
PHP
Development Tool
Essentials

THE E XPER T ’S VOICE® IN WEB DE VELOPMEN T

—
Dive into PHP web application
development with this in-depth
reference and tutorial
—
Chad Russell

www.allitebooks.com

http://www.allitebooks.org

 PHP Development
Tool Essentials

Chad Russell

www.allitebooks.com

http://www.allitebooks.org

PHP Development Tool Essentials

Chad Russell
Jacksonville, Florida, USA

ISBN-13 (pbk): 978-1-4842-0684-3 ISBN-13 (electronic): 978-1-4842-0683-6
DOI 10.1007/978-1-4842-0683-6

Library of Congress Control Number: 2016947166

Copyright © 2016 by Chad Russell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484206843 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218655
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author .. ix

About the Technical Reviewer .. xi

 ■Chapter 1: Version Control.. 1

 ■Chapter 2: Virtualizing Development Environments 23

 ■Chapter 3: Coding Standards .. 43

 ■Chapter 4: Dependency Management ... 67

 ■Chapter 5: Frameworks .. 83

Index .. 111

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author .. ix

About the Technical Reviewer .. xi

 ■Chapter 1: Version Control.. 1

Using Git .. 1

Git Confi guration ... 2

Initializing Your Repository ... 2

Initial Commit ... 3

Staging Changes ... 4

Viewing History ... 5

Ignoring Specifi c Files .. 6

Removing Files ... 6

Branching and Merging ... 8

Merging .. 9

Stashing Changes ... 10

Tagging ... 11

Undoing Changes .. 13

Version Control in the Cloud: Bitbucket and GitHub 15

Bitbucket .. 15

GitHub ... 17

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vi

Pushing, Pulling, and Confl ict Resolution .. 17

Git Tools ... 17

PHPStorm ... 17

SourceTree .. 19

GitHub GUI .. 20

gitg ... 21

Summary ... 22

 ■Chapter 2: Virtualizing Development Environments 23

Introduction to Vagrant .. 24

Installing Vagrant and VirtualBox .. 24

Vagrant Commands .. 25

Setting Up Our First Environment .. 26

Initial VM setup ... 28

Shared Folders ... 29

Networking ... 29

VM Settings .. 29

Removing VMs .. 32

Default Vagrant LAMP box .. 32

Advanced Confi gurations Using Ansible, Bash, and Puppet 33

Bash (Shell) Provisioner .. 33

Puppet Provisioner ... 34

Ansible Provisioner ... 36

Advanced Confi guration Conclusion ... 37

Confi guration Tools .. 37

PuPHPet .. 38

Phansible .. 39

Vagrant Plugins ... 41

Summary ... 41

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vii

 ■Chapter 3: Coding Standards .. 43

A Look at PHP-FIG ... 43

PSR-1 — Basic Coding Standard ... 44

PSR-2 — Coding Style Guide .. 46

Checking Coding Standards with PHP Code Sniffer 54

Using PHP_CodeSniffer .. 55

PHP_CodeSniffer Confi guration .. 57

PHP_CodeSniffer Custom Standard .. 58

PHP_CodeSniffer IDE Integration .. 59

Code Documentation Using phpDocumentor... 60

Installing phpDocumentor .. 60

Using phpDocumentor .. 61

Running phpDocumentor .. 64

Non-structural Comments .. 65

Summary ... 65

 ■Chapter 4: Dependency Management ... 67

Composer and Packagist ... 67

Installing Composer .. 67

Packagist .. 68

Using Composer ... 68

PEAR & Pyrus .. 78

Is Anyone Still Using Pear? ... 79

PECL ... 79

Should I Be Using PEAR or Pyrus? .. 81

Summary ... 82

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

 ■Chapter 5: Frameworks .. 83

Why Use a Framework? .. 83

Zend Framework 2 .. 84

Installing ZF2 .. 84

Module .. 86

Controller .. 87

Database ... 88

View .. 91

Query & Display .. 91

Symfony 2 ... 93

Installing SF2 .. 93

Laravel 5 .. 100

Installing Laravel 5 ... 100

Application Directory Structure .. 101

Application Logic .. 102

Controllers & Routes ... 102

Database ... 103

View .. 103

Display Results ... 104

Micro-Frameworks .. 105

When to Use a Micro-Framework ... 105

Using a Micro-Framework .. 106

Summary ... 109

Index .. 111

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Chad Russell is the founder and chief technologist at Intuitive Reason, a firm that
specializes in building web-based applications and ecommerce platforms for mid- to
enterprise-size clients using open source solutions.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical
Reviewer

Massimo Nardone holds a Master of Science degree in
Computing Science from the University of Salerno,
Italy. He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor, and
senior lead IT security/cloud/SCADA architect for
many years. He currently works as the chief information
security officer (CISO) for Cargotec Oyj. He has more
than 22 years of work experience in IT, including in
security, SCADA, cloud computing, IT infrastructure,
mobile, security, and WWW technology areas for both
national and international projects. He worked as a
visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of

Technology (Aalto University). He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years. He
holds four international patents (PKI, SIP, SAML, and Proxy areas). He is the coauthor of
Pro Android Games (Apress, 2015).

1© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_1

 CHAPTER 1

 Version Control

 If you’re not already using some type of version control on your project, you should
definitely start now. Whether you’re a single developer or part of a bigger team, version
control provides numerous benefits to any project, big or small.

 If you’re not familiar with what version control is, it is a system used to capture and
record changes in files within your project. It provides you with a visual history of these
changes, giving you the ability to go back and see who made the changes, what they
changed — both files and the changed contents, when they made the change, and,
by reading their commit message, why it was changed. In addition, it provides you with a
mechanism to segregate changes in your code, called branches (more on that later).

 There are a number of version control systems available, some free and open source,
others proprietary and requiring licensing. For the purposes of this chapter, we’ll be
focusing on the free and open source Git. Git was first developed by Linus Torvalds for the
Linux Kernel project. Git is a distributed version control system (DVCS) that allows you
to distribute many copies (mirrors) of your repository to other members of your team so
as to be able to track changes. This means that each person with a clone of the repository
has an entire working copy of the system at the time of the clone. Git was built to be
simple, fast, and fully distributable.

 This chapter is meant to give you an overview of Git, covering enough information to
get you started using it every day in your projects. Since I only have one chapter in which
to cover this, I’ll only touch on the surface of Git’s most commonly used functionality.
However, this should be more than enough to get you comfortable with using it. For a
more complete, in-depth look at Git, check out Pro Git by Scott Chacon and Ben Straub,
available from Apress.

 Using Git
 To start using Git , you first need to install it on your system. Binaries for Mac
OS X, Windows, Linux, and Solaris are available by visiting http://git-scm.com and
downloading the appropriate binary install for your OS. In addition to this, Git is also
available for RedHat/CentOS systems using the yum package manager or apt-get on
Debian/Ubuntu. On Mac OS X, you can get it by installing the Xcode command line tools.
In this manuscript, we will use a Linux version of Git.

http://git-scm.com/

CHAPTER 1 ■ VERSION CONTROL

2

 Git Configuration
 Now that Git is installed, let’s do a minimum amount of configuration by setting your
name and email address in the Git configuration tool so that this information will be
shown for commits that you make (a commit being the act of placing a new version of
your code in the repository). We can do this using the git config tool:

 $ git config --global user.name "Chad Russell"
 $ git config --global user.email chad@intuitivereason.com

 We can verify that these settings took by using the git config tool again, this time
using the property key as the setting we want to check:

 $ git config user.name
 Chad Russell
 $ git config user.email
 chad@intuitivereason.com

 Notice that you will run the same configuration commands in both Windows and
Unix environments.

 Initializing Your Repository
 To create your first Git repository , you will simply use the git init command. This will
initialize an empty Git repository in your source code directory. Once you initialize, you
can then perform your first commit to your new repository. For this example, we have an
empty directory that we’ll initialize in, then we will add a README file, and finally we’ll add
and commit the file to our new repository .

 Remember that Git will initiate based on the directory in which the Git command
will be called. For instance, if you are in

 C:\Program Files (x86)\Git

 then the result will be

 Initialized empty Git repository in C:/Program Files (x86)/Git/bin/.git/

 We’ll use the following repository and directory as the book progresses to track
various code examples that we’ll use:

 $ git init
 Initialized empty Git repository in /Apress/source/.git/

CHAPTER 1 ■ VERSION CONTROL

3

 Initial Commit
 Now that we have initialized our empty repository, we’ll add a very basic README file to it
and then perform our initial commit :

 $ echo "This is our README." > README.md

 Now, if we look at the current status of our repository using git status we’ll see that
we now have one untracked file, meaning one file that isn’t yet added to our repository or
being tracked for changes by Git. You can use git status any time you’d like to view the
status of the working branch of your repository:

 $ git status
 On branch master

 Initial commit

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 README.md

 Now, we’ll add the file to our repository using git add :

 $ git add README.md

 If we view the git status again, we’ll see our file has been added, but not yet
committed (saved) to the repository:

 $ git status
 On branch master

 Initial commit

 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: README.md

 Lastly, we’ll commit our change, and our new README will now be in our repository
and be tracked for changes going forward:

 $ git commit -m "Initial commit. Added our README"
 [master (root-commit) e504d64] Initial commit. Added our README
 1 file changed, 1 insertion(+)
 create mode 100644 README.md

CHAPTER 1 ■ VERSION CONTROL

4

 We can see from the message we received back from git commit that our commit
was saved. Now, if we check the git status one more time we’ll see we currently have
nothing else to commit:

 $ git status
 On branch master
 nothing to commit, working directory clean

 Staging Changes
 We have our initial tracked file in our repository and have seen how to add a new file to
Git to be tracked. Let’s now change the README and then stage and commit this change.

 I’ve added a change to the README.md file, altering the initial text we added to
something slightly more informative. Let’s run git status again and see what it shows:

 $ git status
 On branch master
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README. md

 It shows that our README was modified, but that it’s not staged for commit yet. We do
this by using the git add command. We’ll add it and check the status one more time:

 $ git add README.md
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: README.md

 Lastly, we’ll make this new commit, which will wrap up the change to the file we made:

 $ git commit -m "Updated README"
 [master ca476b6] Updated README
 1 file changed, 1 insertion(+), 1 deletion(-)

 ■ Note The staging changes may be configured a bit differently in a Windows
environment.

CHAPTER 1 ■ VERSION CONTROL

5

 Viewing History
 With all of the changes we’ve just made, it is helpful to be able to go back and view
the history of our repository. One of the easiest ways to do this is to use the git log
command. When no arguments are passed to it, git log will show you all of the
commits in your repository, starting with your most recent changes and descending
chronologically from there:

 $ git log
 commit ca476b6c41721cb74181085fd24a40e48ed991ab
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Tue Mar 31 12:25:36 2015 -0400

 Updated README

 commit dc56de647ea8edb80037a2fc5e522eec32eca626
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Tue Mar 31 10:52:23 2015 -0400

 Initial commit. Added our README

 There are a number of options and arguments you can pass to git log . You can limit
the number of results by passing in a number as an argument; you can view the results
for just a specific file; and you can even change the output format using the --pretty
argument along with a number of different options. For example, if we wanted to see only
the last commit to our README.md file and summarize the commit onto one line, we could
use the following:

 $ git log -1 --pretty=oneline -- README.md
 ca476b6c41721cb74181085fd24a40e48ed991ab Updated README

 To break down this command, we’re telling it to limit it to -1 one result, to use the
 oneline pretty format, and -- README.md only for our README.md file.

 ■ Note By far, the most frequent commands you'll use will be git add , git commit ,
 git log , git pull , and git push . These commands add files, commit files to the
repository, pull changes from a remote origin, or push local changes to a remote origin (such
as a hosted repository—more on that later). However, there are a number of additional
commands and sub-commands that Git makes available to perform various tasks. For a full
list of commands you can use git --help , and use git --help a to show sub-commands
available.

CHAPTER 1 ■ VERSION CONTROL

6

 Ignoring Specific Files
 There will often be a number of files and directories within your project that you do not
want Git to track. Git provides an easy way of specifying this by way of a Git Ignore file ,
called . gitignore . You can save these anywhere within your project, but usually you’ll
start with one in your root project directory.

 Once you create and save this file, you can edit it within your IDE or text editor and
add the files and/or paths that you want to ignore. For now, I want to ignore the settings
files that my IDE, PHPStorm, creates. PHPStorm creates a directory called .idea where it
stores a number of files that are specific to my IDE’s settings for this project. We definitely
don’t want that in our repository, as it’s not related to the project specifically, and it could
cause problems for other developers that clone this code and use PHPStorm. Our initial
. gitignore file will now look like this :

 # Our main project .gitignore file
 .idea/*

 For now, we have two lines; the first is a comment, which can be added anywhere
in the file using the number sign # . The second is the line to tell Git to ignore the .idea
folder and anything inside of it, using the asterisk to denote a wildcard match. We will
then want to commit this file to our repository so that it’s distributed to anyone else who
may clone this repository and contribute back to it.

 As your project grows and you have new files or directories that you don’t want
in your repository, simply continue to add to this file. Other items that are commonly
ignored are configuration files that contain passwords or other system-specific
information, temporary files such as caches, other media, or resources that are not
directly needed by your project or even maintained within your development team.

 Removing Files
 At times you will need to remove files from your repository. There are a few different ways
to approach removing files depending on the intentions of what you’re doing.

 If you want to completely remove a file from both the repository and your local
working copy, then you can use the git rm command to perform this task. If you delete
the file from your local copy using your operating system or within your IDE, then it will
show up as a deleted file that needs to be committed.

 Let’s take a look. First, we’ll create a simple text file to add to our repository, commit
it, then delete it:

 $ touch DELETEME
 $ git add DELETEME
 $ git commit -m "Adding a file that we plan on deleting"
 [master 5464914] Adding a file that we plan on deleting
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 DELETEME
 $ git rm DELETEME

CHAPTER 1 ■ VERSION CONTROL

7

 rm 'DELETEME'
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: DELETEME

 $ git commit -m "Removed our temporary file"
 [master 6e2722b] Removed our temporary file
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 DELETEME

 $ git status
 On branch master
 nothing to commit, working directory clean

 Now, we’ll delete it first on the local system and then remove it from Git, and then we
will commit the change:

 $ touch DELETEME
 $ git add DELETEME
 $ git commit -m "Adding another temporary file to delete"
 [master b84ad4f] Adding another temporary file to delete
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 DELETEME
 $ rm DELETEME
 $ git status
 On branch master
 Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: DELETEME

 no changes added to commit (use "git add" and/or "git commit -a")
 $ git rm DELETEME
 rm 'DELETEME'
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: DELETEME

 $ git commit -m "Removing our second temporary file"
 [master e980b99] Removing our second temporary file
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 DELETEME

CHAPTER 1 ■ VERSION CONTROL

8

 Lastly, you may find that you want to delete a file from Git so it’s no longer tracked,
but you want to keep the file locally. Perhaps you accidentally committed a configuration
file that has now been added to your .gitignore file; you want to remove it from Git but
keep it locally, for obvious reasons. For that you will use the --cache option along with
the git rm command:

 $ touch DELETEME
 $ git add DELETEME
 $ git commit -m "Adding a temporary file to delete one more time"
 [master f819350] Adding a temporary file to delete one more time
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 DELETEME
 $ git rm --cached DELETEME
 rm 'DELETEME'
 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: DELETEME

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 DELETEME

 $ git commit -m "Removed temporary file just in the repository"
 [master 26e0445] Removed temporary file just in the repository
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 DELETEME
 $ git status
 On branch master
 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 DELETEME

 Branching and Merging
 Branching is a mechanism that allows you to separate various segments of changes to
your code into sub-repositories of a sort. Merging is the method for bringing this code
back together. For example, suppose you have your main-line repository that most
development is performed under. Then you have some requirements to build a brand-new
set of functionality into your application, but you’ll still be making various unrelated
changes and bug fixes to your existing code base. By creating a separate branch just for
this new functionality, you can continue to make and track your changes to your main-line
code and work on changes for the new functionality separately. Once you’re ready to

CHAPTER 1 ■ VERSION CONTROL

9

integrate this change into your main code, you will perform a merge, which will merge
your changes into the main-line branch.

 Note, however, that Git branches are not like a bridge to Subversion (git svn)
 branches , since svn branches are only used to capture the occasional large-scale
development effort, while Git branches are more integrated into our everyday workflow.

 To get started, let’s create a branch for us to explore this functionality with:

 $ git branch branch-example
 $ git checkout branch-example
 Switched to branch 'branch-example'

 We created our new branch, called branch-example , with the first command. The
second tells Git to switch to that branch so as to start working in and tracking changes
there. Switching between branches is done with the git checkout command. Now, we’ll
create a test file for this new branch and commit it:

 $ touch test.php
 $ git add test.php
 $ git commit -m 'Added a test file to our branch'

 If we switch back to our initial branch (master) we’ll see this file isn’t there:

 $ git checkout master
 Switched to branch 'master'
 $ ls
 README.md
 $ git log
 commit e504d64a544d6a1c09df795c60d883344bb8cca8
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Thu Feb 26 10:23:18 2015 -0500

 Initial commit. Added our README

 Merging
 Once we’re ready for our changes in the test branch to appear in the master branch, we’ll
need to perform a merge. When performing a merge , Git will compare changes in both
branches and will attempt to automatically merge the changes together. In the event of a
collision of changes, meaning that the same lines of code were changed in both branches,
it will have you manually intervene to resolve the conflict. Once resolved, this will be
tracked as another commit, and you can finish your merge.

 Let’s merge our branch-example changes into the master branch:

 $ git merge branch-example
 Updating e504d64..a6b7d2d
 Fast-forward
 test.php | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 test.php

CHAPTER 1 ■ VERSION CONTROL

10

 Now that we’ve merged this in, in this case we don’t need our branch-example any
longer. We can simply delete it using the git branch command again:

 $ git branch -d branch-example

 Stashing Changes
 There will be many times when working with your project that you might need to pull
changes from a remote repository before you’re ready to commit what you’re working on,
or you might need to switch to another branch to do some other work before you’re ready
to commit and don’t want to lose your changes. This is where the git stash command
comes in handy.

 To stash your changes, you simply invoke the git stash command. You can view
the stashes you’ve saved by passing in the list sub-command, and you can reapply the
changes by using the apply sub-command. Let’s see it in action:

 $ git status
 On branch master

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.php

 $ git stash
 Saved working directory and index state WIP on master: 08e9d29 adding a test
file
 HEAD is now at 08e9d29 adding a test file
 $ git status
 On branch master

 nothing to commit, working directory clean

 You can see we had changes to test.php that weren’t yet committed; after calling
 git stash we now have a clean working directory. See here:

 $ git stash list
 stash@{0}: WIP on master: 08e9d29 adding a test file
 $ git stash apply
 On branch master

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.php

CHAPTER 1 ■ VERSION CONTROL

11

 no changes added to commit (use "git add" and/or "git commit -a")
 $ git status
 On branch master

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.php

 We can see the stash we have saved using git stash list . We can reapply it and
see it back in our working directory after calling git stash apply . By default, calling git
stash apply will apply the most recent stash in the list. If you want to apply a specific
stash, then you must supply the stash number that you see when calling git stash list .
Using the preceding list output as an example, we would use the following:

 $ git stash apply stash@{0}

 Tagging
 Tagging within Git allows you to tag any given commit with a label for future reference.
For example, you can use it to tag specific releases of your code or other important
landmarks along the way during development.

 Git provides two different tag types. There’s lightweight tags, which are just label
pointing to a commit. Annotated tags are instead full checksummed objects that contain
the name and email of the person tagging, and can include a message. It’s highly
recommended that you always use annotated tags unless you need to temporarily tag
something, in which case a lightweight tag will do.

 Lightweight Tags
 Let’s create a simple lightweight tag to demonstrate, then delete it and create an
annotated tag.

 Create initial lightweight tag:

 $ git tag v0.0.1

 Now show details of the tag:

 $ git show v0.0.1
 commit a6b7d2dcc5b4a5a407620e6273f9bf6848d18d3d
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Thu Feb 26 10:44:11 2015 -0500

CHAPTER 1 ■ VERSION CONTROL

12

 Added a test file to our branch

 diff --git a/test.php b/test.php
 new file mode 100644
 index 0000000.. e69de29

 We can delete a tag using the -d option:

 $ git tag -d v0.0.1
 Deleted tag 'v0.0.1' (was a6b7d2d)

 Annotated Tags
 Now create the annotated version:

 $ git tag -a v0.0.1 -m "Initial Release"

 Show the details of the annotated tag:
 $ git show v0.0.1
 tag v0.0.1
 Tagger: Chad Russell <chad@intuitivereason.com>
 Date: Sun Mar 15 18:54:46 2015 -0400

 Initial Release

 commit a6b7d2dcc5b4a5a407620e6273f9bf6848d18d3d
 Author: Chad Russell <chad@intuitivereason.com>
 Date: Thu Feb 26 10:44:11 2015 -0500

 Added a test file to our branch

 diff --git a/test.php b/test.php
 new file mode 100644
 index 0000000..e69de29

 As you can see, on the annotated version we have the date, name, and email of the
person who created the tag.

