has now disappeared
from your work queue.

However, change the search filter at the top to show tasks with a completed status
and you will see that the task is still there. If you select the task it will take you back
into the task pane, where you can view the task details but no longer perform any
actions as the task is now complete.

If you go back to the BPEL Console and look at the audit trail for the process, you
will see that it has now completed. The other thing to note is that within the BPEL
process a switch statement has been automatically added, so that the process will
take a different path depending on the outcome of the task. For the purpose of this
example we don't need to do anything, but in a real system we might update the HR
system with details of the leave if it was approved.

Improving the workflow
At this point we have a simple workflow up and running. However, we have the
following issues with it:

At the moment all requests go to the CEO, it would be better if requests went •	
to the applicant's manager.
Also what happens if the requester makes a mistake with his/her request, or •	
changes their mind? How do we let the original requester amend or cancel
their request?
What if the approver needs additional information about a task, is there a •	
simple way to enable that?

Dynamic task assignment
There are two approaches here. One is to assign the task to a specific group which
may contain one or more individuals, a classic example would be to assign a support
request to the customer support group.

Adding in Human Workflow

[174]

The other is to dynamically specify the user to assign to a task at run-time, based
on the value of some parameter; which is roughly what we want to do. Actually
we want to look up the manager of the employee requesting the task and assign
it to them.

If we go back to the Human Task Definition form (see the section Defining the
workflow task), and double-click on the routing policy we defined, this will re-open
the edit participant type form. Specify that you want to select the participant By
expression and the click on the icon to the right of Dynamic User XPath field
(circled in the following screenshot).

This will open up the expression builder introduced in Chapter 5. However the
key thing to notice here is that we only have access to the content of the task we
are working on (not the full content of the BPEL Process).

We need to create an expression that evaluates to the userID of the employee's
manager. Fortunately one of the services that come with workflow is the identity
service, which provides us with a simple way of querying the underlying identity
layer to find out details about a user. In our case we can use the getManager
function to get the ID of the manager.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[177]

The simple answer is the task owner has more administrative privileges when it comes
to a task. The task initiator is the person who creates a particular instance of a task, for
example in our case jcooper and jstein may both request leave. In this case they are
both initiators and can each withdraw the task they requested (but not each other's).

On the other hand the task owner may be the holiday administrator. They are
responsible for administering all leave requests. This enables them to perform
operations on behalf of any of the assigned task participants, additionally they
can also reassign or escalate tasks.

The task owner can either be specified as part of the task definition, or on the
Advanced tab of the BPEL Human Task configuration window.

If no task owner is specified it defaults to the system user bpeladmin.

When the task owner logs into the worklist application, they will see an additional tab,
Administration Tasks, which will list all the tasks for which they are the task owner.

Requesting additional information about a task
Once assigned a task, sometimes you need additional information about it before
you can complete it. In our example, the manager may need more information about
the reason for the leave request.

If a task initiator has been specified, then on the task details form we have the option
of selecting Request Info. If we select this option, we are presented with the Request
More Information form, where we can select who we want more information from
and enter details of the information required which will be added as a comment to
the task.

This will then assign the task to the initiator. The task will then appear on the task
creators work queue, with a state of Info Requested. The task creator can either
update the details of the task (if allowed) or add their own comment to provide the
additional information. Once done, they can choose the action Submit Info and the
task will be reassigned back to whoever requested the additional information.

This feature is automatically enabled when the task is opened. You can disable this
feature if you want by overriding the default system actions in the Advance Settings
section of the Task Configuration.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[180]

The remainder of the screen allows us to search for the users and or groups that we
want to reassign the task to. You can choose to search just Users, Groups, or All. In
addition you can further filter the list on the ID of the user or group, as well as the
first name or last name of the user.

When specifying the search criteria you can use the following pattern
matching characters:

. Matches any single character
* Matches any sequence of zero or more character
[] Matches any of the single characters specified between the
 square brackets

For example, the pattern s[tf]* will bring back the list of users whose userID, first
or last name begins with either st or sf.

You will also notice that if you select a user, the panel to the right will display
basic information about the user, including their Manager, Reportees, and any
roles they have.

Use the arrows to move users/groups that you wish to reassign the task to from the
search results box to the Selected box and then click the Reassign button.

Reassigning your own task
In addition to reassigning staff tasks, any user can also reassign their own tasks.
To do this they simply open the task from their task list as normal and click the
Reassign button (note if the user is not a manager, that is, they have no direct
reports, they must click the Delegate button). This will bring up the task details
assignees form that we just looked at.

An important point here is that the same restrictions on who a user can assign a task
to apply regardless of whether it's the users own task or a task belonging to one of
their reportees.

Thus users who have no direct reports will not be able to reassign their task to any
other user. However, if they are a group owner they will still have the ability to
reassign the task to the group.

If a user has the role BPMWorkflowReassign, then they are allowed to
reassign a task to anyone.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[181]

Delegating tasks
The other option we have when reassigning a task is to delegate it. This is very
similar to reassigning a task but with a number of key differences:

You can only delegate a task to a single user•	

You cannot delegate a task to a group•	

You can delegate a task to anyone regardless of where they are in the •	
organizational hierarchy

When you delegate a task it's assigned to a new user, but it also remains on your
work queue; so that either you or the delegated user can work on the task.

Escalating tasks
There will often be cases where a user needs to reassign a task to their manager,
which a user typically can't do (remember you can only reassign tasks to
direct reports). To do this, a user may choose to escalate a task; this is similar
to reassigning a task. The key difference being is that it is assigned to a
reportee's manager.

Tasks can also be automatically escalated, usually if not handled within
a specified period of time. This is specified in Expiration and Escalation
Policy, which forms part of the task definition.

Using rules to automatically manage tasks
Even though it's possible to manually reassign tasks, this can be inefficient and time
consuming; an alternative approach is to automate this using workflow rules.

You can either define a rule to be applied to a particular task type (for example our
Leave Request) or to all tasks. Optionally you can specify a time period for which
the rule is active; otherwise it will be active all the time.

You can specify various filter criteria which are applied to the task attributes
(e.g. priority, initiator, acquired by) to further restrict which tasks the rule applies to.

Once you've specified the matching criteria for a rule, you can then specify whether
you want to reassign or delegate the task. Essentially the same criteria applies to who
you are allowed to reassign a task to if you were to do it manually as covered in the
previous section, with the added caveat that you can only reassign a task to a single
user or group.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding in Human Workflow

[182]

For rules defined for a particular task type, we have the option of being able to
automatically set the task outcome. In the case of our Leave Request task, we can
write a rule to automatically approve all leave requests that are 1 day in duration.

The final option is to take no action, which may seem a bit strange. However, this
serves a couple of useful purposes. Often you only want a rule to be active at certain
periods of time; one way to do this is to just specify a date range, the alternative is to
use this to turn the rule on and off as required over time.

The other use comes in when you define multiple rules. Rules are evaluated in order
against a task until a rule is found that matches a particular task.

For example, to create a rule that reassigned all tasks, except say an expense approval
task, then we could define two rules, a generic rule to reassign any task and a specific
rule that matched the expense approval task that did nothing. We would then order
the rules so that the expense approval rule triggered first. This way the generic rule
to reassign task would be triggered for all tasks except the expense approval task.

Setting up a sample rule
For example, let's say Robert Stevenson (userID rsteven) is John Steinbeck's deputy,
and we want to create a rule that reassigns all leave requests assigned to jstein, to
rsteven except for any leave request made by rsteven.

To do this log onto the worklist application as jstein and click on the Preferences
link in the top right hand corner of the Worklist title bar. This will take you to the
preferences homepage.

In the preferences frame (on the left hand side), select My Rules. This will show
you a list of all rules the user currently has defined (which is probably empty at the
moment). Click on the Create button, this will bring up the Create new rule screen
shown as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[183]

Enter a suitable name for the rule, and select the check box to specify that the rule
will only apply to workflow tasks of a specific type. Then click on the torch icon to
the right and this will pop up a window listing all specified task types. Select the
LeaveRequest for the LeaveApproval process.

We will not specify a time period for the rule as we want it to be active all the
time. So click on the Create button and this will bring up the Rule Detail window,
as shown:

Here you specify the conditions that apply to the rule and the appropriate action
to take.

First let's add the condition to prevent the rule reassigning leave request made by
rsteven. Then click on the Add Condition button and this will insert a condition line
into the rule.

From the first drop down select the task attribute to which we want to apply the rule,
which is in our case the Creator (that is the task initiator). In the second drop down
select the test to be applied to the attribute, so in our case isn't and finally specify the
user (rsteven). You can either type the userID straight in or click the flash light to
search for the user, using the user search facility we introduced earlier.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Define Decision Points

[186]

Business Rule concepts
Before we implement our first rule, let's briefly introduce the key components which
make up a Business Rule. These are:

•	 Facts: Represent the data or business objects that rules are applied to.
Rules•	 : A rule consists of two parts, an IF part which consists of one or more
tests to be applied to fact(s), and a THEN part, which lists the actions to be
carried out should the test to evaluate to true.
Rule Set•	 : As the name implies, it is just a set of one or more related rules that
are designed to work together.
Dictionary•	 : A dictionary is the container of all components that make up a
business rule, it holds all the facts, rule sets, and rules for a business rule.

In addition, a dictionary may also contain functions, variables, and constraints. We
will introduce these in more detail later in this chapter.

To execute a business rule, you submit one or more facts to the rules engine. It will
apply the rules to the facts, that is each fact will be tested against the IF part of the
rule and if it evaluates to true, then it will perform the specified actions for that
fact. This may result in the creation of new facts or the modification of existing facts
(which may result in further rule evaluation).

Leave approval rule
For our first rule we are going to build on our leave request example from the
previous chapter. If you remember we implemented a simple process requiring
every leave request to go to an individual's manager for approval. However, what
we would like is a rule that automatically approves a request as long as it meets
certain company guidelines.

To begin with we will write a simple rule to automatically approve a leave request
that is of type Vacation and only for 1 day's duration. A pretty trivial example,
but once we've done this we will look at how to extend this rule to handle more
complex examples.

Using the Rule Author
In SOA Suite 10.1.3 you use the Rule Author, which is a browser based interface for
defining your business rules. To launch the Rule Author within your browser go to
the following URL:

http://<host name>:<port number>/ruleauthor/

Chapter 7

[187]

This will bring up the Rule Author Log In screen. Here you need to log in as user
that belongs to the rule-administrators role. You can either log in as the user
oc4jadmin (default password Welcome1), which automatically belongs to this
group, or define your own user.

Creating a Rule Repository
Within 2racle Business Rules, all of our definitions �that is facts, constraints,
variables, and functions� and rule sets are defined within a dictionary . A dictionary
is held within a Repository .

A repository can contain multiple dictionaries and can also contain multiple versions
of a dictionary. So, before we can write any rules, we need to either connect to an
existing repository, or create a new one.

2racle Business Rules supports two types of repository³)ile based and WebDA9.
For simplicity we will use a File based repository, though typically in production
you want to use a WebDAV based repository as this makes it simpler to share rules
between multiple BPEL Processes.

WebDAV is short for Web-based Distributed Authoring and Versioning.
It is an extension to HTTP that allows users to collaboratively edit and
manage files �that is business rules in our case� over the Web.

To create a File based repository click on the Repository tab within the
Rule Author , this will display the Repository Connect screen as shown in the
following screenshot:

Using Business Rules to Define Decision Points

[188]

From here we can either connect to an existing repository (WebDAV or File based)
or create and connect to a new file-based repository. For our purposes, select a
Repository Type of File, and specify the full path name of where you want to create
the repository and then click Create.

To use a WebDAV repository, you will first need to create this
externally from the Rule Author. Details on how to do this can be found
in Appendix B of the Oracle Business Rules User Guide (http://
download.oracle.com/docs/cd/B25221_04/web.1013/b15986/
toc.htm).
From a development perspective it can often be more convenient to
develop your initial business rules in a file repository. Once complete, you
can then export the rules from the file repository and import them into a
WebDAV repository.

Creating a dictionary
Once we have connected to a repository, the next step is to create a dictionary.
Click on the Create tab, circled in the following screenshot, and this will bring
up the Create Dictionary screen. Enter a New Dictionary Name (for example
LeaveApproval) and click Create.

This will create and load the dictionary so it's ready to use. Once you have created a
dictionary, then next time you connect to the repository you will select the Load tab
(next to the Create tab) to load it.

Defining facts
Before we can define any rules, we first need to define the facts that the rules
will be applied to. Click on the Definitions tab, this will bring up the page which
summarizes all the facts defined within the current dictionary.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[189]

You will see from this that the rule engine supports three types of facts: Java Facts,
XML Facts, and RL Facts. The type of fact that you want to use really depends on
the context in which you will be using the rules engine.

For example, if you are calling the rule engine from Java, then you would work with
Java Facts as this provides a more integrated way of combining the two components.
As we are using the rule engine with BPEL then it makes sense to use XML Facts.

Creating XML Facts
The Rule Author uses XML Schemas to generate JAXB 1.0 classes, which are then
imported to generate the corresponding XML Facts. For our example we will use
the same Leave Request schema that we used in Chapter 6, shown as follows
for convenience:

<?xml version="1.0" encoding="windows-1252"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.packtpub.com/LeaveRequest"
 targetNamespace="http://schemas.packtpub.com/LeaveRequest"
 elementFormDefault="qualified" >

 <xsd:element name="leaveRequest" type="tLeaveRequest"/>

 <xsd:complexType name="tLeaveRequest">
 <xsd:sequence>
 <xsd:element name="employeeId" type="xsd:string"/>
 <xsd:element name="fullName" type="xsd:string" />
 <xsd:element name="startDate" type="xsd:date" />
 <xsd:element name="endDate" type="xsd:date" />
 <xsd:element name="leaveType" type="xsd:string" />
 <xsd:element name="leaveReason" type="xsd:string"/>
 <xsd:element name="requestStatus" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Define Decision Points

[190]

Using JAXB, particularly when used in conjunction with BPEL, places a number of
constraints on how we define our XML Schemas, including:

When defining rules, the Rule Author can only work with globally defined •	
types. This is because it's unable to introspect the properties (i.e. attributes
and elements) of global elements.
Within BPEL you can only define variables based on globally •	
defined elements.

The net result is that any facts we want to pass from BPEL to the rules engine (or
vice versa) must be defined as global elements for BPEL and have a corresponding
global type definition so that we can define rules against it.

The simplest way to achieve this is to define a global type (for example
tLeaveRequest in the above schema) and then define a corresponding global
element based on that type (for example leaveRequest in the above schema).

Even though it is perfectly acceptable with XML Schemas to use the same name for
both elements and types, it presents problems for JAXB, hence the approach taken
above where we have prefixed every type definition with t as in tLeaveRequest.

Fortunately this approach corresponds to best practice for XML Schema design,
something we cover in more detail in Chapter 10—Designing the Service Contract.

The final point you need to be aware of is that when creating XML facts the JAXB
processor maps the type xsd:decimal to java.lang.BigDecimal and xsd:
integer to java.lang.BigInteger. This means you can't use the standard
operators (for example >, >=, <=, and <) within your rules to compare properties
of these types. To simplify your rules, within your XML Schemas use xsd:double
in place of xsd:decimal and xsd:int in place of xsd:integer.

To generate XML facts, from the XML Fact Summary screen (shown previously),
click Create, this will display the XML Schema Selector page as shown:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Define Decision Points

[198]

The Rule Engine supports the action types listed below:

•	 Assert: Used to reassert any facts matched in a pattern (for example request).
When a fact is altered, if we want the rule engine to be aware of the change
and re-evaluate the modified fact against the rule set, we must assert it.

•	 Assert New: If we create a new fact, for example a new LeaveRequest, then
we must assert the new fact to make the rule engine aware of it, so that it can
evaluate the new fact against the rule set.

•	 Assign: We can use this to either assign a value to a variable or a fact
property; in our case we want to assign a status of Approved to the request.
requestStatus property.

•	 Call: This allows you to call a function to perform one or more actions.
•	 Retract: This enables you to retract any of the facts matched in the pattern (for

example request) so that it will no longer be evaluated as part of the rule set.
•	 RL: Allows you to enter RL text directly to perform one or more actions.

The actions Assert, Assert New, and Retract, are important when we are dealing
with rule sets which deal with multiple interdependent facts, as this allows us to
control which facts are being evaluated by the rule engine at any one time. Here, we
only are dealing with a single fact, so don't examine these constructs in this chapter,
leaving them for Chapter 16—Using Business Rules to Implement Services.

For our purpose we want to update the status of leave request to approved, so select
Assign as the Action Type. This will update the Add Action screen shown as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[193]

This will bring up the Save Dictionary page. Here either click on the Save button
to update the current version of the dictionary with your changes or, if you want to
save the dictionary as a new version or under a new dictionary name, then click on
the Save As link and amend the dictionary name and version as appropriate.

Creating a rule set
Once we have defined our facts, we are ready to implement our first rule set.
Click on the Rulesets tab within the Rule Author, which will bring up the RuleSet
Summary page. This will initially be empty, as shown in the following screenshot:

Click on Create and this will bring up the Ruleset page, as shown in the
following screenshot:

Enter a name, for example LeaveApprovalRules, and an optional description
and then click Apply.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[195]

Creating the If clause
To create the If clause we need to define one or more patterns to be applied. To
define a pattern click on New Pattern, this will open the Pattern Definition window,
as shown in the following screenshot:

A Pattern consists of two parts, the first is the type of pattern that we wish to test for,
and the second is the tests we want to apply to the pattern.

Choosing the pattern
The first drop down is used to specify the type of pattern that we want to test for;
this can take one of the following three values:

1. Blank: This is the default pattern, and is used to specify that the rule
should be applied to each fact, where the test evaluates to true. So, for
example, if we submitted multiple leave requests in one go, we would the
trigger the rule for each leave request that is of type Vacation and only
1 day in duration.

2. There is at least one case: With this option, the rules will only be triggered
once, as long as there is at least one match.

3. There is no case: With this option, the rule will be fired once if there are
no matches.

With the second drop down we specify the type of fact that we wish to apply the rule
to. In our case we want to test facts of type TLeaveRequest. The text area before this
is used to assign a temporary alias to the fact being tested, i.e. request in our case.
This alias is useful when testing multiple facts of the same type (we will cover this in
more detail in Chapter 16—Using Business Rules to Implement Services).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[197]

Once we've defined both our tests, then click OK; this will take us back to the Rule
page, which will now be updated with details of the If clause, as shown in the
following screenshot:

Creating the Then clause
Now that we have defined our test, we need to define the action to take if the test
evaluates to true. Click on New Action. This will pop up the Add Action window
where you need to specify the Action Type you wish to carry out.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[201]

To modify the rule set deployed with a BPEL Process, log onto the BPEL
console, from here click on the BPEL Processes tab, and then select the process
that uses the decision service. Next click on the Descriptor tab; this will list all
the Partner Links for that process, including the Decision Service (for example
LeaveApprovalDecisionServicePL) as shown in the following screenshot:

This PartnerLink will have the property decisionServiceDetails, with the link Rule
Service Details (circled in the previous screenshot); click on this and the console
will display details of the decision service. From here click on the link Open Rule
Author; this will open the Rule Author complete with a connection to the file based
rule repository.

The second implication is that if you use the same rule set within multiple BPEL
Processes, each process will have its own copy of the rule set. You can work
round this by either wrapping each rule set with a single BPEL process, which is
then invoked by any other process wishing to use that rule set. Or once you have
deployed the rule set for one process, then you can access it directly via the WSDL
for the deployed rule set, for example LeaveApprovalDecisionService.wsdl in the
above screenshot.

Using a WebDAV repository
For the reasons mentioned above, it often makes sense to use a WebDAV based
repository to hold your rules. This makes it far simpler to share a rule set between
multiple clients, such as BPEL and Java.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[203]

For our purposes, select the LeaveApprovalRules as shown below, and click OK.

This will bring us back to the Decision Service Wizard which will be updated
to list the facts that we can exchange with the Rule Engine, as shown in the
following screenshot:

This dialogue will only list XML Facts that map to global elements in the XML
Schema. Here we need to define which facts we want to assert, that is which facts
we pass as inputs to the rule engine from BPEL, and which facts we want to watch,
that is which facts we want to return in the output from the rules engine back to our
BPEL process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Define Decision Points

[204]

For our example we will pass in a single leave request. The rule engine will
then apply the rule set we defined earlier and update the status of the request
to Approved if appropriate. So we need to specify that Assert and Watch facts
of type LeaveRequest.

Finally, you will notice the checkbox Check here to assert all descendants from
the top level element; this is important when an element contains nested elements
(or facts) to ensure that nested facts are also evaluated by the rules engine. For
example if we had a fact of type LeaveRequestList which contained a list of multiple
LeaveRequests, if we wanted to ensure the rules engine evaluated these nested facts,
then we would need to check this checkbox.

Once you have specified the facts to Assert and Watch, click Next and complete
the dialogue; this will then create a decision service partner link within your
BPEL process.

Adding a Decide activity
We are now ready to invoke our rule set from within our BPEL process. From the
Component Palette, drag a Decide activity onto our BPEL process (at the point
before we execute the LeaveRequest Human Task).

This will open up the Edit Decide window (shown in the following screenshot).
Here we need to specify a Name for the activity, and select the Decision Service
we want to invoke (that is the LeaveApprovalDecisionService that we just created).

Once we've specified the service, we need to specify how we want to interact with
it. For example, whether we want to incrementally assert a number of facts over a
period of time, before executing the rule set and retrieving the result or whether
we want to assert all the facts, execute the rule set and get the result within a
single invocation.

We specify this through the Operation attribute. For our purpose we just need to
assert a single fact and run the rule set, so select the value of Assert facts, execute
rule set, retrieve results (we look at other modes of operation in more detail in
Chapter 16—Using Business Rules to Implement Services).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[209]

Next we need to specify the arguments we wish to pass to our function; select Create
and this will add an argument to our list. Here we can specify the argument name
(for example startDate), a corresponding alias for it and from the drop down the
argument type. At the top of this list will be the Calendar fact that we just imported.

We can then add parameters for endDate, and includeWeekends as shown in the
previous screenshot.

The final step is to implement the business logic of our function; we enter this in the
Function Body text box. Defining the function here is painful, since the Rule Author
doesn't validate the body of the function. A consequence of this is you won't know
if the function is valid until you try to execute it at run time, which if it contains an
error will typically result in the rule engine throwing an exception, which is not
always easy to debug.

However when implementing a function you are effectively writing a static Java
method. Therefore it is more effective to write this using JDeveloper, where we can
then use the development tools to compile, run, and test our function. Once we are
satisfied that the function performs as expected we can cut and paste the function
body from JDeveloper into the Rule Author.

When using this approach you need to allow for the restriction that you can't use
the Java import statement within an RLFunction (in the same way you can't import
within the body of a Java method). This means whenever you reference a Java Class
you need to prefix it with its package name, for example when we use the Calendar
class within our function we always have to specify java.util.Calendar.

So the durationInDays function implemented in Java looks as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Define Decision Points

[210]

We can then just cut and paste this straight from JDeveloper into the Rule Author
and click OK to create our function.

To implement the other two functions leaveDuration and startsIn we follow the
same approach.

Invoking a function from within a rule
The final step is to invoke the functions as required from our rule set. Before writing
the additional rules for vacation of less than 3, 5, and 10 days respectively, we will
update our first rule OneDayVacation to use these new functions.

Go back to the Rulesets tab and click on the OneDayVacation branch within the
LeaveApprovalRules and then click on the pencil icon for the If part of the rule.
This will bring us back to the Pattern Definition window for the rule.

Previously, when we defined our test for a pattern we defined a Standard Test. With
this approach the Rule Author lets us define one or more simple tests. Each simple
test allows us to compare one variable with either another variable or a fixed value,
and for the pattern to evaluate to true all simple tests must evaluate to true.

However, if we want to define more complex expressions or use functions, then we
need to define this as an Advanced Test. When Advanced Test is selected, rather
than enter every test as a single row within the pattern, Rule Author presents a
single free format text entry box where we can directly enter the test pattern.

If when selecting Advanced Test we already have a simple test defined, Rule
Author will automatically convert its free format equivalent, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[211]

Below the Advanced Test text entry box are three drop downs: Operator, Variable,
and Function, which we can use to help build the expression. For example, to modify
our test, first of all delete the comparison request.startDate == request.endDate.
Next from the Function drop select the leaveDuration function and click Insert, as
shown in the following screenshot:

This will insert leaveDuration (startDate: Calendar, endDate: Calendar)
at the current cursor location within the test text box. We then need to modify the
parameters to pass in the actual request.startDate and request.endDate.

We can either enter this manually, or use the Variable drop down to insert the
required variables in a similar fashion to the Function drop down.

We can then repeat these steps to apply the startsIn function to test that the start
date for the leave request is two or more weeks away. Once completed our test
pattern for approving a 1 day vacation should look as follows:

Once we have completed our test pattern, we can click Validate just to check that its
syntax is correct.

Having completed this test, we can define similar approval rules for vacations of less
than 3, 5, and 10 days respectively.

When completed, save your dictionary and rerun the leave approval process;
you should now see that vacations which match our leave approval rules are
automatically approved.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Real-time
Dashboards

The key objective driving service-oriented architecture is to move the IT organization
closer to the business. Creation of services and their assembly into composite
applications and processes is the mechanism by which IT can move to be more
responsive to the business. However, it is the provision of real-time business
information via dashboards that really gives business the confidence that IT can
deliver. In this chapter we will examine how to use Business Activity Monitoring
(BAM) to provide real-time dashboards that give the business an insight into what is
happening with their processes currently, not what happened yesterday or last week.

How BAM differs from traditional
business intelligence
The Oracle SOA Suite stores the state of all processes in a database in documented
schemas so why do we need yet another reporting tool to provide insight into our
processes and services? In other words how does BAM differ from traditional BI
(Business Intelligence)? In traditional BI, reports are generated and delivered either
on a scheduled basis or in response to a user request. Any changes to the information
will not be reflected until the next scheduled run or until a user requests the report
to be rerun. BAM is an event-driven reporting tool that generates alerts and reports
in real time, based on a continuously changing data stream, some of whose data may
not be in the database. As events occur in the Services and Processes, the business
has defined they are captured by BAM and reports and views are updated in real
time. Where necessary these updated reports are delivered to users. This delivery
to users can take several forms. The best known is the dashboard on users' desktops
that will automatically update without any need for the user to refresh the screen.
There are also other means to deliver reports to the end user, including sending them
via a text message or an email.

Chapter 8

[217]

Process
Reports are run based on user demand. Once a report is run it will update the user's
screen on a real time basis. Where multiple users are accessing the same report only
one instance of the report is maintained by the report server. As events are captured
and stored in real time the report engine will continuously monitor them for any
changes that need to be made to those reports which are currently active. When
changes are detected that impact active reports, then the appropriate report will
be updated in memory and the updates sent to the user screen.

In addition to the event processing required to correctly insert and update items
in the ADC, there is also a requirement to monitor items in the ADC for events that
require some sort of action to be taken. This is the job of the event processor. This
will monitor data in the ADC to see if registered thresholds on values have been
exceeded or if certain time-outs have expired. The event processor will often need
to perform calculations across multiple data items to do this.

Deliver
Delivery of reports takes place in two ways. First, users request reports to be
delivered to their desktop by selecting views within BAM. These reports are
delivered as HTML pages within a browser and are updated whenever the
underlying data used in the report changes. The second approach is that reports are
sent out as a result of events being triggered by the Event Processing Engine. In the
latter case, the report may be delivered by email, SMS, or voice messaging using the
notifications service. A final option available for these event generated reports is to
invoke a web service to take some sort of automated action.

Closing the loop
While monitoring what is happening is all very laudable, it is only of
benefit if we actually do something about what we are monitoring. BAM
provides the real-time monitoring ability very well but it also provides
the facility to invoke other services to respond to undesirable events
such as stock outs. The ability to invoke external services is crucial to
the concept of a closed loop control environment where as a result of
monitoring we are able to reach back into the processes and either alter
their execution or start new ones. For example when a stock out or low
stock event is raised then the message centre could invoke a web service
requesting a supplier to send more stock to replenish inventory. Placing
this kind of feedback mechanism in BAM allows us to trigger events
across multiple applications and locations in a way that may not be
possible within a single application or process. For example, in response
to a stock out, instead of requesting our supplier to provide more stock,
we may be monitoring stock levels in independent systems and, based on
stock levels elsewhere, may redirect stock from one location to another.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Real Time Dashboards

[218]

BAM platform anomaly
In 10g SOA Suite, BAM runs only as a Windows application. Unlike the rest of
SOA Suite, it does not run on a JEE Application Server and it can only run on
the Windows platform. In the next release, 11g, BAM will be provided as a JEE
application that can run on a number of application servers and operating systems.

User interface
Development in Oracle BAM is done through a web-based user interface.

This user interface gives access to four different applications that allow you to
interact with different parts of BAM. These are:

Active Viewer•	 for giving access to reports; this relates to the deliver stage for
user requested reports.
Active Studio•	 for building reports; this relates to the 'process' stage for
creating reports.

•	 Architect for setting up both inbound and outbound events. Data elements
are defined here as data sources. Alerts are also configured here. This covers
setting up, acquire and store stages as well as the deliver stage for alerts.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[219]

•	 Administrator for managing users and roles as well as defining the types of
message sources.

We will not examine the applications individually but will take a task-focused look
at how to use them as part of providing some specific reports.

Monitoring process state
Now that we have examined how BAM is constructed, let us use this knowledge
to construct some simple dashboards that track the state of a business process. We
will instrument a simple version of an auction process. The process is shown in the
following figure:

Auction Completed

Initiate Auction

Process Bid

An auction is started and then bids are placed until the time runs out—at which
point the auction is completed. This is modelled in BPEL. This process has three
distinct states:

Started•	
Bid received•	
Completed•	

We are interested in the number of auctions in each state as well as the total value of
auctions in progress. We will follow a middle out approach to build our dashboard.
We will take the following steps:

Define our data within the Active Data Cache•	
Create sensors in BPEL and map to data in the ADC•	
Create suitable reports•	
Run the reports•	

Building Real Time Dashboards

[220]

Defining data objects
Data in BAM is stored in data objects. Individual data objects contain the
information that is reported in BAM dashboards and may be updated by multiple
events. Generally BAM will report against aggregations of objects, but there is also
the ability for reports to drill down into individual data objects.

Before defining our data objects let's group them into an Auction folder so
they are easy to find. To do this we use the BAM Architect application and
select Data Objects which gives us the following screen.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Real Time Dashboards

[226]

We must also provide a variable that contains the data we want to be part of the
sensor generated event. This variable must be an element variable, not a simple
type or a message type.

Sensors can have a number of sensor actions associated with them. Sensor actions
can be thought of as the targets for the sensor event. One option is to send the events
into the BPEL repository which is useful for testing purposes. Another option is to
send them to BAM.

Unfortunately we cannot add a BAM sensor from the Create Activity Sensor dialog.
They can only be created by using the structure pane for the BPEL process. To do
this we navigate to Sensor Actions in the structure pane, right-click, and select Bam
Sensor Action. This brings up the Create Sensor Action dialog.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[227]

We provide a name for the sensor action and then select an eligible sensor from the
drop-down list. There is a one-to-one relationship between BAM Sensor Actions and
Sensors. This is not the case for other types of sensor. The reason for the one-to-one
relationship is that the BAM Sensor actions transform the variable associated with
the action into the relevant fields for the BAM Data Object. This is done through an
XSLT transform.

Having selected our sensor we then click the torch next to the Data Object so that we
can choose the BAM Data Object that we will map the sensor variable onto.

Having selected the BAM Data Object we need to select the operation to be
performed on the data object. The drop-down box gives us four options:

Insert•	

Update•	

Delete•	

Upsert•	

Building Real Time Dashboards

[228]

The Insert operation creates a new instance of the BAM Data Object. This may result
in multiple data objects having the same field values.

The Insert operation does not use a key as it always creates a new data object. The
remaining three operations require a key because they may operate on an existing
data object. The key must uniquely identify a data object and may consist of one or
more data object fields.

The Update operation will update an existing data object, overwriting some or all
of the fields as desired. If the object cannot be found from the key then no data is
updated in the ADC.

The Delete operation will remove a data object from the ADC. If the key does not
identify an object then no object will be deleted.

The Upsert operation behaves as an update operation if the key identifies an existing
data object in the ADC. If the key does not identify an existing object in the ADC,
then it behaves as an Insert operation.

Generally we use the Insert operation when we know we are creating an object for
the first time and the Update operation when we know that the object already exists.
We use the Upsert operation when we are unsure if an object exists.

For example, we may use an Insert to create an instance of a process status object and
then use an Update to change the status value of the object as the process progresses.
When tracking process state it is a good idea to use the process instance identifier as
a key field in the data object.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Real Time Dashboards

[230]

Within the XSLT transformation editor we can map the BPEL variable to the BAM
data object. In addition to the variable itself there is a host of other information
available to us in the BPEL variable source document. This can be categorized
as follows:

Header Information: This relates to the process instance and the specific �x��
sensor that is firing.
Payload: This contains not only the sensor variable contents but also �x��
information about the activity and any fault associated with it.

Useful data includes the instance ID of the process and also the time the sensor fired
as well as elapsed times for actions. Once we have wired up the variable data we can
save the transform file.

Before completing the BAM Sensor Action dialog, it is worth investigating the use of
the batching parameters.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[231]

It is possible that many sensor updates will be taking place in quick succession.
To reduce the number of calls that the BPEL Process Manager makes to BAM it is
possible to batch the data. The batch parameters can be interpreted as "while the
Batch timeout has not expired, data will be sent in batches of at least Batch size
lower limit and no bigger than Batch size upper limit".

Generally it is safe to leave the batch parameters at the default values. When we have
finished creating the Sensor action, then we can deploy it to the BPEL Server and
events will be fired to populate the BAM active data cache.

Testing the events
After creating our BAM sensors we can test them by executing a process in BPEL
and ensuring that the events appear in the Active Data Cache. We can find the
actual event data by selecting the object in BAM Architect and then clicking Contents
which will then list the actual data object instances.

Creating a simple dashboard
Now that our sensors are in place and working, we can use the BAM Active Studio
application to create a report based on the sensor information. To help organize our
reports it is possible to create folders to hold reports in a similar fashion to the way
we created folders to hold data objects.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Real Time Dashboards

[234]

A wizard appears at the bottom of the screen which gives us the opportunity to
select a data object to be used as the basis of the view. We navigate to the Auction
folder and select the AuctionState object. Note that it is possible to have multiple
data objects in a view, but additional data objects are added later.

Having selected the data object we select the fields from the data object that we will
need to present the current state an auction is in. We choose the state field as a value
we want to use in our report by selecting it from the Chart Values column. We can
choose to group the data by particular fields, in this case the state of the auction.
By default, date and string fields can be grouped, but by selecting Include Value
Fields it is possible to group by any field by selecting it in the Group By column. By
selecting a summary function (Count) for our state field we can count the number of
auctions in a given state.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[237]

We can then add a second value based filter. In this case we want to include all data
objects whose auction has not yet finished. We do this by selecting the state field as
our filter field and then choosing all data objects whose State field is not equal to the
value Finished.

When we have clicked update entry then we can review the filter and select apply.
This will update the underlying view and we can verify that the data is as we expect
it to look.

Monitoring KPIs
In the previous section we looked at monitoring the state of a process. In this section
we will use BAM to give a real-time view of our KPIs. For example we may be
interested in monitoring the current value of all open auctions. This can be done by
creating a view using a gauge or arrow control. The gauge will give us a measure
of a value in the context of acceptable and unacceptable bounds. The arrow control
will show us direction of movement. Creating the view is done in a similar fashion to
previously and again we may make use of filters to restrict the range of data objects
that is included in the view.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Real Time Dashboards

[238]

When we have completed the views in our report and saved the report then we may
view the report though the Active Viewer application and watch the values change
in real time.

Note that we can drill down into the reports to gain additional information. This
only gives a list of individual data objects with the same values displayed as on
the top level view. To gain more control over drill down it is necessary to use the
Drilling tab in the view editor to specify the drill-down parameters.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[242]

oBay requirements
oBay is a new start-up company that provides a web-based auction site for users
to buy and sell items online.

User registration
Before someone can either sell or bid on items, they must first register as a user on
oBay. When registering, a user will be required to provide the following information:

Name (First Name and Last Name)•	

Date of Birth•	

Address (Line 1, Line 2, City, State, Zip, Country) •	

Email Address•	

UserID•	

Password•	

Credit Card (Card Type, Number, Expiry Date)•	

They will also be required to accept oBay's standard terms and conditions.

As part of the registration process, the system will perform the following checks:

That the UserID is not already in use•	

That the user is at least 18 years of age•	

That the password falls within the required constraints•	

That for US and UK addresses, the supplied Zip Code is valid and that it •	
matches the other details provided
That the email address is valid; this will be checked by sending the user a •	
confirmation email to the supplied address, with a link for them to activate
their account
That the credit card details provided are valid•	

User login
Once a user has successfully registered and activated their account, they can log
into oBay. This will take them to their homepage from where they can choose to
start selling or bidding on items.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[259]

The reality is that many users of the SOA Suite continue to develop the GUI
component of an application using their technology of choice, as in most cases it
dovetails very nicely with a SOA based approach.

Many user interfaces are based on variations of the Model-View-
Controller (MVC) design pattern. The Model represents the business
logic and data of an application and defines a set of operations that can be
performed against it.
The View is the user interface (for example, web page); it presents
information from the Model to the user, and then captures actions taken
by the user against the view. The Controller maps actions performed on
the View (for example, clicking a Submit button) to operations on the
Model (for example, placing a bid). After the Model is updated, the View
is refreshed and the user can perform more actions.
This approach fits extremely well within the context of SOA, where the
Model is effectively provided by the Business Process and Business Service
layers. The View and Controller can then be implemented using your GUI
framework of choice (for example Oracle ADF, Spring, or Struts). The
Controller would then provide the integration between the two, with it
invoking the appropriate operations on the underlying services.

One additional layer
While we have focused on the user interface being the top layer within our
architecture, the reality is that these services could be consumed by applications
built by other parts of the organization, or those of our partners or customers.

If these consumers are using the same architecture as us, they would view our
services in the same way as we are viewing external web services within the
Application Services layer of our architecture.

This implies the need to have an additional Virtual Services layer in our model,
between the User Interface and Business Process layer. We could rely on the
consumer of our services to build this layer, but it actually makes a lot of sense
for us to provide it.

Remember that the goal of our original Virtual Services layer was to de-couple
our composite application from the underlying services provided by the
Application Services layer, so that we can insulate ourselves from changes to the
underlying applications.

Here is the reverse. We want to de-couple the services we are providing from the
consumers of those services, as this gives us greater flexibility to change our services
without being constrained by the consumer of our services.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[250]

The use of standards-based communication frameworks (for example, web
services); a standard representation for the exchange of data and common
design standards can greatly simplify the integration between disparate
systems, greatly reducing the cost of cross application integration.
Improved reuse•	 : Designing and building services to be intrinsically reusable
enables you to not just meet initial requirements but also leverage them in
future applications. Similarly, you can service enable existing systems which
enables you to further leverage existing investments.
This not only saves you the time and effort of rebuilding similar
functionality, but can also help consolidate your IT estate, as now you only
need to implement a piece of functionality once, as opposed to having
similar functionality buried in multiple systems. This can help reduce the
cost of administering and maintaining your existing systems (on which
approximately 80% of today's IT budget is spent).
Improved agility•	 : One of the key design principals behind SOA is that
systems are no longer built to last, but rather built to change.
Following SOA principals, not only allows you to more rapidly implement
new solutions through reusing existing functionality, but also enables you to
reduce the time it takes to modify and adapt existing SOA based solutions in
response to ever changing business requirements.

Using SOA standards and technologies will take you part of the way towards
achieving some of these goals, but as the A in SOA indicates, a key component
of this is architecture.

Typical SOA architecture
Up to now we've been throwing around the term "SOA" without really spending
much time looking at what a service is, or at least what a well-designed service looks
like or how we should go about assembling them into an overall solution, that is the
architecture of our application.

The simple reality is that services come in all shapes and sizes, each of which
have some bearing on how you design, build and use them within your overall
architecture. So it makes sense to further define the different types of services that
we will need, how they should be used, how they should be organized into different
layers, and so on.

Taking this approach enables us to ensure services are designed, built and used in
a consistent fashion, improving the overall interoperability and reusability of a
service as well as ensuring the overall implementation is architected in such a way
to address key non-functional requirements such as performance, fault tolerance,
and security, as well as providing a solution that addresses our other goal of agility.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[252]

Like most architecture diagrams this is over simplified. For example, it implies here
that the User Interface layer will always have to go via the Business Processes
layer to access a Business Service. In many circumstances to mandate this as an
architecture requirement would be over burdensome, and as a result impair our
key goals of reusability and agility.

While we've labelled the top layer User Interface, it could potentially be any
consumer of our services which sits outside our domain of control, whether
internal or external to our organization.

Let's examine these layers one by one, starting at the bottom and working our
way up.

Application services layer
When we look at the various layers within a service-oriented architecture, each
layer typically builds on the layer below. However, at some point we need to hit the
bottom. This is the layer we have termed the Application Services Layer. The layer
is typically where the core service is actually implemented, or if you like where the
real work happens.

We refer to it as the application service layer since most services are typically
provided by existing applications. These could be packaged applications, such as
Oracle e-Business Suite, Siebel, Peoplesoft, SAP, or custom applications developed
in-house using technologies such as Java, C#, Oracle Forms, PL/SQL, and so on.

Many modern day applications are web service enabled, meaning that they provide
web services out of the box. For those that aren't then adapters can be used to service
enable them (as we have already discussed in Chapter 3—Service Enabling
Existing Systems).

The key here is that from our perspective this is the lowest level of granularity that
we can go down to, and also the actual control we have over the interface of services
at this level is limited or non-existent. This tends to be the case regardless of whether
or not we have control of the application that provides the service, as the actual
interface provided is often a reflection of the underlying application.

It's for this reason (i.e. lack of control over the service interface) that we also include
in this category native web services provided by other third parties, for example
services provided by partners, suppliers, customers, and so on as well as software as
a service (SaaS).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[254]

Business services layer
As the name suggests, this is a fairly generic term used to describe encapsulated
business logic that is made available through a designed service contract. The
keyword here is "designed". In particular, when it comes to exchanging data models,
as each service will typically share a common data model defined in one or more
XML Schemas. This is often referred to as the canonical model and is something
we will look at in a lot more detail in the next chapter (Chapter 10—Designing the
Service Contract).

One of the implications of this is a virtual service, as discussed in the previous layer,
which is in reality a specialized type of business service. As we will see in a moment
that a business process is also a specialized type of business service. However, each of
these has a specific role, and tends to gravitate towards a specific layer.

This still leaves us with a rather large category for all our remaining services, so
from a design perspective it makes sense to break these down further into specific
sub-categories.

There are many ways and many opinions on how exactly business services should
be categorized. From a personal standpoint, we believe that there are two key
perspectives to consider, the first being to look at the type of functionality contained
within the service as this will guide how we may wish to implement the service.The
second is to consider who is going to call or consume the service, in particular where
they sit within our layered architecture as this will often drive other considerations
such as granularity, security, and so on.

Functional type
Our first category is the type of functionality provided by a service. We've split this
into three groups: Entity, Functional, and Task based service. Let's examine each of
these in more detail:

•	 Entity services: It is also known as data services, emulate business objects
within an enterprise. For example User, Account, and Listing are all entities
within oBay. Entity services often represent data entities held in a relational
database and provide the corresponding lifecycle (i.e. create, read, update,
and delete) and query operations.
Entity services can often be used within multiple contexts, making them
excellent candidates for reuse. To further promote this, it is considered good
practice to minimize any business specific logic (such as validation) that you
place within the service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[256]

Granularity is essentially the number of operations we need to call on a service
in order to achieve the desired result. The more fine grained a service is, the more
operations you will typically need to call, the more coarse grained the less.

The key driver for coarse grained services is the performance impact of going across
a network. Thus, if you can achieve the desired result by calling a coarse grained
service, as opposed to calling for example four fine grained services, then it is likely to
be approximately four times faster. Because the actual processing time of the service is
likely to be insignificant in comparison to the cost of going across the network.

However, using coarse grained services often come at a price; if you combine multiple
functions into a single operation, it may becomes less useable as requestors may be
required to provide additional data to use the service, or the service could result in
unwanted side effects. Additionally, it may impose redundant processing on the
server side which could adversely impact performance. For example, it may cause the
service to make unnecessary reads to a database, or make calls to additional services
across the network, each with resultant implications on overall performance.

The other consideration is that if a service is calling another service within the same
environment (for example, with the same deployment of the SOA Suite), then the call
is likely to be optimized and to not require a network hop.

Understanding where the service consumer lives in relation to the service is a key
design consideration. So when deciding on service granularity it's worth bearing the
following guidelines in mind:

For business services that are only going to be consumed by either business •	
processes or other business services (for example, Entity Services and
Functional Services), then you can afford to use finer grained services.
If a service is to be used outside the domain of control, then coarse grained •	
services are more appropriate, though you should consider the downstream
performance implications of any redundant processing.
When providing coarse grained services, if there are potential impacts on •	
either performance or reuse then consider providing a number of redundant
fine grained services in addition to the coarse grained services. Effectively
by de-normalizing the service contract, it gives the consumer the ability to
choose the appropriate service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[257]

In addition, depending on the nature of the service consumer, you may need to place
other requirements on a service, such as:

•	 Security: As with all IT systems security is key, but more so if you start
using SOA to expose your systems via web services to external third
party consumers.

•	 Management: Many third party consumers will want to agree some sort of
service level agreement; you need to ensure you have sufficient infrastructure
in place to manage your services appropriately.

•	 Support: When exposing services to third parties you need to consider
how they are going to build systems that use them, i.e. what level of
documentation you are going to provide, who do they call when something
goes wrong, and so on.

•	 Change management: When services change, how are you going to manage
that? Depending on who the consumer is, you may be able to coordinate any
upgrades with them; however, that won't always be the case.
Validation•	 : The less control you have over the consumer of a service, then
generally the less assumptions you can make about the quality of data you
will receive and the more validation that will be required.

Typically service management and security is not something you build
into individual services, rather it tends to be provided by the underlying
infrastructure in which you host the service (something we look at in more
detail in Chapter 20—Defining Security and Management Policies).

Support is more of an organizational issue, as is change management to a
certain extent. However, design of the service contract is key to making change
more manageable and something we look at in detail in the next chapter
(Chapter 10—Designing the Service Contract).

Finally validation is an important consideration in design, and something we look at
in more detail in Chapter 12—Building Validation into Services.

Business process
As we've already mentioned, you could argue that a business process is no more
than just a specialized Business Service, especially when viewed through the eyes
of the service consumer. However, it has a number of key differences that make it
worth considering as a separate layer in its own right.

Before we look at why, lets take a step back. If we look at the traditional application
architecture which splits out an application into its presentation layer, business logic
and database layer, within that business logic, it is the business process that is more
likely to change.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[258]

A business process is more likely to span multiple systems, which has led to the
proliferation of point-to-point integration solutions, aimed at tying those bits of
process together into an end-to-end business process. This can further obfuscate
the business process, as a result making it more resistant to change.

Abstracting out business process into a separate layer gives us a number of
advantages. Firstly, rather than having the process logic buried across multiple
applications, we can now define a single end-to-end process with a far higher
level of visibility and clarity than would normally be achievable. This makes it far
simpler to monitor the end-to-end process, as well as to modify it in the future.

It also simplifies our underlying business services, since by extracting the business
process specific logic from them, they naturally become more generic and therefore
more reusable.

Another by-product is that since processes are long running in nature, whether for
minutes, hours, days, months, or even years, they are inherently stateful. Thus, it
often removes the need for other services to manage state, again simplifying them
as well as making them more reusable.

It is currently deemed best practice to make services stateless, since
stateless architectures are typically more scalable (or at least easier to
scale) than stateful ones. In addition stateless services tend to be simpler
to build and use, making them more reusable.
While to a certain extent this is true, you could argue that up until
recently many of the WS-* standards and corresponding vendor tools
have not had the required completeness of functionality to support
stateful services. This is now starting to change, so going forward there
is likely to be more of a mix of stateless and stateful services within SOA.

User Interface layer
As the top layer within our architecture, this is the layer which consumes the services
provided by the Business Processes and Business Services layers. We have labelled
this the User Interface layer, mainly because we are using our SOA architecture as
the blueprint for building a composite application and this is the layer where the
GUI (either web-based or thick client) would sit.

For the purpose of this book, we will not spend much time looking at this layer, as
it falls outside the boundary of what is provided by the Oracle SOA Suite. Though
for the purpose of delivering a fully working application we have provided a simple
web-based user interface developed using JDeveloper.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[263]

Workflow services
The Task, Identity, and Notification services are a subset of the services provided out
of the box by the Oracle SOA Suite. Because we typically access these services via the
Human Task activity within BPEL, it is easy to overlook their very existence.

The workflow services have documented API's, so can be invoked just like any
other web service. We take advantage of these APIs to build the Order Management
business service and look at how to do this as part of Chapter 15—Workflow Patterns.

External web services
oBay makes use of a number of real world web services; we look at how to include
these within our overall solution in Chapter 11—Building Business Services.

Another key consideration when using external web services is what happens if they
fail. We look at this as part of Chapter 13—Error Handling.

oBay developed services
As oBay is a start-up, it has rather limited applications in-house, so we are going to
build most of these services from scratch. The great thing about SOA is that we can
actually build these application services using whichever technology is appropriate
to our organization.

To demonstrate this we've examined how these services could be implemented using
a number of alternative technologies, namely Java and PL/SQL. We will cover this in
detail in Chapter 11—Building Business Services.

oBay internal virtual services
All of our oBay developed application services have a straight one-to-one mapping
with a corresponding virtual service. This is quite common when developing the
underlying application services as part of the overall implementation.

When exposing functionality from existing systems, this won't always be the case.
For example, you may have multiple systems performing the same function. In this
scenario multiple application services would map to a single virtual service, which
would be responsible for routing requests to the appropriate system. This is the case
for our external services, where we have multiple services for address and credit
card services.

