
M A N N I N G

Nicolas Leroux
Sietse de Kaper
FOREWORD BY James Ward

www.allitebooks.com

http://www.allitebooks.org

Play for Java
www.allitebooks.com

http://www.allitebooks.org

Play for Java
COVERS PLAY 2

NICOLAS LEROUX
SIETSE DE KAPER

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Copyeditors: Benjamin Berg, Melinda Rankin
PO Box 261 Proofreader: Andy Carroll
Shelter Island, NY 11964 Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

ISBN 9781617290909
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 INTRODUCTION AND FIRST STEPS...................................1

1 ■ An introduction to Play 3

2 ■ The parts of an application 21

3 ■ A basic CRUD application 37

PART 2 CORE FUNCTIONALITY...57

4 ■ An enterprise app, Play-style 59

5 ■ Controllers—handling HTTP requests 72

6 ■ Handling user input 102

7 ■ Models and persistence 138

8 ■ Producing output with view templates 177

PART 3 ADVANCED TOPICS ..205

9 ■ Asynchronous data 207

10 ■ Security 232

11 ■ Modules and deployment 249

12 ■ Testing your application 271
v

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix

PART 1 INTRODUCTION AND FIRST STEPS1

1 An introduction to Play 3
1.1 What Play is 4

Key features 4 ■ Java and Scala 5 ■ Play is not Java EE 6

1.2 High-productivity web development 6
Working with HTTP 6 ■ Simplicity, productivity, and
usability 7

1.3 Reactive programming 7
Event-driven 7 ■ Scalable 8 ■ Resilient 8 ■ Responsive 8

1.4 Play 2 enterprise features 8
Simplicity 8 ■ Traditional data access 9 ■ Flexibility 9
Integration 9 ■ Large-team applications 9 ■ Security 9
Modularity 10
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.5 Hello Play! 10
Installing Play 10 ■ Creating your first application 12
Play application structure 13 ■ Running the application 13
Accessing the running application 14 ■ Changing the controller
class 14 ■ Add a compilation error 16 ■ Use an HTTP request
parameter 16 ■ Add an HTML page template 17

1.6 The console 18
1.7 Summary 19

2 The parts of an application 21
2.1 Introducing our application 22
2.2 A rundown of a Play application 22
2.3 Play’s configuration files 23
2.4 Build configuration files 25
2.5 Public assets 26
2.6 Application code 27

Compiled assets 28

2.7 Setting up an IDE 29
Eclipse 29 ■ NetBeans 30 ■ IntelliJ IDEA 34 ■ Using a
debugger 34

2.8 Summary 36

3 A basic CRUD application 37
3.1 Adding a controller and actions 38
3.2 Mapping URLs to action methods using routes 39
3.3 Adding a model and implementing functionality 40

Creating a model class 40

3.4 Mocking some data 41
3.5 Implementing the list method 43

The list template 43

3.6 Adding the product form 47
Constructing the form object 48 ■ Rendering the HTML form 48
Rendering input fields 49

3.7 Handling the form submission 50
3.8 Adding a delete button 53
3.9 Summary 55
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
PART 2 CORE FUNCTIONALITY57

4 An enterprise app, Play-style 59
4.1 Recalling what an enterprise application is 59
4.2 Determining today’s enterprise application

challenges 63
4.3 Understanding Play’s application in an enterprise

context 64
4.4 Defining our warehouse enterprise application 68
4.5 Summary 70

5 Controllers—handling HTTP requests 72
5.1 Controllers and action methods 73

Action methods 74 ■ Examining our controller 74

5.2 Returning results from action methods 75
Results 76 ■ Redirect result 77 ■ Using results 77

5.3 Using routing to wire URLs to action methods 80
Translating HTTP to Java code 80 ■ The routes files
explained 83 ■ Dynamic path parts 84 ■ Completing our routes
file 87 ■ Reverse routing 88

5.4 Interceptors 89
The @With annotation 89 ■ Explaining our CatchAction 91
Action composition 91

5.5 About scopes 93
A bit of history about the scopes 93 ■ Storing data with Play 94
The context object 95 ■ The request scope 96 ■ The response
scope 96 ■ The session scope 97 ■ The flash scope 98
What about security? 99

5.6 Summary 101

6 Handling user input 102
6.1 Forms 102

Displaying the new product form 103 ■ Displaying the edit product
form 105 ■ Processing form input 107

6.2 Data binding 108
Binding single values 109 ■ Binding multiple values 110
Custom data binders and formatters 114
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6.3 Body parsers 123
The body-parser API 124

6.4 Validation 126
Using the built-in validators 126 ■ Partial validation 128
Creating a custom validator 129 ■ Displaying the validation
errors on the form 132

6.5 File uploads 134
6.6 Summary 137

7 Models and persistence 138
7.1 Modeling the real world in code 139

The reasons for getters and setters 139 ■ Let Play eliminate some
noise for you 141 ■ Creating our classes 142

7.2 Persistence and Object-Relational Mapping (ORM) 143
About relational databases 143 ■ Bridging the relational world
and the OO world 144 ■ Introducing Ebean 145

7.3 Mapping basic entities 145
Configuring Ebean and the database 146 ■ Inspecting the H2
database 148 ■ Saving our first entities 149

7.4 Mapping relationships 151
Mapping a one-to-many relationship 152 ■ Making the
one-to-many relationship bidirectional 154 ■ Giving our
warehouse an address 156 ■ Mapping the product–tag
relationship 159

7.5 Querying for objects 161
Retrieving by ID 162 ■ Using the Finder API 162
Loading initial data 166 ■ Creating more complex queries 168

7.6 Using JPA instead of Ebean 173
Configuring Play 173 ■ Adding Persistence.xml 174
Built-in JPA helpers 175

7.7 Summary 175

8 Producing output with view templates 177
8.1 The benefits of compiled, type-safe templates 178
8.2 Scala template syntax 181

Template definition 181 ■ Template body 181
Expression scope 183

CONTENTS xi
8.3 Your basic building blocks 184
Iterating 184 ■ Making decisions 186

8.4 Structuring pages with template composition 187
Includes 187 ■ Layouts 193

8.5 Using LESS and CoffeeScript: the asset pipeline 199
LESS 199 ■ CoffeeScript 200 ■ The asset pipeline 201

8.6 Internationalization 202
Configuration and message files 202 ■ Using messages in your
application 203

8.7 Summary 204

PART 3 ADVANCED TOPICS...205

9 Asynchronous data 207
9.1 What do we mean by asynchronous data? 208
9.2 Handling asynchronous data 209

Handling asynchronous requests 210 ■ Returning the
asynchronous result 212

9.3 Scheduling asynchronous tasks 214
9.4 Streaming HTTP responses 215

Standard responses and Content-Length header 215
Serving files 216 ■ Chunked responses 217

9.5 Unidirectional communication with Comet 220
9.6 Bidirectional communication with WebSockets 223

WebSockets explained 224 ■ A more advanced application with
WebSockets 227

9.7 Summary 231

10 Security 232
10.1 Play security concepts 232

Play 2 session 233 ■ Cross-site scripting 234 ■ SQL
injection 235 ■ Cross-site request forgery 235

10.2 Adding basic authentication with filters 238
10.3 Fine-grained authentication with action

composition 243
10.4 Summary 248

CONTENTSxii
11 Modules and deployment 249
11.1 Modules 249

Using modules 250 ■ Creating modules 254

11.2 Splitting your application into multiple sub-
applications 260

11.3 Deploying to production 262
Packing up your application 263 ■ Working with multiple
configurations 263 ■ Creating native packages for a package
manager 265 ■ Setting up a front-end proxy 266 ■ Using
SSL 268 ■ Deploying to a cloud provider 269 ■ Deploying to an
application server 270

11.4 Summary 270

12 Testing your application 271
12.1 Testing Play applications 272

Writing tests 272 ■ Running tests 273

12.2 Functional testing 276
Testing your controllers 276 ■ Template testing 278
Testing the router 281

12.3 Integration testing 282
Testing your HTTP interface 282 ■ Browser testing 283

12.4 Summary 286

index 289

foreword
Before Struts existed I wrote an entire Java web application inside a single Servlet
method because that is basically how I’d done things in Perl. Back then web apps were
simple and the tools were immature. As the web evolved, dozens of Java web frame-
works emerged which were all built on the same Servlet foundation. Being over 15
years old, the Servlet foundation is showing its age. The traditional Java web frame-
works haven’t kept up with the modern needs for higher developer productivity and
emerging web techniques like RESTful JSON services, WebSockets, asset compilers,
and reactive architectures.

 Play Framework was created to revolutionize Java web application development.
Play is built for modern web needs and puts developer productivity at the core of the
framework. I love that with Play I just hit Refresh in my browser and I instantly see my
changes, whether they’re Java, JavaScript, or CSS. There is no container to redeploy
into or restart. If there are compile errors I see them in a helpful way in my browser.
Things like testing tools, persistence libraries, JSON support, and other commonly
needed pieces come out-of-the-box with Play. By being RESTful by default, supporting
push channels, and utilizing non-blocking connections, Play provides a solid founda-
tion for scalable reactive applications.

 When I made the transition from Perl to object-oriented Java web apps, I needed
some help to get me over the hurdles of figuring out new ways to do things. Luckily
books like Thinking in Java (Bruce Eckel) and Java Servlet Programming (Jason Hunter)
helped me move into a new way of thinking which allowed me to quickly and easily
make the transition to something new and better. I have no doubt that the book
you’re reading now will do the same for you. Nicolas and Sietse have been using Play
xiii

FOREWORDxiv
from its early days. They’re experts who haven’t just played with the framework,
they’ve built numerous production applications using Play. They’ve experienced the
challenge of adopting something new and know the pains you can avoid.

 Web programming has changed dramatically since the early Servlet days. Play has
revolutionized the development experience for building modern Java web applica-
tions. This book will help you quickly make the transition to more productive ways to
build modern web apps. I’m confident that down the road you will look back on this
book like I look back on Eckel’s and Hunter’s books. I just wish this book had existed
when I learned Play.

 JAMES WARD
 PRODUCT OWNER OF PLAY FRAMEWORK AT TYPESAFE

 @_JAMESWARD | WWW.JAMESWARD.COM

www.jamesward.com

preface
Back in 2009, I discovered Play by chance while surfing the web. I was surprised at how
easy it was to get started with the framework. At the time, I was doing most of my web
development using the Seam web framework. Play was a game changer then, and I
started to build all my applications using it. Soon enough, I joined Guillaume Bort,
the founder of Play, and contributed to the framework.

 The framework started to gain more and more traction, though mostly in Europe.
Time passed, and we released Play 1.1 and then Play 1.2. Then Guillaume started to
envision a complete rewrite of Play using Scala as a core language, giving Play extra
power. The goal was to empower Play’s users while keeping the main success ingredi-
ents: Play’s simplicity and rapidity. Guillaume soon joined forces with Sadek Drobi.
Sadek put his functional programming knowledge into the mix and Play 2 was born!
Though the Play 2 core uses advanced Scala features, Play 2 focuses on simplicity and
has a fully supported Java API. Play 2 Java is probably the best option for building scal-
able web applications with simplicity in mind without sacrificing scalability and other
features.

 While I contributed little to Play 2’s features codewise, my main contribution to
Play 2 adoption is this book. I hope it will become an invaluable aid to professional
Play developers. In truth, my coauthor Sietse and I could have added even more infor-
mation to this book, but we hope that we’ve struck a good balance between useful
content and weight. We also hope that you will enjoy the book and that it will help you
unleash the full potential of Play while keeping its simplicity in mind.

 NICOLAS LEROUX
xv

PREFACExvi
Soon after Nicolas introduced Play at Lunatech, it became clear that this was going to
be the framework we’d be using for all new projects. Play “gets it.” For “it,” in this case,
a lot of things can be substituted. Play “gets” HTTP and the web in general, how
developing web application works, what makes a nice and clean API, and more. This
was clear from the early Play 1 beta versions, and that’s why we’ve used it on many
projects since 1.0 came out. It didn’t disappoint.

 Now, with Play 2, Play continues to improve web development for the Java platform.
 It’s interesting that we have to say “Java platform,” rather than just Java. The Java

platform is no longer synonymous with the Java language—there are a lot of different
languages targeting the JVM, all trying to improve the developer experience in their
own way. Play 2 embraces Scala, partly for its benefits as a reactive1 language, but also
for all the benefits that a strictly type-safe language provides. By supplying a first-class
Java API to the framework, Play 2 provides the best of both worlds.

 We wrote this book in the hope that it will help you take advantage of all the bene-
fits that web development using Play offers. But, perhaps more importantly, we also
wanted to teach you all the core concepts behind Play. They’re just good principles
when developing for the web, and Play makes it easy to apply them. We hope we suc-
ceeded in these goals, and that you’ll enjoy this book and developing Play applications.

 SIETSE DE KAPER

1 Read the Reactive Manifesto at http://www.reactivemanifesto.org/ if you want to know what that means,
exactly.

http://www.reactivemanifesto.org/

acknowledgments
We first want to thank Karen Miller, our development editor at Manning, who put up
with our many missed deadlines and gave us great feedback during the writing pro-
cess. We’d also like to thank our awesome copyeditors, Benjamin Berg, Melinda
Rankin, and Andy Carroll, for catching an amazing number of grammatical errors in
the early revisions of the book. The greater Manning team deserves kudos as well;
they’ve made for a very pleasant writing experience over the past year and a half.

 We would like to think James Ward for writing such a great foreword to our book.
 Thanks to Wayne Ellis for being our technical proofreader, catching those bugs we

missed, and helping improve the source code for the book.
 Big thanks to our team of reviewers, who provided invaluable feedback during

various stages of the book’s development: Dr. Lochana C. Menikarachchi, Franco
Lombardo, Jeroen Nouws, John Tyler, Koray Güçlü, Laurent DeCorps, Michael
Schleichardt, Patria H. Lukman, Ricky Yim, Rob Williams, Ryan Cox, Santosh
Shanbhag, and William E. Wheeler.

 Special thanks to the Play for Scala book team—our colleagues Peter Hilton, Erik
Bakker, and Francisco Canedo—for cooperating with us on the book. We’d like to
thank Lunatech for providing us with a great work environment that makes it possible
to do cool stuff like work with and contribute to Play.

 In addition, we’d like to give a big warm thank you to the Play community. Without
the community, the Play project wouldn’t be as successful as it is today. In addition to
the Play community, we would like to especially thank all our readers who posted on
the Manning Online Author forum after reviewing the Early Access (MEAP) chapters.
xvii

ACKNOWLEDGMENTSxviii
Special thanks to Steve Chaloner, “Infra,” “Askar,” and all others for providing such
great feedback.

 Of course, our biggest supporters are our families, who supported us even though
they don’t have a clue what the book is about.

NICOLAS would like to thank his wife Sylke for her support during the book project,
and his girls Emilie and Isabelle for distracting him when in need of a break.

SIETSE would like to thank his wife Joekie for her endless patience and loving sup-
port—not just during the writing of this book, but always.

about this book
This book will get you started developing web applications with Play 2, using the Java
programming language. But, perhaps more importantly, it’ll also teach you the con-
cepts behind web development with Play.

 There are many Java web frameworks, but most of them have a key flaw: they try to
hide the web behind an abstraction layer, rather than embracing it. That is the most
important difference between Play and most other Java web frameworks (Servlets,
we’re looking at you!).

 Developing a web application with Play requires a certain mindset. Throughout
the book, we try to teach you how to achieve that. If you’re a Java EE veteran, we’ll do
our best to lessen the culture shock. But if you’re new to web development with Java,
or web development in general, we’ve got your back, too. We do our best to explain
everything about web development that you need to know.

 The only assumption we make is that you have some background in Java program-
ming—you should be comfortable reading and writing Java code. We’ve used Java 7
syntax throughout this book, since that is the supported version of Java at the time of
writing.

 You’ve probably already heard that Play 2 is written in Scala. That is absolutely
true, and we feel that the language and the tools available for the platform are an
excellent choice to write a web platform in. We also feel that there is no reason you
should have to build a web application in Scala. Play developers apparently agree,
because Play has a first-class Java API, which means you can write a full application
using Play 2 without writing a single line of Scala.
xix

ABOUT THIS BOOKxx
 In this book, we avoid discussing Scala wherever possible. There is one subject
where this wasn’t avoidable: view templates in Play 2 are based on the Scala language.
But in the rest of the book we treat it as just another template language, showing you
the basic constructs you need to create your templates. We promise you don’t need to
learn any Scala to follow along with this book.

 As we write this, the current version of Play is 2.2. That means that all the code we
demonstrate assumes a Play version of 2.2.x, and we’ve tested every code sample
under version 2.2.0.

Roadmap
This book is organized in three parts. The first part introduces you to all the basic con-
cepts of Play. The second part dives deeper into the core elements of a Play applica-
tion, while the third part demonstrates more advanced things that you can do with
Play. Here’s a quick overview of all the chapters.

 Chapter 1 introduces Play, and highlights some of its important features. It then
shows you how to install Play and create a simple “Hello World” application.

 Chapter 2 takes a look at what makes up a Play application. It goes over all the
directories and files, and explains what every component is for. We also show you how
you can import a Play application into your IDE.

 Chapter 3 shows a simple web application, without going into too much detail. In
this chapter, we’ll see every important part of Play in action: controllers, actions, tem-
plates, and forms. This is the start of an application that we’ll develop in the book.

 Chapter 4 takes a step back and looks at where Play fits in a more conventional
enterprise architecture. It contrasts Play with conventional JEE development, and
shows how Play can tackle major challenges in such an architecture.

 Chapter 5 is all about controllers. It explains what controllers are and how action
methods help you interface with the web. It also explains how routing works and
introduces the different scopes.

 Chapter 6 covers how to handle user input. We show you how to use Play’s Form
API, as well as how binding and validation work.

 Chapter 7 introduces database persistence. We explain the concept of an ORM and
show you how to use the Ebean ORM tool with Play. At the end of the chapter, we dis-
cuss how you can use JPA with Play instead of Ebean, should you choose to do so.

 Chapter 8 explains how view templates work. It explains the template syntax, and
shows how to use composition to structure your pages in a reusable manner. At the
end of the chapter, we look at using Play’s support for LESS and CoffeeScript, and
introduce the internationalization API.

 Chapter 9 covers one of the more powerful features of Play: asynchronous request
handling. It explains why long-running tasks are better performed “in the back-
ground,” and how to achieve that easily. It also shows how you can have a web applica-
tion with streaming data, using WebSockets or Comet.

ABOUT THIS BOOK xxi
 Chapter 10 explains how you can build a secure application in Play. It also explains
how you can avoid common security problems, and how you can use filters to imple-
ment authentication.

 Chapter 11 covers the build process of Play. It explains the configuration files, and
shows you how to package your code in reusable modules. Finally, it shows you what’s
involved with taking your application to production.

 Chapter 12 introduces the tools that Play has for testing your application. It
explains the different kinds of automated tests there are, and how you can write them
for your application.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. The current version of Play is 2.2 at the time of writing. That
means that all the code we demonstrate assumes a Play version of 2.2.x, and we’ve
tested every code sample under version 2.2.0.

 Source code for all working examples in this book is available for download from
GitHub at https://github.com/playforjava, as well as from the publisher’s website at
www.manning.com/PlayforJava.

Author Online

The purchase of Play for Java includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. To access the forum and
subscribe to it, visit www.manning.com/PlayforJava. This page provides information
on how to get on the forum once you’re registered, what kind of help is available, and
the rules of conduct on the forum.

 Manning’s commitment to readers is to provide a venue for meaningful dialogue
between individual readers and between readers and the authors. It is not a commit-
ment to any specific amount of participation on the part of the authors, whose contri-
bution to the forum remains voluntary (and unpaid). Let your voice be heard, and
keep the authors on their toes!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

NICOLAS LEROUX is a senior architect and Technical Director at Lunatech Research
where he’s worked since 2001 and where he is mainly involved in JEE projects for
Lunatech’s customers. Since 2009, Nicolas has developed a passion for the Play frame-
work and is a core developer of its open source project. He was involved in the first
version of the Play framework and is contributing to the second one. Nicolas also
enjoys introducing Play to new audiences and is a frequent speaker at conferences.

https://github.com/playforjava
www.manning.com/PlayforJava
www.manning.com/PlayforJava

ABOUT THIS BOOKxxii
SIETSE DE KAPER started his career as a software developer at Lunatech Research in
2007. He has worked on several commercial web applications using various web
frameworks—mostly Java, but also PHP, Ruby, and Scala. Sietse started developing
applications with the Play framework when version 1.0 came out in October 2009.
After using Play on several projects, he now considers it the most effective framework
in the Java ecosystem.

About the cover illustration
The figure on the cover of Play for Java is captioned a “Farmer from Dobrota, Monte-
negro.” The illustration is taken from the reproduction, published in 2006, of a nine-
teenth-century collection of costumes and ethnographic descriptions entitled
Dalmatia by Professor Frane Carrara (1812–1854), an archaeologist and historian, and
the first director of the Museum of Antiquity in Split, Croatia. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum (formerly the
Museum of Antiquity), itself situated in the Roman core of the medieval center of
Split: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The
book includes finely colored illustrations of figures from different regions of Dalma-
tia, accompanied by descriptions of the costumes and of everyday life.

 Dobrota is a small town on the Adriatic coast, officially a part of the municipality of
Kotor, an ancient Mediterranean port on Kotor Bay, surrounded by fortifications built
in the Venetian period. Today it is increasingly a tourist destination, due to the dra-
matic limestone cliffs and beautiful coastal vistas. The man on the cover is wearing an
embroidered vest over black woolen pantaloons and a wide colorful sash. He is carry-
ing a long pipe, a musket, and has pistols inserted in his sash. The rich and colorful
embroidery on his costume is typical for this region, and marks this as an outfit for
special occasions and not for working the land.

 Dress codes have changed since the nineteenth century, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone different towns or regions. Perhaps we have traded
cultural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
illustrations from collections such as this one.

Part 1

Introduction
and first steps

In part 1, we introduce Play and show the basics of creating a Play application.
 Chapter 1 introduces Play, its core concepts, and its key features. We install

Play and create our first application.
 Chapter 2 breaks down the structure of a Play application, explaining what

each file and folder is for.
 Chapter 3 shows how to create a more fleshed-out application, giving you a

taste of the key MVC components in a Play application.

An introduction to Play
Play isn’t really a Java web framework. Java’s involved, but that isn’t the whole story.
 The first version of Play may have been written in the Java language, but it also

ignored the conventions of the Java platform, providing a fresh alternative to exces-
sive enterprise architectures. Play was not based on Java Enterprise Edition APIs
and made for Java developers; Play is for web developers.

 Play wasn’t written for web developers, it was written by web developers, and they
brought high-productivity web development from modern frameworks like Ruby
on Rails and Django to the JVM. Play is for productive web developers.

 Play 2 is written in Scala, but that doesn’t mean you have to write your web
applications in Scala or even know anything about Scala. This is because Play 2
comes with a complete Java API, giving you the option to pick the language that

This chapter covers
 What the Play framework is

 What high-productivity web frameworks are about

 Why Play supports both Java and Scala

 Reactive programming

 Play 2 enterprise features

 What a minimal Play application looks like
3

4 CHAPTER 1 An introduction to Play
suits you best. If you’ve used Play 1.x before, you’ll notice that the API has become
more type-safe.

 Play isn’t about Scala and type safety, either. An important aspect of Play is the
usability and attention to detail that results in a better developer experience (DX).
When you add this to higher developer productivity and more elegant APIs and archi-
tectures, you get a new emergent property: Play is fun.

1.1 What Play is
Play is fun. Play makes you more productive. Play is also a web framework whose HTTP
interface is simple, convenient, flexible, and powerful. Most importantly, Play
improves on the most popular non-Java web development languages and frame-
works—PHP and Ruby on Rails—by introducing the advantages of the Java Virtual
Machine (JVM).

1.1.1 Key features

A variety of features and qualities make Play productive and fun to use:

 Simplicity
 Declarative application URL scheme configuration
 Type-safe mapping from HTTP to an idiomatic Scala or Java API

 Type-safe template syntax
 Architecture that embraces HTML5 client technologies
 Live code changes when you reload the page in your web browser
 Full-stack web-framework features, including persistence, security, and interna-

tionalization
 Support for event-driven, resilient, and scalable applications

We’ll get back to why Play makes you more productive, but first let’s look a little
more closely at what it means for Play to be a full-stack framework. A full-stack frame-
work gives you everything you need to build a typical web application, as illustrated in
figure 1.1.

Integrated HTTP server

Datastore-agnostic model persistence

Expressive HTTP interface
(provides full access to HTTP features)

High-performance
template engine

Public asset
compilation

RESTful web
services API

Integrated
console

and build
system

Asynchronous I/O

HTML form validation AkkaIntegrated cache

Figure 1.1 Play framework stack

5What Play is
Being “full stack” is not only a question of functionality, which may already exist as a
collection of open source libraries. After all, what’s the point of a framework if these
libraries already exist and already provide everything you need to build an applica-
tion? The difference is that a full-stack framework also provides a documented pattern
for using separate libraries together in a certain way, and therefore provides confi-
dence that a developer can make the separate components work together. Without
this, you never know whether you’re going to end up instead with two incompatible
libraries or a badly designed architecture.

 When it comes to building a web application, what this all means is that the com-
mon tasks are directly supported in a simple way, which saves you time.

1.1.2 Java and Scala

Play supports Java, and is in fact the best way to build a Java web application. Java’s
success as a programming language, particularly in enterprise software develop-
ment, means that Play 1.x has been able to quickly build a large user community. If
you’re planning to use Play with Java, you particularly get to benefit from this com-
munity’s size.

 But recent years have seen the introduction of numerous JVM languages that pro-
vide a modern alternative to Java, usually aiming to be more type-safe, resulting in
more concise code and support for functional programming idioms, with the ultimate
goal of allowing developers to be more expressive and productive when writing code.
Scala is currently the most evolved of the new statically typed JVM languages, and it’s
the second language that Play supports. Scala is meant (and proven) to be a scalable
language, hence the name. Play 2 takes full advantage of the scalability that Scala
offers, which means your Java applications will get these benefits, too.

 Scalability is one of the major features of Play: it allows you to easily create highly
scalable web applications. Scalability can mean a lot of different things, and through-
out the book you’ll see examples of how Play enables you to scale both horizontally
and vertically. Most of this is thanks to Play’s stateless nature, but also its foundation of
Scala (and Akka), which enabled the developers of the framework to provide concur-
rent and nonblocking request processing. It also enabled developers to support appli-
cations in an event-driven way without sacrificing scalability. Nowadays, applications
need to react to events and display live feeds rather than batch process during the
night. Play was conceived with this perspective in mind. We’ll talk more about this sub-
ject in the reactive programming section in this chapter.

Our sister book: Play for Scala
If you’re also interested in using Play to build web applications in Scala, then you
should look at Play for Scala, which was written at the same time as this book. The
differences between Scala and Java go beyond the syntax, and the Scala book is
much more than a copy of this book with code samples in Scala. Play for Scala is
focused on the idiomatic use of the Scala language with Play 2.

6 CHAPTER 1 An introduction to Play
1.1.3 Play is not Java EE

Before Play, Java web frameworks were based on the Java Servlet API, the part of the
Java Enterprise Edition (Java EE) stack that provides the HTTP interface. Java EE and
its architectural patterns seemed like a really good idea, and brought some much-
needed structure to enterprise software development. But this turned out to be a
really bad idea, because structure came at the cost of additional complexity and low
developer satisfaction. Play is different, for several reasons, which we’ll detail later in
this chapter. The biggest difference between Java EE and Play is simplicity. Play focuses
on providing simplicity to developers so that they can focus on their business prob-
lems and not on the framework itself. In contrast, Java EE used to be quite complex.

 Java’s design and evolution is focused on the Java platform, which also seemed like
a good idea to developers who were trying to consolidate various kinds of software
development. From a Java perspective, the web is only another external system. The
Servlet API, for example, is an abstraction layer over the web’s own architecture that
provides a more Java-like API. Unfortunately, this turned out to be a bad idea as well,
because the web is more important than Java. When a web framework starts an archi-
tecture fight with the web, the framework loses. What we need instead is a web frame-
work whose architecture embraces the web’s, and whose API embraces HTTP.

1.2 High-productivity web development
Web frameworks for web developers are different. They embrace HTTP and provide
APIs that use HTTP’s features instead of trying to hide HTTP, in the same way that web
developers build expertise in the standard web technologies—HTTP, HTML, CSS, and
JavaScript—instead of avoiding them.

1.2.1 Working with HTTP

Working with HTTP means letting the application developer make the web application
aware of the different HTTP methods, such as GET, POST, PUT, and DELETE, instead of
having an RPC-style layer on top of HTTP requests in order to tell the application
whether you want to create, update, or delete data. It also means accepting that appli-
cation URLs are part of the application’s public interface and should therefore be up
to the application developer to design instead of fixed by the framework.

 This approach is for developers who not only work with the architecture of the
World Wide Web instead of against it, but who may have even read it. 1

 In the past, none of these web frameworks were written in Java, because the Java
platform’s web technologies failed to emphasize simplicity, productivity, and usability.
This is the world that started with Perl (not Lisp as some might assume), was largely
taken over by PHP, and in more recent years has seen the rise of Ruby on Rails.

1 Architecture of the World Wide Web, Volume One, W3C, 2004 (http://www.w3.org/TR/webarch/).

http://www.w3.org/TR/webarch/

7Reactive programming
1.2.2 Simplicity, productivity, and usability

In a web framework, simplicity comes from making it easy to do simple things in a few
lines of code without extensive configuration. A “Hello World” in PHP is a single line
of code; the other extreme is JavaServer Faces, which requires numerous files of vari-
ous kinds before you can even serve a blank page.

 Productivity starts with being able to make a code change, reload the web page in
the browser, and see the result. This has always been the norm for many web develop-
ers, whereas Java web frameworks and application servers often have long build-
redeploy cycles. Java hot-deployment solutions exist, but are not standard and come at
the cost of additional configuration. Although there is more to productivity, this is
what matters most.

 Usability is related to developer productivity, but also to developer happiness.
You’re certainly more productive if it’s easier to simply get things done, no matter how
smart you are, but a usable framework can be more than that; it can be a joy to use.
Fun, even.

1.3 Reactive programming
Play has unique features in the Java world. It allows applications to be nonblocking,
asynchronous, and reactive. But what does this mean exactly? As we’ll see in chapter 4,
application requirements have changed dramatically in recent years. Today applica-
tions are deployed on everything from mobile devices to cloud-based clusters. User
expectations are high: applications need to respond in milliseconds, and no down-
time is allowed. Data needs are expanding into the petabytes.

 Before Play and similar frameworks, scaling was achieved through buying larger
servers, and concurrent processing via multithreading. Applications were running
inside managed servers and containers. Applications were making little use of the
multiple processors made available to them.

 Reactive programming is about providing an architecture that allows developers to
build systems that are event-driven, scalable, resilient, and responsive: delivering
highly responsive user experiences with a real-time feel, backed by a scalable and resil-
ient application stack, ready to be deployed on multicore and cloud computing archi-
tectures. The Play framework has these goals in mind and attempts to fulfill them.

 Let’s review each of the goals.

1.3.1 Event-driven

An application based on asynchronous communication implements a loosely coupled
design. The sender and recipient can be implemented without regard to the details of
how the events are propagated, allowing the interfaces to focus on the communica-
tion. Because the recipient of asynchronous communication can remain dormant
until an event occurs or a message is received, an event-driven approach can make
efficient use of existing resources, allowing large numbers of recipients to share a
single hardware thread. A nonblocking application that is under heavy load can have
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 An introduction to Play
lower latency and higher throughput than a traditional application based on blocking
synchronization.

1.3.2 Scalable

A scalable application is one that can be expanded according to its demand. This can
be achieved by adding elasticity to the application by adding or removing application
nodes (servers or CPUs, for example). The architecture should handle elasticity with-
out redesigning or rewriting the application. Cloud-computing environments tend to
provide near to perfect elasticity to your application. An event-driven system provides
the foundation for scalability because it provides loose coupling and location inde-
pendence between components and subsystems.

1.3.3 Resilient

Application downtime nowadays is not allowed, and business users expect 24/7
uptime. If an application component crashes for one reason or another, the rest of
the application should still work as expected. This means that each component needs
to be isolated from other components’ failure. The event-driven model has the neces-
sary primitives to realize this model of failure management.

1.3.4 Responsive

Responsive applications are real-time and collaborative applications. Today, businesses
try to engage their customers more and more. They are also trying to be really respon-
sive to any customer feedback. Applications should therefore be real time and allow
you to react to any customer feedback. Responsive applications are about real-time
interaction between the different users. One example is Google Docs, which enables
users to edit documents collaboratively in real time—allowing them to see each
other’s edits and comments live as they’re made.

 Now that we know all about Play’s goals, let’s see how Play fits at work. Not all
enterprise applications have to be reactive.

1.4 Play 2 enterprise features
Play is also adapted to an enterprise environment. Mainly it satisfies the following
enterprise requirements.

1.4.1 Simplicity

Play provides a clean component model that makes it easy to build scalable web appli-
cations that are testable. Simplicity has always been the Play framework’s strong point
and is important in an enterprise context. Developers need to concentrate on their
business problems at hand and not on the framework. The framework should help
them and not be in the way. The Play framework’s first focus was always on simplicity.
Simplicity doesn’t mean a simple application: quite the opposite. Play provides simple
but efficient building blocks, allowing development of complex applications. Simplicity

9Play 2 enterprise features
is important in an enterprise context because it allows wide adoption of the framework
within the company by lowering the barrier of entrance.

1.4.2 Traditional data access

Play provides all the necessary data access to enterprise data. This usually means
accessing several databases from within one application. With Play, by default, you can
access those data via JPA, the standard Java EE Java Persistence API, or via Ebean. JPA is
currently widely adopted in the enterprise, so developers won’t feel lost. Ebean is
quite similar to JPA, but tries to be stateless with data access. You can also use Play’s
JDBC helpers if you want more low-level data access.

1.4.3 Flexibility

Play is flexible: almost everything is pluggable, configurable, and customizable. This
means it’s easy to change or extend any part of the framework. For example, you can
rewrite the way Play handles request parsing. You can also plug your own logic inside
the framework lifecycle, for example, before your application is started. Play is modu-
lar from the start. The Play framework is composed of several modules: core, jdbc,
jpa, json, cache, and more.

1.4.4 Integration

Because Play is so flexible, it’s easy to integrate a Play framework application with other
(legacy) systems. For example, you can easily integrate with an LDAP server to authen-
ticate using third-party libraries and make calls into it. Play provides hooks to plug in
your custom code throughout the framework. Out of the box, you can integrate with
any existing database through JPA, JDBC, or you can add your own persistence layer.

 Through the use of modules, Play provides even more ways to integrate with other
systems. As an enterprise, you can write your own reusable modules to integrate with
legacy systems.

1.4.5 Large-team applications

Play is also made to work with large teams; it’s possible to set up a project with multi-
ple subprojects. The project can then be split among multiple teams with each team
working on a subproject. Play provides support to manage those subprojects so they’re
automatically built and updated when releasing the application: applications can
depend on other applications, and Play allows you to declare that and make it explicit.

1.4.6 Security

Play provides the backbone for handling authentication and authorization. As a devel-
oper, you need to hook into the Play security mechanism and provide the implemen-
tation that authenticates against your enterprise servers. Play goes even a step further,
because it allows you to completely rewrite that part as well if the model doesn’t fit
your enterprise security model. Because Play stays simple, it’s not difficult to plug in
your own mechanism.

10 CHAPTER 1 An introduction to Play
1.4.7 Modularity

Play is modular by design and allows developers to build simple, reusable pieces of soft-
ware. Stacking up those reusable pieces makes it possible to build quite complex and
robust systems. Each team can concentrate on a piece of the puzzle and each piece of
the puzzle can be tested independently. Reusable modules can be shared among devel-
opers and enterprise departments. For example, an enterprise can build its authenti-
cation module once and make it available as a module to be reused by all applications.

 After this Play framework overview, it’s now time to experience simplicity!

1.5 Hello Play!
As you’d expect, it’s easy to do something as simple as output “Hello world!” All you
need to do is use the Play command that creates a new application and write a couple
of lines of Java code. To begin to understand Play, you should run the command and
type the code, because only then will you get your first experience of Play’s simplicity,
productivity, and usability. But to do that, you’ll need to have Play installed. We’ll get
to that in a minute.

 First, it’s interesting to talk about why there even is an installation step with Play 2.
Most web frameworks in the Java world are libraries that you add to your project and
bootstrap with some configuration file (such as web.xml) or boilerplate code to run in
a Servlet container or application server. With these frameworks, there is no install
step. Play is more than a library; it provides a complete tool suite, including a web
server and a build tool.

 Installing Play is easy; here’s how.

1.5.1 Installing Play

First, download Play 2.2 from the web site at http://playframework.org. Extract the
.zip file to the location at which you want to install Play 2 (your home directory is
fine). Next, you need to add this directory to your PATH system variable, which will
make it possible for you to launch Play from anywhere.

 Setting the PATH variable is OS-specific. Here are the instructions for OS X, Linux,
and Windows:

 Mac OS X—Open the file /etc/paths in a text editor, and add the path where
you installed Play to the file.

 Linux—Open your shell’s startup file in a text editor. The name of the file
depends on which shell you use; for example, .bashrc for bash or .zshrc for
zsh. Add the following line to it: PATH="$PATH":/path/to/play (with the
proper path substituted).

 Windows 7—Go to Control Panel > System and Security > System and click
Advanced System Settings on the right side. Click the button Environment Variables.
You’ll see a window listing variables (as in figure 1.2), and there should be a
user variable called PATH. Simply add the path to your Play installation to the
end of its value.

http://playframework.org

11Hello Play!
Now Play should be available from any new shell you open. Go ahead and try it out;
open a shell, and enter the play command. You should get output similar to this:

 _ _
_ __ | | __ _ _ _| |

| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1 (using Java 1.7.0_21 and Scala 2.10.0),
http://www.playframework.org

This is not a play application!

Use `play new` to create a new Play application in the current
directory, or go to an existing application and launch the development
console using `play`.

You can also browse the complete documentation at
http://www.playframework.org.

Figure 1.2 The Windows Environment Variables dialog

Mac users can use Homebrew
If you’re using Mac OS X, you could also use Homebrew to install Play 2. Use the
command brew install play to install, and Homebrew will download and extract
the latest version and take care of adding it to your path, too.

12 CHAPTER 1 An introduction to Play
As you can see, this command didn’t do much yet. But Play does try to be helpful; it
tells you why it couldn’t do anything (“This is not a play application!”), and it suggests
a command you can use to get started (play new). This will be a recurring theme
when using Play; whenever something goes wrong, Play will guess what you’re trying
to do, explain exactly where things went wrong, and suggest a next step to fix it. This
isn't limited to the command-line output, though; we’ll see useful error messages like
this in our browsers later on, too.

 For now, let’s follow Play’s suggestion: create a new application.

1.5.2 Creating your first application

A Play application is a directory on the filesystem that contains a certain structure that
Play uses to find configuration information, code, and any other resources it needs.
We don’t need to create this structure ourselves; Play will do it for us when we use the
play new command. This command will turn the current directory into a Play applica-
tion, or you can add the desired name of your new application as a parameter, and it’ll
create that directory for you.

 According to tradition, any first example in any sort of technical tutorial should
be called “Hello World.” Go ahead and type the following command: play new
HelloWorld. Play will ask you to confirm the name, so hit Enter when the question
comes up.

 _ _
_ __ | | __ _ _ _| |

| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1 (using Java 1.7.0_21 and Scala 2.10.0)
http://www.playframework.org

The new application will be created in /Users/sietse/Hello World

What is the application name? [HelloWorld]
> HelloWorld

Which template do you want to use for this new application?

1 - Create a simple Scala application
2 - Create a simple Java application

>

Play is now asking us what kind of project we want. Pick option 2, Java.

> 2

OK, application HelloWorld is created.

Have fun!

Congratulations, you’ve created your first Play 2 application. Let’s see what’s inside.

13Hello Play!
1.5.3 Play application structure

The play new command always creates a default application with a basic structure,
including a minimal HTTP routing configuration file, a controller class for handling
HTTP requests, a view template, jQuery, and a default CSS stylesheet. Don’t worry if
you don’t know what all these terms mean yet; we’ll cover them in detail in chapter 2.

 The full contents of a newly created application are shown next.