CHAPTER 1 ■ VERSION CONTROL

13

 Undoing Changes
 There will come times when you might accidentally commit something that you want to
undo, or where you might want to reset your local working copy back to what it was from
the last commit or a given commit within the repository history. Undoing changes in Git
can be broken down in the following ways:

• Amend

• Un-stage

• File Reset

• Soft Reset

• Mixed Reset

• Hard reset

 Amend
 Undoing a previous commit by changing the commit message or adding additional files
can be done using the --amend option with git . For example, suppose you have two files
to commit, and you accidentally only commit one of them. You can append the other file
you wanted to commit to the same file and even change the commit message using the
-- amend option, like this:

 $ git add second.php
 $ git commit -m "Updated commit message" --amend

 Un-stage
 This action would un-stage a file that has been staged but not yet committed. Un-staging
a file makes use of the git reset command. For example, suppose you accidentally
staged two files to commit but you only wanted to stage and commit one of them for now.
You would use the git reset command along with the filename to un-stage it, like this:

 $ git status
 On branch master
 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: first.php
 new file: second.php

 $ git reset HEAD second.php
 $ git status
 On branch master

CHAPTER 1 ■ VERSION CONTROL

14

 Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: first.php

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 second.php

 File Reset
 A file reset would mean reverting your working changes to a file back to the most recent
commit or to an earlier commit that you specify. To reset a file to the most recent commit,
you will use git checkout :

 $ git status
 On branch master
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: first.php

 $ git checkout -- first.php
 $ git status
 On branch master
 nothing to commit, working directory clean

 If you wanted to reset a file back to a specific commit, you would use git
reset along with the commit hash and the filename, like this:

 $ git reset a659a55 first.php

 Soft Reset
 A soft reset resets your repository index back to the most recent commit or a specified
commit and leaves your working changes untouched and your staged files staged. It is
invoked using the --soft option with git reset . You can either specify a commit hash to
reset to or omit the commit hash, and it will reset to the most recent commit:

 $ git reset –soft 26e0445

CHAPTER 1 ■ VERSION CONTROL

15

 Mixed Reset
 Much like a soft reset, a mixed reset resets your repository index back to the most recent
commit or a specified commit, leaving your working changes untouched. However, it
removes any files from staging. This is the default action of just using git reset or git
reset along with a commit hash, such as:

 $ git reset 26e0445

 Hard Reset
 Lastly, the hard reset is the most dangerous of all options, so use this only when
absolutely necessary. It is a hard reset of your repository back to a given commit while
discarding all working and staged changes. This action cannot be undone, so make sure
you know that you want to do this before doing it:

 $ git reset --hard e504337
 HEAD is now at e504337 Added our first .gitignore file

 Version Control in the Cloud: Bitbucket and GitHub
 Having a remote-hosted repository is common practice when using Git other than for
just your own personal projects. While there are many different ways of accomplishing
this, there are two very popular services that allow you to have hosted repositories in the
cloud. Enter Bitbucket (http://bitbucket.com) and GitHub (http://github.com).

 Each of these services offers both free and paid plans. The largest difference in
the free plan offered by both services is that Bitbucket al lows an unlimited amount
of private repositories, limited to five collaborators, and GitHub provides only public
free repositories. Once you have an account with one of these services and create your
repository, you will define this remote repository in your local Git configuration to allow
you to push and pull changes to and from it.

 Bitbucket
 Let’s get started with Bitbucket. When you first visit their site, you will create a new
account. Once your account is created, you will log in and be provided with the option to
set up a new repository. Before we proceed with creating our repository, there’s a single
step we can do that will make interacting with this repository a lot easier for us, which is
adding an SSH key to use for authentication.

 One of the most important advantages of Bitbucket is that it is JIRA integrated and
also supports Mercurial.

http://bitbucket.com/
http://github.com/

CHAPTER 1 ■ VERSION CONTROL

16

 SSH Key
 You can add an SSH key to your Bitbucket account, which will allow you to interact with
it from within Git on your local machine without having to type your Bitbucket password
over and over again. To do this, navigate to the Manage Account section and then locate
“SSH Keys.” From here, you can add an SSH key from your local machine that will be used
as authorization when working with any remote repository under your account. If you
haven’t ever set up an SSH key, it’s easily done with Mac OS X and Linux, and by using Git
Bash on Windows.

 From within Mac OS X or Linux, open a terminal, or on Windows open a Git Bash
prompt, then issue the following command and answer the few questions it presents you:

 $ ssh-keygen -t rsa -C "chad@intuitivereason.com"

 It is highly recommended that you accept the default values it provides, including
the path to store the new key pair.

 Once these steps are finished, you will have both a public and private key pair
created. Locate the public key (using the path shown from the ssh-keygen process) and
open it using your favorite text editor. You will then copy the contents of the public key to
your Bitbucket account and save it. This will complete the key setup for your account.

 Creating Your First Remote Repository
 With the SSH in place in the Bitbucket account, you can now create your repository. To
start, click the Create button located in the top navigation bar, which takes you to the
Create form. Enter the information about your project and then click Create Repository.
This will take you to the repository configuration page. This will provide you with a
few options on what to do with this new repository. If you haven’t yet created your
local repository, as we did earlier, then you could use the “Create from scratch” option.
However, in our case we want to push our current repository to this new remote Git
repository. Following the instructions provided on this screen, let’s link our repository
and do the first push to it to copy our current code to it:

 $ git remote add origin git@bitbucket.org:intuitivereason/pro-php-mysql.git
 $ git push -u origin --all
 Counting objects: 6, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (6/6), 524 bytes | 0 bytes/s, done.
 Total 6 (delta 0), reused 0 (delta 0)
 To git@bitbucket.org:intuitivereason/pro-php-mysql.git
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.

 Now that we’ve successfully pushed it, we can click on the “Source” icon on
Bitbucket to see our code visible there.

CHAPTER 1 ■ VERSION CONTROL

17

 GitHub
 Instead of using Bitbucket, you might want to use GitHub, and when comparing them
we can say that they have very different billing structures and they also differ in history
viewer and collaboration features.

 The steps using Github are very similar. You first find and click the New Repository
button, which will then present you with a Repository Create form similar to what we had
with Bitbucket. From here, you’ll fill out the form and create the repository. On the next
screen, you’ll be presented with instructions based on whether this is a new or existing
repository, just as with Bitbucket. We can add this repository just like we did with Bitbucket:

 $ git remote add origin git@github.com:intuitivereason/pro-php-mysql.git
 $ git push -u origin --all

 Pushing, Pulling, and Conflict Resolution
 As we just did to initially push our code to our new remote repository, we’ll use the git
 push command to continue to push code to it, as well as utilize the git pull command to
pull code from the repository that may have been committed by others since our last pull.

 For example, suppose you invite another developer to collaborate with you on a project.
You pull the latest from the remote repository, then do some work. Developer 2 does the
same, but commits and pushes his changes to the remote repository before you do. When
you go to push, you’ll receive a message back from Git telling you that your repository
version is behind. You’ll then use the git pull command to fetch any changes and attempt
to automatically merge and rebase the changes with yours. Then you can push your changes
to the repository. You’ll both continue this pattern while both working with the repository.

 In the event that both of you work on the sample file and have overlapping changes,
Git won’t be able to determine which version is the correct one to use. This is called a
 conflict . You must manually resolve conflicts, then commit the resolved changes and push
back to the remote repository.

 Git Tools
 There are a number of tools that exist to make working with Git easier. Many IDEs offer
integration with Git, and both Bitbucket and Github provide their own GUI tools that
make working with Git much easier.

 PHPStorm
 If you’re not familiar with PHPStorm, it is a popular, cross-platform (Linux, Mac OS X,
and Windows) PHP IDE developed by JetBrains. It is the IDE that I use throughout the
various examples; however, you do not have to have PHPStorm to do any of the exercises
in this book.

 You can download PHP Storm at:

 https://www.jetbrains.com/phpstorm/download/

CHAPTER 1 ■ VERSION CONTROL

18

 If you have a Git repository in your project root folder in PHPStorm, it will
automatically detect it and provide menu entries to perform a number of different
actions, as shown in Figure 1-1 .

 Figure 1-2. Git Repository sub-menu entry in PHPStorm

 Figure 1-1. PHPStorm Git menu entries

 Here we see there are a number of actions available to us when viewing these
options while on our test.php file. From here we can commit or add the file, if it hasn’t
been added yet. We can also do a diff to compare our local file with the same version in
the repository or with what the latest version might be on a remote repository. We can
also compare it with another branch within our repository or see the history of all of the
changes for this one file. Another function is the “Revert” function, which allows you to
quickly revert any uncommitted changes in your file back to the state it was in for the last
local commit.

 Figure 1-2 shows the Repository sub-menu entry and the actions it provides within
this sub-menu.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ VERSION CONTROL

19

 From this entry we can view branches, tag, merge, stash or un-stash our current
changes, or fetch, pull, or push changes from and to a remote repository.

 SourceTree
 The SourceTree application is a free Git client for Windows and Mac users that is built by
Atlassian, the same company that runs Bitbucket. It is a very powerful Git GUI client that
makes working and interacting with Git repositories, both locally and remote, quite easy.

 Installing SourceTree
 SourceTree can be downloaded by visiting http://www.sourcetreeapp.com .
Once downloaded, run the installer and follow the instructions to install it on your
development machine. The first time you run SourceTree, it will prompt you to log in
with an existing Bitbucket or GitHub account. You can either log in or skip this step. If you
do choose to log in, you will be able to see your remote repositories within SourceTree’s
main bookmark/browser window. You can always choose to add one of these linked
accounts later.

 Adding a Repository
 To add a Git repository to SourceTree, you will click on the New Repository button and
choose whether you are cloning an existing remote repository, adding an existing local
repository, or creating a new local or remote repository (Figure 1-3).

 Figure 1-3. Adding a new repository to SourceTree

http://www.sourcetreeapp.com/

CHAPTER 1 ■ VERSION CONTROL

20

 Add the new repository that you created earlier in this chapter by selecting “Add
existing local repository.” This will have you navigate to the directory where the repository
was initialized, and then click the Add button. This repository will now be visible in the
SourceTree bookmark/browser window. Simply double-click the name of the repository
to bring up the full GUI (Figure 1-4).

 Figure 1-4. SourceTree repository view

 From here, you can continue to work with Git for all of the actions we have discussed
so far and others, including committing, branching, merging, pushing and pulling to and
from a remote repository, and more.

 GitHub GUI
 GitHub has their own Git GUI that’s freely available as well. It’s very clean and intuitive to
use, but lacks some of the advanced features you’ll find in SourceTree. However, if you’re
looking for a nice, clean interface to use with Git, it’s definitely worth looking at.

 Installing the GitHub GUI
 Like SourceTree, GitHub GUI is available for both Windows and Mac users. Mac users can
download by visiting https://mac.github.com , and Windows users can download by
visiting https://windows.github.com . Once downloaded and installed, GitHub will walk
you through the setup process to finish the installation.

https://mac.github.com/
https://windows.github.com/

CHAPTER 1 ■ VERSION CONTROL

21

 Adding a Repository
 One interesting feature of the GitHub GUI is that it can find Git repositories on your
system and provide them to you during setup, with the option of importing them in to
start working with them in GitHub GUI. If you choose not to do that, you can also add or
create a new repository later using the menu entry. Once your repository has been added
to the GitHub GUI, you will be presented with the repository view, as shown in Figure 1-5 .

 Figure 1-5. GitHub GUI repository view

 gitg
 gitg is an open source Git GUI that’s made by the Gnome foundation and is for Linux
users only.

 Installing gitg
 gitg is available for installation using both yum and apt-get . gitg doesn’t quite provide the
power and usability that is found with SourceTree, GitHub, or even within the PHPStorm
IDE. It does, however, provide a nice interface for browsing or searching through a
repository’s history on Linux systems.

 Adding a Repository
 To add a repository using gitg, you click the “cog wheel” icon, which then reveals a sub-
menu for opening a local repository or cloning a remote repository. Once added, you can
click to open the repository view, as seen in Figure 1-6 .

CHAPTER 1 ■ VERSION CONTROL

22

 Summary
 In this chapter, we introduced the Git distributed version control system (DVCS).
We covered the basics of using Git in day-to-day development, such as adding and
committing changes, merging, and branching. We also covered working with remote
repositories with the popular Github and Bitbucket services. We then discussed working
with other developers and managing conflict resolution with committed files before
reviewing some tools you can use to make working with Git even easier. Hopefully you’re
now moving on with a comfortable knowledge of Git and are able to start using it in your
projects right away!

 In the next chapter we will discuss virtualizing development environments.

 Figure 1-6. gitg repository view

23© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_2

 CHAPTER 2

 Virtualizing Development
Environments

 Creating virtualized development environments allows you to form encapsulated
environments for specific projects that can have the same exact versions of operating
systems, PHP, web servers, databases, libraries, settings, etc. as the real thing. These
environments keep everything isolated from each other and can easily be destroyed and
recreated as needed. This provides a number of benefits:

• Ability to run multiple projects on various PHP versions to match
their production versions without trying to run them on your
development machine.

• No chance of messing anything up with any configurations on
your development machine when trying to install a library,
change a setting, etc.

• Ability to take a snapshot of your environment that you can easily
revert back to.

 In this chapter, as we look into virtualizing your development environments, we will
be focusing solely on using Vagrant, which is a tool for building complete, distributable
development environments.

 Traditionally, there are two approaches to setting up the development environment:

• Client and server processes run on the same machine.

• Client and the server run on different machines, which imitates
the way the deployed application is executed by end users.

 We’ll look at the benefits of using virtualized environments, how to get and set up
Vagrant, and how to provision your very first environment. By the end of the chapter you
should be able to easily get up and running with your own virtual machine after running
just one simple command: vagrant up .

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

24

 Introduction to Vagrant
 There’s a good chance you have heard of or maybe even looked at using Vagrant before.
As previously mentioned, Vagrant is a tool for building complete, reproducible, and
distributable development environments.

 ■ Note Vagrant is open source software distributed under MIT license.

 It does this by following a consistent configuration pattern, allowing you to define
sets of instructions to configure your virtual environment using Vagrant’s specific
language. These instructions are stored in a file called Vagrantfile , and since it is only
text, it can easily be added to your project’s source control repository, thus allowing
the versioning of these environment configurations as well as allowing it to be easily
distributed among other developers.

 At the heart of it all, we can break a full Vagrant setup down into four pieces:

• Provider – This is the virtual platform that your Vagrant setup will
run on. Since Vagrant doesn’t provide any actual virtualization,
it relies on providers to provide this functionality for you. By
default, Vagrant supports VirtualBox. However, there are a
number of other providers you can use, such as Docker, VMWare,
Parallels, Hyper-V, and even cloud providers such as AWS and
DigitalOcean.

• Boxes – Boxes are the virtual machine images used to build your
Vagrant setup. They can be used by anyone and on any Vagrant
provider. There are a growing number of public Vagrant boxes
available for your use, some that are base OS installations and
some with a preconfigured LAMP stack or other configurations
and languages. In addition to the ones publicly available, you
can also create your own Vagrant boxes that can be either shared
publicly or used privately only by you and/or your team.

• Vagrantfile – Configuration file for Vagrant.

• Provisioners – Provisioners are used in Vagrant to allow you to
automatically install software, alter configurations, and perform
other operations when running the vagrant up process. There
are a number of provisioners supported by Vagrant, but for the
sake of this book we’ll be looking at Bash, Puppet, and Ansible.

 Installing Vagrant and VirtualBox
 Before you can do anything with Vagrant, you must first have a virtual machine provider
installed, such as the free and open source VirtualBox that we’ll use throughout these
examples. You of course also need Vagrant itself installed .

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

25

 VirtualBox can be downloaded from its website, located at https://www.virtualbox.org .
Simply download the appropriate installer package for your operating system and follow the
instructions on the installer to install.

 Like VirtualBox , Vagrant can be downloaded from its website at
http://www.vagrantup.com . Download the appropriate installer package for your
operating system and follow the instructions on the installer to install. Once installed, the
 vagrant command will be available to you in your terminal.

 In this book we will use Vagrant for a Linux environment.

 Vagrant Commands
 All commands issued to Vagrant are done using the vagrant command that’s now
available to you in your terminal. Let’s take a look at the list of command options we have:

 $ vagrant -h
 Usage: vagrant [options] <command> [<args>]

 -v, --version Print the version and exit.
 -h, --help Print this help.

 Common commands:
 box manages boxes: installation, removal, etc.
 connect connect to a remotely shared Vagrant environment
 destroy stops and deletes all traces of the vagrant machine
 global-status outputs status Vagrant environments for this user
 halt stops the vagrant machine
 help shows the help for a subcommand
 hostmanager
 init initializes a new Vagrant environment by creating a Vagrantfile
 login log in to HashiCorp’s Atlas
 package packages a running Vagrant environment into a box
 plugin manages plugins: install, uninstall, update, etc.
 provision provisions the Vagrant machine
 push deploys code in this environment to a configured destination
 rdp connects to machine via RDP
 reload restarts Vagrant machine, loads new Vagrantfile configuration
 resume resume a suspended Vagrant machine
 share share your Vagrant environment with anyone in the world
 ssh connects to machine via SSH
 ssh-config outputs OpenSSH valid configuration to connect to the machine
 status outputs status of the Vagrant machine
 suspend suspends the machine
 up starts and provisions the Vagrant environment
 version prints current and latest Vagrant version

https://www.virtualbox.org/
http://www.vagrantup.com/
http://www.vagrantup.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

26

 For help on any individual commands, run `vagrant COMMAND -h`

 Additional subcommands are available, but are either more advanced or are not
commonly used. To see all subcommands, run the command `vagrant list-commands`.

 As you can see from the last bit of information outputted from this command, there
are additional subcommands that are available for us to use. For the sake of this chapter,
we’ll be focusing on the most commonly used commands and subcommands.

 Setting Up Our First Environment
 With VirtualBox and Vagrant installed, getting up and running with your first Vagrant
 environment is a relatively short and easy process. At a minimum, all you need is a basic
Vagrantfile and a selected Vagrant box to use.

 For starters, we’re going to set up a minimal install using a base Ubuntu 14.04 box.
Perusing the Hashicorp (the official company behind Vagrant) community box-repository
catalog, located at https://atlas.hashicorp.com/boxes/search , I see the box we want
to use is ubuntu/trusty64 . Using two commands, we’ll initialize our Vagrant setup,
download the box, install it, then boot our new virtual machine (VM).

 The first thing you have to do is define Vagrant’s home directory in the VAGRANT_HOME
environment variable. This can be easily done by executing the following command in bash:

 $ export VAGRANT_HOME=/some/shared/directory

 Let’s create a new folder just for this Vagrant instance that we’re setting up, then we’ll
initialize the Vagrant setup:

 $ mkdir VagrantExample1
 $ cd VagrantExample1
 $ vagrant init ubuntu/trusty64

 You should see a message returned that tells you a Vagrantfile has been placed in
your directory and you’re ready to run vagrant up . Before we do that, let’s take a look at
the initial Vagrantfile that was generated:

 # All Vagrant configuration is done below. The "2" in Vagrant.configure
 # configures the configuration version (we support older styles for
 # backward compatibility). Please don’t change it unless you know what
 # you're doing.
 Vagrant.configure(2) do |config|
 # The most common configuration options are documented and commented below.
 # For a complete reference, please see the online documentation at
 # https://docs.vagrantup.com.