In Chapter 11—Building Business Services, we cover both use cases, as we look at how
to build business services either from scratch or by reusing existing logic.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

oBay Introduction

[264]

oBay business services
At first glance this looks pretty unremarkable; however, there are a few areas worth
further scrutiny. Many of the task based services, such as UserManagement, are built
using one or more entity services and do little more than layer validation on top. We
examine this approach in Chapter 12—Building Validation into Services.

A number of the task based services (for example check Suspect Item and Order
Fulfillment Task) are manual in nature and therefore predominately built using
the Workflow Service provided by the SOA Suite. In Chapter 15—Workflow Patterns,
we look at why we have separated them out as separate business services, rather
than embedding them directly within the core business processes.

Finally the Auction Engine is an interesting example of a functional service. One way
to implement this would be to write it using a standard programming language such
as Java or C#. However, an alternative is to use Business Rules. We will look at this
in Chapter 16—Using Business Rules to Implement Services and examine some of the
advantages and disadvantages to this approach.

oBay business processes
Effectively within oBay there are two key business processes: registering a customer
and the end-to-end process of listing an item and selling it through auction.
The, second of which we've split up into three sub-processes (for the purpose of
reusability and agility should oBay change or extend its core business model at any
point in the future).

It is also worth examining the Account Billing process; all our other processes
are initiated to handle a specific request (for example, register a user, list an item
for auction), while this is a scheduled process, which we will run nightly to settle
the account of all users with outstanding monies. We examine how we do this in
Chapter 14—Message Interaction Patterns.

oBay user interface
Here we've defined two user interfaces, where one is for oBay customers which
we've built using JDeveloper and the other is for oBay employees who need to
perform human workflow tasks.

Both sets of users will be performing human workflow tasks, one via the
out-of-the-box worklist application, the other through our own hand cranked GUI.
We will look at how to do this in Chapter 15—Workflow Patterns.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[265]

Downloading and installing oBay
application
To download this application, go to the support page of Packt Publishing
(www.packtpub.com/support), and from here, follow the instructions to
download the code for this book, which includes the oBay application.

Included with the code will be a PDF with detailed instructions on how to install and
run the oBay application.

Summary
In this chapter, we've provided you with a detailed introduction as to the business
requirements of oBay, our fictional online auction site, as well as presenting you with
the architecture for our composite application.

Before we developed our solution, we took you through the process of defining our
high level SOA blueprint, outlining some of the objectives and considerations you
should take into account when developing a SOA based architecture.

Along the way we've also thrown up a number of questions or issues that need to be
addressed, as well as highlighting particular areas of interest in our overall design.

In the remainder of this section, each chapter will focus on addressing a particular
subset of those issues raised, using various parts of the oBay application to illustrate
each answer. This is so that by the end of this section we will have tackled all the
matters that we've raised including the key question:

What is the best way to combine/use all of these different components to implement
a real world SOA solution?

As you are no doubt already realizing from this chapter, there isn't a single simple
answer, but rather you have many choices, each with their own set of advantages
and disadvantages. By the end of this section you should at least be in a position to
better understand those choices and which ones are more applicable to you and that
of your own development.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service
Contract

Service contracts provide the glue that enable us to assemble together disparate
pieces of software or services into complete composite applications. If we are to build
a sustainable solution, that is, one that will achieve our goals of improved agility,
reuse, and interoperability then careful design of the service contract is crucial.

The contract of a web service is made up of the following technical components:

•	 WSDL definition: This defines the various operations which constitute
a service, their input and output parameters, and the protocols (bindings)
it supports.
XML Schema Definition (XSD): Either embedded within the WSDL definition •	
or referenced as a standalone component, this defines the XML elements and
types which constitute the input and output parameters.

WS-Policy definition: An optional component, which describes the service's •	
security constraints, quality of service, and so on.

Additionally the service contract may be supported by a number of non-technical
documents, which define areas such as Service-level agreements and Support.

From a contract design perspective, we are primarily interested in defining the XML
Schema and the WSDL definition of the service. This chapter gives guidance on
best practice in the design of these components as well as providing strategies for
managing change when it occurs. We leave the discussion on defining security and
management policies until Chapter 20.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[268]

Using XML Schema to define business
objects
Each business service acts upon one or more business objects. Within SOA the data
that makes up these objects is represented as XML, with the structure of the XML
being defined by one or more XML Schemas. Thus the definition of these schemas
forms a key part in defining the overall service contract.

To better facilitate the exchange of data between services, as well as achieve better
reusability, it is good practice to define a common data model, often referred to as
the canonical data model which is used by all services.

As well as defining the structure of data exchanged between components, XML is
also used in all components of the SOA Suite. For example it defines the structure
of variables in BPEL, provides the vocabulary for writing business rules and
transforming data via XSLT. So it is important that our XML model is well thought
out and designed.

Modelling data in XML
When designing your XML data model, a typical starting point is to base it on an
existing data model, such as a database schema, UML model, or EDI document.

While this is a perfectly legitimate way to identify your data elements, the crucial
point in this approach is how you make the transition from your existing model to an
XML model. Too often the structure of the existing model is directly replicated in the
XML model, often resulting in poor design.

Data decomposition
To produce an effective model for XML, it's worth taking a step back to examine
the core components which make up an XML document. Consider the following
XML fragment:

<order>
 <orderNo>123456</orderNo>
 …

<shipTo>
<name>

 <title>Mr</title>
 <firstName>James</firstName>
 <lastName>Elliot</lastName>

</name>
<address>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[269]

<addressLine1>7 Pine Drive</addressLine1>
<addressLine2></addressLine2>

 <city>Eltham<city>
 <state>VIC</state>

<zip>3088</zip>
<country>Australia</country>

</address>
</shipTo>

</order>

If we pull out the raw data from this we would end up with:

123456 Mr, James, Elliot, 7 Pine Drive, , Eltham, VIC, 3088.
Australia.

By doing this we have greatly reduced our understanding of the data. XML, through
the use of tags, gives meaning to the data, with each tag describing the content of
the data it contains. Now this may seem an obvious point, but too often by failing
to sufficiently decompose our data model we are doing exactly this, albeit within an
XML wrapper. For example, another way of modelling the above piece of XML is
as follows:

<order>
 <orderNo>123456</orderNo>
 …

<shipTo>
<name>Mr James Elliot</name>
<address>7 Pine Drive, Eltham, VIC, 3088, Australia</address>

</shipTo>
</order>

With this approach, we have again reduced our understanding of the data. So you
should always look to decompose your data to the appropriate level of granularity;
and if in doubt go for the more granular model as it's a lot simpler to convert data
held in a granular model to a less granular model than the other way round.

Data hierarchy
Another key component of our data model is the relationship between the different
elements of data, which is defined by the composition or hierarchy of the data. If
from our example fragment we take the element <city>Eltham<city>, on its own it
does not signify much, as we have provided insufficient context to the data.

However, when we take it in the context of <order><shipTo><address><city>, we
have a far clearer understanding of the data.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[270]

A common mistake is to use a flat structure, and then name the elements to
compensate for this, for example changing the name to <order_shipTo_address_
city>. While this provides more context than just <city>, it introduces a whole set
of other problems including:

It makes your XML far harder to read, as well as more bloated.•	

The relationships are no longer visible to your XML parser. This makes XPath •	
manipulation, XSLT mappings, and so on a lot more complex and onerous.
It reduces the opportunity for reuse, for example each address element will •	
have to be redefined for every single context in which it is used. This is likely
to lead to inconsistent definitions as well as make change harder to manage.

If you see elements named in this fashion, e.g. <a_b_c>, <a_b_d>, it's a pretty good
clue that the schema has been poorly designed.

Data semantics
Another key of our data model is the semantics of our data. Looking at the above
example, it is obvious what the <state> element contains, but not as obvious as to
the exact format of that data, that is it could be Victoria, VIC, Vic, 0, and so on.

While different target systems will have different requirements, it is important that a
set of semantics are agreed for the canonical model, so that these differences can be
isolated in the Virtual Services layer.

While semantics can be enforced within our XML Schema through the use of facets
such as enumeration, length, pattern, this is not always the best approach. This
is an area that we will examine in more detail in Chapter 12—Building Validation
into Services.

Use attributes for metadata
A common debate is when to model XML data using elements and when to use
attributes, or whether attributes should be used at all.

Elements are more flexible than attributes, particularly when it comes to writing
extensible schemas, since you can always add additional elements (or attributes)
to an element; however once an attribute has been defined it can't be extended
any further.

One approach is to use attributes for metadata and elements for data. For
example, on some of our query based operations (for example getSellerItems,
getBuyerItems) we have defined two attributes startRow and endRow which are
used to control which portion of the result set is returned by the query.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[271]

Schema guidelines
It is important to have a clear set of guidelines for schema design, this not only
warrants that best practices is followed, but it also ensures schemas are created
consistently making them more reusable, easier to combine, simpler to understand,
as well as easier to maintain.

Element naming
Consistent naming of elements within an XML Schema will ensure that schemas are
easier to understand, as well as reducing the likelihood of error due to names being
misspelt (or spelt differently) within a different context.

Name length
While there is no theoretical limit on the length of an element or attribute name, you
should try to limit them to a manageable length. This is because overly long names
can reduce the readability of a document as well as making them overly bloated,
which in extreme cases could have performance implications.

We tend to try to limit names to a maximum of 15 characters; this may not always
be possible but there are a number of simple strategies that can be adopted to help
achieve this.

Compound names
For element and attribute names that are made up of multiple words, we follow
the practice of capitalizing the first letter of each word (often called camel case).
For example, we would write the name 'shipping address' as shippingAddress.

Another approach is to use a separator, that is a hyphen or an underscore between
words; personally we don't find this as readable as well as resulting in marginally
longer names. Whichever approach you use, you should ensure that you do
so consistently.

For types (that is, complexType and simpleType), we follow the same convention
but prefix the name with a 't' in order that we can easily distinguish it from
elements and attributes.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[272]

Naming standards
We also recommend the use of a defined dictionary for commonly used words,
abbreviations, and so on to ensure that they are used in a consistent fashion. Areas
that should be considered include:

•	 Synonyms: For names that have multiple potential options, for example
Order and Purchase Order, the dictionary should define the standard term
to be used.

•	 Abbreviations: For words that are used commonly, it makes sense to define
standard abbreviations, for example we may use address on its own but
when combined with another word (for example, shipping), we use its
abbreviation to get shippingAddr.
Context based names•	 : When a name is used in context, don't repeat the
context in the name itself. For example, rather than use addressLine1,
when used inside an address element we would use line1.

Note, in some cases this is not always pragmatic, in particular if it reduces
clarity in the meaning of the element. For example, if within the context
of name you have the element family, then this is not as clear as using
familyName. So a degree of common sense should be used.
Generic names•	 : As far as reasonable, use generic names, for example, avoid
using specific company or product names; this will result in more reusable
models and also reduce the likelihood of change.

A sample of the oBay dictionary is shown as follows:

Standard term Abbreviaton Synonyms
address addr

amount amt cost, price, fee
description desc
end end finish, stop
id id number, identifier
item item product
max max ceiling, maximum, top
min min least, lowest, minimum
order ord purchase order
start start effective, begin
status status state
user usr client, customer

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[273]

Namespace considerations
Namespaces are one of the biggest areas of confusion with XML Schemas, yet in
reality they are very straightforward. The purpose of a namespace is just to provide
a unique name for an element, type or attribute, allowing us to define components
with the same name.

For example the element Glass, will have a different definition to a company
that sells windows as opposed to one that runs a bar. The namespace allows us
to uniquely identify each definition, so that we can use both definitions within the
same instance of an XML document, as well as understand the context in which
each element is being used.

If you're familiar with Java, then a namespace is a bit like a package,
name, that is, you can have multiple classes with the same name, but
each one would be defined in a separate package.

One feature of namespaces is that they have a degree of flexibility in how you
apply them, which then impacts how you construct and interpret an instance of an
XML document. This is often the cause of confusion, especially when they are used
inconsistently across multiple schemas.

So it's critical that you define a standard approach to namespaces before defining
your canonical model.

Always specify a target namespace
Unless you are defining a chameleon schema (see next section) always specify a
target namespace.

Default namespace
When defining a schema you have the option of defining a default namespace. If you
do, we would recommend setting the default namespace to be equal to the target
namespace. The advantage of this approach is that you only prefix elements, types,
and attributes which are defined externally to the schema (that is anything that is not
pre-fixed is defined locally).

An alternative approach is not use to use a default namespace, so that
all elements require a prefix. This can often be clearer when combining
many schemas from multiple namespaces, especially if you have similarly
named elements.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[274]

Qualified or unqualified element names
When constructing an XML instance based on an XML Schema we have the option
as the schema designer to decide whether each element should be qualified, that is,
have a prefix which identifies the namespace of where the element is defined. Or
have no prefix, that is, it is unqualified and the origin of the namespace is hidden
within the instance.

The approach you take is often a question of style; however, each has its own
advantages and disadvantages, particularly when you create XML instances that
are defined across multiple namespaces. Take the schema definition for the element
<address>, shown as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.packtpub.com/obay/cmn"
 targetNamespace="http://xmlns.packtpub.com/obay/cmn"
 elementFormDefault="qualified or unqualified" >

<xsd:element name="address" type="tAddress"/>

<xsd:complexType name="tAddress">
<xsd:sequence>

<xsd:element name="addressLine1" type="xsd:string"/>
<xsd:element name="addressLine2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:string"/>
<xsd:element name="country" type="xsd:string"/>

</xsd:sequence>
 </xsd:complexType>

</xsd:schema>

If we chose unqualified elements, then an instance of this schema would look like:

<cmn:address xmlns:cmn="http://xmlns.packtpub.com/obay/core">
<addressLine1>7 Pine Drive</addressLine1>
<addressLine2></addressLine2>
<city>Eltham<city>
<state>VIC</state>
<zip>3088</zip>
<country>Australia</country>

</cmn:address>

However if we chose to use qualified elements, our XML instance would now
appear as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[275]

<cmn:address xmlns:cmn="http://xmlns.packtpub.com/obay/core">
<cmn:addressLine1>7 Pine Drive</cmn:addressLine1>
<cmn:addressLine2></cmn:addressLine2>
<cmn:city>Eltham<cmn:city>
<cmn:state>VIC</cmn:state>
<cmn:zip>3088</cmn:zip>
<cmn:country>Australia</cmn:country>

</cmn:address>

With unqualified namespaces, the XML instance loses most of its namespace
declarations and prefixes, resulting in a slimmed down and simpler XML
instance hiding the complexities of how the overall schema is assembled.

The advantage of using qualified namespaces is that you can quickly see what
namespace an element belongs to. As well as removing any ambiguity, it also
provides the context in which an element is defined giving a clearer understanding
of its meaning.

Whichever approach you use, it's important to be consistent, since mixing qualified
and unqualified schemas will produce instance documents where some elements
have a namespace prefix and others don't. This makes it a lot harder to manually
create or validate an instance document as the author needs to understand all the
subtleties of the schemas involved, making this approach more error prone.

Another consideration over which approach to use, is whether you are using local
or global element declarations, because unqualified namespaces only apply to local
elements. Having a mixture of global elements and local unqualified elements in
your schema definition will again produce instance documents where some elements
have a namespace prefix and others don't with the same issues mentioned above.

A final consideration is whether you are using default namespaces. If you are,
then you should use qualified names as unqualified names and default namespaces
don't mix.

As we recommend using both global elements (see next section for why) and default
namespaces we would also recommend using qualified namespaces.

Qualified or unqualified attributes
Like elements, XML Schema allows us to choose whether an attribute is qualified or
not. Unless an attribute is global, that is declared a child of schema, and thus can be
used in multiple elements, there is no point in qualifying it.

The simplest way to achieve this is to not specify the form and attributeFormDefault
attributes; this will result in globally declared attributes being prefixed with a
namespace and locally declared attributes will have unqualified names.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[276]

Namespace prefixes
As part of your naming standards you should also define standard namespace
prefixes for each namespace.

Global versus local
A component (element, simple type, or complex type) is considered global if it
is defined as a child of the schema element, otherwise, if defined within another
component, it's considered local. Consider the following fragment of XML.

<shipTo>
<name>
 <title>Mr</title>
 <firstName>James</firstName>
 <lastName>Elliot</lastName>
</name>
<address>
 <addressLine1>7 Pine Drive</addressLine1>
 <addressLine2></addressLine2>
 <city>Eltham<city>
 <state>VIC</state>
 <zip>3088</zip>
 <country>Australia</country>
 </address>
</shipTo>

One way of implementing its corresponding schema would be to design it to mirror
the XML, for example:

<xsd:element name="shipTo">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="name">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="firstName" type="xsd:string"/>
<xsd:element name="lastName" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="line1" type="xsd:string"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[277]

<xsd:element name="line2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:string"/>
<xsd:element name="country" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Using this approach only the shipTo element is declared globally, and thus reusable,
that is no other elements or types either within this schema or other schema can
make use of the elements or types declared inside the shipTo element.

Another way of defining the schema would be as follows:

<xsd:element name="shipTo">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="name"/>
<xsd:element ref="address/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="name">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="firstName" type="xsd:string"/>
<xsd:element name="lastName" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="address">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="line1" type="xsd:string"/>
<xsd:element name="line2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:string"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[278]

<xsd:element name="country" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

With this approach shipTo , name, and address are globally declared, therefore the
elements name and address are now also reusable.

�<�R�X���F�R�X�O�G���D�O�Z�D�\�V���J�R���D���V�W�H�S���I�X�U�W�K�H�U���D�Q�G���V�H�S�D�U�D�W�H�O�\���G�H�À�Q�H���D�O�O���W�K�H���V�L�P�S�O�H��
�W�\�S�H�V���V�X�F�K���D�V���W�L�W�O�H�����À�U�V�W���Q�D�P�H���D�V���J�O�R�E�D�O���H�O�H�P�H�Q�W�V��

�7�K�H���W�H�P�S�W�D�W�L�R�Q���L�V���P�D�\���E�H���W�R���G�H�À�Q�H���H�O�H�P�H�Q�W�V���\�R�X���Z�L�V�K���W�R���U�H�X�V�H���Z�L�W�K�L�Q���\�R�X�U���V�F�K�H�P�D��
�D�V���J�O�R�E�D�O�����D�Q�G���K�D�Y�H���W�K�H���U�H�V�W���D�V���O�R�F�D�O���G�H�À�Q�L�W�L�R�Q�V�����+�R�Z�H�Y�H�U�����\�R�X���V�K�R�X�O�G���F�R�Q�V�L�G�H�U���W�K�H��
following points:

Any element you may wish to use as a parameter for a web service operation �x��
�P�X�V�W���E�H���J�O�R�E�D�O�O�\���G�H�À�Q�H�G��

BPEL variables can only be declared for global elements not local elements.�x��

�%�H�F�D�X�V�H���D�W���W�K�H���S�R�L�Q�W���R�I���V�F�K�H�P�D���G�H�À�Q�L�W�L�R�Q���L�W�
�V���Q�R�W���D�O�Z�D�\�V���H�D�V�\���W�R���G�H�W�H�U�P�L�Q�H���Z�K�H�U�H��
an element may need to be reused, we would recommend always declaring your
components as global.

Elements versus types
�$���F�R�P�P�R�Q���G�L�O�H�P�P�D���L�V���Z�K�H�W�K�H�U���W�R���X�V�H���H�O�H�P�H�Q�W�V���R�U���W�\�S�H�V���W�R���G�H�À�Q�H���J�O�R�E�D�O���F�R�P�S�R�Q�H�Q�W�V����
�7�\�S�H�V���W�H�Q�G���W�R���E�H���P�R�U�H���Á�H�[�L�E�O�H�����L�Q���W�K�D�W���R�Q�F�H���\�R�X�
�Y�H���G�H�À�Q�H�G���W�K�H���W�\�S�H���L�W���F�D�Q���E�H���U�H�X�V�H�G���W�R��
�G�H�À�Q�H���P�X�O�W�L�S�O�H���H�O�H�P�H�Q�W�V���R�I���W�K�H���V�D�P�H���W�\�S�H����

�$�O�V�R���R�Q�F�H���\�R�X���K�D�Y�H���G�H�À�Q�H�G���D���W�\�S�H�����\�R�X���F�D�Q���H�D�V�L�O�\���X�V�H���L�W���W�R���G�H�À�Q�H���D�Q���H�O�H�P�H�Q�W�����,�Q���W�K�H��
�H�[�D�P�S�O�H���E�H�O�R�Z�����Z�H���K�D�Y�H���U�H�P�R�G�H�O�O�H�G���W�K�H���D�E�R�Y�H���V�F�K�H�P�D���W�R���V�H�S�D�U�D�W�H�O�\���G�H�À�Q�H���W�K�H���W�\�S�H�V��
�D�Q�G���K�D�Y�H���W�K�H�Q���X�V�H�G���W�K�H�P���W�R���G�H�À�Q�H���W�K�H���H�O�H�P�H�Q�W�V�����$�V���D���U�H�V�X�O�W���Z�H���K�D�Y�H���V�O�L�J�K�W�O�\���O�H�V�V��
�O�L�Q�H�V���R�I���;�0�/���D�V���Z�H�O�O���D�V���D���P�R�U�H���Á�H�[�L�E�O�H���P�R�G�H�O��

<xsd:element name="shipTo" type="tShipTo">

<xsd:complexType name="tShipTo">
<xsd:sequence>

<xsd:element ref="name"/>
<xsd:element ref="address/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="name" type="tName">
<xsd:complexType name="tName">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[280]

The other common pitfall is to design a single all-encompassing schema that defines
all your business objects within an organisation. There are two issues with this
approach, first you could end up boiling the ocean; that is, as you set out to define
every single business object the project never starts because it is waiting for the
model to be completed.

Even if you take a more iterative approach, only defining what's required upfront
and extending this schema as new applications come online, you very quickly end
up with the situation where every application will become dependent on this single
schema; change often becomes very protracted as a simple change could potentially
impact many applications. The end result is strict change control being required
often resulting in protracted time frames for changes to be implemented, not exactly
an agile solution.

The approach of course lies somewhere in the middle, and that is to partition your
data model into a set of reusable modules, where each module is based on a logical
domain. For example in oBay we have defined the following schemas:

Account.xsd•	 : Defines all the business objects specific to a financial account,
i.e. a record of all debit and credit activities related to a specific user.
Auction.xsd•	 : Defines all business objects specific to an auction.
Listing.xsd•	 : Defines all business objects specific to the listing of an item.
Order.xsd•	 : Defines all business objects specific to order fulfilment, i.e. from
the placement of an order through to its final shipment and delivery.
User.xsd•	 : Defines all business objects specific to a user.
Common.xsd•	 : This schema is used to define common objects, such as name,
address, credit card that is used by multiple domains, but where there is no
obvious owner.
Base.xsd•	 : This is used to define common simple types that can be re-used
within all other schemas, such as currency and country codes.

Once we have partitioned our data model, we need to decide on our strategy for
namespaces. There are a number of potential approaches which we cover in the
following sections.

Single namespace
With this approach we have a single target namespace which is used by all schema
definitions. Using this approach we typically have a single master document which
uses the xsd:include element to combine the various schemas documents into a
single schema.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[294]

Sharing XML Schemas in the service bus
As with BPEL PM, it is possible within the Service Bus to create multiple projects
each with their own local copy of the schema. However, as before it's considered best
practice to only have a single copy of each schema.

This is easily achieved by having a single project that defines your schemas, which is
then shared across other projects. To be consistent with BPEL, we have defined the
project xmllib which corresponds with the xmllib in the BPEL system directory,
and under this created an identical folder structure into which we have imported
our schemas.

For example, to mirror how we have deployed the order schema to the BPEL server
we have created the folder obay within the xmllib project and into which we have
imported the order_v1_0.xsd schema.

Importing the WSDL document into the
service bus
Before we create a proxy service that implements our abstract WSDL, we need to
define the bindings for the service, which in our case will be document/literal. We
can either modify the WSDL file to include the bindings before we import it, or add
in the bindings after we have imported the WSDL into the service bus.

Defining the SOAP bindings for our service and each of its corresponding operations
is pretty straightforward, as we have already settled on document/literal for this.

For example, the bindings for our orderFulfillment service are as follows:

<binding name="orderFulfillmentBinding" type="tns:orderFulfillment">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name=" setShippingInstruction">
 <soap:operation style="document"
 soapAction="setShippingInstruction"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="submitInvoice">
 <soap:operation style="document" soapAction="submitInvoice"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[282]

Another advantage of this approach is it allows different groups to be responsible for
each namespace, and for each namespace to evolve to a certain extent independently
of others.

Listing
.xsd

Auction
.xsd

Account
.xsd

Order .xsd

Common.
xsd

User.xsd

The drawback with this approach is that instance documents become more complex,
as they will need to reference multiple namespaces. To prevent this becoming a
problem it is important to partition your data model into sensible domains and also
resist the urge to over partition it and end up with too many namespaces.

Separate common objects into their own namespace
Common objects which are used across multiple namespaces should be created
in their own namespace. For example the address element is used across multiple
domains; if we were to create it in the order namespace, we would be forcing the
User schema to import the Order schema, which would unnecessarily complicate
our XML instances. The issue would become more acute if common object definitions
were sprinkled across multiple namespaces.

Chameleon namespaces
With this approach, as the name suggests, the namespace for a schema can change
based on the environment in which it is used. This can be quite a useful trick if not
over used.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[283]

For oBay we have defined the schema base.xsd, which we have used to define our
base elements, such as countryCode, currencyCode, and emailAddress which will
be reused by multiple schemas.

To use this technique, we don't specify a target namespace in the chameleon schema,
so the definition of base.xsd looks like:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" >

 <xsd:element name="countryCode" type="tCountryCode">

 <xsd:simpleType name="tCountryCode">
 <xsd:restriction base="xsd:string">

 <xsd:length value="2"/>
 </xsd:restriction>
 </xsd:simpleType>

<xsd:element name="currencyCode" type="tCurrencyCode">

<xsd:simpleType name="tCurrencyCode">
 <xsd:restriction base="xsd:string">
 <xsd:length value="2"/>
 </xsd:restriction>
 </xsd:simpleType>
 …

</xsd:schema>

We can then incorporate this into any of our other schemas using the xsd:include
command. The elements defined in our base schema will then assume the namespace
of the schema that's including them.

To look at the advantage of this approach, let us consider the disadvantages of the
alternative approach, which would be to define all base elements in our common
schema. Consider the following fragment of XML, which makes up an order.

<ord:order>
 <ord:orderNo>123456</ord:orderNo>

<cmn:countryCode>IR<cmn:countryCode>
 <ord:cost>
 <cmn:currencyCode>EU<cmn:currencyCode>
 <ord:subTotal>12.45</ord:subTotal>
 <ord:tax>1.15</ord:tax>
 <ord:total>13.60</ord:total>
 </ord:cost>
 …
</ord:order>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[284]

Here we can see that fragment contains two namespaces, which are interleaved
with one another. However, using the chameleon approach, we would end up
with the following:

 <ord:order>
 <ord:orderNo>123456</ord:orderNo>

<ord:countryCode>IR<ord:countryCode>
 <ord:cost>
 <ord:currencyCode>EU<ord:currencyCode>
 <ord:subTotal>12.45</ord:subTotal>
 <ord:tax>1.15</ord:tax>
 <ord:total>13.60</ord:total>
 </ord:cost>
 …
</ord:order>

We are now only dealing with a single namespace, which makes our XML instance
a lot cleaner and simpler to understand.

Disadvantages of chameleon namespace
However this approach does have some disadvantages, particularly if used to define
complex elements. Consider the address element; if we define it in our chameleon
namespace, the address within the context of <user> would look like:

<usr:user>
…
<usr:address>

<usr:addressLine1>7 Pine Drive</usr:addressLine1>
<usr:addressLine2></usr:addressLine2>

 <usr:city>Eltham<usr:city>
 <usr:state>VIC</usr:state>

<usr:zip>3088</usr:zip>
<usr:country>Australia</usr:country>

</usr:address>
</usr:user>

While if it is used in the context of <order> it would look like the following:

<ord:shipTo>
…
<ord:address>

<ord:addressLine1>7 Pine Drive</ord:addressLine1>
<ord:addressLine2></ord:addressLine2>

 <ord:city>Eltham<ord:city>
 <ord:state>VIC</ord:state>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[285]

<ord:zip>3088</ord:zip>
<ord:country>Australia</ord:country>

</ord:address>
</ord:shipTo>

Now this is exactly the behavior that we expect. However, the issue would come if
we used XPath, for example within a BPEL assign activity to map the user address
to the shipping address for the order as illustrated in the code snippet as shown:

<assign name="SetShippingAddress">
 <copy>
 <from variable="customer" query="/cus:customer/cus:address"/>
 <to variable="order" query="/ord:shipTo/ord:address"/>
 </copy>
</assign>

Performing this mapping would give us the following result shown below, which is
clearly invalid.

<ord:shipTo>
…

 <ord:address>
 <usr:addressLine1>7 Pine Drive</usr:addressLine1>
 <usr:addressLine2></usr:addressLine2>
 <usr:city>Eltham<usr:city>
 <usr:state>VIC</usr:state>
 <usr:zip>3088</usr:zip>
 <usr:country>Australia</usr:country>
 </ord:address>
</ord:shipTo>

The reason we have ended up with the address containing elements in the wrong
namespace, is that the XPath in the from clause is selecting all the nodes in the
<usr:address> element and copying them to the <ord:address> element specified
in the to clause.

To ensure that each element ended up in the correct namespace we would have to
copy each node on an individual basis. While this is a completely valid approach
it does rely on the developer to pick up on this nuance, or otherwise introduce a
bug into the system. We have chosen to err on the side of caution and so only use
chameleon namespaces for simple types so that we don't have to worry about
this issue.

The other drawback with this approach is the risk of namespace collisions, that is
where we have a type defined in the chameleon schema that shares a name with a
type in the schema document that is including it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[286]

Using WSDL to define business services
A service as defined by a WSDL document is made up of two parts. First is the
abstract part which defines the individual operations that make up a service, the
messages that define the parameters for the operations and the types which define
our XML data types used by our messages.

The second part of the WSDL document defines the binding, that is, how to
physically encode the messages on the wire (for example SOAP), the transport
protocol on the wire (for example HTTP) and also the physical location or endpoint
of the service (for example its URL).

Ideally we should only be concerned with designing the abstract part of the WSDL
document as the run-time binding should be more of a deployment detail. However,
the reality is that the style of binding has implications on how we design the abstract
components if we want to ensure interoperability between services, providers
and consumers.

By far the most common binding for a web service is SOAP over HTTP; however,
this comes in a number of different varieties as we can specify whether the invocation
method adopts a Remote Procedure Call (RPC) style or a document style binding (that
is, a more message-oriented approach). We also have a choice as to whether the SOAP
message is encoded or literal. This gives us four basic combinations, that is RPC/
encoded, RPC/literal, Document/encoded, and Document/literal.

It is generally accepted that for the purpose of interoperability, that document/literal
is best practice. However, the document literal style has some drawbacks.

Firstly not all document literal services are WS-I compliant, because WS-I recommends
that the SOAP body contains only a single child element within the SOAP body.
However, document/literal allows you to define WSDL messages containing multiple
parts, where each part is manifested as a child element within the SOAP body.

Another minor issue with document/literal is that it doesn't contain the operation
name in the SOAP message, which can make dispatching of messages difficult in
some scenarios and can also make debugging complicated when monitoring SOAP
traffic, particularly when multiple operations contain the same parameters.

Use document (literal) wrapped
Document wrapped is a particular style or use of document literal which addresses
these issues. With this approach, the request and response parameters for an
operation are 'wrapped' within a single request and response element.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[288]

Importing canonical model
When defining your wrapper elements make sure that you first import the relevant
parts of your canonical model.

For example, the OrderFulfilment service needs to import the Order.xsd schema,
which is defined in the namespace http://schema.packtpub.com/obay/ord.

So within the types section of our WSDL, we have included the following
import statement.

<types>

 <xsd:import namespace="http://schema.packtpub.com/obay/ord"
 schemaLocation="order_v1_0.xsd" />
 <!-- Wrapper Elements Defined Here -->
 …

<types>

Before we can reference elements contained within this schema, we must also declare
its namespace and corresponding prefix within the definitions element of the
WSDL, as highlighted:

<definitions name="OrderFulfillment"
 targetNamespace="http://xmlns.packtpub.com/obay/OrderFulfillment"
 xmlns:tns="http://xmlns.oracle.com/OrderFulfillment
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ord="http://schema.packtpub.com/obay/ord"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

Next we can define our wrapper elements, so for the setShippingInstruction
operation within the OrderFulfilment service we have defined the following:

<xsd:element name="setShippingInstruction"
type="tSetShippingInstruction"/>

<xsd:element name="setShippingInstructionResponse"
type="tSetShippingInstructionResponse"/>

<xsd:complexType name="tSetShippingInstruction">
<xsd:sequence>

<xsd:element ref="ord:orderNo"/>
<xsd:element ref="ord:shippingDetail" />

</xsd:sequence>
</xsd:complexType>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[289]

<xsd:complexType name="tSetShippingInstructionResponse">
<xsd:sequence>

<xsd:element ref="ord:order"/>
</xsd:sequence>

</xsd:complexType>

Defining the 'message' elements
Once we have defined our wrapper elements it's pretty straightforward to define
our message elements; we should have one message element per wrapper element.
From a naming perspective we use the same name for the message element as we did
for our wrapper elements. So for our setShippingInstruction operation we have
defined the following message elements:

<message name="setShippingInstruction">
<part name="payload" element="setShippingInstruction"/>

</message>

<message name="setShippingInstructionResponse">
<part name="payload" element="setShippingInstructionResponse"/>

</message>

Defining the 'portType' element
The final component of abstract WSDL document is to define the portType and
its corresponding operations. For our OrderFulfilment service we have defined
the following:

<portType name="orderFulfilment">
<operation name="setShippingInstruction">

<input message="setShippingInstruction"/>
<output message="setShippingInstructionResponse"/>

</operation>

<operation name="submitInvoice">
<input message="submitInvoice"/>
<output message="submitInvoiceResponse"/>

</operation>
…

</portType>

Note for the sake of brevity we have only listed two operations, for the full set please
refer to OrderFulfilment.wsdl contained within the sample application.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[291]

For example if we created the sub-directory obay and dropped the order_v1_0.xsd
in there, we would just need to modify our schemaLocation attribute to point to this
URL, so in the above example it would now be:

 schemaLocation="http://host:port/orabpel/xmllib/obay/order_v1_0.xsd"

Importing schemas
Once we have deployed the schema to the BPEL server, the next step is to create a
reference to it within the appropriate WSDL document.

We can either do this by manually editing the WSDL, or we can import the schema
in a similar fashion to when we import the file directly into the BPEL project. But
instead of specifying the file location of the XML Schema, we just enter the schema
URL, as shown in the following screenshot:

When we import a schema in this fashion, JDeveloper will import it as an Inline
Schemas, meaning it doesn't actually make a copy of the schema, rather it just adds
an import statement into your WSDL where the schemaLocation attribute is set to
the specified URL.

Updating the schema URL
One minor issue with this approach is that the specified URL is an absolute one, so
the host name and port is fixed within it. Thus when you move your process from
one environment to another (for example, development to test) then you need to
update the URL as appropriate.

However this is relatively straightforward to automate by creating a
deployment plan for the BPEL Process; details on how to do this are described
in Chapter 18—Packaging and Deployment.

Importing the WSDL document into BPEL PM
For those services which we are going to implement as a business process, we
need to create a BPEL process that implements the abstract WSDL contract that
we have designed.

Designing the Service Contract

[292]

Essentially there are two approaches to this; the first is to create a BPEL process
in the normal way, using the appropriate template, either synchronous or
asynchronous. When you do this JDeveloper will create a basic WSDL file for the
process. You can then modify this WSDL to conform to the abstract WSDL that you
have already defined.

The alternative is to import the abstract WSDL document into the process itself. With
this approach you create your BPEL process using the template for an Empty BPEL
Process, as shown in the following screenshot:

This will create a completely empty business process, containing no activities or
partner links as shown.

When we create a BPEL process based on either the asynchronous or synchronous
template, JDeveloper does a number of things.

First it will create a WSDL which describes the service provided by the process, it
will create a default process containing a single PartnerLink (named client) which
references the WSDL for the process. It will also create an initial receive and reply/
invoke activity for the process.

Chapter 10

[293]

As we have created an empty process, we will need to create these components. The
first step is to create the client partner link that implements our abstract service; we
do this by dragging a PartnerLink onto our process in the normal way and then
pointing it at the WSDL file that we've just defined.

Adding the PartnerLink definition to the
abstract WSDL
Before importing an abstract WSDL, we need to create a modified version of the
WSDL which includes the partnerLinkType extension required by BPEL, so
for our Order Fulfillment service that we defined above we would need to add
the following:

<plnk:partnerLinkType name="OrderFulfillment">
 <plnk:role name="OrderFulfillmentProvider">
 <plnk:portType name="client:orderFulfilment "/>
 </plnk:role>
</plnk:partnerLinkType>

Make sure that you set My Role within the PartnerLink to be the service provider
(that is, OrderFulfillmentProvider in the above case). Once you have done this
you can implement your BPEL process as normal.

We will also need to create the initial receive and corresponding reply/invoke
activity for our process. When doing this make sure you check the box Create
Instance on the initial receive activity.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[294]

Sharing XML Schemas in the service bus
As with BPEL PM, it is possible within the Service Bus to create multiple projects
each with their own local copy of the schema. However, as before it's considered best
practice to only have a single copy of each schema.

This is easily achieved by having a single project that defines your schemas, which is
then shared across other projects. To be consistent with BPEL, we have defined the
project xmllib which corresponds with the xmllib in the BPEL system directory,
and under this created an identical folder structure into which we have imported
our schemas.

For example, to mirror how we have deployed the order schema to the BPEL server
we have created the folder obay within the xmllib project and into which we have
imported the order_v1_0.xsd schema.

Importing the WSDL document into the
service bus
Before we create a proxy service that implements our abstract WSDL, we need to
define the bindings for the service, which in our case will be document/literal. We
can either modify the WSDL file to include the bindings before we import it, or add
in the bindings after we have imported the WSDL into the service bus.

Defining the SOAP bindings for our service and each of its corresponding operations
is pretty straightforward, as we have already settled on document/literal for this.

For example, the bindings for our orderFulfillment service are as follows:

<binding name="orderFulfillmentBinding" type="tns:orderFulfillment">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name=" setShippingInstruction">
 <soap:operation style="document"
 soapAction="setShippingInstruction"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="submitInvoice">
 <soap:operation style="document" soapAction="submitInvoice"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[295]

 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 …
</binding>

When we import our WSDL, if it imports any schemas, then the Service Bus will
present us with a warning message, similar to the one shown as follows, indicating
that there were validation errors with the WSDL.

If you look at the list of resources in the browser it will also have an X next to the
WSDL we just imported.

If you click on the WSDL name to edit it, the Service Bus will display the WSDL
details, with the error One of the WSDL dependencies is invalid.

This is because if a WSDL references any external resources (i.e. the order schema in
this case), we must first import that resource into the Service Bus and then update
the WSDL reference to point to the imported resource.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Designing the Service Contract

[296]

To do this, click on the button Edit References, the Service Bus will display a window
listing all the references included in the WSDL, with a section listing all the schema
references as shown in the following screenshot:

Clicking on the Browse button will launch a window from where you can select the
corresponding XML Schema that the WSDL is referring to, shown as follows:

By default, the window will list all the schemas defined to the Service Bus,
though you can restrict the list by defining search criteria. In the case or our
orderFulfilment service, just select the schema order_v1_0.xsd and click Submit.

This will return you to the Edit References screen, click Save, this will return you to
the View/Edit WSDL screen, which should display the confirmation The References
for the WSDL "orderFulfillment" were successfully updated.

Your WSDL can now be used to define a proxy service in the normal way.

If you import a schema into the Service Bus which references other
schemas, then you will need to go through a similar process to define all
its dependencies.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[297]

Strategies for managing change
One of the key design principals behind SOA is that systems should be
designed and built to accommodate future change in response to ever changing
business requirements.

So far we have looked at how to design and build the initial system, so that when
change does occur it can be isolated through the use of service contracts to particular
parts of the overall system.

While allowing us to restrict the impact of change, it doesn't completely mitigate
all the complexities, especially when you consider the consumer and provider of a
service may be in completely separate organizations.

Major and minor versions
When we upgrade the version of a service, e.g. from version 1 to version 2, then
from the perspective of the consumer there are two possible outcomes. Either the
version 1 consumer can continue to successfully use version 2 of the service, in
which case the service is said to be backward compatible or the change will break
the existing contract.

To be explicit, a service is said to be backwards compatible if ALL messages
that would have been successfully processed by version 1 of the service will be
successfully processed by version 2 of the service.

It is good practice to assign a version number to each service which indicates the
level of backward compatibility. A typical approach is to assign a major and minor
version of the format <major>.<minor> (e.g. 1.0, 1.1, 2.0), where:

•	 A minor change signifies a change that is backward compatible with
previous versions of the service that share the same major number. These
types of changes typically contain small new features, bug fixes, and so on.

•	 A major change signifies a change that is incompatible with previous
deployment of the service. Major changes typically indicate significant new
features or major revisions to the existing services.

You also have the concept of forward compatibility, whereby the
consumer is upgraded to use a future version of the service, before the
actual provider of the service is upgraded.

If we examine the anatomy of a web service, it is essentially made up of three
components. Namely its WSDL contract, referenced data types from our canonical
model and the actual implementation of the service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[299]

The definition of new elements, attributes and types•	

Adding optional attributes and elements to existing elements and types•	

Make existing mandatory attributes and elements optional•	

Convert an element into a choice group•	

Make simple types less restrictive•	

Change schema location
Encode the schema version in the file name of the schema, for example we have
named our auction schema auction_1_0.xsd. Whenever we import a schema either
in another schema or within a WSDL document the schemaLocation attribute will
contain the version of the schema being used.

This has two advantages; first, we can immediately see what version of a schema
a web service is based on, simply by looking at what files we are importing within
the WSDL. Second, it allows us to have multiple versions of a schema deployed
side by side allowing each service to upgrade to a newer version of a schema as it
suites them.

When we upgrade a service to use the new version of a schema, then of course we
will have a corresponding new version of the service.

Update schema version attribute
Use the schema version attribute to document the version of the schema. Note this
is purely for documentation as there is no processing of this attribute by the parser.
This ensures that if the schema is renamed so as to remove the encoding of the
schema version from the file name, we still know the version of that schema.

Resist changing the schema namespace
One common practice is to embed the version of the schema within its namespace,
and update the namespace for new versions of the schema. However, this has the
potential to cause major change to both consumers and providers of a service so
it is strongly recommended that you use this approach with care if at all.

Firstly when you change the namespace of a schema, it is no longer backward
compatible with previous versions of the schema. So by definition changing the
namespace is a major change in its own right. Therefore never change the namespace
for a minor change.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[306]

Adapters and web service wrappers
In Chapter 3, we looked at the use of adapters to expose service functionality. In this
chapter, we use service wrappers to provide a web service interface onto existing
code. Adapters support both event driven and request/response services. Service
wrappers generally provide just a request/response interaction.

Adapters
Following are the characteristics of adapters:

•	 Support request/response interaction
Support event notification (the service initiates the call)•	

Support a wide range of technologies and packaged applications•	

By default are co-located with core SOA Suite components•	

Configuration often deployed with clients•	

May support XA transactions—for example the database adapter•	

By default don't use SOAP bindings (JCA binding is used by default)•	

Service wrappers
Following are the characteristics of service wrappers:

•	 Support request/response interaction
SOA Suite and JDeveloper support wrapping Java and PL/SQL only•	

Must be deployed and run as services in their own right•	

All configuration is held in the service description•	

Any transactional support is handled through SOAP headers•	

By default use SOAP bindings•	

It should also be noted that applications such as Peoplesoft and Siebel support
definition of their own services using the tools provided with the applications.

Chapter 11

[307]

Reusing existing functionality directly
In this case we are either using existing services exposed by the application or
exposing existing functionality directly as services as we did in Chapter 3. If the
application already exposes a WSDL interface then we can use it directly and no
further work is required on our part other than adapting the interface to support the
canonical data model as explained in Chapter 4. If the application does not expose a
WSDL interface, then we need to expose the required functionality through a WSDL
interface by providing a service wrapper that maps directly onto the functionality.
Normally this is achieved by taking existing Java or PL/SQL code and providing
a service wrapper directly around it using a JDeveloper wizard. The format of
data and the operations supported are determined by the existing application
functionality rather than an idealized service design.

Exposing a PL/SQL stored procedure
as a service
Often business logic is captured inside a PL/SQL stored procedure. The following
PL/SQL code is used to create a new auction. It uses a database sequence to generate
a unique auction ID, inserts the auction details into a table and then returns the new
auction ID as an out parameter.

PROCEDURE CREATEAUCTION
 (userID IN NUMBER
 , Title IN VARCHAR2
 , Description IN VARCHAR2
 , Reserve IN NUMBER
 , AuctionID OUT NUMBER
) IS
BEGIN
 INSERT
 INTO Listing
 (Id, Name, Description, Reserve, SellerID)
 VALUES
 (AuctionIdSeq.nextval, Title, Description, Reserve, userID);
 SELECT AuctionIdSeq.currval INTO AuctionID FROM dual;
 COMMIT;
END CREATEAUCTION;

When creating a new auction we need to assign it a unique ID and the use of a
sequence guarantees that this occurs correctly. Because we want to use the sequence
every time we create an auction it is convenient to wrap up the use of the sequence
into a stored procedure.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[308]

Launching the PL/SQL web service wizard
To turn this stored procedure into a service we can call from elsewhere in the SOA
Suite we use the JDeveloper PL/SQL web service wizard. To invoke this, we select
New… from within an existing project. Then under Business Tier, select the Web
Services group to find the PL/SQL Web Service wizard as shown.

Choosing the level of Java Enterprise
Edition support
The service we create will need to be deployed to a J2EE container to execute. The
wizard wants to know what version of the specification to generate code for. Choose
J2EE 1.4 (JAX-RPC) Web Service unless you are deploying to a pre-10.1.3 Oracle
Application Server.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[309]

Selecting a database connection and defining
service bindings
Having chosen the level of Java support required, we select a database connection
that will be introspected to find appropriate candidate stored procedures. When
deployed, the database connection will be looked up at JNDI location java:comp/
env/jdbc/<ConnectionName> where <ConnectionName> is the name of the
connection in JDeveloper. This setting must be configured to point to the correct
database in the target Java container.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[310]

Once a Database connection in JDeveloper is selected, we can choose the Database
Package containing the procedures we want to expose as a service. We also set the
name of the service at this point using the Web Service Name field.

The Java Package is the package used by the wizard when generating Java code.

The final section of this screen allows us to define the service bindings. These
define how the services maps onto message protocols. The Oracle SOA Suite
components will work with any of the available bindings. However, for maximum
interoperability it is probably wise to choose SOAP 1.1 support; this will ensure
interoperability with older web services implementations. For more information
on these settings see Chapter 17—The Importance of Bindings.

Determine message style
The wizard now requires us to select the type of message format. Again for
maximum interoperability use Document/Wrapped message format.

Select stored procedures and functions to expose
The wizard will now introspect the database to determine the functions and
procedures available to be added to the service. Any procedures that cannot be
turned into web services will be greyed out. To discover why a service cannot be
exposed as a web service, select the greyed out service and click Why Not?

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[311]

Each procedure or function selected in the wizard will appear as an operation on the
generated service interface. The wizard will then ask how the PL/SQL types should
be mapped onto XML. The defaults are usually sufficient.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[312]

Once the desired procedures and functions have been selected, the wizard may be
completed by clicking on Finish. Additional steps on the wizard allow customization
of data bindings and setting of web service policy. Custom data mappings and
serialization are covered in Chapter 17—The Importance of Bindings. Policy settings
are covered in Chapter 20—Defining Management and Security Policies.

Finally it is possible to add additional header fields to the service, allowing
customization of the headers using JAX-RPC.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[313]

Modifying existing functionality using
service bus
In Chapter 4, we discussed the importance of a canonical form for data. We typically
want all our interactions to be in canonical form. This may require us to wrap or
modify existing services to convert their data representation to canonical form.

If the functionality we require is already exposed as a service, we can choose to
modify it through transformation in the Service Bus. Complicated transformations,
where there is a significant mismatch between canonical form and actual service,
may require the use of BPEL or more complex request/response pipelines in the
Service Bus. In the worst case, we may need to combine several services into a single
canonical service. This approach may be characterized as using the SOA Suite to
adapt the exposed functionality to our needs.

If the function we need is not already exposed as a service, then we may choose
to provide a native language wrapper around the functionality. This wrapper is
intended to make it easier to transform the resultant service to canonical form.

We can avoid the need to transform to canonical form by generating a service stub
from the canonical form and then implementing it by using our existing functionality.
This is similar to creating a new service from scratch except that we don't have to
provide the functionality of the service. We just need to provide some code to call the
functionality. This approach may be characterized as extending the existing code base
before exposing it to the SOA Suite to provide the functionality we need.

Converting an existing service to
canonical form
Often we have existing services available but they are not in canonical form. Hence,
these services are relatively brittle and enforce their structure on the rest of the
infrastructure. To avoid this, we can provide a more flexible interface in the Service
Bus that performs the transformation of an existing web service from a service
implementation specific interface to the canonical interface.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[314]

Create a new service interface
To do this, we first create a new session in the service bus console, and then create a
new project as shown:

We give the project a meaningful name. Note that this could also be done in the
Oracle WebLogic Workshop.