├── README
├── app
│ ├── controllers
│ │ └── Application.java
│ └── views
│ ├── index.scala.html
│ └── main.scala.html
├── conf
│ ├── application.conf
│ └── routes
├── project
│ ├── build.properties
│ └── plugins.sbt
├── public
│ ├── images
│ │ └── favicon.png
│ ├── javascripts
│ │ └── jquery-1.9.0.min.js
│ └── stylesheets
│ └── main.css
├── build.sbt
└── test

├── ApplicationTest.java
└── IntegrationTest.java

This directory structure is common to all Play applications.
 Now that we’ve seen the files that make up our application, let’s see what it looks

like. Time to run the application.

1.5.4 Running the application

Play 2 always needs to be started from within an application directory, so cd into it: cd
HelloWorld. Now start Play simply by typing play.

~$ cd HelloWorld
~/HelloWorld$ play
[info] Loading global plugins from /Users/sietse/.sbt/plugins
[info] Loading project definition from /Users/sietse/HelloWorld/project
[info] Set current project to HelloWorld

_ _
_ __ | | __ _ _ _| |

| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

Listing 1.1 Files in a new Play application

14 CHAPTER 1 An introduction to Play
play! 2.2.0 (using Java 1.7.0_21 and Scala 2.10.0),
http://www.playframework.org

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[Hello World] $

You’re now in Play’s console. In the console, you can run several commands to interact
with your application. We’ll be introducing some of them in this chapter and others
throughout the rest of the book, but you can always type play help to get a list of
commands.

 For now, we’ll stick to running the application. Type run.

[Hello World] $ run

[info] Updating {file:/Users/sietse/Hello%20World/}Hello World...
[info] Done updating.
--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on port 9000...

(Server started, use Ctrl+D to stop and go back to the console...)

Play has checked your application and its dependencies for updates, and started a web
server that serves your application. Let’s see what it’s serving.

1.5.5 Accessing the running application

Now that the application is running, you can access a default welcome page at
http://localhost:9000/. You should see the page shown in figure 1.3.

 This is already a kind of “hello world”—an example of a running application that
outputs something, so you can see how things fit together. This is more than a static
HTML file that tells you that “the web server is running.” Instead, this is the minimal
amount of code that can show you the web framework in action. This makes it easier to
create a “hello world” example than it would be if we had to start with a completely
blank slate—an empty directory that forces you to turn to the documentation each
time you create a new application, which is probably not something you’ll do every day.

 Now leaving our example application at this stage would be cheating, so we need
to change the application to produce the proper output. Besides, it doesn’t say “Hello
world” yet. Let’s change the welcome message.

1.5.6 Changing the controller class

The file in your application that controls what result is sent in response to the request
for http://localhost/ is app/controllers/Application.java. It’s a regular Java class,
which currently contains one method, index. The method looks like this:

public static Result index() {
return ok(index.render("Your new application is ready."));

}

http://localhost:9000/

15Hello Play!
The index method is called an action method. It contains the logic that determines
the response to the current HTTP request. We’ll get into more detail about what this
specific code means later, but for now it’s enough to understand that this is how Play
renders the default welcome page.

 Let’s change the output to something else. Simply edit the file app/controllers/
Application.java and replace the Application class’s index method with the following.

public static Result index() {
return ok("Hello World!");

}

This defines an action method that generates an HTTP “OK” response with text con-
tent. If you still have the application running, you can save the file and reload
http://localhost:9000/; it will serve a plain text document containing the cus-
tomary greeting, as seen in figure 1.4.

Figure 1.3 The default welcome page for a new Play application

Figure 1.4 Simple text output

http://localhost:9000/

16 CHAPTER 1 An introduction to Play
As you can see, the output is a little boring. In this case, it’s more interesting if you
make a mistake.

1.5.7 Add a compilation error

In the action method, remove the closing quote character from "Hello world", save
the file, and reload the page in your web browser. You’ll get a helpful compilation
error, as in figure 1.5.

 Fix the error in the code, save the file, and reload the page again. It’s fixed! Play
dynamically reloads changes, so you don’t have to manually build the application
every time you make a change.

1.5.8 Use an HTTP request parameter

This is still not a proper web application example, though, because we didn’t use HTTP
or HTML yet. Let’s make it a little more interactive and make it a proper HTML page. To
start, add a new action method with a String parameter to the controller class:

public static Result hello(String name) {
return ok("Hello " + name);

}

Now if you want to try to run this new method, you need to set up an HTTP path (say,
/hello) that corresponds to this method. You’ll also want to link an HTTP query
parameter called name to our method’s name parameter. This is called binding the
parameter. To get this to work, we need to tell Play what we want to do.

 The key to setting up this binding is in the file conf/routes. In fact, this file is the
reason why the index method we saw before works in the first place. If you open up
the file, you’ll see the following line:

GET / controllers.Application.index()

Figure 1.5 Compilation errors are shown in the web browser, with the
relevant source code highlighted.

17Hello Play!
That line is called a route, and it maps an HTTP path to an action method in our appli-
cation. In this case, it maps the root URL (/) to Application.index().

 In order to give our new hello() method a URL to reach it by, we’ll need to create
a route for it. Add a new line to the conf/routes file to map the /hello to our new
method, including the String parameter called name:

GET /hello controllers.Application.hello(name:String)

Now open http://localhost:9000/hello?name=Play! and you can see how the
URL’s query string parameter is passed to the controller action. You should get output
as in figure 1.6.

 An example web application that outputs only text isn’t very useful; we want HTML
output. Let’s create an HTML template to go with our action method.

1.5.9 Add an HTML page template

Under the app/views directory, add a file named hello.scala.html with the follow-
ing content:

@(name:String)
<!doctype html>
<html>

<head>
<meta charset="UTF-8">
<title>Hello</title>

</head>
<body>

<h1>Hello @name</h1>
</body>

</html>

This is a Scala template, a template with syntax based on the Scala programming lan-
guage. Don’t worry, you don’t have to learn Scala! Think of it as any other new tem-
plate language.

 The first line of our template defines the parameter list—a name parameter in this
case. The rest of the file is an HTML document layout of a simple page. If you take a
closer look at the HTML body, you’ll see that it includes an HTML em tag whose con-
tent is an expression, @name. That will output the value of the name parameter.

 In order to use this template, we have to edit the hello action method to return a
result that wraps a call to the template instead of a String literal:

public static Result hello(String name) {
return ok(views.html.hello.render(name));

}

Figure 1.6 Output using
an HTTP query parameter

http://localhost:9000/hello?name=Play

18 CHAPTER 1 An introduction to Play
Reload the web page—http://localhost:9000/hello?name=Play!—and you
will see the formatted HTML output, like in figure 1.7.

 Congratulations, you’ve created your first Play application! You’ve seen all the
major parts that make up a Play application. There’s one more thing to look at that’s
not really part of a Play application, but still important while developing one; the Play
console. Let’s see what exactly the console is for.

1.6 The console
Web developers are used to interacting with their applications through the browser.
With Play, you can also use the console to interact with your web application’s develop-
ment environment and build system. This is important for both quick experiments
and automating things.

 To start the console, run the play command in the application directory without
an additional command:

play

If you’re already running a Play application, you can type Control+D to stop the appli-
cation and return to the console.

 The Play console gives you a variety of commands, including the run command
that you saw earlier. For example, you can compile the application to discover the
same compilation errors that are normally shown in the browser, such as the missing
closing quotation mark that you saw earlier:

[hello] $ compile
[info] Compiling 1 Java source to hello/target/scala-2.9.1/classes...
[error] hello/app/controllers/Application.java:11:

unclosed string literal
[error] return ok(index.render("Hello world));
[error] ^
[error] hello/app/controllers/Application.java:11:

')' expected
[error] return ok(index.render("Hello world));
[error] ^
[error] hello/app/controllers/Application.java:12:

';' expected
[error] }
[error] ^
[error] hello/app/controllers/Application.java:14:

reached end of file while parsing
[error] }
[error] ^

Figure 1.7 Output using
our HTML template

http://localhost:9000/hello?name=Play!

19Summary
[error] 4 errors
[error] {file:hello/}hello/compile:compile:

javac returned nonzero exit code
[error] Total time: 0 s, completed Mar 19, 2012 11:29:53 AM
[hello] $

You can also start a Scala console, which gives you direct access to your compiled Play
application:

[hello] $ console
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.9.1.final
CO (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_29).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

As the name suggests, the Scala console uses Scala. This is because the build tool
(sbt—Scala Build Tool) and the core framework are Scala-based. Like we said before,
you don’t have to learn Scala to be able to use Play, but we did want to show you this
useful feature of Play’s console. Certain things are easy enough to do, and are not par-
ticularly different from how you would do things in Java. One example of this is ren-
dering a template, which is a Scala function that you can call like this:

scala> views.html.hello.render("Play!")
res1: play.api.templates.Html =

<!doctype html>
<html>

<head>
<meta charset="UTF-8">
<title>Hello</title>

</head>
<body>

<h1>Hello Play!</h1>
</body>

</html>

We rendered a dynamic template in a web application that is not running. This has
major implications for being able to test your web application without running a
server.

1.7 Summary
Play was built “by web developers, for web developers”—taking good ideas from exist-
ing high-productivity frameworks and adding the JVM’s power and rich ecosystem
without sacrificing enterprise features. Play 2 also introduces new goals expressed
through the reactive-programming model. The result is a web framework that offers
simplicity, productivity, and usability as well as structure and scalability. After starting
with a first version implemented in Java, Play 2 introduces more type safety through-
out the framework.

20 CHAPTER 1 An introduction to Play
 As soon as you start writing code, you go beyond Play’s background and its feature
list to what really matters—the user experience that determines how much you’ll
enjoy using Play. The good news is that Play achieves a level of simplicity, productivity,
and usability that means that you can look forward to enjoying Play and, we hope, the
rest of this book.

The parts of
an application
Now that you know what Play is all about, it’s time to start building a serious appli-
cation. In this chapter, we’ll dive deeper into what makes up a Play application, and
give you an introduction to all the important concepts you’ll need to know about
when building a Play application. The following chapters will then explore each
concept in more detail.

 In this chapter, we’ll also introduce the example application that we’ll evolve into
an enterprise-like application as we progress through the chapters of this book. The
application we chose will be an example of a real-world application; not the next
Twitter or Facebook, which have specific and uncommon requirements and chal-
lenges,1 but something your customer might ask you to build. We start by creating a

This chapter covers
 Introducing our sample application

 Discussing the contents of a new application

 Setting up an IDE

 Configuring a debugger

1 Although you could certainly use Play for them!
21

22 CHAPTER 2 The parts of an application
new application and identifying all the files that make up the new application. After
that, we’ll set up an IDE so that we’re ready to start the coding in the next chapter.

 Let’s see what we’re going to build.

2.1 Introducing our application
Throughout the rest of this book, we’ll build an enterprise web application from the
ground up. The Acme Paperclip Company has asked us to build them a web-based
warehouse management application. They have all sorts of plans for automation of
their warehouse processes, but they first want us to show them that we’re up to the job
by building a simple product catalog for their product range.

 The application we’ll build for them in this chapter is a simple CRUD2 application
for maintaining a product catalog. Users will be able to browse a list of products, as
well as add new ones. Because this is only a proof of concept, we’ll simulate storing
these products; the data storage will be mocked, rather than use a database. We’ll add
persistence in chapter 7.

 But first, let’s create a new Play application that will become our warehouse appli-
cation. As we did in chapter 1, when we created the “Hello World” example, we’ll use
the play new command. Go ahead and run play new warehouse, and you’ll have a new
directory, warehouse, that will contain a default Play application. Let’s see what’s inside.

2.2 A rundown of a Play application
If you take a look at your application’s directory, you’ll see it contains the following
files and directories:

├── README
├── app
│ ├── controllers
│ │ └── Application.java
│ └── views
│ ├── index.scala.html
│ └── main.scala.html
├── conf
│ ├── application.conf
│ └── routes
├── project
│ ├── build.properties
│ └── plugins.sbt
├── build.sbt
├── public
│ ├── images
│ │ └── favicon.png
│ ├── javascripts
│ │ └── jquery-1.9.0.min.js
│ └── stylesheets
│ │ └── main.css
└── test
 ├── ApplicationTest.java
 └── IntegrationTest.java

2 Create, Retrieve, Update, Delete

23Play’s configuration files
We’ll take a closer look at each of the top-level directories. The app directory is the
most important one, but we’ll cover that last, and talk about the others first.

 To start, we’ll discuss a directory that doesn’t show up in a newly created applica-
tion, but which will be there after you run it once: the target directory. There’s only
one thing you have to know about the target directory: you should ignore it. The
target directory is the build process’s working directory. This is where your compiled
classes are stored, among other things. Be sure to never commit it in your versioning
system. If you’re using Git as your versioning system, you probably won’t; Play also gen-
erated a .gitignore file for you, making sure you never commit files that are gener-
ated at runtime.

 Now that we know what to ignore, let’s start discussing the first directory of inter-
est, the conf directory.

2.3 Play’s configuration files
The conf directory is where you configure the application. Its contents look like this:

.
├── application.conf
└── routes
As you can see, this directory contains two files: application.conf and routes. The
application.conf file contains configuration information about your Play applica-
tion. This is where you’ll configure things like logging, database connections, which
port the server runs on, and more.

 The application configuration file is loaded at startup time and is globally read-
able. This means that any code that needs to can access it. If you need some configura-
tion options for your application, you can add some custom options to the file, and
use them in your own code. Play generated an example configuration when you ran
play new, so open it up and poke around if you’re curious. We’ll cover some of the
options in here when we run into them, both later in this chapter and through the
rest of the book.

 The other file in the conf directory is the routes file. Here you can define your
application’s routes, mappings from HTTP URLs to application code. It already con-
tains two example routes:

Home page
GET / controllers.Application.index()

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

Every line of the routes file defines a single route. Let’s focus on the first route; we’ll
explain what the second route does in section 2.5.

 Any route consists of three parts: the HTTP method, the path, and the action method,
as illustrated in figure 2.1.

 Our example route maps any HTTP GET request for ‘/’ to controllers.Application
.index(). This means that any GET request for the / (root) URL is handled by the index

24 CHAPTER 2 The parts of an application
method on the Application class in the controllers package. We call methods that
handle requests action methods.

 The routes file is important to any Play application. It allows you to “design” your
URLs. This is a big deal. Some (if not most) other Java web frameworks dictate what your
URLs should be, or the framework can’t do its job. Because Play gives you full control
over your URL schema, you can design clean, human-readable, bookmarkable URLs.

 The next directory in our list is the project directory, and it contains files that
configure the build process.

HTTP method URL path Action method

GET /list controllers.Products.list()

Figure 2.1 Components
of a route

About HTTP methods
If you’re unfamiliar with the HTTP protocol, the concept of an HTTP “method” may be
new to you. An HTTP method has nothing to do with the kinds of methods you find in
Java. There’s a lot of documentation to be found about the HTTP protocol and its
methods and what they imply; search the web if you’re curious, but here’s a summary
that will get you through the chapter.

The method of an HTTP request signifies the purpose of your request: whether you
want to retrieve a resource from the server or post information to it, for example. A
number of different methods are defined in the HTTP specification, and some exten-
sions to the protocol add even more, but the two most-used methods in the HTTP
standard are GET and POST.

GET is a retrieval request for a resource, and it contains no body, although the URL
used may contain parameters (everything that comes after the ?). It’s important that
a GET request may never have any lasting effects on the server; every time you GET
a URL it should have the same effect. The fancy word for this is idempotence. The
most important thing to remember is that you should only use it for information
retrieval, not for submission of data.

The POST method, on the other hand, is a request for data submission, and may con-
tain a body. It is still directed at a URL, but a POST request has effects server-side.
A POST request is often used for forms that create or modify information. This is why
your browser will likely warn you when you reload a URL that you POSTed to before.

There are more methods in the HTTP standard, such as PUT and DELETE, but we’ll
talk about those when we discuss HTTP APIs.

25Build configuration files
2.4 Build configuration files
The project directory looks like this:

├── README
├── app
├── conf
├── project
│ ├── build.properties
│ └── plugins.sbt
├── build.sbt
└── public
Of these files, you’ll only deal with build.sbt at the top root directory. Both
build.properties and plugins.sbt are SBT configuration files, which describe the
Play version to use and the SBT version to use. SBT (Scala Build Tool) is the build tool
that Play’s console and build process is based upon. We’ll tell you more about what
this file does whenever we need to change it, but don’t worry about it for now.

 The file build.sbt is a file you will have to edit occasionally. The file looks like this
when newly generated:

name := "warehouse"

version := "1.0-SNAPSHOT"

libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache

)

play.Project.playJavaSettings

In this file you define your application’s version number as well as any managed depen-
dencies it might need. Managed dependencies are libraries and modules you use in
your application that Play3 can look up and download automatically. This is called
resolving dependencies. You might be familiar with this process if you’ve used Maven
or Ivy before.

 As you can see, Play has already added some default modules for you. Every Java Play
project uses by default the javaJdbc component to interact with databases, the java-
Ebean component to add object-relational mapping, and the cache module to provide
caching capabilities. You can read more about the database modules in chapter 7.

 If you want to add a dependency on a library, you need to add a line describing it
to the list of dependencies. As an example, suppose you want to use Google’s Guava
library4 to get some useful extra functionality on top of what the JDK standard library
provides. You’d add a dependency on version 14.0 like this:

name := "warehouse"

version := "1.0-SNAPSHOT"

3 Play delegates this to SBT.
4 Visit http://code.google.com/p/guava-libraries/ for more information on Guava.

http://code.google.com/p/guava-libraries/

26 CHAPTER 2 The parts of an application
libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache,
"com.google.guava" % "guava" % "14.0"

)

play.Project.playJavaSettings

The next time the application is started, Play will resolve the dependency, automati-
cally download the correct JAR, and add it to the classpath.

 The way dependency resolving works is that several preconfigured dependency reposi-
tories are queried for the correct versions of the files you need. There are various
dependency repositories on the internet that serve the majority of the libraries avail-
able in the Java ecosystem. The best-known repository is the Maven central repository
at http://search.maven.org/.

 The dependency management system is smart enough to also download your
dependencies’ dependencies, also called transitive dependencies. If you’re using transi-
tive dependencies, and you want to include a library that has lots of dependencies
itself, you no longer have to keep track of what version of what JAR to put where. The
dependency management system does all of this for you.

 Another great benefit of using managed dependencies is that you don’t need to
keep any library files with your source files, keeping your codebase nice and small,
while ensuring that it will always build (as long as any repository server containing
the files is still available). Another bonus you get is that it’s easy to upgrade a library
to a different version: change the version in your dependency declaration, and
you’re done.

 Play 2 will automatically resolve any dependencies as soon as it finds any change in
this file when your application starts, so you don’t need to worry about having to trig-
ger a dependency update.

 If you want to use a library that’s not in any repository (yet)—for example, when
it’s a new library, or one you developed in-house—you don’t have to use dependency
management to use that library. You can create a new directory called lib in your
application’s root directory, and any JAR Play finds there will automatically be added
to the classpath for your application.

 We’ll talk more about dependencies and dependency management in chapter 11.
Let’s move on to the next directory, public.

2.5 Public assets
The public directory contains a few files already:

├── README
├── app
├── conf
├── project
├── public
│ ├── images

http://search.maven.org/

27Application code
│ │ └── favicon.png
│ ├── javascripts
│ │ └── jquery-1.7.1.min.js
│ └── stylesheets
│ └── main.css
└── target
As you can maybe guess from its contents and its name, the public directory contains
resources that are served directly, without any processing. This is what the second
route we saw in section 2.3 does: it makes the contents of this directory available as
public assets, files that are available to the client directly.

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

Public assets are usually support files that are not your application. Things like images,
stylesheets, JavaScript files, and static HTML pages are all public assets. Public assets
are not generated by your application; they’re served straight to the client.

 Play adds some additional features to requests serving public assets. It adds support
for caching by providing ETag headers and for compression using gzip.

 If you’re interested in preprocessing certain files, such as LESS stylesheets, Coffee-
Script files, or JavaScript files, be sure to read section 2.6.1 about compiled assets. But
first, let’s move on to the app directory.

2.6 Application code
The app directory is the most important directory of your application. It contains your
application code—any part of your application that will need to be compiled, such as
your Java source files and view templates, which we’ll discuss in a bit. When newly gen-
erated, the app directory contains the following files:

├── app
│ ├── controllers
│ │ └── Application.java
│ └── views
│ ├── index.scala.html
│ └── main.scala.html
├── conf
├── project
├── public
└── target
The files that are there are responsible for generating the welcome page we saw when
we navigated to http://localhost:9000/ in section 1.5.5 in chapter 1.

 There is one file, Application.java, that contains Java code implementing the
business logic for generating the web page. Classes that take an HTTP request, run some
logic on it, and return an HTTP result are called controller classes, which explains why
they’re in the controllers folder.

 There are two template files, index.scala.html and main.scala.html, which are
responsible for defining the HTML page. Any content that’s generated on the server
www.allitebooks.com

http://localhost:9000/
http://www.allitebooks.org

28 CHAPTER 2 The parts of an application
and sent to the client in an HTTP body, such as an HTML page, is called a view; there-
fore, the files are in the views folder.

 The template files contain a template in Play’s Scala template syntax. An important
aspect of Scala templates is that they’re compiled to regular classes. This has all sorts of
advantages, the most important of which are compile-time syntax and type checking.

Another thing that’s important to note about the app directory is that it’s the root for
all your source code, meaning that any subfolder will automatically have to be a pack-
age, as with any regular Java project.

 You might be used to having your packages look more like a domain space, such as
org.mycompany.myproject.mypackage, but there’s nothing in the Java language that
forces you to do that. It happens to be convention, and that convention mainly exists
for namespacing purposes, to prevent classes with the same name stepping on each
other’s turf. Because you won’t be running two Play apps in the same JVM at the same
time, you don’t have to worry about that in your Play apps, so Play doesn’t follow that
convention. That’s why your controllers are in the controller package, your views in
the views package, and so on. Nice, concise, and easy to follow.

 Now let’s look at another cool feature in Play that also uses the app directory: com-
piled assets.

2.6.1 Compiled assets

We’ve seen what assets are in section 2.5, where we introduced assets as files served to
the client, but assets can also be the result of compilation. A CSS or JavaScript file
doesn’t have to be compiled, but there are certain tools that generate them. Play has
the option to preprocess assets before they’re served to the client, giving you more
convenience and flexibility over these files. Out of the box, Play 2 comes with support
for LESS, CoffeeScript, and Google’s Closure compiler. Using them is completely
optional, but Play makes it easier for you to use these technologies if you want to.

 The source files for compiled assets should be kept in your application’s
app/assets directory. That directory is not auto-generated by Play, so create it if you
want to use this feature.

You don’t have to learn Scala
Although Play’s Scala templates in fact contain Scala code, this does not mean you
have to learn or understand Scala. Any template language has structures you need
to know to build your templates, and Scala templates are no different. Once you know
what you have to do to, for example, iterate over a collection or insert a variable value
somewhere, you know all you have to know to use that feature. You don’t have to
think of it as Scala if you don’t want to. Think of it as another template language.

Now if you happen to know Scala, you will recognize the structures used in the tags
and understand why they work the way they work. But the point is that you don’t have
to in order to use the template syntax and enjoy all the benefits it brings.

29Setting up an IDE
LESS
LESS (http://lesscss.org) is a dynamic stylesheet language that is compiled to CSS,
offering a more powerful and flexible stylesheet language that is still compatible with
any browser. Any .less file saved in the app/assets directory will be compiled into
the application’s public folder, which means the result will be available as a regular
public asset.

COFFEESCRIPT

CoffeeScript (http://coffeescript.org) is a programming language that compiles to
JavaScript. It’s generally considered a cleaner and more readable language than
JavaScript, and is gaining popularity. Any .coffee file placed in app/assets will be
compiled to the application’s public folder, like LESS files.

JAVASCRIPT

If you’re not using CofeeScript, but JavaScript, you might want to use Google’s Clo-
sure compiler (https://developers.google.com/closure/compiler/; not to be con-
fused with the programming language “Clojure”). The Closure compiler analyzes
your JavaScript code, tries to make it run faster, and warns you about potential prob-
lems. It also makes your code smaller (this is called minifying), which will make it
download and run faster. Like LESS and CoffeeScript, place any .js files you want to
compile in the app/assets directory, and they will be compiled to /public/.

2.7 Setting up an IDE
Now that we know what all the directories and files are for, we’re going to edit some of
them in a moment, and then start implementing our proof-of-concept application.
You could edit the files with a plain text editor. But if you use a Java IDE such as Eclipse
or IntelliJ, you’ll find that editing your source code becomes a lot easier, and you’ll be
more productive. One of the advantages of using a type-safe language like Java is that
tools like IDEs can do a lot to make coding faster and easier (and therefore more fun).
Most IDEs offer features such as autocompletion, automated refactoring, and static
code analysis. In short, an IDE makes your life easier.

 Play makes it easy to import your applications into most well-known IDEs by includ-
ing commands that will set up a project for you. Play comes with support for Eclipse
and IntelliJ IDEA. This does not mean that you can’t use any IDE you want; it means
that you have to set up the project in your IDE yourself if you use an IDE other than
Eclipse or IntelliJ IDEA.

2.7.1 Eclipse

Eclipse is one of the most well-known and widely used Java IDEs. It’s open source and
free to use. Figure 2.2 shows how you set up your application for Eclipse.

http://lesscss.org
http://coffeescript.org
https://developers.google.com/closure/compiler/

30 CHAPTER 2 The parts of an application
First of all, you need to generate the Eclipse-specific files that instruct Eclipse how to
load your application and its dependencies and how to build it. Play generates the
necessary files for you when you run the eclipse command from the Play console.

 Once these files have been generated, Eclipse will be able to recognize your appli-
cation’s directory as an Eclipse project, and you can import it directly. To do so, use
the Import command under the File menu in Eclipse’s menu bar. When Eclipse asks
you what you want to import, choose General > Existing Projects into Workspace. On the
next screen, click Browse to select your application’s root directory, and Eclipse will
recognize the project as figure 2.3 shows. Click the Finish button, and you’re all done
setting up your Eclipse project.

2.7.2 NetBeans

NetBeans is another well-known and widely used Java IDE. It’s open source and free
to use. NetBeans 7.3 supports Play natively. All you need to do is to install the NBPlay
plugin in your NetBeans IDE. To do so, go to http://plugins.netbeans.org/plugin/
47637/.

Figure 2.2 A new Play application in Eclipse

http://plugins.netbeans.org/plugin/47637/
http://plugins.netbeans.org/plugin/47637/

31Setting up an IDE
You should see a screen similar to figure 2.4.
 Download the plugin by clicking the Download button and save the plugin in a

known location. Once you have it downloaded, in NetBeans IDE, select the menu Tools
and Plugins. Select the Downloaded tab and then click the Add Plugins button. Select
the previously saved NBPlay plugin as shown in figure 2.5.

 You are now installing the plugin.

Figure 2.3 Importing a project in Eclipse

32 CHAPTER 2 The parts of an application
Figure 2.4 NetBeans plugin center

Figure 2.5 Install the NetBeans plugin

33Setting up an IDE
Now, open your previously created project. NetBeans now recognises that it is a Play 2
project, as shown in figure 2.6.

 The Play NetBeans plugin provides syntax highlighting, syntax checking, and auto-
complete in Play 2 templates and routes files as figure 2.7 shows.

Figure 2.6 Open a new Play project in NetBeans IDE

Figure 2.7 A new Play application in NetBeans IDE

34 CHAPTER 2 The parts of an application
2.7.3 IntelliJ IDEA

IntelliJ IDEA is a commercial IDE from JetBrains. It is open source, and the commu-
nity edition is free to use, with more powerful features available in the paid “ulti-
mate” edition.

 Since version 12, IntelliJ has support for Play 2. This means you get syntax high-
lighting, syntax checking, and autocomplete in Play 2 templates and routes files as
shown in figure 2.8.

 Play 2 can make an IntelliJ “project” out of your application, but the model that is
part of this project can also be imported into any existing project you might have. To
create the IntelliJ project, run the idea command from the Play 2 console.

 To open the project in IntelliJ, select File > Open project… from the menu bar, and
choose the directory for your application.

2.7.4 Using a debugger

One of the most useful features in Java IDEs is their debuggers, which tap into the JVM
that’s running your application and allow you to pause code execution at any point
(such a point is called a break point) to inspect the state of your application.

 To debug a Play application, you need to start it in debug mode, and then config-
ure your debugger to use remote debugging, which means that your debugger will con-
nect to a JVM that’s already running, rather than the IDE launching one and
connecting to that.

Figure 2.8 A new Play application in IntelliJ IDEA

35Setting up an IDE
 To start Play in debug mode, start it with the debug parameter. Play will tell you
which port to connect your debugger to, which is port 9999 by default:

~/warehouse > play debug
Listening for transport dt_socket at address: 9999
[info] Loading project definition from /Users/sietse/hello/project
[info] Set current project to hello (in build file:/Users/sietse/hello/)

If you want to use Eclipse’s debugger with your Play application, you need to set up a
new debug configuration under the Run menu. Select Remote Java Application and click
the New button to create a new remote debug configuration. Set it to connect to your
Play application on localhost, by default on port 9999. To start debugging, select
Run > Debug in the menu bar as shown in figure 2.9.

 To use IntelliJ’s debugger with a Play application, select Run > Edit Configurations
from the menu bar, and then click the plus button in the upper-left corner. From the

Figure 2.9 Adding a debug configuration in Eclipse

36 CHAPTER 2 The parts of an application
menu that pops up, select Remote to create a new remote debug configuration.
To start using your new configuration, select Run > Debug… from the menu bar as
shown in figure 2.10.

 Explaining how to use the debugger is beyond the scope of this book, but this
should be enough to get you started debugging with Eclipse or IntelliJ.

2.8 Summary
In this chapter, we’ve created a new Play 2 Java project and identified what directories
and files make up a Play application.

 We’ve learned that compiled code goes under /app/, and that includes any compiled
assets, such as LESS and CoffeeScript files. Static assets go in /public/, and /conf/
holds important configuration data, such as the routes file and application.conf.

 We’ve also seen how to set up an IDE and how to attach a debugger to a running
Play application.

 In the next chapter, we’ll start coding our example application.

Figure 2.10 Adding a debug configuration in IntelliJ

A basic CRUD
application
In the previous chapter, we introduced our example application: the paper clip
warehouse management system. Now that we know what we’re going to build, and
have our IDE all set up, it’s time to start coding.

 In this chapter, we’ll start implementing our proof-of-concept (POC) applica-
tion. It will be a simple CRUD1 application, with data stored in-memory rather than
in a database. We’ll evolve our POC application in later chapters, but this simple
application will be our starting point.

 We’ll start by setting up a controller with some methods and linking some URLs
to them.

This chapter covers
 An introduction to all major Play concepts

 Creating a small application

1 Create, Retrieve, Update, Delete
37

38 CHAPTER 3 A basic CRUD application
3.1 Adding a controller and actions
In chapter 1 we edited the Application class, changing the default output and adding
custom operations. The Application class is an example of a controller class. Control-
ler classes are used as a home for action methods, which are the entry points of your
web application. Whenever an HTTP request reaches the Play server, it is evaluated
against a collection of rules in order to determine what action method will handle this
request. This is called routing the request, which is handled by something aptly named
the router, which, in turn, is configured using the conf/routes file, as described in sec-
tion 2.3. After the correct action method is selected, that method executes the logic
necessary to come up with a result to return to the client in response to the request.
This process is illustrated in figure 3.1.

 Let’s create a controller for the new warehouse application that we created in the
previous chapter. The only requirement of a controller class is that it extends
play.mvc.Controller. It does not have to be part of a specific package, although it is
convention to put controllers in the controllers package. Let’s create one for our
product catalog. Because we’re dealing with products, we’ll call it Products. Create
the Products class under the controllers package (that means the file is named
/app/controllers/Products.java). Have this class extend Controller, like so:

package controllers;

import play.mvc.Controller;

public class Products extends Controller {

}

An empty controller doesn’t do anything. The whole purpose of controllers is to pro-
vide action methods. An action method has to conform to the following requirements:

 It has to be public.
 It has to be static.
 It has to have a return type (a subclass) of Result.

HTTP requests

Products controller

edit action

list action

show action

GET /products/ product list page

GET /product/5010255079763

GET /product/5010255079763/edit

Controller actions

product details page

product details edit page

HTTP responses

update actionPOST /product/5010255079763 redirect to details page

Figure 3.1 Requests routed to actions

39Mapping URLs to action methods using routes
Let’s add some action methods to our controller. For our proof-of-concept applica-
tion, we’ll want to list products in our catalog, show details for an individual product,
and save new and updated products. We’ll add actions for these operations later, but
for now we’ll make them return a special type of result: TODO. A TODO result signifies
that the method is yet to be implemented. Add the corresponding actions, as shown in
the following listing.

package controllers;

import play.mvc.Controller;
import play.mvc.Result;

public class Products extends Controller {

public static Result list() {
return TODO;

}

public static Result newProduct() {
return TODO;

}

public static Result details(String ean) {
return TODO;

}

public static Result save() {
return TODO;

}

}

Now that we have some action methods, let’s give them URLs so that we can reach
them.

3.2 Mapping URLs to action methods using routes
In order to determine which action method will handle a given HTTP request, Play
takes the properties of that request, such as its method, URL, and parameters, and
does a lookup on a set of mappings called routes. Like we saw before, in section 2.3,
routes are configured in the routes file in your application’s conf directory. Add
routes for our new operation, as shown in the following listing.

GET /products/ controllers.Products.list()
GET /products/new controllers.Products.newProduct()
GET /products/:ean controllers.Products.details(ean: String)
POST /products/ controllers.Products.save()

Now that we have some routes, let’s try them out. Start your application if it’s not
already running, and point your browser at http://localhost:9000/products/. You
should see the page shown in figure 3.2.

Listing 3.1 Adding action methods

Listing 3.2 Adding routes for our product catalog

List all products

Show a blank product form

Show a product edit form

Save a product

http://localhost:9000/products/

40 CHAPTER 3 A basic CRUD application
If you see the TODO placeholder page, that means the controller, action method, and
route are all correctly set up. Time to add some functionality. The first step is adding a
class that will model our products.

3.3 Adding a model and implementing functionality
In order to create a product catalog, we need a class to represent “a product” in our appli-
cation. Such classes are called model classes, because they model real-world concepts.

3.3.1 Creating a model class

We’ll keep our product model simple for now: an article number, name, and descrip-
tion will do. For the article number, we’ll use an EAN code, which is a 13-digit interna-
tionally standardized code. Although the code consists of digits, we’re not going to
perform math on it, so we’ll use String to represent the EAN code.

 Create a class called Product under a new package called models. Again, there’s
nothing about Play that requires you to put model classes in the models package, but
it’s convention to do it that way. Add the properties we mentioned previously to your
new class, and add a constructor that sets them on instantiation for convenience. In
addition, add a default no-argument constructor, because we’ll need that when we
add database persistence later. The last thing we’ll add is a toString() method,
because that will make it easier for us to see what product object we have.

 We end up with a class as shown in the following listing.

package models;

public class Product {

public String ean;
public String name;

Listing 3.3 /app/models/Product.java

Figure 3.2 Play’s TODO placeholder at /products

41Mocking some data
public String description;

public Product() {}

public Product(String ean, String name, String description) {
this.ean = ean;
this.name = name;
this.description = description;

}

public String toString() {
return String.format("%s - %s", ean, name);

}

}

DON’T BE ALARMED BY PUBLIC PROPERTIES If you’ve been a Java developer for
some time, you’re probably surprised that we chose to use public properties.
You’re probably more used to making properties private and exposing them
using getter and setter methods instead, creating a “Java Bean.” Don’t worry,
we know what we’re doing. For now, bear with us. Everything will be
explained in detail in chapter 7.

We’ve created our first model class. In most cases, instances of these model classes are
also stored in a database. To keep things simple, we’ll fake this functionality for now
by maintaining a static list of products. Now let’s create some data.

3.4 Mocking some data
We’ll mock data storage by using a static Set of Products on the Product model class,
and we’ll put some data in the class’s static initializer, as shown in the following listing.

import java.util.ArrayList;
import java.util.List;

public class Product {

private static List<Product> products;

static {
products = new ArrayList<Product>();
products.add(new Product("1111111111111", "Paperclips 1",

"Paperclips description 1"));
products.add(new Product("2222222222222", "Paperclips 2",

"Paperclips description "));
products.add(new Product("3333333333333", "Paperclips 3",

"Paperclips description 3"));
products.add(new Product("4444444444444", "Paperclips 4",

"Paperclips description 4"));
products.add(new Product("5555555555555", "Paperclips 5",

"Paperclips description 5"));
}

...
}

Listing 3.4 Adding some test data to /app/models/Product.java

42 CHAPTER 3 A basic CRUD application
NEVER DO THIS IN A REAL APPLICATION Although having a static property serve
as a cache for data is convenient for this example, never do it in a real-world
app. Because we’ll only be using this List in dev-mode, which has only one
thread running by default, we won’t run into any serious trouble. But when you
try this in any environment with multiple threads, or even multiple application
instances, you’ll run into all sorts of synchronization issues. Depending on the
situation, either use Play’s caching features, or use a database (see chapter 7).

Now that we have some data, let’s also add some methods to manipulate the collection
of Products. We’ll need methods to retrieve the whole list, to find all products by EAN
and (part of the) name, and to add and remove products. Add the methods shown in
listing 3.5. We’ll let their implementations speak for themselves.

public class Product {

...
public static List<Product> findAll() {

return new ArrayList<Product>(products);
}

public static Product findByEan(String ean) {
for (Product candidate : products) {

if (candidate.ean.equals(ean)) {
return candidate;

}
}
return null;

}

public static List<Product> findByName(String term) {
final List<Product> results = new ArrayList<Product>();
for (Product candidate : products) {

if (candidate.name.toLowerCase().contains(term.toLowerCase())) {
results.add(candidate);

}
}

return results;
}

public static boolean remove(Product product) {
return products.remove(product);

}

public void save() {
products.remove(findByEan(this.ean));
products.add(this);

}

}

Now that we have the plumbing for our products catalog, we can start implementing
our action methods.

Listing 3.5 Data access methods on the Products class

43Implementing the list method
3.5 Implementing the list method
We’ll start with the implementation for the list method. As we said before, an action
method always returns a result. What that means is that it should return an object with
a type that is a subclass of play.mvc.Result. Objects of that type can tell Play all that it
needs to construct an HTTP response.

 An HTTP response consists of a status code, a set of headers, and a body. The status
codes indicate whether a result was successful and what the problem is if it wasn’t.
Play’s Controller class has a lot of methods to generate these result objects. Let’s go
ahead and replace our TODO result with a code 200 result, which means “OK.” To do
this, use the ok() method to obtain a new OK result, like this:

public static Result list() {
return ok();

}

If you were to try this out in a browser, you’d get an empty page. If you were to check the
HTTP response,2 you’d see that the response status code has changed from 501 - Not
Implemented to 200 - OK. The reason why our browser shows an empty page is because
our response has no body yet. That makes sense, because we didn’t put one in yet. To
generate our response body, we want to generate an HTML page. For this, we’ll want to
write a template file.

3.5.1 The list template

As we saw in the previous chapters, a Play template is a file containing some HTML
and Scala code that Play will compile into a class that we can use to render an HTML
page. Templates go in your application’s views directory and, to keep things clean
and separated by functionality, we’ll create a products directory there. Next, create a
file called list.scala.html, and add to it the contents shown in the following listing.

@(products: List[Product])

@main("Products catalogue") {

<h2>All products</h2>

<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>

</tr>
</thead>
<tbody>
@for(product <- products) {

2 Your browser probably has tools to do that.

Listing 3.6 /app/views/products/list.scala.html

44 CHAPTER 3 A basic CRUD application
<tr>
<td>

@product.ean
</td>
<td>

@product.name</td>
<td>

@product.name</td>
</tr>
}

</tbody>
</table>

}

When rendered (we’ll get to how to do that in a
moment), this template will produce a page as
seen in figure 3.3.

 Don’t worry, we’ll make it look better in a bit.
But first, without going into too much detail (see
chapter 8 for more detail on templates), let’s see
what happens in the template.

HOW THE TEMPLATE WORKS

The first line of the list template is the parame-
ter list:

@(products: List[Product])

With the parameter list, we define which parameters this template accepts. Every entry
in the parameter list consists of a name, followed by a colon and the type of the
parameter. In our example, we have one parameter called name, of type List
<Product>,3 to represent the list of products we want to render. This parameter list will
be part of the method definition for this template’s render method, which is how Play
achieves type safety for its templates.

 Let’s take a look at the next line of code, which starts a block of code:

@main("Products catalogue") {
...