 # Every Vagrant development environment requires a box. You can search for
 # boxes at https://atlas.hashicorp.com/search.
 config.vm.box = "ubuntu/trusty64"

https://atlas.hashicorp.com/boxes/search

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

27

 # Disable automatic box update checking. If you disable this, then
 # boxes will only be checked for updates when the user runs
 # `vagrant box outdated`. This is not recommended.
 # config.vm.box_check_update = false

 # Create a forwarded port mapping, which allows access to a specific port
 # within the machine from a port on the host machine. In the example below,
 # accessing "localhost:8080" will access port 80 on the guest machine.
 # config.vm.network "forwarded_port", guest: 80, host: 8080

 # Create a private network, which allows host-only access to the machine
 # using a specific IP.
 # config.vm.network "private_network", ip: "192.168.33.10"

 # Create a public network, which generally matches to bridged network.
 # Bridged networks make the machine appear as another physical device on
 # your network.
 # config.vm.network "public_network"

 # Share an additional folder to the guest VM. The first argument is
 # the path on the host to the actual folder. The second argument is
 # the path on the guest to mount the folder. And the optional third
 # argument is a set of non-required options.
 # config.vm.synced_folder "../data", "/vagrant_data"

 # Provider-specific configuration so you can fine-tune various
 # backing providers for Vagrant. These expose provider-specific options.
 # Example for VirtualBox:
 #
 # config.vm.provider "virtualbox" do |vb|
 # # Display the VirtualBox GUI when booting the machine
 # vb.gui = true
 #
 # # Customize the amount of memory on the VM:
 # vb.memory = "1024"
 # end
 #
 # View the documentation for the provider you are using for more
 # information on available options.

 # Define a Vagrant Push strategy for pushing to Atlas. Other push strategies
 # such as FTP and Heroku are also available. See the documentation at
 # https://docs.vagrantup.com/v2/push/atlas.html for more information.
 # config.push.define "atlas" do |push|
 # push.app = "YOUR_ATLAS_USERNAME/YOUR_APPLICATION_NAME"
 # end

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

28

 # Enable provisioning with a shell script. Additional provisioners such as
 # Puppet, Chef, Ansible, Salt, and Docker are also available. Please see the
 # documentation for more information about their specific syntax and use.
 # config.vm.provision "shell", inline <<-SHELL
 # sudo apt-get install apache2
 # SHELL
 end

 As you can see, most of the options here are commented out. The only configuration
options line that isn’t is:

 config.vm.box = "ubuntu/trusty64"

 This line tells Vagrant to use the box that we specified with our vagrant init command.

 Initial VM setup
 We’re now ready to issue our next and final command, vagrant up . This will boot our
VM for the first time and do any initial setup (provisioning) that we’ve told it to do.
For now, this is just a basic system, so it will download the box we chose for the first time
and import it, then just set up the initial SSH keys and make the machine available to us.
See here:

 $ vagrant up --provider virtualbox

 You will see quite a bit of output from Vagrant as it downloads and brings up this
initial box. The last few lines let you know it was a success and is ready for your use:

 ==> default: Machine booted and ready!
 ==> default: Checking for guest additions in VM...
 ==> default: Mounting shared folders...
 default: /vagrant => /Apress/VagrantExample1

 We now have a new VM running Ubuntu 14.04. We can connect to this VM via
ssh , just like on any other Linux machine. With Vagrant, we do this by issuing the vagrant
ssh command:

 $ vagrant ssh
 Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-45-generic x86_64)

 ...

 vagrant@vagrant-ubuntu-trusty-64:~$

 The Vagrant user is the default user set up with each box. This user has full sudo
privileges without needing any additional passwords.

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

29

 ■ Note Remember to run the command vagrant –help to get the entire list of
commands you can use with Vagrant.

 Shared Folders
 By default, Vagrant will share your project’s folder with the /vagrant directory inside of your
VM. This allows you to easily edit files located directly in your project on your development
machine and see those changes immediately reflected in the VM. A typical use for this
would be to set up Apache on your Vagrant box and point the site root folder to somewhere
within the /vagrant directory. Also, you can specify additional shared directories using the
 config.vm.synced_folder configuration parameter in the default Vagrantfile.

 Networking
 Vagrant provides multiple options for configuring your VM’s networking setup.
All network options are controlled using the config.vm.network method call. The
most basic usage would be to use a forwarded port, mapping an internal port such as
port 80 for regular HTTP traffic to a port on your host machine. For example, the
following configuration line will make regular web traffic of your VM accessible at
 http://localhost:8080 :

 config.vm.network "forwarded_port", guest: 80, host: 8080

 If you would prefer to specify a private IP address from which you can instead access the
entire VM on your local network, you can use the config.vm.network "private_network"
method call:

 config.vm.network "private_network", ip: "192.168.56.102"

 VM Settings
 If you wish to change the amount of RAM or CPU that your VM is using, you can do so
with the section of our Vagrantfile that starts with config.vm.provider " virtualbox " do
|vb| . You will notice two entries there already that are commented out, one setting the
Virtualbox GUI settings, the other setting the memory. If we want to change the memory
as well as the default virtual CPU available to our image — to, say, 2048 MB memory and
2 CPUs — we can do so by adding the following under that section of our Vagrantfile:

 config.vm.provider "virtualbox" do |vb|
 # Customize the amount of memory on the VM:
 vb.memory = "2048"

 # 2 virtual CPU’s
 vb.cpus = 2
 end

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

30

 Before we apply this change, let’s check to see what our VM is currently showing:

 $ vagrant ssh
 vagrant@vagrant-ubuntu-trusty-64:~free -m
 total used free shared buffers cached
 Mem: 489 331 158 0 12 207
 -/+ buffers/cache: 112 377
 Swap: 0 0 0

 vagrant@vagrant-ubuntu-trusty-64:~$ cat /proc/cpuinfo
 processor : 0
 vendor_id : GenuineIntel
 cpu family : 6
 model : 58
 model name : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
 stepping : 9
 microcode : 0x19
 cpu MHz : 2700.450
 cache size : 6144 KB
 physical id : 0
 siblings : 1
 core id : 0
 cpu cores : 1
 apicid : 0
 initial apicid : 0
 fpu : yes
 fpu_exception : yes
 cpuid level : 5
 wp : yes
 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp
lm constant_tsc rep_good nopl pni monitor ssse3 lahf_ lm

 bogomips : 5400.90
 clflush size : 64
 cache_alignment : 64
 address sizes : 36 bits physical, 48 bits virtual
 power management:

 We can apply these changes to our Vagrantfile by running the vagrant reload
command, which will be the same as doing a vagrant halt to shut down the VM and
then a vagrant up to start it back up:

 $ vagrant reload

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

31

 Let’s ssh in again and check our VM memory and CPU settings now:

 $ vagrant ssh
 vagrant@vagrant-ubuntu-trusty-64:~$ free -m
 total used free shared buffers cached
 Mem: 2001 208 1793 0 11 77
 -/+ buffers/cache: 120 1881
 Swap: 0 0 0

 vagrant@vagrant-ubuntu-trusty-64:~$ cat /proc/cpuinfo
 processor : 0
 vendor_id : GenuineIntel
 cpu family : 6
 model : 58
 model name : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
 stepping : 9
 microcode : 0x19
 cpu MHz : 2702.438
 cache size : 6144 KB
 physical id : 0
 siblings : 2
 core id : 0
 cpu cores : 2
 apicid : 0
 initial apicid : 0
 fpu : yes
 fpu_exception : yes
 cpuid level : 5
 wp : yes
 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
rdtscp lm constant_tsc rep_good nopl pni ssse3 lahf_lm

 bogomips : 5404.87
 clflush size : 64
 cache_alignment : 64
 address sizes : 36 bits physical, 48 bits virtual
 power management:

 Processor : 1
 vendor_id : GenuineIntel
 cpu family : 6
 model : 58
 model name : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
 stepping : 9
 microcode : 0x19
 cpu MHz : 2702.438
 cache size : 6144 KB
 physical id : 0
 siblings : 2

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

32

 core id : 1
 cpu cores : 2
 apicid : 1
 initial apicid : 1
 fpu : yes
 fpu_exception : yes
 cpuid level : 5
 wp : yes
 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
rdtscp lm constant_tsc rep_good nopl pni ssse3 lahf_lm

 bogomips : 5404.87
 clflush size : 64
 cache_alignment : 64
 address sizes : 36 bits physical, 48 bits virtual
 power management:

 Removing VMs
 Now, just as easily as we set up this VM, let’s destroy it and all traces of it with another
simple command, vagrant destroy :

 $ vagrant destroy
 default: Are you sure you want to destroy the 'default' VM? [y/N] y
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...

 Just like that, our Vagrant VM is gone. However, our Vagrantfile is still intact, and the
VM can be brought right back again by simply issuing another vagrant up .

 Default Vagrant LAMP box
 Our previous example is just a basic, bare Linux machine without Apache, MySQL, or
PHP installed. This isn’t very helpful if you’re setting this box up for PHP development,
unless you want to roll your own custom configurations.

 Luckily, there are a number of community-provided Vagrant boxes that are already
pre-configured with Apache, MySQL, and PHP, as well as some that already have popular
PHP frameworks and platforms installed, such as Laravel, Drupal, and others.

 Using the aforementioned Atlas community repository catalog or the Vagrantbox.es
catalog (http://www.vagrantbox.es/), you can search and find a box that will work for
you without any other configuration changes needed.

http://www.vagrantbox.es/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

33

 Advanced Configurations Using Ansible, Bash,
and Puppet
 As you can see from our initial example, it’s extremely easy to get a VM up and running
with Vagrant. However, just a basic VM isn’t going to be of much use to us when setting it
up as a full development environment that is supposed to mirror our production setup.
If you don’t find a Vagrant box that already has LAMP configured, then having to install
and configure Apache, MySQL, and PHP manually each time you set up a new VM makes
Vagrant a lot less useful.

 It’s also common that even if LAMP is already set up, there will be a number of
configuration operations that need to be run after the initial setup, such as pointing
Apache to a different public folder for your framework, or setting up a database for your
application. This is where advanced configurations using one of the Vagrant-supported
provisioners come in handy.

 Vagrant supports a number of provisioners. For the sake of this chapter, we are going
to look at Ansible, Bash, and Puppet. If you’re only familiar with Bash, then it’s the easiest
to jump in and start using. However, there are many preconfigured packages available
for Ansible (playbooks), Chef (recipes/cookbooks), and Puppet (modules) that will
drastically cut down on the time it would take you to do these tasks even in Bash using
basic commands.

 Bash (Shell) Provisioner
 Let’s start with a simple example by installing Apache, MySQL, and PHP using a simple
bash script. This entire Vagrant setup consists of two files — the Vagrantfile and our bash
script. We’re going to call this script provision.sh . This script will install the Ubuntu repo
versions of Apache, MySQL, and PHP using apt-get .

 We use the following line in our Vagrantfile to tell Vagrant to use Bash as a
provisioner and then to use the provision.sh script:

 config.vm.provision :shell, :path => "provision.sh"

 The contents of our provision.sh script are as follows:

 #!/bin/sh

 set -e # Exit script immediately on first error.
 set -x # Print commands and their arguments as they are executed.

 export DEBIAN_FRONTEND=noninteractive

 # Do an update first
 sudo apt-get -y update

 # Install Apache
 sudo apt-get -y install apache2

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

34

 # Install PHP
 sudo apt-get -y install php5 php5-mysql php5-cli php5-common

 # Install MySQL
 echo mysql-server mysql-server/root_password password 123 | sudo debconf-
set-selections
 echo mysql-server mysql-server/root_password_again password 123 | sudo
debconf-set-selections
 sudo apt-get -y install mysql-server-5.6

 # Restart Apache & MySQL to ensure they're running
 sudo service apache2 restart
 sudo service mysql restart

 As you can see, with this script we’re just running the same commands we would run
if we were manually setting up our VM; however, we automate the process since Vagrant
can run the Bash commands for us.

 Puppet Provisioner
 Puppet is a configuration management system that allows us to create very specialized
Vagrant configurations. Puppet can be used to form many different types of Vagrant
configurations via the inclusion of specific Puppet modules inside of your project. These
modules can be obtained from the Puppet Forge site at https://forge.puppetlabs.com/ .
Each one of the modules you use will have anywhere from a few to many different
configuration options so as to tailor the environment to your exact needs. You should
reference the README for each one of these modules as you start customizing to find out
what options are made available to you.

 For this example, download the Apache, MySQL, and PHP manifests from Puppet Forge
and organize them according to their recommended hierarchy as noted on the website. You
should also download a few required dependencies from Puppet Forge as well. We’ll use
these to set up a VM with Apache, MySQL, and PHP just like with our Bash example.

 ■ Note A manifest is the instructions that tell Puppet what to do with all of the modules.

 We’ll place the Puppet manifest in the default location in which Vagrant will look for
it, under manifests/default.pp . First, update the Vagrantfile to tell Vagrant that we’re
now using Puppet as a provisioner:

 config.vm.provision "puppet" do |puppet|
 puppet.manifests_path = "manifests"
 puppet.manifest_file = "default.pp"
 puppet.module_path = "modules"
 end

https://forge.puppetlabs.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

35

 Our directory structure is as shown in Figure 2-1 .

 The default.pp file located under the main manifests directory is the file that tells
Puppet what to install and configure for our VM. This is where you would define the
various configuration options you need for your setup. For the sake of this example, I’ve
kept the configurations simple and concise:

 # Update apt-get
 exec { 'apt-get update':
 command => 'apt-get update',
 path => '/usr/bin/',
 timeout => 60,
 tries => 3
 }

 class { 'apt':
 always_apt_update => true
 }

 # Install puppet in our VM
 package {
 [
 'puppet',
]:
 ensure => 'installed',
 require => Exec['apt-get update'],
 }

 Figure 2-1. Puppet Vagrant directory structure

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

36

 # Install Apache, set webroot path
 class { 'apache':
 docroot => '/var/www/html',
 mpm_module => 'prefork'
 }

 # Install MySQL, setting a default root password
 class { '::mysql::server':
 root_password => '123',
 remove_default_accounts => true
 }

 # Install PHP and two PHP modules
 class { 'php':
 service => 'apache2'
 }
 php::module { 'cli': }
 php::module { 'mysql': }

 # Install and configure mod_php for our Apache install
 include apache::mod::php

 As you can see, there is a bit more going on here than we had in our Bash script;
however, having the power and flexibility of being able to make configuration changes
and specific installation setups just by adding in a few additional configuration
parameters makes Puppet a great choice for complex setups.

 Ansible Provisioner
 Ansible is an automation tool that can be used for many types of autonomous tasks and
is not limited to use with Vagrant. With Vagrant, we can use it along with a playbook to
automate the setup and configuration of our Vagrant machines. An Ansible playbook is
simply a YAML file that instructs Ansible on what actions to perform.

 ■ Note You may want to consider running Ansible against the machine you are
configuring because it can be quicker than using a combination of setup scripts.

 Using Ansible is much more lightweight than using Puppet, as there is no need to
download or include various modules to perform the tasks you need, and the guest VM
doesn’t need anything special installed. The only requirement is that the host machine
running Vagrant have Ansible installed. Installation instructions for a variety of operating
systems can be found in the Ansible documentation at http://docs.ansible.com/
intro_installation.html#getting-ansible .

http://docs.ansible.com/intro_installation.html#getting-ansible
http://docs.ansible.com/intro_installation.html#getting-ansible

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

37

 For this example, we’ll configure a very simple Ansible playbook to set up Apache,
MySQL, and PHP on our Vagrant machine, just like in our Bash and Puppet examples.
First, we must instruct Vagrant to use Ansible as the provisioner and supply the name of
our playbook file:

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end

 Then we instruct Ansible to install Apache, MySQL, and PHP:

 - hosts: all
 sudo: true
 tasks:
 - name: Update apt cache
 apt: update_cache=yes
 - name: Install Apache
 apt: name=apache2 state=present
 - name: Install MySQL
 apt: name=mysql-server state=present
 - name: Install PHP
 apt: name=php5 state= present

 Even though this configuration seems very simple, don’t let it fool you; Ansible is
very powerful and can perform complex configurations. We can easily make configuration
customizations — just as we can with Puppet — by making use of Ansible templates, variables,
includes, and much more to organize and configure a more complex setup.

 Advanced Configuration Conclusion
 As you can see, utilizing provisioners to automate the tasks of completely building your
environment makes setting up your development environments much easier than having
to manually do it over and over again. Each provisioner has a different approach for how
it accomplishes these tasks, giving you a range of choices and flexibility for you and your
project or environment.

 Configuration Tools
 Now that we have a better understanding of some of the core configuration settings and
provisioners available to Vagrant, let’s take a look at two configuration tools aimed at
making the setup of these environments even easier.

 ■ Note Both of these tools are under current development, so they’re both constantly
changing and progressing over time. It’s been my experience with them that they’re great for
getting you up and running quickly, but they do have their periodic issues and weaknesses.

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

38

 PuPHPet
 This tool, pronounced “puffet,” uses Puppet as the provisioning language and provides an
easy-to-follow GUI for configuring your environment.

 Accessing PuPHPet
 You can access this tool by visiting https://puphpet.com , as seen in Figure 2-2 .

 Figure 2-2. PuPHPet web-based Puppet configuration tool

 PuPHPet is publicly hosted on GitHub, is open-source, and anyone can fork over
and contribute to it. This tool works by generating a manifest YAML file along with the
respective Puppet modules needed to build and configure your new VM environment.
You can use the configurations it generates directly as is, or you can make modifications
and tweaks as needed.

www.allitebooks.com

https://puphpet.com/
http://www.allitebooks.org

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

39

 Setting Up and Using PuPHPet Configurations
 Once you walk through each of the setup options on PuPHPet, you will download your
 custom configuration . This download consists of the Vagrantfile and a puphpet directory
that contains all of the necessary Puppet manifests and modules needed for your
environment.

 Simply copy these two items to your project directory and you’re ready to run
 vagrant up to set up and provision this environment.

 ■ Tip One nice feature of the configuration setup generated by PuPHPet to note is the file
structure under the files directory. This directory consists of four other directories, which
allows you to create scripts that will execute once, every time, during startup, and so on. For
example, you could utilize the execute once to perform post-setup cleanup, running custom
commands needed to provision PHP application-specific dependencies (like composer
install), as well as setting up databases data, etc.

 Phansible
 This is a newer tool that’s become available, and it uses Ansible instead of Puppet as the
provisioning language. It’s similar to PuPHPet, but as of right now it does not have all
of the bells and whistles that are available using PuPHPet. It also is publicly hosted on
GitHub, is open source, and is available for anyone to contribute to (Figure 2-3).

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

40

 Just as with PuPHPet, once you walk through each of the setup options on Phansible,
you will download your custom configuration. This download also consists of the
Vagrantfile and an ansible directory that has the playbook.yml file. It also holds several
other items that can be used along with Ansible that we didn’t utilize in our basic Ansible
example earlier (such as the templates that were mentioned).

 Phansible can be found at:

 http://phansible.com/

 Figure 2-3. Phansible web-based Ansible configuration tool

http://phansible.com/

CHAPTER 2 ■ VIRTUALIZING DEVELOPMENT ENVIRONMENTS

41

 Vagrant Plugins
 As you begin using Vagrant more and more, you will periodically need additional
functionality that isn’t provided to you out of the box from Vagrant. Fortunately, Vagrant
has a plugin system , and many times a plugin exists to do exactly what you need.

 Vagrant plugins are very easily installed using the vagrant plugin install
plugin-name-here subcommand. Here are a few helpful plugins that you may find useful
as you begin to use Vagrant as your development environment choice:

• Vagrant Host Manager – This plugin manages the hosts file on
the host machine, allowing you to easily specify a temporary
 hosts entry that maps to your VM’s IP address. This allows you
to easily set up access to your development environments using
something similar to the production address. So if you have
 www.someproduct.com you could set up something like dev.
someproduct.com or www.someproduct.dev and use the Vagrant
Host Manager to automatically add this to your hosts file. It
will add and remove this entry for you during the vagrant up
and halt commands. This plugin is very useful when combined
with specifying your own private network IP address for your
VM. Additional information on this plugin can be found here:
 https://github.com/smdahlen/vagrant-hostmanager .

• Vagrant Share – This plugin, installed by default, allows you to
share your environment with anyone, anywhere using a free
account with HashiCorp.

• Vagrant Librarian Puppet – This plugin allows for Puppet modules
to be installed using Librarian-Puppet .

• Vagrant Ansible Local – This plugin allows you to use Ansible as
your provisioner, but instead allows Ansible to be run from within
the guest VM rather than making the host machine dependent
have Ansible installed.

• Providers – Although this isn’t a specific plugin, there are many
different plugins that allow Vagrant to be run on other providers,
such as Parallels, KVM, AWS, DigitalOcean, and many more.