After selecting the project in the Project Explorer, we can start adding the resources
that we need. We start by defining the canonical service interface as described by
a WSDL definition. Before importing a WSDL, it is best to ensure that any external
references within the WSDL, such as references to XML Schema files, are already
loaded. If the schema files are unique to this project, they can be loaded into this
project; if they are not, they can be placed in a shared common project to ensure that
the same resource is used consistently across projects. Note that, in the examples, we
have created sub-folders under the project to hold different types of resource. This is
not necessary and is done only to make it easier to manage the resources.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[315]

We are able to browse the file system for WSDL to upload to the project. The WSDL
for our canonical interface generally does not need any port or binding details
because these will be provided by our wrapper, in this case by the Service Bus.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[316]

After loading the WSDL, we can verify that it has correctly resolved any external
resource references such as XML Schemas by clicking on the newly loaded WSDL
and looking at the WSDL definitions. Note that because the referenced XML Schema
was pre-loaded into the Service Bus, it has automatically been resolved correctly. If
the schema had not been pre-loaded, it would now be necessary to load the schema
and manually set the reference between the WSDL and the schema.

Now that we have loaded the interface WSDL, then we can create a proxy that will
implement this interface. After choosing to create a Proxy resource, we can browse
for a pre-loaded WSDL and select it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[318]

Enforce compliance to standards for external services
If a proxy is intended to be used by a consumer external to the company,
it is a good idea to enforce WS-I compliance. WS-I is the Web Services
Interoperability standard and defines which subsets of the various web
service standards can be reliably used to guarantee interoperability
between different vendors SOA stacks.

Selecting Save completes the initial creation of the proxy.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[323]

Select deployment platform
We can then select how we want the web service to be implemented in Java. Unless
we are deploying to an earlier version of OC4J, we should choose J2EE 1.4.

The web service version determines how the Java class is wrapped or annotated to
expose the web service.

Select service name
The name of the service is arbitrary. Because we started by generating a service
�V�S�H�F�L�À�F�D�O�O�\���I�R�U���D���J�L�Y�H�Q���-�D�Y�D���F�O�D�V�V�����Z�H���F�D�Q�Q�R�W���F�K�D�Q�J�H���W�K�H��Component To Publish .

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[322]

 public void setNumber(String param) …
 public String getNumber() …
 public void setExpiry(String param) …
 public String getExpiry() …
}

To make a better basis for creating a service we can build a wrapper class that
removes the extra step of getting a key and only exposes types that can be easily
mapped to XML.

public class EncryptionServiceWrapper {
 public byte[] encryptCard(String passPhrase, CreditCard card) …
 public CreditCard decryptCard(String passPhrase, byte[]
 encryptedCard) …
}

Launching the Web Service wizard
To expose this new wrapper class in JDeveloper, we will launch the Create Java Web
Service wizard by right-clicking on the class.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[323]

Select deployment platform
We can then select how we want the web service to be implemented in Java. Unless
we are deploying to an earlier version of OC4J, we should choose J2EE 1.4.

The web service version determines how the Java class is wrapped or annotated to
expose the web service.

Select service name
The name of the service is arbitrary. Because we started by generating a service
specifically for a given Java class, we cannot change the Component To Publish.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[324]

For maximum interoperability it is best to stay with SOAP 1.1 binding. Auto
generation of the service endpoint means that the endpoint name and address
will be selected by JDeveloper; at runtime the physical address will be modified
to reflect the container that the service is hosted on.

Select message format
The message format determines how the service serializes the data for transmission.
The formats determine which options are available later in the wizard. The
document wrapped style passes a single parameter on the wire that is a holder
for the individual parameters.

Wrapped and literal styles
The different encoding styles cause the message to be packaged
differently. The wrapped styles cause each message to have a single
message part and a root XML element that has all the native parameters
underneath. The literal style causes a message to have multiple parts,
each part has its own separate root element that corresponds to the native
parameters on the implementing class.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[325]

Provide custom serializers
Having selected the message format we will be prompted to provide any custom
XML to Java mappings. Generally, we will not require these unless we want to use
a pre-existing XML Schema for our parameter types. We may also use this to provide
precise control about how a Java class is transformed into XML through the use of
a serializer. This is a topic outside the scope of this book.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[326]

Mapping
If we don't have an existing schema to map onto, the mapping step in the wizard
allows us to control the generation of an XML Schema to describe our Java classes.
It is here that we specify the namespaces to be used for our service definition and
service types.

Select methods
In this step, we can verify which methods we wish to include in our service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[327]

We have the option to remove unwanted methods from the service. If a method is
grayed out, choosing Why Not? will explain why that method cannot be included
in the service.

This is generally a good point to click the Finish button to generate the web service.
This service may now be deployed to an application server and used within the
SOA Suite. Actual deployment steps will depend on the target application server.
However, the steps are the same as for deploying any JEE application to an
application server.

Creating services from scratch
There are times when the functionality that we require does not already exist and so
we need to create it from scratch. The languages of choice for doing this with SOA
Suite are Java and PL/SQL. The choice of language will be determined by several
factors including:

Available skills•	

Complexity of logic—more computational and conditional centric logic •	
favours Java
Complexity of data—more data-centric logic favours PL/SQL•	

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[328]

Creating a Java service from a WSDL
Previously we have created services from existing functionality. Now let us look
at how we can generate the service wrappers to let us implement the functionality
we need.

Starting the wizard
We begin with a project into which we import a WSDL document or create one using
the WSDL builder in JDeveloper. The WSDL we will use describes a credit card
encryption service similar to the one we have previously used. To launch the wizard
we select New… from the File menu of JDeveloper. Within the New Gallery, we
then select the Java Web Service from WSDL item under the Business Tier Web
Services category.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[329]

Choosing the WSDL
Within the wizard we first need to choose the appropriate WSDL document from
which we want to generate a web service implementation. The WSDL Document
URL drop down not only shows all the WSDL documents within this JDeveloper
application but also allows us to browse for WSDL in the file system or in a
UDDI repository.

The optional Mapping File field allows us to control the names and types of Java
classes corresponding to our XML Schema.

Choosing the mapping options
When we come to Step 2—Default Mapping Options we have some new choices
to make. This screen allows us to describe the name and packages of generated
Java classes.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Business Services

[330]

Soa.bookGenerated Java classes will be created in the Java package identified by
the Package Name. Classes generated to describe parameters and return types are
created in the Java package identified by Root Package for Generated Types.

A couple of extra fields provide more control over the mapping. If the WSDL
identifies the use of any specific SOAP headers, Map Headers to Parameters allows
these to be mapped as additional parameters to the Java class, avoiding the need
to write message handlers to extract the headers. If the underlying parameter types
have already been mapped and exist, checking Reuse Existing Type Classes will
cause the code generator to not generate any classes for parameter types, however
the mapping file should have been used in this case to map existing classes onto the
appropriate XML types.

Clicking Finish at this point will cause the wizard to generate appropriate
Java classes.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[331]

The generated Java
The wizard will generate a number of different classes:

•	 An implementation class—CreditCardEncryptionServiceImpl—that we
must use to provide the functionality of the service.

•	 An interface—CreditCardEncryptionService—that defines the service
interface in Java.

•	 A number of data structure classes—CreditCard, DecryptCardRequest,
DecryptCardResponse, EncryptCardRequest, and
EncryptCardResponse—that represent the parameters into the service and/
or its return value as well as any other data types required.
A descriptor to map the service WSDL and associated XML Schema onto the •	
generated Java classes—CreditCardEncryptionServiceService-java-
wsdl-mapping.xml.

The only class that needs to be altered is the implementation class. This is shown
as follows:

public class CreditCardEncryptionServiceImpl {
 public DecryptCardResponse decryptCard(DecryptCardRequest request)
 {
 return null;
 }

 public EncryptCardResponse encryptCard(EncryptCardRequest request)
 {
 return null;
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into
Services

Once we have divided our solution up into a number of composite components, one
of the next questions we typically get is:

Where should I put my validation and how should I implement it?

�$�W���À�U�V�W���J�O�D�Q�F�H���W�K�L�V���P�D�\���V�H�H�P���O�L�N�H���D�Q���R�E�Y�L�R�X�V���T�X�H�V�W�L�R�Q�����E�X�W���R�Q�F�H���\�R�X���F�R�Q�V�L�G�H�U���W�K�D�W���D��
service may be made up of other services, it becomes clear that you could potentially
end up implementing the same validation in every level.

Apart from the obvious performance implications, you also have the issue of
having to implement and maintain the same validation at multiple points within
the solution.

When you get down to an individual service, you still have many considerations
around where in the service you place the validation and how best to implement it.
�3�D�U�W�L�F�X�O�D�U�O�\���L�I���\�R�X���Z�D�Q�W���W�K�H���Á�H�[�L�E�L�O�L�W�\���W�R���E�H���D�E�O�H���W�R���F�K�D�Q�J�H���W�K�H���Y�D�O�L�G�D�W�L�R�Q���Z�L�W�K�L�Q���D��
service without having to redeploy it.

This chapter gives guidance on how best to address this question. It examines how
we can implement validation within a service using XSD validation, Schematron
and Business Rules as well as within the service itself. With each of these options
�L�W���O�R�R�N�V���D�W���W�K�H���S�U�R�V���D�Q�G���F�R�Q�V���D�Q�G���K�R�Z���W�K�H�\���F�D�Q���E�H���F�R�P�E�L�Q�H�G���W�R���S�U�R�Y�L�G�H���D���Á�H�[�L�E�O�H��
validation strategy.

Finally, we look at validation within the context of the overall solution, and
provide guidelines around which layer within the architecture we should
place our validation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[335]

 <xsd:pattern value="[0-9]{16}"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="tExpiryMonth">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="12"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="tExpiryYear">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2008"/>
 <xsd:maxInclusive value="9999"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="tSecurityNo">
 <xsd:restriction base="xsd:integer">
 <xsd:pattern value="[0-9]{3}"/>
 </xsd:restriction>
</xsd:simpleType>

With this approach, we have very precisely defined the following restrictions:

Valid card types are either •	 MasterCard or Visa
Credit card number is a 16 digit integer•	

The expiry month must be between 1 and 12•	

The expiry year must be a four digit integer with a minimum value of 2008•	

The security code is a 3 digit integer•	

The advantage with this approach is that we have a far more explicit definition of
the interface, providing a far more robust and tightly controlled entry point for our
service. From a client perspective, it provides a far clearer understanding of what
does or doesn't constitute a valid data structure.

From an implementation perspective, by placing the majority of the validation in the
service contract we have removed the need for the underlying service to build in this
validation, simplifying the construction of the actual service.

However, the major disadvantage with this approach is that the tighter the
constraints, then the more resistant to change a service becomes.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[336]

For example, if oBay decided to accept American Express as payment, then CardType
would need to be updated to contain an additional enumeration, CardNumber would
need to be amended to accept 15 digit numbers and SecurityCode amended to
accept 4 digit numbers.

This would require oBay to release a new version of their XML Schema and a
corresponding new version of any service which relies on CreditCard in any
of its operations.

In addition, every New Year, a new version of the canonical model would be
required to update ExpiryYear as appropriate.

You could also argue that it's perfectly valid to have details of an expired
credit card, in which case you would not want to put this constraint in the
Canonical Data Model.

Loosely typed services
With a loosely typed approach, we use XML Schema to define the overall structure
of the XML instance, that is, what elements may appear in the document, whether
they are optional or mandatory and how often they may occur, but provided
minimal constraints around the content of each element. Using this approach our
definition of CreditCard could be as follows:

<xsd:complexType name="creditCard">
 <xsd:sequence>
 <xsd:element name="cardType" type="xsd:string"/>
 <xsd:element name="cardHolderName" type="xsd:string"/>
 <xsd:element name="cardNumber" type="xsd:integer"/>
 <xsd:element name="expiryMonth" type="xsd:integer"/>
 <xsd:element name="expiryYear" type="xsd:integer"/>
 <xsd:element name="securityNo" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>

This is about as loose a definition as we could provide, though we could have gone
one step further and made every element a string.

The major advantage of this approach is that the service is far more conducive
to change. Following on from our previous example, if oBay decided to accept
American Express as payment, then no changes would be required to the schema
or service contract.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[338]

Using schema validation within BPEL PM
Schema validation of incoming and outgoing XML documents is enabled within
�%�3�(�/���3�0�����W�K�U�R�X�J�K���D�S�S�U�R�S�U�L�D�W�H���F�R�Q�À�J�X�U�D�W�L�R�Q���R�I���W�K�H��validateXML property; this can
take one of the following three values:

strict�x�� : Schema validation will be applied to the XML document, if the XML
document fails validation then an exception will be thrown.
warning�x�� : Schema validation will be applied to the XML document, if the
XML document fails validation then BPEL will log this in the audit trail of
the appropriate activity (that is, invoke, reply, receive), but no exception
is thrown.
none�x�� : No schema validation is applied.

This property is set at the domain level within BPEL, with a default setting of none,
�W�K�D�W���Z�H���F�D�Q���W�K�H�Q���R�Y�H�U�U�L�G�H���D�W���W�K�H���3�D�U�W�Q�H�U���/�L�Q�N���O�H�Y�H�O���E�\���F�R�Q�À�J�X�U�L�Q�J���L�W���D�S�S�U�R�S�U�L�D�W�H�O�\����

Note in releases prior to 10.1.3.4, this property takes the value of true
and false, which maps to strict and none respectively.

Validation of inbound documents
Within a BPEL process, the receive activity will validate inbound documents if its
�F�R�U�U�H�V�S�R�Q�G�L�Q�J���3�D�U�W�Q�H�U���/�L�Q�N���L�V���F�R�Q�À�J�X�U�H�G�����H�L�W�K�H�U���D�W���W�K�H���3�D�U�W�Q�H�U���/�L�Q�N���R�U���G�R�P�D�L�Q���O�H�Y�H�O����
to validate XML. If the validation results in an exception being thrown, then the
receive activity will throw the exception.

For a synchronous operation, if the BPEL process doesn't handle the exception then
the receive activity will return a fault to the client. However, for an asynchronous
operation no fault is returned to the client.

Validation of outbound documents
Within a BPEL process, the invoke and reply activities will validate outbound
�G�R�F�X�P�H�Q�W�V���L�I���W�K�H�L�U���F�R�U�U�H�V�S�R�Q�G�L�Q�J���3�D�U�W�Q�H�U���/�L�Q�N���L�V���F�R�Q�À�J�X�U�H�G���W�R���Y�D�O�L�G�D�W�H���;�0�/�����$�V��
with inbound documents, if the validation results in an exception being thrown, then
the corresponding invoke or reply activities will throw the exception.

Validation between BPEL processes
If we have a BPEL process invoking another BPEL process, there are some subtle
nuances we need to be aware of. This is because there are two possible points where
the validation could occur.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[339]

Validation for synchronous interactions
Consider the following synchronous interaction, shown as follows:

Process A Process B

<invoke> <receive>

<reply>

The first point where XML validation could occur is in the invoke activity in process
A, the second in the receive activity in process B. If the validation is carried out in the
invoke activity, and an exception is raised, then no message will be sent and process
B will never be invoked.

However, if the validation is carried out in the receive activity in process B,
the message will be sent and an instance of process B will be created to process
the message.

Assuming the exception isn't handled in process B, then the receive activity will
return a fault to process A, which will be re-thrown by the invoke activity in process
A. This is the same fault that the invoke would have thrown if it carried out
the validation.

So functionally it makes no difference, but if we carry out the validation in the
receive we have the overhead of sending the message and instantiating a new
instance of process B.

Validation for asynchronous interactions
Consider a similar scenario but this time for an asynchronous interaction shown
as follows:

Process A Process B

<invoke> <receive>

<receive> <invoke>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[343]

In our case we want to validate the creditCard fragment from our body variable, so
our expression is defined as follows:

./tns:updateCreditCardProcessRequest/cmn:creditCard

Next we need to specify which schema element or type we wish to validate against;
click on the <Resource> link and select Schema from the drop down, this will
display the Select a XML Schema window, as shown in the following screenshot:

Select the required schema, that is, common_v1 in our case and this will launch the
Select a Schema definition window, shown as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[344]

This lists all the types and global elements defined in the XML Schema. From here
we select the element or type we wish to validate our XML fragment against. So for
our example, select tCreditCard and hit Submit.

Our completed validate action will look as follows:

At run time, if the validation fails then the validate action will throw an exception.
Typically we would define a Stage Error Handler for our validation stage to
catch the exception and handle it appropriately; we look at how to do this in
Chapter 13—Error Handling. If we don't define an error handler, the Service
Bus will return the default validation fault to the caller of the service.

Validation of outbound documents
Within the Service Bus we can also use the validate action to check any outbound
documents. Typically we would do this just prior to invoking any external service,
and we would do this in a similar fashion for inbound documents.

However, strictly speaking, if we have received a valid inbound document and our
service has been correctly implemented, it shouldn't be generating any invalid XML.

In reality this is not always the case, so in many scenarios it still makes sense to
include this level of validation. Though if we follow this approach too strictly we run
the risk of over-validation which we will cover in more detail in the following section.

Using Schematron for validation
Schematron provides another means of validating the message payload of a web
service. It takes a markedly different approach from schema validation, in that rather
than check the overall structure of the XML instance, it enables you to specify one or
more assertions that we wish to enforce. If all these assertions are met the document
is deemed to be valid.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[345]

These assertions are specified using XPath, so it allows us to specify constraints that
can't be expressed using XML Schema. For example following on from the example
above, we can define the following validations on credit card.

If the card type is American Express then the card number should be 15 •	
digits in length, otherwise it should be 16 digits.
If the card type is American Express then the security code should be 4 digits •	
in length, otherwise it should be 3 digits.
The expiry date, which consists of the •	 expiryMonth and expiryYear
elements, should be in the future.

For each assertion we can also specify meaningful diagnostic messages, which
indicate why an assertion hasn't been met (as opposed to schema validation
messages which aren't always so enlightening).

The other advantage of using Schematron is that it enables us to modify the
assertions for a document without the need to change the schema.

However, rather than consider Schematron as alternative approach to XML Schema
validation, we see it very much as complementary. Thus we would use XML Schema
to validate the core structure of the XML, but not make those checks too granular.
Rather we will place those checks along with ones that can't be expressed in XML
Schema in Schematron.

Overview of Schematron
One of the advantages of Schematron is that being based on XSLT makes it extremely
easy to learn. Effectively it has several key constructs, and once these are understood
you are ready to unleash the full power of the tool.

So before we look at how to use Schematron within SOA Suite, we will give a quick
introduction to Schematron itself. Readers who are familiar with Schematron may
still want to skim this section, just to understand some of the idiosyncrasies of how
Schematron behaves within the Oracle SOA Suite.

If we look at the operation updateCreditCard which forms part of the UserAccount
service, a typical XML instance for this operation would appear as follows:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope">
 <soap:Body xmlns:tns="http://xmlns.packtpub.com/obay/bs/UserAccount"
 xmlns:usr="http://schemas.packtpub.com/obay/usr"
 xmlns:cmn="http://schemas.packtpub.com/obay/cmn">
 <tns:updateCreditCard>
 <usr:userId>jsmith</usr:userId>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[346]

 <cmn:creditCard>
 <cmn:cardType>MasterCard</cmn:cardType>
 <cmn:cardHolderName>John Smith</cmn:cardHolderName>
 <cmn:cardNumber>4570126723982904</cmn:cardNumber>
 <cmn:expiryMonth>10</cmn:expiryMonth>
 <cmn:expiryYear>2010</cmn:expiryYear>
 <cmn:securityNo>5285</cmn:securityNo>
 </cmn:creditCard>
 </tns:updateCreditCard>
 </soap:Body>
</soap:Envelope>

A Schematron which checks that the credit card type is MasterCard or Visa could be
written as follows:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.ascc.net/xml/schematron">
 <ns uri="http://schemas.packtpub.com/obay/cmn" prefix="cmn"/>
 <pattern name="Check Credit Card Type">
 <rule context="cmn:creditCard">
 <assert test="cmn:cardType='MasterCard' or
 cmn:cardType='Visa'">
 Credit Card must be MasterCard or Visa
 </assert>
 </rule>
 </pattern>
</schema>

From this we can see a Schematron is made of four key components: pattern, rule,
asser, and ns contained within the schema element. We'll examine these elements
one by one, starting with the inner most element and working out.

Assertions
The assert element as its name suggest is used to define the constraints to be
enforced within an XML document. In the above Schematron we have defined the
following assert element.

<assert test="cmn:cardType = 'MasterCard' or cmn:cardType = 'Visa'">
Credit Card must be MasterCard or Visa

</assert>

We can see it contains the test attribute which specifies an XPath expression, which
should return a boolean value. If the test expression evaluates to true, then the
assertion has been met.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[350]

There is nothing wrong with this approach, but what if some cards allowed
alphanumeric numbers? In this scenario we would need to declare cardNumber as a
string and then carry out specific validation in Schematron to check the format of the
element based on cardType.

For this we can use the matches function, to test whether the content of the element
conforms to a particular regular expression. However, this is an XPath 2.0 function,
so in order to use this within Schematron we need to define its namespace. We do
this in exactly the same way as we would for any other namespace, that is:

<ns uri="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 pc.services.functions.Xpath20" prefix="xp20"/>

We can then create an assertion that matches the cardNumber as shown:

<assert test="xp20:matches(cmn:cardNumber, '[0-9]{16}')">
 Mastercard number must be 16 digits.
</assert>

Date validation
Schematron is also an excellent method for validating dates based on the current
time, for example we need to check that the expiry date for the credit card is not in
the past.

To do this we need to check that the expiry year of the credit card is greater than the
current year, or that the expiry year of the credit card equals the current year and the
current month is less than or equal to the expiry month of the card.

To do this we could write the following test:

cmn:expiryYear > xp20:year-from-dateTime(xp20:current-dateTime()) or
(cmn:expiryYear= xp20:year-from-dateTime(xp20:current-dateTime()) and
cmn:expiryMonth>=xp20:month-from-dateTime(xp20:current-dateTime()))

Element present
Another requirement is to check whether an element is present or not. We can do this
with XML Schema by defining an element as being mandatory. However, whether
an element is optional or mandatory may well be based on values in other fields.

For example, if we had made securityNo optional within our schema definition,
but we wanted to make it mandatory for American Express, we could write the
following rule:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[352]

Creating a Schematron file
To create a Schematron within our BPEL project, in the Applications Navigator
right-click on your BPEL Project and select New. This will launch the gallery for
creating new project resources, from here select File (under the General category)
and click OK.

This will bring up the Create File dialogue; give the file an appropriate name (for
example valCreditCard.sch) and click OK. This will create the file in the resources
folder of our BPEL project.

Creating the file in the resource folder ensures that JDeveloper will include the file in
BPEL Suitcase when we deploy the BPEL process to the server, which will allow the
BPEL process to easily access the content of the file at runtime.

Once defined, we can use JDeveloper to edit the file in order to define our Schematron.

Invoking the validate operation
To invoke the validate service, drag an invoke activity onto our BPEL process in the
normal way and create an input and output variable.

The input variable takes two parts: instanceFile which contains the XML to
validate and ruleFile which contains the Schematron. The following figure shows
the structure of the input it expects.

Assigning the instanceFile
The instanceFile contains a single element; validation defined as an
xsd:anyType; which we need to populate with the XML to be validated.

Note, the validation operation expects the validation element to contain a single
element; any more than this will cause it to return an error.

So in our example, if we use a standard copy operation such as the following:

<copy>
<from variable="inputVariable" part="payload"
 query="/client:updateCreditCard"/>

Chapter 12

[353]

<to variable="schematronInput" part="instanceFile"
 query=/ns4:validation/>
</copy>

To map the content of updateCreditCard to validation, we will end up with a
validation element that looks like the following:

<validation xmlns="http://xmlns.oracle.com/pcbpel/validationservice">
 <usr:userId>jsmith</usr:userId>
 <cmn:creditCard>
 <cmn:cardType>MasterCard</cmn:cardType>
 <cmn:cardHolderName>John Smith</cmn:cardHolderName>
 <cmn:cardNumber>4570126723982904</cmn:cardNumber>
 <cmn:expiryMonth>10</cmn:expiryMonth>
 <cmn:expiryYear>2010</cmn:expiryYear>
 <cmn:securityNo>285</cmn:securityNo>
 </cmn:creditCard>
</validation>

Here, we can see the validation element contains the two elements: userId and
creditCard, which if we submitted to the validation service would cause it to throw
an error as it expects only a single element.

One way to fix this is to add a remove operation to our assign activity, to delete the
userId element. To do this, within the Assign activity click on Create and select
Remove Operation as shown in the screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[354]

This will present us with the Create Remove Operation window, as shown in the
following screenshot:

Here we just need to specify the node that we wish to delete, so in our example we
just expand the schematronInput tree and select ns4:validation.

Since this is defined as xsd:anyType we will need to manually enter the XPath
expression to remove the required node, which in our example is /ns4:validation/
usr:userId.

Assigning the ruleFile
The ruleFile contains a single element; schema defined as an xsd:anyType, which
needs to contain the Schematron we wish to validate our XML against.

To copy the content of our Schematron file (for example, valCreditCard.sch) into
schema we can use the ora:doc XPath function, found under the category BPEL
XPath Extension Functions in the Expression Builder.

This function reads in the content of the specified file, parses it and returns it as an
XML node, so for our purposes we have the following copy command:

<copy>
 <from expression="ora:doc('valCreditCard.sch')"/>
 <to variable="schematronInput" part="ruleFile"/>
</copy>

Building Validation into Services

[356]

Putting validation in the underlying
service
So far we have looked at using XML Schema and Schematron to put validation either
in the service contract or mediator layer in order to provide initial validation of a
service invocation, before we actually invoke the underlying service. This provides
a number of benefits, including:

Simplifies the development of validation within the actual service as it can •	
now rely on the fact that it is receiving relatively sensible data.
Allows us to implement a more generic service, since business specific •	
validation can be provided at a higher level within the service. This makes
the service more reusable, as it can be used in multiple scenarios each with
different validation requirements.
Makes change easier to manage, as changes to business rules which impact •	
the overall validation of the service can happen at either the schema or
Schematron level and thus may require no changes to the actual
underlying service
By placing the validation in a centralised place, which can be reused across •	
multiple services, it enables us to implement the same validation across
multiple services in a consistent fashion. This also makes change simpler to
manage as we only have to make the changes once as opposed to everywhere
the validation is required.

However, at some point, we will still be required to put some level of validation in
the underlying service itself. For example, take our updateCreditCard operation,
despite all our checks we can't be completely sure that the credit card itself is actually
a valid card and that the card name, security number, and so on correspond to the
given card number. To validate this, we will still need to call out to an external
validation service.

In addition, we still need to validate that the userId provided as part of the operation
is a valid user within our system.

Using Business Rules for validation
One option for implementing validation checks within your service is to separate
them out as a Business Rule. This allows us to implement the validation just once
and then share it across multiple services. This shares a number of advantages with
the approaches already discussed, including:

Chapter 12

[359]

SOAP 1.1 allows custom fault codes to be implemented through the use of the dot
notation, for example we could define a fault code of client.invalidCreditCard in
the SOAP namespace (http://schemas.xmlsoap.org/soap/envelope/). However,
this can result in namespace collision and interoperability issues so is not WS-I Basic
Profile compliant, and should be avoided.

Instead custom fault codes should be defined within their own namespace, for
example we have defined our invalidCreditCard fault code to be in the same
namespace as the actual userManagement service.

While defining custom faults within their own namespace is WS-I Basic
Profile compliant, WS-I Basic Profile still encourages that you use the
standard SOAP 1.1 fault codes and use the detail element to provide any
extra information.

Validation failures in asynchronous services
If an asynchronous service needs to return a fault to a client, it can't do this in the
reply message in the same way that a synchronous service can. This is because an
asynchronous service consists of two one-way operations, the first containing the
original request, the second a callback from the service containing the result.

To return a fault we need to do this within the callback. We have two basic options
to choose from, the first is to return the success or otherwise with the content of the
standard callback and allow the client to inspect the content to determine whether
the service was successfully invoked or not.

The other is to define additional operations on the callback port specifically for the
purpose of returning an error message. The latter of these is the preferred approach
as it allows the client to implement separate handlers for callbacks indicating errors
(in much the same way we can implement separate fault handlers for each type of
fault returned with synchronous services).

In many ways it's helpful to think of the operation name as being the equivalent
of the fault code, and the message payload of the operation can be used to hold
the equivalent of the remainder of the fault information (for example, fault string
and detail).

For example, one way to define an asynchronous version of our updateCreditCard
operation is as follows:

<portType name="userManagement">
 <operation name="updateCreditCard">
 <input message="usr:updateCreditCard "/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[360]

 </operation>
</portType>

<portType name="userManagementCallback">
 <operation name="updateCreditCardCallback">
 <input message=" usr:updateCreditCardCallback "/>
 </operation>

 <operation name="invalidCreditCard">
 <input message="usr:invalidCreditCard"/>
 </operation>
</portType>

The final callback operation (highlighted in the code), is the equivalent of the fault
defined within our synchronous service.

Layered validation considerations
Within a single composite application we have a certain amount of control over
what validation to put in the schema, Schematron, and the underlying services. This
allows us to design and implement these in a coordinated fashion so that they can
work in synergy with one another.

However, once we start assembling services from other composite applications, then
the lines of demarcation and thus which service is responsible for which validation
becomes less clear.

There are a number of potential strategies which can be adopted, but each has its
own strength and weaknesses. We examine some of these in the following sections,
but in reality there is not always a simple answer and it really comes down to good
design and being aware of the issues.

Dangers of over validation
Probably the "safest" approach is to make each service fully responsible for its own
validation, and thus perform whatever validation is required regardless of what
validation is performed by any other service in the chain.

However, this could have potential performance implications. Apart from the
obvious overhead of performing the same work several times, it could introduce
potential points of contention within the system.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[361]

If we take the updateCreditCard operation, at some point our application will
need to fully validate the card. To do this, it will need to call out to an external web
service. If we follow the approach of performing this validation in every service
involved in the operation, and the request has to go through n layers of services,
then that would require n callouts to the external service with the implied latency
of making n callouts. Not to mention that the card company might wonder why this
card is being validated so many times!

Another issue with this approach is that the validation may be implemented several
times, not always identically, resulting in inconsistent validation that is hard to
change. This can be addressed by using shared XML Schema, Schematron, and
Business Rules validation.

Dangers of under validation
An alternate approach is to push the responsibility of validation down to the lowest
service in the chain on the basis that if an error occurs, then it will catch the error
which will be propagated up the chain and returned to the original consumer of
the service.

Again on the surface this approach seems fine. However, the main issue here is if
we have to undo any work as a result of the error, which we could have avoided
if we had caught it earlier. For example, if have a service A which is a composite
composed of service B and service C, the call to service B may succeed and only the
call to C fail, in which case we may need to undo any work carried out by service B.

Negative coupling of validation
Another issue that arises with service composition is that a high level component
which calls other components effectively inherits the validation of the lower
level components.

The strategy we recommend here is that we put the minimal amount of validation
in the lower-level component and put the more restrictive constraints in the higher
level components.

Assuming the service is only designed for internal use, that is via other components
within our control, this approach works well. We can mandate that any additional
validation that is required is applied in a higher level component.

For those components that we need to expose directly to external consumers, we can
still follow this approach, by implementing a wrapper component with the required
validation and then exposing this externally.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Building Validation into Services

[362]

This approach allows us to develop more generic lower-level components, which are
easier to reuse while at the same time minimizing over and under validation.

Summary
In this chapter, we've looked at how we can implement validation within an
individual service through a combination of XSD validation, Schematron, and
Business Rules.

Ideally we should use XSD validation to check the overall sanity of the data, but
in order to provide a greater level of flexibility abstract out the business specific
validation into a separate component such as Schematron. This provides greater
flexibility to change the validation for a component without the need to redeploy
a new version of it.

In situations where Schematron can't provide the required validation, we've
looked at how we can use Business Rules to build this into the underlying service
implementation, again giving us the flexibility to change the validation without
having to redeploy the service.

Finally, we've looked at some of the issues and potential strategies for validation
when combing multiple services; while there are no simple solutions, by at least
having an appreciation of the issues we are able to take these into account in the
design of our overall solution.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[364]

In this chapter we examine to how to handle faults within our composite applications.
We first examine the catch and compensate activities that BPEL provides and how we
can use them to handle business faults. Next we look at how to leverage the BPEL PM
Fault Management Framework to simplify the handling of system faults within BPEL.

In the final section of this chapter, we look at the mechanisms the service bus
provides for handling faults and how we can use these in our overall fault
management strategy.

Business faults
A business fault is one that is defined in the WSDL of the service; how we define the
fault depends on whether a service is synchronous or asynchronous.

Defining faults in synchronous services
Synchronous services signal faults by returning a fault element in place of the defined
output message for the service. These faults are defined in the WSDL of the service,
and are denoted by the <fault> element.

For example, the oBay application implements a dummy CreditCard service,
which includes the operation verifyCreditCard; the definition of the operation
is as follows:

<portType name="CardServices">
<operation name="verifyCreditCard">

<input message="tns:verifyCreditCard" />
<output message="tns:verifyCreditCardResponse"/>
<fault name="invalidCreditCard"

 message="tns:invalidCreditCardFault"/>
 </operation>
</portType>

As well as defining the standard input and output messages for the operation, it lists
a fault message (highlighted above) that could be returned in place of the defined
output operation. An operation can define zero, one, or many faults for an individual
operation; they are similar in construct to an output message, except that they must
also be named so that the client can distinguish which fault has been returned.

When a soap:Fault is generated, the faultcode will contain the fault
name (for example tns:invalidCreditCard in the above example)
and the detail element will contain the content of the fault message.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[365]

Defining faults in asynchronous services
Asynchronous services don't explicitly support the concept of faults; this is because
the result of an asynchronous service is returned in a separate callback operation.
So to signal a fault, the service will need to define additional callbacks, typically
one extra callback per fault. If we take our credit card example and rewrite it as
an asynchronous service, we get the corresponding WSDL:

<portType name="CardServices"
 <operation name="verifyCreditCard">
 <input message="tns:verifyCreditCard"/>
 </operation>
</portType>
<portType name="CardServicesCallback"
 <operation name="creditCardVerified">
 <input message="tns:creditCardVerified" />
 </operation>
 <operation name="invalidCreditCard">
 <input message="tns:invalidCreditCard" />
 </operation>
</portType>

Here we can see that we've defined a second callback operation (highlighted above).
This corresponds to the fault we defined in the synchronous operation. If we examine
this, we can see we've used the fault name as the operation name in the callback, and
while we have two different messages, in reality they are identical—we have just used
different names as we want to stick to our naming conventions.

It is still possible for the invocation of an asynchronous service to return a fault. This
can occur when the system is unable to successfully deliver the invocation message
to the asynchronous service, for example the network connection is down. This type
of fault we would treat as a system fault as opposed to a business fault.

Handling business faults in BPEL
Within a BPEL process, any call to a PartnerLink could result in a fault being raised.
Other activities within a process can also result in a fault being thrown (for example
due to a selection failure within an assign activity), and in addition the process itself
may need to signal a fault.

When a fault occurs in a BPEL process, the process must first catch the fault; otherwise
the process will terminate with a state of closed.faulted. Once caught the next step
is to decide whether the fault can be handled locally within the process or whether it
needs to be returned to the client.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[367]

We can define as many catch branches as we want for a scope, and, in addition, we
can also attach a <catchAll> branch which will catch any fault not caught by any of
the specific <catch> activities.

When a fault is raised, the BPEL engine will first check the current scope to
determine a suitable catch or catch all branch. If the fault is not caught, the BPEL
engine will then check the containing scope for an appropriate fault handler, and so
on up to process level.

If the fault is not caught at this level, then the process will terminate with a
status of closed.faulted. If the interaction between the client and the process is
synchronous, then the fault will be automatically returned to the client. However, if
the interaction is asynchronous then the fault will not be returned, with the potential
result being that the client may hang waiting for a response that is never sent.

Adding a catch branch
To demonstrate this we will look at the UserRegistration process which needs to
carry out a number of checks; for example that the requested userId isn't already in
use, that the supplied credit card is valid. Should one of these checks fail, we need to
catch the fault and then return a reply to the client to indicate that an error
has occurred.

To achieve this we will place each validation step in its own scope, and define a
fault handler for each one. To add a catch branch to a scope, click on the Add Catch
Branch icon for the scope; this will add an empty catch branch to the scope as shown
in the following figure:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[369]

There is also the option to specify a fault variable to hold details of the fault returned;
this should be of type Message and match the message type defined for the fault, that
is client:invalidCreditCardFault in the case of the fault invalidCreditCard
(as defined in the WSDL file for this service).

Once we have caught the fault, we need to specify the activities to perform in
order to handle the fault. In our case we need to undo any activities completed
in previous scopes, using the compensate activity before we return the fault
invalidUserDetails to the caller of this process.

However, the current scope is not the correct context for triggering the required
compensation (we will see why in a moment), so our fault handler needs to capture
the reason for the fault and throw a new fault that can be handled at the appropriate
place within our process.

Throwing faults
To do this expand the catch branch for the Fault Handler by clicking on the +
symbol, and drag a Throw activity into it.

To specify the fault we wish to throw, double-click the Throw activity to bring up
the dialogue to configure it, as shown in the following screenshot:

Error Handling

[370]

Next click the flashlight to bring up the Fault Chooser. This time we want to browse
to the fault we wish to throw which is the invalidUserDetails fault, which is
defined in the WSDL file for the UserRegistration process.

We also want to record the reason for the invalid user details, so we need to define
a fault variable to hold this. The simplest way to do this is by clicking on the magic
wand icon to create a variable of the right type, though you should specify that the
variable is local to the scope as opposed to global.

Finally, we've added a simple assign activity before our throw activity to populate
our fault variable, so our final catch branch looks as follows:

Compensation
As part of the user registration process we need to check that the requested userId
is not already in use. We do this by attempting to insert a record into the obay_user
table (where userId is the primary key).

If this succeeds we know the userId is unique and at the same time prevents anyone
else from acquiring it (on the off chance that two requests with the same userId are
submitted at the same time).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[425]

Using FlowN
To ensure that our schedule process supports the concurrent execution of jobs, we
need to process them in parallel. If the number of branches/jobs was fixed at design
time, we could use the <flow> activity to achieve this.

For our scenario, the number of branches will be determined by the number of
jobs defined in our scheduling file. For cases such as these we can use the <flowN>
activity; this will create N branches, where N is calculated at run time.

Each branch performs the same activities and has access to the same global data, but
is assigned an index number from 1 to N to allow it to look up the data specific to
that branch.

To use a FlowN activity, drag a <flowN> activity from the Process Activities list of
the Component Pallet on to your process. Double-click on it to open the FlowN
activity window as shown in the following figure:

In addition to the activity Name, it takes two parameters. The first parameter is
N which contains an XPath expression used at run time to calculate the number
of parallel branches required. This typically uses the count function to count the
number of nodes in a variable. In our case, we need to calculate the number of job
elements, so our expression is defined as follows:

count(bpws:getVariableData('InputVariable','schedule',
 '/sch:schedule/sch:job'))

The second parameter, Index Variable, is used to specify the variable into which
the index value will be placed at run time. While we have defined this as a global
variable, each branch will be given its own local copy of the variable containing its
assigned index number.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[373]

Here we have the option of specifying a Scope name to restrict it to invoking the
compensation handler for that scope. For our purposes we want to invoke the
compensation handler for all top level scopes so have left it blank.

Returning faults
If at run time the verifyCreditCard operation returns a fault of type
invalidCreditCard then this will be caught by the catch branch we defined on the
VerifyCreditCard scope.

This fault handler will throw an invalidUserDetails fault, which will get caught
by the catch branch defined against our process. This will execute the compensate
activity triggering the compensation handler on the CreateUser scope, which will
delete the previously inserted user record.

The final step is to return an invalidUserDetails fault to the caller of the BPEL
process. To return a fault within BPEL we use the Reply activity. The difference is to
configure it to return a fault as opposed to a standard output message, as shown in
the following screenshot:

Error Handling

[374]

Here we have configured the Partner Link and Operation as you would for a
standard reply.

However, for the Variable we need to specify a variable that contains the content
of the fault to be returned. In our case this is the content of the fault caught
by our process level fault handler (and populated by the fault handler for the
ValidateCreditCard scope).

Finally we need to specify that an invalidUserDetails fault should be returned.
Specify this by clicking on the flashlight in the Fault QName panel to launch the
now familiar Fault Chooser. After returning the fault, the process will complete.

If a fault had been triggered at the step of creating the user record (for example
because the userId was already in use), then an invalidUserDetails fault would
have been thrown in the fault handler for this scope. The process would follow the
same flow as outlined above, apart from the fact that the compensation handler for
the CreateUser scope would not have been triggered as the scope never completed.

Asynchronous considerations
As we pointed out earlier, asynchronous services don't explicitly support the concept
of faults, so it's worth examining how we would manage the above scenario if all the
messaging interactions were asynchronous.

As we covered earlier, an asynchronous version of the CreditCard service would
require two callbacks, creditCardVerified and invalidCreditCard, which would
be the equivalent of our fault in the synchronous example.

Within our VerifyCreditCard after our invoke activity, instead of having a receive
activity to receive the callback we would need a pick activity with two onMessage
branches, one for each callback. The branch for invalidCreditCard would be the
equivalent of our synchronous fault handler above, and would contain the same
activities as its synchronous equivalent.

We would still have the fault handler defined for our process, which would catch the
fault thrown by our onMessage branch for invalidCreditCard.

The activities of this fault handler would be similar to the fault handler in our
synchronous version. We would still call the compensate activity, but rather than use
the reply activity to return a fault, we would now use the invoke activity to invoke
the appropriate callback to signal invalid user details.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[375]

Using the fault management framework
The Oracle SOA Suite provides a sophisticated framework for handling invocation
faults within BPEL PM. Without the framework, when a BPEL process invokes a
service, if an error occurs the fault is returned to the BPEL process to handle.

This is fine for a business fault as we need to handle it in a way appropriate to the
business process as covered above.

But for system faults, such as network problems resulting in a service becoming
temporarily unavailable, implementing the handling of this at the process level can
be protracted, often requiring the same fragments of BPEL to be implemented in
every process.

For managing these types of faults, BPEL PM provides a fault handling framework
which allows us to define policies for handling faults which occur when a BPEL
process executes an invoke activity.

When a fault occurs the framework intercepts the fault before it is returned to the
BPEL process. It then attempts to identify an appropriate fault policy to handle the
fault. If it finds one the policy is executed and, assuming the fault is resolved, the
BPEL process continues as if nothing happened.

A policy consists of two basic components, the faults that you wish to catch and,
once caught, the actions you wish to take, such as retry the service or perform
manual recovery actions from the BPEL Console.

Defining a fault policy
Re-examine the UserRegistration process at the point that it invokes the credit
card service to verify the user's card details. Apart from the business faults that
could be returned, it could also return a system fault such as the following:

<soap:Body xmlns:soap="http://schemas.xmlsoap.org/soap/envelope"
 xmlns:tns="http://schema.packtpub.com/obay/flt">
<soap:Fault>
 <faultcode>tns:TransportFault</faultcode>

 <faultstring>Transport Run Time Error</faultstring>
 <detail>
 <tns:fault>
 <tns:code>380002</tns:code>
 <tns:summary>Connection Error</tns:summary>
 <tns:detail>
 …

Chapter 13

[377]

<Conditions>
 <faultName xmlns:tns="http://schema.packtpub.com/obay/faults"
 name="tns:TransportFault">
 <condition>
 <test>$fault.payload/tns:fault/tns:code="380002"</test>
 <action ref="ora-retry"/>
 </condition>

 <condition>
 <action ref="ora-human-intervention"/>
 </condition>
</faultName>

 <faultName>
 <condition>
 <action ref="ora-human-intervention"/>
 </condition>
</faultName>
…

</Conditions>

Specifying the <faultName>
A faultName element is used to define a specific fault which we wish to
handle; it contains a single attribute name, which specifies the fault code (i.e.
tns:TransportFault in the previous example) of the fault to handle.

Note, a faultcode is defined as a QName type, which has a format of:

prefix:faultName

Here, prefix maps to a namespace. So within the faultName element we need to
define the namespace to which the prefix is mapped, otherwise we won't get a match.

We can also specify a faultName element without a name attribute, which will match
all faults. This allows us to define a generic catch-all policy for any fault not handled
by a more specific policy.

Specifying the <condition>
The faultName element defines one or more conditions; each condition consists of
an optional test element and an action reference.

The test element allows us to specify an XPath expression which is evaluated
against the content of the fault; if the XPath expression evaluates to true, the
condition is considered a match and the action referenced within the action element
will be executed.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[378]

Otherwise the fault management framework will look to evaluate the next condition,
and so on until it finds a match. A condition without a test element will always
return a match.

In the above policy, we have defined the following test for our first condition:

<test>$fault.payload/tns:fault/tns:code="380002"</test>

Where the variable $fault.payload maps to the root element within the payload
part of our SOAP Fault, so the above test is the equivalent of:

/soap:Fault/detail/tns:fault/tns:code="380002"

Which for the fault in our example will evaluate to true, so the Fault Management
Framework would execute the action ora-retry; if tns:code contained some other
value, then it would move onto the next condition. As this doesn't include a test
element it will result in a match and execute the ora-human-intervention action.

The message element for some faults, including the extension faults
defined by BPEL PM, contains multiple parts, for example code,
summary, and detail. To evaluate the content of any of these parts, just
append the part name to $fault., so to check the content of the code
part you would specify $fault.code.

Defining fault policy actions
The second part of our fault policy defines the actions referenced in the
Conditions section; this consists of an Actions element, which contains one
or more Action elements.

Each Action element contains an id attribute, which is the value referenced by the
action ref attribute within the conditions. For the conditions defined in the above
policy, we have defined two actions: ora-retry and ora-human-intervention as
shown here:

<Actions>
 <Action id="ora-retry">

<retry>
 <retryCount>5</retryCount>
 <retryInterval>15</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-human-intervention"/>
 </retry>
</Action>

 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
</Actions>

Error Handling

[380]

From within the console we can perform a number of actions. These include
manually retrying the service, with the option of modifying the input payload in case
this is causing the error, or in the event that the service can't be called, we can get the
process to skip the invoke activity and manually create the output that should have
been returned by the service. We look at how we can do this as well as other possible
options in the next section.

Because we are pausing the BPEL process, we should only use this action if the
interaction between the BPEL process and its client is asynchronous otherwise the
client will timeout while waiting for the problem to be resolved.

Re-throw action
For errors that we don't want handled by the fault management framework, we can
use the rethrowFault action to re-throw the fault to our BPEL Process.

This is often useful when we have defined a generic fault handler to catch all faults,
but want to exclude certain faults. For example, if we look at the fault policy defined
above, the final handler within our conditions section is defined as follows:

<faultName>
 <condition>
 <action ref="ora-human-intervention"/>
 </condition>
</faultName>

This will catch all faults that have not yet been handled. This is exactly what we want
for any unknown system faults, however, we want business faults to be explicitly
handled by our BPEL process.

The re-throw action allows us to do just this; we can define a fault handler that
catches our business faults, such as the following:

<faultName xmlns:tns="http://xmlns.packtpub.com/obay/CardServices"
 name="invalidCreditCard"
 <condition>
 <action ref="ora-rethrow-fault"/>
 </condition>
</faultName>

This will then invoke the following action:

<Action id="ora-rethrow-fault">
 <rethrowFault/>
</Action>

This will re-throw the fault to our BPEL process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[381]

Abort action
This action causes the BPEL process to terminate. It's the equivalent of executing a
terminate activity directly within the BPEL process. Note, in both cases no response
is returned to the client of the BPEL Process.

An abort action takes no parameters and is defined as follows:

<Action id="ora-terminate">
 <abort/>
</Action>

Replay scope action
This action causes the fault management framework to return a replay fault to the
BPEL process. This fault will be automatically caught by the scope in which the fault
is thrown and trigger the BPEL engine to re-execute the scope from the beginning.

A replay scope action takes no parameters and is defined as follows:

<Action id="ora-replay-scope">
 <replayScope/>
</Action>

Java action
This enables us to call out to a custom Java class as part of the process of handling
the fault. The class must implement the interface IFaultRecoveryJavaClass, which
defines two methods:

public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleBPELFault(IFaultRecoveryContext ctx);

The first method handleRetrySuccess is called after a successful retry of an
invocation, otherwise handleBPELFault is called.

The class is not intended to handle a fault, but more for generating alerts, and so on.
For example, you could use invocation of the method handleBPELFault to generate
a notification that there is a problem with a particular endpoint, and likewise use the
invocation of the method handleRetrySuccess to generate a notification that the
problem with the endpoint has now been resolved.

The method handleBPELFault also returns a string value, which can be mapped
to the next action to be invoked by the framework, for example, if we defined the
following javaAction:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[382]

<Action id="ora-java">
 <javaAction className="mypackage.myClass"
 defaultAction=" ora-human-intervention ">
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
</Action>

The javaAction element takes two attributes: className which specifies the Java
class to be invoked and defaultAction which specifies the default action to be
executed upon completion of the Java action.

Within the javaAction element we can specify zero, one or more returnValue
elements, each of which maps a value returned by handleBPELFault to a
corresponding follow-up action to be executed by the fault management framework.

In the previous example, we have specified that for a return value of RETRY the
framework should execute the ora-retry action, and that if a value of MANUAL is
returned, then it should execute the ora-human-intervention action.

If no mapping is found for the return value, then the defaultAction specified
as part of the javaAction is executed. This gives us the flexibility to calculate
how we wish to handle a particular fault at run time.

Binding fault policies
To put a fault policy into operation, we need to specify the invoke activities within
a BPEL process that the fault policy is to be applied; this is known as binding.

We can bind fault policies to Partner Links, Port Type or Processes, and we can
define these either for a specific process or an entire domain.

Binding fault polices at the process level
Bindings are configured for an individual process by including a
faultPolicyBindings section in its bpel.xml file. This is defined after the
partnerLinkBindings section, as shown:

<?xml version = '1.0' encoding = 'UTF-8'?>
<BPELSuitcase>
 <BPELProcess id="UserRegistration" src="UserRegistration.bpel">
 <partnerLinkBindings>
 …
 <partnerLinkBinding name="CreditCardServices">
 <property name="wsdlLocation">CardServices.wsdl</property>
 </partnerLinkBinding>
 </partnerLinkBindings>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[384]

Here, <domain_name> corresponds to the domain to which the binding applies.

The structure of this file is the same as the faultPolicyBindings section of the
bpel.xml file (and defined in the schema fault-policy-binding.xsd).