}

With this code we call another template, the one called main. This is the template at
/app/views/main.scala.html, which Play created for us when we created the appli-
cation. It contains some boilerplate HTML that we’ll wrap around all of our pages, so
we don’t have to worry about that any more. The code we write in the block will end
up in the <body> tag of our rendered HTML page. This is how you can compose tem-
plates in Play, and we’ll see more of this in later chapters.

3 In Scala syntax, generic type arguments are indicated using square brackets instead of angle brackets as in
Java.

Figure 3.3 Our products listing

45Implementing the list method
 The body of our code block is mainly HTML, which will be included in the ren-
dered page verbatim. There’s one bit of template code left—the bit that iterates over
our products list:

@for(product <- products) {
...

}

This bit of code is comparable to a regular Java for-each loop: it iterates over a collec-
tion and repeats the code it wraps for every element in it, assigning the current ele-
ment to a variable. In our example, it generates a pair of <td> elements for every
Product in our products list. Listing 3.7 shows the full loop as a reminder.

@(products: List[Product])
<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>

</tr>
</thead>
<tbody>
@for(product <- products) {

<tr>
<td>

@product.ean
</td>
<td>

@product.name</td>
<td>

@product.name</td>
</tr>
}

</tbody>
</table>

The pieces of code in the loop’s body that start with an @ are Scala expressions; the code
that follows the @ is evaluated, and the result is included in the output. In this case, we
use it to print out properties of product and generate links to our action methods
based on our routing configuration. For everything about routing, see chapter 5.
We’ll render our template soon, but first let’s add some style.

ADDING BOOTSTRAP

During our examples, we focus more on functionality than styling; this is a book about
Play, after all, and not about web design. But there is a way to make things look nicer
with little effort: Bootstrap, by Twitter.

Listing 3.7 for loop generating the product descriptions

46 CHAPTER 3 A basic CRUD application
 Bootstrap provides some CSS and image files that make HTML look good and
maybe adding an HTML class here and there. It’s easy to use Bootstrap in your Play
applications. Here’s how.

 First, download the latest version of Bootstrap from the website at http://getbootstrap
.com. Extract the contents of the zip file to a bootstrap directory under your applica-
tion’s public directory. This will make the files available from your application.

 Next, we need to include the Bootstrap CSS in our templates. Because we’re going
to need it on all of our pages, the main template is the best place to do that. Open the
file /app/views/main.scala.html, and add the following line below the existing
<title> element, inside the <head> element:

<link href="@routes.Assets.at("bootstrap/css/bootstrap.min.css")"
rel="stylesheet" media="screen">

This will allow your pages to be styled by Bootstrap, and, from now on, we’ll use Boot-
strap to make all of our examples look nicer. If you want to learn more about Boot-
strap, check out the website at http://getbootstrap.com.

 Now that we have our templates ready, let’s see how to render them.

RENDERING THE TEMPLATE

Now that we have a template, all that’s left for us to do is to gather a list of products
and render the template in our list action method. The following listing shows how.

...
import views.html.products.list;

public class Products extends Controller {

public static Result list() {
List<Product> products = Product.findAll();
return ok(list.render(products));

}

...

}

As you can tell from the import in this example, the template /views/products/
list.scala.html results in a class called views.html.products.list. This list class
has a static method called render, which, as your IDE can tell you, takes one parameter
of type List<Product> and returns an object of type Html. The parameter is the one
we defined at the top of our template, whereas the return type is determined by the
.html extension of the template filename.

 The render method on the template results in an HTML page, which we want to
return to the client in the body HTTP response. To do this, we wrap it in a Result
object by passing it to the ok method.

Listing 3.8 Rendering the list template

http://getbootstrap.com
http://getbootstrap.com
http://getbootstrap.com

47Adding the product form
Time to try out our code. Navigate to http://localhost:9000/products/, and you
should see a list as in figure 3.4.

 Now that we can see our list of products, let’s continue implementing features.

3.6 Adding the product form
A static product catalog isn’t useful. We want to be able to add products to the list.
We’ll need a form for that, so create a new template called details.scala.html at
/app/views/products. We’ll create a form that will work both for creating new prod-
ucts and editing existing ones. The template is shown in the following listing.

@(productForm: Form[Product])
@import helper._
@import helper.twitterBootstrap._

@main("Product form") {
<h1>Product form</h1>
@helper.form(action = routes.Products.save()) {

<fieldset>
<legend>Product (@productForm("name").valueOr("New"))</legend>
@helper.inputText(productForm("ean"), '_label -> "EAN")
@helper.inputText(productForm("name"),'_label -> "Name")
@helper.textarea(productForm("description"), '_label -> "Description")

</fieldset>
<input type="submit" class="btn btn-primary" value="Save">

Cancel
}

}

As you can see in the first line of the template, this template takes a Form<Product>
parameter, like our list template took a List<Product> parameter. But what’s this
Form class? Form is what Play uses to represent HTML forms. It represents name/value

Listing 3.9 Product form /app/views/products/details.scala.html

Figure 3.4 Our products listing

http://localhost:9000/products/

48 CHAPTER 3 A basic CRUD application
pairs that can be used to build an HTML form, but it also has features for input valida-
tion, error reporting, and data binding. Data binding is what makes it possible to con-
vert between HTTP (form) parameters and Java objects and vice versa.

3.6.1 Constructing the form object

Let’s see how these forms work. First, we need to create one to pass to the template.
That’s as easy as calling the play.data.Form.form() method in our action method.
The form method takes a class as a parameter, to tell it what kind of object the form is
for. Because a product form is always the same, and we’re going to use it in a few
places in the Products controller, we might as well create a constant for it in the class,
like so:

private static final Form<Product> productForm = Form
.form(Product.class);

Now that we have an empty form, it’s easy to pass it to the template. Implement the
newProduct action method as shown here:

public static Result newProduct(){
return ok(details.render(productForm));

}

With this action method implemented, you can see the form at http://localhost:
9000/products/new. It should look like figure 3.5.

 Let’s see how to create the form.

3.6.2 Rendering the HTML form

Let’s see how we make an HTML form from our Form object. At the top of the tem-
plate, you can see how we import two helpers:

@import helper._
@import helper.twitterBootstrap._

Figure 3.5 The product form

http://localhost: 9000/products/new

49Adding the product form
These helpers are there to help us generate HTML. The first one imports generic
HTML helpers, and the second one makes the generated HTML fit the Twitter Boot-
strap layout. We first use one of these helpers when we start the form:

@helper.form(action = routes.Products.save()) {
...

}

The form helper generates an HTML <form> element. The action parameter tells it
where the form should be submitted to. In our case, that’s the save method on our
Products controller. Play will turn this into an action attribute with the correct URL
value for us.

 A form is not much use without any fields. Let’s see how those are constructed.

3.6.3 Rendering input fields

Our form contains a single fieldset, which is created using regular HTML. The value
for the fieldset’s legend element is interesting enough to take a closer look at. It starts
off with regular text, “Product,” but then we use the form object to construct the rest
of the value:

@productForm("name").valueOr("New")

Here, we request the form field name by calling productForm("name").4 This object is
of type Form.Field, and it represents the form field for the name property of the
form. To get the value, we could call the value method on the field. But because we
don’t know if there is a value for this field, we use the valueOr method, which allows
us to specify a default value to use in case the field has no value. This means we don’t
need to check for a value manually, saving us from a lot of messy, verbose code in our
template.

 The next few lines in our template render input elements—one for each property
of our Product class:

@helper.inputText(productForm("ean"))
@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))

When our template is rendered, these lines are rendered as shown in the following
listing.

<div class="clearfix " id="ean_field">
<label for="ean">ean</label>
<div class="input">

<input type="text" id="ean" name="ean" value="" >

</div>
</div>

4 productForm("name") is short for productForm.field("name").

Listing 3.10 Rendered input elements

50 CHAPTER 3 A basic CRUD application
<div class="clearfix " id="name_field">
<label for="name">name</label>
<div class="input">

<input type="text" id="name" name="name" value="" >

</div>
</div>

<div class="clearfix " id="description_field">
<label for="description">description</label>
<div class="input">

<textarea id="description" name="description" ></textarea>

</div>
</div>

With three simple lines of code, we’ve generated all that HTML! And because of the
Bootstrap helper, it doesn’t look bad, either.

 The final line of our template’s form adds a regular HTML Submit button, and
with that, our form is ready. When you try it out, the form will submit to our unimple-
mented save method, so it doesn’t do much yet. Let’s take care of that now.

3.7 Handling the form submission
When you submit the product form in the browser, the form gets submitted to the
URL specified in the action attribute of the HTML <form> element, which, in our
case, ends up at our application’s Products.save action method. It’s now up to us to
transform those HTML form parameters into a Product instance, and add it to the
product catalog. Luckily, Play has some tools to make this job easy.

 When we created the Form object in the previous section, we used it to create an
HTML form based on the Product class. But Play’s Forms work the other way around,
too. This reverse process is called binding.

 Play can bind a set of name/value combinations, such as a Map, to a class that has
properties with the same names. In this case, we don’t want to bind a map, but we do
want to bind values from the request. Although we could obtain a Map of the
name/value pairs from the HTTP request, this situation is so common that the Form
class has a method to do this: bindFromRequest. This will return a new Form object,
with the values populated from the request parameters. To obtain a Product from our
form submission and add it to the catalog, we can write the following code:

public class Products extends Controller {
...

public static Result save() {
Form<Product> boundForm = productForm.bindFromRequest();
Product product = boundForm.get();

Listing 3.11 Product binding

51Handling the form submission
product.save();
return ok(String.format("Saved product %s", product));

}
}

When you try out the form now, you’ll get a simple text message informing you of the
successful addition of the product. If you then check the catalog listing we made in
section 3.5, you can verify that it worked.

 But our current implementation isn’t particularly nice. The user is free to omit the
EAN code and product name, for example; at the moment this will work, but it’s not
something that we want. Also, the text message reporting the result isn’t great. It
would be a lot nicer to rerender the form with an error message on failure, and show
the product listing with a success message if everything was correct.

 First, let’s tell Play that the ean and name fields are required. We’ll leave the
description optional.

 We can make those fields required by using an annotation, play.data.validation
.Constraints.Required. Play will check for those annotations and report errors
accordingly. The following listing shows the constraint added.

...
import play.data.validation.Constraints;

public class Product {
...

@Constraints.Required
public String ean;
@Constraints.Required
public String name;
public String description;

...
}

What we need to do now is perform the validation in our controller and show an error
or success message accordingly. The following listing shows a different version of
save() that has that functionality.

public static Result save() {
Form<Product> boundForm = productForm.bindFromRequest();
if(boundForm.hasErrors()) {

flash("error", "Please correct the form below.");
return badRequest(details.render(boundForm));

}

Product product = boundForm.get();
product.save();
flash("success",

String.format("Successfully added product %s", product));

return redirect(routes.Products.list());
}

Listing 3.12 Adding a pattern constraint

Listing 3.13 A better save implementation

52 CHAPTER 3 A basic CRUD application
In this version of our implementation, we use the validation functionality of Play’s
forms. On the second line of our method, we ask the Form if there are any errors, and,
if there are, we add an error message and rerender the page. If there are no errors, we
add a success message and redirect to the products list.

 The error and success messages aren’t visible yet. We’ve added them to something
called the flash scope. Flash scope is a place where we can store variables between
requests. Everything in flash scope is there until the following request, at which point
it’s deleted. It’s ideal for success and error messages like this, but we still need to ren-
der these messages.

 Because messages like these are useful throughout the application, let’s add them
to the main template, because that’s what every page extends. That way, every page will
automatically display any messages we put in flash scope. Add the lines shown in list-
ing 3.14 to the start of the <body> element in app/views/main.scala.html.

@if(flash.containsKey("success")){
<div class="alert alert-success">

@flash.get("success")
</div>

}

@if(flash.containsKey("error")){
<div class="alert alert-error">

@flash.get("error")
</div>

}

Now try out the form. Load the form at http://localhost:9000/products/new,
and try to submit the form while leaving the EAN field blank. You should see a page as
in figure 3.6.

 A lot more is possible using form validation, but for now this is enough. You can
learn all about forms and validation in chapter 6.

 Now that we have our form working, we can use it to edit existing products. To do
this, we need to implement the details method as in the following listing.

public class Products extends Controller {
...

public static Result details(String ean) {
final Product product = Product.findByEan(ean);
if (product == null) {

return notFound(String.format("Product %s does not exist.", ean));
}

Form<Product> filledForm = productForm.fill(product);
return ok(details.render(filledForm));

}

...
}

Listing 3.14 Displaying flash success and error messages

Listing 3.15 Implementing the details method

http://localhost:9000/products/new,

53Adding a delete button
As you can see, it doesn’t take a whole lot of code to turn a “new product” form into a
“product edit” form. This method takes an EAN code as a parameter from the URL, as
we defined in the routes file in section 3.2. We then look up the product based on the
EAN. If there’s no product with that EAN, we return a 404 - Not Found error.

 If we do find a product, we create a new Form object, prefilled with the data from
the product we found. We use the fill method on our existing empty form object for
that. It’s important to note that this does not fill in the existing form, but it creates a
new form object based on the existing form.

 Once we have the form, all that remains is to render the template and return the
“ok” result, as in newProduct.

 This action method is complete, and now the links in the product listing all work
correctly. There’s one more step left to complete our CRUD functionality: we need to
implement delete functionality.

3.8 Adding a delete button
Let’s start by adding a delete() method to our Products controller. The functionality
is largely similar to the details() method; we take an EAN parameter, search for a
corresponding Product, and return a 404 error if we can’t find one. Once we have the
Product, we delete it and redirect back to the list() method. Listing 3.16 shows the
method.

Figure 3.6 Validation errors in our form

54 CHAPTER 3 A basic CRUD application

public static Result delete(String ean) {
final Product product = Product.findByEan(ean);
if(product == null) {

return notFound(String.format("Product %s does not exists.", ean));
}
Product.remove(product);
return redirect(routes.Products.list());

}

Now we need to add a route for this method in order to make it callable from the web.
Because this is a method that changes something, we can’t make this a GET operation.
With a RESTful interface, we have to make this a DELETE operation. To do so, we’ll use
a bit of JavaScript to send a DELETE request, because we can’t use a simple link (that
would issue a GET operation). This is simple; the following code instructs your browser
to issue a DELETE request to the server:

<script>
function del(urlToDelete) {

$.ajax({
url: urlToDelete,
type: 'DELETE',
success: function(results) {

// Refresh the page
location.reload();

}
});

}
</script>

Now, let’s change our route to add a DELETE route, as shown here:

DELETE /products/:ean controllers.Products.delete(ean: String)

It’s now time to add the user interface for our delete operation: the Delete button.
Because the delete operation requires an HTTP DELETE call, we add a simple link that
calls our JavaScript del method, which in turn calls the server and refreshes the page.
We add a simple link with an onclick action handler that calls our JavaScript, and
we’re done. The following listing shows the updated list template.

@(products: List[Product])
@main("Products catalogue") {

<h2>All products</h2>

<script>
function del(urlToDelete) {

$.ajax({
url: urlToDelete,
type: 'DELETE',
success: function(results) {

Listing 3.16 The delete() action method

Listing 3.17 Updated template—app/views/products/list.scala.html

55Summary
// Refresh the page
location.reload();

}
});

}
</script>

<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th></th>

</tr>
</thead>
<tbody>
@for(product <- products) {

<tr>
<td>

@product.ean
</td>
<td>

@product.name</td>
<td>

@product.name</td>
<td>

<i class="icon icon-pencil"></i>

<i class="icon icon-trash"></i>

</td>
</tr>
}

</tbody>
</table>

<i class="icon-plus"></i> New product

}

Go ahead and test it out. You should be able to delete products from the list page now.
 With the delete functionality added, the functionality for our proof-of-concept

application is now complete.

3.9 Summary
In this chapter, we implemented a simple proof-of-concept application. We added all
the CRUD functionality, with a datastore in memory. We started with a controller with
some basic action methods and linked them to URLs by setting up Play’s routing system.
We then introduced some view templates and added some forms with validation. Finally,
we added the delete functionality by adding a DELETE action and a corresponding form.

The link calls our
JavaScript del method,
which in turn issues a
request to the server

56 CHAPTER 3 A basic CRUD application
 This chapter was a quick introduction to all the core concepts of Play. All the topics
in this chapter will be explained in detail in later chapters, but now you have the gen-
eral idea of the most important concepts. You’ve also had a taste of what it means that
Play is type-safe. If you followed along with the exercises, and you made an occasional
mistake, you’ve probably also seen how soon mistakes are spotted because of the type
safety, and how useful Play’s error messages are when a problem is found.

 In the next chapter, we’re going to see how Play 2 fits in an enterprise environ-
ment and the enterprise challenges Play 2 is trying to solve.

Part 2

Core functionality

Part 2 takes a look at Play’s place in a greater system architecture, and dives
deeper into the concepts introduced in part 1.

 Chapter 4 takes a step back and takes a look at where Play fits in a more con-
ventional enterprise architecture. It contrasts Play with conventional JEE devel-
opment, and shows how Play can tackle some major challenges in such an
architecture.

 Chapter 5 is all about controllers. It explains what controllers are and how
action methods help you interface with the web. It also explains how routing
works and introduces the different scopes.

 Chapter 6 covers how to handle user input. We show you how to use Play’s
Form API, as well as how binding and validation work.

 Chapter 7 introduces database persistence. We explain the concept of an
ORM and show you how to use the Ebean ORM tool with Play. At the end of the
chapter, we show how you could choose to use JPA instead of Ebean.

 Chapter 8 explains how view templates work. It explains the template syntax,
and shows how to use composition to structure your pages in a reusable manner.
At the end of the chapter, we look at using Play’s support for LESS and Coffee-
Script, and introduce the internationalization API.

An enterprise app,
Play-style
In this chapter, we’ll review what an enterprise application is. We’ll then explain
what challenges enterprise applications face today. We’ll also see how the Play
framework can be used to create enterprise applications. From there, we’ll archi-
tect the warehouse application we’re going to implement throughout the book and
put the application in an enterprise context.

4.1 Recalling what an enterprise application is
An enterprise application is usually a business application. Its purpose is to meet
specific business requirements. It encodes business policies, processes, rules, and

This chapter covers
 Recalling what an enterprise application is

 Determining today’s enterprise application challenges

 Understanding Play applications in an enterprise
context

 Defining our warehouse enterprise application
59

60 CHAPTER 4 An enterprise app, Play-style
entities; is developed in a business organization; and is deployed in a manner respon-
sive to business needs.

 In today’s corporate environment, enterprise applications are complex, scalable,
distributed, component-based, and often mission critical. They are data-centric and
must meet stringent requirements for security, administration, and maintenance.
Most of the time, business applications are isolated. One enterprise application
addresses business requirements for one specific business unit. But because of isola-
tion and business constraints, most enterprise applications are unable to talk to each
other. It’s usual to see multiple business applications performing similar tasks because
of that.

 Enterprise applications usually live inside the IT department and are usually
hosted within the organization.

 Current enterprise applications are applications that are created to fulfill a busi-
ness need such as IT service management, customer-relationship management,
enterprise-resource planning, business intelligence, project management, collabora-
tion, human-resource management, manufacturing, enterprise-application integra-
tion, and so on.

 Figure 4.1 illustrates a typical enterprise application ecosystem.
 As we can see, because an enterprise application is secured and usually satisfies

one business need, it’s isolated and confined within its business context. It’s also
not exposed to the outside world, and the information it holds is not accessible by
other systems. Because of that, often new business applications are built to gather

Client Client

ECM

DBDB

CRM

DB

ERP

DB

Billing
system

Client

WebsiteFirewall

Enterprise intranet

CRM: Customer Relationship Management
ERP: Enterprise Resource Planning
ECM: Enterprise Content Management

Internet

Figure 4.1 Enterprise
application ecosystem

61Recalling what an enterprise application is
information from the different systems and to distribute that information to other
business applications.

 Usually, these types of applications operate by batch during the night. For exam-
ple, a batch is run every night to gather new customers from the CRM system and to
feed the billing system. It allows the applications to stay isolated (as are their respec-
tive business units). Often, user interfaces are as complex as the applications, because
little time was left to think about the users.

 Integration with the existing systems is key. Most often, this isn’t really part of the
application requirements; it tends to be added along the way, leading to very com-
plex and difficult-to-maintain architectures. Scalability also becomes a problem. Fig-
ure 4.2 illustrates a typical enterprise application system once integration has been
performed.

 As we can see, there is no real interaction between the systems per se. Most of the
time, one application goes straight to another application’s datasource. This leads to
the following problems:

 Strong coupling, making it hard to update or upgrade applications
 No separation of concerns—the CRM application can now decide to act as an ERP

 Data-integrity problems

Nowadays, enterprise applications tend to be developed and architected with a new
concept in mind: service-oriented architecture. The idea is that each application should be
designed as a service. This allows for:

ECM

DBDB

CRM

DB

ERP

DB

Billing
system

Enterprise intranet

CRM: Customer Relationship Management
ERP: Enterprise Resource Planning
ECM: Enterprise Content Management

Client Client Client

WebsiteFirewall

Internet

Figure 4.2 Enterprise application
ecosystem after integration

62 CHAPTER 4 An enterprise app, Play-style
 Loose coupling
 Service reusability
 Standardized service contracts
 Service discoverability

Service-oriented architecture (SOA) is a software design and software architecture
design pattern based on structured collections of discrete software modules, known
as services, that collectively provide the complete functionality of a large software appli-
cation. The purpose of SOA is to allow easy cooperation of a large number of
applications that are connected over a network.

 The most common implementations are done though the so-called ESB (enter-
prise service bus). Each service communicates through messages. An ESB usually per-
forms the following tasks:

 Monitor and control routing of message exchange between services
 Control deployment and versioning of services
 Ensure reusability of services
 Provide commodity services like event handling, data transformation, message

and event queuing, and security or exception handling

Figure 4.3 illustrates a typical SOA implementation of the applications from the previ-
ous figure.

ECM

XMLXMLXMLXML

DBDB

CRM

DB

ERP

DB

Billing
system

Enterprise intranet

ESB

CRM: Customer Relationship Management
ERP: Enterprise Resource Planning
ECM: Enterprise Content Management

Client Client Client

WebsiteFirewall

Internet

Figure 4.3 Enterprise
applications with SOA

63Determining today’s enterprise application challenges
SOA is relatively new in enterprises. The main drawback is complexity due to the abun-
dance of configurations and implementation details. The fact is that extra effort to
maintain all the services is required. Most of the time communication between the dif-
ferent services happens through message exchange. Extra care is required to design
the message exchange flow and message composition. SOA is also most often not web
compliant, meaning that exposing services over the web still requires extra effort.

 Obviously, something new is starting to change this status quo: the web. This is a
game changer for enterprise applications, and it brings new challenges.

4.2 Determining today’s enterprise application challenges
It seems natural today to request information and get it immediately. The internet has
changed our everyday life. If we want to know what time a flight from Singapore
arrives, we can connect to the airport website and get immediate results. We don’t
need to wait one or two hours to have the information. Even better, information is
pushed to us; our phones can alert us when important (or not so important) events
occur. For example, our phones can tell us as soon as the Celtics win the NBA tourna-
ment. Applications are reactive.

 As users, we’re now used to coping with multiple flows of information. We are no
longer pulling information; now information is pushed at us.

 A user's interaction with an IT system has also changed dramatically. We don’t
need to read a user manual before using a hotel reservation system, nor do we need a
training session. Software is now accessible and usable by everyone.

 Because the software is easily reachable and accessible, users can add more and
more information to the different systems, creating more and more data. Today, we’re
dealing with a large quantity of information.

 With such a large amount of information, most internet web applications provide
a way to query that information through a public API, allowing third parties to com-
bine that information and redistribute it in real time.Web applications talk to each other in
real time.

 Simplicity is also key. Most of the popular web applications focus on one problem
and provide a simple solution. Enterprise applications should learn from them. Con-
centrate on your business problem and stay simple. This doesn’t mean that the appli-
cation is simple in itself; it means that the application can be easy to use and to
extend.

 Scalability is usually a strong requirement for an enterprise. But talking about
enterprise scalability is not the same as talking about web-application scalability. In the
latter case, we usually mean that the application can handle millions of users. Enter-
prise scalability means that the applications should be able to grow with enterprise
needs. This can be in terms of users, but it also means that the applications should be
able to scale to new business requirements. For example, if company X acquires com-
pany Z, the address book application from company X should be able to absorb com-
pany Z’s address book. Scalability is a matter of supporting more users and more data

64 CHAPTER 4 An enterprise app, Play-style
but also integrating more systems. Cloud computing helps with the first part, and sim-
ple architecture and good APIs help in the second case. Again, modern web applica-
tions provide for these two requirements naturally.

 You probably agree that all of this is now a given when we talk about web applica-
tions. But enterprise applications rarely meet these requirements. And as you guessed,
enterprise has to address these challenges to stay on the competitive edge:

 Push real-time data to their customers/employees
 Deal with a large flow of data
 Improve scalability and integration
 Provide easy integration with the latest clients
 Ensure interoperability between applications and existing systems

The internet, HTML5, XML, JSON, and the HTTP protocol (and good developers) pro-
vide most of the low-level requirements to address these challenges, as we’ll see in the
next chapters. There’s also a paradigm shift in which client-side programs are becom-
ing more and more elaborate due to the hardware evolution; for example, your
phone is more powerful than your two-year-old desktop computer. Enterprise will
adapt to this new paradigm as well.

 In enterprise, the main challenge is to aggregate and redistribute selected data to
other systems or users. Usually the needed information is dispatched over multiple
systems, and one needs to aggregate them. Because we’re dealing always with more
and more information, processing large amounts of data in real time will be the next
big requirement. Another implicit requirement is overall simplicity and the tool’s sim-
plicity. The systems we’re building should be comprehensive, and the tooling should
make it easier for us to build a great system, removing complexity from our way. The
Play framework certainly meets that requirement. Building simple software blocks
allows us to create reliable and complex systems that match business needs. A modern
framework should be able to help address the mentioned challenges. Obviously, we’ll
discover through the book that Play addresses exactly those challenges; but first, let’s
see how Play’s application architecture should work in an enterprise context.

4.3 Understanding Play’s application
in an enterprise context
As we already explained in chapter 1, Play is a web framework that focuses on the fol-
lowing aspects:

 Simplicity
 High productivity
 Modern web application development

Simplicity doesn’t mean that you can only build simple applications. On the contrary,
it means that it should be easier to integrate your application components. The idea is
to decompose your complex application with simple building blocks. Each building
block should be simple enough that it’s comprehensible by everyone without much

65Understanding Play’s application in an enterprise context
thinking. It also allows new developers to join a project and be productive from the
start without losing time setting up the environment or understanding the details of
the other blocks.

 High productivity means that any developers can produce working software within
a matter of hours and can be able to demo it without external help.

 Modern web framework means that the framework concentrates on the server side
and delegates as much as possible to the (rich) clients. Play makes sure to delegate as
much as possible to the web browser and allows easy integration with the latest
browser specifications. Today, a lot of innovation happens at the client level. Our
smartphones are now more powerful than the desktop computers of two years ago.
Therefore, the server should delegate as much as possible to the clients. The less the
server does for the client (for example, rendering or user-interface interaction), the
more scalable the application is.

 Play is also designed to easily integrate with other web applications through HTTP.
Play forces you to think about the way your clients will interact with your applications.
It also provides functionality to easily talk to other web applications.

 How do such concepts fit the enterprise context? If you see the web as a giant com-
pany and the different web applications as business units, everything is explained. A
lot of web applications are able to get data from other web applications. For example,
most new web applications allow you to log in using your existing Facebook creden-
tials; you don’t need to reimplement user authentication. Let’s see in more detail
what we mean and how Play helps.

 Play achieves reusability and interoperability between applications by promoting
RESTful architecture web applications. This means that web applications should
expose their methods and data using REST, and most of the time they should expose
themselves as web services as well.

 A RESTful web application is a web application implemented using HTTP and
REST principles. It’s a collection of resources, with four defined aspects:

 The base URI for the web application, such as http://example.com/
warehouses/

 The internet media type of the data supported by the web API

 The set of operations supported by the web API using HTTP methods (for exam-
ple, GET, PUT, POST, or DELETE)

 A hypertext-driven API (that is, URLs define the API)

In order to facilitate communication within a web application, web APIs are usually
part of the web application. REST promotes reusing the existing information systems.
This means that web REST APIs tend to reuse the same architecture, making it easier
for developers.

 RESTful architecture goals are:

 Scalability of component interactions
 Generality of interfaces

http://example.com/warehouses/
http://example.com/warehouses/

66 CHAPTER 4 An enterprise app, Play-style
 Independent deployment of components
 Intermediary components to reduce latency, enforce security, and encapsulate

legacy systems

If we translate this into enterprise terms, it means greater interoperability between
applications, standard ways to produce interfaces using predefined operations (for
example, GET, PUT, POST, or DELETE), and loose coupling between components. This is
exactly what enterprise applications are looking for.

 The REST architectural style describes six architectural constraints:

 Client–server—A uniform interface separates clients from servers. This separa-
tion of concerns means that, for example, clients are not concerned with data
storage, which remains internal to each server, so that the portability of client
code is improved. Servers aren’t concerned with the user interface or user state,
so servers can be simpler and more scalable. Servers and clients may also be
replaced and developed independently, as long as the interface between them
isn’t altered.

 Stateless—The client–server communication is further constrained by no client
context being stored on the server between requests. Each request from any cli-
ent contains all of the information necessary to service the request, and any ses-
sion state is held in the client.

 Cacheable—As on the World Wide Web, clients can cache responses. Responses
must therefore, implicitly or explicitly, define themselves as cacheable or not to
prevent clients reusing stale or inappropriate data in response to further
requests. Well-managed caching partially or completely eliminates some client–
server interactions, further improving scalability and performance.

 Layered system—A client can’t ordinarily tell whether it’s connected directly to
the end server or to an intermediary along the way. Intermediary servers may
improve system scalability by enabling load-balancing and by providing shared
caches.

 Code on demand (optional)—Servers can temporarily extend or customize the
functionality of a client by sending executable code. Examples of this include
client-side scripts such as JavaScript.

 Uniform interface—The uniform interface between clients and servers, discussed
ahead, simplifies and decouples the architecture, which enables each part to
evolve independently.

Complying with these constraints and conforming to the REST architectural style
enables any kind of distributed hypermedia system to have desirable emergent prop-
erties, such as performance, scalability, simplicity, modifiability, visibility, portability,
and reliability. The nature of Play enforces these principles, which means it has never
been easier to implement a RESTful web application than with Play.

 Going back to an enterprise context, when creating a new application, on a high
level, we want to:

67Understanding Play’s application in an enterprise context
 Reuse existing software blocks
 Retrieve data from other systems
 Expose data to other systems

We saw that Play promotes the REST architectural style, which provides exactly the ele-
ments discussed and at the same time focuses on simplicity and reusing the existing
information systems. Figure 4.4 shows how our enterprise applications would look
using the REST-style architecture.

 With Play, each enterprise application is a web application, and each enterprise
application provides a REST web API. Enterprise applications communicate with each
other using a RESTful web API through HTTP. The REST web API comes naturally when
designing the web application. The web application architectural design is therefore
key. We’ll see in the next section how that all works when we architect our warehouse
application. Typically, communication between the different applications occurs via
HTTP, exchanging JSON, XML, or whatever format the developers agreed upon.

 On a more practical level, enterprise tends to have large development teams. Dis-
tributing the work between the different teams is therefore key. Play provides two ways
to achieve that goal:

 Create a Play module or Play sub-application for each team
 Create a web application (a.k.a., a web service)

ECM

HTTP

HTTP

DBDB

CRM

DB

ERP

REST API REST API REST API REST API

DB

Billing
system

Firewall

Enterprise intranet

CRM: Customer Relationship Management
ERP: Enterprise Resource Planning
ECM: Enterprise Content Management

Client Client Client

Website

Internet

Figure 4.4 Enterprise
applications with Play

68 CHAPTER 4 An enterprise app, Play-style
A Play module or Play sub-application is a web application within your Play web applica-
tion. For our discussion, it’s important to know that modules allow you to build a sub-
set of an application, and chapter 11 explains in more detail how to create modules
and sub-applications. Again, the REST-style architecture allows the teams to agree on
communication between the different application modules. Obviously, defining the
interface to communicate between the applications is the most important part; that’s
why you usually need a web service API that follows the REST architecture, and Play
makes it easy to include.

 Using Play, it’s also easier to build real-time web applications, query multiple sys-
tems, and deal with large amounts of data, thanks to its asynchronous nature. We’ll
detail this in chapter 9.

 As we’ve already seen in chapter 1, Play focuses on simplicity, allowing the develop-
ers to concentrate on the business problem at hand instead of fighting or configuring
the framework.

 The only drawback of the REST-style approach is that it’s crucial to correctly design
the application’s data flow and the REST-style architecture. Happily, Play is here and it
provides all the tools to do so. The next section outlines how to architect our ware-
house enterprise application based on what we’ve learned.

4.4 Defining our warehouse enterprise application
Through the next chapters, we’ll design and create our warehouse enterprise applica-
tion. A warehouse application is an application that manages diverse products. A
product is identified by a unique EAN number. Within the warehouse, we want to
know how many products there are. We also want to make sure that we can record a
product leaving or entering the warehouse. The application must:

 Add products
 Edit products
 View products
 View current product’s stock
 Add a certain quantity of product X to this warehouse
 Subtract a certain quantity of product X from this warehouse

Our system is only required to interact with humans; this means we’ll serve HTML to
our web browser and the client will send back HTML forms.

 Following the advice in the previous sections, we can model what our URLs and
our web application calls are going to be:

/product/new

/product/123123213123

/products/

/stockitems/

/stockitems/123123213123?quantity=2

/stockitems/123123213123?quantity=-2

Create new product

Display or edit existing product

List all products

List all current stock

Add two items to the current stock level

Remove two items from

the current stock level

69Defining our warehouse enterprise application
Applying HTTP verbs, we want to expose the following:

GET /product/new

POST /product/

GET /product/123456789101

POST /product/123123213123

DELETE /product/123123213123

GET /products/

GET /stockitems/

POST /stockitems/123123213123?quantity=2

POST /stockitems/123123213123?quantity=-2

We can see that the last two rules are a bit different in the sense that the URL takes the
quantity parameter. This is because URLs should be idempotent; that is, they always
return the same value for a given URL (in mathematics, idempotent means not
changed in value following multiplication by itself). With the interface we defined,
we’re able to split the work between two teams easily. One team can develop the prod-
uct part while the other one can concentrate on managing the stock items. Other sys-
tems (and other teams) can already simulate the use of the interface, as we’re only
returning simple and agreed-upon data messages.

 For example, to create a new product, we would issue the following using our
browser:

Request URL:/products/ Request Method:POST
Request Body:
------WebKitFormBoundaryllSQqb38u5oy6
Content-Disposition: form-data; name="ean"

1234567891012
------WebKitFormBoundaryllSQqb38u5oy6Kc8
Content-Disposition: form-data; name="name"

Item
------WebKitFormBoundaryllSQqb38u5oy6Kc8
Content-Disposition: form-data; name="description"

A new item
------WebKitFormBoundaryllSQqb38u5oy6Kc8--

And we’ll get the following back from the server:

HTTP/1.1 201 Created
Location: /product/123456789101
Content-Length: 0

Present “create a product” page

Create new product

Present details page for product 123456789101

Update product 123123213123

Delete product 123123213123

List all products

Show the current stock items in the warehouse for all the products

Add two products 123123213123
to the current stock level

Remove two products 123123213123
from the current stock level

70 CHAPTER 4 An enterprise app, Play-style
Now if we want to expose our application as a web service, we’ll probably have the fol-
lowing URLs as well:

POST /api/v1/product/
GET /api/v1/product/${id}
POST /api/v1/product/${id}
DELETE /api/v1/product/${id}
GET /api/v1/products/
GET /api/v1/stockitems/
POST /api/v1/product/${id}?quantity=${qty}

You’ll notice that we prefix our calls by a version number that we expose through the
/api resource. This is because other systems can then refer to this unique URL with-
out any fear that the version will change. It allows our API to live its own life without
impacting the rest of the application. Our application would then interact with other
systems. This means we would serve XML, for example, and interpret XML. Note that
we could decide to stay with HTTP, but that wouldn’t be practical for the other system
involved. In the case of a web service, we’re only interested in the business data and
not how to represent them.

 This means that if we issue the following:

Request URL:/products/
Request Method:POST
Request Body:
<?xml version='1.0' encoding='utf-8'?>
<product ean="123456789101" name="item"

description="an item"/>

The server responds with:

HTTP/1.1 201 Created
Location: /product/123456789101
Content-Length: 102
<?xml version='1.0' encoding='utf-8'?>
<product ean="123456789101" name="item"

description="an item"/>

As you can see, this is the same behavior; only the exchange protocol changes. XML is
usually easy to transform, and any system can then modify it for other application
needs. The big advantage of such an interface is that your application is now able to
communicate with others. This means that another application in your enterprise
can act as a client and request information from the warehouse application. And
because Play is asynchronous by nature, Play applications can request multiple pieces
of information at the same time while combining and transforming the results as
they’re available.

4.5 Summary
In this chapter, we explained what an enterprise application is and how it differs from
other applications. We saw different types of architecture that allow enterprise appli-
cations to communicate. We identified the upcoming enterprise challenges and

71Summary
quickly saw how Play proposes to address them. We then saw how Play fits into an
enterprise environment and, by using the RESTful principles, how enterprise applica-
tions can communicate simply and effectively. We also learned how to decompose our
applications so that several teams can work in parallel.

 We then focused on the application we’ll build throughout the book and how to
build an interface so that internal and external systems can communicate with it. In
the next chapter, we’re going to implement this interface. We’ll make it concrete by
explaining how controllers work in Play.

Controllers—
handling HTTP requests
Controllers—handling HTTP requests

In this chapter we’ll explain in detail one of the key concepts of the Play framework
MVC paradigm: the controller. We’ll take a closer look at our warehouse web appli-
cation and at the same time explain how interaction with a web client works in Play.

 We’ll start by explaining controllers, and from there we’ll examine action meth-
ods and how we can return results to web clients. We’ll then see how to use routes
to link HTTP requests to a controller’s action method. After that, we’ll look at what
interceptors are and talk about what scopes are available in Play. All of these con-
cepts are important when processing and responding to client requests.

 Let’s see how we can accept and process a request from a client. First, we’ll
introduce the concepts of controllers and talk some more about action methods.

This chapter covers
 How to use controllers

 Using action methods and results

 Using routing to wire URLs to action methods

 Composing actions with interceptors

 Using the different scopes
72

73Controllers and action methods
5.1 Controllers and action methods
Business data is often stored in a relational database. That means that if you wanted to
add a new product to the catalog, you’d have to write some SQL. But that wouldn’t be
very practical, would it? This is where web applications come to the rescue. Using a web
application, the warehouse manager can interact with the database stock level. This is
an easier and cheaper solution than learning SQL or having an on-site SQL expert.

 But there’s still a problem: the web browser can’t directly access the data because it
doesn’t speak SQL. The web browser speaks HTTP. Moreover, the model layer is usu-
ally fine-grained, whereas the user usually wants to execute a series of actions in one
go. For example, when you add a product, you want to make sure the data describes a
valid product and that the product wasn’t already created.

 This is precisely the role the controller plays. The controller connects HTTP requests
to the server business logic. It acts as glue between domain model objects and trans-
port layer events. A controller exposes some application functionality at a given
address or URI (unique resource identifier). In fact, it exposes the application busi-
ness logic at a given address: it’s our web application’s public API. Like the HTTP inter-
face, controllers are procedural and request/response oriented.

 Figure 5.1 illustrates the role of the controller in a typical web application.
 A controller is one of the central points in Play, as in any MVC framework. It is also

the application entry point for you as a developer. As soon as a client (for example, a
web browser) issues a request, Play will accept this request and delegate the processing
of it to a controller. This is usually where your code comes into action. Figure 5.2 illus-
trates this lifecycle.

Speak HTTP
Speak SQL
 or NoSQLSpeak Java

Controller Business logic Persistence
storage

Web client

Figure 5.1 Role of the controller

1

2

3

4
5

Web client Play powered
app

Your controller
code

Result

Client issues
a request.

Request is
routed to your
controller code.

Controller code executes
business logic and
creates a response.

Result is sent
back to the client.

Result is sent
back to the client.

Figure 5.2 Controller lifecycle

74 CHAPTER 5 Controllers—handling HTTP requests
While the controller is a central point in any Play application, its actual code resides in
its action methods.