 For a complete Vagrant plugin listing you can check this web page:
 http://vagrant-lists.github.io/

 Summary
 With the introduction of Vagrant, using virtual machines in your development process
makes perfect sense. Hopefully, the topics covered here not only demonstrated this value
you to you, but also gave you everything you need to be up and running with it on your
next project or even on your existing project in no time flat. In the next chapter, we will
discuss coding standards in order to define how to structure your code.

http://www.someproduct.com/
http://www.someproduct.dev/
https://github.com/smdahlen/vagrant-hostmanager
http://vagrant-lists.github.io/

43© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_3

 CHAPTER 3

 Coding Standards

 Coding standards are set definitions of how to structure your code in any given
project. Coding standards apply to everything from naming conventions and spaces
to variable names, opening and closing bracket placement, and so on. We use coding
standards as a way to keep code uniform throughout an entire project, no matter the
number of developers that may work on it. If you’ve ever had to work on a project that
has no consistency in variable names, class or method names, and so on, then you’ve
experienced what it is like to work through code that didn’t adhere to coding standards.
Imagine now how much easier the code would be to both follow and write if you knew the
exact way that it should be structured throughout the entire project?

 There are a number of PHP code standards that have waxed and waned in popularity
and prevalence throughout the years. There are the PEAR Standards, which are very
detailed; the Zend Framework Standard, which is promoted by Zend; and within the last
five years or so, we’ve seen standards created by a board of developers called PHP-FIG.

 Although this chapter is focused on PHP-FIG, there are no right or wrong answers on
the standards you pick. The important takeaway from this chapter is that it’s important to
at least follow some standards! Even if you create your own, or decide to create your own
variation that deviates a bit from an already popular existing one, just pick one and go
with it.

 We’ll take a look at the PHP-FIG standards body and the standards they’ve developed
and promote. We’ll also look at the tools you can use to help enforce the proper use of
given standards throughout your project’s development.

 A Look at PHP-FIG
 PHP-FIG (php-fig.org) is the PHP Framework Interoperability Group, which is a small
group of people that was originally formed at the phptek conference in 2009 to create a
standards body for PHP frameworks. It has grown from five founding members to twenty,
and has published several standards.

 The PHP Standards Recommendations are:

• PSR-0 - Autoloader Standard

• PSR-1 - Basic Coding Standard

• PSR-2 - Coding Style Guide

CHAPTER 3 ■ CODING STANDARDS

44

• PSR-3 - Logger Interface

• PSR-4 - Autoloader Standard

 For this chapter we’ll look at PSR-1 and PSR-2, which stand for PHP Standard
Recommendations 1 and 2. These standards are fairly straightforward, easy to follow,
and could even be used as a solid foundation to create your own coding standards,
if you wanted.

 PSR-1 — Basic Coding Standard
 The full spec of this standard can be found at http://www.php-fig.org/psr/psr-1/ .
This is the current standard as of the time of writing. This section is meant to give you a
general overview of the standard and some basic examples of following it. The standard is
broken down into the following structure:

• Files

• Namespace and Class Names

• Class Constants, Properties, and Methods

 Files
 The standards definitions for Files under PSR-1 are described in this section.

 PHP Tags

 PHP code must use <?php tags or the short echo tag in <?= format. No other tag is
acceptable, even if you have short tags enabled in your PHP configuration.

 Character Encoding

 PHP code must use only UTF-8 without the byte-order mark (BOM). For the most part,
this isn’t one you have to worry about. Unless you’re writing code in something other
than a text editor meant for coding (such as SublimeText, TextWrangler, Notepad++, etc.)
or an IDE, it’s not something that should just automatically be included. The biggest
reason this isn’t allowed is because of the issues it can cause when including files with
PHP that may have a BOM, or if you’re trying to set headers, because it will be considered
output before the headers are set.

 Side Effects

 This standard says that a PHP file should either declare new symbols (classes, functions,
constants, etc.) or execute logic with side effects, but never both. They use the term side
effects to denote logic executed that's not directly related to declaring a class, functions or
methods, constants, etc. So, in other words, a file shouldn’t both declare a function AND
execute that function, as seen in the example that follows, thus enforcing better code
separation.

http://www.php-fig.org/psr/psr-1/

CHAPTER 3 ■ CODING STANDARDS

45

 <?php

 // Execution of code
 myFunction();

 // Declaration of function
 function myFunction() {
 // Do something here
 }

 Namespace and Class Names
 The standards definitions for namespaces and class names under PSR-1 are as follows:

• Namespaces and classes must follow an autoloading PSR, which
is currently either PSR-0, the Autoloading Standard, or PSR-4, the
Improved Autoloading Standard. By following these standards,
a class is always in a file by itself (there are not multiple classes
declared in a single file), and it includes at least a namespace of
one level.

• Class names must be declared using StudlyCaps .

 Here is an example of how a class file should look:

 <?php

 namespace Apress\PhpDevTools;

 class MyClass
 {
 // methods here
 }

 Class Constants, Properties, and Methods
 Under this standard, the term class refers to all classes, interfaces, and traits.

 Constants

 Class constants must be declared in all uppercase using underscores as separators.

 Properties

 The standards are fairly flexible when it comes to properties within your code. It’s up to
you to use $StudlyCaps , $camelCase , or $under_score property names; you can mix them
if they are outside of the scope of each other. So, if your scope is vendor, package, class, or
method level, just be consistent within that given scope. However, I would argue that it’s

CHAPTER 3 ■ CODING STANDARDS

46

really best to find one and stick to it throughout all of your code. It will make the uniformity
and readability of your code much easier as you switch through classes and such.

 Methods

 Method names must be declared using camelCase() . Let’s take a look at this standard in use:

 <?php

 namespace Apress\PhpDevTools;

 class MyClass
 {
 const VERSION = '1.0';

 public $myProperty;

 public function myMethod()
 {
 $this->myProperty = true;
 }
 }

 This wraps up all there is to the PSR-1 Basic Coding Standard. As you can see, it’s
really straightforward, easy to follow, and easy to get a handle on just after your first read-
through of it. Now, let’s look at PSR-2, which is the Coding Style Guide.

 PSR-2 — Coding Style Guide
 This guide extends and expands on PSR-1 and covers standards for additional
coding structures. It is a longer read than PSR-1. This guide was made by examining
commonalities among the various PHP-FIG member projects. The full spec of this
standard can be found at http://www.php-fig.org/psr/psr- 2 / . As with PSR-1, this is
the current standard as of the time of writing. This section is meant to give you a general
overview of the standard and some basic examples of following it. The standard is broken
down into the following structure:

• General

• Namespace and Use Declarations

• Classes, Properties, and Methods

• Control Structures

• Closures

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-1/

CHAPTER 3 ■ CODING STANDARDS

47

 General
 In addition to the following rules, in order to be compliant with PSR-2 the code must
follow all of the rules outlined in PSR-1 as well.

 Files

 All PHP files must use the Unix linefeed line ending, must end with a single blank line,
and must omit the close ?> tag if the file only contains PHP.

 Lines

 The standards for lines follow a number of rules. The first three rules deal with line lengths:

• There must not be a hard limit on the length of a line.

• There must be a soft limit of 120 characters.

• Lines should not be longer than 80 characters, and should be split
into multiple lines if they go over 80 characters.

 The last two rules seem to contradict themselves a bit, but I believe the reasoning
behind them is that, generally, 80 characters has been the primary standard for lines of
code. There are many, many arguments around why it’s 80, but most agree it’s the most
readable length across devices and screen sizes. The soft limit of 120 is more of a visual
reminder that you’ve passed 80 to 120, which is also easily readable on most IDEs and text
editors viewed on various screen sizes, but deviates past the widely accepted 80. The no
hard limit rule is there because there may be occasional scenarios where you need to fit
what you require on a line and it surpasses both the 80- and 120-character limits.

 The remaining line rules are:

• There must not be trailing whitespace at the end of non-blank lines.

• Blank lines may be added to improve readability and to indicate
related blocks of code. This one can really help, so that all of your
code does not run together.

• You can only have one statement per line.

 Indentation

 This rule states that you must use four spaces and never use tabs. I’ve always been a
proponent of using spaces over tabs, and most any code editor or IDE can easily map
spaces to your tab key, which just makes this rule even easier to follow.

 Keywords and true, false, and null

 This rule states that all keywords must be in lowercase as must the constants true , false ,
and null .

CHAPTER 3 ■ CODING STANDARDS

48

 Namespace and Use Declarations
 This standard states the following in regards to using namespaces and declarations of
 namespaces :

• There must be one blank line after the namespace is declared.

• Any use declarations must go after the namespace declaration.

• You must only have one use keyword per declaration. So even
though you can easily define multiple declarations in PHP
separated by a comma, you have to have one per line, with a use
declaration for each one.

• You must have one blank line after the use block.

 Classes, Properties, and Methods
 In these rules, the term class refers to all classes, interfaces, and traits.

 Classes

• The extends and implements keywords must be declared on the
same line as the class name.

• The opening brace for the class must go on its own line, and the
closing brace must appear on the next line after the body of your
class.

• Lists of implements may be split across multiple lines, where each
subsequent line is indented once. When doing this, the first item
in the list must appear on the next line, and there must only be
one interface per line.

 Properties

• Visibility (public, private, or protected) must be declared on all
properties in your classes.

• The var keyword must not be used to declare a property.

• There must not be more than one property declared per statement.

• Property names should not be prefixed with a single underscore
to indicate protected or private visibility. This practice is enforced
with the Pear coding standards, so there is a good chance you’ve
seen code using this method.

CHAPTER 3 ■ CODING STANDARDS

49

 Methods

• Visibility (public, private, or protected) must be declared on all
methods in your classes, just like with properties.

• Method names should not be prefixed with a single underscore
to indicate protected or private visibility. Just as with properties,
there’s a good chance you’ve seen code written this way; however,
it is not PSR-2 compliant.

• Method names must not be declared with a space after the
method name, and the opening brace must go on its own line
and the closing brace on the next line following the body of the
method. No space should be used after the opening or before the
closing parenthesis.

 Method Arguments

• In your method argument list, there must not be a space before
each comma, but there must be one space after each comma.

• Method arguments with default values must go at the end of the
argument list.

• You can split your method argument lists across multiple lines,
where each subsequent line is indented once. When using this
approach, the first item in the list must be on the next line, and
there must be only one argument per line.

• If you use the split argument list, the closing parenthesis and the
opening brace must be placed together on their own line with one
space between them.

 Abstract, Final, and Static

• When present, the abstract and final declarations must precede
the visibility declaration.

• When present, the static declaration must come after the visibility
declaration.

 Method and Function Calls

 When you make a method or function call, there must not be a space between the
method or function name and the opening parenthesis. There must not be a space after
the opening parenthesis or before the closing parenthesis. In the argument list, there
must not be a space before each comma, but there must be one space after each comma.

 The argument list may also be split across multiple lines, where each subsequent line
is indented once. When doing this, the first item in the list must be on the next line, and
there must be only one argument per line.

CHAPTER 3 ■ CODING STANDARDS

50

 Control Structures
 There are several general style rules for control structures . They are as follows:

• There must be one space after the control structure keyword.

• There must not be a space after the opening parenthesis or before
the closing parenthesis.

• There must be one space between the closing parenthesis and
the opening brace, and the closing brace must be on the next line
after the body.

• The structure body must be indented once.

• The body of each structure must be enclosed by braces. This is
definitely a very helpful rule, because it creates uniformity and
increases readability with control structures and not having braces,
even though it’s allowed for single-line statements or when using
the PHP alternate syntax, can sometimes lead to less readable code.

 The next few rules are all basically identical for the following control structures. Let’s
look at simple examples of each of them.

 if, elseif, else

 This builds on the previous rule and states that a control structure should place else and
 elseif on the same line as the closing brace from the previous body. Also, you should
always use elseif instead of else if so the keywords are all single words. For example,
this is a fully compliant if structure:

 <?php

 if ($a === true) {

 } elseif ($b === true {

 } else {

 }

 switch, case

 The case statement must be indented once from the switch keyword, and the break keyword
or other terminating keyword (return, exit, die , etc.) must be indented at the same
level as the case body. There must be a comment such as // no break when fall-through is
intentional in a non-empty case body. The following example is a compliant switch structure:

 <?php

 switch ($a) {
 case 1:
 echo "Here we are.";
 break;

CHAPTER 3 ■ CODING STANDARDS

51

 case 2:
 echo "This is a fall through";
 // no break
 case 3:
 echo "Using a different terminating keyword";
 return 1;
 default:
 // our default case
 break;
 }

 while, do while

 The while and do while structures place the braces and spaces similarly to those in the
 if and switch structures:

 <?php

 while ($a < 10) {
 // do something
 }

 do {
 // something
 } while ($a < 10);

 for

 The PSR-2 documentation shows that a for statement should be formatted as in the
following example. One thing that is unclear based on what they have listed as well
as based on their general rules for control structures is whether spaces are required
between the $i = 0 and the $i < 10 in the example that follows. Removing the spaces
and running it against PHP Code Sniffer with PSR-2 validation will result in it passing
validation, so this is left up to you according to your preference. Both of the following
examples are PSR-2 compliant:

 <?php

 for ($i = 0; $i < 10; $i++) {
 // do something
 }

 for ($j=0; $j<10; $i++) {
 // do something
 }

CHAPTER 3 ■ CODING STANDARDS

52

 foreach

 A PSR-2 compliant foreach statement should be structured as in the following example.
Unlike in the for statement, the space is required if you are separating the key and value
pairs using the => assignment:

 <?php

 foreach ($array as $a) {
 // do something
 }

 foreach ($array as $key => $value) {
 // do something
 }

 try, catch (and finally)

 Last in the control structure rules is the try catch block . A try catch block should
look like the following example. The PSR-2 standard doesn’t include anything about the
 finally block (PHP 5.5 and later), but if using it, you should follow the same structure as
in the try block:

 <?php

 try {
 // try something
 } catch (ExceptionType $e) {
 // catch exception
 } finally {
 // added a finally block
 }

 Closures
 Closures , also known as anonymous functions , have a number of rules to follow for the
PSR-2 standard. They are very similar to the rules that we have for functions, methods,
and control structures. This is mostly due to closures being anonymous functions, so the
similarities between them and functions and methods make them close to identical. The
PSR-2 rules are as follows:

• Closures must be declared with a space after the function
keyword and a space both before and after the use keyword.

• The opening brace must go on the same line, and the closing
brace must go on the next line, following the body, just as with
functions, methods, and control structures.

CHAPTER 3 ■ CODING STANDARDS

53

• There must not be a space after the opening parenthesis of the
argument list or variable list, and there must not be a space before
the closing parenthesis of the argument list or variable list. Again,
this is the same as with functions and methods.

• There must not be a space before each comma in the argument
list or variable list, and there must be one space after each comma
in the argument list or variable list.

• Closure arguments with default values must go at the end of the
argument list, just as with regular functions and methods.

 Here are a few examples of closures that are PSR-2 compliant:

 <?php

 // Basic closure
 $example = function () {
 // function code body
 };

 // Closure with arguments
 $example2 = function ($arg1, $arg2) {
 // function code body
 };

 // Closure inheriting variables
 $example3 = function () use ($var1, $var2) {
 // function code body
 };

 Just as with functions and methods, argument lists and variable lists may be split
across multiple lines. The same rules that apply to functions and methods apply to closures .

 Lastly, if a closure is being used directly in a function or method call as an argument,
it must still follow and use the same formatting rules. For example:

 <?php

 $myClass->method(
 $arg1,
 function () {
 // function code body
 }
);

 These rules conclude the PSR-2 Coding Style Guide. As you can see, they build on
the basic rules set forth in PSR-1, and most of them build on rules from each other and
share a number of commonalities.

CHAPTER 3 ■ CODING STANDARDS

54

 Omissions from PSR-2
 There are many elements that were intentionally omitted by the PSR-2 standard
(although these items may eventually become part of the specification over time).
These omissions include but are not limited to the following, according to the PSR-2
specification :

 Declaration of global variables and global constants

 Declaration of functions

 Operations and assignment

 Inter-line alignment

 Comments and documentation blocks

 Class name prefixes and suffixes

 Best practices

 Checking Coding Standards with PHP Code Sniffer
 Coding standards are a great thing to have, and online resources, such as the
documentation provided by PHP-FIG on PSR-1 and PSR-2, help aid you in making the
correct choices so that your code is compliant. However, it’s still easy to forget a rule or
mistype something to make it invalid, or maybe you’re part of a team and it’s impossible
to do code reviews on everyone’s code to make sure all of their commits are compliant.
This is where it’s good to have a code validator that everyone can easily run, or that could
even be incorporated into an automated process, to ensure all code is compliant with
PSR-1 and PSR-2, or even with another coding standard that you choose.

 A tool such as this exists, and it’s called the PHP Code Sniffer, also referred to as
PHP_CodeSniffer by Squizlabs. PHP_CodeSniffer is a set of two PHP scripts. The first is
 phpcs , which, when run, will tokenize PHP files (as well as JavaScript and CSS) to detect
violations of a defined coding standard. The second script is phpcbf , which can be used to
automatically correct coding standard violations.

 PHP_CodeSniffer can be installed a number of different ways. You can download
the Phar files for each of the two commands, you can install using Pear, or you can install
using Composer. Here are the steps for each of these installation methods .

 1. Downloading and executing Phar files:

 $ curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar

 $ curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcbf.phar

 2. If you have Pear installed you can install it using the PEAR
installer. This is done by the following command:

 $ pear install PHP_ CodeSniffer

CHAPTER 3 ■ CODING STANDARDS

55

 3. Lastly, if you use and are familiar with Composer (using
Composer is covered in Chapter 4) then you can install it
system-wide with the following command:

 $ composer global require "squizlabs/php_codesniffer=*"

 ■ Note The full online documentation for PHP CodeSniffer can be found at
https://github.com/squizlabs/PHP_CodeSniffer/wiki .

 Using PHP_CodeSniffer
 Once you have installed PHP_CodeSniffer , you can use it either via command line or
directly in some IDEs, such as PHP Storm or NetBeans. Using it from the command line is
the quickest way to get started using it. You can use it to validate a single file or an entire
directory.

 ■ Note One PHP_CodeSniffer prerequisite is that the PEAR package manager is installed
on the machine.

 Right now, you can find two files, named invalid.php and valid.php , in the
“Chapter 3 ” branch of the accompanying code repository for this book. We’re going to test
PHP_CodeSniffer against these files:

 $ phpcs --standard=PSR1,PSR2 invalid.php

 FILE: /Apress/source/invalid.php
 --
 FOUND 10 ERRORS AFFECTING 5 LINES
 --
 3 | ERROR | [] Each class must be in a namespace of at least one
 | | level (a top-level vendor name)
 3 | ERROR | [x] Opening brace of a class must be on the line after
 | | the definition
 4 | ERROR | [] Class constants must be uppercase; expected VERSION
 | | but found version
 6 | ERROR | [] The var keyword must not be used to declare a
 | | property
 6 | ERROR | [] Visibility must be declared on property "$Property"
 8 | ERROR | [] Method name "ExampleClass::ExampleMethod" is not in
 | | camel caps format
 8 | ERROR | [] Expected "function abc(...)"; found "function abc
 | | (...)"

http://dx.doi.org/10.1007/978-1-4842-0683-6_4
https://github.com/squizlabs/PHP_CodeSniffer/wiki
https://github.com/squizlabs/PHP_CodeSniffer/wiki
http://dx.doi.org/10.1007/978-1-4842-0683-6_3

CHAPTER 3 ■ CODING STANDARDS

56

 8 | ERROR | [x] Expected 0 spaces before opening parenthesis; 1
 | | found
 8 | ERROR | [x] Opening brace should be on a new line
 11 | ERROR | [x] Expected 1 newline at end of file; 0 found
 --
 PHPCBF CAN FIX THE 4 MARKED SNIFF VIOLATIONS AUTOMATICALLY
 --

 From this output we see there are ten different errors that were detected when
validating against the PSR-1 and PSR-2 standards. You can pass in different standards to
be used for validating, and even pass multiple standards separated by a comma, as in this
example using PSR1 and PSR2. Also, out of the ten errors, four were marked as able to
be fixed automatically using the PHP Code Beautifier and Fixer, otherwise known as the
 phpcbf tool. We can now run phpcbf against the file and try the validation again to see if it
fixes it:

 $ phpcbf --standard=PSR1,PSR2 invalid.php
 Changing into directory /Apress/source
 Processing invalid.php [PHP => 52 tokens in 11 lines]... DONE in 4ms (4
fixable violations)
 => Fixing file: 0/4 violations remaining [made 3 passes]... DONE in 7ms
 Patched 1 file

 As you can see, phpcbf is used just like phpcs in that you can pass in a list of
standards to use to correct for, and then the file name. Now, to run the validator on the
file again:

 $ phpcs --standard=PSR1,PSR2 invalid.php
 FILE: /Apress/source/invalid.php
 --
 FOUND 5 ERRORS AFFECTING 4 LINES
 --
 3 | ERROR | Each class must be in a namespace of at least one level
 | | (a top-level vendor name)
 5 | ERROR | Class constants must be uppercase; expected VERSION but
 | | found version
 7 | ERROR | The var keyword must not be used to declare a property
 7 | ERROR | Visibility must be declared on property "$Property"
 9 | ERROR | Method name "ExampleClass::ExampleMethod" is not in
 | | camel caps format
 --

 Running the test after running phpcbf , we see it actually fixed one additional issue
when it fixed another, so now there are only five errors found. Now, if we run it against
our valid.php file, which is completely valid, we’ll see what a valid result looks like:

 $ phpcs --standard=PSR1,PSR2 valid.php
 $

CHAPTER 3 ■ CODING STANDARDS

57

 With a 100 percent valid file, there is no output from phpcs , indicating that it is valid.
Now, if we wanted to run it against our entire directory, all we need to do is to point it the
 source directory where our files are. However, doing this and seeing errors for every file
in a large directory could be really hard to read through.