When defining bindings for Partner Links at the domain level, it's less error prone to
define them for the port type, as opposed to the partner link name. It's unlikely that
developers will always name partner links consistently; therefore as long as the same
WSDL definition is being used to access a particular service, then the port type will
always be the same.

Binding resolution
At run time when a fault occurs, the fault management framework will attempt to
find a condition with a corresponding action that matches the fault.

It does this by first attempting to locate an appropriate fault policy binding, by
looking for a binding in the following order:

Partner Link name binding in •	 bpel.xml

Port type binding in •	 bpel.xml

Process binding in •	 bpel.xml

Partner Link name binding for the domain•	
Port type binding for the domain•	
Process binding for the domain•	

Once it finds a binding, it will check the fault policy to find a matching condition,
and then execute its corresponding action. If no matching condition is found, it
will then move to the next binding level; it will continue this process until either
a matching condition is found or all binding levels have been checked.

Human intervention in BPEL Console
To manage processes suspended pending human intervention, we need to log into
the BPEL Console. Once logged on, click on the Activities tab. This by default will
list all activities with a state of pending (that is, awaiting human intervention) as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[386]

To do this, select the variable to update from the Available Variables drop down,
that is, verifyCreditCardInput in the previous example and click Get. This will
return the current content of the variable.

Next we can update securityNo to contain the correct value and click Set to update
the content of the variable within the BPEL process.

Finally from the Actions available drop down select Retry and then click Recover;
this will cause the BPEL process to retry the failed invoke activity with the updated
variable and, if successful, to then continue with the remainder of the process.

Set the output variable and continue
Another scenario is that for whatever reason we are unable to call the service. For
example in the above scenario the verifyCreditCard service is not available.

One way around this is to fallback to manual processing and for a service rep to
phone the credit card company to verify the card and get an authorisation code.
We can then manually update the appropriate variables within our process and
continue processing.

To do this select the variable we want to update from the Available Variables drop
down, that is, verifyCreditCardOutput in the previous example and click Get. This
will return the current content of the variable, which in our case will be empty as it
has yet to be initialized.

Next we need to enter the XML fragment that it should have contained if the service
had been successfully invoked. A simple way to do this is click Skeleton Value; the
console will then generate an empty XML skeleton of the variable into which we can
enter the values.

Once we have specified the content of the variable, click Set and this will update the
content of the variable within the BPEL process.

Finally from the Actions available drop down select Continue and then click
Recover. This will cause the BPEL process to skip the failed invoke activity and
continue with the remainder of the process.

This is only useful for synchronous or one-way invocations. This is
because if we skip the invoke activity for an asynchronous two-way
invocation, then when the process reaches the corresponding receive
activity it will end up waiting forever.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[388]

Handling faults in synchronous proxy
services
The basic strategy for handling faults within the service bus is essentially the
same regardless of whether it is a business or system fault. That is to catch the fault,
undo any partially completed activities so that we leave the system in a consistent
state and map the underlying fault to a "standard" fault, which is then returned to
the client.

If we examine the CreditCard service used by the above BPEL process, this is
actually a proxy service implemented on the service bus. OBay accepts MasterCard
and Visa, and in our scenario each of these card providers supplies their own service
for card verification and payment processing.

The role of the CreditCard proxy is to provide a standardized service, independent
of card type. It will then route requests to the appropriate service, based on the card
being used.

As part of this process, the proxy service will transform the request from the oBay
canonical form into the specific format required by the card provider and vice versa
for the response.

If during execution of the proxy service an error occurs, the role of the proxy service
is to intercept the fault and then map it to a specific type of fault, either a business
fault defined by the proxy service or a standard system fault.

Raising an error
When an error occurs, the service bus performs a number of steps. First it will
populate the $fault variable with details of the error. Next if the error was caused
by the external service returning a fault, it will update the $body variable to hold the
actual fault returned.

For example if the verifyMasterCard operation returned the following fault:

<env:Body xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Fault xmlns:mcd="http://xmlns.packtpub.com/MasterCard">
 <faultcode>mcd:invalidMasterCard</faultcode>
 <faultstring>business exception</faultstring>
 <faultactor>cx-fault-actor</faultactor>
 <detail>
 <invalidCard xmlns="http://xmlns.packtpub.com/MasterCard ">
 <code>DECLINED</code>
 <desc>MasterCard Declined</desc>

Chapter 13

[389]

 </declined>
 </detail>
 </env:Fault>
</env:Body>

This would be intercepted by the service bus, which would then populate $fault
with the following:

<con:fault xmlns:con="http://www.bea.com/wli/sb/context">
 <con:errorCode>BEA-380001</con:errorCode>
 <con:reason>Internal Server Error</con:reason>
 <con:location>
 <con:node>RouteToVerifyMasterCard</con:node>
 <con:path>response-pipeline</con:path>
 </con:location>
</con:fault>

Where errorCode and its corresponding reason provide an indication of the type of
error that occurred, common error codes include:

BEA-380001•	 : Indicates an internal server error, including the return of a fault
by a SOAP service.
BEA-380002•	 : Indicates a connection error, such as the SOAP service not being
reachable or available.
BEA-382500•	 : Indicates that a service callout returned a SOAP Fault.

We can also see from the content of the location element that the error occurred in
the response pipeline of RouteToVerifyMasterCard node. This information can be
useful if we are implementing a more generic error handler at either the pipeline or
service level.

In addition to populating the $fault variable the $body variable will now contain
the actual SOAP Fault returned by the external service.

Finally the service bus will raise an error, which if not handled by the proxy service
will result in the service bus returning its own fault to the client of the proxy service.

Defining an error handler
The first step in handling an error is to catch it. Within a proxy service we do
this using an error handler, which can be defined at the route, stage, pipeline,
or service level.

When the service bus raises an error, it will first look to invoke the error handler on
the route node or stage in which the error occurred.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[390]

If one isn't defined or the error handler does not handle the error, then the service
bus will invoke the error handler for the corresponding pipeline. Again if the error
isn't handled at the pipeline level, it will invoke the service level error handler and
if not handled at this level then the service bus will return a soapenv:Server fault,
with the detail element containing the content of $fault.

A fault is only considered handled if the error handler invokes either a reply or
resume action. The reply action will immediately send the content of $body as a
response to the client of the proxy service and completes the processing of the proxy,
while a resume action will cause the proxy service to continue, with processing
resuming on the next node following the node on which the error handler is defined.

For faults returned by external services it makes sense to define our error handler as
close to the error as possible, that is on the route node, as we can handle the error in
the context in that it occurred, simplifying the logic of our error handler.

For more generic errors, such as a connection error (for example, BEA-380002), we
can define a higher level error handler at either the pipeline or service level.

In the case of our CreditCard service, this means defining an error handler on the
route nodes for each endpoint, to handle errors specific to each service callout, and
defining a generic error handler on the service itself.

Adding a route error handler
To define an error handler on a route node, click on it, and select the option Add
Route Error Handler as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[391]

This will open the Edit ErrorHandler; Route Node window, where we can configure
the error handler. An error handler consists of one or more stages, first we need to
add a stage and name it accordingly (for example, HandleVerfifyMasterCardFault)
as in the following example:

The first step within our error handler is to check whether we have received a
SOAP Fault or something more generic. To do this we just need to add an If…
Then… action, which checks if the value of $fault/ctx:errorCode is either
BEA-382500 or BEA-380001.

While the service bus reserves the error BEA-382500 for SOAP Faults,
we find that when we return a custom SOAP Fault, that the service bus
raises an error of type BEA-380001. So we check for both error codes to
be safe.

Checking the type of SOAP Faults
Next we need to check the SOAP Fault returned (which will be in $body) so that we
can handle it appropriately.

If we examine the WSDL for our verifyMasterCard operation, we can see that it
could potentially return one of two faults, mcd:declined and mcd:invalid, each of
which needs to be mapped to a fault returned by our proxy service.

At first glance this all looks pretty straightforward. We just need to define an If…
Then… action, with a branch to test for each type of fault returned and generate the
appropriate fault to return.

For example, to test for a fault of type mcd:declined, we could define a branch with
a condition such as the following:

$body/soap-env:Fault/faultcode = 'mcd:declined'

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[396]

In here we need to create a stage in which to define our error handling logic as we
did for our route node error handler.

For errors which have been raised for a reason other than a SOAP Fault being
returned by the external client, we just need to check the error code in $fault
so that we can map it to an appropriate system fault.

When generating a system fault, rather than try to map a specific service bus error to
a corresponding SOAP Fault, we need to think about how the client may handle the
fault. Typically this will be driven by whether it is a permanent or transient fault.

Handling permanent faults
Permanent faults are ones where by the same submission will continue to cause
an error. This could be due to a number of reasons, including invalid security
credentials, erroneous data contained within the message payload, or an error within
the actual service itself (that is, the request is valid, but for whatever reason the
service is unable to process it).

For each type of error, a corresponding error code is defined by the service bus
which can be accessed in the $fault variable at run time. These error codes are
categorized into the following subsystems: transport, message flow, action, security,
and UDDI.

Within our generic service level error handler, we typically want to use an If…
Then… action to check which error category the error code falls into and then map
it to a corresponding SOAP Fault. This follows a similar approach to the one we
used for mapping business services faults to corresponding faults defined by the
proxy service.

Once we have populated our $body variable with the appropriate SOAP Fault,
we would then use a Reply action as before to return it to the client.

This ensures that any client of the proxy service will only have to deal with the
business faults defined in the WSDL of the service and a handful of pre-defined
system faults that any of the proxy services could return.

If we look at a BPEL process, this approach makes it very simple to
write a fault policy for managing a small, well-defined set of system
faults and within the BPEL process define fault handlers for the known
business faults.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[397]

Generating alerts
When a permanent fault occurs it may indicate that we have an underlying problem
in the system. So in addition to returning a SOAP Fault to the client, we may wish to
notify someone of the problem.

One way to do this would be through the report action we looked at earlier, but
in some cases we may have an issue that requires more immediate attention. For
example we have an attempted security violation or there is an error in the actual
logic of a recently deployed proxy service.

For these situations we can use the Alert action to publish an alert to an
appropriate destination, which could be a JMS Queue, Email, SNMP Trap,
or Reporting Data Stream.

To add an alert, click Add an Action | Reporting | Alert; this will insert an Alert
action into our error handler, like the one shown as follows:

To specify the content of the alert, click on <Expression>. This will launch the
XQuery Expression Editor, where we can define the alert body as required. We
can also specify an optional alert-summary, which is presented according to the
destination. For example it will form the subject line for an email notification. If this
is left blank, then it defaults to ALSB Alert.

The severity level can take a value of Normal, Warning, Minor, Major, Critical, or
Fatal. These don't have specific meanings, so you can attach your definitions to each
of these values; though when we configure alerting for the proxy service (see below)
we can opt to filter out alerts based on their severity level.

To specify the recipient of the alert click on <Destination>. This will launch the
Select Alert Destination window, where we can search for and select any
previously defined destination. If we don't specify a destination then the alert
will be sent to the console.

Destinations are created and configured in the service bus console; this gives us the
flexibility to change the actual recipient of the alert at a later point in time, just by re-
configuring the destination appropriately.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[398]

Enabling alerts
For pipeline alerts to be generated, you must first enable them, otherwise Alert
actions will just be skipped during the execution of the proxy service. Alerts need to
be enabled in two places, first at the server level and then at the proxy service level.

To enable them globally, click on the Operations tab with the service bus console
and then select Global Settings. This will display the Global Setting window. From
here ensure the option Enable Pipeline Alerting is checked.

Once enabled globally, we can then specify settings for a proxy service. Select
the proxy service and then click on the Operational Settings tab as shown in the
following screenshot:

Select the check box for Pipeline Alerting and then, from the Enabling Alerting at
drop down, select the level of alerting required. This will suppress the generation
of any alerts with a lower severity. So in this example we have enabled alerting at
Warning level or above, so any alert actions in the proxy service with a severity level
of Normal will be skipped.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[399]

Handling transient faults
Transient faults, typically manifest themselves as non-responsive URI's (that is no
response is being received for a particular service endpoint), which the service bus
indicates with the error code BEA-380002.

In this scenario, we have already established that for a synchronous proxy service
there is limited scope to take any corrective action. However, for services which
provide multiple endpoints, one option is to retry an alternate endpoint.

Retrying non-responsive business service
A business service allows you to configure multiple endpoints for a service, which
it can load balance requests across (using a variety of algorithms). This can be useful
when a particular endpoint becomes non-responsive, as we can configure the business
service to automatically retry an alternative endpoint.

When we have multiple URIs specified for an endpoint, if the initial call to an
endpoint fails, the business service will immediately attempt to invoke an alternate
URI. It will continue to do this until either successful, the Retry Count is reached or
all online URIs have been tried.

If at this point the retry count has not been reached, the business service will wait
for the duration specified by the Retry Iteration Interval before iterating over the
endpoints again.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Error Handling

[400]

Finally you need to ensure that we set Retry Application Errors to No, otherwise
any SOAP fault returned by the business service will be treated as a failure and will
prompt the service bus to retry.

In this example, where we have defined two URIs, if the first call fails then the
service bus will immediately call the second URI. If this fails then it will have
reached the retry limit and the underlying error will be returned to the proxy
service. If the retry count was two, then it would wait 30 seconds before attempting
one final retry.

Handling faults in one-way proxy services
The service bus also allows you to define one-way proxy services, where the client
issues a request to the service bus and then continues processing without ever
receiving a response. This is often referred to as fire and forget.

The approach for handling errors for one-way proxy services is quite different from
that of synchronous services. For transient errors, it makes absolute sense to retry
the Business Service until we are successful as no one is going to timeout waiting for
a response.

For permanent errors, we can't return a fault to the client and let them resolve it.
Rather we need to alert a third party so that they can take some corrective action to
resolve the error, and then re-run the request.

One way to do this is to publish an alert notification to a JMS Queue. We could do
this directly or go via the alerting mechanism described above. The content of the
alert will typically need to contain details of the actual error so that we know what
corrective action to perform, the proxy service invoked and its payload, so that we
can re-invoke the proxy with the original payload once the issue has been resolved.

Once we've published the alert, we also need to implement something on the other
end of the JMS Queue to process it. One approach would be to implement this as a
BPEL process, containing a human workflow task to correct the error. Once corrected
then the BPEL process could re-invoke the proxy service.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns
In every business process, messages are exchanged between participants. So far we
have only looked at simple interactions, that is a single request followed by a reply,
whether synchronous or asynchronous.

Asynchronous messaging adds additional complexities around the routing
and correlation of replies. In this chapter, we will look at how BPEL PM uses
WS-Addressing to manage this and in situations where this can't be used,
examine how we can use correlation sets in BPEL to achieve the same result.

As part of this we look at some common, but more complex, messaging patterns and
requirements; such as:

How we can handle multiple exchanges of messages, either synchronous or •	
asynchronous between two participants.
How BPEL can be used to aggregate messages from multiple sources.•	

And though not strictly a message interaction pattern, examine one technique •	
for process scheduling.

Finally, as we explore these patterns, we take the opportunity to cover some of
BPEL's more advanced features, including FlowN, Pick, and Dynamic Partner Links.

Message routing
A key requirement in any message exchange is to ensure that messages are routed
to the appropriate service endpoint. Initial web service implementations were built
using SOAP over HTTP, primarily because HTTP is well understood and is able to
leverage the existing Internet infrastructure.

However, one of the limitations of HTTP is that it is stateless in nature, and thus
provides no support for conversations requiring the exchange of multiple messages.
With synchronous interactions this is not an issue, because the response message for
a particular request can be returned in the HTTP response.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[405]

To demonstrate how WS-Addressing achieves this, let us look at the WS-Addressing
headers BPEL PM inserts into our request and response messages in the
previous example.

Request message with WS-Addressing
The initial request sent by BPEL PM with WS-Addressing headers inserted looks
something like the following:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
 xmlns:ptns="http://xmlns.oracle.com/ProcessA">

<env:Header>
 <wsa:ReplyTo>
 <wsa:Address>http://hostname:80/orabpel/default/ProcessA/1.0/
 ProcessB/ProcessBRequester</wsa:Address>
 <PortType>ptns:ProcessBCallback</PortType>
 <ServiceName>ptns:ProcessBCallbackService</ServiceName>
 </wsa:ReplyTo>
 <wsa:MessageID>uuid://hostname/ProcessA/aaaaaaaa</wsa:MessageID>
 </env:Header>
 <env:Body>
 …
 </env:Body>
</env:Envelope>

From this we can see that we have two additional elements present in the SOAP
header. The first element, wsa:ReplyTo contains the wsa:Address element which
specifies the endpoint that Process B should send its asynchronous response to.
Secondly, it contains the property wsa:MessageId which uniquely identifies the
conversation, which as we will see in a moment is used to correlate the response
message to the original requestor.

Response message with WS-Addressing
When sending our response message, the response will be sent to the address
specified in the wsa:ReplyTo endpoint reference. In addition, if we look at the
message below, we can see that it contains the property <wsa:RelatesTo> which
contains the message ID specified in the original message.

It's this value that enables the endpoint to correlate the response back to the original
request. In our case this enables the BPEL engine to route the response from Process
B back to the instance of Process A which sent the original request.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[407]

A correlation set consists of one more properties; these properties are then mapped
using property aliases to the corresponding field in each of the messages that are
being exchanged. The combined value of these properties at run time should result
in a unique value (as least unique across all instances of the same process), that
allows the BPEL engine to route the message to the appropriate instance of a process.

Using correlation sets for multiple process
interactions
A common requirement is for a client to make multiple invocations against the same
instance of a process. The first is pretty much the same as a standard synchronous
or asynchronous request, but all subsequent requests are subtly different as we now
need to route the request through to the appropriate instance of an already running
process rather than initiate a new instance.

Take the UserRegistration process; this is a long running process which needs
to handle multiple synchronous requests during its lifecycle. The first operation
submitUserRegistration is called by the client to initiate the process, which
validates all the provided user information and returns a confirmation of success
or otherwise.

The only information that is not validated at this stage is the email address; for this
the process sends an email to the provided address containing a unique token which
the user can use to confirm their address.

Once they have received the email they can launch their browser and submit the
token. The web client will then invoke the confirmEmailAddress operation. It's
at this point we need to use correlation sets to route this request to the appropriate
instance of the UserRegistration process.

Defining a correlation set property
The first step is to choose a unique field that could act as a property. One such
approach would be to use the userId specified by the user. However, for our
purposes we want to use a value that the user will only have access to once they have
received their confirmation email, so will use the token contained in the email.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[410]

Using correlation sets
Next we need to specify which messages we wish to route with our correlation set.
For our purposes we want to use the Correlation Set to route the inbound message
for the operation confirmEmailAddress to the appropriate process instance.

To configure this, double-click the receive activity for this operation to open the
Receive activity window and select the Correlations tab as shown:

Next select the + symbol; this will launch the Correlation Set Chooser as shown in
the following screenshot:

From here we can select the EmailTokenCS we defined previously. Click OK and
this will return us to the Correlations tab, showing the newly added correlation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[411]

We can see here that we have to specify one additional property Initiate. This is used
to specify which message should be used to initiate the correlation set.

Initializing the correlation set
As you would expect, the value of the property(s) contained in the first message
exchanged in any sequence of correlated messages must be used to initiate the value
of each property contained within the correlation set.

However, rather than implicitly initialize the correlation set based on the first
message exchange, BPEL expects you to explicitly define which message activity
should be the first in the sequence by setting the Initiate property to Yes.

If we try to initialize an already initialized correlation set, or try to use a
correlation set that isn't initialized, then a run-time exception will be thrown
by the BPEL engine. Likewise, once initialized, the value of these properties
must be identical in all subsequent messages sent as part of the sequence of
correlated messages, or again the BPEL engine will throw an exception.

When initializing a correlation set, any outbound message can be used to achieve
this. However, there are practical restrictions on which inbound messages can be
used to initiate a correlation set, since the process must first receive the inbound
message before it can use it to initialize a correlation set.

Essentially, if an inbound message is used to create a new instance of a process, or
is routed through to the process by another mechanism (for example, a different
correlation set) then it can be used for the purpose of initiating our correlation set.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[412]

In our case, we are using the correlation set to route the inbound message for the
confirmEmailAddress operation through to an already running process instance, so
we need to initialize the correlation set in an earlier message. We can do this within
the invoke activity for the sub-processs validateEmailAddress.

We define a correlation set for an Invoke activity as we would for any message
based activity, that is, we open its properties window and select the Correlations
tab as shown in the following screenshot:

However, you may notice that when creating a correlation for an Invoke activity, we
are required to set the additional attribute Pattern. This is because, unlike any other
message activity, Invoke can consist of two messages, the initial outbound request,
and an optional corresponding inbound response. The pattern attribute is used to
specify to which message the Correlation Set should be applied; that is, out for the
outbound request, in for the inbound response and out-in for both.

Since validateEmailAddress is a one-way operation, we need to set the Pattern
attribute to out.

Note that if you choose to initiate the correlation with an out-in pattern, then the
outbound request is used to initiate the Correlation Set.

Defining property aliases
Once the messages to be exchanged as part of our Correlation Set have been
defined, the final step is to map the properties used by the Correlation Set, to
the corresponding fields in each of the messages exchanged.

To do this, we need to create a property alias for every Message Type exchanged
that is, i.e. validateEmailAddress and confirmEmailAddress in our User
Registration example.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[413]

To create an alias, within the Structure view for the BPEL process, right-click on
the Property Aliases folder and select Create Property, this will launch the Create
Property Alias window, as shown:

In the Property drop down, select the property that you wish to define the alias for
and then using the Type Explorer navigate through the Message Types, Partner
Links down to the relevant Message Type and Part that you want to map the
property to.

This will activate the Query field, where we specify the XPath for the field containing
the property in the specified message type. Rather than type it all by hand, press Ctrl
+ Space to use the XPath Building Assistant.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[415]

Message aggregation
A typical messaging requirement is to aggregate multiple related messages for
processing within a single BPEL process instance. Messages are aggregated using
a common correlation Id, in much the same way as we covered above.

The other challenge is to determine when we have all the messages that belong to the
aggregation. Typically, most use cases fall into two broad patterns:

•	 Fixed Duration: In this scenario we don't know how many messages we
expect to receive, so will process all those received within a specified period
of time.

•	 Wait For All: In this scenario we know how many messages we expect
to receive; once they have been received we can then process them as an
aggregated message. It's usual to combine this with a timeout in case some
messages aren't received so that the process doesn't wait forever.

An example of the first pattern is the oBay auction process. Here, during the period
for which the auction is in progress, we need to route zero or more bids from
various sources to the appropriate instance of the auction. Then once the auction has
finished, select the highest bid as the winner. The outline of the process is shown on
the next page.

From this, we can see that the process supports two asynchronous operations, each
with a corresponding callback, namely:

initateAuction•	 : This operation is used to instantiate the auction process.
Once started, the auction will run for a preset period until completing and
then invoke the callback returnAuctionResult, to return the result of the
auction to the client which initiated the auction.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[417]

Message routing
The first task for the aggregator is to route bids through to the appropriate instance
of the auction process. As with our earlier UserRegistration example, we can use a
correlation set to route messages to the appropriate instance. In this example, we will
create a correlation set based on the element auctionId, which is included in
the message payload for initateAuction and submitBid.

At first glance this looks pretty straightforward, as we can use correlation sets for
aggregation in much the same way as we have already covered. However, this
scenario presents us with an additional complexity, which is that a single instance of
a BPEL process may receive multiple messages of the same type at approximately the
same time.

To manage this we need to implement a queuing mechanism, so that we can
process each bid in turn before moving onto the next. This is achieved by
implementing the interaction between the client submitting the bid and the
auction process as asynchronous.

With asynchronous operations, BPEL saves received messages to the
BPEL delivery queue. The delivery service then handles the processing
of these messages, either instantiating a new process or correlating the
message to a waiting, receive, or onMessage activity in an already
running process instance.
If a process is not ready to receive a message, then the message will
remain in the queue until the process is ready.

This introduces a number of complexities over our previous correlation example.
This is because a BPEL process can only support one inbound Partner Link
(for example, client), for which the BPEL engine generates a corresponding concrete
WSDL which defines all operations that can be invoked against that BPEL process
(as well as any corresponding callbacks).

When BPEL generates the WSDL it includes the appropriate WS-Addressing header
definitions for each of the operations. However, only operations which are used to
instantiate a process, that is, initiateAuction in the case of the auction process,
include WS-Addressing headers to hold the reply to address and message ID.

Correlating the callback
The first complexity this causes is that whenever a client submits a request to
the auction process via the submitBid operation, it doesn't include a message ID,
so we can't use WS-Addressing to correlate the response of the auction process
back to the client.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[418]

At first, the obvious answer might appear to be just to use the auctionId to correlate
the result of the bid back to the client. However, while the auctionId allows us
to uniquely identify a single instance of an auction, it doesn't allow us to uniquely
identify a bidder. This at first may seem strange, but recall we may have several
clients calling the auction process at the same time, and thus all waiting for a response.
We need to ensure that each response is returned to the appropriate instance.

Thus the calling client will need to pass a unique key in the submitBid request
message (for example, bidId) that the auction process can include in the response.
Assuming we are using BPEL to implement the client, we then need to implement a
correlation set based on this property in the calling process, so that the BPEL engine
can route the response to the appropriate instance of the client process.

Specifying the reply to address
The second complexity is that whenever a client submits a request to the auction
process via the submitBid operation, it doesn't include a replyToAddress within
the SOAP header.

As a result the BPEL engine doesn't know which address to send the reply to; or
rather it will attempt to send the reply to the process which initiated the auction. It
was this request which contained the wsa:ReplyTo header specifying the callback
endpoint for the client Partner Link.

This highlights the other issue, namely our auction process supports two callbacks,
one to return the auction result and the other to return the bid result. Yet the
replyToAddress on the Partner Link is being fixed with the initial invocation of the
process, forcing both callbacks to be routed to the same endpoint, which is not what
we want.

Creating a proxy process
At this point, you may be thinking that this all may be too complex. However, the
solution is rather straightforward and that is to use a proxy process, which supports
the same operations as the auction process.

With this approach the client invokes either the initateAuction or submitBid
operation on the proxy, which then forwards the request to the auction process.
The auction process then returns the result to the proxy, which then returns it to
the original client.

This not only solves the problem of having a fixed reply to address, but has the
additional benefit of shielding the client from having to use Correlation Sets, as
it can use WS-Addressing to communicate with the proxy.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[419]

Using the pick activity
Our proxy process needs to support both operations, initateAuction and
submitBid, that is, either operation can be used to initiate an instance of the
proxy process. To achieve this, we will use the <pick> activity at the start of
our process, in place of a <receive> activity.

A pick activity is similar to a receive activity; the difference being that with a pick
activity you can specify the process waits for one of a set of events, events can either
be the receipt of a message or an alarm event (which we look at later in this chapter).

Each message is specified in a separate <onMessage> branch, each branch containing
one or more activities to be executed on receipt of the corresponding message. To
use a pick activity, drag a <pick> activity from the Process Activities list of the
Component Pallet on to your process.

As the pick activity is used to receive the initial message which starts the process, we
need to set the createInstance attribute on the activity. To do this, double-click the
pick activity to open the Pick activity window as shown below, and select the Create
Instance checkbox.

Next, within the process diagram, click on the + symbol to expand the <pick>
activity. By default it will have two branches illustrated as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[420]

The first branch contains an <onMessage> component, with a corresponding area
where you can drop a sequence of one or more activities that will be executed if the
corresponding message is received.

The second branch contains an <onAlarm> sub-activity, with a corresponding area
for activities. It doesn't make sense to have this as part of the initial activity in a
process, so right-click on the onAlarm sub-activity and select delete to remove it

We require two OnMessage branches, one for each operation that the process
supports. For this, click on the Add OnMessage Branch icon (highlighted in the
previous diagram) to add another <onMessage> branch.

The next step is to configure the onMessage branch. Double-click on the first branch to
open the OnMessage Branch activity window as shown in the following screenshot:

As we can see an OnMessage Branch is configured in a similar fashion to a Receive
activity. For the purpose of our proxy, we will configure the first onMessage branch
to support the initateAuction operation (as shown in the previous screenshot) and
the second onMessage branch to support the submitBid operation.

Each branch will just contain an invoke and receive activity to call the corresponding
operation provided by the auction process, and a final invoke activity to return the
result of the operation to the caller of the process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[421]

Defining the correlation sets
For our proxy process we need to define a Correlation Set for the submitBid
operation, to ensure that replies from the Auction process are routed through
to the correct instance of the AuctionProxy process.

As mentioned earlier, this requires us to include a unique bidId within the
submitBid message. To generate this we can use the XPath function generateGUID,
which is available under the category BPEL XPath Extension Function within the
expression builder.

Note, we don't need to define a correlation set for the initateAuction operation,
as the corresponding operation on the auction process is still using WS-Addressing.

Completing the aggregation
All that remains is to add in the logic that enables the process to determine when
the aggregation is complete. For a scenario where we know how many messages
we expect, every time we receive a message we just need to check whether there are
any outstanding messages and proceed accordingly.

However, for scenarios where we are waiting for a fixed duration, as is the case with
our auction process, it's slightly trickier. The challenge is that for the period over
which the auction is running, the process will spend most of its time in a paused
state, waiting for the receive activity to return details of the next bid.

So the only opportunity we have within the logic of our process to check whether
the duration has expired is after the receipt of a bid, which may arrive long after the
auction has completed or not at all (since the auction has theoretically finished).

Ideally what we want to do is place a timeout on the Receive activity, so that it
either receives the next bid or times out on completion of the auction, whichever
occurs first.

Fortunately, this can be easily accomplished by replacing the Receive activity for
the submitBid operation with a Pick activity. The Pick would contain two
branches: an onMessage branch configured in an identical fashion to the Receive
activity and an onAlarm branch configured to trigger once the finish time for the
auction has been reached.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[422]

To configure the onAlarm branch, double-click on it to open the OnAlarm Branch
activity window as shown in the following screenshot:

We can see that an OnAlarm branch is configured in a similar fashion to a Wait
activity in that we can specify the Pick waits For a specified duration of time or
Until a specified deadline. In either case you specify a fixed value or specify an
XPath expression to calculate the value at run time.

For our purposes we have pre-calculated the finish time for the auction based on its
start time and duration, and have configured the Pick activity to wait until this time.

When triggered, the process will execute the activities contained in the OnAlarm
branch and will then move onto the activity following the Pick. In the case of
our auction process, the branch contains just a single activity which sets the flag
auctionComplete to true, causing the process to exit the while loop containing the
Pick activity. Upon exiting the loop, the process calculates and returns the auction
result before completing.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[424]

 xmlns="http://xmlns.packtpub.com/obay/xsd/sch"
 targetNamespace="http://xmlns.packtpub.com/obay/xsd/sch"
 elementFormDefault="qualified" >

 <xsd:element name="schedule" type="tSchedule"/>
 <xsd:element name="job" type="tJob"/>

 <xsd:complexType name="tSchedule">
 <xsd:sequence>
 <xsd:element name="startTime" type="xsd:time"/>
 <xsd:element ref="job" minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tJob">
 <xsd:sequence>
 <xsd:element name="endpoint" type="xsd:string" />
 <xsd:element name="startTime" type="xsd:time"/>
 <xsd:element name="jobDetail" type="xsd:anyType"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

The bulk of the schedule file is made up by the Job element; with each schedule
file containing one or more jobs. The job elements contains three elements:

endpoint•	 : Defines the endpoint of the service to invoke.
startTime•	 : Defines the time that the service should be invoked.
jobDetail•	 : Defined as xsd:anyType; is used to hold details specific to the
service being invoked.

For the purpose of our accountBilling process our schedule file looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<schedule xmlns="http://xmlns.packtpub.com/obay/xsd/sch">
 <startTime>0:2:55.125</startTime>
 <job>
 <endpoint>
 http://localhost:80/orabpel/obay/accountBilling/1.0/
 </endpoint>
 <startTime>T02:00:00</startTime>
 <jobDetail>
 </jobDetail>
 </job>
</schedule>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[425]

Using FlowN
To ensure that our schedule process supports the concurrent execution of jobs, we
need to process them in parallel. If the number of branches/jobs was fixed at design
time, we could use the <flow> activity to achieve this.

For our scenario, the number of branches will be determined by the number of
jobs defined in our scheduling file. For cases such as these we can use the <flowN>
activity; this will create N branches, where N is calculated at run time.

Each branch performs the same activities and has access to the same global data, but
is assigned an index number from 1 to N to allow it to look up the data specific to
that branch.

To use a FlowN activity, drag a <flowN> activity from the Process Activities list of
the Component Pallet on to your process. Double-click on it to open the FlowN
activity window as shown in the following figure:

In addition to the activity Name, it takes two parameters. The first parameter is
N which contains an XPath expression used at run time to calculate the number
of parallel branches required. This typically uses the count function to count the
number of nodes in a variable. In our case, we need to calculate the number of job
elements, so our expression is defined as follows:

count(bpws:getVariableData('InputVariable','schedule',
 '/sch:schedule/sch:job'))

The second parameter, Index Variable, is used to specify the variable into which
the index value will be placed at run time. While we have defined this as a global
variable, each branch will be given its own local copy of the variable containing its
assigned index number.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[426]

Accessing branch specific data in FlowN
The first step within the flowN branch is to get a local copy of the data that is to be
processed by that specific branch, that is, the Job in our case.

Before we do this we need to ensure that we are working with local variables,
otherwise each branch in the flowN will update the same process variables. The
simplest way to achieve this is to drop a scope (which we've named ProcessJob) as
the activity within the flowN branch, and to then define any branch specific variables
at the scope level and perform all branch specific activities within the scope.

In this case, we have created a single variable JobInputVariable of type Job, which
we need to populate with the job element to be processed by the flowN branch. To
do this, we need to create an XPath expression that contains a predicate to select the
required job based on its position with the node set, in effect doing the equivalent of
an array lookup in a language such as Java.

The simplest way to achieve this is to create a standard copy operation, as shown in
the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[427]

Next we need to modify the From XPath expression (circled in the previous
screenshot) so that we only select the required job based on the value of the index.
To do this, modify the XPath to add a position based predicate based on the index,
to obtain an expression that looks something like the following:

/sch:schedule/sch:job[bpws:getVariableData('index')]

The next step within our branch is to use a Wait activity to pause the branch until the
startTime for the specified job.

Dynamic Partner Links
The final step within our branch is to call the service as defined by the endpoint
in the Job element. Up to now we've only dealt in BPEL with static Partner Links,
where the endpoint of a service is defined as design time.

However, BPEL also provides support for dynamic Partner Links, where we can
override the endpoint specified at design time, with a value specified at run time.

Define common interface
While we can override the endpoint for a partner link, all other attributes of our
service definition remain fixed. So to use this approach we must define a common
interface that all of our Job services will implement. For our purpose we've defined
the following abstract WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Job">
 <types>
 <schema>
 <import namespace="http://xmlns.packtpub.com/obay/xsd/sch"
 schemaLocation="../schedule.xsd"/>

 <element name="executeJob" type="client:tExecuteJob"/>

 <complexType name="tExecuteJob">
 <sequence>
 <element ref="sch:Job"/>
 </sequence>
 </complexType>
 </schema>
 </types>

 <message name="executeJob">
 <part name="payload" element="tns:executeJob"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[429]

This is important, because if we create an EndpointReference containing any of the
other optional elements, then if we try to invoke the Partner Link, the BPEL engine
will throw a fault.

To create a variable of type EndpointReference, you
will need to import the WS-Addressing schema (located at
http://<host>:<port>/orabpel/xmllib/ws-addressing.xsd).

To populate the address element, use a transformation activity rather than an assign
activity, as shown in the following screenshot:

If we use an assign too directly to populate the <Address> element, then BPEL by
default would create an initialized <EndpointReference> element containing all
the other optional elements (each with an empty value).

Update Endpoint
Finally, we use another copy rule to dynamically set the partner link. The key
difference here is that the target of the copy rule is the JobService PartnerLink,
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Message Interaction Patterns

[430]

Now when we invoke the JobService via the Partner Link it will dynamically route
the request to the updated endpoint.

Re-cycling the scheduling file
As we've already covered, the scheduling process is triggered by the file adapter
reading in the schedule.xml file. As part of this activity, the file adapter will move
it to an archive directory, to ensure that the file is processed just once.

However, in our case we actually want the file adapter to process the scheduling file
on a daily basis. To do this we need to move the file back into the directory being
polled by the adapter.

For the purpose of this we have defined the following two directories:

<SOA_HOME>/scheduler/config
<SOA_HOME>/scheduler/execute

When creating our scheduling process, we have configured the file adapter to poll
the execute directory on a regular basis (for example, every five minutes), and
archive processed files to the config directory.

When the schedule.xml file is placed into the execute directory for the first time,
this will trigger file adapter to pick up the file and launch the scheduler process, and
at the same time move the schedule file into the config directory.

Within the scheduler process, we then invoke the file adapter to move the
schedule.xml file from the config directory back to the execute directory
(see Chapter 3—Service Enabling Existing Systems for details on how to do this).
However, rather than invoke the moveFile operation immediately, we have placed
a wait activity in front of it that waits until the startTime defined at the head of the
schedule file, as shown:

<?xml version="1.0" encoding="UTF-8" ?>
<schedule xmlns="http://xmlns.packtpub.com/obay/xsd/sch">
 <startTime>0:2:55.125</startTime>
 <job>
 …
 </job>
</schedule>

This has a couple of advantages, the first is we use the schedule.xml file to control
when the scheduling process is run, as opposed to configuring the file adapter to poll
the execute directory once every 24 hours and then deploy the process at the right
time to start the clock counting.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 14

[431]

The other advantage is that most of the time the schedule.xml file resides in the
config directory. Thus, while the file is in this directory we can go in and modify
the schedule to add new jobs or update and delete existing jobs, which will then be
picked up the next time the scheduler is executed.

Summary
In this chapter, we have looked at the more advanced messaging constructs
supported by the Oracle BPEL PM. We have also seen how we can use this to
support some of the more complex but relatively common message interaction
patterns used in a typical SOA deployment.

We have also used this as an opportunity to introduce some of the more advanced
BPEL activities and features such as the Pick and FlowN activity as well as Dynamic
Partner Links.

We have not covered every possible pattern. Yet, hopefully you should now have
a good understanding of how BPEL PM utilizes WS-Addressing and Correlation
Sets to support message interactions that go beyond a single synchronous
or asynchronous request and reply. You should now be able to apply this
understanding to support your particular requirements.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[434]

Using multiple assignment and routing
policies
For our checkSuspectItem process, we are first going to take the approach of
combining the two workflow steps into a single Human Task. The first step in
the workflow is the familiar single approval step, where we assign the task to the
oBayAdministrator group.

The task takes a single un-editable parameter of type suspectItem, which contains
the details of the item in question as well as why it has been flagged as suspect. The
definition of this is shown as follows:

<xsd:element name="suspectItem" type="act:tSuspectItem"/>

<xsd:complexType name="tSuspectItem">
 <xsd:sequence>
 <xsd:element name="item" type="act:ItemType"/>
 <xsd:element name="reasonCode" type="xsd:string" />
 <xsd:element name="reasonDesc" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Determining the outcome by a group vote
For the second step in the workflow we are going to define a participant type of
Group Vote; this participant type allows us to allocate the same task to multiple
participants in parallel. The task definition form for a group vote is shown in the
following figure:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[435]

Assigning participants
The first requirement is to allocate this task to all users in the voting panel. To
enable this, we've defined the group SuspectItemPanel within our user repository.
We don't want to allocate the task to the group, as this would only allow one user
from the group to acquire and process the task. Rather we want to allocate it to all
members of the group. To do that we can use the Identity Service XPath function
ids:getUsersInGroup, as illustrated here:

 ids:getUsersInGroup ('SuspectItemPanel', false())

Note the second parameter is a Boolean which, if set to true, will only return
direct members of the group. Setting it to false causes it to return all members
of the group.

Doing this will effectively create and assign a separate sub-task to every member of
the group.

Chapter 15

[437]

In our case the panel consists of three members, so as soon as two have approved the
task, the required consensus will have been achieved and the third member will have
their task withdrawn.

Using multiple Human Tasks
The other approach to this workflow is to model each step as a separate Human Task
in its own right, each with a single assignment and routing policy.

With this approach you get a lot more control over how you want to handle each
step, because most of the run-time behavior of the human task is defined at the task
level, allowing you to specify different parameters, expiration policies, notification
settings, and task forms for each step in the workflow. In addition, on completion of
every step, control is returned to the BPEL process, allowing you to carry out some
additional processing before executing the next step in the workflow.

One of the draw backs of this approach is that you need to specify a lot more
information (roughly n times as much, where n is the number of tasks that you
have), and often you may be replicating the same information across multiple task
definitions as well as having to specify the handling of outcomes for multiple tasks
within your BPEL process.

This not only requires more work upfront, but results in a larger and more complicated
BPEL process that is not so intuitive to understand and often harder to maintain.

Linking individual Human Tasks
The other potential issue is that the second task doesn't include the comments, task
history, and attachments from the previous task. In our case this is important as we
want members of the panel to see any comments made by the oBay administrator
before they deferred the task.

BPEL allows us to link tasks within the same BPEL process together; to do this
double click on the task in the BPEL process that you wish to link to a preceding task.
This will open the BPEL Human Task configuration window; from here select the
Advanced tab and you will be presented with a variety of options.

If you select the checkbox Include task history from, then you will be presented with
a drop down listing all the preceding Human Tasks defined in the BPEL process as
illustrated in the following figure:

Workflow Patterns

[438]

By selecting one of these, your task is automatically linked to that task and will
inherit its task history, comments, and attachments.

The final choice is whether you wish to use the payload from the previous task
or create a new payload. This is decided by selecting the appropriate option.

Using the workflow API
If we look at the Order Fulfillment process, which is used to complete the sale for
items won at auction, it is a prime candidate for Human Workflow as it will need
to proceed through the following steps in order to complete the sale:

Buyer specifies shipping details (for example address and method of postage)•	

Seller confirms shipping cost•	

Buyer notifies the seller that a payment for the item has been made•	

Seller confirms receipt of payment•	

Workflow Patterns

[440]

If you compare this to our architecture outlined in Chapter 9, you will
notice that we've decided not to wrap a virtual service layer around the
workflow service; there are two key reasons for this.
First, if you look at the service description for the workflow services they
already provide a very well-defined abstract definition of the service.
Hence if you were to re-design the interface they probably wouldn't look
a lot different.
Second, whenever we include a Human Workflow task within our
process, JDeveloper automatically generates a lot of code which directly
uses these services. Thus if we wanted to put a virtual layer over these
services we would need to ensure that all our Human Workflow tasks
also went via this layer, which is not a trivial activity.
So the reality is adding in a virtual services layer would gain us very little,
but would take a lot of effort and we would lose a lot of the advantages
provided by the development environment.

Defining the order fulfillment Human Task
For our OrderFulfillment process, we are taking the approach of combining all six
workflow steps into a single Human Task (the OrderFulfillment.task). Now this
isn't a perfect fit for some of the reasons we've already touched on, so we will look at
how we address each of these issues as we encounter them.

Within our task definition we've defined two possible Outcomes for the task either
COMPLETED or ABORTED (where for some reason the sale fails to proceed). In addition,
in the BPEL Human Task configuration window we have configured the Task Title
to be set to the item title, and set the Initiator to be the seller of the item.

Specifying task parameters
A key design consideration is to decide on what parameter(s) we are going to pass
to the task, taking in to account that we need to pass in the superset of parameters
required by each step in the workflow.

For our task we will have a single parameter of type order which contains all the
data required for our task; the definition for this is shown as follows:

<xsd:element name="order" type="act:tOrder"/>

<xsd:complexType name="tOrder">
 <xsd:sequence>
 <xsd:element name="orderId" type="xsd:string"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[442]

•	 Shipping Price: Once the buyer has specified the shipping details, the seller
can confirm the cost of shipping. This needs to be added to the subTotal to
calculate the total amount payable.
Status•	 : This field is updated after every step to track where we are in the
order fulfillment process.

The most obvious problem from our requirement is that at each step in the process,
we will need to update different fields in the order parameter, and that some of
these fields are calculated.

If we were using the default simple task forms generated by JDeveloper for the
worklist application then this poses a problem because you can only specify at the
parameter level whether it is read only or editable and this will be the same at every
step in the task.

One work around is to customize the generated form, which is definitely possible
if not entirely straightforward. However, in our scenario, as we are developing our
own custom built user interface rather than the worklist application, this issue is
easily solved.

Specifying the routing policy
For the OrderFulfillment task, we have specified six Assignment and Routing
Policies, one for each step of the workflow. Each one is of type SingleApprover and
is assigned dynamically to either the seller or buyer as appropriate, as illustrated in
the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[443]

Notification settings
The only other potential issue for us is that we need to share generic notification
settings for each step in the workflow; for our purpose this is fine as we just want to
send a generic notification to our seller or buyer every time a task is assigned to them
to notify them that they now need to perform an action in order to complete the sale.

However, if we wanted to send more specific notifications, then we can do that from
the BPEL process itself using the notification service. By default the BPEL process
will only receive a callback from the Workflow Service upon completion of the task.

However, if you open up the BPEL Human Task configuration window and select
the Advanced tab, you will see a checkbox with the option Allow task and routing
customizations in BPEL callbacks.

If you select this, your BPEL process will be modified to also receive callbacks
when either a task is assigned, updated, or completed as well as when a sub-task
is updated.

It does this by replacing the Receive activity which receives the completed task
callback with a Pick activity embedded within a While activity that essentially loops
until the task is completed, as illustrated:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[445]

The WSDL itself imports a number of other WSDL's and schemas, some of which
in turn import additional schemas, all of which can be located in the same directory.
In total we need to include the following files in our BPEL project:

TaskQuery.xsd•	
TaskQueryService.wsdl•	
TaskQueryService.xsd•	
TaskQueryServiceInterface.wsdl•	
UserMetadata.xsd•	
WorkflowCommon.xsd•	
WorkflowTask.xsd•	

We could import these files one by one into our BPEL processes; however, that would
be quite tedious. A quicker approach is to copy them directly into our BPEL project.

An alternative approach would be to deploy these files to the BPEL Server
so they can be referenced via a URL as described in Chapter 10.

The following screenshot shows the file structure of a BPEL project within JDeveloper.

If you copy all of the above files into the highlighted bpel sub-directory, JDeveloper
will automatically include them in your project. However, before we can use these
files to create a PartnerLink we need to make a couple of minor modifications.

Modifying TaskQueryServiceInterface.wsdl
The <types> section of the TaskQueryServiceInterface.wsdl file contains four
import statements, the last of which (at the time of writing) contains an error. If
we look at the following fragment of XML from this file, we can see that the import
statement includes the attribute location.

<import namespace="http://xmlns.oracle.com/bpel/.../taskQueryService"
 location="TaskQueryService.xsd"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[448]

A simple way round this is to assign a fragment of xml, such as the following:

<credential xmlns="http://xmlns.oracle.com/bpel/workflow/common">
 <login/>
 <password/>
 <identityContext>jazn.com</identityContext>
</credential>

Directly to credential, this acts as a template into which we can copy the required
values for login and password. We do this using a copy operation within an assign
statement, the key difference being that we specify an XML Fragment as the From
Type as shown in the following screenshot:

Note, we have specified the default namespace in the credential element so that all
elements are created in the appropriate namespace.

Querying tasks
The queryTask operation returns a list of tasks for a user, which you can filter
based on criteria similar to that provided by the Worklist application. The following
diagram shows the structure of the input it expects.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[449]

We can see the taskListRequest consists of two elements: the workflowContext,
which should contain the value returned by our authentication request and other
is the taskPredicateQuery, which defines the actual query that we wish to make.

The taskPredicateQuery consists of the following core elements:

displayColumnList•	 : Allows us to specify which attributes of the task
(for example, title, created by, created date, etc) we want to be included
in the result set.
optionalInfoList•	 : Allows us to specify any additional information we
want returned with each task, such as comments, task history, etc.
predicate•	 : Used to specify the filter conditions for which tasks we
want returned.
ordering•	 : Allows us to specify one or more columns on which we want to
sort the result set.

The two attributes startRow and endRow are used to control whether the entire
result set is returned by the query or just a subset. To return the entire result set, set
both attributes to zero. To only return a subset of the result set then set the attributes
appropriately. For example to return the first ten tasks in the result set, you would
set the startRow equal to 1 and the endRow equal to 10.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[450]

Specifying the Display Column List
The displayColumnList element list contained within the taskPredicateQuery
allows us to define which task attributes (or columns) we want returned by our query.

Simply include in here one displayColumn entry per task attributes we want returned,
valid values include TaskNumber, Title, Priority, Creator, CreatedDate and State.

For a full list of task attributes see the list of WorklistColumns
defined in the Constant Field Values section of the Workflow Services
Java API Reference that comes with the Oracle BPEL Process Manager
documentation.
These tend to match the column names in the WFTASK table in the BPEL
PM Database schema.

If we look at the WSDL definition for the getSoldItems operation we can see that it
returns the values orderNo, itemId, orderDesc, buyerId, itemPrice, totalPrice,
saleDate, orderStatus, lastUpdateDate, and nextAction.

At first glance only a couple of these match to actual task attributes; when we
created the task we set the task title to hold orderDesc and the task attribute
updatedDate maps to lastUpdateDate.

In addition, we have decided to use taskNumber for the orderNo as this makes it a
lot simpler to tie the two together.

However, the remaining fields are all held in the task payload which we can't
access through the queryTask operation. One solution would be to call the
getTaskDetails operation for every row returned, but this would hardly be
efficient. Fortunately we have an alternative approach and that is to use Flex Fields.

Flex fields
Flex fields are a set of generic attributes attached to a task which can be populated
with information from the task payload. This information can be displayed in the
task listing as well as used for querying (and defining workflow rules in the
worklist application).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[451]

Populating Flex Fields
The simplest way to initialize the Flex fields is in the BPEL process which creates the
task. If you click on the plus sign next to a Human Task activity, this will expand
the task showing you the individual BPEL activities that are used to invoke it, as
illustrated in the following figure:

You will see that this starts with a number of assign activities, the second one of
which (circled) is used to set the system attributes. To set the Flex fields simply open
the assign activity, and add an extra copy statement for each Flex field required.