5.1.1 Action methods

In Play, a controller is an aggregation of action methods. An action method is a static
method that takes some parameters as input and always returns an instance of (a sub-
class of) the Result class. In other words, an action method always takes the follow-
ing form:

public static play.mvc.Result methodName(params...)

Note that action methods are static. This is because controllers are effectively single-
tons, which fits the HTTP approach. Because HTTP doesn’t have the concept of an
object but is mainly procedural, we shouldn’t try to map those object concepts in our
controller. You should really think of your action methods as the entry point from
HTTP to your application. You could compare them to the static main() method of
a Java program.

 Since an action method mainly serves as an entry point, you shouldn’t put too much
business logic into your controllers and action methods. Rather, you should do what is
necessary to translate an incoming HTTP request to data your business logic under-
stands, hand it off to that business logic, and translate the result into an HTTP response.

 When coding static methods, thread safety is usually a concern, but Play will make
sure all action methods are thread-safe. You will see that making action methods static
has little impact on the way you write code.

 For now, imagine that Play queues the incoming requests for a controller in order
to process them as fast as possible. Netty and Akka are used under the hood to dis-
patch and process users’ requests as fast as possible in a thread-safe way. But the cool
thing about Play is that all this complexity is handled for you, so don’t have to worry
about it.

 We’ve already created our first controller, Products, in chapter 3. Let’s examine it.

5.1.2 Examining our controller

In chapter 3, we created a controller class called Products. We put it in the /app/
controllers/ folder, which is the default location for all controllers in a Play applica-
tion. You can change these defaults if you want to, but you should rarely need to do so.

 Let’s revisit the contents of the controller. In your favorite text editor or IDE, open
the file called Products.java in the app/controllers directory, as shown in listing 5.1.

75Returning results from action methods

warehouse
├─ app
│ ├─ controllers
│ │ └─ Products.java
│ ├─ models
│ └─ views
├─ conf
├─ public
├─ test
└─ db

We’ll first pick apart the class definition. The following listing shows a reminder.

...
import play.mvc.Controller;
...

public class Products extends Controller {
...

}

The class definition tells us that we’re extending the Controller class from Play.
That’s the only prerequisite for a controller; there is nothing else that makes a con-
troller class “special.” Let’s move on to the action methods.

 The first action method of this controller, list(), displays the product items in
stock at the warehouse. The following listing shows a reminder.

public static Result list() {
List<Product> products = Product.findAll();
return ok(products.list.render(products));

}

In this example, the ok method constructs a 200 OK HTTP response containing a
response body that is the result of rendering the list template. Note how little code
this method contains. All it does is delegate data lookup to the model layer (the models
.Product class) and data presentation to the view layer (the list template).

 As you may recall from chapter 3, we can access the list method by requesting the
/products/ URL from our application. The reason why this works is because we’ve
also configured a route. We’ll learn everything about routing in section 5.3, but first,
let’s learn a little more about results.

5.2 Returning results from action methods
Besides the list() action methods, our Products controller contains several more
action methods. Listing 5.4 shows an overview of their definitions.

Listing 5.1 Project directory overview

Listing 5.2 Products class definition

Listing 5.3 The list() action method

This is where our
Products controller lives

76 CHAPTER 5 Controllers—handling HTTP requests

public class Products extends Controller {

public static Result list() {
...
}

public static Result newProduct() {
...
}

public static Result details(String ean) {
...
}

public static Result save() {
...
}

}

An action method is a Java method that processes the request parameters and pro-
duces a result to be sent to the client. The action method is where the response is
processed. Each action method returns a result, represented by a play.mvc.Result
value, which represents an HTTP response.

5.2.1 Results

Let’s take a closer look at what our action method returns: a Result object. A result is
a response to a client request. Since we’re creating a web application, it’s always an
HTTP response. It can be an OK with some text body, an error with an HTML error mes-
sage, a redirect to another page, a 404 page, and so on.

 The Controller class contains several static methods that generate Results. These
methods all correspond to an HTTP status code, and they wrap an object that repre-
sents the body for the request. An example of this is the ok() method that we used to
create the 200 - OK response code. We supplied it with HTML contents from the list
template, thus generating the Result that we returned. Try to find the best response
code for any situation.

 For example, if a user enters an unknown EAN number as a parameter for the show
method, we could return:

return badRequest("Incorrect EAN: " + ean)

This code returns an HTTP error code 400 with the text “Incorrect EAN: x” as content.
 A more appropriate response would be to answer that we didn’t find the product:

return notFound("No product with EAN " + ean);

This code returns an HTTP 404 error code with the text “No product with EAN: x” as
content.

Listing 5.4 The action methods in Products

77Returning results from action methods
5.2.2 Redirect result

Another useful Result object is the Redirect result object. As its name suggests, it
redirects to another action method. For example, using the Redirect result, we can
redirect the user from the index method to the list method, allowing our users to
see a list of products on the main page.

public static Result index() {
return redirect(routes.Products.list());

}

The routes object is a class that’s generated by Play 2 based on your routes file. The
class only contains static members that allow you to access your controller methods.
For now, remember that the Redirect result redirects from one action method to
another action method. We’ll go into more detail in the next section.

THE TODO RESULT There is also a useful Result object called TODO. As you
might have guessed, this Result indicates that the action method has not
been implemented yet. This is useful when you’re developing your applica-
tion and don’t have your action method implementation finished, but still
need to return a result. For example, if we have the following action method
but our implementation is not ready yet, we can return a TODO result:
public static Result items() {

return TODO;
}

When an action method returns a TODO result, the client will receive a 501 -
Not Implemented HTTP response.

5.2.3 Using results

We are now able to control what status codes we return. But what about the response
body? And how does Play know how to set the correct content-type header?

 All result methods let you pass a Content object as a parameter. The type of con-
tent that object contains tells Play what kind of data it is. As it turns out, templates in
Play also return Content.

 In chapter 3, we built our first template, products/list.scala.html. The follow-
ing listing reminds you of what it does.

@(products: List[Product])
@main("Products catalogue") {

<h2>All products</h2>

<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>

</tr>

Listing 5.5 Displaying our stock items

Redirect to the product
list action method
www.allitebooks.com

http://www.allitebooks.org

78 CHAPTER 5 Controllers—handling HTTP requests
</thead>
<tbody>
@for(product <- products) {

<tr>
<td>

@product.ean
</td>
<td>

@product.name</td>
<td>

@product.name</td>
</tr>
}

</tbody>
</table>

<i class="icon-plus"></i> New product

}

This template prints a list of products and their descriptions. What you need to know
is that Play automatically compiles the template when it sees it. The result of this com-
pilation step is a Java class with a render() method. By convention, it’s compiled into
a class with the name views.html.{name of the template}. In this case, since we cre-
ated a template called list under the views/products/ directory, the corresponding
class is views.html.products.list.

 When we render the template, the generated classes contain a render method. In
Play, all templates are type-safe, which means the render() method expects a certain
number of parameters of the correct types. In this case, we have to pass the products
list as a parameter. All this will be explained in more detail in chapter 8.

 What matters to us at the moment is to understand how we send HTML from our
controller. In chapter 3, we rendered the template and immediately passed it the ok()
method, like so:

public static Result list() {
...
return ok(list.render(products));

}

This is the most concise way to render a template and return a Result that wraps the
rendered content, but we could have also used an intermediary variable, like so:

public static Result list() {
...
Html renderedTemplate = list.render(products);
return ok(renderedTemplate);

}

As you can see, the template rendering doesn’t simply return a string containing
HTML; it actually returns an object of type play.api.templates.Html. That class is a
subtype of play.mvc.Content, which is a type that can be used as a parameter for the
ok() method (and all result methods, for that matter).

79Returning results from action methods
You should now have an idea of how templates and results fit into the bigger picture
of a Play application. Figure 5.3 shows the place of the controllers and products in the
lifecycle diagram.

 We’ve displayed some HTML without much effort; we only changed the provided
Result object in our action method with some Content. Let’s do something extra.
Let’s serve the client with the type of result they’re asking for. If the web client asks for
text, we’ll return some text; if it asks for HTML, we’ll return some HTML. This is easy
to do with Play:

if (request().accept("text/plain")) {
return ok(StringUtils.join(products, "\n"));

}
return ok(list.render(products));

Template is rendered
and HTML content is
added to the result.

@(stockItems:
List<model.StockItem>)

<!DOCTYPE html>

<html>
 <head>
 <title>Product
overview</title>

 ...

 ...

 </head>

 <body>

 </body>

</html>
}

product.scala.html

4

public class Product
extends Controller {
 public Result
myActionMethod() {
 ….
 return ok(…);
 }
}

Product.java

1

2

3

5
6

Web client Play powered
app

Your controller
code

Result

Client issues
a request.

Request is
routed to your
controller code.

Controller code executes
business logic and
creates a response.

HTML is sent
back to the client.

HTML is sent
back to the client.

Figure 5.3 Detailed view of the controller lifecycle

request() method accesses
the current request

80 CHAPTER 5 Controllers—handling HTTP requests
We are now able to serve content according to the client’s wishes. We added our
Content object to the diagram to explain the complete request/response lifecycle in
Play, as shown in figure 5.4.

 We are now able to respond to a request with some content. Let’s take a look at
how our code is actually called in response to a request.

5.3 Using routing to wire URLs to action methods
We now know how we can render some content and how to execute business logic. But
how do we link the controller method to be executed to the URL that the client invokes?

5.3.1 Translating HTTP to Java code

Remember, our client only speaks HTTP. But the code that we’re writing is in Java. We
therefore need to translate the HTTP “language” to the Java language. This is the role
of the router: translating each incoming HTTP request to an action method call. This
way, it exposes the controller’s action methods to the client. An HTTP request can
been seen as an event, from Play’s point of view. The router’s role is to coordinate a
reaction to such an event (figure 5.5).

Content is added to
the result (text, HTML,
or whatever you like).

4

1

2

3

5
6

Web client Play powered
app

Your controller
code

Result

Content

Client issues
a request.

Request is
routed to your
controller code.

Controller code executes
business logic and
creates a response.

Result is sent
back to the client.

Result is sent
back to the client.

Figure 5.4 Adding Content to the
controller lifecycle

Speak HTTP

Translate HTTP
request to method call

Speak SQL
 or NoSQLSpeak Java

Controller

Controller

Router

Business logicAction method Persistence
storage

Action method

Action method

Action method

Action method

Web client
request HTTP GET

http://localhost/product

Figure 5.5 Role of the router

81Using routing to wire URLs to action methods
Two major pieces of information are contained in
the request:

 The request path (such as /clients /1542,
/photos/list), including the query string
(such as id=2)

 The HTTP method (GET, POST, …)

For example, when you enter the URL http://localhost/ in your browser, let’s say to
view the home page, it issues a request to the localhost server. On the server, the
request is then decomposed as shown in figure 5.6.

 Let’s take a look at another example. To display the first page of a product listing,
a URL could be http://localhost/product?page=1. It would decomposed as shown in
figure 5.7.

The HTTP method can be any of the valid methods supported by HTTP (GET, POST,
PUT, DELETE, or HEAD). The request path identifies the resource we’re trying to serve.
Query strings are optional and are used to provide dynamic parameters. A query
string is specified after the ? sign and is always of the form name=value. We assume you
know all about what a URL is and what HTTP methods are. If not, please read about
them in chapter 3.

 Let’s get back to our application. We’d like to provide certain functionality, and
therefore we should be able to respond to the requests shown in table 5.1.

 As you might have guessed, we need to translate each of these requests to a con-
troller and action method. This way, we’re translating from an HTTP request to a Java
method call. This translation is what we call a route definition. Route definitions are
contained inside a routes file. For our application, the routes file will expose the appli-
cation functionality just listed.

Table 5.1 List of requests

Method Request path Description

GET / Home page

GET /products/ Product list

GET /products/?page=2 The products list’s second page

GET /product/5010255079763 The products with the given EAN

POST /product/5010255079763 Update the product details

GET /product?page=1

HTTP method Request path Query string Figure 5.7 Request with query string

GET /

HTTP method Request path

Figure 5.6 Request

http://localhost/product?page=1
http://localhost/

82 CHAPTER 5 Controllers—handling HTTP requests
 Routes are defined in the conf/routes file, as shown in the following listing.

warehouse
├─ app
│ └─ controllers
│ │ └─ Products.java
│ ├─ models
│ └─ views
│ └─ products
│ ├─ list.scala.html
│ └─ details.scala.html
├─ conf
│ └─ routes
├─ public
├─ test
└─ db

The routes file isn’t just a text-based configuration file; it’s actually code that will be
compiled into a Java object. The object is accessible in our controllers and is called
routes. This means that you’ll see compile-time errors if a route definition is not valid
or if a requested URL doesn’t exist in your application, as shown in figure 5.8.

 This is convenient, as you know immediately that something is wrong in your appli-
cation. This is another example of Play 2 employing type safety to make your applica-
tion more robust. Let’s see what other benefits we get from that.

Listing 5.6 Project directory structure

The routes file that
contains the routes
to your controller’s
action methods

Figure 5.8 An error in the routes file

83Using routing to wire URLs to action methods
TYPE SAFETY IN THE ROUTES FILE

Beside the obvious error reporting, another benefit of compilation is that the routes
object is accessible from the controllers and templates. This comes in handy when you
want to refer from one action method to another, or when you want to link to an
action from a template.

 An example of using the routes from a controller is redirection. Let’s say we have
an index method available at http://localhost:9000/ that should redirect the client to
the product list method available at http://localhost:9000/product. Using the routes
object, you can simply refer to the products method, which is used to do something
called reverse routing, which is explained in section 5.3.5. But for now, let’s focus on the
syntax of the routes file.

5.3.2 The routes files explained

So, what are routes, exactly? As explained previously, the routes file is where the trans-
lation between the HTTP request and your code is performed. Let’s take a close look
at the routes file syntax. The routes file lists all of the routes needed by the applica-
tion, and each route consists of an HTTP method and a URI pattern associated with a
call to an action method. This is what we call a route definition.

 Let’s see what a route definition looks like for the products home page:

GET / controllers.Products.index()

This means that when a client issues an HTTP request GET /, the action method
located in the Products class should be called. The Products class is our code; it’s our
entry point.

 In the routes file, a route definition is composed of the following parts:

 The HTTP method
 The request path
 Optionally, the query string
 The call definition

Figure 5.9 breaks down our example route definition. Figure 5.10 breaks down a
route definition that includes the optional query string.

 Let’s take a look at a more complicated route definition. If we want to have a route
definition that displays product details based on the product EAN, we could put the
following entries into our route files:

Assume we have a
Products controller with
an index action method

GET /products controllers.Products.list

HTTP method Request path Call definition Figure 5.9 Route definition

http://localhost:9000/
http://localhost:9000/product

84 CHAPTER 5 Controllers—handling HTTP requests
GET /product/1111111111111 controllers.Products.details("1111111111111")
GET /product/2222222222222 controllers.Products.details("2222222222222")
GET /product/3333333333333 controllers.Products.details("3333333333333")
....

But that wouldn’t scale very well (not to mention that we’d need to predict future
products). We need to have a way to have a dynamic part in our route definition.

5.3.3 Dynamic path parts

Part of the path of our route can actually be used as a parameter for our action
method. It would look like this:

GET /product/:ean controllers.Products.details(ean: String)

We replaced the part of the path that indicates the ID with a parameter name, indi-
cated by the colon (:). We then reference that parameter in the action method call.

 You’ll notice that in the action method call, we added the parameter type after the
parameter name. For parameters of type String, specifying the type of the parameter
is optional, but it’s required for every other type.

 Every time we request /product/1111111111111 in our browser, the details
method on the Products controller is called, with 1111111111111 as the ean parameter.
Since our parameter is a String, Play doesn’t have to do much. But if our parameter’s
type had been a Long, for example, Play would make sure the parameter is transformed
into a Long. Play is also able to convert to other types such as arrays and dates, and you
can even add your own types as well, as we’ll show you in chapter 6.

 If Play can’t convert to the required type, it means that the expected type is not the
right one, and you’re doing something you should not. You’ll see an error screen like
the one shown in figure 5.11.

GET /products?page=1 controllers.Products.list

HTTP method Request path Query string Call definition

Figure 5.10
Route definition
with query string

Figure 5.11 Bad request error screen

85Using routing to wire URLs to action methods
This is a really nice feature that allows us to concentrate on the problem at hand. If
you were using Servlet or any other framework, you’d probably have to write some-
thing along the lines of the following listing.

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
try {

final String id = request.getStringParameter("id");
final Long idCode = Long.parseLong(id);
// Process request...

} catch (NumberFormatException e) {
final int status = HttpServletResponse.SC_BAD_REQUEST;
response.sendError(status, e.getMessage());

}
}

Play takes care of this for us. Note that you’ll only see the message between brackets
(in figure 5.11) while developing. In production, the detailed information is left out.
Now let’s get back to the discussion about dynamic route parts.

 When using this syntax to define dynamic path parts, each parameter will match
exactly one path part, which means each part between forward slashes (or the start of
the path).

 But you might sometimes want more flexibility. If you want a dynamic part to cap-
ture more than one request path segment, separated by forward slashes, you can
define a dynamic part using the *id syntax, which will use the rest of the path as the
value for the parameter.

 For example, let’s say that we want to get the path to our product image. The route
definition is as follows:

GET /product/image/*imagePath
controllers.Products.downloadImage(imagePath: String)

If we issue a request like GET /products/image/29929/paperclip.jpg, the imagePath
value will be 29929/paperclip.jpg.

 If you know what regular expressions are, you can also define your own regular
expression for the dynamic parts using the $id<regex> syntax:

Listing 5.7 A conventional Servlet method

A word about simple data binding
Type conversion is handled automatically by Play, so you don’t have to handle the
conversion between Strings and other types. The automatic conversion is called bind-
ing. It’s binding values from the HTTP requests (which are strings by definition) to a
Java type. In chapter 6, we’ll explain how Play can bind to other types. Binding is actu-
ally part of the translation process from HTTP to your Java code.

86 CHAPTER 5 Controllers—handling HTTP requests
GET /product/$ean<[0-9]{13}>
controllers.Products.details(ean: Long)

This route definition will only apply if the EAN consists of 13 digits, which is handy in
our case, because we know that our product EAN codes consist of 13 digits. Play will
return a not found error code if we enter alphanumeric characters as IDs.

 As you know, you can also pass parameters with your URL. For example,
http://google.com?query=playframework contains a parameter called query, with the
value “playframework.” So how do you specify a parameter like that in your routes file
so that you can access it from your action methods? Actually, you don’t have to declare
it in your routes file at all. You can just use a parameter of the same name in your
action method signature:

public static Result products(String filter) {
...

If the action method defines some parameters, all of these parameter values will be
searched for in the request path. They will either be extracted from the request path as we
saw before, or they will be extracted from the query string.

 Let’s see a more detailed example. Let’s say we want to display a list of products.
But that’s potentially a really large list, so we want to paginate it. To access the first 20
items, we will request the first page; for the next 20, we will request the second page,
and so on. The following route definitions can be seen as equivalent, functionally:

GET /products/:page controllers.Products.list(page: Int)
GET /products/ controllers.Products.list(page: Int)

What is the difference between the two route definitions? The first route definition
has the page parameter as part of the actual request path. The client requests the fol-
lowing URL to access the second product list page: http://localhost/products/2. The
second route definition doesn’t require the page parameter to be part of the request
URL. Instead, it’s a parameter that the user needs to provide. This is done by request-
ing the following URL: http://localhost/products/?page=2.

 It’s interesting to note that http://localhost/products/2 (where “2” is the page
number) isn’t a good identifier for a resource. The product list for the second page is
likely to change over time. Therefore the second definition is to be preferred. For
more information about RESTful concepts like this, please refer to chapter 4.

 Also notice that Play complains if we don’t specify the page parameter in the
request URL, as shown in figure 5.12. The error is thrown because Play has no way to
tell what the default value for the parameter is. There’s a way to find out, though:
default values in the routes file.

Figure 5.12 Bad request error
screen for missing parameter

http://localhost/products/2
http://localhost/products/?page=2
http://localhost/products/2

87Using routing to wire URLs to action methods
ROUTE WITH DEFAULT VALUE

We can (and should) choose a default value to use if none is specified in the request.
For example, for our list of products with pagination, the following syntax will request
the first page to be displayed if no first page is specified.

GET /products controllers.Products.list(page: Int ?= 0)

Using this syntax, it’s impossible to get “Bad request” errors due to missing parame-
ters. When the parameter isn’t provided, the value specified (“1” in this case) will be
used instead. Please note that we’re using the Int keyword, as it is the Scala represen-
tation of an integer. This is the equivalent of the Java Integer type.

FIXED VALUE AS PARAMETER

Now let’s say that we want the home page to display the first page of our product list-
ing. We can do that using a fixed value as a parameter:

GET / controllers.Products.list(page: Int = 0)

The value of the page parameter will always be 1 on the home page, even if another
value is provided using a query string parameter.

 Using all these different syntaxes for route definition, it’s very possible to construct
multiple routes that will match the same URL. What happens then?

CONFLICTING ROUTES

Because many routes can match the same request, if there is a conflict, the first route
(in declaration order) is used. For example, in our routes file we have the following
route definitions:

GET /products/new controllers.Products.newProduct()
GET /products/:ean controllers.Products.details(ean: String)

The bottom line would also match on /products/new. But since there is a line match-
ing that URL first, that is the one that is used. Therefore, calls to /products/new will
be served by newProduct(), which is exactly what we want. If we were to switch the
lines around, the same request would be handled by the details() method, with the
value “new” used for the ean parameter, which would cause problems.

 We now know enough about route definitions. Let’s get back to our application.

5.3.4 Completing our routes file

With all we’ve learned about routes so far, we can finish the routes file for our applica-
tion’s product catalog. Edit the routes file so it contains the routes shown in the fol-
lowing listing.

Home page

GET / controllers.Products.index()

GET /products controllers.Products.list(page: Integer ?= 1)

POST /products/ controllers.Products.save()

Listing 5.8 Our current routes file

These lines changed
from chapter 3

88 CHAPTER 5 Controllers—handling HTTP requests
GET /products/new controllers.Products.newProduct()

GET /products/:ean controllers.Products.details(ean: String)

Compared to what we ended with in chapter 3, the first two lines have changed. The
first line, which matches the root URL of our application, used to point to Application
.index(), but it now points to the index method of our Products controller. Since we
now no longer have any routes using the Application controller, feel free to delete
that class.

 The second route still points to our product catalog, but the call to the action
method has gained a page parameter, which defaults to 1. To get the application to
compile and run again, we need to change the action methods to match the routes.
The first method, index, is new. We want it to show the first page of the product
catalog, which we’ll do by redirecting to it. Add the following action method to the
Products class:

public static Result index() {
return redirect(routes.Products.list(0));

}

The other change we made in our routes file was that we added the page parameter to
the product listing. We need to change the action method to match the call in the
routes file, or the routes file won’t compile. Go ahead and add the parameter to the
list method in the Products class, and fix the call to it on the last line of the save()
method, like so:

public class Products extends Controller {
public static Result list(Integer page) {

...
}

...
public static Result save() {

...
return redirect(routes.Products.list(1));

}
}

Don’t worry about changing the method’s implementation; we’ll get to that later. For
now, it’s enough to get our routes compiling again.

 So we now know how to link a URL to an action method. But what about the other
way around? If we know the action, how do we get a corresponding URL? That is a pro-
cess called reverse routing.

5.3.5 Reverse routing

The implementation of our index method from the previous section is interesting. It
sends an HTTP response that redirects the user to the list method. To construct the
URL for that method, it uses the routes object.

 The routes object was generated by Play as a result of compiling the routes file.
The routes object is a singleton object that contains only static methods that return

89Interceptors
an object of type Action. It’s used as a way to reference our action methods from the
controller, but it’s also used anywhere else we might need it (in our views, for exam-
ple). Our action methods are added as methods to the object at compilation time,
when Play generates the routes object.

 The routes object provides what we call reverse routing.
 Reverse routing, as the name implies, does the opposite from regular routing: it

translates from Java to HTTP. Reverse routing is important, as it allows us to get an
HTTP request for a given action method.

 For example, say you want to be able to point your client to the edit method.
Remember, your client only speaks HTTP. You need to return an HTTP call: an HTTP
method and a URL. It’s as simple as asking the routes object how to access the action
method. The routes object returns a play.mvc.Call object. The play.mvc.Call
defines an HTTP call, and provides both the HTTP method and the URL. It also makes
sure the method call is correctly translated, especially when parameters are part of the
action method. For example, the following call:

routes.Products.list(4)

is translated to:

GET /products?page=4

You now know everything about how to translate HTTP requests to action methods and
vice versa with reverse routing. You should now have a complete picture of how Play
operates when a request is received from the client and executed as Java code. Now it’s
time to see in more detail how to simplify some tedious operations in the controller.

5.4 Interceptors
Let’s get back to our warehouse application. From time to time, an exception may
occur. But if that happens, we can’t spot it. It would be nice if we could just tell Play to
send an email with the error whenever an exception occurs in specific controllers or
action methods.

 Action methods can be easily composed. This means that you can add extra behav-
ior to action methods, and that’s what we want to do: we want to catch any exceptions
occurring in our action methods and send an email about them. Let’s see how it
works.

5.4.1 The @With annotation

Play provides an @With annotation, which allows you to compose an action. The @With
annotation is used before an action method declaration. It can also be used on the
class level—on the controller itself. Declaring the @With annotation on our action
method tells Play that a certain action must be performed around each execution,
meaning before and after. This is also called an interceptor, because it intercepts a call
to the action method.

90 CHAPTER 5 Controllers—handling HTTP requests
 The @With annotation takes one parameter: the type of Action we want our code
to be composed with. We will build a CatchAction class shortly.

 For example, the following code tells Play it must execute the action method using
the CatchAction action:

@With(CatchAction.class)
public static Result show(Long ean) { }

Because we specify the annotation on the method level, Play will only use it for this
specific action method. If we were to declare it at the class level, the CatchAction
would be used for all the controller’s action methods:

@With(CatchAction.class)
public class Products extends Controller { }

But what exactly is this CatchAction class? It’s where we will put our code that will pro-
vide the added functionality. We need to build it. The @With annotation takes an
Action object as a parameter. An action object must extend the abstract class
play.mvc.Action, which means it must implement the following method:

public Result call(Http.Context ctx)

The call method is called before the action method execution. From there, the call
method must actually call the action method using the delegate object. The delegate
object is a reference to the action method of type play.mvc.Action that is marked
with the @With annotation. In other words, it represents the original action method.

 Let’s just go ahead and code our exception interceptor. First, we’ll create a fake
ExceptionMailer class, to stand in for what would be an actual emailing class, which is
not the point of this exercise. Create the file shown in the following listing.

package utils;

public class ExceptionMailer {
public static void send(Throwable e) {

System.out.println("Sending email containing exception " + e);
}

}

We’ll create our interceptor action by extending the Play.SimpleAction abstract class
that Play provides. The Play.SimpleAction class provides everything we need to get
started. In the next listing, we’ll define our CatchAction, which will catch any excep-
tions and email them.

Listing 5.9 /app/utils/ExceptionMailer.java

91Interceptors

 We
th

public class CatchAction extends Action.Simple {
public F.Promise<SimpleResult> call(Http.Context ctx) {
try {

return delegate.call(ctx);
} catch(Throwable e) {

ExceptionMailer.send(e);
throw new RuntimeException(e);

}
}
}

We can now use our CatchAction on our Products controller, by annotating the con-
troller with @With(CatchAction.class):

...
import play.mvc.With;

@With(CatchAction.class)
public class Products extends Controller {

..
}

Let’s see how our implementation does its trick.

5.4.2 Explaining our CatchAction

The behavior of our custom Action is defined by our implementation of the call
method. That method takes one parameter, the Play context object. The context object
holds our session, request, response, and flash objects. We’ll take a closer look at those
concepts in the next section.

 In our implementation, the actual call to the action method is done via the
delegate object, which contains its own call method. In case an exception is trig-
gered, we catch it, and our ExceptionMailer class sends an email with the exception
stack trace.1

 Now that we know how actions work, let’s see some other ways to use them.

5.4.3 Action composition

Once you have one interceptor, you’re probably wondering how you can use more of
them; for example, a LogAction that logs any access to our controllers. We can just
add another parameter to the @With annotation:

@With(CatchAction.class, LogAction.class)

If you are familiar with annotations,2 you can also define your own, to signify that a
certain action should be added to an action method. This is a more readable notation,

Listing 5.10 /app/controllers/CatchAction.java

1 The ExceptionMailer code is not relevant at this moment, as the goal is to show you how interceptors work.
2 Read http://en.wikipedia.org/wiki/Java_annotation if you’re not.

We extend the
Action.Simple
class that extends
the abstract
Action class

This is the main method
we need to implement

 execute
e action

Any exception is caught
and sent using our
ExceptionMailer class

http://en.wikipedia.org/wiki/Java_annotation

92 CHAPTER 5 Controllers—handling HTTP requests
and it allows reuse across multiple web applications. For example, an annotation for
our CatchAction would be:

@With(CatchAction.class)
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Catch {

}

In this example, we define a new annotation called Catch, and use the @With annota-
tion as usual to indicate which action class it should use. Using our newly defined
annotation, we can now annotate our controller as follows:

@Catch
public class Products extends Controller { }

We don’t just use our own annotation is for readability purposes; we can also use it to
pass extra configuration information. Using the previous example, we could specify if
we want to send an email, or if we want to log the exception instead. Let’s redefine our
catch annotation:

@With(CatchAction.class)
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Catch {
boolean send() default true;
}

We’ve added a send parameter to our annotation, with a default value of true, specify-
ing whether we want to send an email or just log instead. The parameter value can be
accessed via the configuration object in our action. The following listing shows how.

public class CatchAction extends Action<Catch> {
public F.Promise<SimpleResult> call(Http.Context ctx) {
try {
return delegate.call(ctx);

} catch(Throwable e) {
if (configuration.send)

ExceptionMailer.send(e);
else
e.printStackTrace();

}
}

}

In this version of CatchAction, we extend the Action class directly, supplying a
generic type parameter to indicate that we want to use our Catch annotation for con-
figuration B. The configuration object will now be an instance of our Catch annota-
tion, meaning we can access the send parameter on it C. We can then use a simple if
statement to decide what we want to do D E.

Listing 5.11 CatchAction using configuration

Our newly defined annotation

Add this line

We extend
Action rather
than
Action.SimpleB

We read the
configuration
value

C

We either send an email…D

… or log the errorE

93About scopes
 We are now able to be notified of any exceptions occurring in our code. This is a
trivial example, but think about how you can use interceptors for transactions, secu-
rity, and for a lot of other interesting examples you can think of.

 There’s one more important aspect of controllers that we haven’t covered yet:
scopes.

5.5 About scopes
We saw that by using the controllers and the routes, we’re able to retrieve data from the
clients and send data back to those clients. We didn’t really talk about the lifetime and
accessibility of that data. We assumed the data was transmitted each time a communi-
cation was made between the server and the client; that really is what’s happening.

 But as a developer, you don’t really want to manage that dataflow. You want to store
data for a certain period of time; for example, for the duration of a request or a
browser session. You store that data in a certain scope. Play supports a number of
scopes, for which it stores data for a certain lifetime. They’re accessed in a similar way
as a Map in Java; you store and retrieve values based on a key.

5.5.1 A bit of history about the scopes

Java EE traditionally defines these scopes:

 Application scope
 Session scope
 Request scope
 Page scope

The application scope has an application lifetime: you store data that will stay as long as
your application is running.

 The session scope has a session lifetime: you store data that will stay as long as your
browser is open. This is traditionally the JSESSIONID parameter you sometimes see in
URLs. The JSESSIONID is also stored in a cookie, so it’s always available to the server
on consecutive requests. This JSESSIONID is just an ID that points to some server-side
storage space. The session scope is usually used to store information about your shop-
ping basket or the fact that you’re logged in.

 The request scope defines data within the lifetime of request: the client makes an
HTTP request, and with the request comes some data. That data is stored in the request
scope and can only be accessed while that particular request is being processed.

 The page scope defines data that is accessible in the view only: it can be accessed
during the rendering phase. For example, you might want to store the current bread-
crumb of your application in that scope, to display the current application path.

 The different scopes can be conceptually viewed as shown in figure 5.13.

NOTE Though some Java EE frameworks introduce a conversation scope, we don’t
think this is relevant for our explanation and may be confusing more than any-
thing else.

94 CHAPTER 5 Controllers—handling HTTP requests
In a traditional Java EE environment, all the stor-
age happens server-side. This means that each cli-
ent has a unique ID, and the server uses that
unique ID to retrieve the client storage space
server-side.

 Though this has the advantage of potentially
using less bandwidth, it can be problematic when
scaling up (adding more servers) since you need
to synchronize all the client storage space
between the different servers. Another disadvan-
tage is that it makes the servers compute more
operations, while the client stays idle. This used
to be an advantage, but nowadays web clients are
powerful beasts. An iPhone is more powerful,
CPU-wise, than any computer older than five
years. Moreover, web standards have evolved and
added a lot of features to web clients, such as local storage and web workers.

5.5.2 Storing data with Play

Of course, as you may have guessed by now, Play is a bit different from Java EE frame-
works. It’s interesting to note that web frameworks from other languages, such as
Django, Ruby on Rails, and Symphony, have been following an approach similar to
that of Play.

 Play defines four scopes:

 Session scope
 Flash scope
 Request scope
 Response scope

Before we start explaining those scopes,
there is a fundamental difference between
Play and the more traditional Java EE
frameworks (read: servlet-based frame-
works). Play doesn’t hold any data server-
side. Data is held either in the client or in the
database. Because of that fact, scaling up
is easy with Play. Just add a new server
and a load balancer, and you’re done.
No server-side session replication is
needed, so there’s no risk of losing data
on the server since there is no data to
lose. But how does that work? What’s
Play’s secret?

What is a cookie?
A cookie, also known as an HTTP
cookie, web cookie, or browser
cookie, is used by a web server to
store data in the client’s browser. The
browser sends that information back
to the server on every request. That
information can be used, for example,
for authentication, identification of a
user session, user preferences, shop-
ping cart contents, or anything else
that can be accomplished through
storing text data on the user’s com-
puter. A cookie can only be used to
store text.

Request

Request

Page

Request

Session

Application

Figure 5.13 In JEE, application scope
is the longest lived and page scope is
the shortest lived.

95About scopes
 Well, really, there is no secret. Play stores the
data client-side using cookies. It also encourages
developers to think differently, to architect their
application differently (following REST principles),
and to fully embrace client-side technology.

 While a Java EE developer would see the session
as a giant cache in which everything is allowed, Play
forces developers to think in terms of web develop-
ment. And that is a good thing, since we happen to
use Play mainly to develop web applications. So, no,
you can’t store your complete object tree in your
session. And no, you can’t save your last 10,000
database results. In fact, you can “only” store up to
4 KB (maximum cookie size), and you can only
store string values. You might see that as a step back, but we’ll attempt to explain to you
that in fact it’s a step forward. But first, let’s go back and explain the four scopes in Play.

 The four different scopes can be conceptually viewed as shown in figure 5.14.

5.5.3 The context object

First of all, all accessible scopes in Play are stored in a Context object. The Context
object is a final static class that contains the Request, Response, Session, and Flash
objects. You can access it statically using the current() method. From there, you can
access all the Play scopes:

Context ctx = Context.current();

Request request = ctx.request();

Response response = ctx.response();

Session session = ctx.session();

Flash flash = ctx.flash();

In your controllers, the request, response, session, and flash objects are also available
directly, since they are part of the Controller class that any controller must extend.

 Let’s take a look at each of the scopes, starting with the request scope.

Context object
Request object

Response object
Session object

Flash object

The context object and thread safety
If the context object is static, what does that mean for thread safety? The answer is
easy. Each Context object is associated to the current thread using a ThreadLocal
object. This ensures that there’s no thread-safety problem and that your context
object is really your context object and not the one from your neighbor (each thread
holds an implicit reference to its copy of a thread-local variable). This ensures that
our scope objects are our scope objects.

If you didn’t follow all of that, just take our word for it: access to the context and
scope objects is thread-safe.

Request/
Response

Flash

Session

Figure 5.14 In Play, request scope is
the shortest lived and session scope
is the longest lived.

96 CHAPTER 5 Controllers—handling HTTP requests
5.5.4 The request scope

The request scope can’t be used to store objects. It is used to access the data of the
current request. For example, you can access the values submitted using an HTML
form via the request scope.

5.5.5 The response scope

The response scope can’t be used to store objects. It is used to set the response con-
tent type and any extra cookies to send extra information. For example, you can set
the response content type to XML with the following code:

Context.current().response().setContentType("application/xml");

Using the response object, we can also store extra data on the client, using a new
cookie. For example, if we were to save the preferred theme for our application from
our controller:

response().setCookie("theme","blue");

Then, on a next request, from our controller’s action method, we could check if the
theme was set using the cookie method:

public static Result index() {
if ("blue".equals(cookies("theme").value())){

// Do something
}
....

}

Charset
For text-based HTTP responses, it’s important to set the character set (or character
encoding) correctly when you set the response content type. Play handles that for you
and uses UTF-8 by default.

The charset is used to both convert the text response to the corresponding bytes to
send over the network socket, and modify the ContentType header with the proper
;charset=xxx extension.

The charset can also be specified when you are generating the result value, in this
case the ok result value:

public static Result index() {
response().setContentType("text/html; charset=iso-8859-1");
return ok("<h1>Hello World!</h1>", "iso-8859-1");

}

Set the charset (encoding)
on the response

Our result is using ISO-8859-1

97About scopes

m

m

You could also store more information by serializing your data into strings, but
remember that you can only store up to 4 KB per cookie. Therefore, save only what
you need, which is often entity IDs.

 Finally, to discard a cookie, use discardCookies:

response().discardCookies("theme");

As you can see, the response object is rather straightforward.

5.5.6 The session scope

Objects stored in the session scope have a session lifetime: you can store data that will
stay as long as the client’s browser is open. It’s important to understand that sessions
are not stored on the server but are added to each subsequent HTTP request, using the
cookie mechanism. So the data size is very limited (up to 4 KB), and you can only store
string values. This means that the Session object should not be used as a cache! Play
does offer a caching mechanism, which you can use instead.

 To store a value in the session:

Context.current().session().put("x", "myvalue");
String value = Context.current().session().get("x");
System.out.println(value);

From a controller, you can also use the convenience methods provided by the controller:

session("x", "myvalue");
String value = session("x");
System.out.println(value);

Store the value myvalue
in the session with key x

Retrieve the value
from the session

Print
yvalue

Store the value myvalue
in the session with key x

Retrieve the value
from the session

Print
yvalue

Why can I only store strings in my Session?
You may argue that a Session object that can only store String objects is a regres-
sion; we feel that it’s the way it should be. By disallowing the storing of complex
objects, we’re also removing a lot of associated problems of synchronizing the object
states and/or any side effects. By storing immutable objects, like Strings, in our ses-
sion, no side effects can occur.

For example, if we were to store an attached (marked as connected to the DB) data-
base entity in our session, the entity might really well be detached (no longer con-
nected to the DB) the next time we access the object, causing all sorts of troubles.
Or the entity may have been modified by a third party since we last accessed it, caus-
ing unexpected behavior.

98 CHAPTER 5 Controllers—handling HTTP requests
5.5.7 The flash scope

Objects stored in the flash scope have a lifetime of exactly two requests. It means that
data in the flash scope will service one redirect. This is really useful when you want to
retain data after a redirection. To understand this better, let’s look at a concrete
example.

 The client issues the following request:

GET /

The server renders an HTML page. On the page, we have a form to input a telephone
number and a Submit button. When the user submits the form, a POST request is made
to the server to the following address:

POST /phonenumber/

Now, once the controller receives the request, it attempts to validate the phone num-
ber. In case the validation fails, the server renders the same page with an error mes-
sage. But if you try to refresh your browser, you’re in for a surprise: your browser is
asking you if you want to resubmit the data. Why is that? This is because, as far as your
client is concerned, its last execution point matches POST /phonenumber. And indeed,
the URL that your browser shows is http://localhost:9000/phonenumber.

 Figure 5.15 illustrates the problem we just described.
 A way to avoid bad surprises is to send a redirect instruction to your client, so it

redirects to GET /. But of course, in the meantime, because of the redirect, you lost
your error message. This is exactly the use case for which flash scope was invented.
Storing the error messages in the flash scope allows you to still have access to your
error messages after the redirect.

 In Play, the objects in the flash scope are stored in a special cookie that’s flushed
after the second consecutive request.

 Figure 5.16 illustrates the same problem, but uses the flash scope as a solution.