 To help with this, PHP_CodeSniffer also has a summary report function that can
summarize each file and the number of errors and warnings found in each. It is invoked
by passing in the -–report=summary argument. As with running it directly against a valid
file, if there are no issues, it will not be listed on the summary:

 $ phpcs --report=summary --standard=PSR1,PSR2 source
 PHP CODE SNIFFER REPORT SUMMARY
 --
 FILE ERRORS WARNINGS
 --
 .../Apress/source/invalid.php 5 0
 --
 A TOTAL OF 5 ERRORS AND 0 WARNINGS WERE FOUND IN 1 FILES
 --

 PHP_CodeSniffer Configuration
 There are a number of different configuration options and methods for configuring
PHP_CodeSniffer. Going through all of them is out of the scope of this chapter, so the
online documentation listed earlier is the best resource for finding all available options.
However, let’s look at a few different options and how we can set them.

 ■ Note PHP_codeSniffer can also run in batch mode if needed.

 Default configurations can be changed using the -- config-set argument. For
example, to change the default standard to check against to be PSR-1 and PSR-2 rather
than the PEAR standard that phpcs uses by default, it could be set this way:

 $ phpcs --config-set default_standard PSR1,PSR2
 Config value "default_standard" added successfully

 You can also specify default configuration options directly in a project using a phpcs.
xml file. This will be used if you run phpcs in a directory without any other arguments.
Here is an example:

 <?xml version="1.0"?>
 <ruleset name="Apress_PhpDevTools">
 <description>The default phpcs configuration for Chapter 3.</description>

 <file>invalid.php</file>
 <file>valid.php</file>

CHAPTER 3 ■ CODING STANDARDS

58

 <arg name="report" value="summary"/>

 <rule ref="PSR1"/>
 <rule ref="PSR2"/>
 </ruleset>

 Within this file, the files to check are specified, as well as the rules we want to use.
Multiple rules are specified using multiple <rule /> tags.

 PHP_CodeSniffer Custom Standard
 In the event that you have your own standard, or have adopted most of PSR-1 and
PSR-2 but decided to deviate from a rule here or there, you can create your own custom
standard for phpcs to use. It is based off of the PSR-1 and PSR-2 standard and just
overrides the parts that you wish to deviate from. This is done using a ruleset.xml file,
which is then used with phpcs using the -- standard argument, just as with any other
coding standard.

 At the very least, a ruleset.xml file has a name and a description and is formatted
just as the phpcs.xml file we created is. However, just having the name and description
does not provide phpcs with any instructions to override from an existing ruleset. For this
example, say we want to change the standard to not restrict method names to camelCase .
This would be done with a configuration like this:

 <?xml version="1.0"?>
 <ruleset name="Apress PhpDevTools CustomStandard">
 <description>A custom standard based on PSR-1 and PSR-2</description>

 <!-- Don't restrict method names to camelCase -->
 <rule ref="PSR1">
 <exclude name="PSR1.Methods.CamelCapsMethodName"/>
 </rule>

 <!-- Additionally, include the PSR-2 rulesets -->
 <rule ref="PSR2"/>

 </ruleset>

CHAPTER 3 ■ CODING STANDARDS

59

 With this ruleset, we see that all we needed to do was define a name for our rule,
include the rulesets we wanted to base our standard off of, then specify the rule we
wanted to exclude out of those rulesets. Now, if we run the validation against our
 invalid.php file we’ll see the errors drop to four from five, as the method name violation
is gone because our new standard doesn’t restrict it to camelCase :

 $ phpcs --standard=custom_ruleset.xml invalid.php

 FILE: /Apress/source/invalid.php
 --
 FOUND 4 ERRORS AFFECTING 3 LINES
 --
 3 | ERROR | Each class must be in a namespace of at least one level
 | | (a top-level vendor name)
 5 | ERROR | Class constants must be uppercase; expected VERSION but
 | | found version
 7 | ERROR | The var keyword must not be used to declare a property
 7 | ERROR | Visibility must be declared on property "$Property"
 --

 PHP_CodeSniffer IDE Integration
 As mentioned earlier, some IDEs such as PHPStorm and NetBeans have ways to integrate
PHP_CodeSniffer directly within them. The exact process of configuring it for these IDEs
can change as their respective vendors release new versions, so we won’t cover this here.
As of the time of this writing, the steps to set this up for PHPStorm are covered in the
online documentation .

 In my PHPStorm install , I have PHP_CodeSniffer configured and set to the PSR-1 and
PSR-2 standards. With this configured, I get immediate feedback from PHPStorm if any of
the code I’m writing deviates from these standards by way of a yellow squiggly line under
the line of code that’s in violation, as seen in Figure 3-1 .

 Figure 3-1. Real-time PSR violation detection and hits in PHPStorm

CHAPTER 3 ■ CODING STANDARDS

60

 You can also run validation on the file and see the inspection rules directly within
PHPStorm, as seen in Figure 3-2 .

 Figure 3-2. PHP_CodeSniffer validation results within PHPStorm

 Code Documentation Using phpDocumentor
 Not all coding standards provide rules regarding code comments. For example, PSR-1 and
PSR-2 do not have set comment rules in place. However, it is just as important to establish
a standard that everyone working on your project will follow when it comes to comments.

 Arguably, one of the most popular formats for PHP is the DocBlock format used
in conjunction with providing information about a class, method, function, or other
structural element. When used in conjunction with the phpDocumentor project, you
have the ability to automatically generate code documentation for your entire project and
provide an easy reference for all developers to follow.

 Another oft-used code documentation tool is PHPXref (phpxref.sourceforge.net).
In general, PHPDocumentor and PHPXref have mainly two different targets :

• phpDocumentor is mainly used for generating real
documentation from the source in a variety of different formats .

• PHPXref tool is mainly used to help the developer browse the
code documentation of large PHP projects.

 Installing phpDocumentor
 phpDocumentor can be installed a few different ways. You can download the Phar file
and execute it directly, you can install using Pear, or you can install using Composer. Here
are the steps for each of these installation methods .

• First of all, you want to check the PEAR prerequisites:

 http://pear.php.net/manual/en/installation.php

CHAPTER 3 ■ CODING STANDARDS

61

• Download and execute the Phar files:

 $ curl -OL http://www.phpdoc.org/phpDocumentor.phar

• If you have Pear installed you can install it using the PEAR
installer. This is done with the following commands:

 $ pear channel-discover pear.phpdoc.org
 $ pear install phpdoc/phpDocumentor

• Lastly, you can use Composer to install it system wide with the
following command:

 $ composer global require "phpdocumentor/phpdocumentor:2.*"

 Using phpDocumentor
 As previously mentioned, phpDocumentor should be used to document structural
elements in your code. phpDocumentor recognizes the following structural elements :

• Functions

• Constants

• Classes

• Interfaces

• Traits

• Class constants

• Properties

• Methods

 To create a DocBlock for any of these elements , you must always format them the
exact same way — they will always precede the element, you will always have one block per
element, and no other comments should fall between the DocBlock and the element start.

 A DocBlocks’ format is always enclosed in a comment type called DocComment. The
DocComment starts with /** and ends with */ . Each line in between should start with
a single asterisk (*). The following is an example of a DocBlock for the example class we
created earlier:

 /**
 * Class ExampleClass
 *
 * This is an example of a class that is PSR-1 and PSR-2 compliant. Its only
 * function is to provide an example of how a class and its various properties
 * and methods should be formatted.
 *

CHAPTER 3 ■ CODING STANDARDS

62

 * @package Apress\PhpDevTools
 */
 class ExampleClass
 {
 const VERSION = '1.0';

 public $exampleProp;

 public function exampleMethod()
 {
 $this->$exampleProp = true;
 }
 }

 As we can see with this example, a DocBlock is broken into three different sections:

• Summary – The summary line should be a single line if at all
possible and is just that — a quick summary of what the element is
that we’re documenting.

• Description – The description is more in-depth in describing
information that would be helpful to know about our element.
Background information or other textual references should
be included here, if they are available and/or needed. The
description area can also make use of the Markdown markup
language to stylize text and provide lists and even code examples.

• Tags / Annotations – Lastly, the tags and annotations section
provides a place to provide useful, uniform meta-information
about our element. All tags and annotations start with an “at”
sign (@), and each is on its own line. Popular tags include the
parameters available on a method or function, the return type, or
even the author of the element. In the preceding example, we use
the package tag to document the package our class is part of.

 ■ Note Each part of a DocBlock is optional; however, a description cannot exist without a
summary line.

 Let’s expand on the preceding example and provide DocBlocks for each of the
 structural elements of our example class:

 <?php

 namespace Apress\PhpDevTools;

 /**
 * Class ExampleClass

CHAPTER 3 ■ CODING STANDARDS

63

 *
 * This is an example of a class that is PSR-1 and PSR-2 compliant. Its only
 * function is to provide an example of how a class and its various properties
 * and methods should be formatted.
 *
 * @package Apress\PhpDevTools
 * @author Chad Russell <chad@intuitivereason.com>
 */
 class ExampleClass
 {
 /**
 * Class version constant
 */
 const VERSION = '1.0';

 /**
 * Class example property
 *
 * @var $exampleProp
 */
 public $exampleProp;

 /**
 * Class example method
 *
 * This method is used to show as an example how to format a method that is
 * PSR-1 & PSR-2 compliant.
 *
 * @param bool $value This is used to set our example property.
 */
 public function exampleMethod($value)
 {
 $this->$exampleProp = $value;
 }

 /**
 * Gets the version of our class
 *
 * @return string Version number
 */
 public function classVersion()
 {
 return self::VERSION;
 }
 }

CHAPTER 3 ■ CODING STANDARDS

64

 Now that we’ve expanded our example, you can see several unique tags being used
as well as a sampling of how you can mix the three sections together as needed. For a full
listing of the tags that are available for phpDocumentor to use, see the full phpDocumentor
online documentation at http://www.phpdoc.org/docs/latest/index.html .

 Running phpDocumentor
 In addition to having nice, uniform code comments for your project when using
phpDocumentor and the DocBlock format, you also now have the power and ability
to effortlessly generate code documentation that will transform your comments into a
documentation resource. Once you have phpDocumentor installed, it’s simply a matter of
running it to produce this documentation.

 There are just two of three command line options needed to produce your first set of
documentation. The options are:

• -d – This specifies the directory or directories of your project that
you want to document.

• -f – This specifies the file or files in your project that you want
to document.

• -t – This specifies the target location where your documentation
will be generated and saved.

 For this example, we’ll run it against our one example class from before:

 $ phpdoc -f valid.php -t doc

 Here, we’re telling phpDocumentor to run against the file valid.php and to save the
documentation in a new folder called doc . If we look in the new doc folder, we will see
many different folders and assets required for the new documentation. You can view it by
opening the index.html file, which is generated in a web browser. We can see what the
page for our Example Class looks like in Figure 3-3 .

http://www.phpdoc.org/docs/latest/index.html

CHAPTER 3 ■ CODING STANDARDS

65

 Non-structural Comments
 Lastly, since phpDocumentor only has provisions for structural comments, it is
recommended that you establish guidelines for your coding standard that extend to
non-structural comments. The Pear coding standard, for example, provides a general
rule of thumb that is a great strategy to follow. Under their recommendations, you should
always comment any section of code that you don’t want to have to describe or whose
functionality you might forget if you have to come back to it at a later date.

 It’s recommended that you use either the C-style comments (/* */) or C++
comments (//). It’s discouraged to use the Perl/Shell-style comments (#), even though it
is supported by PHP.

 Summary
 In this chapter, we discussed the benefits of using a coding standard for your projects.
We took an in-depth look at the PHP-FIG PHP Standard Recommendations as well as some
examples of code that follows these standards. We covered using the PHP_CodeSniffer
tool as a validator of your code to ensure you and your team members are following your
decided-upon standards. Lastly, we covered code commenting and documentation using
the phpDocumentor project and the DocBlock format.

 In the next chapter we will discuss Frameworks.

 Figure 3-3. phpDocumentor-generated class documentation

67© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_4

 CHAPTER 4

 Dependency Management

 Dependency management is a system for easily managing (installing, using, updating,
uninstalling) library dependencies in your project. The operative word in that statement
is easily . For a long time, dependency management in PHP was virtually non-existent.

 Of course, PEAR has existed since 1999, but it didn’t fit the bill of providing easy
dependency management within your application. It is used for globally installing
packages server wide (think apt-get or yum), and anyone who has worked with PEAR’s
XML structure to create a package can attest to its lack of easiness. This is where
Composer and its complement Packagist come into play.

 Composer and Packagist
 Composer is a command line tool that was created for easy dependency management in
PHP applications. You define your application’s dependencies in a single, simple JSON
file format, and Composer will install and update those packages for you. It was inspired
by npm and Bundler, which are the respective package managers for Node.js and Ruby,
and borrows a number of features and concepts from both of them.

 Installing Composer
 There are essentially two different ways to install Composer. You can install it locally to
your project, or globally as a system-wide executable. If you’re just downloading it to
check it out for the first time or don’t have the access level to install it system wide, then
a local install is fine. However, the best approach is to install it globally so that you have
one Composer version that is installed and being used for all of your projects on the same
server without your having to maintain various installs and versions.

 Locally
 To install Composer locally , simply run the following command in your project directory:

 $ curl -sS https://getcomposer.org/installer | php

 Once the installer runs, it will download the composer.phar binary to your project.
You can then execute it by running php composer.phar .

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

68

 Globally
 To install Composer as a system-wide executable, you will first download the composer.
phar then move it to somewhere that is within your PATH on Unix-like systems (Linux/
OS X, etc.):

 $ curl -sS https://getcomposer.org/installer | php
 $ sudo mv composer.phar /usr/local/bin/composer

 You can now execute Composer by typing composer on the command line.

 ■ Note If you are on a Windows system, then you can download the Windows Composer
installer to install it globally on your system by visiting getcomposer.org .

 Packagist
 Packagist is the default Composer repository. It is a public aggregation of PHP packages
installable via Composer. You can visit Packagist by visiting packagist.org , where you
can easily search through the packages that are available. By referencing the version
and package name, Composer knows from where to download the code that you are
specifying in your project. As of the time of writing, it contained over 67,000 registered
packages, nearly 314,000 versions, and boasted over one billion package installs since
April 2012!

 In addition to its being a searchable resource for developers looking for information
on the packages they wish to install, package authors can easily submit their project to
Packagist so that others can use Composer for the project as well.

 Once your package has been successfully registered with Packagist, you can enable
a service hook in your Bitbucket or GitHub account and have your package updated
instantly when you push to your remote repository.

 Using Composer
 The only requirements to start using Composer in your project are to have Composer
installed and to create your project’s composer.json file. This file is where your project
dependencies are listed, along with other possible metadata.

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

69

 The composer.json File
 In the most basic form, the only thing that is required is the use of the require key. For
our example, we’ll install the PHPUnit framework. We’ll create the project’s composer.
json file like this:

 {
 "require": {
 "phpunit/phpunit": "4.8.4"
 }
 }

 Now we’ll install this framework with Composer, like this:

 $ composer install

 After running this command, we will see output from Composer as it downloads and
installs all of the dependencies needed for PHPUnit, which will look something like this:

 $ composer install
 Loading composer repositories with package information
 Installing dependencies (including require-dev)
 - Installing sebastian/version (1.0.6)
 Loading from cache

 - Installing sebastian/global-state (1.0.0)
 Loading from cache

 - Installing sebastian/recursion-context (1.0.1)
 Downloading: 100%

 As Composer finishes its installation, you will see it generates a lock file and the
autoload files needed to automatically load PHPUnit into your application. You will also
have a new folder called vendor that includes all of the packages that Composer just
installed.

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

70

 Installing Additional Packages
 Now, when you need to install additional packages into your application, you simply
add the entry or entries for your new requirements to your composer.json file and run
 composer install again. Alternatively, you can make use of the composer require
command, which will both add the entry to your composer.json file and install it in one
command. For example, one of our application requirements might be to send emails,
and we want to use the popular SwiftMailer library. To do this, we first look up SwiftMailer
on packagist.com and find the package name, then we run the following command:

 $ composer require swiftmailer/swiftmailer
 Using version ^5.4 for swiftmailer/swiftmailer
 ./composer.json has been updated
 Loading composer repositories with package information
 Updating dependencies (including require-dev)
 - Installing swiftmailer/swiftmailer (v5.4.1)
 Downloading: 100%

 Writing lock file
 Generating autoload files

 From the output, we can see it updated our composer.json file, installed the
SwiftMailer library package, updated the lock file, and generated new autoload files. If
you look at the composer.json file, you’ll now see it updated to reflect SwiftMailer:

 {
 "require": {
 "phpunit/phpunit": "4.8.4",
 "swiftmailer/swiftmailer": "^5.4"
 }
 }

 One thing you might notice with the new entry in the composer.json file is the
version number for SwiftMailer — it includes the caret (^) operator. We’ll dive deeper into
Composer versions in a few sections, but for now this is the equivalent of telling future
 composer update commands that we always want the latest stable release that is >=5.4
< 6.0 . If we wanted to be more specific with a version, like in the PHPUnit example, then
we can optionally pass along a version to the composer require command, like so:

 $ composer require swiftmailer/swiftmailer 5.4

 Removing Packages
 Composer makes adding new libraries to your application easy, and it makes it just as easy
to remove packages that are no longer needed. There are two different ways this can be
accomplished — either by manually removing the package declaration from your composer.
json file and running composer update or by utilizing the composer remove command .

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

71

 If we decide we want to remove the PHPUnit library we installed previously, we can
do so with this single command:

 $ composer remove phpunit/phpunit
 Loading composer repositories with package information
 Updating dependencies (including require-dev)
 - Removing phpunit/phpunit (4.8.4)
 Writing lock file
 Generating autoload files

 require vs require- dev
 Composer makes available two different methods of requiring a package. The first is by
using the require declaration, as all of the previous examples have shown. The second
is by using the require-dev declaration. You should always use require unless a certain
package is only needed for the development of your application and not for running the
application in production. A prime example for this would be a unit-testing library, such
as PHPUnit. For example, let’s now add PHPUnit back into our application, but this time
specify that it’s only needed for development using require-dev :

 $ composer require phpunit/phpunit --dev
 Using version ^4.8 for phpunit/phpunit
 ./composer.json has been updated
 Loading composer repositories with package information
 Updating dependencies (including require-dev)
 - Installing phpunit/phpunit (4.8.8)
 Downloading: 100%

 phpunit/phpunit suggests installing phpunit/php-invoker (~1.1)
 Writing lock file
 Generating autoload files

 Now if you look at the composer.json file, you will see phpunit has been added back,
but this time under the require-dev declaration:

 {
 "require": {
 "swiftmailer/swiftmailer": "^5.4"
 },
 "require-dev": {
 "phpunit/phpunit": "^4.8"
 }
 }

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

72

 The Composer Lock File
 The Composer lock file is a list of the exact versions that Composer has installed into your
project. This locks your project into those specific versions. It is important to add this lock
file to your Git repository along with the composer.json file so that anyone working on
your project will be using the same package versions. This is also important because if
you’re using any type of deployment scheme in your staging or production environments,
you can utilize composer install to ensure those environments have installed the same
exact versions of your packages that you have developed your application against. This
also ensures that future updates to these libraries can be done within your application
development, committed to your repository, and accurately distributed to these other
environments. This also eliminates the need to store all of the various packages that
Composer has installed in your source code repository .

 ■ Note Because you track the dependency files and versions using the two Composer
files now, there is no need to commit and maintain the vendor folder to your Git repository.
You should add the vendor directory to your .gitignore file.