For our purposes we will set the following Flex fields in our Order Fulfillment task.

Flex field Attribute
textAttribute1 itemId

textAttribute2 buyerId

numberAttribute1 salePrice

numberAttribute2 totalPrice

dateAttribute1 saleDate

textAttribute3 orderStatus

textAttribute4 nextAction

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[452]

You will need to update the local variable initiateTaskInput which will be
defined in the scope with the same name as the Human Task (OrderFulfillment in
our case). The Flex fields are located in the systemMessageAttributes element of
the task element as illustrated in the following screenshot:

Accessing Flex fields
Once we have populated the Flex fields we can access them in our query just like any
other task attribute. This will give us a displayColumnList that looks as follows:

<displayColumnList
 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">
 <displayColumn>TaskNumber</displayColumn>
 <displayColumn>Title</displayColumn>
 <displayColumn>UpdatedDate</displayColumn>
 <displayColumn>TextAttribute1</displayColumn>
 <displayColumn>TextAttribute2</displayColumn>
 <displayColumn>NumberAttribute1</displayColumn>
 <displayColumn>NumberAttribute2</displayColumn>
 <displayColumn>DateAttribute1</displayColumn>
 <displayColumn>TextAttribute3</displayColumn>
 <displayColumn>TextAttribute4</displayColumn>
</displayColumnList>

Specifying the query predicate
The next step is to specify the query predicate so that it only returns those tasks that
we are interested in. We will first look at the query we need to construct to return all
sold items for a particular seller.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[456]

Thus you have to create the XPath manually. The simplest way to do this is to create
a mapping from the task to your target variable using the visual editor and then
modify the XPath manually as shown in the following screenshot:

Updating a task instance
Our second category of Task Based Business Service is the one that allows the
buyer or seller to perform actions against the workflow task. For the purpose
of this section we will look at the implementation of the setShippingDetails
operation, though the other operations submitInvoice, notifyPaymentMade,
confirmPaymentReceived, notifyItemShipped, and confirmItemReceived
all follow the same basic pattern.

setShippingDetails is used to complete the first step in the workflow, namely
update the task payload to contain the shipping name and address of the buyer
as well as provide any additional shipping instructions. Finally it needs to set the
outcome of the current step to COMPLETED so that the task moves on to the next
step in the workflow. The following diagram shows the input fields for this operation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[457]

From this we can see it contains the buyer's credentials, required to authenticate
with the Workflow Services, the orderNo which we will use to locate the appropriate
order fulfillment task, and the actual shipTo details which we will use to update
the task.

To implement this operation we are going to make use of the Task Service provided
by the Workflow Service; this provides a number of operations which act on a task.

Defining a PartnerLink for the Task Service
The WSDL for the Task Service is defined in the file TaskServiceWSIF.wsdl which
can be found in the directory:

<SOA_HOME>\bpel\system\services\schema

The WSDL itself imports a number of other WSDLs and schemas, some of which
in turn import additional schemas, all of which can be located in the same directory.
In total we need to include the following files in our BPEL project:

RoutingSlip.xsd•	
TaskService.xsd•	
TaskServiceInterface.wsdl•	
TaskServiceWSIF.wsdl•	
WorkflowCommon.xsd•	
WorkflowTask.xsd•	

To include these files within our project, we can copy them into the bpel sub-
directory in the same way we described earlier for the Task Query Service and create
a corresponding PartnerLink.

An alternative approach is to add a Human Task activity to our BPEL process. In
doing so, JDeveloper will automatically add all the required resources to our project.
This is because BPEL makes use of the same Task Service to create a workflow task in
the first place. We can then remove the actual Human Task activity from our process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Workflow Patterns

[458]

Using the updateTask operation
Most of the tasks provided by this service are granular in nature and only update
a specific part of a task. Thus they only require the taskId and the corresponding
part of the task being updated as input.

However, our operation needs to update multiple parts of a task, that is, the order
held in the task payload, the corresponding Flex fields and the task outcome. For
this we will use the updateTask operation. The following diagram shows its
expected input:

From this we can see that it expects the standard workflowContext as well as the
complete updated task element.

The simplest way to achieve this is to use the Task Query Service to get an
up-to-date copy of our task. We do this in exactly the same way we did for our
getOrderDetails operation, but then modifying it as appropriate and calling the
updateTask operation to make the changes.

Updating the task payload
The only area of complexity is updating the order directly within the task
payload. This is for the same reason we mentioned earlier when implementing the
getOrderDetails operation; as the payload is defined as xsd:any, we can't use the
XPath mapping tool to visually map the updates.

The simplest way to work around this is to first extract the order from the task
payload into a local variable (which we do in exactly the same way that we did for
our getOrderDetails operation).

Once we've done this we can update the shipTo element of the order to hold the
shipping details as well as update its status to Awaiting Shipping Costs to reflect
the next step in the workflow.

Once we have updated the order, we must insert it into the task payload; this is
essentially the reverse of the copy operation we used to extract it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 15

[459]

Updating the task Flex fields
Once we have updated the task payload we then need to update the corresponding
Flex fields so that they remain synchronized with the order. We do this using an
assign activity in a similar way that we used to set the Flex fields when creating
the task in our OrderFulfillment process.

Updating the task outcome
Finally, we need to set the task outcome for the current step (this is effectively the
same as specifying a task action through the worklist application). In our case we
have defined two potential outcomes: COMPLETED or ABORTED.

For setShippingDetails (as with all of our operations), we want to set the task
outcome to COMPLETED. Note that this won't actually complete the task, rather it
completes the current assignment, and in our case since all our routing policies are
single approver, it will complete the current step in the workflow and move the task
on to the next step. Only once the final step is completed will the task complete and
control be returned to the OrderFulfillment BPEL process.

To set the task outcome, we only need to set the outcome element (located
in the task systemAttributes element) to COMPLETED. However, it isn't
quite that straightforward; if you look at the actual task data returned by the
getTaskDetailsByNumber operation, the outcome element isn't present.

Thus, if we use a standard copy operation to try to assign a value to this element we
will get an XPath exception.

Instead what we need to do is create the outcome element and its associated value
and append it to the systemAttributes element. To do this within the assign
activity, use an Append Operation as shown in the following diagram:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Implement Services

[462]

Asserting facts
The first step is for the decision service to assert all the facts passed by the BPEL
process into the working memory of the rules sessions, ready for evaluation by
the rules engine.

When defining the decision service, it's important to check the box Check here to
assert all descendants from the top level element. Otherwise, only the top level
XML element will be asserted as a fact.

Once the facts have been asserted into working memory, the next step is to execute
the ruleset.

Executing the ruleset
Recall that a ruleset consists of one or more rules, and that each rule consists of two
parts: a rule condition, which is composed of a series of one or more tests, and an
action-block or list of actions to be carried out when the rule condition evaluates to
true for a particular fact or combination of facts.

It's important to understand that the execution of the rule condition and its
corresponding action block are carried out at two very distinct phases within the
execution of the ruleset.

Rule activation
During the first phase, the rules engine will test the rule condition of all rules to
determine which facts or combination of facts the rule conditions evaluate to true.
A group of facts that together cause a given rule condition to evaluate to true,
is known as a fact set row, with a fact set being a collection of all fact set rows that
evaluate to true for a given rule.

In many ways it's similar to the concept of executing the rule condition as a query
over the facts in working memory, with every row returned by the query equivalent
to a fact set row, and the entire result set being equivalent to the fact set.

For each fact set row, the rules engine will activate the rule. This involves
adding each fact set row with a reference to the corresponding rule to the agenda
of rules which need to be fired. At this point, the action block of any rule has not
been executed.

When rule activations are placed on the rule agenda, they are ordered based on
the priority of the rule, with those rules with a higher priority placed at the top of
the agenda.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 16

[463]

When there are multiple activations with the same priority, the most recently
added activation is the next rule to fire. However, it's quite common for multiple
activations to be added to the ruleset at the same time; the ordering of these
activations is not specified.

Rule firing
Once all rule conditions have been evaluated, then the rule engine will start to
process the agenda. It will take the rule activation at the top of the agenda and
execute the action block for the fact set row and the corresponding rule.

During executing of the action block, the rule may assert new facts, assert updated
facts, or retract exiting facts from the working memory. As the rule engine does this,
it may cause existing activations to be removed from the agenda, or may add new
activations to the agenda.

When an activation is added to the agenda, it will be inserted into the agenda based
on the priority of the rule. If there are already previous activations on the agenda with
the same priority, the new activation will be inserted in front of these activations.
This means that the set of new activations will be processed before any of the older
activations with the same priority, but after any activation with a higher priority.

If a rule asserts a fact that is mentioned in its rule condition, and the rule
condition is still true, then a new activation for the same fact set row
will be added back to the agenda. So the rule will be fired again. This
can result in a rule continually firing itself and thus the ruleset never
completing.

Once the rule engine has completed the execution of the action block for an
activation, it will take the next activation from the agenda and process that. Once all
activations on the agenda have been processed then the rule engine has completed
execution of the ruleset.

Retrieve result
Once the ruleset has completed, the decision service will query the working memory
of the rule session for the result, specifically the facts that we configured the decision
service to watch, which the decision service will then return to the BPEL process.

Note, for each fact that we have configured the decision service to watch, we should
ensure that just a single fact of that type will reside within the working memory of
the decision service upon completion of executing the ruleset. If zero or multiple
facts exist, then the decision service will return an exception to the BPEL process.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Implement Services

[464]

Session management
Before executing a ruleset, the decision service must first obtain a rule session.
Creating a rule session involves creating a RuleSession object and loading the
required repository, which has significant overhead. Instead of creating a new
RuleSession to handle each request, the decision service maintains a pool of
shared objects that it uses to service requests.

When we invoke a decision service within a BPEL process, the decision service will
allocate RuleSession object from this pool to handle the request.

In most scenarios, we will choose to assert the facts, execute a ruleset and retrieve
the result within a single operation. At the end of this, the final step is to reset the
session, so that it can be returned to the pool of RuleSession objects and reused to
handle future requests. This pattern of invocation is known as a stateless request, as
the state of the session is not maintained between operations.

However, the decision service also supports a stateful invocation pattern, which
enables you to split these steps across multiple operations when more flexibility
is required.

For example, you can assert some facts within the first invocation, execute the ruleset
and retrieve the results (without resetting the session). Based on the result, you may
then take one of multiple paths within your BPEL process. At which point you may
re-invoke the decision service, asserting some additional facts, re-execute the ruleset,
retrieve an updated result, and then reset the rule session.

However, stateful sessions should be used with care as the state of the rule session
is not persisted as part of the dehydration of a BPEL process, so won't survive a
server shutdown.

Debugging a ruleset
Because the order in which rules and facts are evaluated are not specified for rules
with equal priority, when you don't get the result you are expecting it can potentially
be quite hard to debug. In these situations it can be extremely useful to see what facts
are being asserted, the activations that are being generated and the rules as they are
being fired.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 16

[465]

The decision service can be configured to log these events, by specifying the
following properties:

•	 watchFacts: Logs information about each fact as it is asserted, retracted, or
modified within the working memory of a ruleset. As each fact is asserted, it
is given a numeric identifier prefixed with f-, which uniquely identifies that
fact within the rule session.
watchActivations•	 : Logs information about each rule activation as it's
placed on the agenda, including details of the facts in the row fact set for
the activation.

•	 watchRules: Logs information about each rule as it fires, detailing the rule
fired as well as the facts in the row fact set causing the rule to fire.

These properties must configured by adding them to the decisonservices.xml file
shown as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules">
 <ruleEngineProvider name="obay.ob1" provider="Oracle">
 <repository type="File">
 <file>repositoryresource:obay.obr</file>
 </repository>
 <properties>
 <property name="watchRules">true</property>
 <property name="watchActivations">true</property>
 <property name="watchFacts">true</property>
 </properties>
 </ruleEngineProvider>
 …
</decisionServices>

This file isn't available within JDeveloper as part of the BPEL project. Hence it needs
to be manually opened and modified using JDeveloper or a text editor. The file can
be found in the following directory

<Project Dir>\decisionservices\AuctionService\war\WEB-INF\classes

Here, <Project Dir> is the home directory of the BPEL project using the decision
service. Once you have set these properties you still have to configure the BPEL
domain to log these events, by setting the logger default.collaxa.cube.services
to debug.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Implement Services

[466]

Using DM.println to add additional logging
Even with the above logging information, it can be useful to produce more fine grain
logging within your ruleset. You can do this using the DM.println function within
your ruleset.

This function can be used either within your own functions or called as part of the
action block for a rule. Again to enable these statements to be written to the BPEL
domain log, you need to set the logger default.collaxa.cube.services to debug.

Using business rules to implement an
auction
A good candidate for a service to implement as a ruleset is the oBay auction service.
You may recall that we looked at the oBay auction process in Chapter 14 ; what we
didn't cover in this chapter is the actual implementation of how we calculate the
winning bid.

In this scenario our facts consist of the item up for auction and a list of bids which
have been submitted against the item. So we need to implement a set of rules to be
applied against these bids in order to determine the winning bid.

Defining our XML Facts
The first step in implementing our ruleset is to define our XML Facts; we can create
these using the auction.xsd that we defined as part of our canonical model for
oBay, shown as follows:

<?xml version="1.0" encoding="windows-1252"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schema.packtpub.com/obay/auc"
 targetNamespace="http://schema.packtpub.com/obay/auc"
 elementFormDefault="qualified" >

 <xsd:element name="auctionItem" type="tAuctionItem"/>
 <xsd:element name="bids" type="tBids"/>
 <xsd:element name="bid" type="tBid"/>

 <xsd:complexType name="tAuctionItem">
 <xsd:sequence>
 <xsd:element name="auctionType" type="xsd:string"/>
 <xsd:element name="startTime" type="xsd:dateTime" />
 <xsd:element name="endTime" type="xsd:dateTime" />
 <xsd:element name="startingPrice" type="xsd:double" />

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 16

[467]

 <xsd:element name="reservePrice" type="xsd:double"/>
 <xsd:element name="winningPrice" type="xsd:double"/>
 <xsd:element name="winningBid" minOccurs="0" type="tBid"/>
 <xsd:element name="bidHistory" type="tBids"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tBids">
 <xsd:sequence>
 <xsd:element name="bid" type="tBid" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tBid">
 <xsd:sequence>
 <xsd:element name="bidId" type="xsd:string" />
 <xsd:element name="bidderId" type="xsd:string" />
 <xsd:element name="bidtime" type="xsd:dateTime"/>
 <xsd:element name="maxAmount" type="xsd:double"/>
 <xsd:element name="bidAmount" type="xsd:double"/>
 <xsd:element name="status" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

</xsd:schema>

Examining this we can see that this maps nicely to facts that we have already
identified. We have the element auctionItem which maps to our auction fact.

This has a start and end time during which bids can be received, a starting price and
a reserve price (which defaults to the starting price if not specified). It also contains
an optional winning bid element, which holds details of the current winning bid for
the auction (if there is one) as well the bid history element, which contains details of
all failed bids.

When we first create an auction, we won't have received any bids. So initially our
auctionItem will not contain a winning bid and the bid history will be empty, as in
the following example:

<auctionItem>
 <auctionType>STD</auctionType>
 <startTime>2008-09-01T15:45:48 </startTime>
 <endTime>2008-09-08T15:45:48</endTime>
 <startingPrice>1.00</startingPrice>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Implement Services

[468]

 <reservePrice>5.00</reservePrice>
 <winningPrice>0.00</winningPrice>
 <bidHistory/>
</auctionItem>

Against this we need to apply one or more bids; this is contained within the fact
bids, which contains one or more bid elements of type tBid.

As part of the auction process, as each bid is submitted to the BPEL
process, it will assign a unique ID to the bid (within the context of the
auction), set the bidtime to the current time and set the status of the
bid to NEW, before submitting it to the Auction ruleset.

So, for example, if we submitted the following set of bids against the above item:

<bids>
 <bid>
 <bidId>1</bidId>
 <bidderId>jcooper</bidderId>
 <bidtime>2008-09-06T12:27:14</bidtime>
 <maxAmount>12.00</maxAmount>
 <bidAmount>0.00</bidAmount>
 <status>NEW</status>
 </bid>
 <bid>
 <bidId>2</bidId>
 <bidderId>istone</bidderId>
 <bidtime>2008-09-07T10:15:33</bidtime>
 <maxAmount>10.00</maxAmount>
 <bidAmount>0.00</bidAmount>
 <status>NEW</status>
 </bid>
</bids>

we would want the rule engine to return as an updated auctionItem fact that
looked like the following.

<auctionItem>
 <auctionType>STD</auctionType>
 <startTime>2008-09-01T15:45:48 </startTime>
 <endTime>2008-09-08T15:45:48</endTime>
 <startingPrice>1.00</startingPrice>
 <reservePrice>5.00</reservePrice>
 <winningPrice>10.50</winningPrice>
 <winningbid>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Implement Services

[470]

At this point we can actually save and run the ruleset from our Auction Process.
Assuming everything works as expected, it will return a result containing details of
the actual auction item that we passed in. All that remains now is for us to write the
rules to evaluate our list of bids.

Using a global variable to reference the
result set
When we configure a decision service, we specify one or more facts that we want the
decision service to watch (that is, AuctionItem in the previous example); these are
often referred to as the result set.

Many of our rules within the ruleset will require us to update the result set. For
example, every time we evaluate a bid, we will need to update the AuctionItem fact
accordingly, either to record a bid as the new winning bid or add it to the bid history
as a failed bid.

When a rule is fired, the action block is only able to operate on those facts contained
within its local scope, which are those facts contained in the fact set row for that
activation. Or put more simply, the rule can only execute actions against those facts
which triggered the rule.

This means that for any rule which needs to operate on the result set, we would need
to include the appropriate test within the rule condition in order to pull that fact into
the fact set row for the activation. So, in the case of our Auction ruleset, we would
need to add the following statement to every rule which needed to operate on the
AuctionItem fact:

AuctionItem is a AuctionItem

This just adds an extra level of complexity to all our rules, particularly if you have
multiple facts contained within the result set. It's considered better practice to define
a global variable which references the result set, which we can access within the
action block of any rule and within any function we define.

Defining a global variable
To create a global variable, from within the Definitions tab, select the Variables
folder. This will bring up the Variables Summary, which lists all the variables
currently defined to our ruleset. Click Create to bring up the Variable editor page
as shown in the screenshot.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Using Business Rules to Implement Services

[472]

The key point worth noting is that we have specified a priority of 100 (the default
is 0) for the rule. This is to ensure that this rule is fired before any of the other rules
which reference this variable.

Writing our auction rules
The next step is to write the rules to determine the winning bid. We could write a
very simple rule to find the highest bid by writing a rule condition statement such
as the following:

winningBid is a TBid
There is no case where otherBid is a TBid and
 otherBid.maxAmount > winningBid.maxAmount

This will match the bid which has no other bids with a greater bid amount. However,
if we examine the bidding rules of an auction, we can see that the highest bid doesn't
always win.

The reason being that once a successful bid has been placed, the next bid has to be
equal to the winning amount plus a full bid increment; otherwise it's not a valid
bid. In addition if two maximum bids are equal, then the bid that was placed first is
deemed the winning bid.

Evaluating facts in date order
In other words we need to evaluate our bids in date order, the earliest first, and then
the next, and so on. Once a bid has been processed, its status will be set to WINNING,
OUTBID, or INVALID as appropriate.

So we need to write a rule to select a bid with a status of NEW which has an earlier
bidtime than any other bid with a status of NEW. This can then be evaluated against
our auction rules to determine its success or otherwise.

The first part of the rule condition is straight forward; we just need to implement
a pattern such as:

nextBid is a TBid and
 nextBid.status == "NEW"

This will of course match all bids with a status of NEW.

Chapter 16

[473]

Checking for non-existent fact
So we need to define a second pattern that checks to see if no other bids exist
(with a status of NEW) with an earlier bid time; in other words we have to check
for the non-existence of a fact.

We do this by defining a pattern of type There is no case which will fire once
if there are no matches, that is, no earlier bids. So our extended rule condition is
implemented as follows:

nextBid is a TBid and
 nextBid.status == "NEW"
There is no case where anotherBid is a TBid and
 anotherBid.status == "NEW" &&
 anotherBid.bidtime.before(nextBid.bidtime)

This condition works as follows; the first test will select all the bids with a status of
NEW. For each bid selected it will execute the second test where it will select all other
bids with a status of new and an earlier bid time; if no bids are selected then this test
will evaluate to true and the rule will be activated and placed on the agenda.

When the activation is placed on the agenda, only the fact referenced by nextBid is
included in the fact row set, because for the rule condition to be true, anotherBid
won't actually reference any other bid.

Using Calendar functionality
You may have noted that the property bidtime, which is defined within our schema
as xsd:datetime maps to a java.util.Calendar. When comparing properties of
type Calendar within a rule, we can't use the standard operators (such as >, >=, <=
and <) to do this.

Rather we need to use the appropriate methods (for example before, after)
provided by the Calendar class. Now we could write our own functions that wrap
these methods calls, or alternatively as we have done above invoke them directly
within our rules.

In order to do this, we first need to import the java.util.Calendar class as a Java
fact within our dictionary. Once we have done this, the rule editor won't expose the
methods. Rather we need to specify that our test is an Advanced Test and manually
enter the code.

Using Business Rules to Implement Services

[474]

Updating the bid status
Once we have located the next bid, we need to set its status to NEXT and re-assert it;
we do this with the following statements in our action block.

Assign nextBid.status = "NEXT"
Assert nextBid

An interesting side effect is that as soon as we assert our modified bid, the rule
engine will re-apply the test condition and potentially find another bid with a status
of "NEW", that is, the next bid to be processed after this one.

On finding this bid, it will place a new activation on the agenda for this rule
referencing this new bid. To prevent this rule from firing before any of the rules
which process bids with a status of "NEXT", we have set the priority of this rule to 0.

So the complete rule to get the next bid is defined as follows:

Using inference
Once we have identified the next bid, we could then, within the same rule, include
the logic to determine the success or otherwise of the bid. However, when processing
a bid, we have to deal with the following three potential scenarios:

1. The next bid is higher than the current winning bid.
2. The current winning bid is higher than or equal to the next bid.
3. This is our first bid and thus by default it is our winning bid.

Chapter 16

[475]

Before evaluating a bid we also need to check that it's valid; specifically we
must check:

The max bid amount is greater than or equal to the starting price of the item.•	

The max bid amount is greater than the current winning price plus one •	
bidding increment.

If we encompassed all these checks within a single rule, we would end up with a
very complex rule.

For example, to write a single rule for the first scenario, we would need to write a
rule condition to identify the next bid, validate it and finally check if it is higher than
the current winning bid, so would end up with a rule condition such as this:

nextBid is a TBid and
 nextBid.status == "NEW"

There is no case where anotherBid is a TBid and
 anotherBid.status == "NEW" &&
 anotherBid.bidtime.before(nextBid.bidtime)

auctionItem is a TAuctionItem and
 nextBid.maxAmount >= auctionItem.startingPrice

winningBid is a TBid and
 winningBid.status == "WINNING" &&
 nextBid.maxAmount >= winningBid.bidAmount +
 getBidIncrement (winningBid.bidAmount)
 nextBid.maxAmount > winningBid.maxAmount

We would then need to re-implement most of this logic for the other two scenarios.

Better practice is to use inference, that is, if A implies B, and B implies C, then we can
infer from this that A implies C. In other words, we don't have to write this all within
a single rule; the rule engine will automatically infer this for us.

In our scenario this means writing a rule to get the next bid (as covered above). Next,
writing two rules to validate any bid with a status of next, these rules will retract
any invalid bids and update their status to reflect this. Finally we need to write three
rules, one for each of the scenarios identified above to process each valid bid.

The only thing we need to take into account is that the validation rules must have a
higher priority than the rules which process the next bid. Hence, that they retract any
invalid bids before they can be processed.

Using Business Rules to Implement Services

[476]

Processing the next valid bid
Using inference we can now write our rules to process the next bid on the basis that
we already know which bid is next and that the bid is valid. Using this approach,
the rule condition for the first scenario where the next bid is higher than the current
winning bid, would be specified as:

nextBid is a TBid and
 nextBid.status == "NEXT"

winningBid is a TBid and
 winningBid.status == "WINNING" &&
 winningBid.maxAmount < nextBid.maxAmount

This, as we can see, is considerably simpler than the previous example.

If this evaluates to true for our next bid, then we have a new winning bid and need
to take the appropriate actions to update the affected facts as well as the result set.

The first action we need to take is to calculate the actual winning amount by adding
one bidding increment to the maximum amount of the losing bid. So the first
statement in our rules action block is as follows:

Assign nextBid.bidAmount = winningBid.maxAmount +
 getBidIncrement (winningBid.maxAmount)

Where DM.getBidIncrement is a function that calculates the next bid increment,
based on the size of the current winning amount.

Next, we need to update its status to WINNING and re-assert the bid in order that it
will be re-evaluated as a winning bid by our ruleset.

In addition, we need to update the status of our previous winning bid to OUTBID and
retract, if from the rule space, as we no longer need to evaluate it.

Using functions to manipulate XML Facts
As part of the process of evaluating a new winning bid, we also need to update our
result set. This includes creating a new XML element of type TBid to hold the details
of the losing bid and insert this into the bidHistory element as well as updating the
winningBid element with details of our new winning bid.

To create new instances of XML elements we need to use the corresponding
JAXB ObjectFactory class that the rule author generated when we imported
the auction schema.

Chapter 16

[477]

Rather than performing this manipulation of the XML structure directly within the
action block of our rules, it's considered best practice to implement this as a function,
which can then be called from our rule. This helps keep our rules simpler and more
intuitive to understand.

So for the above purpose we need to define two functions assertWinningBid and
retractLosingBid.

Asserting a winning bid
To record details of a new winning bid in the result set, we have defined the function
DM.assertWinningBid, which takes a single parameter bid of type TBid, used to
pass in a reference to the winning bid. The code for this function is as follows:

// Update Status of Winning Bid
bid.setStatus("WINNING");
assert(bid);

// Update result set with details of Winning Bid
varAuctionItem.setWinningPrice(bid.getBidAmount());

com.packtpub.schema.obay.auction.TBid winningBid =
varAuctionItem.getWinningBid();

// Create Winning Bid if one doesn't exist
if (winningBid == null)
{
 com.packtpub.schema.obay.auc.ObjectFactory of =
 new com.packtpub.schema.obay.auc.ObjectFactory();

 winningBid = of.createTBid();

 varAuctionItem.setWinningBid(winningBid);
}

winningBid.setBidAmount(bid.getBidAmount());
winningBid.setBidderId(bid.getBidderId());
winningBid.setBidId(bid.getBidId());
winningBid.setBidtime(bid.getBidtime());
winningBid.setMaxAmount(bid.getMaxAmount());
winningBid.setStatus(bid.getStatus());

Looking at this, we can see it breaks into two parts. The first part updates the status
of the winning bid to 'WINNING', and asserts the bid. Now, we didn't need to include
this functionality within the function, we could have achieved the same result within
the rule itself be defining the following actions:

Assign nextBid.status = "WINNING"
Assert nextBid

Using Business Rules to Implement Services

[478]

We need to process a winning bid in multiple rules; including this in the function
both simplifies our rules and ensures that we handle winning bids in a consistent
way. Either approach is valid; it just comes down to personal preference.

However, to indicate to callers of the function that we are asserting the winning bid
in the function, we have prefixed the name of the function with 'assert'.

The second part of the function is used to update the result set with details of the
winning bid. The first line updates the element winningPrice to contain the bid
amount of the winning bid.

The next set of code is more interesting. First it calls the method getWinningbid()
on the result set to get a reference to the winning bid element. This may return null,
as the AuctionItem may not currently have a winning bid (that is, if this is the first
winning bid).

To create any new XML elements we need an appropriate ObjectFactory, so we
create a new instance of one with the following line of code:

com.packtpub.schema.obay.auc.ObjectFactory of =
 new com.packtpub.schema.obay.auc.ObjectFactory();

Next we use the ObjectFactory to create a new element of type TBid as follows:

 winningBid = of.createTBid();

Finally we update the winning bid element in AuctionItem to point to this newly
created element as follows:

 varAuctionItem.setWinningBid(winningBid);

Once we've done this we update the details of the winningBid element with those of
the bid element.

The final thing to note is that we are not asserting varAuctionItem or any of the
elements we have added to it. Hence, none of these changes will be visible to our
ruleset, which is exactly what we want. This is because we are using the result set as
a place to build up the result of executing our ruleset and thus don't want it included
in the evaluation.

Chapter 16

[479]

Retracting a losing bid
To record details of a losing bid in the result set, we have followed a similar
approach and defined the function DM.retractLosingBid, which takes a single
parameter bid of type TBid. The code for the function is as follows:

// Update Status of Losing Bid
bid.setStatus("OUTBID");
bid.setBidAmount(bid.getMaxAmount());
retract(bid);

// Record Details of Bid in Result Set
com.packtpub.schema.obay.auc.TBid losingBid = DM.cloneTBid(bid);

java.util.List bidHistory = varAuctionItem.getBidHistory().getBid();

if (bidHistory.isEmpty()) {
 bidHistory.add(losingBid);
}
else {
 bidHistory.add(0,losingBid);
}

Looking at this, we can see that, as with the previous function, it breaks into
two parts. The first part updates the status of the losing bid and then retracts it.
The second part of the function is used to record details of losing bid within the
bidHistory element of our result set.

The first line of this part calls the function DM.cloneTBid to create a new element of
type TBid and initialize it with the values of the losing bid using a approach similar
to the one previously used to create a new winning bid element.

Once we've done that, we then add it to the bidHistory element. The bid history
itself is a collection of bid elements. JAXB implements this as a java.util.List, the
method getBid returns a reference to this list.

The final part of the function inserts the losing bid at the start of this list, so that the
bid history contains the most recently processed bid at the start of the list.

Using Business Rules to Implement Services

[480]

Rules to process a new winning bid
With our functions defined, we can finish the implementation of the rule for a new
winning bid, which is shown in the following screenshot:

Due to the use of inference to simplify the rule condition and the use of functions
to manipulate the result set, the final rule is very straightforward.

The only thing we need to take into account is the priority of the rule, which we have
set to 50. This is to ensure that the validation rules for a bid have a higher priority so
that they are fired first.

Validating the next bid
For the above rule to be complete we need to define the rules which validate the next
bid before we process it; the two conditions that we need to check are:

The max bid amount is greater than or equal to the starting price of the item.•	

The max bid amount is greater than the current winning price plus one •	
bidding increment.

Chapter 16

[481]

To validate that max bid amount is greater than or equal to the auction starting price,
we have defined the following rule:

The function retractInvalidBid is almost identical to the function
retractLosingBid, the only difference being that it sets the status of the bid to
'INVALID'.

We have also defined a similar rule, validateBidAgainstWinningPrice to validate
that the max bid amount is greater than the current winning amount plus one
bidding increment.

Each of these rules has a priority of 80, which is higher than the rules for processing
the next bid. This ensures that any invalid bids are retracted before they can
be processed.

Using Business Rules to Implement Services

[482]

Rule to process a losing bid
The rules to handle the other potential outcomes for the next bid, namely where it's
our first bid, and thus by default a winning bid or a losing bid, are straightforward,
apart for one exception. The rule for the scenario where the next bid is a losing bid is
shown here:

If we look at the first action that sets the bid amount of the winning bid equal to the
maximum amount of the losing bid plus the next bid increment, there is a possibility
that this could cause the bid amount to exceed the maximum amount specified.

For example if the maximum bid was $10, with the current winning amount being
$5, then it would be valid for the next bid to be $10. This bid would fail but the new
winning amount according to the above would be $10.50.

Capping the winning bid amount
To prevent this from happening we need to write another rule to test if the winning
amount of the bid is greater than its maximum amount and if it is then set the
winning amount equal to the maximum amount. The rule for this is shown in the
following screenshot:

Chapter 16

[483]

The rule itself is straightforward. But as this rule is being used to correct an
inconsistent state we have given it a priority of 90 so that it is fired even before
the validation rules.

Complete ruleset
In total we have eight rules within our Auction ruleset; these are listed below in
order of priority.

Rule Priority
InitialiseVarAuctionItem 100
CapWinningBid 90
ValidateBidAgainstStartPrice 80
ValidateBidAgainstWinningPrice 80
FirstBid 50
NewWinningBid 50
LosingBid 50
GetNextBid 0

The first rule is just used to initialize the global variable, which references the result
set. The next rule, CapWinningBid, ensures that we don't breach the maximum
amount for a bid. The next two rules: ValidateBidAgainstStartPrice and
ValidateBidAgainstWinningPrice are just simple validation rules.

Using Business Rules to Implement Services

[484]

The majority of the work is done in the next three rules: FirstBid, NewWinningBid
and LosingBid, each of which deals with one of the three possible outcomes each
time we have to process a new bid. The final rule, GetNextBid, is used to ensure that
we process each bid in date order.

Performance considerations
In the example we've been working on the basis that every time we receive a new bid
we add that to our list of bids received and then submit the auction and the entire list
of bids to the ruleset for evaluation.

The obvious issue with this technique is that we are re-evaluating all bids that we
have received from scratch every time we receive a new bid.

One possible solution would be to have a stateful rule session. With this approach
we would first submit the auction item to the decision service, but no bids. Then, as
we receive a bid, we could assert that against the ruleset and get the updated result
back from the decision service.

The issue with this (as we discussed at the start of this chapter) is when the BPEL
process dehydrates, which in the case of our auction process will happen each time
we wait for the next bid, the rule session is not persisted. Consequently, whenever
the server is restarted we will lose the rules session of any auction in progress, which
is clearly not desirable.

Managing state within the BPEL process
One alternative is to use the BPEL process to hold the state of the rule session. With
this technique we need to ensure that all relevant facts contained within the rule
session are returned within the facts that the decision service is watching.

Next time we invoke the decision service, we can re-submit these facts (along with
any new facts to be evaluated) and re-assert them back into a new rule session.

In the case of our Auction ruleset, the relevant facts that need to be maintained
between invocations are auctionItem and winningBid which is contained
within auctionItem.

Chapter 16

[485]

With this approach, each time we receive a new bid we just need to assert the
auctionItem element as returned by the previous invocation of the ruleset and
the new bid (within the bids element). As a result, each time we submit a new
bid, rather than re-evaluate all bids to determine the winning bid, we just need to
evaluate the new bid against the winning bid, which is clearly more efficient.

To support this, we do not have to make any modifications to our ruleset, because
we have implemented it in such a way that it supports either asserting all bids in
one go or submitting them incrementally.

The only remaining drawback with this approach is that the ruleset will still assert
all bid objects contained within the bidHistory element of auctionItem into
working memory. While this won't change the outcome, it still means all these bids
will be evaluated in the process of firing the rules, though none of them will cause an
activation to happen.

Where we have only a relatively small number of facts this doesn't really cause a
problem, but if the number of facts is in the high hundreds or order of 1000s, then
this may make a noticeable difference.

Using functions to control the assertion of facts
The reason that all facts are asserted into the working memory of the rule session
is that we checked the box Check here to assert all descendants from the top level
element.

This causes the function assertXPath to be called for each fact passed in by the
decision service, which causes all the descendants of the fact elements to be asserted
at run time.

An alternative is to leave this unchecked and write a function for each fact passed in
that asserts just the desired facts. So in our case we would write a function to assert
the winningBid element in auctionItem and all the bid elements contained in bids.

Using Business Rules to Implement Services

[486]

Summary
The Business Rules Engine is built on a powerful inference engine, which it
inherits from its roots in the Rete Algorithm. We spent the first part of this chapter
explaining how the rule engine evaluates facts against rules. The operation of the
Rete algorithm can be a challenge to completely understand, so re-reading this
section may be beneficial.

However, once you have an appreciation for how the rule engine works and can
start "thinking in Rete", you have a powerful tool not just for implementing complex
business rules but also a certain type of service.

We demonstrated this by developing a complete ruleset to determine the
winning bid for an auction. Looking at the final list of rules, we can see that
we needed relatively few to achieve the end result, and that none of these were
particularly complex.

As is the case when implementing a more typical decision services, we have the
added advantage that we can easily modify the rules that implement a service
without having to modify the overall application, giving us an even greater degree
of flexibility.

The Importance of Bindings
When we talk about web services, most people assume that we are going to
bind (that is, connect) to the service using SOAP over HTTP. Indeed, this is often
the case; however, Oracle SOA Suite supports binding to web services over
multiple protocols. This chapter looks at the different bindings supported and
the various advantages they have, including better support for transactions and
improved performance.

The web services stack
To understand how bindings affect our applications, we need to put them into the
context of the web services stack. For the purposes of this discussion, we focus only
on the exposure of services within the web services stack, ignoring composition of
services through BPEL and the service bus.

Logical view of web services stack
A logical view of the web services stack is shown in the following diagram and
identifies three key components:

1. A service description layer that provides a consistent view of how services
are described. In particular, it must describe what interfaces are supported
by the service, what messages are used by those services, and finally how
those services are mapped onto physical formats and transport facilities.
This role is fulfilled by WSDL, the Web Services Description Language
which is covered in more detail in the next section.

2. A message format for transmission of service requests and service responses.
This is normally described by SOAP, the Simple Object Access Protocol.
However, as the diagram shows, other message formats are possible.

The Importance of Bindings

[488]

3. A physical transport mechanism for delivery of messages. This may be
covered by a SOAP profile, such as SOAP over HTTP (the most commonly
used mechanism) or SOAP over FTP. However, it is also possible to have
other transports being used with non-SOAP message formats.

The join between the service description layer and the message layer is known as
the binding of the service, and specifies how the actual communication protocols
are used by the service. This binding provides a wrapper to a physical service
implementation, which may be in Java, C#, or some higher level implementation
mechanism such as BPEL or a service bus.

Logical Stack Physical Stack

Service
Description

Web Service
Description
Language

Web Service
Description
Language

Web Service
Description
Language

Message
Format SOAP JCA WSIF

Message
Transport

HTTP / FTP /
JMS ...

SQL / JMS /
MQ / AQ / Files /

FTP

POJO / EJB /
HTTP

Physical Service Implementation

Physical view of web services stack
When we look at physical implementations of the web services stack, we notice that
virtually all implementations use WSDL to describe the service. This provides a
high degree of inter-operability at the tool layer in particular, as tools only need to
understand WSDL to make use of a service.

The most common description of message formats is done by using SOAP. SOAP
allows messages to be described using XML, either with an XML Schema definition
or through SOAP specific XML descriptions. When SOAP and XML is not being
used, the message formats are generally mapped onto very specific native formats,
such as Java objects or SQL types.

Chapter 17

[489]

SOAP is very flexible about how messages are physically transported. A SOAP
message may be transported across HTTP or some other protocol, such as JMS or
FTP. In contrast, other bindings tend to be limited to a single transport, such as a
Java binding that would use Java types to describe messages, but then only offer the
option of directly calling Plain Old Java Objects (POJOs).

Understanding Web Service Description
Language (WSDL)
We will now look at how the Web Service Description Language (WSDL) describes
services, before exploring why we have a need for all these different binding layers.
WSDL describes the interfaces supported by a service. It also describes the data they
expect to receive and send, and the operations within those interfaces.

How to read WSDL
In Chapter 10, we looked at how to build a WSDL document. It is easy to get
confused by all the parts of a WSDL file. Hence, in this section we will look at what
they are and how they fit together. The example below shows a sample WSDL file
with key elements highlighted. We will look at the basic structure of a WSDL file by
examining each element in turn.

<?xml version="1.0" encoding="UTF-8" ?>
<definitions targetNamespace="urn:ChangeCurrencyInterface"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="urn:ChangeCurrencyInterface"
 … >

 <types
 <xsd:schema elementFormDefault="qualified">
 <xsd:import schemaLocation="OBayCanonical.xsd"
 namespace="http://www.obay.example"/>
 </xsd:schema>
 </types>

 <message name="ChangeCurrencyRequestMessage">
 <part name="in" element="ccs:ChangeCurrencyRequest"/>
 </message>

 <message name="ChangeCurrencyResponseMessage">
 <part name="return" element="ccs:ChangeCurrencyResponse"/>
 </message>

 <portType name="ChangeCurrencyPortType">
 <operation name="ConvertCurrency">
 <input message="tns:ChangeCurrencyRequestMessage"/>
 <output message="tns:ChangeCurrencyResponseMessage"/>

The Importance of Bindings

[490]

 </operation>
 </portType>
 <binding name="ChangeCurrencyServiceSoapHttp"
 type="tns:ChangeCurrencyPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="ConvertCurrency">
 <soap:operation
soapAction="urn:ChangeCurrencyInterface/ChangeCurrencyService.wsdl/
ConvertCurrency"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="ChangeCurrencyService">
 <port name="ChangeCurrencyPort"
 binding="tns:ChangeCurrencyServiceSoapHttp">
 <soap:address location="http://www.example.com"/>
 </port>
 </service>
</definitions>

<definitions>
A WSDL document is an XML document, and it has a root element called
<definitions>. The definitions element provides a wrapper for a set of definitions.
The set of definitions may be named through an optional name attribute. The
definitions in the document are:

Types: Used to define content of messages•	

Messages: Used to define parameters of operations•	

Port Types: Used to define collections of logical operations•	

Bindings: Used to define concrete protocols and data formats•	

Ports: Used to define concrete endpoints for bindings•	

Services: Used to group sets of related ports•	

The following diagram shows how these definitions relate to each other.

Chapter 17

[491]

types

element/type

part

message

input/output

port

service

binding

operation

portType type

name operation

binding

WSDL concepts in a 3GL
It is useful to map WSDL concepts onto a third generation language, such
as Java to clarify what they mean.
portType is like a Java interface; it contains operations that are like
Java methods.
messages are like the input parameters or return value of a Java method.
binding and service are like a Java class in that they identify a
concrete mapping of an interface onto a physical implementation.

<types>
A WSDL document may include a <types> element, which is used to define data
types that will be used later. These types are normally described using XML Schema,
and may also be brought in from an external XSD file. This is good practice as they
may well be reusable in several services. The types element will almost always
include an XML Schema document shown as follows:

<types>
 <xsd:schema elementFormDefault="qualified">
 <xsd:import namespace="http://www.obay.example"
 schemaLocation="../OBAYSchema/OBayCanonical.xsd"
 />
 </xsd:schema>
</types>

The Importance of Bindings

[492]

<message>
The types defined are used to create messages defined by one or more <message>
elements. Messages are the units of data transfer between service provider and
service requestor. Messages are identified by their name attribute. The messages
themselves may consist of several parts, identified by the <part> element. Each
part is either a type (common in RPC style web services) or an element (seen in doc
style web services). Hence parts depend upon the types. These types could include
primitive types such as string or int.

RPC and Document Style Web Services
RPC and Document Style refers to the way in which the web service
encodes the messages. RPC style expects there to be an element indicating
the operation and the data is encoded according to SOAP encoding rules,
for example, allowing for cyclic graphs to be passed. Document style
expects to pass the messages as XML documents that conform to an XML
Schema. Generally doc style are viewed as preferable because of the
ability to transform the documents en-route using XSLT transforms. See
Chapter 10 for a more detailed discussion of different web service styles.

Parts are identified by their name attribute and will have either an element attribute
to indicate the root element of the part or a type attribute to indicate the type of
the part.

<message name="ChangeCurrencyRequestMessage">
 <part name="in" element="ccs:ChangeCurrencyRequest"/>
</message>
<message name="ChangeCurrencyResponseMessage">
 <part name="return" element="ccs:ChangeCurrencyResponse"/>
</message>

A message may have more than one part.

<portType>
The messages are grouped together into exchanges using the <portType> element.
A portType defines an interface or abstract service. The portType is identified by its
name attribute. Within the definitions element, a portType must have a unique name.
Associated with the portType are one or more <operation> elements. Operations
are identified by their name attribute. Each operation through the use of an <input>
and/or an <output> element specifies a message and its direction. A normal
request/reply operation would have an input message followed by an output
message. There is also a <fault> element to allow for exceptions to be thrown by
an operation.

Chapter 17

[493]

<portType name="ChangeCurrencyPortType">
 <operation name="ConvertCurrency">
 <input message="ChangeCurrencyRequestMessage"/>
 <output message="ChangeCurrencyResponseMessage"/>
 </operation>
</portType>

<binding>
Everything we have discussed so far is abstract, and has no concrete implementation.
As we move to the right-hand side of the diagram we move from the abstract to
the concrete.

The <binding> element provides a concrete implementation of the abstract
portType identified by the bindings type attribute, specifying for example the use of
SOAP over HTTP. Bindings are identified by the name attribute. For each operation
in the portType there may be a corresponding <operation> tag in the binding that
will describe the mapping of the message onto the physical transport mechanism.
Operations are identified by their name attribute.

Note that the binding details themselves are in a different namespace. This is because
the WSDL specification is extensible to allow for many different kinds of bindings,
not just SOAP over HTTP.

<binding name="ChangeCurrencyServiceSoapHttp"
 type="tns:ChangeCurrencyPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="ConvertCurrency">
 <soap:operation
soapAction="urn:ChangeCurrencyInterface/ChangeCurrencyService.wsdl/
ConvertCurrency"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

The Importance of Bindings

[494]

<service>
Finally, the concrete service itself is identified by the <service> element. A service
groups together a related set of functionality into a logical service implementation.
The service is identified by its name attribute. The service is associated with one
or more <port> elements. Each port has a name attribute to identify it and in turn
it identifies the binding supported by this port through the <binding> attribute.
Because the bindings in turn refer to the portTypes, we have a link between the
ports exposed by a service and the abstract ports defined earlier in the WSDL. When
using SOAP bindings the port also includes an <address> element, which provides
the physical endpoint for the port.

<service name="ChangeCurrencyService">
 <port name="ChangeCurrencyPort"
 binding="tns:ChangeCurrencyServiceSoapHttp">
 <soap:address location="http://www.example.com"/>
 </port>
</service>

It is worth noting that a service may have multiple ports that use different bindings
but refer back to the same portType. This allows the service to have multiple ways
of requesting its service. For example, one binding may be through SOAP over HTTP
and another may be through a direct mapping onto an Enterprise Java Bean. We will
explore this latter possibility later in the chapter.

The case for different bindings
The binding describes how the abstract XML interface and data type is mapped onto
the physical data format and transport. The ability of WSDL to describe different
bindings other than SOAP begs the question of why. There are at least three answers
to this. Let us look at them in detail.

Connectivity
It is useful to be able to connect to a resource without the need for that resource
to provide a SOAP interface. For example, when connecting to a database, it may
be easier to have a binding that maps onto SQL data types and a database specific
transport layer than it is to create a wrapper service for every service required.
This increases the range of services that may be used without the need for
separate wrappers.

Chapter 17

[495]

Transactionality
Although there are efforts under way to provide a mechanism for transactional
support using SOAP, there is currently no effective way of supporting traditional
transactional services. Using a native binding such as JDBC or JCA allows a service
to be accessed as part of a database transaction. For example, a BPEL flow may
remove a message from MQ series using MQ native protocols, transform it, and
apply it to a database using native database protocols. In this case the steps could
all occur as part of the same XA transaction.

Performance
SOAP messaging provides great inter-operability but has never won any records for
performance when compared to native protocols. Where performance is important,
using native bindings rather than SOAP can be critical.

JCA bindings
Java Connector Architecture, JCA, is a standard way in Java to access a wide range
of resources. A JCA resource adapter may provide an interface to many different
types of resource including databases, packaged applications, and mainframes. Java
Enterprise Edition (JEE) containers, such as WebLogic and WebSphere, provide
JCA frameworks that allow registered adapters to be made available to hosted
components as though they were native container resources. JCA adapters may also
participate in transactions.

JCA bindings are probably the most commonly used non-SOAP binding in the SOA
Suite. This is because they are used extensively by the adapter wizards to provide
access to a wide range of native resources. Generally, the JCA bindings are generated
by the wizards with no need for further work by the developer.

JCA bindings actually differ a lot in the way in which they map the WSDL message
onto a physical format. But where they are common is in their use of Java Connector
Architecture (JCA) adapters to provide the physical wrapper to the service. Across
all JCA adapters/bindings the wizard will offer the opportunity to identify a JNDI
location for the JCA resource. Either develop your own consistent notation for this
or pay attention to the location generated by the wizard.

Most JCA adapters describe both a JNDI lookup for the JCA resource and also
embed a description of the JCA resource used to generate the adapter. For example,
a database adapter WSDL binding will have a lookup to a JCA database adapter at
a specific JNDI location but it will also have a description of the database connection
used by the wizard to interrogate the database to build the WSDL.

The Importance of Bindings

[496]

At run time, the JCA binding will first attempt to find a resource by looking up the
JNDI location, for example /eis/DB/MyDB. If this name does not exist, or in other
words if there is no resource adapter bound to this JNDI location, then the binding
will use the connection properties used by the wizard that have been embedded in
the WSDL.

When deploying to any system other than your embedded SOA Suite instance
in JDeveloper, it is good practice to ensure that the JNDI location referenced does
indeed have a resource of the correct type. It is also good practise to make sure that
this is a pooled resource so that resource usage can be monitored and controlled
by the application server infrastructure. Configuring of JCA resources is container
specific and you will need to consult your container's documentation to find out
how to bind adapters to particular JNDI locations.

Java bindings
In Chapter 11, we looked at how to create a Java web service that used SOAP
protocols. In this section, we will explore how we can directly access that same Java
without the need for using SOAP. This will improve performance as we do not have
to send the message over HTTP but instead can invoke the Java directly.

Creating a Java binding
Using the example in Chapter 11, let's create a web service with Java bindings. We
begin by right-clicking on the service wrapper class and selecting Create J2EE Web
Service. This launches the Create Java Web Service wizard.

Chapter 17

[497]

We must select the J2EE 1.4 (JAX-RPC) Web Service option, as this is the only option
that currently supports Java binding.