NOTE The flash scope has been introduced in Java EE 6 and defines the same
lifetime as its Play equivalent, but it lives server-side. At the time of this writ-
ing, most Java EE web frameworks do not have flash scope.

GET /

POST /phonenumber/

asadas

Phone number:

submit

asadas

submit

Web client

http://localhost:9000/

Response

Server

Phone number:
INALID NUMBER

Response

http://localhost:9000/phonenumber

Figure 5.15 Submitting an invalid
form without using the flash scope

http://localhost:9000/phonenumber

99About scopes
5.5.8 What about security?

Storing data client-side brings some security concerns with it. Because the user has
access to this data, it can’t be trusted without taking some additional measures. For
example, when you store the user’s username, there is nothing preventing the user
from putting in another username and impersonating a different user.

 For this reason, cookies are signed with a secret key so that the client can’t modify
the cookie data (if they do, the data will be invalidated).

 The secret key used to sign the cookie is actually set in your conf/application
.conf file (see following listing).

warehouse
├─ app
│ └─ controllers
│ │ └─ Products.java
│ └─ models
│ └─ views
├─ conf
│ ├─ routes
│ └─ application.conf
├─ public
├─ test
└─ db

If you open the application.conf file in an editor, you will find a line starting with
application.secret:

application.secret="FuqsIcSJlLppP8s?UpVYb5CvX1v55PVgHQ1Pk"

Listing 5.12 Project structure

GET /

POST /phonenumber/

asadas

Phone number:

submit

asadas

submit

Web client

Web client

GET/

http://localhost:9000/

http://localhost:9000/

Response

Server

Server

Server

Phone number:
INALID NUMBER

Response

Store error message
to flash scope.

Store error message
from flash scope.

Response
redirect

Flash

Flash

Figure 5.16 Submitting an
invalid form using the flash scope

application.conf contains the
application configuration and
the important secret key

100 CHAPTER 5 Controllers—handling HTTP requests
This is the key we’re signing our cookies with. It’s essential to keep it secret, so be sure
you don’t divulge your key. This also brings us to another important point: if you’re
running multiple instances of your application, the secret key needs to be shared
between the applications, or one instance won’t be able to verify the data that has
been set by another instance.

 Let’s imagine the following scenario. One load balancer and the same application
are running on two different nodes: server1 and server2. Each client can be dis-
patched to either server1 or server2. If server1 and server2 don’t share the same key,
the clients will need to communicate with the same server every time; otherwise the
server can’t decipher the cookies. If both server1 and server2 have the same key, they
can decipher the same cookies, and neither the client nor the load balancer will need
to distinguish between server1 and server2.

 Figure 5.17 illustrates the data encryption/decryption flow.

Web client

Encrypted data
stored with cookie

Encrypted data
stored with cookie

Encrypted data
stored with cookie

Load balancer

Application on server1
decrypts or encrypts
data with secret key

Application on server2
decrypts or encrypts
data with secret key

Cookie

 application.conf

Secret key

 application.conf

Secret key

Cookie lives
on the client

Figure 5.17 Secret key with a
cluster of applications

But what about my session timeout?
We can argue that session timeouts were introduced as a technical solution for
server-side session storage rather than as a useful feature. Indeed, without this fea-
ture, user sessions could only grow on the server, resulting in memory deprivation.
But developers are so used to session timeouts that they actually see them as useful
functionality.

101Summary

5.6 Summary
We started this chapter by explaining what controllers are. We then looked into the
specifics of Play controllers and more particularly the controller’s action methods. We
learned about routing our clients’ requests to our action method code.

 Let’s pull out some of the key practices to take away from the chapter:

 Use flash scope. Flash scope is ideal for passing messages to the user (when a
redirect is involved).

 Use action methods. This is the entry point for your business logic. Keep them
short and delegate all business logic to your business models.

 Simple data binding is URL-centric data mapping to your action methods.

We covered how to use interceptors and why they’re useful. We implemented a simple
interceptor that catches all errors and sends an email.

 We’ve learned a lot about the internals of controllers in this chapter, and in the
next chapter we’ll build on our knowledge by implementing some nice views to give
our warehouse application some visual appeal.

In Play, there is no technical timeout for the session. It expires when the user closes
the web browser. If you need a functional timeout for a specific application, just store
a time stamp in the user session and check it against your application needs (max
session duration, max inactivity duration, and so forth).

Handling user input
In this chapter, we’ll explain in detail how users can interact with our application.
This is where we’ll enable users to send data to our application. We’ll see how to
handle different kinds of data and how to customize Play to use our own data types.
We’ll also explain how to make sure the data sent is correct and, if it’s not, how to
alert our users.

6.1 Forms
Working with forms in a web application involves two operations: displaying the
form and processing the form submission. Forms allow users to send data to the
server (our application). In Play, forms are represented by objects that you can
manipulate. Play provides useful helpers to handle form submission. Because we
don’t want users to send just any kind of data, Play makes sure the data is properly

This chapter covers
 Working with forms

 Data binding

 Using body parsers

 Validation

 Handling file uploads
102

103Forms
formatted and processed. If data isn’t well
formatted, we need to tell the user what
the problem is, so they can correct it and
resubmit the form.

 In our application, to submit a new
product, we created two action methods:
the first one, called newProduct(), dis-
plays the create a new product form, whereas
the second, save(), handles the form sub-
mission. First we’ll take a closer look at
what exactly the action method that shows
the empty form does.

 As a reminder, figure 6.1 shows the
form.

 As we’ve seen, displaying a form
involves the following steps:

 Creating an action method to dis-
play the form template

 Creating the form template
 Creating an action method to handle the form submission

Figure 6.2 illustrates the different steps.

6.1.1 Displaying the new product form

To display a form, we create a Form object to represent it. In this case, we want our
form to represent a Product instance, so we create a form based on the Product class
(a Form<Product>). Our existing newProduct() action method does that:

...
import play.data.Form;

public class Products extends Controller {
private static final Form<Product> productForm =

Form.form(Product.class);
...

public static Result newProduct() {
return ok(details.render(productForm));

}
...
}

As you can see, we’re creating a new Form object using the Form.form() method. The
resulting object holds all the information about our product and can contain addi-
tional information that we can use while rendering the form, such as validation

Create a new
form object based
on Product

Render a template
with our Form as
argument

Figure 6.1 Our “create new product” form

104 CHAPTER 6 Handling user input
errors, prefilled values, and so on. We’ll examine the form object in more detail later
in this chapter.

THE ROUTE TO OUR FORM

When we created the newProduct() action method back in chapter 3, we also set up a
route to it. Here’s a reminder:

GET /products/new controllers.Product.newProduct()

This route makes the form available at http://localhost:9000/products/new.

ADDING THE VIEW

Also in chapter 3, we created the product.scala.html template that renders our
HTML product form. The newProduct() action method uses it to render a blank prod-
uct form.

 The “new product” form template allows us to collect the information needed to
create a new product. It uses HTML input tags to allow the user to input information.

 The important thing to realize is that the HTML form is backed by a Play Form
object. A form object is a container object. It contains information about our object
model and, potentially, validation error information. In section 6.4 we’ll talk exten-
sively about validation.

 For now, it’s important to know you can access any form field value via a form
object, and that you can use it to re-render the original value that was entered by the
user if the action method detects a validation error. Our input helpers take care of
that for us, so we don’t see the code that does it.

 The following listing shows the full template for our form.

@(productForm: Form[Product])
@import helper._
@import helper.twitterBootstrap._

@main("Product form") {
<h1>Product form</h1>
@helper.form(action = routes.Products.save()) {

Listing 6.1 The “new product” form template

DB

Displaying
the product

form
OK

OK

Entry point
/product/new

Handling
user Input

Good

OK

Bad

If OK

Figure 6.2 “Create
product form” workflow

Form object passed
into template by
newInstance()

http://localhost:9000/products/new

105Forms
<fieldset>
<legend>Product (@productForm("name").valueOr("New"))</legend>
@helper.inputText(productForm("ean"))
@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))

</fieldset>
<input type="submit" class="btn btn-primary">

}
}

This HTML template is responsible for
rendering the new product page
(repeated in figure 6.3).

 If your form looks different, please
refer back to chapter 3, in which we
showed you how to include Bootstrap to
make things look a little nicer.

 This form is for creating a new prod-
uct and, therefore, it’s empty. Let’s see
how the same template can serve as an
edit form.

6.1.2 Displaying the edit product form

In our application, we also want to be able
to edit a product. The “edit product form”
is more or less the same form as the “cre-
ate new product” form. The only differ-
ence is that we need to prefill some values and update an existing model object. But
from a presentation point of view, the two forms are similar.

 To turn the create form into an edit form, we perform the following actions:

 Prefill the edit form with the product value
 Display the edit form with the prefilled data
 Handle the user’s input

Figure 6.4 illustrates the workflow.

Access
form’s

name value
Access form’s
EAN value

Access form’s
description
value

DB

Displaying
the product

form
OK

OK

Entry point
/product/123123 Good

OK

Bad

If OK
Prefill form

with product

DB

Handling
user Input

Figure 6.4 “Edit
product” workflow

Figure 6.3 The “create new product” form

106 CHAPTER 6 Handling user input
FILLING A FORM WITH INITIAL VALUES

Because we’re using a form object in our view, we can decide to prefill the form with
some default values. This is exactly what we need to do if we want to edit a product.
When we know the unique identifier for the object we want to edit, we can then fetch
it from our database so we can use the values in our HTML form. The action method
we wrote to accomplish this is shown in the following listing.

public class Products extends Controller {
private static final Form<Product> productForm =

Form.form(Product.class);

...
public static Result details(String ean) {

final Product product = Product.findByEan(ean);
if (product == null) {

return notFound(String.format("Product %s does not exist.", ean));
}

Form<Product> filledForm = productForm.fill(product);
return ok(details.render(filledForm));
}

...
}

We also added the following route in our routes file. The route indicates that every
time we access the /products/xxx page, we will in fact render an edit page for the
product xxx, where xxx is the product’s EAN number.

GET /products/:ean controllers.Product.edit(ean:Long)

 Now let’s see why the existing products/details.scala.html supports both creat-
ing and updating a product. Take a look at the following listing.

@(productForm: Form[Product])
@import helper._
@import helper.twitterBootstrap._

@main("Product form") {
<h1>Product form</h1>
@helper.form(action = routes.Products.save()) {

<fieldset>
<legend>Product (@productForm("name").valueOr("New"))</legend>
@helper.inputText(productForm("ean"))
@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))

</fieldset>
<input type="submit" class="btn btn-primary">
}

}

Listing 6.2 Displaying a form with preset values

Listing 6.3 /products/details.scala.html

If the name field has
a value, we show a

different legend

The form helpers take
care of rendering the
value, if there is one

107Forms
As you see, the edit product form and the create new product form can use the same
template. If the form contains a value for the product’s ID, then it’s an update; other-
wise, we’re creating a new product.

 We’re now able to display a form to create or edit a product. Next, we need to pro-
cess the data from the submitted form.

6.1.3 Processing form input

After the form is submitted, our action method that handles the form submission
transforms the data the browser sent to the server into a Product instance and saves it.
Finally, it sets a success message in the flash scope1 and redirects to the page showing
all products. The following listing shows save(), an action method that processes the
form submission.

public class Products extends Controller {
private static final Form<Product> productForm =
Form.form(Product.class);

...
public static Result save() {
Form<Product> boundForm = productForm.bindFromRequest();
if(boundForm.hasErrors()) {
flash("error", "Please correct the form below.");
return badRequest(details.render(boundForm));

}

Product product = boundForm.get();
product.save();
flash("success", String.format("Successfully added product %s", product));

return redirect(routes.Products.list(1));
}

}

First, we’re creating the form object with all the information that we have received via
HTTP B. Then, we check whether the submitted information is valid, and display a
message if it isn’t.

 If everything’s in order, we ask the now-populated form object for the Product
instance C that it contains. The object instance will have its fields populated with the
data extracted from the HTTP request. We then save the Product instance to our data
store. Finally, we present another page to the user, using a redirect to the “all prod-
ucts” page.

 Our save() action method is also represented in our routes file:

POST /products/ controllers.Product.save()

1 We introduced the flash scope in the previous chapter, in which we also added the message to our main
template.

Listing 6.4 The save() action method

Create a Form
object from
the request

B

Detect errors
(we’ll cover
this later)

Extract a Product
instance from the form

C

Save that
instance

Redirect to the “view
all products” page

108 CHAPTER 6 Handling user input
We’ve seen how our form submission is processed. Once the form is displayed, the
user enters the data and submits the form. The browser will then send a POST request
with the form data to our application. The routes file determines that the processing
is to be delegated to the save() action method.

 We’re now able to add or edit a product, but let’s see in more detail how our action
method managed to transform the HTTP form parameters into a Form object.

6.2 Data binding
Play transformed the submitted information into a Java object using a process called
data binding. Data binding is the process of converting elements of a request into
objects. There are three binding types in Play:

 Form binding, which we saw in the previous section
 URL query parameters binding
 URL path binding

Data binding is a simple principle. The
HTTP parameters are mapped to their
counterpart attributes on the Java object.
The mapping is done using the parame-
ter’s name. Each time a parameter name
matches the name of an object attribute,
the object attribute is set to the parame-
ter’s value. Figure 6.5 illustrates this
binding process.

 In Play, form binding is primarily done
with the help of a Form object, via the
bindFromRequest() method. The bind-
ing processing is delegated to Spring
Data, a library that can take a request’s
body and convert it to the properties of a
Java object.

 URL query parameter binding consists of taking the URL’s parameters (for example,
?x=y) and mapping them onto a Java object. The pattern is derived from the routes file.

 For example, if our products had an ID, we could have a route like this:

GET /products Products.edit(id: Long)

Which would match the following URL:

http://localhost:9000/products?id=12

Play will convert the string “12” (query parameters are always strings) to the Long 12.
 URL query path binding consists of mapping a query path (again, always a string), to

another Java type or object. This also happens using the route definitions. For exam-
ple, when you declare:

id

ean

name

description

action

extra

HTTP POST
parameters

id

ean

name

description

Product object
instance

Figure 6.5 The binding process

109Data binding
GET /products/:id Products.edit(id: Long)

and you call:

http://localhost:9000/products/12

Play will convert the string “12” (the query path) to the Long 12.
 Data unbinding is the reverse process. We have an object and we want to translate it

into a valid URL or form representation. This is notably used in case of reverse routing.
For more information about reverse routing, please refer to section 5.3.5.

 It’s important to note that in Play, each type of binding can be customized and
extended. But let’s take a step back first, and see how our product form is mapped.

6.2.1 Binding single values

Product is defined as the following class:

public class Product {
public String ean;
public String name;
public String description;

}

To fully understand how binding works, we’ll cheat a little and respond to a GET HTTP
request to trigger our save() action method, so that we can easily make requests
using a browser.

 Let’s edit our routes file, and add the following line:

GET /products/save controllers.Product.save()

We can now invoke our save() action method from the browser, and we should remove
this route entry once we’re done experimenting (and use the POST /products/ one).

http://localhost:9000/product/save?ean=1111111111111&
name=product&description=a%20description

The first line of the save() action method is the most important one:

Form<models.Product> productForm =
form(models.Product.class).bindFromRequest();

This creates a new Product instance and then, for each HTTP parameter that matches
a property by name, sets the value on that property. For this GET request, a new Product
is created and the ean parameter is bound to the ean property, the name parameter is
bound to the name property, and so on.

 Our product form is filled with the HTTP parameter values from our request. We
can then access the newly created Product instance with the following code:

models.Product product = productForm.get();

And the product object contains the following data:

ean: 1111111111111,
name: product,
description=a description

110 CHAPTER 6 Handling user input
As you can see, it matches with the parameters we supplied in our URL. It’s a simple
and predictable mechanism. It’s now trivial to map back and forth from HTTP
parameters to objects.

 It works well for simple types such as String, Integer, Long, and so forth. Play also
provides support for more complex types such as Date and for multiple values that
must be mapped to an array or List object.

 For dates, you can annotate your model with the @play.data.format.Formats
.DateTime annotation to indicate how to transform the HTTP parameter into a Date
object:

@Formats.DateTime(pattern = "yyyy-MM-dd")
public Date date;

Here, if we use the date HTTP parameter with a year, month, and day date format, Play
will be able to transform the string into a Date object using a form data binder called
Formatter. For example, calling

http://localhost:9000/product/save?date=2021-10-02

results in a Date object when bound to a Form object.
 Play provides some built-in Formatters, namely DateFormatter, AnnotationDate-

Formatter, and AnnotationNonEmptyFormatter. DateFormatter attempts to convert
parameters to Dates with a date format of yyyy-MM-dd whenever a Date object is
required. AnnotationDateFormatter is used in conjunction with the @DateTime anno-
tation and allows you to specify a date format. The AnnotationNonEmptyFormatter is
used in conjunction with the @NonEmpty annotation and prints an empty string instead
of a null value.

 All the built-in Formatters are located in the play.mvc.data.Formats class.
 Next, let’s see how binding multivalued parameters works.

6.2.2 Binding multiple values

This is a common use case: the user selects multiple
values from a list of possible values, and we have to
store them. To illustrate this use case, let’s define a
new scenario. We want to be able to tag our product
with a certain label. For example, we can tag a prod-
uct with the words metal or plastic. Each product can
have zero or more tags, and each tag can be applied
to multiple products. Figure 6.6 illustrates this relationship.

 We first need to define our new model. Let’s create a Tag model class. We create a
new file in the app/models directory.

warehouse
├─ app
│ ├─ controllers
│ │ └─ Products.java
│ ├─ models

Listing 6.5 Project directory structure

Product Tag
1..n 1..n

Figure 6.6 Product–Tag
relationships

111Data binding
│ │ ├─ Product.java
│ │ └─ Tag.java
│ └─ views
├─ conf
│ └─ routes
├─ public
└─ test

It’s a relatively simple class; it holds a tag name. The following isting shows our new
class.

package models;

import play.data.validation.Constraints;
import java.util.*;

public class Tag {
public Long id;
@Constraints.Required
public String name;
public List<Product> products;

public Tag(){
// Left empty

}

public Tag(Long id, String name, Collection<Product> products) {
this.id = id;
this.name = name;
this.products = new LinkedList<Product>(products);
for (Product product : products) {

product.tags.add(this);
}

}
}

We also need to modify our Product class to link the Tag class. We use a List so that
each product can hold multiple tags. This is easily done by adding the following line
to our Product class (/app/models/Product.java).

public List<Tag> tags = new LinkedList<Tag>();

We now need to create some tags. In order to do that, we’ll fake some Tag objects in
the same way that we created some test Products. We’ll show you how to use a data-
base as a backing store in chapter 7. For now, let’s stick with a static list of tags. In the
Tag class, add the lines shown in the following listing.

public class Tag {

private static List<Tag> tags = new LinkedList<Tag>();

static {
tags.add(new Tag(1L, "lightweight",

Product.findByName("paperclips 1")));

Listing 6.6 /app/models/Tag.java

Listing 6.7 Adding mock data to Tag.java

Our new Tag
entity class

The lightweight tag
is added to product
names matching
paperclips 1

112 CHAPTER 6 Handling user input
tags.add(new Tag(2L, "metal",
Product.findByName("paperclips")));

tags.add(new Tag(3L, "plastic",
Product.findByName("paperclips")));

}

public static Tag findById(Long id) {
for (Tag tag : tags) {

if(tag.id == id) return tag;
}

return null;
}

...
}

We now have our tags ready to be used. Next we need to modify our view so we can tag
our products. Because we want to keep things simple, we’ll use a predefined set of tags
rather than dynamically generate the list of check boxes. Let’s add the following code
snippet to our products/details.scala.html.

<div class="control-group">
<div class="controls">
<input name="tags[0].id" value="1" type="checkbox" > lightweight
<input name="tags[1].id" value="2" type="checkbox" > metal
<input name="tags[2].id" value="3" type="checkbox" > plastic
</div>
</div>

We’ve added some HTML input elements of type checkbox. For the binding process,
the important part of these input elements is the id attribute. The [] notation tells
Play that we want to bind the check boxes to the product’s tag collection (in our case,
the List<Tag>). Once the form is submitted, Play will automatically create a new List,
with new Tag objects for each checked box, and with the ID specified in the value attri-
bute. For example, if we select “lightweight” and “plastic,” Play will create a new List
with two new Tag objects during the binding process. The first tag object will have its
ID set to 2 and the second one to 3. Figure 6.7 illustrates exactly that.

 Now that we have our form ready with the check boxes, let’s see how our product
form looks (figure 6.8).

 We need to modify our Products controller’s save method slightly, to take our tags
into account. We need to save our relationship between the product and the tags. But

The metal tag is
added to all the
products (they all
match paperclips)

The plastic tag is
added to all the
products (they all
match paperclips)

HTML form

OK

lightweight

Play 2 binding

(bindFromRequest()
in your

controller code)

List

tag.id=1
tag.id=2Send values

(value=1)
plastic (value=2)
metal (value=3)

Creates

Figure 6.7 Binding HTML check boxes

113Data binding
our tag objects do not yet correspond to the Tag objects that we have in our datastore;
they are new objects with only the ID set. We need to modify our action method to
look up the tag, and set it. This can easily be done in our controller, as the following
listing shows.

public class Products extends Controller {
...

public static Result save() {
... (binding and error handling)

Product product = boundForm.get();

List<Tag> tags = new ArrayList<Tag>();
for (Tag tag : product.tags) {

if (tag.id != null) {
tags.add(Tag.findById(tag.id));

}
}
product.tags = tags;
product.save();
... (success message and redirect)

}
}

We now need to display the tags when display-
ing a product. For this, we need to update our
view so the correct tag check boxes are
selected when a tag is present. We have
already seen (in section 6.1.2) how our prod-
uct prepopulates our product form:

productForm = productForm.fill(product);

This also loads the product’s associated tags,
so the action method doesn’t need to be
changed. Our goal can easily be achieved with
a bit of code in our view. When rendering the
view, we need to add a checked attribute to
each check box if its associated tag is present
in the productForm. The following line of
code does exactly that:

@for(i <- 0 to 2) { @if(productForm("tags[" + i + "]").value!=null
&& productForm("tags[" + i + "]").value == "1") { checked }}

Because our product’s associated tags might contain between zero and three tags, we
need to iterate through them (the for loop in our code). If the tags contain the value

Listing 6.8 Product save method with tag relationship

Figure 6.8 Edit product form with tags

114 CHAPTER 6 Handling user input
1, then we preselect the check box. Don’t worry if you don’t fully understand this line;
we’ll take a closer look at template syntax in chapter 8.

 We now need to apply this code for each check box we’re displaying:

<div class="control-group">
<div class="controls">

<input name="tags[0].id" value="1" type="checkbox"
@for(i <- 0 to 2) {

@if(productForm("tags[" + i + "].id").value=="1"){ checked }
}> lightweight
<input name="tags[1].id" value="2" type="checkbox"
@for(i <- 0 to 2) {

@if(productForm("tags[" + i + "].id").value=="2"){ checked }
}> metal
<input name="tags[2].id" value="3" type="checkbox"
@for(i <- 0 to 2) {

@if(productForm("tags[" + i + "].id").value=="3"){ checked }
}> plastic

</div>
</div>

Again, in chapter 8, we’ll see how we can refactor all this code to make it less repetitive
and verbose.

 We now can deal with related tags for our product. More importantly, we’re now
able to map back and forth from check boxes or select fields to our object model.

 Let’s see what happens if we want to bind a type that Play doesn’t know about yet.

6.2.3 Custom data binders and formatters

As we have seen in the previous section, Play is able to bind most of the usual types
automatically. But what about special types? Play allows you to define your own binder
or your own formatter. There are three different ways of binding objects. You can bind
objects via the URL or via URL parameters, and it’s also possible to use a custom for-
matter that will transform your object when submitting a form.

PATH BINDERS

When requesting a URL with a named parameter in it, Play already performs some
kind of binding. For example, in our application, we have:

/product/1111111111111

where 1111111111111 is our product EAN number. Internally, Play binds this value to
the product’s EAN number. This is done when declaring our URL in the route file (see
chapter 5):

GET /product/:ean Product.details(ean: String)

Play looks for the ean type and converts it into the proper type.
 In our case, it binds a string to another string. But Play can also deal with values

such as primitives and primitive wrappers, based on information in the routes file. If
we have the following route:

115Data binding
GET /product/:ean Product.details(ean: Int)

Play would make sure to convert

/product/1122334455

into an Integer with the value 1122334455. If we were to use aabbcc1122334455, Play
would yield an error, because it can’t convert aabbcc1122334455 into an Integer.

 Therefore, there is a mechanism that allows Play to transform part of a URL (our
URL parameter, a string) into an object. This means that we could, for example, auto-
matically load and bind our Product objects based on the EAN number that is used in
our URL.

 Whenever we call

/product/1111111111111

we can have the matching product object passed to our controller, and we can have a
details action method that looks like this:

public static Result details(Product product)
Form<models.Product> productForm = form(models.Product.class);
productForm = productForm.fill(product);
return ok(edit.render(productForm));

}

Figure 6.9 illustrates what we want to achieve: automatic binding of our Product
object based on our EAN product number.

 Play allows you to define your own binder for URL paths. This is called a bindable path
in Play. In order to provide our own custom URL path binder, we need to create a new
class that implements the play

.mvc.PathBindable interface, and our
implementation must reference itself as
a generic type argument:2 if we create a
class called ProductBinder, we have
to implement play.mvc.PathBindable
<ProductBinder>.

 Because we want to bind the Product
entity to the EAN number that is used in
our URL, we need to implement the
play.mvc.PathBindable interface on
our Product class.

 Open your editor and edit the Product
.java class from the models directory.

2 This might change in the next version of Play.

The product should automatically be
looked up using the product’s EAN key

HTTP path parameters:
/product/11222bbasssd

id

ean

name

description

Product object
instance

ean

Figure 6.9 The binding process

116 CHAPTER 6 Handling user input

warehouse
├─ app
│ ├─ controllers
│ ├─ models
│ │ ├─ Product.java
│ └─ views
├─ conf
├─ public
└─ test

The code is simple; all we need to do is implement three methods. Like we said, our
Product class implements the play.mvc.PathBindable interface and references itself
(we have the class declaring a Product, and play.mvc.PathBindable references Prod-
uct via the use of generics). The three methods we need to implement to satisfy the
interface are:

 T bind(String key, String txt)
 String unbind(String key)
 String javascriptUnbind()

The bind method indicates how to bind our product from the URL. The unbind
method tells Play what to display when a Product is referenced from the view, for
example, in case of reverse routing (see chapter 5). In our case, we should display the
product’s EAN number. The method javascriptUnbind is used for Ajax calls. We also
want to use the product’s EAN number for that.

 Let’s add our three new methods. The bind method performs a lookup in the
database, using the EAN number. The EAN number is passed via the txt parameter.
That is the EAN number as it appears in the URL. The unbinding process is simple and
consists of returning our Product instance’s EAN number. The following listing shows
our implementation.

...
import play.mvc.PathBindable;
import play.libs.F.Option;

public class Product implements PathBindable<Product> {

...

@Override
public Product bind (String key, String value) {

return findByEan(value);
}

@Override
public String unbind(String key) {

return this.ean;
}

@Override

Listing 6.9 Project directory structure

Listing 6.10 Product class that is PathBindable-aware

The class that we
need to edit

We’re telling Play
that we’re defining
a new Binder to
bind URL paths

Binding—we’re looking in
the DB for a product with an
EAN number equal to the
one passed in our URL

Unbinding—we’re
returning our raw value

117Data binding
public String javascriptUnbind() {
return this.ean;

}
}

We now need to change our routes file to modify our Product.edit() route. Edit the
routes file located in your conf directory.

 Let’s replace

GET /product/:ean controllers.Product.details(ean: String)

with

GET /products/:ean controllers.Products.details(ean: models.Product)

This is how we tell Play that we want to use our object. The automatic binding between
the Product object and the EAN number in our URL path will be performed by the
methods we have implemented.

 We now need to change our Products controller with the following method:

public class Products extends Controller {
...

public static Result details(Product product) {
Form<Product> filledForm = productForm.fill(product);

return ok(details.render(filledForm));
}

...
}

Now that we’ve changed the method signature, we need to update its callers too. At
this point, we only have one caller. In the products list template, products/list
.scala.html, change the following line

to

and we’re done! We can now automatically bind a URL to an instance of Product. Call-
ing http://localhost:9000/products/111111111111 will show the product with EAN
111111111111. This simplifies the code for our controllers and centralizes the pro-
gram logic that turns a path parameter into a Product instance. Any action method
that requires a Product can now accept it as a parameter directly.

QUERY STRING BINDERS

Up to this point, we’ve seen that we can bind the URL path to our model objects. We
can do exactly the same for URL parameters (the query string part of a URL). Let’s
take our product example. This time, we’re going to bind to a Product object when
we pass the product’s EAN as a query parameter:

http://localhost:9000/products?ean=1

JavaScript unbinding—
we’re returning our raw value

The new edit method binds
directly to a product

http://localhost:9000/products/111111111111

118 CHAPTER 6 Handling user input
When Play encounters this URL, it should look up the Product in the database, based
on the provided EAN. In order to achieve that, we have to implement the
play.mvc.QueryStringBindable interface, similar to how we implemented Path-
Bindable earlier. Because we want to look up Product objects, we’ll implement the
interface on our Product model class.

 Edit the Product model class.

warehouse
├─ app
│ ├─ controllers
│ ├─ models
│ │ └─ Product.java
│ └─ views
├─ conf
│ └─ routes
├─ public
└─ test

This time, we need to change it to implement the play.mvc.QueryStringBindable
interface. Like PathBindable, this interface provides three methods we need to
implement:

 Option<T> bind(String key, Map<String,String[]> data)
 String unbind(String key)
 String javascriptUnbind()

The bind method gives us access to the query parameters, both values and associated
keys, and must return an Option object of type T. In our case, T is type Product.
Option is the class that allows us to say that either we return something or we return
nothing, giving a nicer alternative to returning null. The data parameter of the bind
method gives us access to the query parameters. It’s represented by a Map object that
contains the query parameter names with their corresponding values.

 Like before, bind indicates how to bind our product from the URL parameters,
unbind tells Play what to display when a Product is referenced from the view, and
javascriptUnbind is to support JavaScript. In our case, the logic is based on the id
property of our Product class.

 Let’s implement the required methods in the Product model class. Please note that
this is a simple example, and so it doesn’t check for null values or other possible errors.

...
import play.mvc.PathBindable;
import play.mvc.QueryStringBindable;

public class Product
implements QueryStringBindable<Product> {

...

Listing 6.11 Project directory structure

Listing 6.12 Product class that is QueryStringBindable-aware

The Product class
we’re going to edit

We’re telling Play that we’re
defining a new Binder to
bind query parameters

119Data binding
@Override
public Option<Product> bind(String key, Map<String, String[]> data) {
return Option.Some(findByEan(data.get("ean")[0]));

}

@Override
public String unbind(String key) {
return this.id;

}

@Override public String javascriptUnbind() {
return this.id;
}

}

We need to declare a new route in our routes file that links the URL call to our control-
ler. Open the routes file (located in your conf directory), and add the following route:

GET /products/ controllers.Product.details(ean: models.Product)

We’re ready to accept URLs such as /products?ean=1. Modify the details method on
the Products controller, if you haven’t already done so in the previous section.

warehouse
├─ app
│ ├─ controllers
│ │ └─ Products.java
│ ├─ models
│ │ └─ Product.java
│ └─ views
├─ conf
│ └─ routes
├─ public
└─ test

The edit method becomes the same as when we used the path binder:

public static Result details(Product product){
Form<Product> filledForm = productForm.fill(product);
return ok(details.render(filledForm));

}

As you can see, we can manipulate the Product object straight from our controller
methods. This is quite nice if you want to reduce the size of your controller code. We
can now automatically bind URL parameters (id, in our case) to an instance of Product.
Calling http://localhost:9000/products?ean=1 shows the product with id 1.

FORM FIELD BINDERS

Another form of binding occurs when a form is submitted or displayed. Values are
mapped back and forth between the Form object and the forms in the views. Inside the
form object, the data is stored as objects, but on the client side we can only display
their string representations. This is why customized form field binders can be useful.

Listing 6.13 Project directory structure

Binding on the product
ID number—database
lookup based on the
product EAN

Unbinding—return
our product EAN

JavaScript unbinding—
return our product EAN

The Products controller
we need to modify

The new edit
method binds
directly to a product

http://localhost:9000/products?ean=1

120 CHAPTER 6 Handling user input

T

c

Form field binders in Play are also referred to as formatters, because they format data to
and from controllers.

 Formatters, both predefined and custom, are always used to map Strings to
objects. You can register a Formatter using the register() method of play.data
.format.Formatters. Let’s do that now with a custom formatter for dates, by extend-
ing the SimpleFormatter class. We have to register the formatter at application
startup in the Global object (or a class that extends GlobalSettings and overrides
the onStart method). For that we need to create a Global.java file in the app folder.
The Global object is part of Play and defines methods that are called during the appli-
cation lifecycle (onStart, onStop, onError, and so forth). The Global.java file con-
tent is shown in the following listing.

import play.*;
import play.libs.*;
import java.util.*;
import models.*;
import play.data.format.Formatters;
import play.data.format.Formatters.*;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

public class Global extends GlobalSettings {

public void onStart(Application app) {
Formatters.register(Date.class,

new SimpleFormatter<Date>() {
private final static String PATTERN = "dd-MM-yyyy";

public Date parse(String text, Locale locale)
throws java.text.ParseException {

if(text == null || text.trim().isEmpty()) {
return null;

}
SimpleDateFormat sdf =

new SimpleDateFormat(PATTERN, locale);
sdf.setLenient(false);
return sdf.parse(text);

}

public String print(Date value, Locale locale){
if(value == null) {

return "";
}

return new SimpleDateFormat(PATTERN, locale)
.format(value);

}

});
}

}

Listing 6.14 Registering a DateFormatter class

Our Global object is
part of Play’s lifecycle

he onStart
method is

alled when
Play starts

our
application

Register our new Formatter,
extending the SimpleFormatter
abstract class and specifying
that the formatter applies to
Date objects

Create a Date object
based on our date-
format-binding
process

Create a string
representation of our
Date object based on
our date-format-
unbinding process

121Data binding

Th

o

Because we’re extending the SimpleFormatter class, we have to implement two meth-
ods: the parse() method and the print() method. The parse() method converts a
String to a Date object (the binding process), whereas the print() method converts
a Date to a String (the unbinding process). An incoming date string, such as 11-02-
2008, will now be converted to a Date object representing that date. Similarly, an out-
going Date object will be converted to a “dd-MM-yyyy”-formatted string.

 As you can see, this is straightforward to declare. Now every time we encounter a
Date object, Play knows how to bind a date and send it back as String. But there are
cases when you don’t want the formatting to be global, or you want the date format to
be enforced and/or different.

 If we were to add a date to our product, the user would have to enter the date as
21-01-2012 in a product details input field using the formatter we defined earlier. Sim-
ilarly, the date will be shown as 21-01-2012 in the details form. In our object model,
however, it will be a Date and not a String; the formatter handles the conversion
between String and Date.

 For example, what if you want to have multiple date representations? For example,
suppose you want the user to input 11-02-08 on the main page and 11/02/08 on the
login screen. Play allows you to control the binding behavior with annotations, includ-
ing custom annotations. Let’s transform our date formatter into an annotation-based
formatter by creating the following:

 An annotation
 A formatter that extends Play’s AnnotationFormatter

Let’s start with our annotation:

package utils;

import play.data.Form;

import java.lang.annotation.*;

@Target({ElementType.FIELD})

@Retention(RetentionPolicy.RUNTIME)

@Form.Display(name = "format.date", attributes = {"value"})

public @interface DateFormat {

String value();

}

The annotation is simple and is mainly a holder for our date format. The Display
annotation defined on the DateFormat annotation holds metadata for Play. When a
date can’t be bound because of an incorrect date format, Play uses that metadata to dis-
play an error message on the form. The annotation tells Play to use the format.date
message key and that value can be used as a parameter for the message.

Listing 6.15 The DateFormat annotation, /app/utils/DateFormat.java

Indicates the
annotation applies
to fields only The annotation is to be

applied at runtime

This Play annotation indicates that the i18n
name is format.date which has a value

parameter—this is used to display a validation
error message in case of binding failure

e value
will be

ur date
format

122 CHAPTER 6 Handling user input
 Let’s now define our formatter. We have to indicate that we want an annotation
formatter. This is done by extending Formatters.AnnotationFormatter.

public static class AnnotationDateFormatter

extends Formatters.AnnotationFormatter<DateFormat,Date> {

public Date parse(DateFormat annotation, String text,

Locale locale)

throws java.text.ParseException {

if(text == null || text.trim().isEmpty()) {

return null;

}

SimpleDateFormat sdf = new

SimpleDateFormat(annotation.value(), locale);

sdf.setLenient(false);

return sdf.parse(text);

}

public String print(DateFormat annotation, Date value,

Locale locale) {

if(value == null) {

return "";

}

return new SimpleDateFormat (annotation.value(), locale)

.format(value);

}

}

Because we’re extending the Formatters.AnnotationFormatter abstract class, as
before with the SimpleFormatter class, we have to implement two methods: the
parse() method and the print() method. And as before, the parse() method binds
the date string representation to a concrete Date object, whereas the print() method
does the exact opposite. But this time, the Formatters.AnnotationFormatter is
annotation aware, and our print() and parse() methods take an extra parameter:
our DateFormat annotation. We use it to access the configured pattern.

 As we’ve seen in the previous section, we need to register our AnnotationDate-
Formatter in our Global.java class. Listing 6.17 shows how to do that.

Listing 6.16 The AnnotationDateFormatter class

Extends Formatters.AnnotationFormatter so we’re
annotation aware—the Formatter applies to

DateFormat annotation and to Date object

Create a Date object based
on our date format value

annotation-binding process

We’re taking the
date format from
our annotation

Create a string
representation of
our Date object
based on our
date format
annotation-
unbinding process

We’re
taking the
date format
from our
annotation

123Body parsers

public class Global extends GlobalSettings {

public void onStart(Application app) {
...

Formatters.register(Date.class, new AnnotationDateFormatter());
}

}

Now we can now annotate any object property on a model class to indicate that we
want to bind and unbind Date from a Form object using the following syntax:

public Person {
@DateFormat("MM-dd-yyyy")
public Date birthDate;

}

Now in our view, each Person’s birth date will be displayed as MM-dd-yyyy. When sub-
mitting a form, the birthDate attribute will contain a Date object with the expected
date. Note that in practice, the example we’ve seen is already part of Play. You don’t
need to code it and you can use the @DateTime annotation defined in the
play.data.format.Formats class.

6.3 Body parsers
We’ve looked at request body data mapped to form objects and vice versa, but we
haven’t explored how the raw request bodies are processed. This step is the job of
body parsers.

 Each incoming HTTP POST and PUT request contains a body. This body may be sin-
gle part or multipart, and may contain XML, JSON, binary data, or any other type as
specified in the request’s Content-Type header. A body parser will parse the body
(hence the name) into a Java object. Further operations, such as formatting, can then
take place. Figure 6.10 illustrates this process.

Listing 6.17 Registering our AnnotationDateFormatter in the Global.java file

Listing 6.18 Object model using the DateFormat annotation

Register our
AnnotationDateFormatter

Request
(HTTP, XML)

Parse request
body

Body
parser

Java body
object

request().
body()

form().bindFrom
Request();

Bind to form
objects

Formatters

Form objects

Figure 6.10 Body parser interaction with an incoming request

124 CHAPTER 6 Handling user input
 Body parsers “decode” the request and transform it into objects that can then be
used by the other Play components. Because a JSON body is parsed differently to an
XML body, Play uses pluggable body parsers. Different content types, therefore, have
specific body parsers that can translate arbitrary incoming data into something Play
can understand.

 Using body parsers, it’s possible to directly manipulate the object obtained from a
request. The interaction is done through a body-parser API.

6.3.1 The body-parser API

All body parsers must generate a play.mvc.Http.RequestBody value. This value can
then be retrieved via request().body(). The following listing shows how to use the API.

public static Result index() {
RequestBody body = request().body();
return ok("Here is the body we received: " + body);

}

You can specify the BodyParser to use for a particular action using the @BodyParser.Of
annotation. This means that we can tell Play to use a specific body parser to parse the
request and then access the body request to read the value. Listing 6.20 shows an exam-
ple in which we’re specifying a JSON body parser and reading the result via the
body.asJson() method.