 Autoloading
 When using Composer, it will generate an autoload file vendor/autoload.php that is used
to autoload all of your libraries and packages you have installed with Composer. Simply
include this autoload file in your application (ensuring the correct path to the vendor/
autoload.php file), and all of the installed packages will be available to you.

 require __DIR__ . '/../vendor/autoload.php';

 Now, if we wanted to use our SwiftMailer library we installed previously, we could do
so simply by calling it:

 // Create the SwiftMailer Transport
 $transport = Swift_MailTransport::newInstance();

 // Create a Mailer instance with our Transport
 $mailer = Swift_Mailer::newInstance($transport);

 // Create our message
 $message = Swift_Message::newInstance('Learning Composer')
 ->setFrom(array('john@doemain.tld' => 'John Doe'))
 ->setTo(array('jane@doemain.tld' => 'Jane Doe'))
 ->setBody('Composer is wonderful!');

 // Send our message!
 $result = $mailer->send($message);

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

73

 Additional Autoloading
 In addition to autoloading all of the installed Composer library packages, you can
utilize the Composer autoloader for your own application code as well. To do so, use the
“autoload” field in your composer.json file.

 For example, if you’re storing your own application’s code in a folder called src , you
would add the following entry to your composer.json file :

 {
 "autoload": {
 "psr-4": { "MyApplication\\": "src/" }
 },
 "require": {
 "swiftmailer/swiftmailer": "^5.4"
 }
 }

 This tells Composer to register a PSR-4 (The PHP-FIG Autoloading Standard)
autoloader for the “MyApplication” namespace. Now, to get Composer to update vendor/
autoload.php , you will need to run the dump-autoload command:

 $ composer dump-autoload
 Generating autoload files

 In addition to PSR-4 autoloading, Composer also supports the PSR-0 autoloading,
classmap generation, and file includes as valid autoloading methods. However, PSR-4 is
the recommended method of autoloading with Composer for its ease of use.

 Autoloader Optimization
 Although not required for development environments, it is highly recommended that
when generating the Composer autoloader for production use, you utilize the built-in
autoloader optimizer. It is not uncommon to see performance boosts in your application
up to 30 percent, especially if your application is spending a lot of time on the Composer
autoload file.

 There are two different ways to generate an optimized autoloader. The first is by
using the dump-autoload command with the -o parameter:

 $ composer dump-autoload -o
 Generating optimized autoload files

 For example, this command could be set up to run on staging and production
environment deployments so that the standard autoloader is being used in development,
but testing and production use are utilizing the optimized version.

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

74

 In addition to generating the optimized autoloader via the dump-autoload
command, you can also specify it in your composer.json file so that you are always
generating the optimized version. This is done using the config directive:

 {
 "autoload": {
 "psr-4": {
 "MyApplication\\": "src/"
 }
 },
 "require": {
 "swiftmailer/swiftmailer": "^5.4"
 },
 "require-dev": {
 "phpunit/phpunit": "^4.8"
 },
 "config": {
 "optimize-autoloader": true
 }
 }

 Package Versions
 Composer provides a lot of flexibility when defining the version of a given package that
you’re installing in your application. You can essentially break down the definitions into
three categories: basic constraints, next signification release, and stability .

 Basic Constraints
 Exact

 Using basic constraints, you can tell Composer to install an exact version by specifying
only the number, such as 1.2.4 . This will ensure that your application is always using this
exact version, regardless of the number of times composer update is run.

 "require": {
 "vendor/packagea": "1.5.4"
 }

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

75

 Range

 Composer allows the use of comparison operators to specify a range of valid versions for
your application. The valid operators are >, >=, <, <=, !=. In addition, multiple ranges can be
specified using logical AND and OR logic. Separating a range by a space or comma is used to
denote an AND and a double-pipe || is used to denote an OR . Here are a few valid examples:

 "require": {
 "vendor/packagea": ">1.5",
 "vendor/packageb": ">2.0 <3.0",
 "vendor/packagec": ">2.0,<3.0",
 "vendor/packaged": ">1.0 <1.5 || >= 1.7"
 }

 Wildcard

 In addition to specific versions and ranges, you can also specify a version number pattern
by using a wildcard in the version declaration. For example, if we wanted any sub-version
of the 4.2 branch of a package, it would be specified as:

 "require": {
 "vendor/packagea": "4.2.*"
 }

 Range Hyphen

 Another way of specifying ranges is with the use of a hyphen. When using the hyphen
notation, partial version numbers on the right side of the hyphen are treated as wildcards.
So consider the following example:

 "require": {
 "vendor/packagea": "1.5 – 2.0",
 "vendor/packageb": "2.0 – 2.1.0"
 }

 packagea in this example is the equivalent of >=1.5 <2.1 . Since the version number
on the right side is treated as a wildcard, Composer looks at it as 2.0.* .

 packageb in this example is the equivalent of >=2.0 <=2.1. 0 .

 Next Significant Release
 There are two different operators you can use with Composer to define a version limit up
to the next significant release of a given package.

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

76

 Tilde

 With the tilde operator ~ you can define a minimum version mark that you’d like to use
for your application while protecting you from having to update to the next significant
release of a package (the next x.0 release, for example). Consider the following example:

 "require": {
 "vendor/packagea": "~2.5"
 }

 This declaration is the same as specifying >= 2.5 but <3.0 . You can also define this
at the sub-version level by defining your requirement as:

 "require": {
 "vendor/packagea": "~2.5.2"
 }

 This declaration is the same as specifying >= 2.5.2 but < 2.6.0 .

 Caret

 The caret operator ̂ works very similarly to the tilde operator, with a slight difference. It is
supposed to always allow non-breaking updates by sticking closer to semantic versioning.
Consider the following example:

 "require": {
 "vendor/packagea": "^2.5.2"
 }

 This declaration is the same as specifying >= 2.5.2 but <3.0 . As you can see, this
is slightly different than the tilde, which would have kept it from updating to 2.6.0. Lastly,
regarding packages that are less than 1.0, the caret provides a bit of extra safety and will
not allow such a large range of version updates:

 "require": {
 "vendor/packagea": "~0.5"
 }

 This declaration is the same as specifying >= 0.5.0 but <0.6.0 .

 Stability
 The Composer documentation can become quite confusing when trying to understand
the stability of a package that Composer will install. Reading the “Versions” section of the
Composer documentation would lead you to think that Composer might randomly pick a
dev version of a package solely based on the constraint that you use when specifying the
version.

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

77

 Although this is technically true, this will only apply if you have specified the
minimum stability to be dev in your composer.json file. By default, Composer will always
select stable packages unless you specifically tell it otherwise using the -dev suffix under
the require section, or if you have defined the minimum-stability configuration to dev .

 Updating Packages
 So far we’ve covered how to install and remove packages with Composer, as well as how
to specify the version and stability of the packages your application relies on. The last
major operation you will be doing with Composer will be to update your existing libraries.
This is performed using the composer update command :

 $ composer update
 Loading composer repositories with package information
 Updating dependencies (including require-dev)
 Nothing to install or update
 Generating autoload files

 By default, when running composer update , a number of actions are performed.
First, if you have made any manual changes to your composer.json file to add or
remove a package, it will process those and will install or remove the given packages.
Additionally, if any of your package versions are not locked to an exact version, it will look
for any updates and install them according to your version specification. Lastly, it will
regenerate the autoloading file and lock file and finish its operations.

 There are a number of options you can pass to composer update . For example,
by passing --dry-run you can see what Composer would do before actually doing it.
You may choose to pass --no-dev , which will cause it to skip updating or installing
any packages defined under the require-dev declaration. You can also define specific
packages that you want it to update without updating all of the packages defined in your
 composer.json file. You do this by passing one or many packages to it, such as:

 $ composer update swiftmailer/swiftmailer guzzlehttp/guzzle

 Installing Packages Globally
 Composer can be used to manage and install packages globally , similar to PEAR. This can
be useful for installing certain utilities globally or even for maintaining updates to a global
install of Composer itself.

 As an example, if we wanted to update our global version of Composer, we would run
the following command:

 $ sudo composer self-update

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

78

 If we wanted to install a utility such as PHPUnit, we would use a command like this one:

 $ composer global require phpunit/phpunit
 Changed current directory to /home/vagrant/.config/composer
 You are running composer with xdebug enabled. This has a major impact on
runtime performance. See https://getcomposer.org/xdebug
 Using version ^5.2 for phpunit/phpunit
 ./composer.json has been updated
 Loading composer repositories with package information
 Updating dependencies (including require-dev)
 ...
 Writing lock file
 Generating autoload files

 Pay attention to the line that immediately follows when executing this command:
 Changed current directory to . This tells you it will install PHPUnit and its
dependencies under /home/vagrant/.config/composer/vendor/ . Our current user
we’re logged in as is “vagrant.” which is why it chose this directory. You will need to add
this directory to your global path for easy execution. Adjust the following command
accordingly if you have a .bashrc or a .bash_profile file in your home directory. In my
case, I have a .bashrc file, so that is what I’ll use:

 $ cd ~/
 $ echo 'export PATH="$PATH:$HOME/.config/composer/vendor/bin"' >> ~/.bashrc

 Now, reload to pick up the path changes, either by logging out and back in or by
using the source command:

 $ source .bashrc

 You can now execute phpunit:

 $ phpunit --version
 PHPUnit 5.2.9 by Sebastian Bergmann and contributors.

 PEAR & Pyrus
 As mentioned in the introduction of this chapter, PEAR (the PHP Extension and
Application Repository) was once the only method that tried to create a distributable
system for providing libraries in your PHP application. However, PEAR has fallen short in
many different areas, which paved the way for the creation of better tools for dependency
management, like Composer.

 PEAR did have some big successes, was and is still used by many different libraries
and packages out there, and is still the system that PECL uses to install PHP extensions.
The creation of PEAR2 and Pyrus over the last several years was intended to address a
number of the shortcomings of PEAR, but they have not seen the traction and widespread
community adoption and development that Composer has been enjoying. As a result,
PEAR2 and Pyrus have been in alpha status for over four years as of the time of writing.

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

79

 Is Anyone Still Using Pear?
 The answer to this question — in my own opinion, in the opinions of other developers,
and based on the current download statistics available on the Pear Download Statistics
page — is both yes and no. The PHP7-compatible version of Pear has seen over 650,000
downloads since it was originally released in October of 2015, as of the time of writing.
There are countless numbers of older PHP applications that still depend on various Pear
packages, and therefore it is still in use with these. I do believe, based on our day-to-day
development as well as the growing amount of libraries available on Packagist and the
large number of open source platforms moving to use and support Composer (Zend
Framework 2, Symfony Framework, Drupal 8, Magento 2, etc.), that the use of Pear as a
library manager and for installing dependencies in applications is rapidly on a decline.

 PECL
 Despite the waning use of Pear overall, the PHP Extension Community Library, better
known as PECL, is still quite active today. It is a public repository of PHP extensions and
is often used to install libraries needed for development. PECL makes use of Pear for
installing its libraries, which is evident when you look at the source of the pecl command :

 #!/bin/sh

 # first find which PHP binary to use
 if test "x$PHP_PEAR_PHP_BIN" != "x"; then
 PHP="$PHP_PEAR_PHP_BIN"
 else
 if test "/usr/bin/php" = '@'php_bin'@'; then
 PHP=php
 else
 PHP="/usr/bin/php"
 fi
 fi

 # then look for the right pear include dir
 if test "x$PHP_PEAR_INSTALL_DIR" != "x"; then
 INCDIR=$PHP_PEAR_INSTALL_DIR
 INCARG="-d include_path=$PHP_PEAR_INSTALL_DIR"
 else
 if test "/usr/share/php" = '@'php_dir'@'; then
 INCDIR=`dirname $0`
 INCARG=""
 else
 INCDIR="/usr/share/php"
 INCARG="-d include_path=/usr/share/php"
 fi
 fi

 exec $PHP -C -n -q $INCARG -d date.timezone=UTC -d output_buffering=1 -d
variables_order=EGPCS -d safe_mode=0 -d register_argc_argv="On" $INCDIR/
peclcmd.php "$@"

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

80

 Now, let’s look at the source of the peclcmd.php that is referenced in the last line of
the pecl command:

 <?php
 /**
 * PEAR, the PHP Extension and Application Repository
 *
 * Command line interface
 *
 * PHP versions 4 and 5
 *
 * @category pear
 * @package PEAR
 * @author Stig Bakken <ssb@php.net>
 * @author Tomas V.V.Cox <cox@idecnet.com>
 * @copyright 1997-2009 The Authors
 * @license http://opensource.org/licenses/bsd-license.php New BSD

License
 * @link http://pear.php.net/package/PEAR
 */

 /**
 * @nodep Gtk
 */
 //the space is needed for Windows include paths with trailing backslash
 // http://pear.php.net/bugs/bug.php?id=19482
 if ('/usr/share/php ' != '@'.'include_path'.'@ ') {
 ini_set('include_path', trim('/usr/share/php '). PATH_SEPARATOR .

get_include_path());
 $raw = false;
 } else {
 // this is a raw, uninstalled pear, either a cvs checkout or php distro
 $raw = true;
 }
 define('PEAR_RUNTYPE', 'pecl');
 require_once 'pearcmd.php';
 /*
 * Local variables:
 * tab-width: 4
 * c-basic-offset: 4
 * indent-tabs-mode: nil
 * mode: php
 * End:
 */
 // vim600:syn=php

 ?>

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

81

 As we can see here, the pecl command is nothing more than a wrapper around
the pear command. Every time you use pecl to install a new PHP extension or update
an existing pecl extension, pear is being used. Because of this, it makes downloading,
compiling, and installing needed PHP extensions very easy. For example, if we wanted to
install the APC userland extension APCu , we would simply execute the following :

 $ sudo pecl install apcu
 downloading apcu-5.1.3.tgz ...
 Starting to download apcu-5.1.3.tgz (108,422 bytes)
done: 108,422 bytes
 39 source files, building
 running: phpize
 Configuring for:
 PHP Api Version: 20151012
 Zend Module Api No: 20151012
 Zend Extension Api No: 320151012
 ...
 install ok: channel://pecl.php.net/apcu-5.1.3

 As simple as that, PECL and PEAR, along with phpize , have downloaded, compiled,
and installed the APCu extension.

 ■ Note If you are using the PHP version available from your operating system’s repository
(yum / apt-get) then you can check first to see if a PECL extension is already available to be
installed directly from the repository. This will not require the use of PECL.

 Should I Be Using PEAR or Pyrus?
 Based purely on the current development state and activity of Pyrus and the many
benefits and availabilities of packages with Composer and Packagist, I believe PEAR or
Pyrus are no longer the best options to be used in new development today.

 Because of the global installation nature of PEAR and the management it provides,
it can still be a useful tool, and in some cases it is still the only tool for installing system-
wide dependencies for certain utilities. Let’s look at an example of installing the PHP
CodeSniffer utility on a development machine using PEAR.

 Installing a Global Utility Using PEAR

 $ sudo pear install PHP_CodeSniffer
 downloading PHP_CodeSniffer-2.5.1.tgz ...
 Starting to download PHP_CodeSniffer-2.5.1.tgz (484,780 bytes)
done: 484,780 bytes
 install ok: channel://pear.php.net/PHP_CodeSniffer-2.5.1

CHAPTER 4 ■ DEPENDENCY MANAGEMENT

82

 PHP CodeSniffer is now immediately available for your use. You can test if it is
working like this:

 $ phpcs --version
 PHP_CodeSniffer version 2.5.1 (stable) by Squiz (http://www.squiz.net)

 If you receive a warning when trying to run the previous command, such as PHP
Warning: include_once(PHP/CodeSniffer/CLI.php): failed to open stream: No
such file or directory , this means that your php.ini for the PHP CLI either does not
exist or does not have the PEAR install path added to the php path. You can check this by
following these steps, first checking the include path of pear installed on your system:

 $ pear config-get php_dir
 /usr/lib/php/pear

 Now check which configuration file your PHP CLI is using:

 $ php --ini
 Configuration File (php.ini) Path: /etc/php/7.0/cli
 Loaded Configuration File: /etc/php/7.0/cli/php.ini

 This will give more output than the preceding code, but you want to look for the
 Loaded Configuration File line.

 Now, taking the path of the configuration file listed previously, check the PHP
 include path:

 $ php -c /etc/php/7.0/cli/php.ini -r 'echo get_include_path()."\n";'
 .:/usr/share/php:

 So, as you can see, the include path does not include the pear include path. To
solve this, we’ll open php.ini and add it to the include_path directive like this:

 include_path = ".:/usr/share/php:/usr/lib/php/pear"

 If you try to execute the phpcs command again, it will now execute because it knows
where to include the files from.

 Summary
 In this chapter, we introduced Composer and Packagist and how to use them together for
your application dependency management. We covered, start to finish, everything you
need in order to use Composer right away as well as the various daily interactions you will
use Composer for as you manage the dependencies of your application. We also looked at
PEAR and its role in today’s PHP development.

 My hope is that you walk away from reading this chapter with a very clear
understanding of using Composer and the impact it can start making on your application
development, and that you now have the resources and ability to use it right away.

83© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6_5

 CHAPTER 5

 Frameworks

 Chances are, even if you are very new to PHP, you’ve stumbled across at least a few PHP
 frameworks already. Symfony, Zend, Laravel, Yii, and CakePHP are just a few of the
popular choices you have available to you.

 When I first started developing with PHP back in 1999, there weren’t any of these
choices available. Back then, PHP applications were a jumble of logic, HTML, JavaScript,
SQL queries, and more scattered across sometimes hundreds and thousands of files. Fast-
forward a few years and a number of PHP frameworks started to take shape by 2005-2006,
some of which are still around and thriving today (Symfony and Zend Framework, for
example).

 Admittedly, I originally resisted the notion of using one of these new frameworks.
By this time I had started to evolve some type of defined structure for my sites and
applications as I attempted to emulate MVC-esque structures and bring some type of
separation and organization to the madness that I saw being developed all around me.
I didn’t want to throw that away and learn something quite so new to PHP. However, as
these frameworks started maturing and community support started building, I realized
that I didn’t have a single good reason to continue the holdout. I dove headfirst into
several of these popular frameworks and haven’t regretted that decision once.

 Why Use a Framework?
 This is a question I am often asked by those who have yet to work with one. What is so
special about a framework that I should use it rather than doing my own standalone PHP
development? The benefits are many:

• A defined structure that becomes familiar across all of your sites
and applications

• A community of folks who contribute to the betterment of the
framework codebase and are available for questions — questions
already asked and answered before (Stack Overflow, anyone?)

• A pre-developed set of functionality that you don’t have to
reinvent with each application

• Modules, libraries, and plugins available to you to instantly add
additional functionality

CHAPTER 5 ■ FRAMEWORKS

84

• Better testability with likelihood of an existing integration with
PHPUnit for unit testing

• Existing integration with ORMs

• Pre-established use of design patterns in your application. Often,
using a framework means you’re forced to conform at least
somewhat to its paradigms, which can lead to better-structured
and organized code

• Reusable and maintainable code purpose

 For additional information about PHP and frameworks, please refer to
 phpframeworks.com .

 ■ Note Frameworks are not a necessity with any PHP development. However, they are a
highly valuable tool at your disposal to help you build a better application.

 So, what do frameworks look like? Let’s dive right in and look at a few widely popular
and community-supported frameworks. With each of these framework examples, we’ll
look at:

• How easy it is to install

• Overall structure of the framework

• How to have a simple action and controller working

• How to make a simple database call and display the results

 Zend Framework 2
 We’ll start by looking at Zend Framework 2. Zend Framework 2 , colloquially known as ZF2,
is the second generation of an enterprise-grade framework created by Zend Technologies.
Zend Technologies is a company founded by Andi Gutmans and Zeev Suraski, who have
contributed much to the development of PHP since its initial creation by Rasmus Lerdorf.
ZF2 touts itself as being modular, secure, extensible, high performing, enterprise ready,
and backed by a large and active community base. True to its modularity, ZF2 relies on
Composer and is comprised of many components, all available via Packagist.

 Installing ZF2
 Installing and running Zend Framework 2 is extremely simple and fast.

 ■ Note ZF2 is not backward compatible with ZF1 because of the new features in PHP
5.3+ implemented by the framework, and due to major rewrites of many components.

CHAPTER 5 ■ FRAMEWORKS

85

 For this example, we’ll install the ZF2 skeleton application, which is available on
GitHub (https://github.com/zendframework/ZendSkeletonApplication) using
Composer:

 $ composer create-project -n -sdev zendframework/skeleton-application zf2

 This command will install the ZF2 skeleton framework application in a folder called
 zf2 . When it finishes, you should see a number of directories in the newly created zf2
folder (Figure 5-1).