We can then select the web service name and choose the bindings that we want
to provide, in this case just the WSIF binding which provides a WSDL wrapping
around our service. Selecting Autogenerate Service Endpoint Interface causes
JDeveloper to automatically create a Java interface extending java.rmi Remote
which is needed when creating a web service wrapper. If we are not generating any
other bindings, we need to select Next to advance to the next configuration screen.
We do not need to provide any additional configuration for the Specify Custom
Data Type Serializers screen, and so can skip it by selecting Next. Similarly we can
skip the Mapping screen. These two screens can be used to customize how data
is transformed to/from XML, and how the mapping works between the WSDL
interface and the Java interface.

By choosing a Java binding (WSIF) we are avoiding the overhead of SOAP and
HTTP, but limiting ourselves to invoking a local service.

The Importance of Bindings

[498]

We now have the opportunity to select the methods to be exposed as part of the
service. This allows us to limit the functionality of the Java that we are exposing
through the web service.

Having selected the methods we desire, and having clicked Finish, the required
WSDL description of the service and any necessary wrapper classes, such as the
Java interface corresponding to the WSDL Port Type, will be generated.

Note that before using the service, it is necessary to copy the Java classes so that they
can be found by the appropriate SOA Suite component. For example, by copying
the classes onto the SOA Suite server in the $ORACLE_HOME/bpel/system/classes
directory, they can be found at run time by the BPEL Process Manager. Classes
placed here are available to all BPEL processes.

Chapter 17

[499]

Service bus bindings
The Oracle Service Bus is very flexible in its use of bindings. When creating a
Business Service or a Proxy it is possible to specify the bindings to be used on the
Transport Configuration screen. The choice of transports available is different
depending on whether we are configuring a Business Service or a Proxy.

When configuring a Business Service transport described by WSDL we have the
following protocol options available.

•	 http: For normal HTTP or HTTPS connections, this can be used for SOAP
over HTTP services.

•	 jms: For message-based interfaces.
•	 ws: For endpoints that support Web Services Reliable Messages (WSRM)

protocol, a reliable message delivery protocol for web services.
•	 sb: An optimized protocol for communicating with another Oracle Service

Bus domain.
•	 bpel-10g: An optimized protocol that communicates with Oracle BPEL

processes.
•	 dsp: A protocol optimized for communication with Oracle Data Service

Integrator (ODSI), formerly known as AquaLogic Data Services Platform,
a mechanism for performing a federated data query across multiple data
sources.
jpd•	 : A protocol optimized for communicating with WebLogic Integration
(WLI), an earlier integration product from BEA and now supported by Oracle.

The Importance of Bindings

[500]

The different transports allow for better performance or more reliable messaging than
simple SOAP over HTTP. The transports available when defining a Proxy Service
described by WSDL include http, jms, ws, and sb as already described. The other
three mentioned, bpel-10g, dsp, and jpd are not supported for inbound traffic to the
service bus. There is, however, another transport supported by Proxy services, which
is local.

•	 local: A protocol that restricts the Proxy service to be called only by other
proxy services.

The local transport is highly optimized for using internally by the service bus.
In addition to being highly performing, is also very reliable, having exactly once
invocation semantics. Exactly once invocation semantics means that when called
there will be a single invocation of the proxy with no retries.

Summary
Bindings allow us to control the way in which SOA Suite components interact with
services. Different bindings provide different benefits, such as transactionality or
better performance.

Generally when considering bindings, we do not have to worry too much about the
low level details. The key questions we need to ask are:

Does this service already exist? In this case, we use the existing service •	
without concerning ourselves about the bindings it uses.
Can this service be created by use of an adapter wizard? In this case, we use •	
the appropriate adapter wizard to generate the required service without
concerning ourselves about the bindings other than to make a note to create
the appropriate JCA resource at the correct JNDI location.

Chapter 17

[501]

Does this service require very high throughput? In this case, we may want to •	
consider using an adapter or Java binding to improve performance, even if a
SOAP binding already exists.
Does this service require true transactionality? In this case, we want to use •	
a JCA binding so that the SOA Suite can combine multiple interactions into
a single database or XA transaction, giving us tight transactionality. Note
that when doing this, we are relying on the underlying implementation
of the bindings to provide transactionality rather than on any higher level
constructs. Hence, we have more tightly coupled our services together.

Most of our binding choices will be dictated by the nature of the service required,
and only occasionally will the latter two questions enter into our considerations.

Packaging and Deployment
In this section, we will look at how to package a set of SOA Suite components for
deployment in different environments. We will also look at some of the deployment
topologies that may be used at run time to provide scalability. We will focus
principally on the BPEL Process Manager as this has some of the more complex
requirements for mapping of services.

The need for packaging
When developing software, we generally use a local development environment
to create our SOA artefacts. In some cases this may be entirely on the developers'
machine, at other times the developer will have access to a shared development
server. In either case there will usually be the need to move the artefacts from the
development environment into a test environment and eventually into a
production environment.

Problems with moving between environments
Within our SOA artefacts we will have references to other artefacts such as service
endpoint locations and rule repository locations. In addition the configuration for
some components, particularly adapter services will probably be different between
environments, for example, database locations and file locations may be different
between different locations. We need to have a means of modifying these various
environment dependant properties.

Packaging and Deployment

[504]

Types of interface
Within the development environment we will build many of the artefacts in a thick
client design tool such as JDeveloper or Workshop and then deploy directly into the
development run-time environment. As we move into test and/or production we
do not want our operators to have JDeveloper or other design time environments,
we would prefer that they had a set of command line tools and/or web interfaces to
deploy components. Often they will be unable to use JDeveloper to deploy because
of firewall restrictions.

Web interfaces
Web interfaces are handy for rapid deployment of components into a new
environment, and they generally make it easy to configure any changes that
are required. Web interfaces, however, are not easy to automate and so are not
ideal for deployment that must be repeated across multiple stages, such as test,
pre-production, and production environments.

Command line interfaces
Command line interfaces are often a little harder to work with, but have the huge
advantage that they are easy to script, making it possible to have a repeatable
deployment process. This is important enough for the move from test to production,
but becomes even more important when we consider that we may wish to set up a
data recovery environment or other multiple environments.

In a well-managed environment the use of deployment scripts is essential to ensuring
a consistent way of deploying SOA Suite artefacts across different environments.

SOA Suite packaging
Unfortunately the current release of SOA Suite is not consistent in the way in which
it packages the different components. Each SOA Suite component such as BPEL
or service bus has a different way of packaging its artefacts for deployment. In this
section, we will examine each component to see how it is packaged and how best to
manage deployment across multiple environments.

Chapter 18

[505]

Oracle Service Bus
An Oracle Service Bus project may be deployed from the Workshop IDE or imported
from the service bus console by selecting the System Administration tab and then
selecting the Import Resources link. In a similar fashion it is possible to export
resources from the service bus console by selecting the Export Resources link.

When exporting a project or group of projects from the service bus by clicking on the
Export button, the project is exported in a JAR file package called sbconfig.jar by
default that may be saved from the browser.

The JAR file generated may be deployed to another service bus domain by importing
it, and then editing the project settings to have the correct configuration.

Unlike BPEL there is no concept of versioning in the service bus and so once
deployed it is generally easier to maintain the existing deployment rather than
replace it completely; however complete projects may be replaced if necessary.
Chapter 10 talks about how versioning may be applied in the service bus.

Individual service endpoint locations can be edited directly from within the
service bus console. Potentially, every business service may need modifying for
the correct environment.

It is also possible to use the WebLogic Scripting Tool (WLST) to migrate projects
between environments.

Packaging and Deployment

[506]

Oracle BPEL Process Manager
The deployment unit of a BPEL process is the BPEL suitcase. The BPEL suitcase
may be deployed to a BPEL Process Manager using the web interface accessed
from the Processes tab of the BPEL console. A BPEL suitcase is generated when a
BPEL process is compiled, either in JDeveloper or using an Ant task generated by
JDeveloper. The location of the BPEL suitcase is displayed in the message log during
BPEL compilation; it is usually generated in the $PROJECT_HOME/output directory.
When deploying from JDeveloper into BPEL Process Manager the BPEL suitcase is
used to transfer all the information required by the process. The same is true whether
deploying the suitcase manually through the web interface or through an ant task.

Deploying a BPEL process using the BPEL Console
Clicking the Deploy New Process link on the Processes tab of the BPEL Console
provides access to the Deploy New BPEL Process screen. Here we can browse for
the BPEL suitcase and then deploy it.

.

Chapter 18

[507]

Note that some browsers may not properly close the BPEL suitcase after uploading it
to the BPEL Process Manager. If this occurs then it will not be possible to regenerate
the suitcase with the same version number. To work around this either close and
reopen the browser or regenerate to a new version number

After deploying the process we receive a confirmation screen confirming that the
process was successfully deployed.

Deploying a BPEL process using 'ant'
JDeveloper automatically generates an ant script that may be used to deploy BPEL
processes from the command line or from within JDeveloper. The script is called
build.xml and is found in the Resources section of the JDeveloper project and is
located in the top level project folder. This contains all the ant targets required to
build and deploy BPEL processes from the command line. Associated with it is a
properties file called build.properties that contains property definitions referenced
by the build.xml file.

Packaging and Deployment

[508]

The following ant tasks relating to build and deployment are available:

deploy_test•	 will compile and deploy the BPEL process and run any
test cases associated with the BPEL process.
deploy•	 will compile and deploy the BPEL process.
test•	 will deploy BPEL test cases and run them.

These three top level tasks are supplemented by a number of lower level tasks.
For example:

•	 pre-build allows additional tasks to be associated with the deploy step;
these execute before the process-deploy step. This may be used to check
source code out of a source code repository.
process-deploy•	 validates, builds, and deploys the BPEL process and any
associated human workflow or rules. It does this by using a number of tasks,
all of which are self-explanatory:

validateTask	°

compile	°

deployProcess	°

deployTaskForm	°

deployDecisionServices	°

•	 post-build allows additional tasks to be associated with deploy step; these
execute after the process-deploy step.

deploy_test

deploy test

pre-build
process-
deploy post-build deployTest

Suites
bpelTest report

validate
Task

compile deploy
Process

deployTask
Form

deploy
Decision
Services

Chapter 18

[509]

The ant script uses some key properties that may be configured through the
build.properties file. Properties that may require changing include:

http.hostname•	 and http.port should point to the hostname and port
number of the BPEL Process Manager server that you wish to deploy to.
domain•	 which refers to the BPEL domain.
rev•	 which refers to the BPEL process version number.
admin.user•	 and admin.password which are the credentials used when
connecting to the BPEL server.

The ant scripts can be used from the command line, providing a way to automate
the process of deployment and so ensuring a consistent way of deploying processes
to servers. In the following sections, we will look at how the configuration of the
BPEL process can be modified for different deployment environments.

Enabling web service endpoint and WSDL
location alteration
When deploying between environments we typically want to modify the endpoint
details to reflect the new environment which will have different hostnames for its
services. This can be done by adding a location property to the partner links in
bpel.xml, as shown in the example below, which changes a partner link to point
to a service located on a web services manager gateway.

<BPELSuitcase>
 <BPELProcess id="SimpleFileProcess" src="SimpleFileProcess.bpel">
 <partnerLinkBindings>
 …
 <partnerLinkBinding name="CardValidatorService">
 <property name="wsdlLocation">
 CardValidatorService.wsdl
 </property>
 <property name="location">
 http://w2k3/gateway/services/SID0003001
 </property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 …
 </BPELProcess>
</BPELSuitcase><partnerLinkBinding name="CardValidatorService">

It is not currently possible to modify the location via the BPEL Console.

Packaging and Deployment

[510]

By specifying the partnerlink property, wsdlRuntimeLocation, it is possible
to point to a different WSDL at runtime. Care must be taken with this property.
However, as often the BPEL designer will generate a wrapper around published
WSDL to provide partner role information, and hence the generated WSDL would
need modifying to point to the run-time WSDL.

In summary, endpoint location changes can be handled by the location property
in the partner link in the bpel.xml. WSDL location changes may be handled in
a similar way with the wsdlRuntimeLocation property if the WSDL already has
partner roles. If the WSDL does not have partner roles then the import statement in
the generated WSDL will need to be modified to point to the correct WSDL location.

Enabling adapter configuration
In addition to web service endpoints changing in different environments, we often
want to modify the configuration of adapters. Many adapters make use of JEE
resources, and so the JEE container just needs to be correctly configured with the
resource names. For example, the database adapter uses a JNDI lookup to find its
data source. Similarly the JMS adapter uses a JNDI lookup to find its queues. Some
adapters however, such as the file adapter, do not have a JNDI lookup.

The file and FTP adapters provide the concept of a logical location for the directory
in which they search for input for example. Creating a logical location in the file
adapter wizard causes a logical location element with the name of the logical location
to be added to the activation agent element in the bpel.xml file as shown:

<BPELSuitcase>
 <BPELProcess id="SimpleFileProcess" src="SimpleFileProcess.bpel">
 <partnerLinkBindings>
 <partnerLinkBinding name="ReadNewCustomerFileService">
 <property name="wsdlLocation">
 ReadNewCustomerFileService.wsdl
 </property>
 </partnerLinkBinding>
 …
 </partnerLinkBindings>
 <activationAgents>
 <activationAgent
 className="oracle.tip.adapter.fw.agent.jca.JCAActivationAgent"
 partnerLink="ReadNewCustomerFileService">
 <property name="NewCustomerFileDirectory"
 type="LogicalDirectory">c:\FileTransfer\Inbound
 </property>
 <property name="portType">Read_ptt</property>

Chapter 18

[511]

 </activationAgent>
 </activationAgents>
 </BPELProcess>
</BPELSuitcase>

This location must be specified before deployment but may then be edited at
run time by selecting the process in the BPEL Console from the dashboard or the
Processes tab and then selecting the Descriptor tab for the process. The logical name
may be updated to point to the correct file location on the BPEL Process Manager
server and the process updated by clicking Update Descriptor.

XML Schema locations
XML Schemas are often referenced through relative links from a WSDL file. In
which case updating the WSDL location will make the XML Schema files available.
However, sometimes the XML Schema files are stored separately with their own
URLs. In this case the URLs will usually be embedded in the WSDL file referencing
them and each reference will need to be updated before redeploying the process to
the correct environment.

XSL imports
Any XSL files that reference external schema will also need to be updated
before deployment.

Packaging and Deployment

[512]

BPEL deployment framework
Modifying the bpel.xml file or altering descriptors through the console provide a
degree of customisation for different environments, but it is all done using a single
property at a time and requires a lot of work for each environment, especially when
it is considered that individual WSDL files may also need to be updated. In earlier
versions of SOA Suite it was possible to use ant scripts to automate a lot of this
substitution, but it was a resource intensive process to set up. There is a better
way in SOA Suite 10.1.3.4 and later versions—the deployment framework.

The deployment framework combines the BPEL suitcase with a deployment
plan that updates multiple files in the BPEL suitcase with the correct values for
the deployment environment. Different deployment plans can be created and
maintained for each deployment plan.

BPEL PM
Test

Test
Deployment

Plan

Production
Deployment

Plan

BPEL PM
ProductionBPEL Suitcase

It is possible to generate a template BPEL deployment plan from a BPEL suitcase
which can be customized and used with the base BPEL suitcase at deployment time
to update the various URLs and properties.

The steps to customize the BPEL suitcase for each environment are as follows:

Create a deployment template from the BPEL project or suitcase that will be •	
used as the basis for the deployment plans.
Create a deployment plan based on the template for each target environment.•	

Attach the appropriate deployment plan to the BPEL suitcase or project prior •	
to deploying in the target environment.
Deploy the BPEL process into the target environment.•	

Chapter 18

[513]

Create
Deployment

Template

Create
Deployment

Plans

Attach
Deployment

Plan

Deploy
Suitcase

Creating a deployment plan template
To create a deployment template we need to add the following commands to the
build.xml ant file that is built by JDeveloper and found in the Resources folder
of our BPEL project.

<target name="generate_plan_from_project">
 <generateplan planfile="${process.dir}/planfile.xml"
 verbose="true"
 overwrite="true"

 descfile="${process.dir}/bpel/bpel.xml"/>
</target>

<target name="generate_plan_from_suitcase">
 <generateplan planfile="${process.dir}/planfile.xml"
 verbose="true"
 overwrite="true"
suitecase="${process.dir}/output/bpel_${BPELSuitcase.
BPELProcess(id)}_${rev}.jar"/>
</target>

This creates two new ant targets: generate_plan_from_project and generate_
plan_from_suitcase. These both create a template deployment plan, either directly
from the project files, or from a generated suitcase. A BPEL suitcase is only generated
when a BPEL project is deployed or when the project is "made", so if using the option
to generate from a suitcase it is necessary to ensure that the suitcase has previously
been created. If the suitcase generated is a revision other than 1.0 then it is necessary
to set the revision property in the build.properties file that is found in the
Resources folder of the BPEL project in JDeveloper.

Change below if deploying with process revision other than 1.0
rev = 1.1

The generateplan command in ant uses four attributes:

•	 suitecase or descfile is the source information for the deployment plan
•	 planfile is the location of the planfile template to be generated
•	 overwrite will replace any existing planfile of the same name

verbose•	 turns up the level of reporting

Packaging and Deployment

[514]

A sample deployment plan template is shown as follows. Note the use of
two elements:

<replace>•	 is used to replace the value of a property within a specific part of
the bpel.xml
<searchReplace>•	 is used to <search> for a string in WSDL and XSD files
and <replace> it with another string

<?xml version="1.0" encoding="UTF-8"?>
<BPELDeploymentPlan xmlns="http://schemas.oracle.com/bpel/deployplan">
 <BPELProcess id="SimpleFileProcess">
 <configurations/>
 <partnerLinkBindings>
 <partnerLinkBinding name="ReadNewCustomerFileService">
 <property name="wsdlLocation">
 <replace>ReadNewCustomerFileService.wsdl</replace>
 </property>
 </partnerLinkBinding>
 <partnerLinkBinding name="WriteNewCustomerDBService">
 <property name="retryInterval">
 <replace>60</replace>
 </property>
 <property name="wsdlLocation">
 <replace>WriteNewCustomerDBService.wsdl</replace>
 </property>
 </partnerLinkBinding>
 <partnerLinkBinding name="CardValidatorService">
 <property name="wsdlLocation">
 <replace>CardValidatorService.wsdl</replace>
 </property>
 <property name="location">
<replace>http://w2k3/chapter18/CardValidatorServiceSoapHttpPort
 </replace>
 </property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 </BPELProcess>
 <wsdlAndSchema
name="CardValidatorService.wsdl|DBAdapterOutboundHeader.
wsdl|fileAdapterInboundHeader.wsdl|NewCustomerFile.
xsd|ReadNewCustomerFileService.wsdl|WriteNewCustomerDBService.
wsdl|WriteNewCustomerDBService_table.xsd">
 <searchReplace>
 <search/>
 <replace/>
 </searchReplace>
 </wsdlAndSchema>
</BPELDeploymentPlan>

Chapter 18

[515]

Creating a deployment plan
Having created a template, we can use this to create deployment plans for each
specific environment. We do this by creating a copy of the deployment plan by
selecting Save As from the file menu in JDeveloper and then editing the <search>
and <searchReplace> tags to match our target environment.

We will search and replace all instances of our local development machine
hostname—w2k3, with the name of our test server—testserver, across WSDL, and
XSD files. To do this we modify the search and replace elements shown as follows:

<wsdlAndSchema name="*">
 <searchReplace>
 <search>w2k3</search>
 <replace>testserver</replace>
 </searchReplace>
</wsdlAndSchema>

This will cause the BPEL Process Manager to search all WSDL and schema files
"*" in the suitcase at deployment time and replace the string w2k3 with the string
testserver. Note that it is possible to have multiple <searchReplace> elements.

Attaching a deployment plan to a BPEL suitcase
Having created and saved a deployment plan specific for one or more environments
we will want to deploy our process into an environment. Before doing this we must
first attach the specific deployment plan to the BPEL suitcase. We do this using the
following ant command.

<target name="attach_plan">
 <attachplan planfile="${planfile}" verbose="true"
 overwrite="true"
suitecase="${process.dir}/output/bpel_${BPELSuitcase.
BPELProcess(id)}_${rev}.jar"/>
</target>

This will create a file bpeldeployplan.xml in the BPEL suitcase. This is the
deployment plan that will be used at deployment time by the BPEL Process
Manager. Note that the name of the deployment plan to use is encoded as an Ant
property planfile that must be set in the build.xml. Once attached the deployment
plan will be executed when the BPEL suitcase is deployed. The planfile property
can be set from the ant command line, allowing a different plan to be attached in
each environment.

Packaging and Deployment

[516]

Modifying ant to use deployment plan
In addition to adding the two tasks above to the build.xml file, it is possible to
add the attachment of the plan file as part of the regular deploy process. This is
done by modifying the dependencies of the process-deploy task by adding the
attach_plan dependency after the compile dependency.

<target name="process-deploy"
 depends="validateTask, compile, attach_plan, deployProcess,
 deployTaskForm, deployDecisionServices" />

When building and deploying with ant, the deployment plan will be attached to
the suitcase before the suitcase is deployed to the target environment. This allows
us to provide a different deployment plan for each environment. After attaching the
named plan to the suitcase, the suitcase can be deployed from the command line.

Note that use of command line properties allows us to script the whole deployment
process, making it easy to reproduce in different environments.

A different deployment plan file may be specified by having a separate build.
properties file for each environment, which is needed anyway because the build.
properties will specify the target machine name, port number, and administrator
credentials. The deployment file may also be specified by setting the ant property
planfile on the command line.

Oracle Web Services Manager (OWSM)
OWSM provides a command line interface to export components and properties
from an OWSM configuration and then import them into a different configuration.
The components to be exported are selected through the use of an export instructions
file called LMTInstructions.xml. This file specifies which components and also
which, if any, custom steps are to be exported. The export command uses this file to
create a representation of the OWSM configuration in an export directory which can
then be moved to the target environment. The components to be imported into an
environment are specified in an import instructions file. This import instructions file,
also called LMTInstructions.xml, is then used by the import command to import
the components and their associated policies into the target environment.

Chapter 18

[517]

Export Instructions
Import Instructions

OWSM
Dev Export

Directory
Import

Directory

OWSM
Production

coresv.properties
coresv.properties

The export and import directories are specified in the coresv.properties file
found in the $SOA_HOME/owsm/bin directory. The following properties are used:

db.export.dir•	 specifies the export directory
db.import.dir•	 specifies the import directory

The export file, LMTInstructions.xml, lists the components to be exported.
If a component is a gateway then individual services must also be specified.

<?xml version="1.0"?>
<lmt-instructions>
 <transferable-objects>
 <component id="C0003001">
 <service id="SID0003001">
 </service>
 </component>
 <component id="C0003003">
 </component>
 </transferable-objects>
</lmt-instructions>

In the example above, a gateway component (C0003001) is exported together
with a single service (SID0003001) associated with that gateway. An agent
component (C0003003) is also exported. Objects are exported by running the
exportTransferableObjects command from the $SOA_HOME/owsm/bin directory.

owsm\bin>wsmadmin exportTransferableObjects
Buildfile: C:\oracle\SOA10.1.3\owsm\bin\..\scripts\exportDBData.xml

Packaging and Deployment

[518]

validate.DBPassword:
 [input] Database Password:

exportTransferableObjects:
 [java] Directory c:\FileTransfer\OWSM\18Nov2008-09-10-39AM has
been created
 successfully. Please check export logs in this directory

BUILD SUCCESSFUL
Total time: 5 minutes 7 seconds

This will create a sub-directory named with the current time in the export
directory. This directory will consist of a number of sub-directories. To import the
configuration into another OWSM environment it is necessary to copy the complete
directory sub-tree to the target environment.

An import instructions file is created to select which components to import. Note
that not all components must be imported.

<?xml version="1.0"?>
<lmt-instructions>
 <transferable-objects>
 <component id="C0003001"
 import-name="ImportedGateway"
 url="http://w2k3:80/gateway"
 monitor-rmi-host="localhost"
 monitor-rmi-port="3118"
 monitor-soap="http://localhost:80/coreman/services/
 CoremanMeasurementClient"
 monitor-type="rmi"
 create-new="true"
 type="Gateway"
 mapped-to-component-id="">
 <service id="SID0003001"
 import-name="ImportedService"
 version="1.0"/>
 </component>
 <component id="C0003002"
 import-name="ImportedServerAgent"
 url=""
 monitor-rmi-host="localhost"
 monitor-rmi-port="3118"
 monitor-soap="http://localhost:80/coreman/services/
 CoremanMeasurementClient"
 monitor-type="rmi"

Chapter 18

[519]

 create-new="true"
 type="ServerAgent"
 mapped-to-component-id="">
 </component>
 </transferable-objects>
</lmt-instructions>

The import instructions have a number of properties which allow the import to be
customized to the new environment.

Important component properties are listed below:

id•	 is the component ID in the source system and hence in the
export directory
import-name•	 is the name of the component when imported into the
new environment
url•	 is the endpoint associated with a gateway
monitor-* •	 properties are the location of the monitor and should match the
target topology
typ•	 e is the type of component—Gateway, Server-Agent, or Client-Agent

•	 create-new indicates if this should be a new component (true) or if it
should replace an existing component (false)
mapped-to-component-id•	 is a component ID to be replaced in the target
environment if create-new is false

An initial deployment will usually have create-new set to true. Subsequent
deployments will usually have create-new set to false so that updates are applied
rather than new components created.

Service component properties are very similar to the component properties in that
they specify a service ID and import-name. The service component also has useful
properties, as outlined below, to enable the service definition to be customized for
the target environment.

wsdl•	 is the location of the WSDL for this service in the target environment.

url•	 is the endpoint of the service in the target environment.

It is also possible to override step properties within a pipeline to customize those for
the target environment by using the pipeline-property element and specifying the
step and property to be modified.

Packaging and Deployment

[520]

Objects are imported by running the importTransferableObjects command from
the $SOA_HOME/owsm/bin directory.

owsm\bin>wsmadmin importTransferableObjects
Buildfile: C:\oracle\SOA10.1.3\owsm\bin\..\scripts\importDBData.xml

validate.DBPassword:
 [input] Database Password:

BUILD SUCCESSFUL
Total time: 8 seconds

This will read the sub-directory identified in the coresv.properties file and apply
any substitutions specified in the LMTInstructions.xml file. This provides us with
the same policies as existed in the source system.

Oracle rules
Rules will generally not change between environments and can be deployed as a
complete repository.

Business activity monitoring
BAM provides a command line tool called iCommand to assist in exporting and
importing BAM components such as data object definitions and reports as well as
data objects themselves. It is possible to select subsets of components, making it
easy to move just the updated components from a development to a test and/or
production environment.

Commands
ICommand allows a number of different operations through the cmd parameter which
can take the following values:

export•	 : Exports the selected components and/or values
import•	 : Imports the selected components and/or values
delete•	 : Deletes the selected components
rename•	 : Renames components
clear•	 : Clears data from a given object

There are other commands related to Enterprise Link, an ETL component used
by BAM.

Chapter 18

[521]

Selecting items
Items are identified using a file like syntax such as /Samples/Employees. There are
a number of parameters that may be used to select items in different ways:

name•	 : Selects items explicitly by name, for example,
 name=/Samples/Employees.
match•	 : Selects items by using a DOS style pattern, for example,
 match=/Samples/*.
regex•	 : Selects items by using a regular expression, for example,
 regex="/Samples/[A-Za-z]* Sales".
all•	 : Selects all components.

The queries above may be combined with the following parameters to further restrict
the items selected:

type•	 : Restricts the items exported by type such as type=Folder or
type=DataObject.
dependencies•	 : Includes dependent objects in the selection.
contents•	 : Includes (value 1 or unspecified) or excludes (value 0) the contents
of a data object, for example, contents=0.
layout•	 : Includes (value 1 or unspecified) or excludes (value 0) the data object
type definition for example layout=0.

Using iCommand
When migrating items between environments we will generally not want to move
the actual contents of the data. We would like to move only the layouts. For example,
to export the layouts but not the contents for all the Sales data objects we issue the
following command:

C:\BAM\bin>icommand cmd=export regex="[a-zA-Z]* Sales"
file=SalesDataObjects.xml contents=0

Oracle BAM Command Utility
10g Release 3 (10.1.3.3.0) [Build 3 5 6008 0, ADC Version 1004.0]
Copyright (c) 2002, 2008 Oracle.
All rights reserved.
Exporting Data Object "/Samples/Film Sales"...
Data Object "/Samples/Film Sales" exported successfully (0 rows).
Exporting Data Object "/Samples/Media Sales"...
Data Object "/Samples/Media Sales" exported successfully (0 rows).
Exporting Data Object "/Samples/Product Sales"...
Data Object "/Samples/Product Sales" exported successfully (0 rows).
3 items exported successfully.
Items were exported to 1 files.

Packaging and Deployment

[522]

This generates a file that can be used to import the definitions into another
BAM instance. The generated file SalesDataObjects.xml is in the format shown
as follows:

<?xml version="1.0" encoding="utf-8"?>
<OracleBAMExport Version="1004.0" Build="3.5.6008.0">
 <DataObject Version="14" Name="Film Sales" ID="_Film_Sales" Path="/
Samples" External="0">
 <Layout>
 <Column Name="Region" ID="_Region" Type="string" MaxSize="100"
 Nullable="1" Public="1" />
 …
 <Indexes />
 </Layout>
 </DataObject>
 <DataObject Version="14" Name="Media Sales" ID="_Media_Sales"
Path="/Samples" External="0">
 …
 </DataObject>
</OracleBAMExport>

Note that it is possible to edit the contents of the exported data files and this can
provide a means to batch load reference data from another system into BAM.

To import from a file employees.xml we issue the command:

C:\BAM\bin> icommand cmd=import file=Employees.xml

Oracle BAM Command Utility
10g Release 3 (10.1.3.3.0) [Build 3 5 6008 0, ADC Version 1004.0]
Copyright (c) 2002, 2008 Oracle.
All rights reserved.
Data Object "/Samples/Employees" already exists, ID ignored.
Data Object "/Samples/Employees" already exists, "Layout" section
ignored.
Importing contents of Data Object "/Samples/Employees"...
Data Object "/Samples/Employees" imported successfully (3 rows).
1 items imported.

The import command will always import the full contents of the file into the target
BAM instance.

Chapter 18

[523]

Deployment architectures
During development, generally all SOA Suite components will be deployed on a
single server, sometimes using a database on the same machine, sometimes on a
separate machine. When moving into a production environment there will often
be a requirement to run multiple instances of SOA Suite. In this section, we will
consider some of the consequences of this requirement and other configurations.

Running multiple instances of SOA Suite gives us two advantages: resilience and
scalability. Resilience means that the loss of a single instance of SOA Suite will not
impact the running of the system. Scalability means that as additional instances are
added the capacity of the system will increase. Generally, SOA Suite scales almost
linearly with additional instances. The bottleneck for scalability usually becomes
the database used as a dehydration store in BPEL.

The database used by the SOA Suite can be scaled by using Oracle Real Application
Clusters which provides multiple instances of a single database to provide scalability
as well as resilience.

SOA Suite deployment architectures
The smallest deployments will usually have the SOA suite on one server and connect
to the database on a separate server. This configuration is simple to install and there
are no particular requirements to consider when deploying SOA Suite components.

A variation on the simple deployment adds a front-end web server machine for
additional security when providing or consuming services outside the corporate
firewall. This machine will usually sit in a DMZ with a firewall on either side of it.

Small Deployment
Secure

Deployment Large Deployment

SOA Suite

Database Server

SOA Suite

Database Server

Load Balancer

SOA Suite SOA Suite

Database Server

Packaging and Deployment

[524]

Larger deployments will usually consist of multiple instances of SOA Suite installed
on multiple machines. In this case an external load balancer will usually be required
to load balance incoming requests across the multiple instances.

In the current release it is likely that Oracle Service Bus will be deployed on a
different application server instance to the rest of the SOA Suite. These instances may
be on the same or separate machines.

Using an external web server or load balancer
When using an external web server or load balancer then the hostname that receives
requests is not the same as the hostname that will process the request. For example
clients will need the address of the web server or load balancer, not the SOA Suite
address. Hence when the SOA Suite advertises services externally then it must
use the web server or load balancer hostname, not the hostname of the SOA Suite
instance providing the information. Furthermore, when multiple instances of SOA
Suite are involved, it is necessary to provide additional information to enable the
multiple instances to operate as a single cluster.

Apart from the BPEL Process Manager the components of the SOA Suite generally
need little additional configuration to operate with multiple instances. However,
there are few extra tasks to perform around the BPEL Process Manager.

BPEL Process Manager specifics
Within the BPEL Process Manager we configure this external address and other
cluster settings in the collaxa-config.xml file found in the $SOA_SUITE_HOME/bpel/
system/config directory. These settings can also be modified from the Configuration
tab of the BPEL admin console at http://hostname:port/BPELAdmin.

soapServerUrl•	 is the endpoint published in the WSDL files and should
point to the name of the front-end web server or load balancer.
soapCallbackUrl•	 is the address used when providing a callback address
through WS-Addressing.
enableCluster•	 is the property that tells a BPEL instance that it is part of
a cluster of instances executing processes in the same domain and using
the same dehydration store.
clusterName•	 is the arbitary name of the cluster. All nodes in the same
cluster should have the same cluster name as well as the same multi-cast
or jgroup specification.

Chapter 18

[525]

<property id="soapServerUrl">
 <name>BPEL soap server URL</name>
 <value>http://w2k3:80</value>

 <comment>
 <![CDATA[
 This URL is published as part of the SOAP address of a process
 in the WSDL file.<p/>
 The hostname and port for this URL should be customized to
 match the hostname of your system and the port of your HTTP
 gateway.
]]>
 </comment>
</property>

<property id="soapCallbackUrl">
 <name>BPEL soap callback URL</name>
 <value>http://w2k3:80</value>

 <comment>
 <![CDATA[
 This URL is sent by the server as part of the asynchronous
 callback address to the invoker. <p/>
 The hostname and port for this URL should be customized to
 match the hostname of your system and the port of your HTTP
 gateway.
]]>
 </comment>
</property>

<property id="enableCluster">
 <name>Cluster enable flag</name>
 <value>true</value>

 <comment>
 <![CDATA[
 Specify the value to true if you want to enable clustering. By
 default the clustering service is disabled.
]]>
 </comment>
</property>

<property id="clusterName">
 <name>Cluster Id</name>
 <value>w2k3:80</value>

 <comment>
 <![CDATA[

Packaging and Deployment

[526]

 clusterName specifies the name of the bpel cluster.<p/>
 The cluster is defined by the clusterName, multi-cast address
 and multi-cast port.Changing any one of those parameter puts
 the bpel server instance in a different cluster.
 Value for clusterName property needs to be the same for all
 bpel nodes in a cluster in order for them to find each
 other.<p/>
 In addition to having distinct cluster names for each cluster,
 you should use a different multicast address or port for each
 cluster.<p/>
 You can change the multicast address or port in the
 bpel/system/config/jgroups-protocol.xml
]]>
 </comment>
</property>

Configuration and implications of running multiple instances impact the BPEL
Process Manager more than other SOA Suite components because this is the
component that deals with long running processes that exist beyond the life of a
single interaction. It is important that the configuration of the process manager is set
up correctly to enable processes to be executed on any node in the instance, allowing
for a single process instance to execute on different nodes at different times.

For multiple SOA Suite instance in a single subnet, it is possible to use network
multi-cast to find other instances. If there are nodes on other subnets then it is
necessary to configure the explicit hostnames on every node. In either case the
configuration resides in the jgroups-protocol.xml file found in the
$SOA_SUITE_HOME/bpel/system/config directory.

Note that these configuration settings must be applied to each individual BPEL
Process Manager instance.

Web services manager
Although OWSM will run across multiple instances of SOA Suite, some components
must be disabled. Only one machine can run the OWSM monitor and only one
machine can run the OWSM console, although there may be multiple policy
managers and gateways.

Chapter 18

[527]

Monitor Monitor

Monitor

Gateway Gateway Gateway Gateway Gateway

Policy
Manager

Policy
Manager

Policy
Manager

Policy
Manager

Policy
Manager

Single Node Multi Node Multi Node

Multi Node

Multi Node Multi Node

Control

Control

Control

Console and monitor
After installing SOA Suite on multiple nodes it is necessary to first set up the node
that will run the console. We do this by configuring OWSM for the load balancer or
front-end web server by setting the following properties in the $SOA_HOME/owsm/
config/ccore/ui-config-installer.properties file:

ui.pm.server.httpHost•	 specifies the name of the load balancer or
front-end front-end web server
ui.pm.server.httpPort•	 specifies the port of the load balancer or front-end
web server

We then redeploy the console by using the command:

wsmadmin deploy console

If necessary we can undeploy the policy manager by the following command:

wsmadmin undeploy policymanager

We then un-deploy the OWSM console and monitor from all nodes that do not
require it. This is done by issuing the following commands on all nodes that will not
be hosting the monitor or console:

wsmadmin undeploy monitor

wsmadmin undeploy control

Gateways and agents are deployed as outlined in Chapter 20.

Packaging and Deployment

[528]

Oracle Service Bus
The Oracle Service Bus will take advantage of an underlying WebLogic cluster to
provide a clustered environment.

Business activity monitoring
BAM deployment is different to the rest of the SOA Suite deployment because in
10.1.3 and earlier releases it is a Windows application and can only be deployed on
a Windows platform. In release 11g this will change as BAM has been ported to run
as a Java application within an application server.

BAM is made of several components:

Active Data Cache•	 : Holds the data in memory and updates aggregates in
response to new data arriving.

•	 Event Engine: Monitors information in active data cache for certain
conditions and performs associated actions defined in rules.
Report Server•	 : Provides reports to end users.
Report Cache•	 : Maintains shared views in memory for better performance.

In addition it uses Microsoft Internet Information Server (IIS) as a web-server
platform and requires a database to act as a repository.

Only a single instance of Active Data Cache may be active at any one time;
however, the other components may all be replicated to improve scalability
and availability. High availability of the Active Data Cache may be achieved
by using a cold failover configuration.

Basic Deployment

Database Server

BAM Server

Active Data Cache

Report Server
Report Cache
Event Server

IIS

Repository

Medium
Deployment

Database Server

BAM Server

Repository

Active Data Cache

Report Cache
Event Server

Report Server
IIS

Report Server

Database Server

Repository

BAM Server

Active Data Cache

Report Cache
Event Server

Report Server
IIS

Report Server

Report Server
IIS

Report Server

Load Balancer
Large Deployment

BAM

Active Data Cache

Repository
Report Server
Report Cache
Event Server

IIS

Development
Deployment

Chapter 18

[529]

Moving the report server to a separate machine allows BAM to scale to support
a larger client population. Multiple report servers may be run to allow even
larger user populations.

Local hostnames
Generally when running clustered environments it is a good idea to have the front-
end hostname in the hosts file of each machine. However, instead of pointing
to the IP address of the load balancer or the web front end, it could point to the
loopback address (127.0.0.1) on the host in question to ensure that, where possible,
communication occurs on the same host, reducing latency and network traffic. This
approach works well when components are co-hosted in the same container because
generally they will all be available at the same time. There are problems with using
the loopback address if it is possible for some components on a box to be available
and others to be down. If a component is down on the local box then instances on
other machines will be ignored, losing the benefit of a high availability architecture.

Summary
The SOA Suite provides facilities for moving configurations between different
environments using either web-based tools or command-line tools. Generally,
the use of command-line tools allows deployment to be more repeatable through
scripting. Some properties must be modified during the move from one environment
to another and there are some facilities in the SOA Suite to make this easier.

When deploying installations of more than one instance, either for throughput
or resilience, care must be taken with the deployment, particularly with the use
of hostnames.

Testing Composite
Applications

In this chapter, we will focus on the tools in JDeveloper and the SOA Suite that
assist you in testing the components of your SOA application. The basic principles of
testing are the same in SOA as in other software development approaches. You start
testing the lowest level components and gradually build up to a complete system test
before moving into user acceptance testing. You may also be required to undertake
some form of performance testing.

We will begin our discussion by looking at the manual testing of individual
components and services in the SOA Suite. We will then investigate the importance
of repeatable testing before moving on to discuss automated testing and the testing
framework available in the Oracle SOA Suite. Finally, we will discuss how a system
may be performance tested.

Tests can be run in either of the two fashions. They can be run manually, by a
dedicated testing team, or they can be automated. Manual testing tends to be run
only when the software is deemed almost ready for release due to the cost of people
to run the tests. Automated tests are to be preferred as they potentially allow the test
suites to be run on all the intermediate builds of software, providing management
with a heartbeat of the robustness of the release under development. We will look at
support for both models of testing within the SOA Suite.

SOA Suite testing model
The SOA Suite has two distinct methods of testing SOA artefacts. They may be tested
in a one-off fashion through a test service client or they may be tested in a repeatable
fashion through the SOA Suite test framework. In either case it is necessary, at the
very least, to generate appropriate input data to the artefact being tested.

Testing Composite Applications

[532]

The illustration shows a simple composite service that is invoked by a client and in
turn invokes two services before completing. The details of the composite service
are not relevant at this point, and the composite could consist of a service bus
pipeline, a BPEL process, or both. Note that the nature of the composite defines
several interfaces; the composite exposes a client interface and in turn makes use of
interfaces exposed by the two services. We will use this simple example to explore
how to perform different levels of test.

Client

Composite
Service

Service
A

Service
B

One-off testing
Within a development environment it is very useful to run a quick test of a
process or interaction to ensure that it behaves as expected. These one-off tests
can be run from the BPEL Console and the Service Bus console as explained in
the following section.

Testing BPEL processes
All deployed, BPEL processes have a test client created for them. This is accessed
by clicking on the process in the BPEL dashboard or processes list and selecting the
Initiate tab. The test service client in the BPEL Process Manager is very good when
you want to quickly test that the process you have deployed is behaving as expected.
It allows you to specify the input parameters through the web interface, including a
choice of HTML or XML input formats. The example below from the BPEL Process
Manager console shows how the HTML format makes it very easy to focus on just
the input fields required rather than having to be concerned with the exact XML
format required by the composite.

Posting the XML message will cause the BPEL process to be invoked and any results
will then be available through the console. Verification of the accuracy of the results
must be done manually by the developer. Later in this chapter, we will examine how
the testing of results may also be automated.

Chapter 19

[533]

If you have a very complicated interface you may not want to have to enter the
parameter values every time you test the process. Clicking the Save Test checkbox
will save the parameters for the next time the test client is entered. Note, however,
that these parameters are only saved for the current version, and are lost if the
process is redeployed with the same version. However, these parameters can be
saved as the default input to a process as follows.

Enter the desired parameters in the HTML Form. Switch to the XML Source view by
selecting the radio button, you will now see a SOAP message constructed to contain
the input to the process. Copy the XML to the clipboard.

Testing Composite Applications

[534]

Now within JDeveloper click on the Deployment Descriptor Properties … icon at
the top of the visual BPEL editor.

This brings up the Deployment Descriptor Properties dialog where we can select
the configurations tab and click the Create button to create a new configuration
property. The defaultInput property allows us to define the default input to the
BPEL process. Whatever input we provide here will be used to create an initial
default test message in the BPEL console client tester. This will be deployed to the
BPEL Process Manager with the process.

The XML from the BPEL Console test client can then be pasted into the property
value area. When the process is deployed this will form the default message used by
the test client. This is very useful to allow a developer to quickly do a sanity check on
their process and ensure that it works for at least one use case, but it still requires the
developer to manually enter any parameters other than the single default set.

The easiest way to get the default input is to deploy the process and then use the
HTML form to create the correct input. The process can then be updated to include
the defaultInput property and redeployed with the same version number. Changes
to the input format will require changes to the XML input. Unless the change is
very extensive it will generally be easier to edit the XML directly rather than repeat
the steps of deploying the process, generating a sample input and then pasting that
input back into JDeveloper.

Chapter 19

[535]

Use of the test client
The test client should not be part of the formal testing strategy. It should
be used by developers to get immediate feedback on the correctness of
their composite, not as part of a formal validation process.

Testing the service bus
The service bus also provides a simple client testing interface. In BPEL the only option
is to test the entire process, but in the service bus we can test either the business service
(the back end service) or the proxy service (the service bus interface). After navigating
to the folder containing the proxy or business service the tester is invoked by clicking
on the bug icon.

Testing Composite Applications

[536]

This brings up the test client. For a SOAP service, the test client allows the
specification of the message parameters in the SOAP body through the payload text
box as well as the addition of any SOAP headers that may be required. There are
two options that control how the call is submitted and what additional information
is collected. The direct call is normally used with the proxy service and allows
additional information about the processing of the message to be collected through
the use of the trace option. This can be invaluable in tracing problems in the service
bus pipelines or routing services.

The output from the test client can be checked manually for accuracy.

Automated testing
Up to this point the testing we have investigated is manual based requiring human
intervention. For more extensive testing we require an automated test framework
which is just what is included in the BPEL Process Manager.

The BPEL test framework
The BPEL Process Manager includes a test framework that supports the following:

Aggregation of multiple tests called "test cases" into a "test suite"•	

Generation of initial messages•	

Validation of input into, and output from, services and composites•	

Simulation of service interactions•	

Chapter 19

[537]

Reporting of test results•	

Reporting of BPEL code coverage•	

The BPEL test framework may be thought of as similar to the Java unit test
framework JUnit.

BPEL test suites
Individual test cases are grouped into a test suite at the level of an individual
JDeveloper project. Note that in the current release this is only supported for a
single process. Multiple processes would require multiple test suites. Multiple test
cases in a single test suite can be executed with a single request, automating much
of the testing.

Test Suite

Test Case 1 Test Case 2

Test Case ... Test Case n

Individual test cases will be used to test different conditions. Each individual test
case will result in a single instance of the BPEL process being created. So a test suite
with 100 test cases could have 100 BPEL process instances created as a result of a
single user request.

To create a new test suite in JDeveloper just right-click on the Test Suites folder in a
BPEL project and select Create Test Suite….

Testing Composite Applications

[538]

Name the test suite and then you are ready to create your first test case. The easiest
way to create a test case is to download it from the BPEL console. This requires the
following steps:

Run a test case with the desired parameters as described in the section •	 Testing
BPEL processes
Select the •	 Test tab for the desired instance
Save the target of the link •	 Save as unit test (.xml)

The unit test that is saved describes the input parameters to the process as well as
any interactions with partner links. When saving the file it is a good idea to give the
test case a descriptive name that will distinguish it from other test cases. The unit test
is imported into the JDeveloper project by right-clicking on the Test Suites folder
and selecting Import BPEL Test....

Note that we can also create a new test case from scratch by selecting the Create
BPEL Test... option. This gives us an empty BPEL test case to which we need to add
an input message. The content of the input message can be obtained in the same way
as we obtained the default input message for our process.

Data validation
The testing framework allows validation to be applied to the inputs and outputs of
either the process as a whole, or individual services. Validation is performed through
an assertion. An assertion is a statement about the expected behavior of the process
at this point. For example, an assertion may identify that the value of the output of a
process should be a particular value. When the test case is run the actual value of the
output will be compared to the expected value and if they do not match the test case
will fail.

Chapter 19

[539]

We can add assertions to a test case to ensure that we get the expected result. We
do this by opening the imported test case in JDeveloper. Each test case provides a
design view similar to the BPEL process design view. Within the design view of
the test case, assertions are added by right-clicking on it and selecting Asserts. This
brings up the BPEL Test Settings dialog. Note that assertions may be added to any
activity in the BPEL process but usually they are added to check the output of the
process and the input and/or output of service calls made by the process.

Testing Composite Applications

[540]

Within the BPEL Test Settings dialog we can choose to make a number of different
types of assertion. These are:

Value Assert•	 : This allows us to test the value of a BPEL variable, usually the
input or output variable of an activity.
Activity Executed Assert•	 : This lets us verify the number of times an activity
is executed within our BPEL process; this is usually used within loops to
ensure that we execute the loop the expected number of times.
XML Assert•	 : This allows us to compare the XML of a variable directly
with an XML fragment. Note that we can make multiple assertions about
the same activity.

In addition to the Asserts tab, there is also an External Calls tab that allows the
execution of custom validation code written in Java. We will focus just on the
creation of value asserts.

Creating a value assert leads us to the Create Value Assert dialog box. We can use
the flashlight icon to select a variable and construct an xpath expression to the value
we wish to test. Comparisons can either be numeric or string values. If we choose a
string value, then it is possible to specify a regular expression as the expected value.
This is useful if we know the general format of the expected response but not the
specific values.

Chapter 19

[541]

If the assertion fails, the Error Message field is displayed in the BPEL test console.
This can be used to give information about why the test failed. The Fatal checkbox
is used to indicate what the process should do if the assertion fails. When the Fatal
checkbox is checked then the process will terminate if the assertion fails; if it is not
checked then the process will continue to execute.

Note that in releases used in writing this book, setting the Fatal checkbox
could cause unstable behavior in the process manager and should not be
used. Assertion failures will be flagged when the test case is run only if
they are not fatal. Until there is better support for Fatal in BPEL, it is best
to ensure that it is not selected.

Testing Composite Applications

[542]

Deploying the test suite
The test suites and their included test cases are all deployed to the BPEL run time
by right-clicking on the Test Suites folder and selecting BPEL Test Deployer. This
brings up the BPEL Test Deployer dialog box. This dialog enables us to select the
actual test suites to be deployed to BPEL server instances. After selecting the tests to
be deployed then click the Deploy button to deploy them to the selected servers. The
status of deploying the test suites will appear in the Status window of the dialog box.

Running the test suites
The deployed test suites will appear in the SOA Console in the process Test tab.
The interface allows all or a subset of tests to be selected and then executed by
clicking the Execute Tests button. The maximum concurrent instances field allows
for concurrent execution of tests.

Chapter 19

[543]

The results of the tests are displayed in the BPEL Test Report screen that appears
after clicking on the Execute Tests button.

The test report displays the summary and count of tests executed, and also gives
error messages of any failed assertions. The test report also provides an analysis of
code coverage in the test suite. Code coverage is the percentage of BPEL activities
executed in the process. BPEL processes may have paths that are not executed in all
cases. This may be due to switch or pick activities that explicitly provide alternate
paths, or it may be due to compensation and exception handlers that will not always
be invoked. The process coverage is a useful measure to verify that your test suite is
at least exercising all the activities in the process under test. If you are not covering
all the activities then consider adding additional test cases to cover all paths.