@BodyParser.Of(BodyParser.Json.class)
public static Result index() {

RequestBody body = request().body();
return ok("We expected to get json: " + body.asJson());

}

All body parsers will give you a play.mvc.Http.RequestBody value. From this body
object you can retrieve the request body content in the most appropriate type. In our
previous example, we used the asJson() method. But if we’d used an XML body
parser, we would’ve used the asXML method.

REQUESTBODY METHODS MAY RETURN NULL RequestBody methods such as
asText() or asJson() will return null if the parser used can’t handle that
content type. For example, in an action method annotated with
@BodyParser.Of(BodyParser.Json.class), calling asXml() on the gener-
ated body will return null.

Some parsers can provide a more specific type than Http.RequestBody (a subclass of
Http.RequestBody). You can automatically cast the request body into another type
using the as() helper method. An example is shown in the following listing.

Listing 6.19 Accessing the request body

Listing 6.20 Specifying a specific body parser to use

Accessing the
request body

We output the
JSON value on
the console

125Body parsers

@BodyParser.Of(BodyLengthParser.class)
public static Result index() {

BodyLength body = request().body().as(BodyLength.class);
return ok("Request body length: " + body.getLength());

}

If you don’t specify a body parser, Play will use the Content-Type header to determine
which built-in parser to use:

 text/plain—String, accessible via asText()
 application/json—JsonNode, accessible via asJson()
 text/xml—org.w3c.Document, accessible via asXml()
 application/form-URL-encoded—Map<String, String[]>, accessible

via asFormUrlEncoded()
 multipart/form-data—Http.MultipartFormData, accessible via

asMultipartFormData()

 Any other content type—Http.RawBuffer, accessible via asRaw()

Please note that if the requested body type isn’t available, the method will return null.
The following listing shows an example of how the asText() method can be used.

public static Result save() {
RequestBody body = request().body();
String textBody = body.asText();

if(textBody != null) {
return ok("Got: " + text);

} else {
return badRequest

 ("Expecting text/plain request body");
}

}

Text-based body parsers (such as text, JSON-, XML-, or URL-encoded forms) use a
maximum content length because they have to load all the content into memory.
There is a default content length limit of 100 KB.

OVERRIDING THE DEFAULT MAX CONTENT-LENGTH The default content size can
be defined in application.conf: parsers.text.maxLength=128K.

You can also specify a maximum content length via the @BodyParser.Of annotation,
for example to only accept 10 KB of data:

@BodyParser.Of(value = BodyParser.Text.class, maxLength = 10 * 1024)
public static Result index() {

...
}

Listing 6.21 Using the as() helper method

Listing 6.22 Using the body.asText() method

Using as() to
automatically bind
the request body to
a BodyLength class

126 CHAPTER 6 Handling user input
Custom body parsers must be written in Scala, because they process incoming data
incrementally using Scala’s Iteratee I/O.

 But Play has body parsers for typical web content types such as JSON and binary
data, and these can be reused to create body parsers in Java.

 Now that we understand how to receive and transform data, we need to be able to
ensure the data is valid.

6.4 Validation
We’ve seen how we can translate user data to our own object model and vice versa. But
we also need to ensure the data is valid in the context of our application by meeting
certain criteria. For example, some fields might be mandatory. The binding process
can’t guarantee that data is valid. Play allows you to define constraints to catch invalid
submitted data. It also provides detailed feedback to the client in the case of invalid
data. In this section we’ll see how we can define constraints on the data the user inputs.

6.4.1 Using the built-in validators

Play validates the data once it is bound to the domain model. Play uses JSR-3033 and
Hibernate validators for this step. Defining constraints is as simple as annotating the
object model. For example, ensuring that the user inputs an EAN number in our prod-
uct form is as simple as adding the @Required annotation on the Product object:

import play.data.validation.Constraints.*;
...

public Product extends Model {
...
@Required
public String ean;

}

To ensure the user input complies with the constraint defined by the annotation, we
need to check the hasError method on our Form object. Validation occurs immedi-
ately after binding and registers errors in the form as they are found. The validation
process sets any validation errors to the Form that was bound. Validation errors contain
the relevant i18n error message key, the field name, and a potential parameter list to
display with the error message. Listing 6.23 shows the save method seen in
section 6.1.3, with the validation check added.

public static Result save() {

Form<models.Product> productForm =

form(models.Product.class).bindFromRequest();

models.Product newProduct = productForm.get();

3 JSR-303 is a Java specification that defines a metadata model and API for JavaBean validation based on anno-
tations; see http://jcp.org/en/js/r/detail?id=303.

Listing 6.23 Save action method with validation

Indicates this
field is required

Create a Form
object from the
current request

Bind the Product
object from the form

http://jcp.org/en/jsr/detail?id=303

127Validation

v

if (productForm.hasErrors()) {

return ok(edit.render(productForm));

} else {

newProduct.saveOrUpdate();

return redirect(routes.Product.all());

}

}

As you can see, validating a form is straightforward.
 Play comes with a lot of commonly used validations, and these are detailed in

table 6.1.

Play uses an implementation of the JSR-303 specification,4 better known as Bean Valida-
tion, to perform the validation. The standard also comes with its own set of validation
annotations that covers most common use cases.

 Table 6.2 shows some built-in annotations that come with Bean Validation. They
can all be found in the javax.validation package.

Table 6.1 Built-in Play validation annotations

Name Description

@Required A Play-specific validation indicating the field must be non-null or, in the
case of Strings and Collections, not null and not empty. Works
with any object.

@Min Indicates the minimum this number should be; for example, @Min(1).

@Max Indicates the maximum this number should be; for example, @Max(2).

@MinLength Defines a minimum length for a string field.

@MaxLength Defines a maximum length for a string field.

@Pattern Checks if the annotated string matches the regular expression pattern.

@ValidateWith Uses a custom validator (see section 6.4.3).

@Email Checks whether the specified string is a valid email address.

4 Hibernate Validator, to be precise.

Table 6.2 Built-in Hibernate validation annotations

Name Description

@Null Indicates that the field should be null (but it can be empty).

@NotNull Indicates that the field cannot be null.

@NotEmpty Checks if the string is not null nor empty.

@AssertTrue Asserts that this field is a Boolean that resolves to true.

If a
alidation

error
occurred

Rerender our form

Save or update
our current
Product object

Redirect to
our “view all
products” page

128 CHAPTER 6 Handling user input
These annotations are self-explanatory, but further information can be found in the
documentation for Bean Validation (http://beanvalidation.org).

6.4.2 Partial validation

A common use case is having multiple validation constraints for the same object
model. Because we’re defining our constraint on the object model, it’s normal to have
multiple forms that refer to the same object model. But these forms might have differ-
ent validation constraints. To illustrate this use case, we can imagine a simple wizard in
which the user inputs a new product in two steps:

1 The user enters the product name and submits the form.
2 The user enters the product EAN number and the description.

We could validate the product’s name during step 2, but displaying an error message
for the product name at that point would be weird. Fortunately, Play allows you to per-
form partial validation. For each annotated value, we need to indicate at which step it

@AssertFalse Asserts that this field is a Boolean that resolves to false.

@Min Indicates the minimum this number should be; for example,
@Min(1).

@Max Indicates the maximum this number should be; for example,
@Max(2).

@DecimalMin Indicates the minimum this decimal number should be; for
example, @Min(1.1).

@DecimalMax Indicates the maximum this decimal number should be; for
example, @Max(4.2).

@Size Indicates range this number should be in; for example,
@Size(min=2, max=4).

@Digits(integer=, fraction=) Checks whether the property is a number, having up to
{integer} digits and {fraction} fractional digits.

@Past Checks whether the annotated date is in the past.

@Future Checks whether the annotated date is in the future.

@Pattern(regex=) Checks if the annotated string matches the {regex} regular
expression pattern.

@Valid Performs validation recursively on the associated object.

@Email Checks whether the specified string is a valid email address.

@Length(min=, max=) Validates that the annotated string is between {min} and
{max} (inclusive).

Table 6.2 Built-in Hibernate validation annotations (continued)

Name Description

http://beanvalidation.org

129Validation
applies. We can do that with the help of the groups attribute from our annotations.
Let’s change our Product model class to do that:

public Product extends Model {
public interface Step1{}
public interface Step2{}

@Required(groups = Step1.class)
public String name;
@Required(groups = Step2.class)
public String ean;

}

We now need to indicate which step we’re at. This is done when binding from the
request, specifying Step1:

// We re//strict the validation to the Step1 "group"
Form<Product> productForm =

form(Product.class, Product.Step1.class).bindFromRequest();
if(filledForm.hasErrors()) {
...

We can do the same for Step2. This is useful if the model object is used on different
forms and has different validation constraints.

6.4.3 Creating a custom validator

Play gives you the ability to add your own validators. This is useful if you need to per-
form custom validation. You can implement your own validator in different ways:

 Using ad hoc validation—this method is the quickest and simplest one
 Using @ValidateWith and defining your own Validator class
 Defining a new JSR 303 annotation and defining a new Validator class

We’ll take a closer look at each of these approaches, starting with ad hoc validation.

AD HOC VALIDATION

You can define an ad hoc validation by adding a validate method to your model
object. Play will invoke the validate method of every object model. For example, to
validate our EAN number, we can add a validate method on our Product object
model. The validate method must return a String or null. If it returns a String, it
must either contain the validation error message or the i18n key for one. A null
return value indicates there are no errors.

 An EAN is a 13-digit number. Our validate method must check that the String
EAN variable contains exactly 13 digits. Listing 6.24 shows you how to do that.

Define first step
Define second step

This constraint only applies to first step

This constraint only applies to second step

When binding,
tell validator
we’re only
interested in
constraints
that apply to
first step

130 CHAPTER 6 Handling user input

public Product extends Model {

...

public String ean; public String validate() {

String pattern = "^[0-9]{13}$";

Pattern regex = Pattern.compile(pattern);

return name !=null &&

regex.matcher(name).matches()?null:"Invalid ean number";

}

}

The validate method is not practical if you have several attributes to validate, but it’s
the easiest and quickest way to add simple validation constraints. Let’s take a look at
how we can do more complex validation.

PLAY @VALIDATEWITH

Using @ValidateWith, we can have fine-grained control over validation. Let’s use the
EAN number as an example again. First, we need to annotate the ean attribute with
the @Constraints.ValidateWith.ValidateWith annotation. The @ValidateWith

method takes a class as parameter: the class that will do our custom validation.
 We need to implement a class that extends the Play Constraints.Validator class.

In our Validator class, we need to implement the isValid and getErrorMessageKey
methods. isValid() tests the field’s validity, and getErrorMessageKey() returns the
i18n message key for the error message. The following listing shows how to validate
the EAN number using @ValidateWith.

package models;

import play.data.validation.Constraints;
...

public class Product implements PathBindable<Product>,
QueryStringBindable<Product> {

public static class EanValidator
extends Constraints.Validator<String> {

@Override
public boolean isValid(String value) {

String pattern = "^[0-9]{13}$";
return value != null && value.matches(pattern);

}

@Override
public F.Tuple<String, Object[]> getErrorMessageKey() {

return new F.Tuple<String, Object[]>("error.invalid.ean",

Listing 6.24 EAN number ad hoc validation adding the validate method

Listing 6.25 EAN number validation using the @ValidateWith annotation

The validate method returns
null in case of success, or the
error message otherwise

This regex pattern means “a
number character, 13 times”

Return the error message if the input
doesn’t match; null otherwise

Our custom validator class
must extend the Play
abstract Validator class

Our implementation of
the isValid method

Return true if the string
has exactly 13 digits

131Validation
new Object[]{});
}

}

...

@Constraints.Required
@Constraints.ValidateWith(value=EanValidator.class,

message="must be 13 numbers")
public String ean;

...
}

Using @ValidateWith, we now have a custom, fine-grained, reusable validation mecha-
nism. This approach to validation is Play-specific, but using the JSR-303 standard, there
is a way to specify validation logic in a more portable way. Let’s see how that works.

JSR-303 CUSTOM ANNOTATION AND VALIDATOR

This approach is the JSR-303 standard way to add custom validation. It’s not specific to
Play and could be used in other, non-Play applications. This approach requires two steps:

 Define an annotation and reference a Validator class
 Define the Validator class that is referenced by our annotation

Let’s define an @EAN annotation that will be used to make sure our EAN number has
exactly 13 digits. We need to declare a new annotation and annotate that with the
@javax.validation.Constraint annotation later. The @Constraint annotation ref-
erences a Validator class that we need to implement next. The following listing
shows you how to create the annotation.

@Constraint(validatedBy = EanValidator.class)

@Target({ FIELD })

@Retention(RetentionPolicy.RUNTIME)

public @interface EAN {

String message() default "error.invalid.ean";

Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};

}

Listing 6.26 Custom JSR-303 EAN annotation

getErrorMessageKey
returns i18 message key and
potential argument values

Indicates we want to
validate using our
custom validator class

Indicate that it is a validation
annotation that should use the
EanValidator class to validate the
value annotated by this annotation

Our annotation targets the field value

We always compute the
annotation at runtime

The default error message—
can be overwritten when
setting the annotation

The groups we want
to apply the
annotation to during
partial validation—
see section 6.4.2 for
more on partial
validation

Payload is a standard JSR-303
property currently not used by Play

132 CHAPTER 6 Handling user input
We now need to define a Validator that will hold the business logic to validate our
EAN number. Our validator has to implement the JSR-303 ConstraintValidator inter-
face, and we need to implement the isValid method. The isValid method returns a
Boolean that indicates whether the value is valid. The following listing shows the Ean-
Validator implementation.

public static class EanValidator extends Constraints.Validator<String>
implements ConstraintValidator<EAN, String> {

final static public String message = "error.invalid.ean";
public EanValidator() {}

@Override
public void initialize(EAN constraintAnnotation) {}

@Override
public boolean isValid(String value) {

String pattern = "^[0-9]{13}$";
return value != null && value.matches(pattern);

}

@Override
public F.Tuple<String, Object[]> getErrorMessageKey() {

return new F.Tuple<String, Object[]>(message,
new Object[]{});

}
}

We can now annotate our Product object model with the @EAN annotation:

public Product extends Model {
...

@EAN
public String ean;

}

And our EAN field will automatically be validated. As you can see, it’s easy to add new
validation logic to our object models. Play allows you to validate your objects with your
own custom validation code, so you can validate against a database if you wish to.

6.4.4 Displaying the validation errors on the form

Nice—we can now validate our forms. But we also need to present the cause of the val-
idation errors to our users. This is trivial to do; the error messages are stored in our
Form object. By passing the Form object to our views, we can easily display the error
messages. For example, in our controller’s save() action, we check the form for
errors and pass it along to the view:

Listing 6.27 Custom JSR-303 validator

The ConstraintValidator class
identifies our validator; it extends
Play’s Constraints.Validator class.

This is called
when the validator
is initialized

The business
logic—if regular
expression doesn’t
match, it isn’t valid

133Validation
Form<Product> boundForm = productForm.bindFromRequest();
if (boundForm.hasErrors()) {

return ok(details.render(productForm));
}

In our view, we can access the form object and display the errors. We can access the
error message using the errors() method on the form or on a specified field. If you
want to display all the validation errors, iterate over the form errors using the
errors() method:

<p>Please fix the following errors
@for(error <- productForm.errors()) {

@error.message
}
</p>

If you want to access the errors per field, then you can use the errors() method on
the field value. For example, if we want to access the potential validation error for the
product name field:

@productForm("name").errors()

This returns a list. But using the built-in mkString method to join strings, we can have
a comma-separated list of errors per field using the following code:

@productForm("name").errors().mkString(", ")

For our current form, there’s no need to use these methods, because the form helpers
already include errors. But there’s no magic to the form helpers; they render the
errors using exactly this technique, as you can see in the following listing, which shows
the template for the field helper.

@(elements: views.html.helper.FieldElements)

@import play.api.i18n._
@import views.html.helper._

@** *
Generate input according twitter Bootstrap rules *
**@

<div class="clearfix @elements.args.get('_class)
@if(elements.hasErrors) {error}"
id="@elements.args.get('_id).getOrElse(elements.id + "_field")">
<label for="@elements.id">@elements.label(elements.lang)</label>
<div class="input">

@elements.input

@elements.errors(elements.lang).mkString(", ")

Listing 6.28 Source code for the field helper template

We’re passing our
product form to
the view

134 CHAPTER 6 Handling user input
@elements.infos(elements.lang).mkString(", ")

</div>
</div>

We now know how to validate and to report any validation errors back to the user.
We’re now able to submit any user inputs, process them, and reject any invalid data.
Let’s see about a more complicated type of input: file uploads.

6.5 File uploads
It’s time to go back to our current application. There’s something missing that could
make our paperclips more identifiable; we need to visually recognize them. Let’s add
a picture. For that we need to modify the Product object model slightly: see the fol-
lowing listing.

public class Product {
...

@Constraints.Required
@Constraints.ValidateWith(EanValidator.class)
public String ean;
@Constraints.Required
public String name;
public String description;
public byte[] picture;

...
}

We now need to give our users a chance to upload a picture for a product; we need to
add an HTML input file element to our form. To do that, we need to edit the existing
product.scala.html template that we created in section 6.1.1, add an HTML file
input element, and display a picture if one exists using an HTML img element. We also
need to change the form encoding type to send multipart data.

 The form now looks like the one shown in the following listing.

@(productForm: Form[Product])
@import helper._
@import helper.twitterBootstrap._

@main("Product form") {
<h1>Product form</h1>
@helper.form(action = routes.Products.save(),

'enctype -> "multipart/form-data") {
<fieldset>

<legend>Product (@productForm("name").valueOr("New"))</legend>
@helper.inputText(productForm("ean"))
@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))
@helper.inputFile(productForm("picture"))

Listing 6.29 Adding a picture to the Product object model

Listing 6.30 “Product create” form with picture uploading

Add this line—
a byte array will
hold our picture

The HTML form is
now multipart

Our input file
HTML element

135File uploads
@if(!productForm("picture").valueOr("").isEmpty()) {
<div class="control-group">

<div class="controls">
<img
style="position:relative; left:50px;height:80px"
src="/picture/@productForm("ean").value">

</div>
</div>
}
...

}
}

Once the form is submitted, we need to save the picture sent by the user. Unfortunately,
because of the way HTTP file uploads work, Play is unable to bind the file directly to the
picture field, so we’ll need to modify our save() method on the Product controller.

 In order to obtain the file that was uploaded by the user, we need to access the part
of the HTTP body that holds the file. We’ve seen how we can use the body-parser API
to do that in section 6.3.1; we call request().body().asMultipartFormData().

 Once we access the body, we can request the file and convert it to a byte array. Then
we can save our product and the associated picture to the datastore. We could also
access the filename and its content type through the FilePart object that we obtain
from the multipart body, but we currently have no need for that in our application.

 The following listing shows how to read and save the file.

import static play.mvc.Http.MultipartFormData;

...

public static Result save() {

Form<Product> boundForm = productForm.bindFromRequest();

if(boundForm.hasErrors()) {

flash("error", "Please correct the form below.");

return badRequest(details.render(boundForm));

}

Product product = boundForm.get();

MultipartFormData body = request().body().asMultipartFormData();

MultipartFormData.FilePart part = body.getFile("picture");

if(part != null) {

File picture = part.getFile();

try {

product.picture = Files.toByteArray(picture);

} catch (IOException e) {

return internalServerError("Error reading file upload");

}

}

Listing 6.31 Obtaining and saving uploaded files

The img HTML tag
used to display
the picture

Binds form as a
multipart form so

we can access
submitted file

Requests picture FilePart—this
should match the name attribute of

the input file in our form (for
example, input name=picture)Get file

A utility method copies
file contents to a byte[]

136 CHAPTER 6 Handling user input
List<Tag> tags = new ArrayList<Tag>();

for (Tag tag : product.tags) {

if (tag.id != null) {

tags.add(Tag.findById(tag.id));

}

}

product.tags = tags;

product.save();

flash("success",

String.format("Successfully added product %s", product));

return redirect(routes.Products.list(1));

}

We’re now able to save our product and the associated picture to our datastore. If you
wanted to store the file some other way, such as on the filesystem, you could easily
write code that does that; once you have the File object, it handles like any other file.

 Now, we still need a way to display the product picture on our form. This is easily
done by adding a new method on our Product controller. Let’s add a picture()
method. This method takes an EAN number, uses it to look up the matching product
in the database, and uses the image byte array to generate a Result.

 The following listing shows how the picture() method is implemented.

public static Result picture(String ean) {
final Product product = Product.findByEan(ean);
if(product == null) return notFound();
return ok(product.picture);

}

As usual when we implement a new action method, we need to edit our routes file to
link the picture method to a URL. To request a picture for a product, we want to call
the /picture/ean URL. We add the following line to our routes file:

GET /picture/:ean controllers.Products.picture(ean: String)

In our product.html.scala file, we already added the image:

@if(!productForm("picture").valueOr("").isEmpty()) {

}

We’re now able to display our product picture. Figure 6.11 shows what you should now
see in the application.

 Now that we’re able to handle file uploads, we’ve covered all aspects of handling
user input!

Listing 6.32 Our picture method

Save product
as usual

137Summary
6.6 Summary
This chapter has been dense, and we saw a lot. We learned how to handle user input—
from a simple form submission to a more complex file submission. We also learned
how all this was possible through the use of body parsers. We saw in detail how the
Play binding process transforms user-submitted data into data that our application
can understand. We also learned how we could extend that binding process; we know
how to customize and create our own binders.

 Once we were ready to process user data, we saw how to validate that data. We also
saw how we could create our own validator if needed. We then saw how to handle
invalid data and to report those errors back to the user. We finished the chapter with a
concrete example of how to handle file submission. We’re now able to handle any
data type, process it, and validate it when needed. In the next chapter, we’ll see how to
model our warehouse application.

Figure 6.11 Our paperclip
picture

Models and persistence
In the previous chapters, we covered the basic requirements for our paper clip
warehouse application. Until now, we’ve been faking data storage by maintaining
static Lists in memory. Now it’s time to start saving our data in a database. We’ll
take a closer look at our data model, and learn more about the role of a data model
in a Play application.

This chapter covers
 Defining data models

 Persisting data

 Mapping your model using JPA annotations

 Loading initial data

 Querying data using Ebean

First things first?
Although it seems to be convention in most application frameworks to start with the
data model, Play doesn’t dictate where you start developing your application; if you
want to start developing your views or controllers first, Play won’t fight you. Feel free
to work in any order you like!
138

139Modeling the real world in code
We’ll start this chapter by developing the data model as Java classes, extending the
application we created last chapter. Then we’ll make it possible to store data in a rela-
tional database using the persistence facilities that come with Play.

 But first, we’ll expand our data model.

7.1 Modeling the real world in code
The most basic requirement of our warehouse application is keeping track of what
stock items are in our warehouse and what kind of product each item is. A common
trick for creating a data model is to take a use case, and write down all the nouns and
the relationships between these nouns. If we apply the requirements from chapter 4,
we get the model shown in figure 7.1.

 A data model can be seen as a representation of a real-world concept in code.
Object-oriented languages are quite suitable for this. A key aspect of objects is that
they group data and behavior in a single entity. For our current data model, we’re
only interested in grouping data; there’s no behavior we want to capture yet. Java-
Beans are exactly this kind of object; they model state, but not behavior. They’re a col-
lection of private fields, accessible through instance methods called getters and setters.

 A typical JavaBean is a pretty dumb piece of code, with tons of unnecessary boiler-
plate code. If you think about it, most JavaBeans are private fields with simple getters
and setters. JavaBeans are so full of boilerplate code that they can mostly be generated
by any IDE worthy of the name.

7.1.1 The reasons for getters and setters

The main reason Java classes, and JavaBeans in particular, are often given getter and
setter methods is to encapsulate data and hide the internal representation of an object.

 The difference between calling a getName() method on a Person object and
accessing its name field directly is the difference between asking a person for their
name and accessing their birth certificate and reading the name on it. The former

Warehouse Product

Employee Tag

StockItem

*

*

*

*

*

*

An employee has
access to many

warehouses.

A warehouse has
many employees.

A tag can
occur on many

products.
A product can

have many tags.

A warehouse contains
many stock items.

A stock item has a
reference to the

warehouse where it's
currently located.

A stock item
references an entry

in the product
catalog.

1 1

Figure 7.1 The data model
representing our warehouse

140 CHAPTER 7 Models and persistence
gives the person whose name we want to know a lot more control than the latter, and
the latter is also possibly exposing a lot more information than that person might
choose to give. Also, we might destroy the birth certificate. It doesn’t even matter
whether we do it unintentionally or on purpose.

 Now consider a person wearing a name tag: the name is there, clearly visible to
everyone, not giving any more information than that, and it’s not modifiable. The fact
that the person has a name also isn’t exposing anything about the person we don’t
already know; a person always has a name, you could say it’s part of their public inter-
face. In this case, asking the person for their name seems silly. This situation is similar
to having a Person class with a name field that is marked both final and public.

 Let’s see what all this looks like in code. The following listing shows the situation
when using a getter.

public class Person {
private final String name;

public Person(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

String name = new Person("John Doe").getName();

In this example, we define a field, but access to it is delegated through the getName()
method. We “ask” the Person for its name, using the getter method.

 The following listing shows the same class, but implemented using a public field.

public class Person {
public final String name;

public Person(String name) {
this.name = name;

}
}

String name = new Person("John Doe").name;

In this example, we expose the field directly, and now the client reads the name field
directly. We’ve achieved the same result as in the previous example, but with less code.

 The problem with providing public field access to object properties is that we don’t
get to change our minds. Once we expose a field, it’s part of that object’s public API,
and we should support it forever, or risk breaking client code that depends on it. For
example, if we introduce a public name field, and later decide we want to “lie” about

Listing 7.1 Person with getName()

Listing 7.2 Person with a public name property

A private name field

The corresponding getter

“Asking” the Person
object for its name

A public name field

Reading the
name directly

141Modeling the real world in code
the name of our Person, we can’t, because its internal state is exposed for the world to
see, and our client code depends on it being there. This is why it’s common to see Java
classes with private fields, and corresponding getters that return the values of the
fields, as a way of future-proofing the class’s API.

 Another good reason for getters and setters is that they’re part of the JavaBeans1

specification, which offers a standardized way to expose private properties through
methods. Many tools require this, including Ebean, which we’ll cover later in this
chapter. Tools that depend on the JavaBean convention won’t work on classes without
getters and setters.

 Although the case for getters and setters is strong, the downside is that they gener-
ate a lot of noise; a simple field with both a getter and a setter requires around seven
extra lines of code (depending on your code-formatting convention). Although this
may not seem like much, the noise adds up if you have a class with lots of fields; plus
you have to remember to generate or write the correct method whenever you intro-
duce a new field. Wouldn’t you rather focus on something else?

7.1.2 Let Play eliminate some noise for you

Play helps you eliminate all this boilerplate code in which you’d normally write a sim-
ple getter and setter, and it allows you to use public fields whenever you don’t require
special logic you’d put in a getter or setter.

 Don’t worry: tools you use still get to
use your model classes like JavaBeans. Play
uses a cool trick called bytecode enhancement
to add getters and setters right after your
original code is compiled, and then it
silently rewrites all your client bytecode to
use the generated getters and setters. If
you change from field access to getters/
setters, or the other way around, you’ll
find your code no longer compiles. This is
because the bytecode enhancement takes
place after your class is compiled, which
means it has to compile first.

 This means that if you ever change your
mind about using getters and setters, you’ll
have to rewrite your client code. Fortunately,
all IDEs will help you do that automatically,
and if you do happen to miss an occurrence,
you’ll get a compile-time error informing
you. It’s not that big a deal, as long as it’s in

1 Visit http://docs.oracle.com/javase/tutorial/javabeans/ for more information.

Pay no attention to the man
behind the curtain
The bytecode enhancement Play
uses to transparently add getters
and setters is an example of Play
“magic”; there are things going on
behind the scenes that are not
immediately obvious from looking at
the code, but the effects are there.
It’s arguable whether this is a desir-
able situation, but in practice it turns
out that the pros often outweigh the
cons.

There used to be a lot more “magic”
like this in Play 1.x, but in Play 2, this
is the only thing that was carried over
from Play 1. You don’t have to use it
if you don’t want to; you can create
your own getters and setters, and
Play won’t touch your classes.

http://docs.oracle.com/javase/tutorial/javabeans/

142 CHAPTER 7 Models and persistence
your application. Do think long and hard about choosing either approach if you ever
decide to export and reuse a class outside of your application, such as when writing a Play
module or sharing your data model between applications. Breaking a public interface
is not cool.

7.1.3 Creating our classes

Because we have the basic relational model, let’s fill in the details directly in Java. See
figure 7.2 for a reminder of what our complete model looks like.

 We already created the Product and Tag classes in previous chapters, but the other
classes are new. Create the classes as in listing 7.3 in the models package under the
application we created last chapter:

public class Product {
public String ean;
public String name;

public String description;
public byte[] picture;
public List<Tag> tags;

public String toString() {
return name;

}
}

public class Tag {
public Long id;
public String name;
public List<Product> products;

}

public class Warehouse {
public String name;
public List<StockItem> stock = new ArrayList<>();

Listing 7.3 Our basic data model, represented in classes

Warehouse Product

Employee Tag

StockItem

*

*

*

*

*

*

An employee has
access to many

warehouses.

A warehouse has
many employees.

A tag can
occur on many

products.
A product can

have many tags.

A warehouse contains
many stock items.

A stock item has a
reference to the

warehouse where it's
currently located.

A stock item
references an entry

in the product
catalog.

1 1

Figure 7.2 A reminder
of our data model

An EAN is an international
product number

Note that these
fields are
relationships

143Persistence and Object-Relational Mapping (ORM)
public String toString() {
return name;

}
}

public class StockItem {
public Warehouse warehouse;
public Product product;
public Long quantity;

public String toString() {
return String.format("%d %s", quantity, product);

}
}

Your application directory should now look like the following.

warehouse
├─ app
│ ├─ controllers
│ ├─ models
│ │ ├─ Product.java
│ │ ├─ StockItem.java
│ │ ├─ Tag.java
│ │ └─ Warehouse.java
│ └─ views
├─ conf
├─ public
├─ test
└─ db

Congratulations, you have a full data model! Don’t worry too much about the output
to the browser yet; we’ll talk about view templates in chapter 8.

 Now that we have our data model and we know how to use it in our controllers and
views, it’s time to start thinking about storing the data we collect.

7.2 Persistence and Object-Relational Mapping (ORM)
Having all this data is useful, but currently all data we build up during a request is lost
as soon as we finish handling a request. Therefore, we’ll want to persist this data. We’ll
be using a tool called Ebean to save our objects to a database. Although other options
are available, a database is the most common solution.

7.2.1 About relational databases

The term database deserves a little explanation. Although a database is technically any
kind of data store, when developers say “database,” they usually mean a relational data-
base, which is a specific kind of database. I’m sure you’ve used one before, but here’s
a quick recap so we’re on the same page.

 The most defining aspect of relational databases is that they store their data in
tables, which have columns of specific data types and contain rows of data. Contrary to
what the name suggests, relational databases don’t model relations between tables.2

2 The name comes from the mathematical concept of relations, which we’re just calling tables.

Note that these fields
are relationships

144 CHAPTER 7 Models and persistence
There are a few tricks that most databases implement to help cope with the lack of
these relations. For example, you can enforce that the value of a certain column is
present in another table’s identifying column (its primary key), which you can use to
keep your data consistent when using JOIN clauses while querying for data. This rela-
tionship isn’t strong, however, because the records aren’t actually linked together; it’s
a trick to look up data that’s related. It happens to be a trick the database is optimized
to perform.

 An object hierarchy, on the other hand, does have relationships between its entities.
One object can “have” other objects, and that relationship can go both ways (a ware-
house has stock items, but a stock item has a warehouse as well). Another concept
from the object-oriented world, which you generally won’t find in a database, is inheri-
tance. Inheritance is a different kind of relationship. Uniting these two different views
on data structures is a challenge when using an object-oriented language with a rela-
tional database.

7.2.2 Bridging the relational world and the OO world

Although there are mismatches between the OO world and the relational world, it’s
not impossible to map objects to databases and vice versa. This process is called
Object-Relational Mapping (ORM). There are many tools that offer ORM for Java, but
the standardized one is the Java Persistence API (JPA). Another well-known tool for
this is Hibernate, and Hibernate can also serve as a JPA implementation. If you’ve
done anything database-related in Java, you’ve probably used these, or you’ve at least
heard of them.

JPA allows you to use annotations to specify the mapping of classes and fields to tables
and columns, respectively. It also allows you to define relationships between classes.
Any class mapped to the database is referred to as an entity, and we’ll be using this term
from now on. In addition to mapping entities, JPA also specifies an API for saving and
updating entities, managing transactions, and querying the database for entities.

 JPA has more or less become the default persistence API in the Java ecosystem, par-
ticularly in the JEE world. Although Play doesn’t prevent you from using JPA and/or
Hibernate (or any other persistence solution, for that matter), it isn’t the default solu-
tion. This is because a big part of the JPA spec is based on managing entity state, such

Summarizing the relations between databases and object models

 (Relational) databases and object models are fundamentally different.
 They can be mapped onto each other; this is called Object-Relational Mapping,

or ORM.
 The most common Java standard for this is JPA.
 Because of some mismatches between Play and JPA, Play comes with Ebean

instead (discussed later in this chapter).

145Mapping basic entities
as across requests, which is something Play has no use for, due to its stateless nature.
Instead Play comes with a different ORM framework: Ebean. Ebean is the default per-
sistence solution for Play 2.0 and 2.1.

7.2.3 Introducing Ebean

Ebean is an ORM framework that takes a different approach to managing entities than
most other ORM tools, such as JPA. The main difference—and this is what makes it a
good match for Play—is that it has a sessionless API. Don’t worry too much about what
that means for now, but if you’ve used JPA before, you’ll notice that you’ll spend a lot
less time on managing entity state. If you haven’t used JPA before—congratulations,
you won’t ever have to worry about what it means to “refresh an entity,” or what the
difference is between “attached” entities and “detached” entities.

 There’s one aspect of JPA that Ebean borrows: the annotations for mapping enti-
ties. When using Ebean, you map entities exactly the same way as with JPA. Let’s see
how this works.

REUSE YOUR EXISTING JPA ENTITY CLASSES Because Ebean uses regular JPA
annotations, you can easily reuse existing model classes. This can be extremely
useful when you’re writing a Play version of an existing JEE application.

7.3 Mapping basic entities

SKIP AHEAD IF… If you already know how to map entities using JPA, you could
skip ahead to the next section. Take a look at the code samples to get up to
speed with the data model.

When mapping classes to the database, you have to instruct the ORM tool, Ebean in
this case, what data in the object model goes where in the database. You do this by
mapping classes to tables and fields to columns. You also need to flag a class as an entity,
telling the tool that this is a class you want to use as part of the data model you’re map-
ping. We’ll do all this using annotations from JPA (found in the javax.persistence
package).

 In addition to mapping the class, it’s a good idea to let our entity class extend
Play’s Model class. The Model class will take some of the work off your hands, adding
some convenience methods to the entity, which we’ll discuss later in this chapter.

 Anything stored in a database also needs some way to identify it. This is called its pri-
mary key. Although we could use a field on the entity that’s guaranteed to be unique
(this is called a natural key), such as the EAN field on our Product class, it’s often con-
sidered good practice to have a field specifically for this purpose (called a synthetic
key). Therefore, we’ll introduce a Long field called id to our entities, and annotate it
with @Id to indicate that we want to use it as the identifier for the class.

 Let’s start with the simplest case, one without relationships: the Product class. As
you can see in figure 7.3, the class itself owns no relationships.

146 CHAPTER 7 Models and persistence
To map the Product class like figure 7.3, make the changes as shown in listing 7.4.

import javax.persistence.*;
import play.db.ebean.Model;

@Entity
public class Product extends Model {

@Id
public Long id;

public Long ean;
public String name;
public String description;
}

… and that’s all there is to it. We’re going to try it out in a minute, but first, let’s con-
figure Play to use a database and tell Ebean where to look for entities.

7.3.1 Configuring Ebean and the database

We’ll use H2, a lightweight DBMS that comes bundled with Play. The nice thing about
H2 is that it has an “embedded” mode, which means it will load itself on demand, in
the same JVM as Play runs in. It can also create databases in memory on demand, mak-
ing it ideal for use during development, when you want to experiment with the data-
base and don’t care about the data being kept around.

 Play’s configuration contains default settings for using H2 and Ebean, but they’re
commented out because not all applications require persistence. Open up the file
conf/application.conf in your application’s directory, and find and uncomment the
following lines:

db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:mem:play"
db.default.user=sa

...

ebean.default="models.*"

Listing 7.4 Mapping the Product class

Tag

StockItem

*

*

*

*

1 1

Warehouse Product

Figure 7.3 Focus on the
Product class

Add this annotation
to flag this class as
an entity Extend Model class

for convenience

Introduce the id field

Tell Play’s DB
system to use H2

Enable Ebean for our
models package

147Mapping basic entities
Note that we’re using the db.default namespace but we could have specified any
other namespaces. Play supports connections to multiple databases. All you need to do
is to specify different namespaces (such as db.acceptance.driver, db.test.driver,
and so forth).

 Before we test if everything works, let’s review what we’re doing. In the beginning
of the chapter, we defined our data model using Java classes, which represent our real-
world concepts in code. This allows us to build a representation of the warehouse state
in the JVM memory. Now we want to store our data in something more durable; we
want to persist it in a database. Where Java uses objects and method calls, databases
store data in tables and are accessed through SQL. To bridge the gap between the Java
and SQL worlds, we’re mapping our classes to the database, using a kind of tool called
ORM. Our ORM tool of choice is Ebean.

 The database server (also called a DBMS) we’ll use while developing our applica-
tion is H2. This is because of the flexibility it offers, which is also the reason it comes
bundled with Play. When moving your app to production, you’re probably going to
swap it out with another DBMS, such as MySQL, PostgreSQL, or Oracle, which are the
most well-known options. Ebean has support for most major DBMSs, but if you’re wor-
ried about compatibility, be sure to check the Ebean documentation.

 Figure 7.4 illustrates the architecture we described.
 Okay, now (re)load the page at http://localhost:9000/show, and see if it worked.

Unfortunately, you’ll probably see a page that looks like figure 7.5.
 Whoa. What happened? Well, although it may not look like it, this is Play being

helpful. When we defined a database connection, we told Play to connect to an H2
database, which will be automatically created upon connection.3 But what was not
automatically created was the database schema: that is, its structure—the tables and col-
umn definitions. Play generated an SQL script for that, and is now offering to run it
for you. The script is located in the conf/evolutions/default/1.sql file. This is
called database evolution, and we’ll see later how this allows you to create incremental
versions of your database schema. The default folder matches the database configura-
tion we specified earlier. For now, go ahead and click Apply this script now! You should
be greeted by the same default welcome page we saw back in figure 1.3.

3 This is an H2 feature, not a Play feature. This will probably not happen with other DBMSs.

H2
database

Product

StockItem

Warehouse

Our data model

Ebean translates our
objects and calls to

SQL.

We use Java objects
and methods here.

Ebean

Figure 7.4 Persistence in
Play 2 with Ebean and H2

http://localhost:9000/show

148 CHAPTER 7 Models and persistence
7.3.2 Inspecting the H2 database

Presumably, we now have a database with a table in it. But how can we check? The H2
database comes with a web application that allows you to interact with the database
easily, called the H2 console. Play has made it easy to start this web application. To start
it, enter the h2-browser command on the Play console. Your browser should open on
the H2 browser page. If not, check your Play console; you should see output similar to
the following listing.

[Warehouse] $ h2-browser
Web Console server running at http://192.168.1.191:8082

(only local connections)
TCP server running at tcp://192.168.1.191:9092

(only local connections)
PG server running at pg://192.168.1.191:5435

(only local connections)

Copy the first URL from the output, and paste it into your web browser.

Listing 7.5 Starting the H2 console

Figure 7.5 Play offering database evolution

149Mapping basic entities
The web application you now see is the H2 web console. It gives you a UI to the H2
database server. The default connection settings should be OK,4 so click Connect. You
should see a page like that shown in figure 7.6.

 If you look at the left side, you’ll see our newly created product table, including the
columns we defined as properties in the Product entity class.

 Now that we know we have a database with a table matching our entity’s scheme,
let’s put something in it.

7.3.3 Saving our first entities

Saving an entity is easy, because of the model class. We already have all the code we
need! We even have a little too much. The save() method we created in chapter 3 is
overriding the save method on the Model class. Go ahead and remove the save
method from the Product class.