 Figure 5-1. Directories in the newly created zf2 folder following installation of the ZF2
skeleton framework application

 Each of these folders has a specific purpose and serves as the base structure of any
ZF2 application. The functions of these folders are as follows:

• config – All global application configuration files are found
in this directory. Things such as defining the modules in your
application, database configurations, log configurations, and
application-caching configurations are all contained here.

• data – This folder is a place to store application data. Things such
as cache files, log files, and other such files would be stored here.

• module – The module folder is where all of your application logic
is found. Here you will find all of the various modules that make
up your application. We’ll take a look at the folder structure of the
 module folder shortly.

• public – The public folder is the web-root of your application. In
your webserver configuration, the document root will be set to
this folder. Here is where all public-facing assets are stored, such
as JavaScript, CSS, images, fonts, etc.

• vendor – This folder holds all of the third-party modules that
you install in your application. This is the default place anything
installed via Composer will go in your application .

https://github.com/zendframework/ZendSkeletonApplication)

CHAPTER 5 ■ FRAMEWORKS

86

 The ZF2 skeleton application you just installed comes with a handy Vagrantfile that will
let you quickly spin up a virtual machine that is running the skeleton application. Just as we
covered running Vagrant in Chapter 2 , to get it up and running you just need to run this:

 $ vagrant up

 Once it is installed, you should see the skeleton application in your browser (Figure 5-2).

 Figure 5-2. The ZF2 skeleton framework displayed in a browser

 The purpose of this example is to explore how easy it is to define a controller and
action and perform a simple database query within each framework. The ZF2 skeleton
application already has a controller and action defined for us, which is what produces
the welcome page you see in Figure 5-2 . Let’s take a look at the code that makes up this
display as we deconstruct the module directory layout.

 Module
 Modules in ZF2 are where you compartmentalize groups of functionality in your
application. ZF2 was built around the concept of a modular system. For example, if you
have an application that has a user-facing side, an admin, and a set of batch processes,
each could be separated into their own modules. For our example, if you expand the
 module directory, you will see the default Application module contained in the skeleton
app (Figure 5-3).

http://dx.doi.org/10.1007/978-1-4842-0683-6_2

CHAPTER 5 ■ FRAMEWORKS

87

 This is the default structure of a ZF2 module; the folders each contain important
pieces of your application, as follows:

• config – Here is where module-specific configurations are
placed. Things such as routes, controllers, and view templates are
defined.

• language – This is where translation files for your module would
be found. The skeleton application uses the ZendI18n module
and uses .po files to provide text translation.

• src – This is where the vast majority of your modules’ code will
live. This folder contains controllers, forms, services, and other
application logic that makes up your module.

• view – The view folder contains your application views, the “V”
in MVC. By default, ZF2 uses .phtml files, which is a pure PHP
template approach for the presentation layer of your application.

• Module.php - This file contains the module class, which is the only
thing ZF2 expects to have in order to instantiate your module.
Here in this module, you can perform activities such as registering
listeners, additional configurations, autoloaders, and more.

 Controller
 The controller is what ties the application actions to a view. The skeleton application
contains the bare minimum required to make a controller and action work:

 class IndexController extends AbstractActionController
 {
 public function indexAction()
 {
 return new ViewModel();
 }
 }

 Figure 5-3. The default Application module contained in the skeleton app

CHAPTER 5 ■ FRAMEWORKS

88

 The naming convention of a controller class and file in ZF2 is
 ControllerNameController and ControllerNameController.php respectively. The
 ControllerName portion must start with a capital letter. Each action defined in the
controller is a public method defined as actionNameAction . Actions must start with a
lowercase letter. This follows PSR-1 standards for naming conventions of classes and
methods.

 Looking at the indexAction method in the preceding sample, the only code
contained is returning the instantiation of ViewModel() . The ViewModel in ZF2 is
responsible for setting and calling the appropriate view template for your application as
well as for setting view variables and certain options that are available to you. By default,
the ViewModel() will use the view named the same as your action.

 Here is a simple example of controller and view models:

 use Zend\View\Model\ ViewModel ;

 Database
 For our example, we’re going to create a simple table that will contain the user’s name
and email address and then retrieve it and display it in our view. Although ZF2 supports
powerful object relational mappers (ORMs), such as Doctrine, we’re going to use the
database extraction layer available to us in ZF2, called Zend\Db.

 To get started, let’s first create our simple database table and populate it with some
simple data:

 CREATE TABLE user (
 id int(11) NOT NULL auto_increment,
 name varchar(100) NOT NULL,
 email varchar(100) NOT NULL,
 PRIMARY KEY (id)
);

 INSERT INTO user VALUES
 (null,'Bob Jones','bob.jones@example.tld'),
 (null,'Sally Hendrix','sallyh@example.tld'),
 (null,'Carl Davidson','cdavidson@example.tld');

CHAPTER 5 ■ FRAMEWORKS

89

 Credentials Configuration
 To be able to connect to our new database, we need to supply ZF2 with the configuration
information for our database name, type, username, and password. This is done in the
global config folder in the two files called global.php and local.php . Here we will also
configure the ServiceManager that we’ll use to connect everything together and then
make it available to our application:

 global .php
 return array(
 'db' => [
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=app;host=localhost',
 'driver_options' => [
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
],
],
 'service_manager' => [
 'factories' => [
 'Zend\Db\Adapter\Adapter'
 => 'Zend\Db\Adapter\AdapterServiceFactory',
],
],
);

 local .php
 return array(
 'db' => [
 'username' => 'YOUR_DB_USERNAME_HERE',
 'password' => 'YOUR_DB_USERNAME_PASSWORD_HERE',
],
);

 Model
 Next, we’ll create our model layer . The model layer for this example will contain a very
simple representation of our table (entity) and another class to interact with the Zend\Db
 TableGateway that will perform our select query.

 First, our entity, which is found under src/Application/Model/Entity/User.php:

 namespace Application\Model\Entity;

 class User
 {
 public $id;
 public $name;
 public $email;

CHAPTER 5 ■ FRAMEWORKS

90

 public function exchangeArray($data)
 {
 $this->id = (!empty($data['id'])) ? $data['id'] : null;
 $this->name = (!empty($data['name'])) ? $data['name'] : null;
 $this->email = (!empty($data['email'])) ? $data['email'] : null;
 }
 }

 This uses the exchangeArray , which you might recall is part of the PHP Standard
Library (SPL), to map the data passed to it to the three methods that make up our table.

 Next, the class that interacts with the Zend TableGateway is found under src/
Application/Model/User.php :

 namespace Application\Model;

 use Zend\Db\TableGateway\TableGateway;

 class User
 {
 protected $tableGateway;

 public function __construct(TableGateway $tableGateway)
 {
 $this->tableGateway = $tableGateway;
 }

 public function fetchAll()
 {
 $results = $this->tableGateway->select();
 return $results;
 }
 }

 Service Manager
 We use the ZF2 Service Manager to allow our new entity to be callable in our controller as
a service. We do this by adding code to Module.php :

 public function getServiceConfig()
 {
 return array(
 'factories' => array(
 'Application\Model\User' => function($sm) {
 $tableGateway = $sm->get('UserTableGateway');
 $table = new User($tableGateway);
 return $table;
 },

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ FRAMEWORKS

91

 'UserTableGateway' => function ($sm) {
 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');
 $resultSetPrototype = new ResultSet();
 $resultSetPrototype->setArrayObjectPrototype(new

UserEntity());
 return new TableGateway('user', $dbAdapter, null,

$resultSetPrototype);
 },
),
);
 }

 View
 The view name and folder structure in ZF2 generally follow the module namespace name,
controller name, and action.

 ■ Note The components of the view layer might be variables, containers, view models,
renderers, etc.

 Here is example code we’re using from the skeleton app:

 view (folder containing views)
 - application (Namespace name)
 - index (controller name)
 - index.phtml (Action name)

 View templates in ZF2 take a pure-PHP approach rather than a separate template
language and use the .phtml extension by default. If you look at the index.phtml file
available from the sample application, you will notice a mix of HTML and simple PHP.

 Query & Display
 The final steps will be to load our new users table as a service, query the whole table, and
display the results. We’ll do this by first instantiating the ServiceLocator , which is used
to find and load services in our application. Then we’ll have it specifically load our User
class and return the instantiated object. See here:

 <?php

 namespace Application\Controller;

 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

CHAPTER 5 ■ FRAMEWORKS

92

 class IndexController extends AbstractActionController
 {
 protected $user;

 public function indexAction()
 {
 if (!$this->user) {
 $sm = $this->getServiceLocator();
 $this->user = $sm->get('Application\Model\User');
 }

 $users = $this->user->fetchAll();

 return new ViewModel([
 'users' => $users,
]);
 }
 }

 In this code, we got an instance of the ZF2 service locator and used the get method
to retrieve our User model. Next, we queried the table and passed the results to our
template using the ZF2 ViewModel object.

 In our view, we’ll add a new div and table and iterate over the results we are passing
in using the ViewModel in our action:

 <div class="row">
 <div class="col-md-12">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Users</h3>
 </div>
 <div class="panel-body">
 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 </tr>
 </thead>
 <tbody
 <?php foreach ($users as $album): ?>
 <tr>
 <td><?php echo $this->escapeHtml($album->name); ?>

</td>

CHAPTER 5 ■ FRAMEWORKS

93

 <td><?php echo $this->escapeHtml($album->email); ?>
</td>

 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>

 Now when we load our page again, we will see the results from the table we just
queried displayed through our view template (Figure 5-4).

 Figure 5-4.

 Symfony 2
 The next framework that we’re going to look at is Symfony, specifically Symfony 2 (SF2) .
Symfony has been around about as long as Zend Framework and is another solid,
reliable, enterprise-ready framework backed by a huge, vibrant community. Symfony,
which is backed by SensioLabs, was started by Fabien Potencier back in late 2004 as a way
to create websites faster for Sensio. Shortly after creating it, he decided to open-source it,
and 11 years later, here we are with a community of thousands backing a great framework.

 ■ Note As of the time of writing, Symfony 3 has just been released. This tutorial focuses
on Symfony 2 and the currently available Symfony Demo application.

 Installing SF2
 Although there are a few ways of installing Symfony 2 (SF2), the current best practice is to
use the Symfony installer. To use the installer, simply run the proper commands for your
operating system.

CHAPTER 5 ■ FRAMEWORKS

94

 Linux and OS X

 $ sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/symfony
 $ sudo chmod a+x /usr/local/bin/symphony

 This will create a global symfony command that can be executed anywhere within
your system.

 Windows
 Change to your project’s directory and execute the following command:

 c:\> php -r "readfile('https://symfony.com/installer');" > symphony

 Installing the Demo
 Once the Symfony installer is installed, we can install the Symfony demo application. This
application will provide a functioning demo of controllers, actions, and database queries
in SF2. To install this demo, simply type:

 $ symfony demo

 ■ Tip The sample code provided with this book contains a Vagrantfile similar to what our
ZF2 project provided to be used with the Symfony demo.

 Application Directory Structure
 Once the installer succeeds, you should see a number of directories in the newly created
 symphony _demo folder (Figure 5-5).

 Figure 5-5. Directories in the newly created symphony_demo folder

CHAPTER 5 ■ FRAMEWORKS

95

 Just as with ZF2, each of these folders has a specific purpose; they serve as the base
structure of any SF2 application. The functions of these folders are as follows:

• app – This is a core folder to Symfony, in that it contains all
configs, logs, cache file, the AppKernel, and autoloader and can
contain other key data like views and translation files.

• bin – This folder is a place to store application data. Things such
as cache files, log files, and other such files would be stored here .

• src – The module folder is where all of your application logic is
found. Symfony application logic is compartmentalized into
“bundles.” Here you will have all of the various bundles that make
up your application. This is very similar to the module folder for
ZF2 we looked at. We’ll take a look at the folder structure of a
bundle shortly.

• vendor – This folder holds all of the third-party modules that
you install in your application. This is the default place anything
installed via Composer will go in your application.

• web – The web folder is the web-root of your application, just
as the public folder is for ZF2. This is what your webserver
configuration will set as the document root. Here is where all
public-facing assets are stored, such as JavaScript, CSS, images,
fonts, etc.

 Once you have the demo installed and running, you should see the demo application
in your browser (Figure 5-6).

 Figure 5-6. The demo application running in a browser

 The SF2 demo application already has working controllers, actions, and database
queries defined for us, which is what produces the sample application you see if you click
the Browse Application button on the welcome page. Let’s take a look at the code that
makes up this functionality as we deconstruct the bundle and app directory layout.

CHAPTER 5 ■ FRAMEWORKS

96

 Bundles
 Just as with modules in ZF2, bundles in SF2 are where you compartmentalize groups of
functionality in your application.

 Using our demo application as an example, the primary app that you see is enclosed
in the AppBundle bundle. The functionality that lets you view the source code on each
demo application page is enclosed in a separate bundle, CodeExplorerBundle . For our
example, if you expand the AppBundle directory, you will see the many directories that
make up the demo app (Figure 5-7).

 Figure 5-7. The expanded AppBundle directory showing the directories that make up the
demo app

 Since this is a full demo application, there are many other components set up in this
bundle. For the purpose of this example, we’re going to only focus on a few key parts, as
follows:

• Controller – This is where all of the controllers contained within a
bundle live.

• Entity – This serves mostly as the “M” in MVC (model) in that it
contains all of the database entities that map the database to code.

• AppBundle.php – Similar to the ZF2 module.php , this file contains
the AppBundle class and is what transforms the code contained in
a bundle into functioning Symfony code.

CHAPTER 5 ■ FRAMEWORKS

97

 One thing you may notice is the absence of our view templates within this bundle.
Although it is possible to have your application views within your bundle — and in the past
this was the normal place to keep them — according to defined Symfony best practices, it’s
best to contain them in the app folder in the app/Resources/views directory.

 Controller
 As we explored with ZF2, the controller is what ties the application actions to a view.
The demo application contains a few controllers, but we’re focusing on just the
 BlogController and indexAction for this example:

 public function indexAction($page)
 {
 $query = $this->getDoctrine()->getRepository('AppBundle:Post')->

queryLatest();

 $paginator = $this->get('knp_paginator');
 $posts = $paginator->paginate($query, $page, Post::NUM_ITEMS);
 $posts->setUsedRoute('blog_index_paginated');

 return $this->render('blog/index.html.twig', array('posts' => $posts));
 }

 Just as with ZF2, SF2 controller-naming conventions follow StudlyCaps for controller
file names and class names, and each action is defined in camelCase, again following
PSR-1 standards.

 SF2 uses the render method to define and render a view template as well as to pass
any data to the template that will be interpreted and processed. As we can see from the
preceding code, this action is rendering the view template called index.html.twig ,
which is located in the blog directory.

 Database
 Symfony 2 does not include a database abstraction layer such as Zend\Db, which we
looked at previously. By default, SF2 is configured to use Doctrine, a powerful object
relational mapper (ORM) library. While we created a model (entity) layer for our ZF2
example, there are entities that already exist in the Symfony demo application. The entity
for the blog post example that our indexAction is invoking is located in the AppBundle/
Entity directory and is called Post.php .

CHAPTER 5 ■ FRAMEWORKS

98

 In addition to supplying the entity, our demo application also makes use of a
repository for the post database table. Repositories in Doctrine allow you to define
methods that perform custom queries on your database. In our indexAction , it invokes
the PostRepository and queryLatest() method. Let’s take a look at the code that makes
up this method:

 public function queryLatest()
 {
 return $this->getEntityManager()
 ->createQuery('
 SELECT p
 FROM AppBundle:Post p
 WHERE p.publishedAt <= :now
 ORDER BY p.publishedAt DESC
 ')
 ->setParameter('now', new \DateTime())
 ;
 }

 This method makes use of the Doctrine Query Language (DQL) and is very similar to
regular SQL. It is the syntactic equivalent of the following SQL:

 SELECT p.*
 FROM post p
 WHERE p.published_at <= NOW()
 ORDER BY p.published_at DESC

 This particular code returns a Doctrine Entity Manager object that contains the
post data sorted in descending order by the published date. The indexAction makes this
query by way of the following code:

 $query = $this->getDoctrine()->getRepository('AppBundle:Post')-
>queryLatest();

 This code gets the Doctrine object, loads the Post repository located in the
 AppBundle , and finally calls the preceding queryLatest() method. This will then be
handed off to another library the demo application uses to provide result pagination, and
finally the application passes the post data variable to the Twig template by using this line:

 return $this->render('blog/index.html.twig', array('posts' => $posts));

 ■ Tip ZF2 can also be configured to work with Doctrine as an ORM rather than using the
Zend Database Abstraction Library.

CHAPTER 5 ■ FRAMEWORKS

99

 View
 The view name and folder structure in SF2 generally follows the controller name and
action. For the example code we’re examining from the demo app, it is as follows:

 view (folder containing views)
 - blog (controller name)
 - index.html.twig (Action name)

 By default, Symfony uses the Twig template engine. Twig is a light but powerful
template language that uses a simple syntax and parses templates into pure PHP files.

 ■ Note Although pure PHP templates are supported in Symfony, just as with Zend
Framework 2, it is being considered that Twig will become the only officially supported
template engine with Symfony Framework 3.

 Display Results
 The final step in our demo application is processing the data that is passed in by the
Symfony render method and displaying it in the blog index view template. Let’s take a
look at the block of code in the template that handles this:

 {% for post in posts %}
 <article class="post">
 <h2>

 {{ post.title }}

 </h2>

 {{ post.summary|md2html }}
 </article>
 {% else %}
 <div class="well">{{ 'post.no_posts_found'|trans }}</div>
 {% endfor %}

 This code uses the Twig equivalent of a standard PHP foreach , like we used in our
ZF2 example. However, the Twig for method has a convention for automatically handling
if there is no data available in the post variable by way of an else statement.

CHAPTER 5 ■ FRAMEWORKS

100

 Laravel 5
 The last of the PHP frameworks that we’re going to look at is Laravel. Laravel is one of the
newer frameworks but it has quickly risen in popularity within the PHP community for
being clean, fast, and easy to work with.

 One of the most important features of Laravel is that it is very configurable,
extendable, and a very useful Blade template engine. Laravel was created by Taylor Otwell
in an attempt to provide an advanced alternative to an aging PHP framework called
CodeIgniter. The first beta release of Laravel was in June 2011.

 Installing Laravel 5
 Just as with the other frameworks, there are a few ways to install Laravel. The
recommended way is through Composer. For the purpose of this exercise, we’re going
to use the Laravel quickstart project along with the Laravel Homestead Vagrant box.
Homestead is a fully configured Vagrant box with PHP7 and all the system requirements
needed to run Laravel.

 First, clone the quickstart project:

 $ git clone https://github.com/laravel/quickstart-basic laravel

 Now install all of the dependencies:

 $ cd laravel

 $ composer install

 Next, install Homestead. This will give you the tools to generate the Vagrantfile to run
the Laravel Homestead box:

 $ composer require laravel/homestead --dev

 $ php vendor/bin/homestead make

 Now bring up the new box:

 $ vagrant up

 Lastly, ssh into the new box and run the database migration scripts to install the
sample database for the Laravel quickstart app:

 $ vagrant ssh

 $ cd laravel

 $ php artisan migrate

CHAPTER 5 ■ FRAMEWORKS

101

 The Homestead box is built using settings that are generated in the Homestead.yaml
configuration file. If you open this file, you will see the IP defined for this new Vagrant
virtual machine. In this case, it is set by default to 192.168.10.10. If you load this site in
your browser, you should see the quickstart app page (Figure 5-8).

 Figure 5-8. The quickstart app page displayed in a browser

 Figure 5-9. The folders that comprise a Laravel application

 Application Directory Structure
 If you look into the directory in which you installed the Laravel quickstart project, you will
see the various folders that make up a Laravel application (Figure 5-9).

CHAPTER 5 ■ FRAMEWORKS

102

 As with the other frameworks we examined, each directory stores a specific piece of
your application. Here is the breakdown of the three most important directories:

• app – This is where all the code lives.

• bootstrap – This serves mostly as the “M” in MVC (model) in that it
contains all of the database entities that map the database to code.

• config – Similar to the ZF2 module.php file, this file contains the
 AppBundle class and is what transforms the code contained in a
bundle into functioning Symfony code.

 Application Logic
 Unlike Zend Framework or Symfony, there is no compartmentalization in a base Laravel
application by way of modules or bundles. A somewhat similar approach could be
accomplished by creating separate folders under the Laravel app folder and namespacing
the underlying code accordingly, but it is not a necessity as with the other frameworks.