Note that although it is desirable in the total test suite to have 100%
coverage of the BPEL code, this is a necessary but not sufficient condition
to ensure that the BPEL has been fully exercised.

Testing Composite Applications

[544]

Partner link handling in test cases
Getting a BPEL process to cover all possible code paths often requires us to get
specific behaviors from sub-processes or other partner links. This can be difficult
to create using the test client in the BPEL console. We need more control over the
behavior of partner links. The BPEL test capability is quite sophisticated in how it
handles partner links. Partner links may be handled in one of three ways:

Direct call to the partner link•	

Emulated call to the partner link•	

Invoke a test case for the partner link (only for BPEL processes)•	

If no reference is made to the invoke or receive activity then it is directly executed.
Alternatively the partner link interaction may be emulated, with pre-defined values
being returned. This is what happens when we download a test case from the BPEL
Console, all the partner link calls are emulated. The final option allows us to test a
network of BPEL processes.

To modify the handling of a partner link in JDeveloper, open the test case,
right-click the activity we wish to control, and select Emulate Invoke Message
to bring up the BPEL Test Settings dialog with the Emulate tab being in focus.

Chapter 19

[545]

In the dialog we have the three options for interacting with the partner link
displayed as radio buttons. We select the correct radio button for the type of
interaction we require. To emulate an interaction we are allowed to specify either
the inbound message or the fault generated by the partner link. In either case we can
select the details of the message or fault manually or we may load it from a message
file deployed with the test suite. Message files are a handy way to reuse messages
across several test cases; specifying them in message files makes it easier to update
the messages if the schema they are based on alters.

A note on message flow nomenclature
Messages flowing into the process under test are identified as inbound
messages. Messages flowing out of the process under test are identified
as outbound messages. When dealing with a synchronous invoke this can
be misleading as the inbound message is the response from the partner
link. Always thinking of oneself as sitting inside the process under
test makes it easier to understand what is meant by the message flow
directions. Outbound messages do not need to be emulated because they
are generated by the process under test; only inbound messages may need
emulation.

Testing Composite Applications

[546]

Note that in addition to specifying the message or fault payload it is also possible
to specify a duration, making the emulation more realistic and giving the possibility
of performing additional types of testing relating to timing of responses, for
example simulating long delays to enable time-outs to be tested. In addition to using
messages generated by the BPEL test console, it is also possible to take the input
request generated by the test client in the BPEL Console and paste that into this
window. Often the HTML format is easier to enter data into, and then the view can
be switched to an XML view in the test client and copied and pasted into this dialog.

Simulation of process to process interactions
When emulating a partner link interaction we can invoke another BPEL process and
have it executed under the control of a given test script. This allows us to test the
interactions between running BPEL processes.

Baseline scripts
When importing a test case it is possible to import it as a baseline script by checking
the Add as Baseline Test checkbox. Baseline scripts can be thought of as template
scripts that can be overridden in specific test cases. Baseline scripts can be included
in other test cases, but are not executed on their own. To execute an imported
baseline script we would create a new test case and then include the baseline script
by right-clicking the Include BPEL Tests menu option. Within the Included BPEL
Tests dialog that appears, we can add a single baseline test. This baseline test forms
the basis of our new test case. It is possible to override the behavior of the baseline
test case just by specifying alternative emulations or test cases to execute. Note
that if the baseline interaction is emulated or invokes another test case then it is not
possible to cancel this emulation or test case, it can only be overridden with another
emulation or test case.

Chapter 19

[547]

A common use for a baseline script would be to have a number of emulated
interactions. Individual test scripts could then override a single interaction, perhaps
changing the response values or altering the emulation into a fault to exercise
different paths through the BPEL process. Typically each test script would have a
different assertion on the message returned to the caller of the process.

Regression testing
One of the hallmarks of an ongoing successful software system is regression testing.
Regression testing is the process of creating a series of tests for a software system
and then repeating those tests every time a new release of the software is produced.
As defects are discovered in the field and fixed, test cases are produced and these
test cases are then added to the set of regression tests. This process helps to ensure
that, once fixed, the same defect does not reappear in future releases of the software.
In this fashion the number of tests to which a software system is subject to increases
over time. Note that regression tests should be performed at all levels of testing from
unit testing up to system testing.

Use of test suites
Test suites should always be used to collect related tests on a BPEL
process. They can then be used to run multiple tests with minimal user
intervention and so provide a useful regression testing environment.

System testing
Although the BPEL Console refers to Unit Tests, it is possible to test large portions of
the system through the BPEL test framework. By creating a process that exercises all
external interfaces to the system a large amount of system testing can be performed
through the testing framework.

Testing Composite Applications

[548]

In the example below the client injects a number of messages into the system, but
then either no emulations, or minimal emulations are performed to allow for the
entire system to be exercised. This is because when no emulation is specified then the
actual partner link will be invoked. This effectively tests both the individual services,
which may themselves be composites, and the composite assembly itself. This type
of testing only delivers high level success or fail information around individual
use cases. Because many of the services will themselves be complex assemblies it
is not possible in this type of testing to drill down into the exact reason why an
individual test case may fail. However, this type of testing does provide a high level
of confidence that the whole system interacts correctly because there is a minimum
of emulation.

StubClient

Composite
Service

Service
A

Service
B

Under
Test

This type of configuration may also be used to test individual composites in the
context of the actual services that they will use.

Composite testing
The problem with the system test is that it may fail for many reasons and often those
reasons will be unclear. Composite-level testing allows us to isolate the individual
composites and test them against their specifications. To do this, we inject requests
from the client and stub out the services used by the composite so that we have
complete control over all interactions between the composite and the services it
interfaces with.

This type of testing is good for identifying defects in the composite, but must be
treated with care as individual services may behave differently from the stubbed-out
(emulated) versions of those services.

Chapter 19

[549]

Service
B

Service
A

Stub
Stub

Stub

Client

Composite
Service

Under
Test

Component testing
The framework was designed for testing BPEL processes but may also be used to
provide a test harness for individual services as shown in the following figure. In
this case, a pass through assembly is provided that allows injection of messages
into the service. The BPEL process and the service are then configured with suitable
assertions to ensure the service is behaving as expected.

Service
A

StubClient Composite
Service

Under
Test

Unit testing
Unfortunately, the SOA Suite doesn't provide any specific low-level unit testing of
individual components with the exception of XSL, although it may be emulated to an
extent as described in the previous section. JDeveloper may also be used to run JUnit
test cases which can interact with low level services. However, this is done outside
the scope of the SOA Suite.

JDeveloper does have an XSL test tool that may be used to validate XSL
transformations before deploying them as part of a service bus or BPEL deployment.

Testing Composite Applications

[550]

Performance testing
Although the SOA Suite provides as part of the test client the facility to run
multiple queries concurrently against an interface, this should not be substituted
for proper performance testing. The test client multiple thread interface has the
following limitations:

Single message input•	 : All inputs to the service have the same input message.
Depending on how the service is written this may improve performance, for
example, because after the first request all the data pulled from the database
is available in memory rather than having to be fetched from disc.
Limited scalability•	 : The clients and servers are all part of the same system
and run on a single machine. This is not a realistic scenario and precludes
testing how well the system scales.
Doesn't use test framework•	 : The test framework provides detailed feedback
on multiple types of test and this is missing from the simple client interface.

The test client interface is good for quick basic performance testing, but any
real world performance testing should use a more complete testing framework
provided by Oracle Enterprise Manager testing tools or third parties such as
Mercury Interactive.

User interface testing
The SOA Suite is focused on services rather than user interfaces and so any user
interface interaction with the services must be driven from another test tool. Similar
to performance testing this is something for which other products should be used.
Although there is a certain amount that can tested by performing a system test as
described earlier, this does not fully test all the ways in which a Web or thick
client application may interact with the services exposed. There is no substitute for
a proper end-user interface testing tool to be used alongside the SOA Suite
testing framework.

Summary
In this chapter, we have examined testing in SOA Suite, starting with simple
one-off tests and then moving on to examine the BPEL test framework that
provides a repeatable testing framework for BPEL processes and any services
called from a BPEL process.

Chapter 19

[551]

The SOA Suite testing framework can be used to provide a rigorous environment to
support regression tests. In order to get the best out of this framework it is necessary
to invest effort in building test cases alongside the composites themselves. The
following checklist may be useful:

1. Always develop test cases alongside the composites.
2. Always develop test cases for standalone services by creating appropriate

composites as test harnesses.
3. Add new test cases for defects discovered in the field that were not caught

by existing test cases.
4. Emulate services to allow test cases to focus on composites.
5. Directly call services (don't emulate) to allow test cases to interact with

real endpoints.

It is best to build tests when the components themselves are being built; this allows
us to validate our components incrementally and immediately.

Test early, test often!

Defining Security and
Management Policies

In this chapter we will investigate how service-oriented computing makes security
more complicated before exploring how to secure our service infrastructure and
monitor it.

Security and management challenges
in the SOA environment
Moving to service-oriented architecture brings with it a number of benefits that we
have explored throughout this book, such as improved re-use, strong encapsulation of
business services, ability to rapidly construct new composite services, and applications.
However, there is one area in which SOA makes life much harder, and that is in
the area of security and management. By security we mean the process of ensuring
that individuals and applications can only access the information and invoke the
processing which is allowed to them. By management we mean the task of ensuring
that a system is capable of delivering the required services when requested.

Evolution of security and management
The challenges that SOA brings to the security and monitoring space are made
clearer when we look at the evolution of computing. The original computer systems
provided a single centralized system with a single access mechanism via a terminal.
These mainframe systems provided their own security and required external parties
(users) to authenticate, at which point they were restricted in their access by the
internal security protocols of the system. In a similar fashion monitoring was a
case of monitoring the status of individual components within the central system.
This made it very easy to provide strong centralized control of who could access
resources, while also retaining a strong ability to monitor individual users, as well
as the health of the system.

Defining Security and Management Policies

[554]

Monolithic System Database Server Database Server Service A Service B

Mainframe to
Client Server

Client Server to
Web Based

Application
Server

Application
Server

Web Based to
SOA

Enterprise Service Bus

The move to client server systems complicated things because now the actual
processing was spread across two machines, the server, generally a database server,
and a client, generally a personal computer. The central server was now required to
provide external access at a more granular level, potentially protecting individual
tables in the database rather than the broader brush application level that was
required in the previous generation of centralized systems. This now introduced
the problem of coordinating identity across two tiers; the client application would
generally authenticate the end user against the server, providing a pass through level
of security. Hence the security model was more complex due to more demanding
access control requirements, but the authentication model was not greatly different.

However, the move to client server greatly increased the complexity of monitoring
the solution. Moving processing off the central system and on to the client meant
that it was now necessary to monitor the health of components in the client, and
that client was more complex than the terminals used in the previous generation.
A particular problem in this environment was the unexpected interactions different
applications in the client could have with each other.

The problems of monitoring and managing the distributed client applications led
to a pressure to move the processing back into the data centre, which led to a third
generation of solution architectures based around web/application servers and
web browsers.

This led to further complication of the security infrastructure as now the applications
had to maintain links from many different clients and ensure that they enforced
appropriate access controls on each individual client. It did however simplify the
management environment by bringing the application back into the managed data
centre environment. However, the end-to-end environment was now more complex
to manage due to there being multiple tiers rather than a single tier, and problems in
one tier would impact the entire service offered by an application.

Chapter 20

[555]

The move to service-oriented architectures can be thought of as a natural progression
from the web deployment model, but with the additional complication that now
applications are composed from services provided by many individual service
providers, potentially on different machines, and in some circumstances the service
may be provided outside the company by another company. In the next section, we
will examine the management and security challenges that SOA brings.

Added complications of SOA environment
The SOA environment makes it harder to enforce a consistent security policy. It also
has a number of moving parts that must be managed. Let us consider each of these
challenges in turn.

Security impacts of SOA
Consider a service that is invoked. In order to decide whether to service the request
it must determine if the requestor is allowed to access this service. Access may be
controlled or restricted based on the invoking code and also based on the originator
of the request. Consider a composite application in which user A makes a request of
application X which satisfies the request by making a request to service Y which in
turn calls service Z.

User A
Application X Service Y Service Z

Application X has no more a difficult job in accepting the request in this environment
than in a web application. It can require the user to authenticate, potentially via some
form of secure certificate or bio-metric based authentication. The challenges come
when X starts to invoke services. Service Y must decide if it will honor the request. It
has three basic ways to do this:

Accept requests: Effectively apply no security•	

Accept requests from application X: Effectively require the client application •	
or service to be identified and authenticated
Accept requests from user A: Effectively require some way of propagating •	
the identity of user A through application X into the service

Service Z has the same set of options but instead of application A being the client in
this case it is service Y. This potential chaining of services and potential requirements
for propagation of identity make it harder to effectively secure the environment.
Later on we will look at tools in the SOA suite that can simplify this.

Defining Security and Management Policies

[556]

Management and monitoring impacts of SOA
In the same way that we have a more complicated set of security demands in the
SOA environment we also have a more complicated set of monitoring requirements.
Consider the diagram below which shows how a composite application makes use
of services to satisfy users' demands.

User A
Application X Service Y Service Z

Service P

Service Q Service R

In this case, application X makes use of five services either directly or indirectly to
satisfy user requests. We need to monitor the individual services to get any idea
as to why an application may be unavailable to an end user. However, this is not
sufficient as the some of the services may be required for execution and others may
be optional.

For example, consider a shopping site. The catalogue and order entry services must
be available to provide a service to the end user, but the fulfillment and payment
services need not be available, as they can do their work without the user being
online at the time. In this case if the fulfillment service is unavailable then the
application can still work but it may have reduced functionality, such as being
unable to provide an immediate delivery date.

Another aspect of service monitoring that must be considered is the throughput on
individual services. This is important because individual services may be used by
multiple applications and so it is possible that an application that previously gave
excellent end-user response times may degrade its performance because one of the
services it depends on is under heavy load from other applications. Monitoring will
allow this risk to be identified early on and corrective action taken.

Chapter 20

[557]

Securing services
Having looked at the additional complications that SOA brings to the security
infrastructure let us examine how SOA Suite enables us to secure our services. We will
look at securing services based on what application is calling them as well as securing
services based on the end user for whom the request is being made. We will also look
at the best places to apply security to our services.

Security outside the SOA Suite
There are several things we can do to secure our services without using the facilities
available in the SOA Suite. The following are some of the ways in which we may
provide security by configuration of the network and server environment in which
our services execute.

Network security
An integral part of a SOA solution will usually be firewalls that restrict access to
different networks within the enterprise. A common model is to have a front side
network that receives requests from external clients and a back side network that
can receive requests from other services but cannot be accessed directly by external
clients. Machines that need to be accessed externally will have access to both the
front side and back side networks and will act as application bridges between the
two, there being no network level connection between them.

Preventing message interception
We can improve security by encrypting all messages between services by using
SSL (Secure Socket Layer). This requires the web servers hosting our services to
be configured with certificates and only to accept requests across SSL connections.
Basically this means disabling HTTP access and only allowing HTTPS access to
our servers. This has a performance overhead as all messages must be encrypted
before leaving the client machine and decrypted on arriving at the server machine.
The server-side encryption may be reduced by use of hardware accelerators, either
embedded in the network card or in the network.

If all the machines are on the same physical switch then messages between services are
effectively secure because they can only be seen by the client and server machines. This
allows us to configure our servers to accept HTTP requests from machines on the same
switch but only accept HTTPS requests from machines not on the same switch.

Defining Security and Management Policies

[558]

Restricting access to services
We may restrict access to machines based on the IP address of the caller. This is a
quick and easy way to provide a layer of protection to our services. Configuring
our HTTP servers to only accept requests from well-known clients works well for
internal networks but doesn't work for external services. It also leaves us with the
problem of reconfiguring our list of acceptable clients when a new client service
is added.

Declarative security versus explicit security
A central tenet of service-oriented architecture is to abstract functionality into
services that hide implementation details. When we come to security and monitoring
these are really facets of a service and can also be provided in a service-oriented
fashion. These two key concepts are worth exploring because they are central to
making best use of SOA Suite security and monitoring.

Security as a facet
We generally define our services in terms of the functionality (service) that they
provide. These services also have attributes that may not be explicitly mentioned in
their service data model but are nevertheless an important part of the service. These
attributes include availability, response time, and security. Security is an attribute of
a service that can be applied without altering the core functionality of the service. For
example a service may require that it is only invoked across SSL connections or that
it may only be invoked by an authorized user.

Security as a service
Security is itself a service that controls the following:

Access control: Who may make requests of a service•	

Authorization: Who is requesting the service•	

Integrity: Can the data be read or altered to or from the service•	

We can think of security as a service that is applied as a facet to other services.
This is the model that is applied within the SOA Suite and particularly the Web
Services Manager.

Chapter 20

[559]

Web Services Manager model
The Web Services Manager allows security to be applied to services and operators to
monitor services, without a need to modify the service. The model for this is shown
in the figure below:

Access to services (access control) is always through a gateway or agent component
supplied by Web Services Manager. The endpoint of the service is exposed as the
gateway or agent endpoint.

Service ServiceRequests Gateway

Monitor

S
er

vi
ce

S
ta

tu
s

Po
lic

y
C

on
tr

ol

Policy
Manager

Agent

Policies Policies

status status

Rules for who can access the service (authorization) and the access they are allowed
(access control) are determined by the policies provided by the policy manager
component of Web Services Manager. These policies are pushed to individual agents
and gateways.

Policies may also specify specific logging requirements or encryption requirements
(message integrity) for the data.

Policies are determined by an administrator using the Web Services Manager
console and enforced using policy enforcement points. Policy enforcement points are
provided by Web Services Manager gateways and agents.

Service

Policies

Policy
Enforcement

Point

C
lie

nt
 A

cc
es

s

Defining Security and Management Policies

[560]

Operators may monitor the performance of services against pre-defined service level
agreements by using the web service monitor component. The monitor is informed
of service performance by the agent and gateway components.

Policies
A policy consists of a series of steps such as:

Validate certificate of requestor•	

Decrypt message•	

Log portion of message•	

These steps can be thought of as a policy pipeline. Each request for a service must
pass through the policy pipeline associated with that service. By defining a policy we
can have a consistent way of protecting a number of different services. For example,
we may have the following distinct policies:

Policy for externally accessible services•	

Policy for services making financial transactions•	

Policy for non-critical services•	

The first policy may specify a need for encryption of data as well as authentication
of clients. The second policy may require strong authentication of clients and special
logging steps. The third policy may just perform some simple logging. An internally
accessible payments gateway may make use of the second policy, while the same
gateway configured for external access may be configured with the first and second
policies.

Policies are applied to individual service endpoints.

Agents and gateways
From the preceding discussion it is clear that gateways and agents are the key Policy
Enforcement Points (PEPs) where the security facet is added to a service. Let's
explore how these components differ.

Both gateways and agents are responsible for enforcing policy. The difference is
in their physical location. Agents are physically co-located in the same container
as the service they are protecting. This has the benefit that agents do not require
an additional network hop or inter-process communication to deliver messages to
the service. Because of this the physical and logical layout of the agent is essentially
the same as shown in the diagram. There is one agent per container which is
hosting services.

Chapter 20

[561]

Logical and Physical Agent Model

Policy
Manager

Client

Monitor

Service A and
Agent (PEP)

Service B and
Agent (PEP)

Service C and
Agent (PEP)

The gateway on the other hand is a centralized policy enforcement point. The
service endpoint exposed is that of the gateway, not of the machine on which the
service resides. All requests potentially incur an additional network hop as they
must go through the machine on which the gateway resides. Although physically
the gateway is just another machine on the network, logically it sits in front of the
services for which it enforces policies.

Physical Gateway Model Logical Gateway Model

Policy
Manager

Client

Monitor

Service A Service B Service C

Gateway
(PEP)

Policy
Manager

Client

Monitor

Service A Service B Service C

Gateway
(PEP)

Note that in a production deployment it is possible to have multiple gateways
deployed so that a single gateway does not become a single point of failure in the
service infrastructure.

Distinctive benefits of gateways and agents
Gateways and agents both achieve the same result of securing and monitoring
services, but the different approaches they have provide different benefits. Both
gateways and agents can be used together, with some endpoints protected by agents
and others protected by gateways.

Defining Security and Management Policies

[562]

Benefits of gateways
Following are the benefits of gateways:

Can protect services running on platforms for which no agent is available, •	
for example a service implemented in Perl
Does not require modification of service endpoints•	

Less intrusive in endpoint platform•	

Support message routing•	

Support failover•	

Drawbacks of gateways
Following are the drawbacks of gateways:

Clients must explicitly target gateway•	

Services must be configured to only accept requests from gateways to avoid •	
bypassing of gateway
Service endpoints must be explicitly registered with gateway•	

Note that the service bus can also act in the role of a web services gateway, although
the 10.3 release does not support the OWSM policies.

Benefits of agents
Following are the benefits of agents:

Provide true end-to-end security•	

Cannot be bypassed by targeting the service directly•	

Do not require changes to clients' stored service endpoint•	

Potentially faster due to less latency•	

Drawbacks of agents
Following are the drawbacks of agents:

Intrusive into services to be monitored/secured•	

Cannot convert between transport protocols•	

Chapter 20

[563]

Service bus model
The service bus model to securing and monitoring services is similar to the OWSM
gateway model in that the service bus sits between the client and the service and can
apply policies and monitor performance of services. In the service bus model the
policy management server and the policy enforcement point are both parts of the
service bus.

Creating gateways and agents
Before we can start creating and applying policies in the Web Services Manager we
need to create at least one gateway or agent.

To create gateways or agents we must first log on to the Web Services Manager
console at http://hostname:port/ccore. We can then select the Policy
Management tab and then the Manage Policies tab.

We create gateways and/or agents by clicking the Add New Component button.
This will bring up an Add New Component dialog that will allow selection of the
type of component to be registered with the Web Services Manager.

Defining Security and Management Policies

[564]

Creating a gateway
When creating a new gateway using the Add New Component dialog, we
are required to set the Component Type to be gateway. The Component Name
is an arbitrary name to identify the component to operators. The Component URL
is the endpoint location where the gateway will be deployed. This is usually
http://hostname:port/gateway where the hostname and port are the host and
port number of the application server on which the gateway is to be deployed.

The Component Groups fields are used to control who may manage the
gateway settings.

The gateway is registered with the Web Services Manager by clicking the Register
button. This will register the component and create a unique component identifier,
which is returned in the confirmation of a successful component registration.

Chapter 20

[565]

At this point the gateway has been registered with the Web Services Manager but
has not been deployed into a container. To do this we need to go to the installation of
the SOA Suite and deploy the gateway into a JEE container. We begin by configuring
the gateway properties installer file gateway-config-installer.properties
located in the owsm/config/gateway directory.

gateway.component.id=C0003001

gateway.repository.url=jdbc:oracle:thin:@//localhost:1521/XE
gateway.repository.driver=oracle.jdbc.driver.OracleDriver
gateway.repository.userid=ORAWSM
gateway.repository.password=????BfaMEtLZAxtnPhGUCTmBfP0=

…

In this file we need to set the gateway.component.id to be the component ID
returned when we registered the gateway in the Web Service Manager Console. If
we want to support input protocols other than HTTP SOAP and HTTP XML then
they need to be configured in this file as well. After setting the correct component
ID we can then deploy the gateway by opening a command prompt in the owsm/bin
directory and executing the following command:

wsmadmin deploy gateway

During execution, we will be prompted for the administrator password of the
application server into which we are deploying.

Buildfile: C:\oracle\SOA10.1.3\owsm\bin\..\scripts\install.xml

validate.oc4jAdminPassword:
 [input] OC4J Administrator Password:

Successful deployment will be indicated by a success message.

install.buildApps.clean.gateway:
 [delete] Deleting: C:\oracle\SOA10.1.3\owsm\ears\gateway.ear
 [delete] Deleting: C:\oracle\SOA10.1.3\owsm\wars\gateway.war

BUILD SUCCESSFUL
Total time: 1 minute 43 seconds

Note that the application server may need restarting in order for the new
configuration to take effect.

Having successfully registered a gateway, we now need to tell it about the
services available.

Defining Security and Management Policies

[566]

Registering gateway services
We register services by clicking on the Register Services link of the Policy
Management menu on the left of the screen. This provides us with a list of gateways.
For a given gateway we may drill down into the services for that gateway by clicking
on the Services link which takes us to a listing of the services currently available on
that gateway.

There are two ways to register a service with the gateway. We may Import Services
by locating them in a service registry or WSIL repository. In this case we need to
provide details of the service directory and select the appropriate service within that
directory. Alternatively, we may Add New Service which allows us to reference a
WSDL directly.

Selecting Add New Service prompts us to provide a Service Name for use
by operators and clients of the service. Services may be accessed at the URL
http://host:port/gateway/ServiceName. We must also provide a Service
Version identifier that serves to distinguish different services with the same service
name. If multiple services with the same name are registered, the last one registered
is accessible via the service name.

Chapter 20

[567]

We must also provide a service WSDL URL which will tell the gateway about
the interface to be supported and the endpoint of the web service. Note that the
transport exposed by the gateway need not be the same as the transport provided by
the service. It is possible to support a variety of different transports for the service to
be invoked, including HTTP, HTTPS, JMS, and IBM MQ series.

There is some overlap in the functionality of the service bus and the Web
Services Manager. For example, both are capable of applying security
policies as well as performing protocol and format conversions. The
Web Services Manager is best used for consistently applying security
policies throughout an organization. It is better to use the service bus for
abstracting service interfaces and performing protocol and data format
conversion. The Web Services Manager should be thought of as the
component to provide consistent security policy management in a SOA
infrastructure, leaving the service bus to deal with the management of
service abstractions.

Note that we are configuring the target service transport, not the transport that
will receive requests in Web Services Manager. Web Services Manager can be
configured to received requests across HTTP, JMS, or MQ series and all registered
services will be accessible across all protocols from which OWSM is configured to
receive requests.

Defining Security and Management Policies

[568]

Clicking Next takes us to a second service configuration screen which allows
us to configure additional service properties, such as what to do when the service
is unavailable.

Clicking Finish registers the service with the gateway and returns a unique service
ID. This service ID may be used to invoke the service from a client.

Chapter 20

[569]

When we register a service with the gateway then we expect all client access to
go through the gateway or the policies we register against the service will not be
applied. The following table shows how a client may access the service. Services may
be accessed using either their service ID or their registered name.

Protocol Endpoint Address
SOAP over
HTTP

http://GatewayHostname:GatewayPort/gateway/services/
ServiceID
or
http://GatewayHostname:GatewayPort/gateway/services/
ServiceName

XML over
HTTP

http://GatewayHostname:GatewayPort/gateway/xml/
ServiceID
or
http://GatewayHostname:GatewayPort/gateway/xml/
ServiceName

SOAP over
JMS
or
XML over
JMS

JMS User Property 'serviceID' set to 'ServiceID'
or
JMS User Property 'serviceID' set to 'ServiceName'

After registering our service we need to commit the change to have it take effect. This is
done by clicking the commit link on the list of services associated with the gateway.

Defining Security and Management Policies

[570]

After committing these changes we get a confirmation that the service has been
successfully registered.

The list of services registered with a gateway may always be displayed from within
the Web Services Manager control by clicking on the Services link of the gateway.

Creating an agent
Agents may be installed into Java containers to apply policy directly at the client or
service level. There are two kinds of agents in Web Services Manager. Client agents
intercept service requests before they leave a client while server agents intercept
service requests before they are delivered into a service.

Client and server agents are installed in a similar fashion to the gateway by selecting
Add Component from the Policy Management tab and then choosing the type of
component to be deployed: a Server Agent or a Client Agent.

Chapter 20

[571]

In addition to a name for the agent, the type of container into which the agent is
deployed, must also be specified. This type relates more to the web services stack
than anything else, hence the listing of OC4J, Axis, and Others. Clicking Register
causes the agent to be registered and a new component ID returned. This component
ID will be used later to configure the deployed agent. The agent is deployed in a
slightly different fashion to the gateway. Similar to the gateway, it also has an install
configuration file, but this is located in the owsm/bin directory and requires different
information. The following table summarizes the location and name of the installer
configuration files for agents and gateways:

Component Directory Filename
Gateway Owsm/config/gateway gateway-config-installer.

properties

Client Agent Owsm/bin agent.properties

Server Agent Owsm/bin agent.properties

It is important to ensure that the agent.componentType, agent.containerType
and agent.containerVersion properties are correctly set in the relevant installer
properties file before running the deployer.

#
agent.componentType can be one of the following
serveragent - manages webservice providers
clientagent - manages webservice clients.
OC4JServerInterceptor - Used an an interceptor for webservice
providers on OC4J
OC4JClientInterceptor - Used an an interceptor for webservice
providers on OC4J
#
#NOTE - INTERCEPTORS ONLY WORK ON OC4J 10.1.3 +

agent.componentType=OC4JServerInterceptor

#
agent.containerType can be AXIS, WEBLOGIC, WEBSPHERE, TIBCO-BW or
OC4J
#
Specifying the container version for OC4J 10.1.3 is a must
#
The only allowed container type for Interceptor agent is OC4J and
version should be 10.1.3 or higher
#
agent.containerType=OC4J
agent.containerVersion=10.1.3
…

agent.component.id=C0003002
…

Defining Security and Management Policies

[572]

After verifying that the properties are set correctly then we deploy the agent with the
following command:

wsmadmin installAgent

It is worth noting that wsmadmin commands are case sensitive. During deployment
we will be prompted for the application server administrator password. Successful
deployment is marked by a BUILD SUCCESSFUL response. Now that the agent
is deployed then it is possible to enable it for specific applications within the
JEE container.

Enabling agent services
Monitoring and policy enforcement of agent protected services must be done by
going in to the management console for the application server and enabling the agent
for services in that application. This will make it possible to apply policies to all or a
subset of services in the application.

To enable the agent for a web service in OC4J, log on to the Application Server
Control and select the container where the agent and the services to be monitored
are deployed. Select the Applications tab to display a list of deployed applications
and select the application containing the services to be monitored. Select the Web
Services tab to find and drill down into the web service to be monitored. The
configuration for the Web Services Agent is available on the Administration tab.

Chapter 20

[573]

Clicking on the Edit Configuration icon for the Web Services Agent tab provides
access to Edit Web Services Agent Configuration dialog. This needs to be
configured with the name of the directory associated with the agent, which is the
same name as the component ID. This directory is normally located under the home
of the SOA Suite install at owsm/config/interceptors/ComponentID.

Once this configuration is done then the application server may need restarting and
then the service may be managed by the Web Services Manager.

Defining policies
Policies are defined using the Web Services Manager console. A policy can be
thought of as a pipeline of steps to be performed on an inbound request and
outbound response. Note that OWSM also has pre-request and post-response policy
pipelines but these do nothing and will be removed from the product. The request
pipeline is the steps executed after the gateway or agent receives the request but
before it forwards it on to the service. Similarly the response pipeline is the steps
executed by the gateway or agent before forwarding it on to the requestor.

Request Pipeline

Response Pipeline

Step 1

Step 1

Step 2

Step 2

Step N

Step N

Modified Client
Request

Service

Server
Response

Client Request

Modified Server
Response

Defining Security and Management Policies

[574]

Policies may be used to partially or fully encrypt payloads, provide logging
information, transform data, authenticate users, authorize access, or any number
of other functions. The table below shows the list of functions supported out of the
box by the Web Services Manager. Note that it is also possible to create custom steps
written in Java and register them with OWSM. All steps are available by default in
the gateway, but a few steps are unavailable in the server or client agents. If a step is
available in an agent then it is marked as true otherwise it is marked as false. The
steps associated with a component are accessed by clicking on the Steps link in the
component list. In addition to the steps listed below it is also possible to register new
steps with a component through this link.

Step name Step description Server
agent

Client
agent

Active Directory
Authenticate

Authenticate credentials with Active
Directory

TRUE TRUE

Active Directory
Authorize

Authorizes request by retrieving roles
from Active Directory and checking
against roles allowed by service

TRUE TRUE

Decrypt and Verify
Signature

XML Decryption And Signature
Verification

TRUE TRUE

Extract Credentials Extract Credentials TRUE TRUE
File Authenticate Authenticate username and password

against a local .htpasswd file. This step
depends on Extract Credentials Step

TRUE TRUE

File Authorize Authorize remote user against a local
roles file. This step depends on Extract
Credentials Step

TRUE TRUE

Handle Generic Fault Example generic fault handler step FALSE FALSE
Insert Oracle Access
Manager Token

Insert Oracle Access Manager Token FALSE FALSE

Insert WS BASIC
Credentials Step Insert WS
BASIC Credentials Step

Insert WS BASIC Credentials TRUE TRUE

Ldap Authenticate Peforms the authentication with a LDAP
Server

TRUE TRUE

Ldap Authorize Authorizes request by retrieving role
from LDAP and checking against roles
allowed by service

TRUE TRUE

Log Log the request/response message TRUE TRUE

Chapter 20

[575]

Step name Step description Server
agent

Client
agent

Oracle Access Manager
Authenticate Authorize

Authenticate and Authorize URLs access
with Oracle Access Manager Access
Server

TRUE TRUE

SAML—Insert WSS 1.0
sender-vouches token

Step to Insert SAML token as per WSS
1.0 token profile with Sender-Vouches
confirmation method

FALSE TRUE

SAML—Verify WSS 1.0
Token

Verify SAML tokens as per WSS SAML
token profile 1.0

TRUE FALSE

Sign message XML Signature TRUE TRUE
Sign Message And
Encrypt

XML Signature and Encryption TRUE TRUE

Siteminder Authentication SiteMinder Authentication TRUE TRUE
Siteminder Authorize SiteMinder Authorization to be used

after SiteMinder Authentication Step
TRUE TRUE

Verify Certificate Verify a certificate against a local
keystore

TRUE TRUE

Verify Signature XML Signature Verification TRUE TRUE
XML Decrypt XML Decryption TRUE TRUE
XML Encrypt XML Encryption TRUE TRUE
XML Transform Transform message using XSL TRUE TRUE

It is worth noting that certain steps rely on information being made available by
earlier steps. For example the various Authenticate steps generally require there
to be an extract credentials step beforehand to make the credentials, for example
username and password, available. Similarly the Authorize steps generally require
the corresponding Authenticate step to have been performed previously.

Creating a new policy template to perform
basic authentication
The easiest way to manage policies is to have a policy template that defines common
policy steps to be applied to multiple components. A policy template is a reusable set
of policy steps. Templates can be copied into a policy to reduce the amount of work
in setting up individual policies. As an example we will create a pipeline template
that performs basic authentication with the username and password passed in the
HTTP header and the user credentials and roles stored in files. This could then be
reused to provide authentication for multiple service policies.

Defining Security and Management Policies

[576]

Creating the template
To define a new policy template we go to the Policy Management tab in Web
Services Manager and select the Pipeline Templates link. This allows us to view the
current pipeline templates by type of component, gateway, or agent, and pipeline
type, request or response. Clicking Add New Pipeline Template allows us to define
new pipeline templates.

We need to create the pipeline template for a specific pipeline and component type,
so these must be correctly selected from the New Pipeline Template dialog. We
must also provide a name for the template. We can then click the Next button.

We can now configure the individual pipeline steps in our template. Note that
pipeline steps in a template can be fully, partially, or not configured at all. Steps
such as Extract Credentials may be fully specified if the credentials are located in
a well-known location that will be common to all services.

Chapter 20

[577]

Extracting Credentials
We add a step to our pipeline by clicking the Add Step Below link. This prompts us
to select a step template such as Extract Credentials.

Selecting the template step and clicking OK will add an Extract Credentials step
with default configuration.

If we expected the configuration to be different for every usage of this template we
could leave the step unconfigured. However, in this case we will click Configure to
ensure that the settings are correct for most uses of the template.

Defining Security and Management Policies

[578]

It is the steps in a pipeline template that are copied into a pipeline, not a
reference to the pipeline template. Once copied the steps are independent
of the template and have no further connection with it. A pipeline is
unaffected by any changes made to a pipeline template used in building
the pipeline. Similarly changes to the copied steps do not affect the
original pipeline template. Web Services Manager does not provide a
mechanism for changes in a pipeline template to update the pipelines
previously built using that template.

The Credentials location field is used to tell OWSM where the credentials are to be
found. The options are as follows:

HTTP: Indicates that the username and password are to be found in the •	
HTTP header which is using HTTP Basic authentication.
JMS: Indicates that the username is to be found in the JMS header properties.•	

WS-BASIC: Indicates the use of WS-I Basic Security profile with the •	
UsernameToken element containing the credentials—note that currently only
plaintext passwords are supported.
XPath Expression: Unlike the previous options this is not a string literal value •	
but an actual XPath expression to the element containing the user credentials.

The first three options require no further configuration. However, if an
XPath expression such as soap:Header/soap:Envelope/wsse:Security/
wsse:UsernameToken/ is specified for the Credentials location then the remaining
fields must be completed.

Chapter 20

[579]

The Namespaces field tells OWSM which namespaces are being used by
the XPath expressions in the other three fields. Namespaces take the form of
prefix=namespace with commas separating multiple namespaces such as
soap=http://schemas.xmlsoap.org/soap/envelope, wsse=http://www.docs.
oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd.

The UserID xpath field is appended to the Credentials location XPath to give the
location of the userID. In a similar fashion the Password xpath field is used to derive
the location of the password. Note that only cleartext passwords are supported for
XPath expressions.

Securing user credentials
Although only cleartext credentials are supported by the pipeline
steps directly, the password could be passed encrypted and then
decrypted using the XML decrypt pipeline step or a custom decrypt step
before the message passes through the authorization step.

Authenticating a user
We now need to add a step to authenticate the user or in other words verify the
identity of a user. OWSM will authenticate using the credentials obtained in the
previous step. We must now tell OWSM how to find the stored user credentials
against which it must validate the provided user credentials. There are several means
of authenticating a user, including the use of standard LDAP servers, and Active
Directory. To authenticate against a file we will add a File Authenticate step, but the
other authenticate steps are used in a similar fashion.

This step requires us to configure a Password file location and identify the
.htpasswd file format. The file location may be either an absolute location or a
location relative to $ORACLE_HOME//j2ee/home. The format of the .htpasswd file
is multiple lines of the form username:password.

Defining Security and Management Policies

[580]

The actual format of the password portion of the file depends on file format property
and may take one of four possible formats:

md5: Message Digest 5 encoded using the OWSM MD5 algorithm which •	
is not compatible with other implementations such as user2:{MD5}
bLdfZSqbUnmOts8iAQV8cw==.
sha1: Secure Hash Algorithm encoded.•	

plaintext: Unencoded format such as •	 user2:password2.
Mixed: A combination of the above formats. Note that the encoding is •	
identified in the password field, allowing the mixed format to work.

If the decision is taken to use MD5 hash format then the passwords in the .htpasswd
file must be encrypted using the OWSM admin tool. The user must already have an
entry in the .htpasswd file and a hashed password may be added by the following
command.

wsmadmin md5encode <htpasswd file> <username>

Authorizing a user
Having authenticated a user we now wish to decide if they are authorized to access
the service being protected by this pipeline. To achieve this we use the Authorize
step against an appropriate resource such as an LDAP server or in our case a
file. Authentication consists of listing a number of roles authorized to access the
service and then having OWSM match those roles to the roles associated with the
authenticated user. If there is at least one match then the user is authorized. We
begin by adding a File Authorize step to our pipeline and configuring it.

Chapter 20

[581]

The first item to configure is the User roles file location. This tells OWSM where to
find the file that lists the roles associated with a user. This may be referenced by a
location relative to $ORACLE_HOME/j2ee/home or it may be an absolute path. This file
is formatted as XML and has the following structure:

<UserRoles>
 <user username="user1" roles="User"/>
 <user username="user2" roles="Admin"/>
 <user username="user3" roles="Viewer"/>
</UserRoles>

The root element must be UserRoles and this in turn has one or more user elements.
Each user element has a username attribute that identifies a user who will have
been previously authenticated. It also has a roles attribute that consists of a comma
separated list of roles associated with the user.

In addition to the location of the roles file, the file authorize step also has an Allowed
roles item that consists of a new line separated list of roles that are allowed to
execute the target service. Note that it would be common to not configure this item
in a pipeline template as, although the roles file location is probably the same for
all services and hence worth configuring in the template, the actual list of roles
allowed will probably vary by service and hence is best left to be configured after the
template has been applied to a concrete service.

After saving our changes we have now completed the steps in our template.

Saving the pipeline template
We save the pipeline template by clicking the Save button.

Note that it is not possible to edit the pipeline template. If changes are required
it must be deleted and recreated. The Extract, Authenticate, Authorize pipeline
template is a natural sequence. The following diagram shows how both before and
after the extract step all users may invoke a service; after the authorize step only
users with valid credentials are able to do so; and after the authenticate step only
users with the correct roles may invoke the service.

Request Pipeline

Extract Authorize

All
Users

Authenticated
Users

Authorized
Users

Authenticate

Defining Security and Management Policies

[582]

This sequence is represented in OWSM with the following pipeline.

Creating a new policy
Having created our template we now wish to create a new policy, from it that may
be applied to a particular service. To create a new policy we first select a component.
Policies are defined in the context of a component and are edited by selecting the
Policies link from the component list.

Each component maintains a list of policies and list of URL mapping rules that relate
the policy to one or more service endpoints.

Policy Policy Mapping Endpoint URL

In the case of gateways the names of these policies and their relationship to service
endpoints are fixed and provide a separate policy for each registered service, and a
fixed URL mapping to the service endpoints.

Chapter 20

[583]

Creating an agent policy

If we choose policies for a client or server agent then we have the option to edit
the default policy or create a new policy. The contents of the default policy may
be altered but the policy itself cannot be deleted. For agents we maintain a list of
policies separate from the endpoints to which those policies apply. We will create a
new policy by clicking on the Add New Policy button. This brings up a new policy
with empty pipelines.

Defining Security and Management Policies

[584]

We could add individual steps to the policy in the same way that we created a pipeline
template. However, it is now much easier to apply the pipeline template, which we
do by clicking on the Replace Pipeline link. This takes us to a screen that allows us
to select a pipeline template from a list of known templates for this type of agent.
Selecting the appropriate template and clicking Select allows us to see the individual
steps in the template. To make use of the template we click the Replace button which
causes the pipeline steps to be copied from the template into the new policy.

This takes us back to the new policy screen, but now the pipeline will be populated
by the steps from the template and if necessary we may configure the individual
steps or add additional steps. When we have added the steps we require to both the
request and response pipelines and configured them appropriately, then we can click
on the Next button to take us to the final screen in the new policy creation process.

Chapter 20

[585]

We must now name our policy and then click Save to save it.

Once we have saved the policy we must now decide which endpoints it should
apply to. We do this by clicking on the Edit Mappings button on the policies screen
for our component. This takes us to a mapping editor.

Here we can enter a URL pattern or exact URL that will match against the service
or services which we wish to apply the template to. Having entered the mapping
details we then click the Add button to add the mapping to the list. If there are other
mappings we wish to set up then we can add them in a similar fashion. When we have
finished adding mappings then click Save. This will save our changes to the policy.

After receiving a confirmation screen that our changes have been accepted then we
need to activate those changes by clicking Commit on the policy management screen.

Defining Security and Management Policies

[586]

Committing policy changes
Policy changes can be saved up before being applied to the policy
enforcement points. This allows multiple related policy changes to be
made across components and for them then to all be activated at the same
time. Remember that policy changes do not take affect until the commit
button is pressed, pushing them out to the policy enforcement points.

Creating a gateway policy
Creating a gateway policy is similar to creating an agent policy except that the
application of policies is not as flexible. With gateways, the list of registered services
is used by OWSM to derive a list of policies, each named after the service endpoint,
and each mapping to a list of the endpoints for the service. For gateways the policy
of the service is applied to the endpoints for that policy and only the policy itself can
be edited.

Selecting Edit for the service we wish to edit a policy to, takes us to the policy
pipeline editor, which is edited in the same fashion as the agent policy pipeline that
we examined in the previous section. It is worth noting that when the policy is saved
it is possible to rename the policy and this will cause the policy mappings for this
service to be updated to the new policy name.

Chapter 20

[587]

Applying a policy through Service Bus
Console
Unfortunately in the current release of SOA Suite the Service Bus and the Web
Services Manager cannot share policies. In this section we will briefly mention
ways in which the service bus may apply security policies to requests. Service Bus
distinguishes between accounts that make requests through the service bus, known
as service bus accounts, and accounts that make requests of business services, known
as service accounts. This distinction is illustrated in the diagram shown:

Proxy
Service

Request Pipeline Business
Service

Service Bus Accounts Service Accounts

Service accounts
Within OSB business services may have service accounts associated with them. A
service account is an account used to provide credentials to a business service. The
service account is only used with the outbound message to a business service.

We can create a service account within a project by navigating to the project
screen and then selecting Service Account from within the Security section of the
Resources list box.

Defining Security and Management Policies

[588]

This brings up the Create a New Service Account dialog.

We are required to provide a Resource Name to identify the account and allow us
to use it later. We must also specify the type of account required (Resource Type).
There are three different kinds of service account:

•	 Pass Through expects the proxy service to provide credentials and this
account will just copy those credentials from the $inbound message to
$outbound message. This is useful if the client of the service actually
provides credentials in the same security domain.

•	 Static provides a fixed user provided set of credentials. This is useful if
the service provider expects to authenticate requests but the same account
is to be used by all users, such as a corporate account with a postcode
lookup service.

•	 Mapping requires credentials to be provided by the $inbound request and
then will map these credentials onto the credentials required by the business
service. This is useful if the client of the service and the business service are
in different security domains.

We will use the Static mapping in this example to authenticate against a service
expecting HTTP basic authentication.

Chapter 20

[589]

After providing the user credentials and clicking Last>> we get a final chance to
review and modify settings before saving the new service account.

Using a service account
Having created our service account we can now configure the HTTP transport of
the business service to use this account. We begin by selecting the business service
and then editing the HTTP Transport Configuration section of the Business
Service Configuration.

Defining Security and Management Policies

[590]

From the HTTP Transport Configuration screen we can specify that we want Basic
authentication. Selecting this requires us to provide a Service Account to associate
with the authentication.

Clicking Browse enables to select the service account from a list.

Having selected a service account we can then click Last>> to enable us to review
the details before clicking Save. Remember to activate changes in the Service Bus
Change Center. Whenever a request is now made to this business service the given
user credentials will be added as HTTP Basic authentication parameters in the
HTTP header.

Chapter 20

[591]

Managing service bus user accounts
By default service bus users are managed by the internal LDAP server within
WebLogic. This is fine for small scale configurations but for most deployments
it will be necessary to configure an external LDAP server as a security provider.
This will allow the selection of users and groups from that external server when
applying security policies to proxy services. For test environments then the Security
Configuration tab of the service bus console provides Users, Groups, and Roles tabs
that allow management of users.

We can add a new user by selecting the Users tab and then clicking Add New. This
then prompts us for the username and password of the new user and invites us to
assign the user to groups.

Clicking the Save button will create the new user, add the requested group
memberships and take us back to the Summary of Users screen.

Defining Security and Management Policies

[592]

Service bus roles
The service bus has the concept of security roles that enable users and groups to
be assigned a role based on a variety of operational conditions such as time of day.
Rather than protect proxy services by user rules it is preferable to do it through roles.
To create a role we go to the Security Configuration tab of the service bus console
and select the Roles tab. This provides us a list of currently active roles.

Clicking New takes us to the new role dialog where we specify a name for the role
and then save it by clicking OK which takes us back to the Global Roles screen.

Chapter 20

[593]

Having created a role we now need to define when the role is activated. This is done
by clicking on the role name in the Global Roles screen.

Here we can add the conditions that specify when the role is active. We use the Add
Conditions button to insert conditions. This takes us to a screen asking what kind
of rule or predicate we wish to add. As can be seen there are an extensive array of
predicates that cover users, groups, time, and message content as well as others.

Defining Security and Management Policies

[594]

Choosing User and selecting Next will take us to the Edit Arguments screen
where we configure the predicate according to the specific requirements we have.
In this case we need to add a username. Note that the username must exist in the list
of users.

Note that we need to click Add to add the user before clicking Finish which will save
the predicate and take us back to the Global Role Conditions screen. It is possible
to combine predicates to form complex Boolean expressions. Grouping is managed
by the Combine button. When we are happy with our changes we can save them by
clicking Save.

We now have a role that can be used across many different proxy services.

Chapter 20

[595]

Using a role to protect a proxy service
We can protect the proxy service by requiring requestors to be within a role before
being allowed access. We do this by editing the Proxy Service. First if our role
requires an authenticated user we must ensure that the service is configured to
accept user credentials, such as HTTP basic authentication. This is done by selecting
the appropriate transport configuration, in this case HTTP Transport Configuration,
and ensuring that the correct authentication option is selected.

We must then select the Security tab of the proxy service screen and drill down into
the Transport Access Control.

Defining Security and Management Policies

[596]

From here we can specify conditions (predicates) in the same way as in the
roles screen. However, when using the roles screen we can reuse the predicate
combinations or policy across many proxy services; any configuration on this screen
is unique to this proxy. It is generally best to just add roles onto this screen. Note that
there is a default policy for all proxy services of everyone being allowed access to the
proxy. We add a single condition with a predicate of the Role that we created earlier.
This effectively makes the access policy for this proxy follow the role that we set up.

Clicking Save completes our application of the role and we can then apply the
changes in the change center. We would now only be able to invoke this service
in compliance with the role we set up, which may for instance require HTTP basic
authentication of a user and restrict access to working hours.

Final thoughts on security
The examples used in this chapter have been based upon HTTP basic authentication
because that does not require configuration of certificate stores. To properly secure
services it is recommended that a public key infrastructure is used in conjunction
with an LDAP server to provide secure message delivery and centralized user
management. The steps used above are appropriate for use in development and test
environments without access to an LDAP store or a PKI infrastructure.

Monitoring services
In addition to defining policies to be applied to requests, the Web Services Manager
can also monitor the performance of services and raise alerts if they exceed a
previously set threshold.