4 It should match the connection string in application.conf.

Figure 7.6 H2 console showing the database schema

150 CHAPTER 7 Models and persistence
 Now, as a reminder, here are the relevant parts of the Products.save() action
method. This, as you’ll remember, is the method responsible for saving Product
instances from our web forms.

public static Result save() {
...
Product product = boundForm.get();
...
product.save();
...
return redirect(routes.Products.list());

}

Because we removed our own save() method, we’re now using the one provided by
the Model class B. If you wanted to, you could be more explicit about what exactly is
doing the saving:

...
Product product = boundForm.get();
Ebean.save(product);

return redirect(routes.Products.list());
... 5

Now let’s see if everything works as expected. Go to the “create product” form in your
browser, at http://localhost:9000/products/new, and create a new product. Next, go
to the H2 browser, and click the product table in the database. Next, click the Run
button to execute a “select all” query on that table. The result should be one row, rep-
resenting the product you persisted, as seen in figure 7.7.

5 See http://www.martinfowler.com/bliki/AnemicDomainModel.html for more information.

Call save() directly
on our instance

B

Preventing model anemia
The Model class provides some common database-related methods in an effort to
prevent you from ending up with something Martin Fowler has dubbed an Anemic
Domain Model.5 An anemic domain model is a model that has no behavior (methods)
or state (fields, data). This is often considered an anti-pattern, because the whole
point of object-oriented programming is to couple behavior and state.

By providing the database operations with the entity classes, it becomes possible to
do a database operation anywhere you have an entity instance, without having to
“hunt” for some other object or class that provides that functionality. It’s important
to remember that this doesn’t have to stop with the behavior provided by the Model
class. When aiming for rich model classes, it’s a good idea to add any functionality
that operates on your entities to the entity classes themselves, rather than to a con-
troller or utility class.

Ultimately, it’s your choice whether you want a rich data model or one that serves as
a container for data, but it’s wise to make that choice consciously.

www.martinfowler.com/bliki/AnemicDomainModel.html
http://localhost:9000/products/new

151Mapping relationships
If everything seems to have worked, we can move on to the next entity, which will have
a relation to the Product class we created.

7.4 Mapping relationships
Let’s start working on our StockItem class. Figure 7.8 shows a reminder of its role in
the model.

 In our model, the StockItem class has two relationships: one to Product and one
to Warehouse. Let’s ignore the warehouse for now, and focus on the reference to

Figure 7.7 H2 console showing the contents of the product table

Warehouse Product

Tag

*

*

*

*

1 1

StockItem Figure 7.8 Focus on the
StockItem class.

152 CHAPTER 7 Models and persistence
Product. In our warehouse’s product catalog, we’ll store many6 different kinds of
products: red paper clips, blue paper clips, and so on.

 In our physical warehouse, we’ll store many batches of those products, which we
call stock items. For example, suppose the product catalog has an entry “Box of 1000
blue paperclips,” and we know we have three pallets of these paper clips, each holding
500 boxes. One pallet is currently in warehouse A, and the other two are in warehouse
B. We have three stock items in total.

 Each individual stock item will represent the stock of exactly one product from the
product catalog. This means the stock items have a “many-to-one” relation to their
product. The opposite is also true; each product is potentially referenced by many
stock items, so the product has a “one-to-many” relationship to the stock items. This
concept is illustrated in figure 7.9.

 In a relational database, a one-to-many relationship is usually modeled as a column
on the “many” side (in this case, the stock item) pointing to the ID of a record on the
“one” side (such as the product). Whenever a stock item is retrieved from the data-
base, that ID can be used to retrieve the correct row from the product table, if needed.
The ID used to point to the primary key of another table is called a foreign key. This is
illustrated in figure 7.10.

7.4.1 Mapping a one-to-many relationship

Now let’s map the StockItem class. Add the @Entity annotation to the StockItem class,
have it extend Model, and give it an id field. In the previous example, the Product class,
we didn’t add any annotations to the fields of the class. This is because all its fields can
be stored in the database directly; there’s no relationship involved. In the StockItem
class, we have only one such field: the quantity field, which is a Long that maps neatly
to the SQL number type, which Ebean can automatically map.

 The other fields are our own Product and Warehouse classes. We need to tell Ebean
that they are references to other entities, and what kind of relationships they have. Let’s
focus on the StockItem for now. As we saw before, StockItem has a many-to-one

6 Let’s assume “many” means “more than one.”

Product
1000 Blue
Paperclips

StockItem
Quantity: 500
Warehouse: A

Every stock item has exactly
one reference to a product.

A product has many stock
items referencing it.

StockItem
Quantity: 500
Warehouse: B

StockItem
Quantity: 500
Warehouse: B Figure 7.9 The relationship between

StockItems and Products

153Mapping relationships
relationship to Product. Therefore, we flag this field with the @ManyToOne JPA annota-
tion, as shown in the following listing.

import javax.persistence.ManyToOne;

@Entity
public class StockItem extends Model {

public Warehouse warehouse;

@ManyToOne
public Product product;
public Long quantity;

}

Time to persist our product, this time including its StockItem member. We’ll assume
that when we create a product, it isn’t present yet in the warehouse, so we’ll create a
StockItem with a quantity of 0. In our Products.save() method, create a StockItem,
and call the save() method on it. See the following listing.

...

StockItem item = new StockItem();
item.quantity = 0L;
item.product = product;

product.save();
item.save();

...

Reload a page in the browser, and Play will offer to update your database for you. Go
ahead and apply the update.

Listing 7.6 Mapping the StockItem–Product many-to-one relationship

Listing 7.7 Saving the StockItem and its relationship

The product_id column links
the stock items to a product

using the product's ID.

stock_item

id product_id quantity

1

2

3

1 500

1 500

1 500

Product

id ean name description

1

2

3

1234567891231

1234567891232

1234567891233

4 1234567891234

1000 Blue paperclips

1000 Red paperclips

1000 Green paperclips

1000 Yellow paperclips

These blue paperclips…

These red paperclips…

These green paperclips…

These yellow paperclips…

Figure 7.10 The one-to-many database relationship

Ignore this
relation for now;
we’ll map it later

Add this line

154 CHAPTER 7 Models and persistence
BE CAREFUL WHEN APPLYING EVOLUTIONS ON PRODUCTION DATABASES Play’s evo-
lution mechanism checks your database schema against the schema it expects,
and offers to make changes to the database if the two don’t match. This can
involve removing columns or even entire tables, causing loss of data. Be careful
when applying evolutions on a database that has data you care about!

When we create a new product, we should also have a new table for our stock items,
containing a single row with the stock item we saved. Let’s check it out in the H2 con-
sole; you should see results similar to figure 7.11.

 Now that we’ve seen how to map a one-to-many relationship, what about the other
side, many-to-one? Well, the Product class is a good candidate for this. When we have
an instance of StockItem, we can already tell what product it’s for. But when we have a
Product, we can’t tell which stock items reference it. To do this, we have to make the
relationship bidirectional.

7.4.2 Making the one-to-many relationship bidirectional

Mapping the “many” side of a bidirectional many-to-one relationship doesn’t affect
anything in the database; the information about the relationship is already stored in
the table that makes up the “one” side of the relationship (see figure 7.12).

Figure 7.11 Looking at the stock item table in the H2 console

Address

id street number postalcode country

1

2

3

Heemraadssingel

Rue Traibout

Sand Hill Rd

70

64

2550

3021DD

75009

02138

city

Rotterdam

Paris

Menlo Park

Netherlands

France

United States

warehouse

id name

1

2

3

Warehouse A

Warehouse B

Warehouse C

address_id

1

2

3

Figure 7.12 A one-to-many database relationship

155Mapping relationships
This means that all you need to do to retrieve stock items belonging to a certain prod-
uct is write a query to include the stock items that have the product’s ID stored in their
product_id column.

 Let’s tell Ebean how to retrieve the StockItem objects. First, we need a field to
store these in, so add a List<StockItem> field to the Product class. All we need to do
now is mark it as a one-to-many relation, as we did with the many-to-one field on
StockItem: annotate it with @OneToMany. Because the StockItem class is the side that
persists the relationship, we need to indicate what property on the StockItem class
holds the relationship we’re mapping. We do this using the mappedBy attribute on the
annotation, as in the following listing.

import javax.persistence.*;
...

@Entity
public class Product extends Model {

@Id
public Long id;
public Long ean;
public String name;
public String description;

@OneToMany(mappedBy="product")
public List<StockItem> stockItems;

}

Now whenever you retrieve a Product instance from the database, you’ll have access to
its stockItems as well.

 The relationship between Warehouse and StockItem is another example of a one-
to-many relationship. Let’s go ahead and implement it as in the listings ahead. The
StockItem class should look like the following listing.

import javax.persistence.*;
...

@Entity
public class StockItem extends Model {

@Id
public Long id;

@ManyToOne
public Warehouse warehouse;

@ManyToOne
public Product product;

public Long quantity;

}

Listing 7.8 Making the Product–StockItem relationship bidirectional

Listing 7.9 StockItem.java

156 CHAPTER 7 Models and persistence
And the Warehouse class should look like the following listing.

import javax.persistence.*;
...

@Entity
public class Warehouse {

@Id
public Long id;

public String name;

@OneToMany(mappedBy = "warehouse")
public List<StockItem> stock = new ArrayList<>();

@Override
public String toString() {

return name;
}

}

Our Warehouse class doesn’t store a lot of information about the warehouse. Let’s do
something about that.

7.4.3 Giving our warehouse an address

Let’s add a little more information to our warehouse. We need to know where on the
planet it is, so that we know where our items are: we need an address. We could add a
bunch of properties to the warehouse class, like in the following listing.

@Entity
public class Warehouse {

@Id
public Long id;

public String name;

public String street;
public String number;
public String postalCode;
public String city;
public String country;

@OneToMany
public List<StockItem> stock = new ArrayList<StockItem>();

}

Although this would solve our problem, it also adds a lot of properties to the Warehouse
class that make up a single property of the warehouse: its address. Therefore, it’s nicer
to give the address its own class. Create the Address class as in the following listing.

Listing 7.10 Warehouse.java

Listing 7.11 Adding address properties to Warehouse

Together, these
properties form
an address

157Mapping relationships

public class Address {

public Warehouse warehouse;

public String street;
public String number;
public String postalCode;
public String city;
public String country;

}

And then add an address property to the Warehouse class, as in the following listing.

@Entity
public class Warehouse {

@Id
public Long id;

public String name;

public Address address;

@OneToMany
public List<StockItem> stock = new ArrayList<StockItem>();
}

Figure 7.13 shows these classes in a diagram.
 Now to map this new relationship. The classes Warehouse and Address have a one-

to-one relationship: a warehouse has exactly one address, and an address belongs to
exactly one warehouse. When looking at the database, a one-to-one relationship is
indistinguishable from a one-to-many relationship; it’s mapped by a foreign key col-
umn on one table, pointing to the primary key column on another table, as illustrated
in figure 7.14.

Listing 7.12 Address.java

Listing 7.13 Warehouse.java

The address is neatly
encapsulated in its
own class

Product

TagAddress

StockItem

* *

*

*

1 1

1

1

Warehouse

Figure 7.13 The Warehouse and
Address classes in the data model

158 CHAPTER 7 Models and persistence
But there’s a decision to be made while mapping a one-to-one relationship: we need
to pick the owning side of the relationship. When we mapped the many-to-one rela-
tionship, it was clear that the table on the “many” side had to point to the primary
key on the “one” side. It’s impossible to do it the other way around, because a data-
base field may not contain multiple values. In the case of a many-to-one relationship,
we call the “many” side the owning side of the relationship; it’s the side where the
relationship is stored.

 In the case of a one-to-one relationship, it’s unclear what the owning side should
be; both sides are capable of storing the relationship. Therefore, we have to indicate
which side gets to be the owning side. When the relationship is unidirectional (say, on
the warehouse only), it’s sufficient to mark the field in question with the @OneToOne
annotation. When the relationship goes both ways, the fields on both sides should be
mapped with @OneToOne. To indicate which side is the owning side, add the mappedBy
parameter to point at the owning field. After we map our classes, they look like this:

@Entity
public class Warehouse {

@Id
public Long id;

public String name;

@OneToMany
public List<StockItem> stock = new ArrayList<StockItem>();

@OneToOne
public Address address;

}

@Entity
public class Address {

@Id
public Long id;

@OneToOne(mappedBy="address")
public Warehouse warehouse;

Listing 7.14 Warehouse.java

Listing 7.15 Address.java

Address

id street number postalcode country

1

2

3

Heemraadssingel

Rue Traibout

Sand Hill Rd

70

64

2550

3021DD

75009

02138

city

Rotterdam

Paris

Menlo Park

Netherlands

France

United States

warehouse

id name

1

2

3

Warehouse A

Warehouse B

Warehouse C

address_id

1

2

3

Figure 7.14 A one-to-many database relationship

159Mapping relationships
public String street;
public String number;
public String postalCode;
public String city;
public String country;

}

In this case, we’ve picked the Warehouse class as the owning side of the relationship.
In the database, the relation between Warehouse and Address is stored as shown in
figure 7.15.

 Go ahead and create and persist a few warehouses with addresses, and check the
database to see if everything goes as planned. Everything works the same as with the
one-to-many relationships.

ALWAYS SET BOTH SIDES OF A RELATIONSHIP To make sure a relationship
between two entities is persisted, it’s always sufficient to set the field on the
owning side of the relationship, and persist the owning entity. If the relation-
ship is bidirectional, the other entity in the relationship is now inconsistent; it
might still be pointing at the entity it previously had a relationship to, or it
might not be aware of its new relationship. Therefore it’s best to always set
both sides of the relationship.

Now there’s one more relationship we have to map: that between Product and Tag.

7.4.4 Mapping the product–tag relationship

Let’s look at our Product and Tag classes. Figure 7.16 shows where they fit in the data
model.

 In our situation, a single employee has access to many tags. This also means that a
particular tag could be linked to many products. In our Java class hierarchy, this is rep-
resented by two Lists: a List<Product> on Tag, and a List<Tag> on Product. You can
see this in listings 7.16 and 7.17.

Address

id street number postalcode country

1

2

3

Heemraadssingel

Rue Traibout

Sand Hill Rd

70

64

2550

3021DD

75009

02138

city

Rotterdam

Paris

Menlo Park

Netherlands

France

United States

warehouse

id name

1

2

3

Warehouse A

Warehouse B

Warehouse C

address_id

1

2

3

The warehouse is the owning
side. It has a column storing

the relationship.

Figure 7.15 A one-to-one database relationship

160 CHAPTER 7 Models and persistence

@Entity
public class Tag {

@Id
public Long id;

public String name;

public List<Product> products;
}

@Entity
public class Product extends Model {

@Id
public Long id;
public Long ean;
public String name;
public String description;

@OneToMany(mappedBy="product")
public List<StockItem> stockItems;

public List<Tag> tags;
}

Because both sides of the relationship can contain many instances of the other side,
this type of relationship is called a many-to-many relationship. There’s a problem when
we want to map this relationship to the database: because there’s no way to store mul-
tiple values in a single database column, and both sides are many-valued, there is no
place to store a foreign key to store the relationship.

Listing 7.16 Tag

Listing 7.17 Product.java

Warehouse

TagAddress

StockItem

* *

*

*

1 1

1

1

Product

Figure 7.16 The Product and
Tag classes in the data model

161Querying for objects
The answer is adding an extra table to store all the relationships between our two enti-
ties. This looks like figure 7.17.

 Time to map our Java classes. The annotation to map many-to-many relationships
is @ManyToMany. Because we’re mapping a bidirectional relationship, we also need to
designate one side as the owning side and tell the other side which property is the
owning property, using the mappedBy attribute like before.

@Entity
public class Product {

...

@ManyToMany
public List<Tag> tags;

...
}

@Entity
public class Tag {

...

@ManyToMany(mappedBy="tags")
public List<Product> products;

...

}

It’s important to note that any changes in this relationship are only saved when the
owning side is saved: Product, in this case.

 Now that we have our entire data model mapped to the database, let’s see how to
retrieve objects from the database. This is called querying the database.

7.5 Querying for objects
As Java developers, we don’t want to write SQL queries to retrieve our data from the
database. We know it’s what’s used to communicate with the database, but we don’t
want to deal with messy, untyped string concatenation. We’d rather use some nice,
object-oriented, type-safe APIs to express what we want to do. Luckily, that’s what
Ebean provides.

 We’ve already seen some of this kind of functionality when we were saving objects
to the database; whenever we call save(), what happens behind the scenes is that

tag

id name

1

2

Lightweight

Metal

product

idname

1

2

Aluminium paperclip

Steel paperclip

3Plastic paperclip

product_tag

product_id tag_id

1

1

2

1

2

2

Figure 7.17 A many-to-many database relationship

162 CHAPTER 7 Models and persistence
Ebean translates this method call into one or more SQL INSERT statements, which is
how you store a new record in a database table using SQL.

 Next, we want to do a similar thing for querying the database: ask the database for
data, based on some criteria. In the most simple case, query the database for an object
based on its ID. This is something you’d do when you know exactly what object you
want to access.

 Now we’re going to be querying our database for some test data, so we’d best have
something interesting in it. If you’re in a DIY mood, go ahead and create and persist a
few object hierarchies with some interesting test data. If you’re feeling lazy, like all
good programmers, you could switch to the application for this chapter from our sam-
ple code archive. We’ve set it up so it preloads a bunch of test data using the evolu-
tions mechanism. Run the application, and it will populate the database on the first
request.

 We should now have a nice batch of test data loaded into our database. Let’s get to
work.

7.5.1 Retrieving by ID

Let’s retrieve a Product based on ID. We should have one in our database by now, so
let’s look at the H2 console to find an ID for the product we saved last. Open the H2
console, and click the product table. It will populate the text area on the right side of
the window with an SQL query that selects all rows from the product table. Click Run
and look at the results. Note the ID for the last row; in our examples we’ll be assuming
it’s 1.

 Okay, now to use the database. Finding an entity based on its ID is so common that
Ebean has a dedicated static method for it: Ebean.find(clazz, id). As you can tell
from the parameters, all we need to tell it is the class of the object we want to find
(Product) and its ID (1). In our case, we’re looking up products based on their EAN
numbers. Let’s see how we can do a database lookup using the EAN number.

7.5.2 Using the Finder API

Remember how, in section 7.3.3, we added the save() method to the Product class
itself, by extending the Model class? Wouldn’t it be nicer to have that for find() as
well? It would be trivial to add a static method to the Product class that delegates to
the Ebean.find() method, but Play already provides an even better option for you:
the Model.Finder class, which provides a complete querying API for any entity.

 You’ll need to instantiate it, so let’s add a field to the Product class to obtain a
Finder instance for Products. Add the following method to the Product class:

public class Product extends Model {
...

public static Finder<Long, Product> find =
new Finder<>(Long.class, Product.class);

...
}

163Querying for objects
As you can see, the constructor for Finder takes two parameters, both Class objects.
The first parameter tells the Finder what type the ID field for the entity is, and the sec-
ond parameter is the type of the entity we want to query for. We can use the find
object to look up our products by their ID:

Product.find.byId(1L);

Moreover, we’ll use our find object to look up products based on their EAN numbers.
 If you remember chapter 6, we implemented our Product object lookup based

on the EAN product number. The following listing shows the relevant code in the
Product model class.

...
import play.mvc.PathBindable;
import play.libs.F.Option;

public class Product implements PathBindable<Product> {

...

@Override
public Product bind(String key, String value) {

return findByEan(value);
}

@Override
public String unbind(String key) {

return this.ean;
}

@Override
public String javascriptUnbind() {

return this.ean;
}

}

As you can see, all we’re left to do is to provide a correct implementation for the
findByEan method. Our new implementation is shown in the following listing.

public class Product {
...

public static Product findByEan(String ean) {
return find.where().eq("ean", ean).findUnique();

}
...
}

Listing 7.18 Our current Product model class EAN lookup

Listing 7.19 Updated findByEan implementation

Tell Play that we’re
defining a new Binder
to bind URL paths

Binding—look in the DB
for a product with an EAN
number equal to the one
passed in our URL

Unbinding—return
our raw value

JavaScript unbinding—
return our raw value

Database lookup to
find product based
on EAN

164 CHAPTER 7 Models and persistence
The findByEan method implementation is pretty straightforward. We’re issuing a
database query to select the unique product where an EAN number matches the one
given as an argument.

 Save all files, and load http://localhost:9000/details/1111111111111 in your
browser. You should see the information for the product you saved earlier.

 The controller save() action method from our Products controller needs to
slightly change, because we now need to differentiate when creating and updating a
new product. The following listing shows the new implementation.

public static Result save() {
MultipartFormData body = request().body().asMultipartFormData();
Form<Product> boundForm = productForm.bindFromRequest();
if(boundForm.hasErrors()) {

flash("error", "Please correct the form below.");
return badRequest(details.render(boundForm));

}
Product product = boundForm.get();
MultipartFormData.FilePart part = body.getFile("picture");
if(part != null) {

File picture = part.getFile();
try {

product.picture = Files.toByteArray(picture);
} catch (IOException e) {

return internalServerError("Error reading file upload");
}

}

List<Tag> tags = new ArrayList<Tag>();
for (Tag tag : product.tags) {

if (tag.id != null) {
tags.add(Tag.findById(tag.id));

}
}
product.tags = tags;
if (product.id == null) {

product.save();
} else {

product.update();
}
flash("success",
String.format("Successfully added product %s", product));

return redirect(routes.Products.list(1));
}

The new implementation checks if it’s a new product. If it’s a new product, the prod-
uct doesn’t have a database ID yet. We therefore use the save() method to create the
product. If the product has an ID, we use the update() method.

 Because we’re now using the product ID, we also need to update our
details.scala.html template to reflect that fact. In our form, add the following
input field:

Listing 7.20 New save() implementation

Check if it’s a newly
created product

Create product

Update product

http://localhost:9000/details/1111111111111

165Querying for objects
@helper.form(action = routes.Products.save()
, 'enctype -> "multipart/form-data") {

...
<input type="hidden"

value="@productForm("id").valueOr("")" name="id"/>
...

}

This hidden input field, which we added in chapter 6, is used to pass on the product
ID to our controller from our view and vice versa. It also means that the ID field is
empty for new products, since the id property is not present then.

 Save all files, and load http://localhost:9000/product/new in your browser.
 Fill in the information to create a new product and observe that you have created a

new product without specifying a tag. Now update that same product and you’ll see
the updated product, still without a tag. We’ll look at how to deal with tags in the next
section.

 In any case, we won’t be needing the mock data store anymore, so go ahead and
delete the set of products, the static initializer, and the remove() method from the
Product model class.

 Change the delete() action method from the Products controller to call the
product.delete() method:

public static Result delete(String ean) {
...
product.delete();
return redirect(routes.Products.list(1));

}

We can also clean up the Tag model class a little. Go ahead and remove the static data
store and its initializer. The findById() method will break, so reimplement it to use
the database:

public class Tag extends Model {

public static Finder<Long, Tag> find() =
new Finder<>(Long.class, Tag.class);

public static Tag findById(Long id) {
return find().byId(id);

}
...
}

As you can see, we added the find object for Tag as well. We’re going to need a find()
method on all of our entities soon, so go ahead and add one to the StockItem and
Warehouse classes, too.

 In our current application, after an application restart, you probably noticed that
updating tags on products doesn’t work anymore and that you get an error. This is
because we’re referencing Tag objects that don’t exist in the database anymore but are
referenced by our view.

http://localhost:9000/product/new

166 CHAPTER 7 Models and persistence
7.5.3 Loading initial data

We have established that we need to load data at application startup. Play allows you to
load data in two ways:

 Evolution scripts
 onStart() method on the Global Java class called at application startup and a

YAML data file

EVOLUTION SCRIPTS

We have seen in section 7.3.1 that Play generates a database script to create our
schema. All we need to do then is to add data to this script. Another alternative is to
create a file called 2.sql in the conf/evolutions/default/ directory and to add an
SQL insert to add our data at application startup. An evolution SQL script has a spe-
cific format as the following listing shows.

--- Initialize tags

--- !Ups
insert into tag(id,name) values (1, 'lightweight');
insert into tag(id,name) values (2, 'metal');
insert into tag(id,name) values (3, 'plastic');

--- !Downs

SET REFERENTIAL_INTEGRITY FALSE;

delete from tag;

Evolution scripts are used to create database schemas and to populate initial data to
your application. They are also used to perform schema updates between different
versions of your application. Evolution scripts contains two parts: SQL that is executed
at application startup and SQL that is executed at application shutdown.

 Evolution scripts are called sequentially (1.sql, 2.sql, and so on); at application
startup the SQL defined in the Ups section is applied, and at application shutdown the
Downs section is applied.

 You can easily prepopulate your database with existing products by adding SQL
insert statements in your evolution script in the Ups section.

YAML DATA FILE

We have seen in chapter 6 section 6.2.3 that Play provides a way to include custom
code during application startup using the onStart() method of the Global class. This
class is instantiated automatically and the onStart() method is called when our appli-
cation is starting.

 We will use this same technique to load a file that contains our tag catalog. Our cat-
alog will be written in YAML. YAML is a human-friendly data serialization standard for
all programming languages.

 Edit the file Global.java located in the app directory and modify the onStart()
method as shown in the following listing.

Listing 7.21 Evolution script structure

Ups: SQL script
that is applied at
application startup

Downs: SQL script
that is applied at
application shutdown

167Querying for objects

...
import com.avaje.ebean.*;
import models.*;

public class Global extends GlobalSettings {
...

public void onStart(Application app) {
...
InitialData.insert(app);

}
static class InitialData {
public static void insert(Application app) {

if(Ebean.find(Tag.class).findRowCount() == 0) {
Map<String,List<Object>> all =

(Map<String,List<Object>>)Yaml.
load("initial-data.yml");

Ebean.save(all.get("tags"));
}

}
}

}

The InitialData.insert() method is straightforward: we insert our data in the data-
base if the data isn’t yet there. Play provides a utility class to load the YAML file, mak-
ing it extra easy. It’s now time to create our YAML file. Create an initial-data.yml
file in the conf directory. Play by default makes the conf directory part of the class-
path. It means that files located in this directory can be loaded without specifying
their full path. The initial-data.yml content is shown in the following listing.

tags:

- !!models.Tag
id: 1
name: lightweight

- !!models.Tag
id: 2
name: metal

- !!models.Tag
id: 3
name: plastic

Please note that the file doesn’t contain tabs, but spaces. The spaces and the punctua-
tion before are important. Using the file we’re defining a tags collection that con-
tains a model.Tag object. Each object contains an id and a name. The tags collection
is referenced and saved through Ebean with the following line:

Ebean.save(all.get("tags"));

Listing 7.22 The new onStart() method on the Global class

Listing 7.23 The initial-data.yml file

If we have no tags
in the database…

…load the
data from the
initial-data.yml fileInsert our tags

in the database

168 CHAPTER 7 Models and persistence
We know how to load initial data at application startup, which is pretty useful. You can
now safely tag products, as the tags are now referenced in the database. You’ll now
need more powerful ways to query the database. Let’s see what else Ebean and the
Finder class have to offer.

7.5.4 Creating more complex queries

Databases are good at searching for data on any criteria you want. As mentioned
before, SQL is the language used when searching for data in an RDBMS. A downside of
SQL when used in an object-oriented environment is that it’s based on a relational
view of the world; it’s not compatible with object-oriented programming, which is the
whole point of our ORM exercise.

 JPA and Hibernate (and some other solutions) get around this issue by defining a
different query language, which looks a lot like SQL but allows you to query classes
and objects rather than database tables and columns.

 Creating queries like that using Java would mean using strings to form them. If we
want to compose a query dynamically, which is an OO sort of thing to do, we’d need to
concatenate strings; things would get messy and confusing fast, which means our code
would get hard to read or, worse, buggy. Working with strings is not something you
want to do; among other things, it’s tedious, messy, and error-prone, and the compiler
can’t help us at all. It’s not nice to do in a type-safe world.

 An alternative to constructing database queries is a criteria-based API. A criteria-
based API allows you to use object composition to construct a query object that will
construct and execute an SQL query for you. This means you don’t have to deal with
messy strings; you get to construct objects to tell the database what you want instead.
Let’s see how that works.

WE’LL STOP SHOWING YOU TWO APIS NOW Until now, we’ve been showing you
how to use both the Ebean API and Play’s Finder class. From this point for-
ward, we’ll stop showing you both and use only the Finder. Everything you
can do through the Finder class you can do through Ebean directly, so if you
prefer to do things that way, read through the Ebean documentation to learn
how to do things using the Ebean API. It’s not particularly different, and the
concept is exactly the same.

When querying the database, you specify the following clauses:

 What data you want
 One or more criteria that data must satisfy
 The order of the data
 How much data you want (that is, pagination)

Not all of these parts are required. If you omit any of these clauses, defaults are used
instead. Here’s an example query, in plain English, that we could ask the database:

 Give me all StockItems…
 … that have a quantity of 300 or more…

169Querying for objects
 … with higher quantities first…
 … but ten items is enough.

Using the Ebean API, a query is constructed exactly like this—clause by clause. Let’s
build up this example query. First, add the following toString() to the StockItem
class, so that stock items are a little easier to identify when we print objects later:

public class StockItem {
...
public String toString() {

return String.format("StockItem %d - %dx product %s",
id, quantity, product == null ? null : product.id);

}
}

We need a point of entry for our code to run. This is a good time to create a new con-
troller, StockItems. Go ahead and create it, as we created Products back in chapter 3.
Also add an index() action method, and create a route to it, so you can access it at the
/stockitems/ URL. The following listing shows our class and method.

package controllers;

import play.mvc.*

public class StockItems extends Controller {

public static Result index() {
return TODO;

}
}

And here is the route line:

GET /stockitems/ controllers.StockItems.index()

Now we’ll use our new action method, StockItem.index(), to run our code. Start off
with the following query:

public class StockItems extends Controller {

public static Result index() {
List<StockItem> items = StockItem.find().findList();
return ok(items.toString());

}
}

Here, we’re executing a query and rendering the results as text. In this query, we’ve
only told the database what we want to find: StockItems. We did that when we instanti-
ated the Finder object, by passing in the StockItem class. Listing 7.25 shows a
reminder.

Listing 7.24 StockItems controller, /app/controllers/StockItems.java

The query is
executed here

170 CHAPTER 7 Models and persistence

...
public static Finder<Long, Product> find() {

return new Finder<Long, Product>(Long.class, Product.class);
}

...

When we run this code, we’ll get a complete list of all stock items in the database. Go
ahead and load http://localhost:9000/stockitems/ in your browser. You’ll see output
similar to this:

StockItem 1 - 300x product 1
StockItem 2 - 200x product 1
StockItem 3 - 500x product 1

FILTERING OUR SELECTION

Let’s see what the next clause in the English version of our query is:

 Give me all StockItems…
 … that have a quantity of 300 or more…
 … with higher quantities first…
 … but ten items is enough.

We want to add criteria to our query to narrow the list of results down to the objects
we’re interested in. To do this, we’ll use the where() method on our Finder objects,
followed by the criteria we want our results to match.

 In this case, we want to specify a “greater than or equal” criterion, which we can do
with the ge() method. The criterion needs to know two things: what field it applies to,
and what its target value is. We want to apply it to the quantity field, and the target
value is 300, so we pass those values in. Our method now looks like this:

public static Result index() {

List<StockItem> items = StockItem.find()
.where()
.ge("quantity", 300)
.findList();

return ok(items);
}

Reload the page in the browser, and the list should now only contain stock items with
quantities of 300 or more:

StockItem 1 - 300x product 1
StockItem 3 - 500x product 1

Many more criteria are available; browse the documentation for the Ebean Query class
for a full list.

 Let’s see what’s next for our query:

Listing 7.25 The find method on StockItem

Construct a Finder that finds
StockItem objects

http://localhost:9000/stockitems/

171Querying for objects
 Give me all StockItems…
 … that have a quantity of 300 or more…
 … with higher quantities first…
 … but ten items is enough.

The list is now more or less randomly ordered. Well, it’s sorted by ID, but because we
didn’t specify an order, the database is free to return items in any order it wants. Never
trust in the default sort behavior; it might change if you switch database vendors (like
when taking your app to production).

ORDERING

Let’s specify an order clause. This is done using the orderBy method, specifying the
field we want to order on: quantity, in our case.

public static Result index() {

List<StockItem> items = StockItem.find()
.where()
.ge("quantity", 300)
.orderBy("quantity")
.findList();

return ok(items);
}

Refresh the page, and our list should be ordered now:

StockItem 3 - 500x product 1 StockItem 1 - 300x product 1

There’s one more thing to add to our query:

 Give me all StockItems…
 … that have a quantity of 300 or more…
 … with higher quantities first…
 … but ten items is enough.

The list of results can get big, so let’s get the first ten items. We need to set the maxi-
mum number of results, using the setMaxRows() method:

public static Result index() {

List<StockItem> items = StockItem.find()
.where()
.ge("quantity", 300)
.orderBy("quantity")
.setMaxRows(10)
.findList();

return ok(items);
}

Reload the page, and our list should be trimmed:

StockItem 3 - 500x product 1

172 CHAPTER 7 Models and persistence
Using the setMaxRows() method, we can implement pagination: splitting a big list of
data over multiple pages. Using setMaxRows(), we determine how many items we
want, but not where to start. The database will therefore always return the first set of
items. If we want to request the second page of data, we can use the setFirstRow()
method to specify where we want to start.

 Using these two methods, one could implement pagination. Ebean makes it even
easier and doesn’t require you to calculate the pagination parameters. Let’s see that in
more detail.

PAGINATION

Table pagination is a feature that most web applications require. It’s easy to perform
using Ebean. Let’s take our product listing as an example. Right now, our Products
controller is calling the findAll() method on our Product object model. Let’s define
a find() method that takes a page number as an argument, as shown in listing 7.26.

public static Page<Product> find(int page) {
return

find.where()
.orderBy("id asc")
.findPagingList(10)
.setFetchAhead(false)
.getPage(page);

}

This query paginates all products and will return a maximum of 10 products ordered
by ID. It offsets the results according to the page parameter. We now need to change
our Product controller list() method as follows:

public static Result list(Integer page) {
Page<Product> products = Product.find(page);
return ok(list.render(products));

}

And because we now pass to our list.scala.html view a Page object, we need to
slightly change it as well. The following listing shows the relevant changes.

@(currentPage: com.avaje.ebean.Page[Product])
...
<tbody>

@for(product <- currentPage.getList()) {
<tr>

...
</tr>

}
...
<div id="pagination" class="pagination">

@if(currentPage.hasPrev) {

Listing 7.26 find() method with pagination support

Listing 7.27 list.scala.html view

Find page now returns
a Page objectOrder by ID

ascending

Define size
of page

Do we need to pre-fetch data?

The current page number, start at 0

Pass the Page object as an
argument to our template

Return current list of
products for current page

Handy method to
determine if we have
a previous page

173Using JPA instead of Ebean
<li class="prev">

←

} else {

<li class="prev disabled">
<a>←

}
<li class="current">

<a>@currentPage.getDisplayXtoYofZ(" - "," / ")

@if(currentPage.hasNext) {

<li class="next">

→

} else {
<li class="next disabled">

<a>→

}

</div>
...

As you probably noticed, the Page object contains useful methods that make pagina-
tion child’s play. Those methods are used in our view to link to the next and previous
pages.

7.6 Using JPA instead of Ebean
When developing a new application, you should definitely consider using Ebean; it’s a
better match for Play, given its stateless and explicit nature. But there are a few good
reasons to use JPA instead. For example, you might be more familiar with it, or have
legacy code you want to include, or you might just think it’s cooler. Play won’t stop
you. In fact, Play is even nice enough to include supporting features for it. We won’t
go into the details of using JPA with Play (you’re probably already familiar with it, if
you decide you want to use it). Here’s how you can set up your JPA app to use Play.

7.6.1 Configuring Play

There are two steps to enabling JPA support in Play: exposing the data source to JNDI
and adding JPA dependencies to the dependencies list.

 First, open up your application.conf file, and add database configuration as
usual (see section 7.3.1). Also add the jndiName property to your database configura-
tion, and configure a default persistence unit name for JPA like so:

db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:mem:play"A

Link to our
previous page
(current page
index -1)

Method to
display current
page and total
number of pages

Method to determine
if we have a next page

Link to our next
page (current page
index+1)

174 CHAPTER 7 Models and persistence
db.default.jndiName=DefaultDS
jpa.default=defaultPersistenceUnit

Remember what JNDI name and persistence unit name you use; you’ll need these when
you define the persistence unit (next section). Also, if you’ve already enabled Ebean, be
sure to remove or comment out all lines starting with ebean to disable it again.

 Next, we’re going to switch out the Play Ebean module for Play’s JPA module.
Open up project/Build.scala, and replace javaEbean with javaJpa, so that the
appDependencies list looks like the following listing.

val appDependencies = Seq(
javaCore,
javaJdbc,
javaJpa

)

The only thing left to do is to add a dependency on our JPA implementation. Hiber-
nate is a good choice if you’re looking for one, but you’re free to pick any JPA imple-
mentation you want. Find the artifact ID for your implementation of choice, and add
it to the dependencies list. Here’s the example for Hibernate:

val appDependencies = Seq(
javaCore,
javaJdbc,
javaJpa,
"org.hibernate" % "hibernate-entitymanager" % "3.6.9.Final"

)

When you next start your application, JPA will be available. You still need to configure
JPA itself; it needs a persistence unit, as usual.

7.6.2 Adding Persistence.xml

There are no special steps needed to configure JPA for a Play application. Like with all
JPA projects, JPA requires a persistence unit, declared in persistence.xml. In Play,
you need to put this file in the conf/META-INF directory. Listing 7.29 shows an exam-
ple persistence.xml file, to correspond to the H2 DefaultDS data source we config-
ured in the previous section.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
version="2.0">

<persistence-unit name="defaultPersistenceUnit"
transaction-type="RESOURCE_LOCAL">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<non-jta-data-source>DefaultDS</non-jta-data-source>

Listing 7.28 JPA appDependencies

Listing 7.29 persistence.xml

175Summary
<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.H2Dialect"/>
</properties>

</persistence-unit>
</persistence>

Now your JPA application should be good to go. Everything will work as with any other
JPA application, but there are some support classes in Play that will make your life easier.

7.6.3 Built-in JPA helpers

Here’s a small list of features that will help you when using JPA in a Play application:

 Bootstrapping JPA—The JPA plugin takes care of initializing JPA for you.
 Obtaining an EntityManager—You can obtain an entity manager at any point in

your application by calling play.db.jpa.JPA.em().
 Wrapping action methods in a transaction—Annotate any action method with

@play.db.jpa.Transactional to automatically wrap everything you do in that
action in a transaction.

7.7 Summary
In this chapter, we’ve created a basic data model for our warehouse application, and
we’ve seen how we can use Ebean to persist our objects to a database. We’ve intro-
duced the principle of ORM, and basic JPA mapping principles have been explained,
along with the basic relationship types:

 One to many
 Many to one
 One to one
 Many to many

There’s a lot more to JPA mapping than these relationship types, such as mapping
class inheritance or embeddable objects, but those subjects are beyond the scope of
this book. The Ebean documentation has a pretty good introduction to most features,
but read the Java EE tutorial from Oracle if you want to know everything about JPA
mapping.

 We’ve also seen how to use Ebean and Play’s Finder API to retrieve objects from the
database once stored. The most simple form of this is retrieving an object by its ID, but
we’ve also seen how to create more complex queries using Ebean’s Query API.

 Throughout this chapter, we’ve been using convenience classes and methods pro-
vided by Play, as well as learning some best practices when creating an object model
with Play.

 Perhaps the most important piece of advice in this chapter is to put behavior on
your model classes. Most other frameworks discourage this, creating DAO layers
instead. Play is different, and it helps you create non-anemic object models by making

176 CHAPTER 7 Models and persistence
it easy to do it “right.” The most important examples of this are the Model and Finder
classes; you can provide nice and clean APIs by extending or instantiating them.

 In the next chapter we’ll build on our knowledge by implementing some nice
views to give our warehouse application some visual appeal.

Producing output
with view templates
We’ve seen how to structure and store data and business logs using models, and
how to use controllers to bridge the gap between the Java world and the HTTP-
based web.

 We’ve covered the M and the C in MVC, but what about the V, the view layer? We
need a view layer to present all the work our application does to the client, whether
that is a browser or another system using our API.

 When developing an application with Play, one of the options for creating out-
put is using templates. You’ve probably used a templating system of some kind
before, but you’ll find that the Scala template engine, the default template engine
that comes with Play, is a little different. As we’ve demonstrated in earlier chapters,
Scala templates are compiled into classes and are completely type-safe.