 Controllers & Routes
 In Laravel there are two ways to provide the controller layer of your MVC application. The
simplest is by using the app/Http/routes.php file and declaring an anonymous function.
This is the approach that is taken for the quickstart application that we’re examining, as
seen here:

 Route::get('/', function () {
 return view('tasks', [
 'tasks' => Task::orderBy('created_at', 'asc')->get()
]);
 });

 If you wanted to instead move this to a controller, you would add your controller
to the app/Http/Controllers directory and define the controller in the routes.php file
instead:

 namespace App\Http\Controllers;

 use App\User;
 use App\Http\Controllers\Controller;

CHAPTER 5 ■ FRAMEWORKS

103

 class TaskController extends Controller
 {
 public function tasks()
 {
 $tasks = Task::orderBy('created_at', 'asc')->get();

 return view('tasks', ['tasks' => $tasks]);
 }
 }

 Now we define the route in routes.php :

 Route::get('/', TaskController@tasks);

 This route tells Laravel to use the IndexController and execute the tasks method.

 Database
 Laravel includes Eloquent, its own ActiveRecord-based implementation of an Object
Relational Mapping (ORM) library, in the base install. Eloquent is touted as being simple
and easy to use. Rather than using entities, as with the previous examples, each database
is represented in one model class. As you can see from the included Task model, the code
needed is very minimal:

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Task extends Model
 {
 //
 }

 By default, Laravel will try to use the plural, lowercase version of a model’s class
name for the database table name it is representing. In this example, it would be tasks . It
also expects each table to have a primary key column named id as well as two timestamp
columns called created_at and updated_at . These will get used when all of the tasks are
retrieved in the view.

 View
 All views in Laravel are stored under the resources/views directory . View templates can
be arranged however desired, such as in sub-directories under this main views directory.
Laravel provides the ability to use either pure PHP-based templates or Blade, a templating
language created by Laravel. The view for the quickstart app is written in Blade and can
be found under resources/views/tasks.blade.php .

CHAPTER 5 ■ FRAMEWORKS

104

 Display Results
 Let’s look again at the anonymous function declared in the routes.php file:

 return view('tasks', [
 'tasks' => Task::orderBy('created_at', 'asc')->get()
]);

 This uses the get() method with Eloquent to retrieve all tasks ordered by the
required created_at column. This is the equivalent of running the following SQL
statement:

 SELECT * FROM tasks ORDER BY created_at ASC

 Lastly, by calling the view() method and passing it this data, the code hands the
data off to the template for use. If we look at the template, we can see the Blade syntax
that checks to see if there are any results in the variable $tasks, and, if there are, it loops
through them with a foreach loop:

 <!-- Current Tasks -->
 @if (count($tasks) > 0)
 <div class="panel panel-default">
 <div class="panel-heading">
 Current Tasks
 </div>

 <div class="panel-body">
 <table class="table table-striped task-table">
 <thead>
 <th>Task</th>
 <th> </th>
 </thead>
 <tbody>
 @foreach ($tasks as $task)
 <tr>
 <td class="table-text">
 <div>{{ $task->name }}</div>
 </td>

 <!-- Task Delete Button -->
 <td>
 <form action="/task/{{ $task->id }}" method="POST">
 {{ csrf_field() }}
 {{ method_field('DELETE') }}

CHAPTER 5 ■ FRAMEWORKS

105

 <button type="submit" class="btn btn-danger">
 <i class="fa fa-btn fa-trash"></i>Delete
 </button>
 </form>
 </td>
 </tr>
 @endforeach
 </tbody>
 </table>
 </div>
 </div>
 @endif

 Micro-Frameworks
 Micro-frameworks exist as an alternative for when you want the structure and speed
of development provided by a framework, but with fewer “bells and whistles” and less
overhead than a traditional full framework provides.

 There are many different micro-frameworks available for PHP. Here are a few current
popular choices:

• Silex – This is a micro-framework by Sensio Labs and is based on
several different Symfony components.

• Lumen – This is a micro-framework by Laravel and is based on
some of Laravel’s foundations.

• Slim – This is regarded as one of the smallest and fastest PHP
micro-frameworks available.

• Phalcon - This is an open source, full-stack framework for PHP
and is written as a C-extension.

• Yii - This is an open source, object-oriented, component-based
MVC PHP framework.

 When to Use a Micro-Framework
 There are no hard and fast rules regarding when to use a micro-framework versus a full
framework. It is entirely a personal decision and can fluctuate from project to project. As
their name implies, micro-frameworks are generally regarded as being for use with small
projects, but nothing is preventing you from using it for a project of any size. As with any
framework, you need to carefully weigh the scope, size, and functionality of what you are
building and make a decision from there. Reading through documentation and features
of any given framework, be it micro or full, will give you important insight into what that
framework can offer you.

CHAPTER 5 ■ FRAMEWORKS

106

 Using a Micro-Framework
 So what does developing with a micro-framework look like? Let’s dive in and take a look
a very simple “hello world” example using three of the frameworks I previously listed.
In each of these examples we’ll just install the framework and define a simple route and
controller to print “hello world”.

 ■ Tip The sample code provided with this book contains a basic Vagrantfile that provides
a simple VM on which to run the micro-framework examples.

 Silex
 To get started with Silex, we first have to install it. Using Composer is the easy and
recommended method. To do that, let’s create a composer.json file requiring Silex :

 {
 "require": {
 "silex/silex": "~1.3"
 }
 }

 Now, we run composer install :

 $ composer install
 Loading composer repositories with package information
 Installing dependencies (including require-dev)
 ...
 Writing lock file
 Generating autoload files

 That’s it — Silex is now set up and ready for our use. To create our extremely simple
example, all we need to do is create a single file that includes the Silex autoloader, define
the route, execute Silex, and display a simple HTML response. Let’s look at the code
needed to do this:

 <?php

 require_once __DIR__.'/../vendor/autoload.php';

 // Initialize Silex
 $app = new Silex\Application();

 // Define a route and anonymous function for our "controller"
 $app->get('/hello-world', function () {
 return '<h1>Hello World!</h1>';
 });

 $app->run();

CHAPTER 5 ■ FRAMEWORKS

107

 Now, if we visit /hello-world in our browser, we’ll see “Hello World!” output onto
the screen. Of course, Silex is much more powerful than and capable of more than simple
routes and HTML responses. Silex provides a number of other functionality and services
available to you with Symfony, including:

• Twig service provider so you can also leverage the power of Twig
templates within Silex.

• Dynamic routing

• Database interaction using Doctrine

• Forms, validation, and sessions handling

• Logging, PHPUnit integration, and much more

 Lumen
 Next up on our list is Lumen . We can install Lumen either by first installing the Lumen
installer or by using composer create-project . For our example we’ll use composer
create-project and run the example on the Laravel Homestead Vagrant box, just as we
did with our earlier Laravel example:

 $ composer create-project --prefer-dist laravel/lumen lumen
 Installing laravel/lumen (v5.2.1)
 ...
 Writing lock file
 Generating autoload files

 Now, with Lumen installed, let’s add the Homestead Vagrant config:

 $ composer require laravel/homestead --dev

 $ php vendor/bin/homestead make

 We can now boot our Vagrant box and test out our simple “hello world” example. Just
as with Laravel, we define routes under app/Http/routes.php . The syntax to create our
example looks almost exactly like that in Silex:

 <?php

 // Define our hello world route
 $app->get('/hello-world', function () {
 return '<h1>Hello World!</h1>';
 });

CHAPTER 5 ■ FRAMEWORKS

108

 As you might notice here, the biggest difference between this and the Silex example
is the absence of the autoloader including and executing the run method of Silex. This is
because this is all happening in the front-controller defined under public/index.php :

 <?php

 $app = require __DIR__.'/../bootstrap/app.php';

 $app->run();

 As you can see, this is all nearly identical to how the Silex micro-framework is
structured. The primary differences between these two are the underlying components
of the framework. This should help make your decision between these two frameworks
much easier if you already have a preference of Symfony or Laravel .

 Slim
 Last on our list is Slim . To install Slim, we’ll use Composer, just as we did with Silex. We’ll
create a composer.json file then run composer install :

 {
 "require": {
 "slim/slim": "^3.0"
 }
 }

 $ composer install
 Loading composer repositories with package information
 ...
 Writing lock file
 Generating autoload files

 Now that Slim is installed, we'll define a single file to which we'll pass
our request. This will define the route as well as an anonymous function to
perform the "hello world" response:

 <?php

 use Psr\Http\Message\ServerRequestInterface as Request;
 use Psr\Http\Message\ResponseInterface as Response;

 // Include Slim autoloader
 require_once __DIR__.'/../vendor/autoload.php';

 // Initialize Slim
 $app = new Slim\App();

CHAPTER 5 ■ FRAMEWORKS

109

 // Define a route and anonymous function to serve as a controller
 $app->get('/hello-world', function (Request $request, Response $response) {
 $response->getBody()->write("Hello World!");

 return $response;
 });

 $app->run();

 As you can see here, this is again very similar to Silex. We include the Slim
autoloader, initialize Slim, define our route and pass in the required Request and
 Response objects, return our text, and finally execute Slim.

 If you look through the source and documentation for Slim, you will quickly notice
it is definitely a lot lighter than either Silex or Lumen. It does provide a few add-ons, such
as for using Twig templates within your app, but you will notice it’s missing some other
default functionality that the others provide out of the box, such as database interaction.
Although this should be taken into consideration when choosing a micro-framework
to use, it should be noted that because of Slim’s use of Composer and the modularity
that Composer provides, you can quickly and rather easily make use of an ORM such as
Doctrine or Laravel’s Eloquent.

 Summary
 In this chapter we covered the benefits provided to you by using a PHP framework, as well
as looked at how quickly you could be up and running with some of the most popular full
frameworks and micro-frameworks. Even though we only scratched the surface of what it
is like to use a framework, hopefully you now have a much better understanding of how
they work and are able to start using one in your projects right away.

111© Chad Russell 2016
C. Russell, PHP Development Tool Essentials, DOI 10.1007/978-1-4842-0683-6

 A, B
 Anonymousfunctions . See Closures
 Ansible

 Vagrant confi guration , 36–37
 web-based confi guration tool , 40

 C
 Closures , 52–53
 Codingstandards . See also PHP-FIG

 defi nition , 43
 PHP Code Sniff er

 confi guration options and
methods , 57

 custom standard , 58–59
 IDE integration , 59–60
 installation methods , 54
 PHP_CodeSniff er , 55–57
 PHPStorm installation , 59
 Squizlabs , 54
 validation results , 60

 phpDocumentor
 class documentation , 65
 code documentation tool , 60
 DocBlock sections , 62
 installation methods , 60
 non-structural comments , 65
 structural elements , 61–63
 targets , 60
 uniform code comments , 64

 D, E
 Dependency management , 67

 composer
 additional packages , 70
 autoloader optimization , 73

 autoloading , 72
 command line tool , 67
 composer.json fi le , 68, 73
 constraints , 74–75
 installation , 67
 local wide execution , 67
 lock fi le , 72
 packages global

installation , 77–78
 package versions , 74
 remove command , 70
 require vs. require-dev , 71
 signifi cant release , 75
 stability , 76
 system-wide execution (global) , 68
 update command , 77

 constraints
 exact version , 74
 hyphen , 75
 range , 75
 wildcard , 75

 packagist , 68
 PEAR and Pyrus

 overview , 78
 pear download statistics page , 79
 PECL , 79–82

 signifi cant release
 caret operator , 76
 tilde operator , 76

 F
 Frameworks

 benefi ts , 83
 Laravel 5

 application logic , 102
 controllers and routes , 102
 database , 103

 Index

■ INDEX

112

 directory structure , 102
 display results , 104–105
 installation , 100
 quickstart app page , 101
 resources/views directory , 103

 micro-frameworks
 Lumen , 107–108
 PHP , 105
 Silex , 106
 Slim , 108–109
 use of , 105

 overview , 83
 SF2 , 93

 application directory structure , 94
 bundles , 96
 controller , 97
 database , 97
 demo , 94
 display results , 99
 installation , 93
 Linux and OS X , 94
 view name and folder structure ,

99
 Windows , 94

 use of , 83
 Zend Framework2 (see (Zend

Framework 2))

 G, H, I, J, K
 Git

 branches
 and commit , 9
 creation , 9
 fi les , 9
 meaning , 8

 confi guration , 1
 confl ict resolution , 17
 gitg

 installation , 21
 repository view , 22

 GitHub GUI
 installation , 20
 repository view , 21

 gitignore , 6
 history , 5
 ignore fi le , 6
 initial commit , 3
 merging

 branches , 9
 meaning , 8

 PHPStorm , 17
 menu entries , 18
 repository sub-menu entry , 18

 pull command , 17
 push command , 17
 remove fi les , 6–8
 repository , 2
 SourceTree

 installation , 19
 repository , 19–20

 stage and commit changes , 4
 stash command , 10–11
 tagging

 annotated tags , 12
 lightweight tag , 11–12

 undoing changes
 amend option , 13
 fi le reset , 14
 hard reset , 15
 mixed reset , 15
 soft reset , 14
 un-stage , 13–14

 L
 Laravel 5

 application logic , 102
 controllers and routes , 102
 database , 103
 directory structure , 102
 display results , 104–105
 installation , 100
 quickstart app page , 101
 resources/views

directory , 103

 M, N, O
 Micro-frameworks

 Lumen , 107–108
 PHP , 105
 Silex , 106
 Slim , 108–109
 use , 105

 P, Q, R
 PECL

 APCu extension , 81
 PEAR/Pyrus

 global utilities , 81–82
 use of , 81

Frameworks (cont.)

■ INDEX

113

 pecl command , 79
 pecl command , 79–80

 PHP-FIG
 basic coding standard

 character encoding , 44
 class constants , 45
 fi les , 44
 method names , 46
 namespaces and

class names , 45
 PHP tags , 44
 properties , 45
 side eff ects , 44
 structure , 44

 coding style guide
 abstract, fi nal and static , 49
 classes , 48
 closures , 52
 constants true, false and null , 47
 control structures , 50
 fi les , 47
 foreach statement , 52
 for statement , 51
 if, elseif, else , 50
 function calls and methods , 49
 indentation , 47
 keywords , 47
 lines , 47
 method arguments , 49
 namespaces and

declarations , 48
 omissions , 54
 properties , 48
 PSR-2 specifi cation , 54
 structure , 46
 switch, case , 50–51
 try catch block , 52
 while, do while , 51

 standards recommendations , 43
 Puppet provisioner

 confi guration management
system , 34

 default.pp fi le , 35
 default.pp fi le , 36
 directory structure , 35
 manifest and modules , 34
 Vagrantfi le , 34–35
 web-based confi guration tool , 38

 S, T, U
 Symfony 2 (SF2) , 93

 AppBundle directories , 96
 application directories structure

 creation , 94
 demo application , 95
 functions , 95

 bundles , 96
 controller , 97
 database abstraction

layer , 97–98
 demo application , 94
 display results , 99
 installation , 93
 Linux and OS X , 94
 view name and folder

structure , 99
 Windows , 94

 V, W, X, Y
 Vagrant , 24

 Ansible, Bash and Puppet
 Ansible tool , 36–37
 confi guration , 33
 fi nal tasks , 37
 Puppet confi guration , 34, 36
 shell provisioner , 33–34

 commands , 25
 environment

 LAMP box , 32
 networking , 29
 remove command , 32
 setup VM , 29–31
 shared folders , 29
 Vagrantfi le , 26–28
 virtual machine (VM) , 26
 VM setup , 28–29

 installation , 24
 Phansible

 Ansible confi guration
tool , 39–40

 Templates , 39
 plugin system

 Ansible Local , 41
 Host Manager , 41
 Librarian Puppet , 41

■ INDEX

114

 Providers , 41
 Share , 41

 PuPHPet
 access system , 38
 custom confi guration , 39
 Puppet confi guration tool , 38

 steps , 24
 Vagrantfi le , 24
 VirtualBox , 25

 Version control system , 1
 Bitbucket

 remote repository , 16
 SSH key , 15

 GitHub , 15, 17
 Version controlsystem . See Git
 Virtualized development environments

 approaches , 23
 benefi ts , 23
 Vagrant (see Vagrant)

 Z
 Zend Framework 2 , 84

 controller , 87–88
 database

 credentials
confi guration , 89

 model layer , 89–90
 service

manager , 90–91
 table creation , 88

 directories , 85
 functions , 85
 installation , 84–85
 modules , 86–87
 query and display , 91, 93
 results , 93
 skeleton application , 86
 view name and folder

structure , 91

Vagrant (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Version Control
	Using Git
	Git Configuration
	Initializing Your Repository
	Initial Commit
	Staging Changes
	Viewing History
	Ignoring Specific Files
	Removing Files

	Branching and Merging
	Merging
	Stashing Changes
	Tagging
	Lightweight Tags
	Annotated Tags

	Undoing Changes
	Amend
	Un-stage
	File Reset
	Soft Reset
	Mixed Reset
	Hard Reset

	Version Control in the Cloud: Bitbucket and GitHub
	Bitbucket
	SSH Key
	Creating Your First Remote Repository

	GitHub

	Pushing, Pulling, and Conflict Resolution
	Git Tools
	PHPStorm
	SourceTree
	Installing SourceTree
	Adding a Repository

	GitHub GUI
	Installing the GitHub GUI
	Adding a Repository

	gitg
	Installing gitg
	Adding a Repository

	Summary

	Chapter 2: Virtualizing Development Environments
	Introduction to Vagrant
	Installing Vagrant and VirtualBox
	Vagrant Commands

	Setting Up Our First Environment
	Initial VM setup
	Shared Folders
	Networking
	VM Settings
	Removing VMs
	Default Vagrant LAMP box

	Advanced Configurations Using Ansible, Bash, and Puppet
	Bash (Shell) Provisioner
	Puppet Provisioner
	Ansible Provisioner
	Advanced Configuration Conclusion

	Configuration Tools
	PuPHPet
	Accessing PuPHPet
	Setting Up and Using PuPHPet Configurations

	Phansible

	Vagrant Plugins
	Summary

	Chapter 3: Coding Standards
	A Look at PHP-FIG
	PSR-1 — Basic Coding Standard
	Files
	PHP Tags
	Character Encoding
	Side Effects

	Namespace and Class Names
	Class Constants, Properties, and Methods
	Constants
	Properties
	Methods

	PSR-2 — Coding Style Guide
	General
	Files
	Lines
	Indentation
	Keywords and true, false, and null

	Namespace and Use Declarations
	Classes, Properties, and Methods
	Classes
	Properties
	Methods
	Method Arguments
	Abstract, Final, and Static
	Method and Function Calls

	Control Structures
	if, elseif, else
	switch, case
	while, do while
	for
	foreach
	try, catch (and finally)

	Closures
	Omissions from PSR-2

	Checking Coding Standards with PHP Code Sniffer
	Using PHP_CodeSniffer
	PHP_CodeSniffer Configuration
	PHP_CodeSniffer Custom Standard
	PHP_CodeSniffer IDE Integration

	Code Documentation Using phpDocumentor
	Installing phpDocumentor
	Using phpDocumentor
	Running phpDocumentor
	Non-structural Comments

	Summary

	Chapter 4: Dependency Management
	Composer and Packagist
	Installing Composer
	Locally
	Globally

	Packagist
	Using Composer
	The composer.json File
	Installing Additional Packages
	Removing Packages
	require vs require-dev
	The Composer Lock File
	Autoloading
	Additional Autoloading
	Autoloader Optimization
	Package Versions
	Basic Constraints
	Exact
	Range
	Wildcard
	Range Hyphen

	Next Significant Release
	Tilde
	Caret

	Stability
	Updating Packages
	Installing Packages Globally

	PEAR & Pyrus
	Is Anyone Still Using Pear?
	PECL
	Should I Be Using PEAR or Pyrus?
	Installing a Global Utility Using PEAR

	Summary

	Chapter 5: Frameworks
	Why Use a Framework?
	Zend Framework 2
	Installing ZF2
	Module
	Controller
	Database
	Credentials Configuration
	Model
	Service Manager

	View
	Query & Display

	Symfony 2
	Installing SF2
	Linux and OS X
	Windows
	Installing the Demo
	Application Directory Structure
	Bundles
	Controller
	Database
	View
	Display Results

	Laravel 5
	Installing Laravel 5
	Application Directory Structure
	Application Logic
	Controllers & Routes
	Database
	View
	Display Results

	Micro-Frameworks
	When to Use a Micro-Framework
	Using a Micro-Framework
	Silex
	Lumen
	Slim

	Summary

	Index