Chapter 20

[597]

Both Web Services Manager and service bus can monitor services. Web
Services Manager is unique in being able to monitor the service directly
by using an agent that resides in the same container as the target service.
The Web Services Manager is also able to provide out of the box reports
on the security aspects of service invocation, tracking the number of failed
authentication, or authorizations. The service bus provides an extremely
capable monitoring and reporting framework for services that can be used
alongside the Web Services Manager reporting framework.

Monitoring overall service statistics in OWSM
The Snapshot tab under Operational Management provides a quick overview of all
a components services or an individual service.

After selecting the Component, Service, and Time Range for which statistics should
be displayed then clicking Display will update the dashboard. The statistics report
the security failures as a percentage of total requests, as well as all service failures
including security. They also provide a measure of latency or response time.

Defining Security and Management Policies

[598]

Defining a Service Level Agreement in OWSM
Service Level Agreements may be reviewed by selecting the SLA Compliance tab
underneath Operational Management and Overall Statistics. Like the snapshot
tab it is possible to select the component, service and time period to review. The
displayed report provides percentages of service invocations that were too slow
(Success with high latency), invocations that failed for some reason (Failure) and
invocations that met service level agreements (Success with low latency).

Note that a default SLA is provided for services. When displaying individual service
SLA compliance then the report also provides information on service uptime and
measures it against the SLA. SLAs can only be set against individual services by
clicking on the SLA Values link. Although there is a link to set SLA levels for all
services on a component it just leads to a selection box that forces the choice of a
single service to set SLA levels for.

Chapter 20

[599]

The SLA values that can be set include response time (Assured Latency), scheduled
and unscheduled downtime and maximum failure rate. Apart from latency all these
measures are as a percentage over time. Clicking Save will update the SLA with the
new values.

Other monitoring and measuring features in
OWSM
It is also possible to access the content of messages that have been logged by a
component by clicking on the Message Logs tab under Overall Statistics and then
selecting the component and individual message that you are interested in. Other
features of OWSM provide access to the number of authorization and authentication
failures as well as the total throughput for services and components in terms of
number of messages and total bytes processed.

It is also possible to set alarms that can either be monitored through the console, or
more usefully can be used to trigger a remote web service, send an email or perform
some other notification event.

Monitoring in service bus
Like OWSM, the service bus is also able to monitor services. Like security policies,
the service bus is not currently consistent with OWSM in its service monitoring.
Service Level Agreements can also be specified in service bus, but they are enabled in
a different fashion to OWSM SLAs.

Defining Security and Management Policies

[600]

Creating an Alert Destination
Any breaches of service level in the service bus will cause an alert to be raised. An
alert must be associated with a destination. So before we begin, we need to define an
alert destination. This is done by adding an Alert Destination resource to our project
in the service bus. Selecting Alert Destination from the Create Resource list takes us
to the Create Alert Destination dialog.

In this dialog we need to provide a name for the alert destination and specify the
targets for this destination. The console is always included as a destination, but we
may also send alerts to SNMP for integration with system managements systems
such as Oracle Enterprise Manager or HP OpenView. Other destinations include
Email, JMS queues, and internal reporting. Once we click Save then we have an
alerting destination that can be used by many alerts.

Enabling service monitoring
To improve performance by default service monitoring is disabled for proxy
services. To enable service monitoring we need to go to the proxy service edit screen
and select the Operational Settings tab.

Chapter 20

[601]

After selecting the Monitoring check box to enable monitoring for this service,
review the other potential properties. The Aggregation Interval is the rolling time
period over which SLAs for this proxy will be monitored. Alerting and Logging
specify the monitoring level at which events will be tracked. Reporting allows
inclusion of this proxy service in reports on the console. Finally Tracing can be
enabled to help debug the service. Selecting Update will save the new configuration.

Creating an alert rule
Having enabled monitoring for our service we can now create an alert rule by
selecting the SLA Alert Rules tab. Selecting Add New takes us to the New Alert
Rule dialog where we can start to configure our rule.

Defining Security and Management Policies

[602]

After providing a name for the alert rule we need to specify the destination. It is
possible to limit applicability of the rule by restricting the time window in which the
rule applies, by setting an expiry date, or by explicitly suspending the rule by setting
Rule Enabled to false. The alert severity indicates the importance of this alert. The
Alert Frequency is used to control whether the alert works as an edge trigger, firing
only when the threshold is first exceeded, or as a level trigger, firing whenever the
metric is above the threshold.

We also need to specify a destination for any alerts resulting from this rule. This
is done by clicking the Browse… button next to the Alert Destination field and
selecting an appropriate destination from the list presented in the Select Alert
Destination dialog.

Chapter 20

[603]

Having selected Next>> we can now construct our rule by defining the expression or
expressions that we wish to use as an SLA. Expressions are created by first selecting
the type of expression and then selecting the actual measurement. The expression
type may be a count, a minimum, a maximum, or an average. Actual metrics for
count may be error or message counts and success or failure ratios. Metrics for
minimum, average, and maximum may be response times. Multiple expressions
may be combined with Boolean operators. Expressions are added to the SLA rule by
clicking Add.

Clicking Last>> takes us to the summary screen where we can use the Save button to
confirm our selections.

Defining Security and Management Policies

[604]

We can then do a final review of our modifications before selecting Update on the
SLA Alert Rules tab. Remember to activate changes from the change center. Our
SLA is now established and any violations will be reported.

Monitoring the service
We can monitor the health of our services by using the Dashboard tab found
under the Operations Monitoring tab. This gives an immediate overview of alerts
generated within the last thirty minutes.

In addition to the dashboard, further information about the services can be obtained
by examining the Service Health tab, which gives an overview of service behavior,
throughput, error rates, and response times.

What makes a good SLA
SLAs should not be restricted just to report violations that are unacceptable. It can
be a good practice for a given metric to set two or even three SLAs. The worst SLA
should be the one that is unacceptable and is the real SLA. The other SLAs should be
used to warn that the metric has gone outside of normal operating bounds or to warn
that it is approaching the worst SLA. These latter SLAs can be used to help operators
diagnose problems and take corrective action before they become critical.

Chapter 20

[605]

Summary
The Web Services Manager and the service bus allow security and monitoring to
be applied to services without modifying their core functionality. These policies
may be applied consistently through the policy manager and enforced through
the service bus, gateways, and agents. This model of security, as a service and as a
facet, is applied to existing services allows for new security standards to be easily
incorporated into the SOA infrastructure. In addition, it is possible to monitor the
health and performance of groups of services and of individual services, including
monitoring for compliance with service level agreements.

Index
Symbols
<binding> element 493
<definition> element 490, 491
<message> element 492
<portType> element 492, 493
<service> element 494
<types> element 491

A
adapters

about 306
characteristics 306

agent
about, 560, 561
benefits, 562
creating, 570-572
creating, installer configuration files 571
drawbacks, 562
logical agent model, 561
physical agent model, 561
services, enabling, 572, 573

Application service layer,
SOA architecture 252

Application service, oBay high
level architecture

external web services 263
oBay developed services 263
workflow services 263

architecture, SOA
principles, consistency 11
principles, extensibility 11
principles, reliability 11

assertXPath function 485

asynchronous messaging,
messaging activities

oneway messaging (fire and forget) 134
auctionItem element 467

monitoring 219
status, monitoring 233

auction process, monitoring
BAM Active Studio application, using 231
BPEL, instrumenting 224
monitoring 219
status, monitoring 233

auction rules
ruleset 483, 484
ruleset, CapWinningBid 483
ruleset, FirstBid 483
ruleset, GetNextBid 483
ruleset, InitialiseVarAuctionItem 483
ruleset, LosingBid 483
ruleset, NewWinningBid 483
ruleset, ValidateBidAgainstStartPrice 483
ruleset, ValidateBidAgainstWinningPrice

483
auction rules, writing

about 472
facts, evaluating date order wise 472
functions, using 476
inference, using 474, 475
next bid rules, processing 476
scenarios 474

automated testing
about 531
BPEL test framework 536
component testing 549
composite testing 548
performance testing 550
regression testing 547

[608]

system testing 547, 548
unit testing 549
user interface testing 550

B
BAM

about 19, 213
architecture 215
components 528
deployment 528
differing, from Business Intelligence 213
reporting tools used 214
scenarios 214
using 214

BAM architecture
logical view 215
physical view 215
platform, anomalies 218
user interface 218

BAM, components
Active Data Cache 528
Event Engine 528
Report Cache 528
Report Server 528

BAM, SOA Suite packaging
clear command 520
delete command 520
export command 520
iCommand, using 521, 522
import command 520
items, parameters used 521
items, selecting 521
rename command 520

binding
cases 494, 495
cases, connectivity 494
cases, performance 495
cases, transactionality 495
Java binding 496
JCA binding 495
Service Bus binding 499
web service stack, putting into 487
WSDL 489

BPEL
about 17
correlation sets, defining 414

correlation sets, using 406
individual human task, linking 437
WS-Addressing, using 404

BPEL, auction process
delete operation 228
insert operation 228
sensor, creating 225, 226
sensor, options 226
update operation 228
upsert operation 228

BPEL correlation sets
correlation set property, defining 407
defining 409
initializing 411
property alias, creating 412
using 406
using, for multiple process interactions 407

BPEL deployment framework,
Oracle BPEL process manager

about 512
ant, modifying 516
customising 512
deployment plan, attaching to

BPEL suitcase 515
deployment plan, creating 515
deployment template, creating 513, 514
generateplan command, attributes 513

BPEL process
about 129
application, creating 27
BPEL project, creating 29
BPEL test framework 536
deploying 34
state, managing 484
structure 130
testing 35
testing, one-off testing 532, 534
writing 26

BPEL process, structure
about 130
core BPEL process 130
messaging activities 132

BPEL project, BPEL process
creating 29
values, assigning to variables 32

BPEL test framework, automated testing
baseline script, importing 546

[609]

baseline script, use 547
data validation 538-541
data validation,

Activity Executed Assert 540
data validation, Value Assert 540
data validation, XML Assert 540
interactions, testing 546
partner links, handling ways 544
supported activities 537
test suites 537, 538
test suites, creating 537
test suites, deploying 542
test suites, running 542, 543
test suites, use 547

business rule
decision service, defining 469
executing 186
rule engine 461
using, to implement oBay auction 466
using, to implement services 461
XML Facts, defining 466

business rule, components
dictionary 186
facts 186
rules 186

Business Activity Monitoring. See BAM
business faults

about 364
defining 363
defining, in asynchronous services 365
defining, in synchronous services 364
handling, in BPEL 365

business faults, handling
asynchronous services 374
compensation model 370
Fault Management Framework, using 366
faults, catching 366
faults, returning 373
in BPEL 365
Reply activity used 373

Business Process Execution Language.
See BPEL

executing 186
Leave approval rule 186
overview 185

C
canonical mode, XML Schema

chamelon namespaces 282, 283
chamelon namespaces, advantage 283, 284
chamelon namespaces,

disadvantage 284, 285
multiple namespace 281
multiple namespace, common objects 282
multiple namespace, drawback 282
oBay schemas 280
partitioning 280
single namespace 280, 281
single namespace, advantage 281
single namespace, disadvantage 281

CEP 20
compensation model, business faults

about 371
compensate activity, adding 372, 373
compensation handler, defining 371
compensation handler, triggering 372

Complex Event Processing. See CEP
complications, SOA

security impacts 555
security impacts, managing 557
security impacts, monitoring 557

composability 11
core BPEL process, BPEL process

Element variables 131
messaging activities 131
partner links, using 132
scope activity used 131
simple activities 130
simple type variables 131
structured activities 131
variables, defining 131
variables, manipulating 131
WSDL Message Type variables 131

coupling
about 97
basic items 97
OSB, using 104
reducing, in stateful service 101

[610]

coupling, basic items
input data items 98
services, depending on other services 99
shared global data,avoiding 100

D
database adapter

connections, resolving 91
database schema, selecting 90
operation type, identifying 92, 93
root table, identifying 93
table relationship, identifying 94
TopLink, using 94
writing to 90

Decide activity, Decision Service
adding 204, 205
BPEL variables, assigning 205, 206

Decision Service
about 199
creating 202-204
Decide activity, adding 204, 205
Rule Engine Connection, creating 200

DM.assertWinningBid function 477, 478
DM.cloneTBid function 479
DM.retractLosingBid function 479
dynamic Partner Links, service scheduling

common interface, defining 427
endpoint reference, creating 428
endpoint reference, updating 429

E
Echo proxy service, proxy service

activating 54, 55
creating 51, 52
message flow, creating 53, 54
testing 55-59
testing, Service Bus Test

Console used 56-59
enterprise service bus. See ESB
ESB 15, 16
Event Driven Architecture (EDA) 24
existing functionality modifications,

using Service Bus
about 313
existing service-to-canonical form

conversion 313

Java class, exposing as service 321, 322
reusing 307

existing functionality, reusing
about 307
PL/SQL stored procedure, using 307, 308

existing service-to-canonical form
conversion, existing functionality
modifications

about 313
BPEL process, using 321
non-canonical service, adding 319, 320
service interface, creating 314-318

external web services,
simple composite service

Browse WSDL file 139
calling 138
configuring values, specifying 141
constant variable values, assigning 144
Define Adapter service 139
enter URL 139
exchange rate, combining 145
exchange rate, determining 144
expression builder, components 147
expression builder used 146

F
facts, auction rules

bid status, updating 474
calendar functionality, using 473
evaluating, date order wise 472
non-existent fact, checking for 473

facts, Rule Author
aliases, using 192
defining 189
global elements, defining 190
hiding 192
properties, hiding 192
rule dictionary, saving 192
XML Facts, creating 189, 190

Fatal checkbox 541
Fault Management Framework

fault policy, defining 375
using 375

fault policy, Fault Management
Framework

abort action 381

[611]

actions, defining 378
binding, at domain level 383
binding, at process level 382
binding resolutions 384
bindings, defining onPartner

Link element 383
bindings, defining on process element 383
condition element, specifying 377, 378
conditions, defining 376
defining 375
faultName element, specifying 377
human intervention action 380
human intervention, in BPEL Console 384
java action 381
replay scope action 381
re-throw action 380
Retry action 379

faults
permenant faults, handling 396
transient faults, handling 399

faults, catching
catch branch, adding 367
catch branch, using 366
Throw activity used 369
within BPEL 366

faults, handling
in business fault 387
in one-way proxy services 400
in proxy service 387
in synchronous proxy services 388
in system fault 387

faults, handling in synchronous
proxy services

about 388
error handler, defining 389
error, raising 388
permanent faults, handling 396
route error handler, adding 390
Service Error Handler, adding 395
SOAP Fault, creating 392
SOAP Fault, returning 394
SOAP Fault types, checking 391
unexpected faults, handling 393

file communication
adapter header, using 88
file adapters, testing 89
file, throttling 81

FTP adapter, throttling 81
payroll file, reading 65
payroll file, writing 82
payroll use case 65

file contents, ignoring 68
FlowN activity

branch specific data, accessing 426
using 425
output message, adding 82

FTP adapter, file communication
dummy message type, creating 81
interface, using 82

functions
invoking, from within rule 210
using, to control fact assertion 485
writing, example 206

functions, auction rules
DM.assertWinningBid function 477
DM.retractLosingBid function 479
losing bid, processing, rule 482
new winning bid rule, implementing 480
next bid, validating 480
using, to manipulate XML Facts 476
winning bid amount, capping 482

G
gateway

about, 561
benefits, 562
creating, 563-565
drawbacks, 562
logical gateway model, 561
physical gateway model, 561

gateway, creating
about, 563-565
installer configuration files, 561
services, accessing, 569
sevices, registering, 566-570
SOAP over HTTP protocol, 569
SOAP over JMS protocol, 569
XML over HTTP protocol, 569
XML over JMS protocol, 569

generateplan command, attributes
descfile 513
overwrite 513
planfile 513

[612]

suitecase 513
verbose 513

getWinningbid() method 478
global variable

defining 470, 471
initializing rule 471
using, result set 470

H
hosts file 529
human intervention, fault policy

in BPEL Console 384
inputs, modifying 386
input variables, modifying 385
output variable, setting 386
processing 386
service, retrying 385
use 386

I
If clause, rule

creating 195
pattern, selecting 195
test pattern, defining 196

installing
oBay 265
SOA Suite 25

interface, packaging
command line interfaces 504
types 504
web interfaces 504

inter-operability
key benefit 12

items, buying
bidding, example 248
bidding increment 248
bidding on items 247
search for items 247

items, selling
account, viewing 246
item details 243
listings, cancellation 245
listings, fees 244
listing, validations 244
new item, listing 243, 244
other options 243
sale, completing 245-246

J
Java binding

creating 496-498
Java class, exposing as service

custom XML, providing 325
J2EE Web Service, selecting 323
Java API as service interface, problems 321
Java code, wrappering 321
mapping 326
message format 324
select methods 327
service name, selecting 323
Web Service wizard, launching 322

Java Connector Architecture.
See JCA binding

Java service, creating from WSDL
data structure classes 331
implementation class 331
implementation class, altering 331
interface 331
mapping options, selecting 329
wizard, launching 328
WSDL, selecting 329

JCA binding
about 495, 496
features 495

K
Key Performance Indicators. See KPI
KPI

monitoring 237, 238

L
layered validation

negative coupling of validation 361
over validation, dangers 360
under validation, dangers 361

leave approval workflow
about 162
process, creating 162

leave approval workflow process
creating 162
running 170
task, defining 163

[613]

M
manual testing 531
message batching 71
message exchange

asynchronous messaging 403
service, scheduling 423
synchronous interaction 404
WS-Addressing 405

message exchange, requirements
message, aggregating 415
message routing 403
service, scheduling 423

message flow nomenclature 545
message format, setting up

Cobol Copybook structure 73
delimited structure 73
DTD structure 73
field properties, defining 79
file records, describing 75
fixed length structure 73
message delimiters 77
native format schema, defining 72
record type names, identifying 78
result verification 80
root element, defining 76
sample file, using 74

messages, aggregating
asynchronous operations, supporting 415
fixed duration pattern 415
messages routing 417
wait for all pattern 415

messages routing
call back client, correlating 417
complexities 417, 418
duration, checking 421
onAlarm branch, configuring 422
one inbound Partner Link supported 417
proxy process, creating 418
queuing mechanism, implementing 417
reply to address, specifying 418

minor change 298
Model-View-Controller (MVC) 259
multiple human tasks, workflow

advantages 437
drawbacks 437

individual humal task, linking 437
using 437

N
namespace, XML Schema guidelines

attributes, selecting 275
default namespace, defining 273
elements versus types, for global

 components 278, 279
global versus local component 276- 278
qualified elements, selecting 274
qualified elements, using 275
target namespace, specifying 273
unqualified elements, selecting 274
unqualified elements, using 275

naming standards, XML Schema guidelines
abbreviations 272
context based names 272
generic names 272
oBay dictionary, sample 272
synonyms 272

new policy, OWSM policies
agent policy, creating, 575
creating, 575
credentials, extracting, 577-579
credentials, options, 578
sequence, representing, 582
template, creating, 576
template, saving, 581, 582
user authentication, 579, 580
user authentication, formats, 580
user authorization, 580, 581

O
oBay

about 242
downloading 265
high level architecture 262
implementing, business rules used 466
installing 265
overview 241

oBay high level architecture
about 262
Application services 262
business services 264
internal virtual services 263

[614]

user interface 264
oBay, requirements

items, buying 247
items, selling 243
user registration 242

one day wait 153
one-off testing

about 532
BPEL process, testing 532, 534
service bus, testing 535, 536

Oracle BPEL process manager,
SOA Suite packaging

about 506
adapter configuration, enabling 510
ant properties, changing 509
BPEL deployment framework 512
deploy, ant task 512
deploy_test, ant task 512
deploying, BPEL Console used 506
post-build, ant task 508
pre-build, ant task 508
process-deploy, ant task 508
test, ant task 508
web service endpoint, enabling 509
WSDL location alteration, enabling 509
XML Schema, locations 511
XSL files, updating 511

Oracle Containers for J2EE (OC4J) 104
Oracle Data Integrator (ODI) 216
Oracle SOA Suite

binding 487
Fault Management Framework 375
workflow 161

Oracle Service Bus 261. See OSB
Oracle Web Service Manager. See OWSM
order fulfillment Human Task,

workflow API
defining 440
notification settings, sharing 443
order id 441
routing policy, specifying 442
shipping price 442
ship to 441
status 442
task parameters, specifying 440

orientation, SOA
collaboration 10

granularity 10
universality 11

OSB
about 25
business service 40
message flow 107
overview 106

OSB used, for applying policy
roles, using to protect proxy service,

595-596
security roles, 592-594
service account, using, 589, 590
service accounts, Mapping type, 588
service accounts, Pass Through type, 588
service accounts, Static type, 588
user accounts, managing, 591

OWSM
about 19
cosole, running 527

OWSM policies
applying, through Service Bus Console, 587
defining, 587
gateway policy, creating, 587
request pipeline, 571
response pipeline, 571

OWSM policies, defining
active directory authenticate step, 574
active directory authorize step, 574
decrypt and verify signature step, 574
extract credentials step, 574
file authenticate step, 574
file authorize step, 574
handle generic fault step, 574
Insert Oracle Access Manager

Token step, 574
Ldap authenticate step, 575
Ldap authorize step, 575
log step, 574
new policy, creating, 575
Oracle Access Manager

Authenticate Authorize step, 575
SAML - Insert WSS 1.0

sender-vouches token step, 575
SAML - Verify WSS 1.0 Token step, 575
Sign Message and Encrypt step, 575
Sign message step, 575
Siteminder Authentication step, 575

[615]

Siteminder Authorize step, 575
verify certificate step, 575
verify signature step, 575
XML Decrypt step, 575
XML Encrypt step, 575
XML Transform step, 575

OWSM, SOA Suite packaging
about 516
create-new property 519
db.export.dir property 517
db.import.dir property 517
id property 519
import instruction 519
import-name property 519
mapped-to-component-id property 519
monitor-*property 519
service component property 519
type property 519
URL property 519

P
packaging

environment dependant, problems 503
interface, types 504
need for 503

paused state 421
payroll file, file communication

adapter, generating 85
adapter header file, modifying 87
adapter port type, modifying 86
bindings, modifying 86
copying 85
criteria, for file writing 84
deleting 85
File Adapter Configuration Wizard,

finishing with 81
File Adapter Configuration Wizard,

starting with 65
file availability, detecting 71
file destination, selecting 84
file location, configuring 69
FTP connection, selecting 82
logical location 69
message format, setting up 72
moving 85

operations, identifying 67
operation type, choosing 83
physical location 69
read file, operation type 68
reading 65
record formats, defining 85
service, naming 66
specific files, selecting 70
synchronous read file, operation type 68
write file, operation type 68
writing 82

PEPs 560
Policy Enforcement Points. See PEPs
permanent faults, faults

about 396
alert action, enabling 398
alert action, using 397
handling 396

physical view, BAM architecture
data capture level 216
data, storing 216
event processing 217
loop, closing 217
reports, delivering 217

Plain Old Java Objects (POJOs) 489
PL/SQL stored procedure, using

database connection, selecting 309
database, introspecting 310
J2EE 1.4 Web Service, selecting 308
message format, selecting 310
PL/SQL web service wizard, launching 308
service binding, defining 310

polling frequency 71
proxy process, messages routing

correlation sets, defining 421
creating 418
pick activity, using 419

proxy service 40

Q
queryTask, workflow API

displayColumnList, specifying 450
endRow attribute 449
Flex fields 450
Flex fields, accessing 452

[616]

Flex fields, initializing 451
Flex fields, setting 451
Flex fields, using in query predicate 454
ordering element 455
query predicate, specifying 452, 453
startRow attribute 449
taskListRequest 449
taskPredicateQuery, core elements 449

R
receive activity 421
report tasks, tasks assignment

delegating 181
escalating 181
managing 178
re-assigning 178

result set 470
Rete Algorithm 461
RPC and Document Style Web Services 492
Rule Author, using

dictionary, creating 188
facts, defining 188, 189
rule repository, creating 187
rule set, creating 193

Rule Engine Connection, Decision Service
creating 200
File based repository, using 200
WebDAV repository, using 201

rule engine, working
Decision Service, defining 462
facts, asserting 462
result, retrieving 463
RuleSession, obtaining 464
ruleset, debugging 464
ruleset, executing 462

rule repository, Rule Author
creating 187
File based repository 187
File based repository, creating 187
WebDAV repository 187

rule, rule set
actions, supporting 198
action types 198
Assert action 198
Assert New action 198
Assign action 198

call action 198
creating 194
If clause, creating 195
Then clause, creating 197, 198

RuleSession object 464
ruleset, rule engine

activation, adding to agenda 463
debugging 464
decision service, defining 469
DM.println function, using 466
executing 462
fact set row 462
properties, configuring 465
rule activation 462
watchActivations property 465
watchFacts property 465
watchRules property 465
XML Facts, defining 466, 469

S
Schematron

advantage 345
cross field validation 349
date, validating 350
element, defining 350
elements 346
overview 345, 346
using 344, 345
using, within BPEL PM 351
using, with Service Bus 355

Schematron, elements
assertions 346
namespaces 348
patterns 348
rules 347
schema 348

Schematron, within BPEL PM
file, creating 352
Partner Link, creating 351
sharing , between processes 355
validate service, instanceFile 352-354
validate service, invoking 352
validate service, ruleFile 354

schema version
about 298
advantages 299

[617]

location, changing 299
schema version attribute, using 299

security and management
challenges, in SOA, 553
evolution, 553, 554

security, SOA Suite
access to services, restricting, 558
agent, 560
as a facet, 558
as a service, 558
declarative security versus explicit

security, 558
gateway, 560
message interception, preventing, 552
network security, 552
policy for externally accessible services, 560
policy for non-critical services, 560
policy for services making financial

transactions, 560
policy, steps, 560
securing, outside SOA Suite, 552
Service bus model, 562
Web Service Manager model, 560

service
anatomy 297
changes, handling 298
definition 298
major change 297
monitoring, 604
measuring features, in OWSM, 604
monitoring features, in OWSM, 604
monitoring, in Service bus, 604
monitoring, statistics in OWSM, 602
Service Level Agreement, defining in

OWSM, 602, 603
SLAs, 604
minor change 297
validation, adding 298

Service Bus binding
bpel-10g transport 499
dsp transport 499
http transport 499
jms transports 499
jpd transport 499
local transport 500
sb transport 499
ws transport 499

service contracts
about 267
technical components 267

service contracts, technical components
WSDL definition 267
WS-Policy definition 267
XML Schema Definition 267

service, monitoring in Service Bus
about, 600
alert destination, creating, 600
alert rule, creating, 601-604
service monitoring, enabling, 600, 601
gateway, 560
security, outside SOA Suite, 557
services, securing, 557
user credentials, securing, 579
Web Service Manager model 559-560
about, 559

Service -oriented architecture. See SOA
service, scheduling

BPEL process, implementing 423
dynamic Partner Links 427
FlowN activity, using 425
FlowN branch specific data, accessing 426
Oracle Database Job Schedular tool, using

423
Quartz tool, using 423
schedule file, defining 423
scheduling activities 423, 425
scheduling file, recycling 430
XML file, using 423

service, SOA
advantage 10
contract or service level agreements 9
encapsulation 9
example 10
interface 9

service wrappers
about 306
characteristics 306

simple composite service
asynchronous service 150
external web services, calling 138
stock order service 150
stock quote service, creating 135
packaging 504
stock trade service, improving 154

[618]

wait activity, using 152
SOA

about 9
architecture, designing 250
blueprint, defining 249
complications 555
errors, handling 363
features 13
goals, summarizing 249
key benefit 10
security and management challenges 553
SOA Suite, components 14

SOA architecture, designing
about 250
additional Virtual Service layer 259
Application service layer 252
business process 257
Business Service Layer 254
health warning, adding 251
SOA Suite, accomodating 260
User Interface layer 258
Virtual Service layer 253

SOA, components
architecture 11
orientation 10
service 9

SOA, features
evolution 13
extension 13
inter-operability 13
re-use in place concept 14
terminology 13

SOAP Fault, underlying service
custom fault, defining 358
defining 358
returning 357
validation failure, in

asynchronous service 359
SOA Suite

adapters 61
architecture 20
components, packaging 503
deployment architectures 523
functionality, creating 327
gateway 560
installing 25
Oracle ESB 16

Oracle Service Bus 16
resilience 523
security, outside SOA Suite 557
service, securing 557
Rule Author, using 186
running 16
scalability 523
testing model 531
Web service manager 526

SOA Suite, architecture
about 22
component, in context with Java EE 21
implementation view 21
Java Application Server 20
Oracle SOA Suite 20
SQL Database 20

SOA Suite, components
active monitoring 19
adapters 14
B2B (Business to Business) 19
BAM 19
BPA (Business Process Analysts) Suite 23
BPEL 17
BPEL Process Manager 17
BPM (Business Process Management)

Suite 24
CEP 20
ESB 15
licenced adapters 15
monitoring service 19
Oracle portals 24
Oracle web center 24
service repository 23

SOA Suite deployment architectures
about 523, 524
BPEL process manager settings,

modifying 524
external web server, using 524
load balancer, using 523

SOA Suite packaging
about 504
BAM 520
Oracle BPEL process manager 506
Oracle Service Bus 505
OWSM 516
Web service manager 526
WebLogicScripting Tool (WLST) used 505

[619]

SOA Suite testing model
about 531
automated testing 536
one-off testing 532

T
task based Business Services, workflow API

BPEL file structure, in JDeveloper 445
getOrderDetails 444
getOrderDetails, implementing 455
getPurchasedItems 444
getSoldItems 444
Partner link, defining 444, 445
Task Query Service PartnerLink 446
Task Query Service, using 444
TaskQueryService.wsdl, modifying 446
user authentication 447
user authentication,

credential element 447, 448
task, leave approval workflow process

assignment, specifying 166
defining 163
parameters, defining 165
policy, routing 167
workflow parameters, initializing 167

taskPredicateQuery, 455
tasks

assignment, managing 178
processing, with Worklist application 171
task action 172
task comments 172
task header 172
task history 173
task payload 172

tasks assignment, managing 178
rules used 181
sample rule, setting up 182

task services, workflow API
partner link, defining 457
updateTask operation, using 458
updating 456, 457

test client
using 535

U
underlying service

business rules, using 356
invoking, benefits 356
SOAP Fault, returning 357, 358
validation in code, implementing 357

updateTask operation, task services
Flex fields, updating 459
task outcome, updating 459, 460
task payload, updating 458
using 458

user credentials, securing 579
user interface, BAM architecture

active studio 218
active viewer 218
administrator 219
architect 218

V
virtualize service endpoints

dynamic routing 115
requests, routing to services 116-118
routing option, using 115
routing table 115
service location, moving 108-114
using 107, 108

virtualize service interfaces
applying, canonical form in OSB 126
canonical form 119
canonical form, benefits 119, 120
local transport mechanism 127
mapping 120-122
proxy service 122-125
request flow 122
response flow 122

Virtual Service layer, SOA architecture 253

W
Web-based Distributed Authoring and

Versioning. See WebDAV
WebDAV 187
Web Service Description Language.

[620]

Wrapped style 324
wrapper elements, WSDL document

canonical model, importing 288
defining 287

WS-Addressing
additional message exchanges 406
message request 405
response message 405

WS Basic Profile 13
WS-Correlation, using 103
WSDL

about 14
3GL concepts 491
about 14
reading 489

WSDL document, building
message elements, defining 287
port Type element, defining 289
wrapper element, defining 287

WSDL, reading
<binding> element 493
<definition> element 490, 491
<message> element 492
<portType> element 492, 493
<service> element 494
<types> element 491

X
XML data model, XML Schema

attributes, using 270
core components, examining 268, 269
data hierarchy 269
data hierarchy, problems 270
data semantics 270
designing 268
elements, using 270

XML files 70
XML Schema and WSDL, using

abstract WSDL, importing 293
BPEL process, creating 291-293
WSDL document, importing into

Service Bus 294-296
XML Schema, sharing across BPEL

process 290
XML Schema, sharing in Service Bus 294

XML Schema guidelines

See WSDL
Web Service Manager. See OWSM
Web Service Manager Model 559, 560
Web Services Interoperability. See WS-I
web service stack

logical view 487
logical view, key components 487, 488
logical view, service description layer 487
logical view, service message format 487
logical view, service message transport 488
physical view 488

workflow
about 433
attachments and comments, sharing 436
group vote, defining 434
issues 173
leave approval workflow 162
modelling 433
multiple assignment, using 434
multiple human tasks, using 437
oBay administrators 433
outcome, specifying 436
participants, assigning 435
routing policies, using 434
skip rule 436

workflow API
order fulfillment Human Task, defining 440
queryTask 448
task based Business Services 444
task services, updating 456
using 438
Worklist Portlets 439

workflow, improving
additional task information,

requesting 177
task assignment 173
task, assigning to multiple groups 175
task, assigning to multiple users 175
task, cancelling 176
task, modifying 176
task owner and task initiator,

differentiating 176
task, withdrawing 176

workflow, participants
BPEL process 161
service 161
user 162

[621]

strongly typed service 334, 336
strongly typed service, advantage 335
strongly typed service, disadvantage 335
strongly typed service, restrictions 335
within BPEL PM 338
within Service Bus 341

XML Schema validation, within BPEL PM
asynchronous interaction

validations 339, 340
inbound document, validating 338
outbound document, validating 338
synchronous interaction validations 339
validateXML for BPEL domain,

configuring 340
validateXML for PartnerLink,

configuring 341
values 338

XML Schema validation, within Service Bus
inbound documents, validating 341-344
outbound documents, validating 344

namespace 273
namespace, feature 273

XML Schema, sharing across BPEL process
schemas, deploying 290
schemas, importing 291
schemas URL, updating 291

XML Schema, using
canonical data model 268
canonical mode, partitioning 279, 280
for business objects definitions 268
guidelines 271
XML data model, designing 268

XML Schema validation 334
XML Schema validation, using

about 334
combined services, using 337
loosely typed service 336
loosely typed service, advantage 336
loosely typed service, disadvantage 337
Schematron 337

Thank you for buying
Oracle SOA Suite Developer's
Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

BPEL Cookbook
ISBN: 1904811337 Paperback: 188 pages

Ten practical real-world case studies combining
business process management and web services
orchestration

1. Real-world BPEL recipes for SOA integration
and Composite Application development

2. Combining business process management and
web services orchestration

3. Techniques and best practices with
downloadable code samples from ten
real-world case studies

Oracle Web Services Manager
ISBN: 978-1-847193-83-4 Paperback: 236 pages

Securing your Web Services

1. Secure your web services using Oracle WSM

2. Authenticate, Authorize, Encrypt, and Decrypt
messages

3. Create Custom Policy to address any new
Security implementation

4. Deal with the issue of propagating identities
across your web applications and web
services

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Content
	Preface
	Chapter 1: Introduction to Oracle SOA Suite
	Service-oriented architecture in short
	Service
	Orientation
	Architecture

	Why SOA is different
	Terminology
	Inter-operability
	Extension and evolution
	Reuse in place

	SOA Suite components
	Services and adapters
	ESB—service abstraction layer
	Service orchestration—BPEL Process Manager
	Rules
	Security and monitoring—OWSM
	Active monitoring–BAM
	Business to business—B2B
	Complex Event Processing—CEP

	SOA Suite architecture
	Top level
	Component view
	Implementation view
	A recursive example

	JDeveloper
	Other components
	Service repository and registry
	BPA Suite
	BPM Suite
	Portals and WebCenter
	Enterprise manager SOA management pack

	Summary

	Chapter 2: Writing Your First Service
	Installing SOA Suite
	Writing our first BPEL process
	Creating an application
	Creating a BPEL project
	Assigning values to variables

	Deploying the process
	Testing the BPEL process

	Writing our first proxy service
	Writing the Echo proxy service
	Creating a change session
	Creating a project
	Creating project folders

	Creating service WSDL
	Importing a WSDL

	Creating our business service
	Creating our proxy service
	Creating message flow
	Activating the Echo proxy service
	Testing our proxy service

	Summary

	Chapter 3: Service Enabling Existing Systems
	Types of systems
	Web service interfaces
	Technology interfaces
	Application interfaces

	Java Connector Architecture
	Creating services from files
	A payroll use case
	Reading a payroll file
	Starting the wizard
	Naming the service
	Identifying the operation
	Defining the file location
	Selecting specific files
	Detecting that the file is available
	Message format
	Finishing the wizards

	Throttling the file and FTP adapter
	Creating a dummy message type
	Adding an output message to the read operation
	Using the modified interface

	Writing a payroll file
	Selecting the FTP connection
	Choosing the operation
	Selecting the file destination
	Completing the FTP file writer service

	Moving, copying, and deleting files
	Generate an adapter
	Modify the port type
	Modify the binding
	Add additional header properties

	Adapter headers
	Testing the file adapters

	Creating services from databases
	Writing to a database
	Selecting the database schema
	Identifying the operation type
	Identifying tables to be operated on
	Identifying the relationship between tables
	Under the covers

	Summary

	Chapter 4: Loosely Coupling Services
	Coupling
	Number of input data items
	Number of output data items
	Dependencies on other services
	Dependencies of other services on this service
	Use of shared global data
	Temporal dependencies

	Reducing coupling in stateful services
	Oracle Service Bus design tools
	Oracle workshop for WebLogic
	Oracle Service Bus Console

	Service Bus overview
	Service Bus message flow

	Virtualizing service endpoints
	Moving service location
	Selecting a service to call

	Virtualizing service interfaces
	Physical versus logical interfaces
	Mapping service interfaces
	Applying canonical form in the service bus
	An important optimization

	Summary

	Chapter 5: Using BPEL to Build Composite Services and Business Processes
	Basic structure of a BPEL process
	Core BPEL process
	Variables

	Partner Links
	Messaging activities
	Synchronous messaging
	Asynchronous messaging

	A simple composite service
	Creating our Stock Quote service
	Import StockService schema

	Calling the external web services
	Calling the web service
	Assigning values to variables
	Testing the process
	Calling the exchange rate web service
	Assigning constant values to variables
	Using the Expression builder

	Asynchronous service
	Using the Wait activity

	Improving the stock trade service
	Creating the while loop
	Checking the price
	Using the Switch activity

	Summary

	Chapter 6: Adding in Human Workflow
	Workflow overview
	Leave approval workflow
	Creating our workflow process
	Defining the workflow task
	Creating the user interface to process the task
	Running the workflow process

	Processing tasks with the worklist application
	Improving the workflow
	Dynamic task assignment
	Assigning tasks to multiple users or groups

	Cancelling or modifying a task
	Withdrawing a task
	Modifying a task
	Difference between task owner and initiator

	Requesting additional information about a task

	Managing the assignment of tasks
	Reassigning reportee tasks
	Reassigning your own task
	Delegating tasks
	Escalating tasks

	Using rules to automatically manage tasks
	Setting up a sample rule

	Summary

	Chapter 7: Using Business Rules to Define Decision Points
	Business Rule concepts
	Leave approval rule

	Using the Rule Author
	Creating a Rule Repository
	Creating a dictionary
	Defining facts
	Creating XML Facts
	Using aliases
	Hiding facts and properties
	Saving the rule dictionary

	Creating a rule set
	Adding a rule to our rule set
	Defining the test for the pattern

	Creating a Decision Service
	Creating a Rule Engine Connection
	Using a file based repository
	Using a WebDAV repository

	Creating a Decision Service
	Adding a Decide activity
	Assigning facts

	Using functions
	Importing Java classes as facts
	Creating a function
	Invoking a function from within a rule

	Summary

	Chapter 8: Building Real-time Dashboards
	How BAM differs from traditional business intelligence
	Oracle BAM scenarios

	BAM architecture
	Logical view
	Physical view
	Capture
	Store
	Process
	Deliver

	BAM platform anomaly
	User interface

	Monitoring process state
	Defining data objects
	A digression on populating data object fields

	Instrumenting BPEL
	Testing the events
	Creating a simple dashboard

	Monitoring process status
	Monitoring KPIs
	Summary

	Chapter 9: oBay Introduction
	oBay requirements
	User registration
	User login

	Selling items
	List a new item
	Cancel listing
	Completing the sale
	View account

	Buying items
	Search for items
	Bidding on items

	Defining our blueprint for SOA
	Architecture goals
	Typical SOA architecture
	Application services layer
	Virtual services layer
	Business services layer
	Business process
	User Interface layer

	One additional layer
	Where the SOA Suite fits

	oBay high level architecture
	oBay Application services
	Workflow services
	External web services
	oBay developed services

	oBay internal virtual services
	oBay business services
	oBay business processes

	oBay user interface

	Downloading and installing oBay application
	Summary

	Chapter 10: Designing the Service Contract
	Using XML Schema to define business objects
	Modelling data in XML
	Data decomposition
	Data hierarchy
	Data semantics
	Use attributes for metadata

	Schema guidelines
	Element naming
	Namespace considerations

	Partitioning the canonical model
	Single namespace
	Multiple namespaces
	Chameleon namespaces

	Using WSDL to define business services
	Use document (literal) wrapped
	Building your abstract WSDL document
	WSDL namespace
	Defining the 'wrapper' elements
	Defining the 'message' elements
	Defining the 'portType' element

	Using XML Schema and the WSDL within BPEL PM
	Sharing XML Schemas across BPEL processes
	Deploying schemas to the BPEL server
	Importing schemas
	Updating the schema URL

	Importing the WSDL document into BPEL PM
	Adding the PartnerLink definition to the abstract WSDL

	Sharing XML Schemas in the service bus
	Importing the WSDL document into the service bus

	Strategies for managing change
	Major and minor versions
	Service implementation versioning

	Schema versioning
	Change schema location
	Update schema version attribute
	Resist changing the schema namespace

	WSDL versioning
	Incorporating changes to the canonical model
	Changes to the physical contract
	Updating the service endpoint
	Managing the service lifecycle

	Summary

	Chapter 11: Building Business Services
	Build versus reuse
	Adapters and web service wrappers
	Adapters
	Service wrappers

	Reusing existing functionality directly
	Exposing a PL/SQL stored procedure as a service
	Launching the PL/SQL web service wizard
	Choosing the level of Java Enterprise Edition support
	Selecting a database connection and defining service bindings
	Determine message style
	Select stored procedures and functions to expose

	Modifying existing functionality using service bus
	Converting an existing service to canonical form
	Create a new service interface
	Adding the non-canonical service
	More complex conversions

	Exposing a Java class as a service
	Wrapping the Java code
	Launching the Web Service wizard
	Select deployment platform
	Select service name
	Select message format
	Provide custom serializers
	Mapping
	Select methods

	Creating services from scratch
	Creating a Java service from a WSDL
	Starting the wizard
	Choosing the WSDL
	Choosing the mapping options
	The generated Java

	Summary

	Chapter 12: Building Validation into Services
	Using XML Schema validation
	Strongly typed services
	Loosely typed services
	Combined approach
	Using schema validation within BPEL PM
	Validation of inbound documents
	Validation of outbound documents
	Validation between BPEL processes
	Setting validateXML for a BPEL domain
	Setting validateXML for a PartnerLink

	Using schema validation within the service bus
	Validation of inbound documents
	Validation of outbound documents

	Using Schematron for validation
	Overview of Schematron
	Assertions
	Rules
	Patterns
	Namespaces
	Schema

	Intermediate validation
	Cross field validation
	Date validation
	Element present

	Using Schematron within BPEL PM
	Creating a Partner Link for the Validation Service
	Creating a Schematron file
	Invoking the validate operation
	Sharing a Schematron between processes

	Using Schematron with the service bus

	Putting validation in the underlying service
	Using Business Rules for validation
	Coding in validation
	Returning validation failures in synchronous services
	Defining faults
	Custom fault codes
	Validation failures in asynchronous services

	Layered validation considerations
	Dangers of over validation
	Dangers of under validation
	Negative coupling of validation

	Summary

	Chapter 13: Error Handling
	Business faults
	Defining faults in synchronous services
	Defining faults in asynchronous services

	Handling business faults in BPEL
	Catching faults
	Adding a catch branch
	Throwing faults

	Compensation
	Defining compensation
	Triggering a compensation handler
	Adding a compensate activity

	Returning faults
	Asynchronous considerations

	Using the fault management framework
	Defining a fault policy
	Defining fault policy conditions
	Defining fault policy actions

	Binding fault policies
	Binding fault polices at the process level
	Binding fault policies at the domain level
	Binding resolution

	Human intervention in BPEL Console
	Change the input variable contents and retry
	Set the output variable and continue

	Handling faults within the service bus
	Handling faults in synchronous proxy services
	Raising an error
	Defining an error handler
	Getting the qualified fault name
	Handling unexpected faults
	Returning a SOAP Fault
	Adding a Service Error Handler
	Handling permanent faults
	Handling transient faults

	Handling faults in one-way proxy services

	Summary

	Chapter 14: Message Interaction Patterns
	Message routing
	WS-Addressing
	Request message with WS-Addressing
	Response message with WS-Addressing
	Additional message exchanges

	Using BPEL correlation sets
	Using correlation sets for multiple process interactions
	Defining a correlation set property
	Defining correlation set
	Using correlation sets
	Defining property aliases

	Message aggregation
	Message routing
	Correlating the callback
	Specifying the reply to address

	Creating a proxy process
	Using the pick activity
	Defining the correlation sets

	Completing the aggregation

	Scheduling services
	Defining the schedule file
	Using FlowN
	Accessing branch specific data in FlowN

	Dynamic Partner Links
	Define common interface
	Define Job Partner Link
	Create endpoint reference
	Update Endpoint

	Re-cycling the scheduling file

	Summary

	Chapter 15: Workflow Patterns
	Managing multiple participants in a workflow
	Using multiple assignment and routing policies
	Determining the outcome by a group vote

	Using multiple Human Tasks
	Linking individual Human Tasks

	Using the workflow API
	Defining the order fulfillment Human Task
	Specifying task parameters
	Specifying the routing policy
	Notification settings

	Querying task instances
	Defining a Partner Link for the Task Query Service
	User authentication
	Querying tasks
	Flex fields
	Populating Flex Fields
	Accessing Flex fields

	Getting task details
	Updating a task instance
	Defining a PartnerLink for the Task Service
	Using the updateTask operation

	Summary

	Chapter 16: Using Business Rules to Implement Services
	How the rule engine works
	Asserting facts
	Executing the ruleset
	Rule activation
	Rule firing

	Retrieve result
	Session management
	Debugging a ruleset
	Using DM.println to add additional logging

	Using business rules to implement an auction
	Defining our XML facts
	Defining the decision service

	Using a global variable to reference the result set
	Defining a global variable
	Defining a rule to initialize a global variable

	Writing our auction rules
	Evaluating facts in date order
	Checking for non-existent fact
	Using Calendar functionality
	Updating the bid status

	Using inference
	Processing the next valid bid

	Using functions to manipulate XML facts
	Asserting a winning bid
	Retracting a losing bid
	Rules to process a new winning bid
	Validating the next bid
	Rule to process a losing bid

	Complete ruleset

	Performance considerations
	Managing state within the BPEL process

	Summary

	Chapter 17: The Importance of Bindings
	The web services stack
	Logical view of web services stack
	Physical view of web services stack

	Understanding Web Service Description Language (WSDL)
	How to read WSDL
	<definitions>
	<types>
	<message>
	<portType>
	<binding>
	<service>

	The case for different bindings
	Connectivity
	Transactionality
	Performance

	JCA bindings
	Java bindings
	Creating a Java binding

	Service bus bindings
	Summary

	Chapter 18: Packaging and Deployment
	The need for packaging
	Problems with moving between environments
	Types of interface
	Web interfaces
	Command line interfaces

	SOA Suite packaging
	Oracle Service Bus
	Oracle BPEL Process Manager
	Deploying a BPEL process using the BPEL Console
	Deploying a BPEL process using 'ant'
	Enabling web service endpoint and WSDL location alteration
	Enabling adapter configuration
	XML Schema locations
	XSL imports
	BPEL deployment framework

	Oracle Web Services Manager (OWSM)
	Oracle rules
	Business activity monitoring
	Commands
	Selecting items
	Using iCommand

	Deployment architectures
	SOA Suite deployment architectures
	Using an external web server or load balancer

	Web services manager
	Console and monitor

	Oracle Service Bus
	Business activity monitoring
	Local hostnames

	Summary

	Chapter 19: Testing Composite Applications
	SOA Suite testing model
	One-off testing
	Testing BPEL processes
	Testing the service bus

	Automated testing
	The BPEL test framework
	BPEL test suites
	Data validation
	Deploying the test suite
	Running the test suites
	Partner link handling in test cases
	Simulation of process to process interactions
	Baseline scripts

	Regression testing
	System testing
	Composite testing
	Component testing
	Unit testing
	Performance testing
	User interface testing
	Summary

	Chapter 20: Defining Security and Management Policies
	Security and management challenges in the SOA environment
	Evolution of security and management
	Added complications of SOA environment
	Security impacts of SOA
	Management and monitoring impacts of SOA

	Securing services
	Security outside the SOA Suite
	Network security
	Preventing message interception
	Restricting access to services

	Declarative security versus explicit security
	Security as a facet
	Security as a service

	Web Services Manager model
	Policies
	Agents and gateways
	Distinctive benefits of gateways and agents

	Service bus model

	Creating gateways and agents
	Creating a gateway
	Registering gateway services

	Creating an agent
	Enabling agent services

	Defining policies
	Creating a new policy template to perform basic authentication
	Creating the template
	Extracting Credentials
	Authenticating a user
	Authorizing a user
	Saving the pipeline template

	Creating a new policy
	Creating an agent policy
	Creating a gateway policy

	Applying a policy through Service Bus Console
	Service accounts
	Using a service account
	Managing service bus user accounts
	Service bus roles
	Using a role to protect a proxy service

	Final thoughts on security

	Monitoring services
	Monitoring overall service statistics in OWSM
	Defining a Service Level Agreement in OWSM
	Other monitoring and measuring features in OWSM
	Monitoring in service bus
	Creating an Alert Destination
	Enabling service monitoring
	Creating an alert rule
	Monitoring the service

	What makes a good SLA

	Summary

	Index