This chapter covers
 An introduction to Scala templates

 The Scala template syntax

 Reusing template code and components

 Performing common tasks
177

178 CHAPTER 8 Producing output with view templates
 In this chapter we’ll show you everything you need to know to use Scala templates
in your Play application to create your views. But Scala templates are not your only
option. At the end of the chapter, we’ll show you some alternative template engines.

 But first, we’ll dive deeper into how Scala templates work, and why they’re the
default option, even for Java applications.

8.1 The benefits of compiled, type-safe templates
Even when developing a Play 2 application in Java, your default option for templating
is the Scala template engine. This may be surprising, because you explicitly chose to
use Java over Scala.

 First of all, don’t be afraid; you don’t have to learn Scala to use the templating
engine. Much like any other templating system, you can just learn how to do certain
things, such as iterating over a collection or making an if/else decision, without hav-
ing to know how it works or what the syntax means. Also, a lot of the Scala syntax is
very similar to Java; the following snippet of code is valid syntax for calling a method
with a parameter on an object in both Java and Scala:

catalog.getProduct(ean);

The use of the Scala language is not the only thing that sets the Scala templating
engine apart from other templating systems. The way most conventional templating
systems work is that you write a template file in a custom syntax, and you call the tem-
plate engine with the filename of that template. The template engine then loads that
file and evaluates it.1 This is when it’ll detect custom instructions, often called tags,
which describe the template structure. These are usually instructions such as loops,
if/else structures, or including or extending some other template file.

 After the template structure is parsed, the template engine will start generating
output, at which point it’ll have to evaluate the dynamic parts of the template, the
expressions. These expressions resolve the values that serve as input for the template
tags, or just output some variable. These expressions are often in some dedicated
expression language, such as the Unified Expression Language found in JEE frameworks,
or some dynamic language such as Ruby or Groovy.

 One of the downsides of this approach is that this expression-evaluation work has to
be repeated every time the template is rendered. Every single time. That’s still wasteful.

 Another downside is that most expression engines are dynamically typed, meaning
that there’s no way to guarantee what kind of object will end up in your templates,
and therefore the compiler can’t warn you ahead of time when you’re trying to do
something that can’t work. Any mistake you make in that regard will show up as a
runtime exception, and you have to hope to run into it before the mistake makes it
into production.

1 The way this evaluation works differs per template system. JSP and Groovy templates, for example, get com-
piled into actual bytecode.

179The benefits of compiled, type-safe templates
 The following listing is an example of a Groovy template—the dynamically typed,
templated language used in Play 1.

<h1>Products</h1>

<table class="table table-striped">
<thead>

<tr>
<th>Name</th>

</tr>
</thead>
<tbody>

#{list products, as:'product'}
<tr>
<td>${product.name}</td>

</tr>
#{/list}
</tbody>

</table>

This template is a simple example; it takes the products variable, iterates over it, and
outputs the name property for every member. This template seems to make two
assumptions. First of all, at B,we’re trying to iterate over the products variable, imply-
ing that it is actually a collection of some kind. Second, at C, the name property of
every member is accessed, which means that the members of the products collection
are of some class that has a name property.

 Now, suppose that we don’t know about these assumptions, and pass in a
List<String> for products instead (containing, for example, the product names).
We start the application, and everything seems to be fine. But things go wrong when
we try to access the template; the template engine can’t find the name property, result-
ing in the error shown in figure 8.1.

Listing 8.1 Play 1.x Groovy template

Loop over
products

B

Show name
propertyC

Figure 8.1 Runtime
template error in
Play 1

180 CHAPTER 8 Producing output with view templates
The problem here is that the mistake wasn’t discovered until runtime because the
template engine had no way of knowing what types to expect and what values it would
actually get passed. Although the problem in this example happens every time, and
thus will probably be caught before it makes it into a production system, it’s very possi-
ble that more subtle mistakes won’t be caught until they cause trouble.

 Scala templates avoid all these problems. Instead of being evaluated at runtime,
they get compiled beforehand, including all the expressions. Because all this work is
done before the template is used to render a page, when it does the actual rendering,
it renders very fast. After all, all the hard work has been done already. It’s like running
plain code!

 In addition to the better performance, Scala templates are type-safe. Try to pass
the template an object of a different type than expected, and the code that’s trying to
call the template function won’t compile. Try to use a method that’s not available for
the class of a given object, and the template itself won’t compile.

 Take a look at listing 8.2, which shows the Play 2 version of our example template.

@(products: List[Product])

<table class="table table-striped">
<thead>

<tr>
<th>Name</th>

</tr>
</thead>
<tbody>
@for(product <- currentPage.getList()) {

<tr>
<td>@product.name</td>

</tr>
}

</tbody>
</table>

Aside from some minor syntax differences, this template looks almost the same as its
Groovy version, with one important addition: at B we define the parameter for this
template, and we specify a type. This way, the template “knows” what kind of values it
has available, and the compiler refuses to compile if we provide a value of the wrong
type or attempt to use it the wrong way.

 Although all these forced checks and error messages may seem restrictive, they
actually result in an application of higher quality; after all, it’s harder to mess things
up, because the compiler will scream at you if you get anything wrong.

 As an added bonus, because your code now makes it clear what kind of objects the
templates expect, your tools can be more helpful. For example, your IDE now has the
information it needs to autocomplete expressions in your template, as well as to tell
you what arguments your template’s render method expects. IDE support for this is
already pretty decent—and improving rapidly.

Listing 8.2 A type-safe Scala template

Parameter
definitionB

181Scala template syntax
 Although compiled templates and type safety are nice, they don’t explain why the
template language is in Scala. After all, Java itself has those features, so why not use
Java instead? The answer is that Scala has some features that aren’t available in Java, or
that make the code less verbose. For example, the Scala compiler does a lot more type
inference than Java,2 saving a lot of type declaration.

 Now that we know the why, let’s take a look at the how: the actual template syntax.

8.2 Scala template syntax
Scala template syntax is not very complicated: there’s just text and Scala code, and a
way to distinguish between the two. Of course, things get more complicated if you
don’t actually know Scala already. Don’t worry, we’ll show you everything you need to
know to use Scala templates. The most basic thing to remember about Scala templates
is that the @ symbol switches to Scala context; everything that follows is Scala code
until the logical end of the expression. We’ll show you how that works in a bit, but
first, let’s take a look at how you define a Scala template.

8.2.1 Template definition

As we showed you in earlier chapters, Scala templates get compiled to classes, which
you can call from your Java code. The compiled classes will end up in a view package,
and they will all contain a method called render. What parameters this method takes
depends on the template parameters that are defined at the top of the template itself.

 Template parameters are just function parameters, and like method parameters in
Java, they require a name and a type. In Scala, the name comes first, followed by a :
and then the type. Templates can have zero, one, or more parameters, which are sepa-
rated by commas, and they should all be placed at the top of the template file,
between braces preceded by the @ symbol. The following snippet shows the parame-
ters for a template which has a products parameter of type List<Product> and a
count parameter of type Integer.

@(product: List[Product], count: Integer)

As you can see, the type parameter for the List is a little different from the regular
Java syntax: where Java uses angled brackets, as in List<Product>, Scala uses square
brackets, which means that you have to write List[Product] instead. The only differ-
ence is the syntax; the meaning is still the same.

 Now that we know how to define template parameters, we can take a look at the
actual body of a template.

8.2.2 Template body

A Scala template body consists of plain text (which can be anything, such as HTML,
JSON, XML, or CSV) mixed with Scala code. The text will get copied straight to the out-
put, whereas the Scala code implements the template’s logic and dynamic parts. The

2 This means the compiler knows what type an object is, without it being stated in the source code.

182 CHAPTER 8 Producing output with view templates
only thing the templating engine introduces is a symbol to denote Scala code: the @
character. For example, consider this snippet from our list template from back in
chapter 3, shown in the following listing.

<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th>Date</th>
<th></th>

</tr>
</thead>
<tbody>
@for(product <- products) {

<tr>
<td>

@product.ean
</td>
<td>
@product.name</td>
<td>
@product.name</td>
<td>@product.date.format("dd-MM-yyyy")</td>
<td>

<i class="icon icon-pencil"></i>

<i class="icon icon-trash"></i>

</td>
</tr>
}

</tbody>
</table>

As you can see, most of the template consists of plain HTML that will just be copied to
the output when this template is rendered. We’ve marked the parts that are Scala
code. These parts are what make your template dynamic.

 The most interesting part of this snippet is the for statement. In this form, this
Scala for expression is equivalent to a regular Java for/in loop; it takes a collection
and repeats the code in its body for every member of that collection. But in this case,
the body isn’t code, it’s just text. The loop behaves as you might expect, though; the
body is repeated for every entry in products.

 The body of the for loop itself also contains some Scala expressions. These Scala
expressions are evaluated, and the resulting value is included in the template output.
For security and compatibility reasons, all expressions are HTML escaped. This means

Listing 8.3 list.scala.html

A Scala
“for” loop

A Scala
function callOutputting

Scala
values

183Scala template syntax
that any and all characters that are invalid as HTML text are properly escaped for dis-
play in an HTML document. If you ever wish to display the raw, unescaped value of an
expression in the output document, you can wrap it using @Html():

// boldName = "world
Hello @Html(boldName)!

As stated before, Scala expressions start with the @ character. But when does an expres-
sion end and the regular text begin again?

8.2.3 Expression scope

In the case of this for loop, the scope of the Scala expression is clear: the expression
starts at the beginning of the line and, because it contains a block, ends at the end of
the block, designated by the closing curly brace.

 The situation is less clear with inline expressions, such as a function call to
routes.Products.show() to generate the value for the product link’s href attribute,
or value references that make up most of the
link’s text. In those cases, the template
engine is smart enough to recognize an
expression and outputs the first value it
finds. As a consequence, this syntax only
works for simple expressions. Consider the
text for our product links (described in sec-
tion 8.3). The breakdown into expression
and plain text is shown in figure 8.2.

 Here, the template engine knows where the Scala expression ends, and continues
to consider the rest of the line as text up until the next @ character.

 Sometimes a simple expression is not enough; you might want to output some
value that requires a little modification first. In that case, you can still use the @ syntax,
but you should wrap the expression in braces as well, as shown in figure 8.3.

 This style of syntax allows you to write a more complicated expression by being
explicit about where it ends. Now if you wanted to, you could write a more verbose,
multistatement expression by using curly braces instead of regular braces, as shown in
figure 8.4.

 This style of syntax allows you to write very complex expressions if you ever need
them.

Expression

@(product.ean + " - " + @product.name)

Figure 8.3 A multitoken statement

Expression Text Expression

@product.ean - @product.name

Figure 8.2 Link text, broken down

184 CHAPTER 8 Producing output with view templates
AVOID COMPLEX TEMPLATE CODE Although the template syntax allows you to,
think long and hard about what you’re doing when you feel you need to write
a multistatement expression. Templates are not the place to put complex
logic, and anything more than a single expression is pushing it. Consider
placing this logic in the model or controller layer, keeping the template logic
simple and readable.

There are two aspects of the syntax that we haven’t covered yet: escaping and com-
menting. Escaping is simple; the only character that you’ll need to escape when you
want to use it in a template is the @ character. Simply use two instead:

My Twitter username is: @@targeter

To escape some template code, use the following syntax:

@* This is a comment. *@

This works across lines as well, making it possible to use ScalaDoc (http://docs.scala-
lang.org/style/scaladoc.html) to document your templates:

@**
* A product listing.
*
* @param products The products to list
*@

This covers all of the syntax there is to Scala templates. One way of looking at it is that
there’s little syntax; escape to Scala mode or just plain text. Another way of looking at
it is that you have the entire Scala language at your disposal.

 Of course, there’s a lot more to templates than just this, so let’s look at some things
that you will do a lot when using Scala templates.

8.3 Your basic building blocks
Like we promised you before, you won’t actually have to learn Scala to write templates.
But you will need to know how to perform some basic tasks, such as looping, making
decisions, and importing classes. Let’s start with looping and iteration.

8.3.1 Iterating

Scala (and, by extension, Scala template syntax) doesn’t have an equivalent of Java’s
conventional “for” loop. But it does have an equivalent to Java’s “for-each” loop, allow-
ing you to iterate over the members of a collection.3 We’ve seen an example of this

3 Actually, a Scala sequence, but we’ll just keep calling them collections or iterables.

Expression

@{desc = product.ean + " - " + product.name; desc}

Figure 8.4 A multistatement
expression

http://docs.scala-lang.org/style/scaladoc.html
http://docs.scala-lang.org/style/scaladoc.html

185Your basic building blocks
already: in section 5 of chapter 3 we used it to loop over the products list. As a
reminder, the following listing shows the relevant template code:

<dl>
@for(product <- products) {

<dt>

@product.ean - @product.name

</dt>
<dd>@product.description</dd>

}
</dl>

As you can see, this syntax looks a lot like the familiar Java for-each loop, but with the
colon replaced by a left-arrow. Also, because of a Scala feature called type inference, we
don’t have to declare the type of the product variable; the compiler is smart enough
to figure out that if you have a list of Product objects, the variable should also be
Product itself.

 Scala for loops4 have some other useful features. For example, they can loop over
a map. Suppose we have a Map<Long, Product>, mapping EAN codes to a Product
instance. You could rewrite listing 8.4 as shown in listing 8.5.

@(eanMap: Map[Long, Product])
<table class="table table-striped">
// We'll skip the irrelevant parts

@for((ean, product) <- eanMap) {
<tr>

<td>
@ean</td>

<td>@product.name</td>
<td>@product.description</dd></td>

</tr>

}
</table>

This way of looping over a map also allows us to do iteration with an index value, which
we don’t have by default because there’s no conventional for loop to maintain an incre-
menting variable for us. To get the index variable for the entries in our list, we’ll use
the zipWithIndex method that Scala provides for us. The zipWithIndex method con-
verts the Set[Product] into a Map[Product, Int]>, where the value of the map is the
index. That would allow you to write a template such as that seen in listing 8.6.

Listing 8.4 Looping over the products list

4 Actually, they're comprehensions, but for our purposes they might as well be loops.

Listing 8.5 Looping over a Map

Looping over the products

Calling a
routing
function

Outputting
product
details

Iterating over a Map
instead of a List

Both an “ean” and
a “product” value
are available

186 CHAPTER 8 Producing output with view templates

@(products: Set[Product])
<table class="table table-striped">
// We'll skip the irrelevant parts

@for((product, i) <- products.zipWithIndex) {

<tr>
<td>@i</td>
<td>

@ean</td>
<td>@product.name</td>
<td>@product.description</dd></td>

</tr>
}
</table>

The Scala for syntax has more features than this, but these techniques should be
enough for most templates you’ll write. Let’s move on to making decisions in tem-
plates using if/else statements.

8.3.2 Making decisions

Of course, Scala has if/else statements, and they’re available from Scala templates. As
an example, we’ll expand the products list template to show a friendly message when
no products are available (see the following listing).

@if(products.isEmpty()) {
<p>No products found.</p>

} else {
<dl>

// List products here.
</dl>

}

As you can see, if statements are pretty straightforward, and exactly the same as in
Java. But we could make the if statement a little shorter; in Scala, the period before
the method call is optional, as are the parentheses. We could rewrite the condition as
seen in the following listing.

@if(products isEmpty) {
<p>No products found.</p>

} else {
<dl>

// List products here.
</dl>

}

Listing 8.6 Iteration with index variable

Listing 8.7 If/else statements

Listing 8.8 More concise statements

187Structuring pages with template composition
Now that we know how to create a template, let’s find out how we can reuse template
code, to keep us from repeating ourselves.

8.4 Structuring pages with template composition
Just like your regular code, your pages are compositions of smaller pieces that are in
turn often composed of even smaller pieces. Many of these pieces are reusable on
other pages; some are used on all of your pages, whereas some are specific to a partic-
ular page. There is nothing special about these pieces; they’re just templates by them-
selves. In this section we’ll show you how to construct pages using reusable smaller
templates.

8.4.1 Includes

We’ve only shown you snippets of HTML and never a full page. Let’s start to expand
our proof-of-concept application from the previous chapters into a proper applica-
tion. We’ll start by creating a proper HTML document for the catalog page that lists
the products we have in our catalog, as in figure 8.5.

 The code for the list action in the Products controller remains the same as in
our previous chapters, except that it uses a different template:

public static Result list(Integer page) {
Page<Product> products = Product.find(page);
return ok(views.html.catalog.render(products));

}

Figure 8.5 The catalog page

188 CHAPTER 8 Producing output with view templates
To create the template, create a file called catalog.scala.html directly under the
views directory. Use the content shown in the following listing.

@(currentPage: com.avaje.ebean.Page[Product])
<!DOCTYPE html>

<html>
<head>

<title>paperclips.example.com</title>
<link href="@routes.Assets.at("bootstrap/css/bootstrap.min.css")"
rel="stylesheet" media="screen">

<link href="@routes.Assets.at("stylesheets/main.css")"
rel="stylesheet" media="screen">

<link rel="shortcut icon" type="image/png"
href="@routes.Assets.at("images/favicon.png")">

<script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"
type="text/javascript"></script>

</head>
<body>

<div class="navbar navbar-inverse " id="navigation">
<div class="navbar-inner">

<div class="container">

log
<ul class="nav">

Home
Products
Contact

</div>
</div>

</div>
<div class="container">

@if(flash.containsKey("success")){
<div class="alert alert-success">
@flash.get("success")
</div>

}

@if(flash.containsKey("error")){
<div class="alert alert-error">
@flash.get("error")
</div>

}

<h2>All products</h2>
<script>

function del(urlToDelete) {
$.ajax({

url: urlToDelete,
type: 'DELETE',
success: function(results) {

// Refresh the page
location.reload();

Listing 8.9 Full HTML for the catalog page, /app/views/catalog.scala.html

189Structuring pages with template composition
}
});

}
</script>
<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th>Date</th>
<th></th>

</tr>
</thead>
<tbody>
@for(product <- currentPage.getList()) {

<tr>
<td>

@product.ean
</td>
<td>
@product.name</td>

<td>
@product.name</td>

<td>@product.date.format("dd-MM-yyyy")</td>
<td>

<i class="icon icon-pencil"></i>

<i class="icon icon-trash"></i>

</td>
</tr>
}

</tbody>
</table>
<div id="pagination" class="pagination">

@if(currentPage.hasPrev) {

<li class="prev">

←

} else {

<li class="prev disabled">
<a>←

}
<li class="current">

<a>@currentPage.getDisplayXtoYofZ(" - "," / ")

@if(currentPage.hasNext) {

<li class="next">

→

190 CHAPTER 8 Producing output with view templates

} else {

<li class="next disabled">
<a>→

}

</div>

<i class="icon-plus"></i> New product
</div>
<footer class="footer">

<div class="container">
<p>Copyright ©2012 paperclips.example.com</p>

</div>
</footer>

</body>
</html>

Now we have a proper HTML document that lists the products in our catalog, but we
did add a lot of markup that isn’t the responsibility of the catalog action. The catalog
action doesn’t need to know what the navigation menu looks like. Modularity has suf-
fered here, as has reusability. In general, the action method that is invoked for the
request is only responsible for part of the content of the resulting page. On many web-
sites, the page header, the footer, and the navigation are shared between pages, as
shown in the wireframe in figure 8.6.

 Here, the boxes Header, Navigation, and Footer will hardly change, if at all, between
pages on this website. On the other hand, the content box in the middle will be differ-
ent for every page.

 In this section and the next, we’ll show you some techniques that you can use to
break up your templates into more maintainable, reusable pieces.

 The HTML fragment that renders the navigation area lends itself well to being
extracted from the main template and into a separate template file. From the main
catalog template, then, we include this navigation template. We start with creating a
file, views/navigation.scala.html.

Header

Footer

Navigation Page content managed by the action

Figure 8.6 Web page composition

191Structuring pages with template composition
@()
<div class="navbar navbar-inverse " id="navigation">
<div class="navbar-inner">

<div class="container">

Products Catalog
<ul class="nav">

Home
Products
Contact

</div>
</div>
</div>

Now we can simply include this template from the main template, views/navigation
.scala.html, and include it with @navigation(). Because it lives in the same package
as the main template, views.html, we can use just the name of the template and omit
the views.html qualifier, as shown in the following listing.

@(currentPage: com.avaje.ebean.Page[Product])
<!DOCTYPE html>

<html>
<head>

<title>paperclips.example.com</title>
<link href="@routes.Assets.at("bootstrap/css/bootstrap.min.css")"
rel="stylesheet" media="screen">

<link href="@routes.Assets.at("stylesheets/main.css")"
rel="stylesheet" media="screen">

<link rel="shortcut icon" type="image/png"
href="@routes.Assets.at("images/favicon.png")">

<script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"
type="text/javascript"></script>

</head>
<body>

@navigation()

<div class="container">
@if(flash.containsKey("success")){

<div class="alert alert-success">
@flash.get("success")
</div>

}

@if(flash.containsKey("error")){
<div class="alert alert-error">
@flash.get("error")
</div>

}

<h2>All products</h2>
<script>

function del(urlToDelete) {
$.ajax({

Listing 8.10 Catalog page with navigation extracted

192 CHAPTER 8 Producing output with view templates
url: urlToDelete,
type: 'DELETE',
success: function(results) {

// Refresh the page
location.reload();

}
});

}
</script>
<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th>Date</th>
<th></th>

</tr>
</thead>
<tbody>
@for(product <- currentPage.getList()) {

<tr>
<td>

@product.ean
</td>
<td>

@product.name</td>
<td>

@product.name</td>
<td>@product.date.format("dd-MM-yyyy")</td>

<td>

<i class="icon icon-pencil"></i>

<i class="icon icon-trash"></i>
</td>

</tr>
}

</tbody>
</table>
<div id="pagination" class="pagination">

@if(currentPage.hasPrev) {

<li class="prev">

←

} else {
<li class="prev disabled">

<a>←

}
<li class="current">

<a>@currentPage.getDisplayXtoYofZ(" - "," / ")

193Structuring pages with template composition

@if(currentPage.hasNext) {

<li class="next">

→

} else {
<li class="next disabled">

<a>→

}

</div>

<i class="icon-plus"></i> New product
</div>
<footer class="footer">

<div class="container">
<p>Copyright ©2012 paperclips.example.com</p>

</div>
</footer>

</body>
</html>

This improves our template, because the catalog template now no longer needs to
know how to render the navigation. This pattern of extracting parts of a template into
a separate template that is reusable is called includes, where the extracted template is
called the include.

8.4.2 Layouts

The include that we used in the previous section made our template better, but it isn’t
very good yet. As it stands, the catalog page still renders a whole lot of HTML that it
shouldn’t need to, such as the HTML DOCTYPE declaration, the head element, and the
header and the footer (which are on every page).

 In fact, in listing 8.10, only the part between the <h2>All products</h2> and the
footer is the responsibility of the catalog action:

<h2>All products</h2>
<script>

function del(urlToDelete) {
$.ajax({

url: urlToDelete,
type: 'DELETE',
success: function(results) {

// Refresh the page
location.reload();

}
});

}
</script>
<table class="table table-striped">
<thead>

194 CHAPTER 8 Producing output with view templates
<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th>Date</th>
<th></th>

</tr>
</thead>
<tbody>
@for(product <- currentPage.getList()) {

<tr>
<td>

@product.ean
</td>
<td>
@product.name</td>

<td>
@product.name</td>

<td>@product.date.format("dd-MM-yyyy")</td>
<td>

<i class="icon icon-pencil"></i>

<i class="icon icon-trash"></i>

</td>
</tr>
}

</tbody>
</table>
<div id="pagination" class="pagination">

@if(currentPage.hasPrev) {

<li class="prev">

←

} else {
<li class="prev disabled">

<a>←

}
<li class="current">

<a>@currentPage.getDisplayXtoYofZ(" - "," / ")

@if(currentPage.hasNext) {

<li class="next">

→

} else {
<li class="next disabled">

<a>→

}

195Structuring pages with template composition

</div>

<i class="icon-plus"></i> New product

Everything else should be factored out of the template for the catalog action. We
could of course use the includes technique, but it isn’t ideal here because we need to
extract some HTML that’s above the content and some HTML that’s below the content.
If we use includes, we’d need to extract two new templates. One would contain all the
HTML before the content, and the other one would contain everything after the con-
tent. This isn’t good, because that HTML belongs together. We want to avoid having an
HTML start tag in one template and the corresponding end tag in another. That
would break coherence in our template.

 Luckily, the Scala template engine offers some compositional features that allow us
to extract all this code into a single, coherent template. From the catalog
.scala.html template, we extract all HTML that shouldn’t be the responsibility of the
catalog template, as in the following listing.

<!DOCTYPE html>

<html>
<head>

<title>paperclips.example.com</title>
<link href="@routes.Assets.at("bootstrap/css/bootstrap.min.css")"

rel="stylesheet" media="screen">
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet" media="screen">
<link rel="shortcut icon" type="image/png"

href="@routes.Assets.at("images/favicon.png")">
<script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"

type="text/javascript"></script>
</head>
<body>

@navigation()
<div class="container">

@if(flash.containsKey("success")){
<div class="alert alert-success">
@flash.get("success")
</div>

}

@if(flash.containsKey("error")){
<div class="alert alert-error">
@flash.get("error")
</div>

}

// Content here

</div>
<footer class="footer">

Listing 8.11 Extracted page layout

Page content must
be inserted here

196 CHAPTER 8 Producing output with view templates
<div class="container">
<p>Copyright ©2012 paperclips.example.com</p>

</div>
</footer>

</body>
</html>

What we extracted is a fragment of HTML that just needs the body of the <div
id="content"> to become a complete page. If that sounds exactly like a template,
that’s because it is exactly like a regular template. What we do is make a new template
and store it in app/views/main.scala.html, with a single parameter named content
of type Html, as in the following listing.

@(content: Html)
<!DOCTYPE html>

<<html>
<head>

<title>paperclips.example.com</title>
<link href="@routes.Assets.at("bootstrap/css/bootstrap.min.css")"

rel="stylesheet" media="screen">
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet" media="screen">
<link rel="shortcut icon" type="image/png"

href="@routes.Assets.at("images/favicon.png")">
<script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"

type="text/javascript"></script>
</head>
<body>

@navigation()
<div class="container">

@if(flash.containsKey("success")){
<div class="alert alert-success">
@flash.get("success")
</div>

}

@if(flash.containsKey("error")){
<div class="alert alert-error">
@flash.get("error")
</div>

}
@content

</div>
<footer class="footer">

<div class="container">
<p>Copyright ©2012 paperclips.example.com</p>

</div>
</footer>

</body>
</html>

Listing 8.12 The extracted main template

New parameter “content”

Display the content

197Structuring pages with template composition
Now we have a new template that we can call, such as views.html.main.render
(content). At first, this may not seem very usable. How would we call this from the cat-
alog template? We don’t have a content value available that we can just pass in. Instead,
our catalog template is rendering the content we want to include in the main template.

 We can solve this problem with a Scala trick. In Scala you can also use curly braces
for a parameter block, so this is also valid: views.html.main { content }. By wrapping
our template in this function call, we actually render the main template and pass it the
contents of our catalog template. This is demonstrated in the following listing.

@(currentPage: com.avaje.ebean.Page[Product])
@main("Products catalogue") {

<h2>All products</h2>

<script>
function del(urlToDelete) {

$.ajax({
url: urlToDelete,
type: 'DELETE',
success: function(results) {

// Refresh the page
location.reload();

}
});

}
</script>

<table class="table table-striped">
<thead>

<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th>Date</th>
<th></th>

</tr>
</thead>
<tbody>
@for(product <- currentPage.getList()) {

<tr>
<td>

@product.ean
</td>
<td>

@product.name</td>
<td>

@product.name</td>
<td>@product.date.format("dd-MM-yyyy")</td>
<td>

<i class="icon icon-pencil"></i>

Listing 8.13 Refactored catalog template

198 CHAPTER 8 Producing output with view templates

<i class="icon icon-trash"></i>

</td>
</tr>
}

</tbody>
</table>

<div id="pagination" class="pagination">

@if(currentPage.hasPrev) {
<li class="prev">

←

} else {

<li class="prev disabled">
<a>←

}
<li class="current">

<a>@currentPage.getDisplayXtoYofZ(" - "," / ")

@if(currentPage.hasNext) {

<li class="next">

→

} else {

<li class="next disabled">
<a>→

}

</div>

<i class="icon-plus"></i> New product

}

We wrapped all the HTML that this template constructed in a call to the main tem-
plate! Now the only thing that this template does is call the main template, passing in
the proper content parameter. This is called the layout pattern in Play.

 We can add more than just the content parameter to the main.scala.html tem-
plate, but we’ll add a new parameter list for the next parameter, because you can only
use curly braces around a parameter list with a single parameter. Suppose that we also
want to make the title of the page a parameter. Then we could update the first part of
the main template from:

@(content: Html)
<html>

<head>
<title>Paper-clip web shop</title>

199Using LESS and CoffeeScript: the asset pipeline
to:

@(title: String)(content: Html)
<html>

<head>
<title>@title</title>

Now we can call this template from another template with:

@main("Products") {
// Content here

}

It’s useful to give the title parameter of the main.scala.html a default value so that
we can chose to skip it when we call the method:

@(title: String ="Paperclips!")(content: Html)

If we want to call this template and are happy with the default title, we can simply call
it using:

@main() {
// Content here

}

Note that we still need the empty parentheses for the first parameter list; we can’t skip
it altogether.

 A web page doesn’t consist solely of HTML. Styling is provided by CSS, and addi-
tional interaction can be defined in JavaScript. Play makes writing CSS and JavaScript
easier, by supporting tools that improve on the existing technology.

8.5 Using LESS and CoffeeScript: the asset pipeline
Browsers process HTML with CSS and JavaScript, so your web application must output
these formats for browsers to understand them. These languages are not always the
choice of developers, however. Many developers prefer technologies like LESS and
CoffeeScript over CSS and JavaScript. LESS is a stylesheet language that is transformed
into CSS by a LESS interpreter or compiler, whereas CoffeeScript is a scripting lan-
guage that is transformed into JavaScript by a CoffeeScript compiler.

 As we mentioned in chapter 2, Play integrates LESS and CoffeeScript compilers.
Although we won’t teach you these technologies, we will show you how you can use
them in a Play application.

8.5.1 LESS

LESS gives you many advantages over plain CSS. LESS supports variables, mixins, nest-
ing, and some other constructs that make a web developer’s life easier. Consider the
following example of plain CSS, in which we set the background color of a header and
a footer element to a shade of green. Additionally, we use a bold font for link elements
in the footer.

200 CHAPTER 8 Producing output with view templates
.header {
background-color: #0b5c20;

}

.footer {
background-color: #0b5c20;

}

.footer a {
font-weight: bold;

}

This example shows some of the weaknesses of CSS. We have to repeat the color code,
and we have to repeat the .footer selector if we want to select an a element inside a
footer. With LESS, you can write the following instead:

@green: #0b5c20;

.header {
background-color: @green;

}

.footer {
background-color: @green;

a {
font-weight: bold;

}

}

We have declared a variable to hold the color using a descriptive name, so the value
can now be changed in one place. We have also used nesting for the .footer a selec-
tor by moving the a selector inside the .footer selector. This makes the code easier to
read and maintain.

8.5.2 CoffeeScript

CoffeeScript is a language that compiles to JavaScript, consisting mainly of syntactic
improvements over JavaScript. Instead of curly braces, CoffeeScript uses indentation
and has a very short function literal notation. Consider the following example in
JavaScript:

math = {
root: Math.sqrt,
square: square,
cube: function(x) {

return x * square(x);
}

};

In CoffeeScript, you would write this as:

math =
root: Math.sqrt
square: square
cube: (x) -> x * square x

201Using LESS and CoffeeScript: the asset pipeline
No curly braces are used around the object, and the function definition is more concise.

8.5.3 The asset pipeline

There are various ways to use CoffeeScript or LESS. For both languages, command-
line tools are available that transform files to their regular JavaScript or CSS equiva-
lents. For both there are also JavaScript interpreters that allow you to use these files in
a browser directly.

 Play supports automatic build-time CoffeeScript and LESS compilation, and shows
compilation errors in the familiar Play error page. This highlights the offending lines
of code when you have syntactical errors in your CoffeeScript or LESS code.

 Using LESS or CoffeeScript is trivial. You simply place the files in the app/assets
directory or a subdirectory of the same. Give CoffeeScript files a .coffee extension
and LESS files a .less extension, and Play will automatically compile them to
JavaScript and CSS files and make them available in the public folder.

 For example, if you place a CoffeeScript file in app/assets/javascript

/application.coffee, you can reference it from a template using

<script src="@routes.Assets.at("javascripts/application.js")"></script>

You can also use an automatically generated minified version of your JavaScript file by
changing application.js to application.min.js.

COMPILED FILE LOCATION Although you can reference the compiled files as if
they reside in the public directory, Play actually keeps them in the
resources_managed directory in the target directory. The assets controller
will look there too when it receives a request for a file.

Apart from LESS and CoffeeScript, Play has also support for the Google Closure com-
piler. This is a JavaScript compiler that compiles JavaScript to better, faster JavaScript.
Any file that ends in .js is automatically compiled by the Closure compiler.

 There are occasions when you don’t want a file to be automatically compiled. Sup-
pose that you have a LESS file a.less that defines a variable @x and includes b.less,
which references the variable. On its own, b.less won’t compile, because @x is unde-
fined. Even though you never intended to call b.less directly, Play tries to compile it
and throws an error. To avoid this, rename b.less to _b.less. Any .less, .coffee, or
.js file that starts with an underscore is not compiled.

CONFIGURE COMPILATION INCLUDES AND EXCLUDES Sometimes it isn’t conve-
nient to only exclude files that start with an underscore: for example, when
you use an existing LESS library that isn’t designed that way. Luckily, it’s possi-
ble to configure the behavior of Play regarding which files it should compile.
See the Play documentation for more details.

Now that we’ve shown you how to use the asset pipeline, we’ll continue in the next
section with adapting your application for multiple languages.

202 CHAPTER 8 Producing output with view templates
8.6 Internationalization
Users of your application may come from different countries and use different lan-
guages, as well as have different rules for properly formatting numbers, dates, and
times. The combination of language and formatting rules is called a locale. The adap-
tation of a program to different locales is called internationalization and localization.
Because these words are so insanely long and often used together—which makes it
even worse—they’re often abbreviated as i18N and l10N respectively, where the num-
ber between the first and last letter is the number of replaced letters. In this section,
we’ll demonstrate the tools Play provides to help you with internationalization.

In this section we only discuss internationalizing the static parts of your application:
things that you’d normally hard-code in your templates or your error messages, for
example. We won’t cover internationalizing your dynamic content, so having the con-
tent of your web application in multiple languages isn’t included.

8.6.1 Configuration and message files

Building a localized application in Play is mostly about text and involves writing mes-
sage files. Instead of putting literal strings like “Log in,” “Thank you for your order,” or
“Email is required” in your application, you create a file in which message keys are
mapped to these strings.

 For each language that your application supports, write a messages file that looks
like this:

welcome = Welcome!
users.login = Log in
shop.thanks = Thank you for your order
validation.required = {0} is required

Here you can see how the message keys are mapped to the actual messages. In the last
example, there’s a placeholder that will be replaced by a value when this message is
used. The dots in the keys have no meaning, but you can use them for logical grouping.

 To get started, you must configure Play so that it knows which languages are sup-
ported. In the application.conf file, list the languages that you support:

application.langs="en,en-US,nl"

Internationalization versus localization
Although it’s easy to mix them up, internationalization and localization are two differ-
ent things. Internationalization is a refactoring to remove locale-specific code from
your application. Localization is making a locale-specific version of an application. In
an internationalized web application, this means having one or more selectable
locale-specific versions. In practice, the two steps go together; you usually both inter-
nationalize and localize one part of an application at a time.

203Internationalization
This is a comma-separated list of languages, in which each language consists of an ISO
639-2 language code, optionally followed by a hyphen and an ISO 3166-1 alpha-2
country code.

 Then, for each of these languages, you must create a messages file in the conf
directory, with the filename messages.LANG, where LANG should be replaced by the
language. A French messages file would be stored in conf/messages.fr, with the fol-
lowing content:

welcome=Bienvenue!

Additionally, you can create a messages file without an extension, which serves as the
default and fallback language. If a message is not translated in the messages file for
the language you’re using, the message from this messages file will be used.

 To deal with messages in your application, it’s recommended that you start with a
messages file and make sure that it’s complete. If you later decide to add more lan-
guages, you can easily create additional messages files. When you forget to add a key
to another language’s messages file, or when you don’t have the translation for that
message, then the default messages file will be used instead.

8.6.2 Using messages in your application

To use messages in your application, you can use the get() method on the
play.i18n.Messages class:

Messages.get("welcome")

By default, Play will use the language specified in the current request’s Accept-
Language header, or default to the first language defined in your application’s config-
uration. If you want to, you can override the language that you want to use, like so:

Messages.get(new Lang("fr"), "welcome")

In a template, you can use the Messages class as follows:

@()

<h1>@Messages.get("welcome")</h1>

Prior to Play 2.1, in order for the automatic language selection to work in templates,
you need to add an implicit parameter so that the request is available. You can do that as
follows:

@(title:String = "Paperclips!")(implicit request: Request)

<h1>@Messages.get("welcome")</h1>

Messages aren’t just simple strings; they’re patterns formatted using java.text
.MessageFormat. This means that you can use parameters in your messages:

validation.required={0} is required

204 CHAPTER 8 Producing output with view templates
You can substitute these by specifying more parameters in the call to Messages.get():

Messages.get("validation.required", "email")

This will result in the string email is required. MessageFormat gives you more
options. Suppose that we want to vary our message slightly, depending on the parame-
ters. Suppose that we’re showing the number of items in our shopping cart, and we
want to display “Your cart is empty,” “Your cart has one item,” or “Your cart has 42
items” depending on the number of items in the cart. We can use the following pat-
tern for that:

shop.basketcount=Your cart {0,choice,0#is empty|1#has one item
|1< has {0} items}.

Now if we use the following in a template

<p>@Messages("shop.basketcount", 0)</p>
<p>@Messages("shop.basketcount", 1)</p>
<p>@Messages("shop.basketcount", 42)</p>

we get the following output:

Your cart is empty.
Your cart has one item.
Your cart has 42 items.

Using this, you can achieve advanced formatting that can be different for each lan-
guage, decoupled from your application logic. For more possibilities with Message-
Format, consult the Java SE API documentation.

8.7 Summary
In this chapter, we’ve seen that Play ships a type-safe template engine, based on Scala.
This type-safe template engine helps you write more robust templates that give you
more confidence that everything will still work as intended after you refactor. On top
of that, the template engine is faster than conventional, non-type-safe alternatives.

 The template syntax is very concise: The @ character is the only special character.
Any value referenced in the template actually resolves to an object, and you can call
methods on it. If you attempt to use a value or method that does not exist, Play will tell
you exactly what and where the mistake is.

 Templates are compiled to classes, and we have seen how to compose complex
pages from reusable smaller pieces, by making use of composition.

 With the asset pipeline, we can effortlessly use LESS and CoffeeScript instead of
CSS and JavaScript, and it can also compile JavaScript into better JavaScript with the
Google Closure compiler.

 Finally, the internationalization functionality of Play is powerful and allows you to
make your application available in multiple languages.

 In the next chapter, we’ll take a closer look at the advanced asynchronous features
Play 2 provides.

Part 3

Advanced topics

Part 3 covers advanced functionality in Play. The techniques covered here are
generally not required to create a basic web application with Play, but they can
make your application better.

 Chapter 9 is about one of Play’s more powerful features: asynchronous
request handling. It explains why long-running tasks are better performed “in
the background,” and how to achieve that easily. It also shows how you can have
a web application with streaming data, using WebSockets or Comet.

 Chapter 10 explains how to build a secure application in Play. It explains how
you can avoid common security problems, and how you can use filters to imple-
ment authentication.

 Chapter 11 covers the build process of Play. It explains the configuration
files, and shows you how to package your code in reusable modules. Finally, it
shows you what’s involved with taking your application to production.

 Chapter 12 introduces the tools that Play has for testing your application. It
explains what different kinds of automated tests there are, and how you can
write them for your application.

Asynchronous data
In this chapter, we’ll learn how to process data asynchronously and how to schedule
asynchronous jobs. First, we’ll get familiar with the principle behind asynchronous
data handling and why it’s useful. One of the goals of handling data asynchro-
nously is allowing our application to scale to thousands of concurrent connections,
while responding to clients immediately. Then we’ll learn about an older but widely
used protocol to handle data asynchronously between servers and clients: Comet.
We’ll finish with the WebSocket protocol, which is a standard way to communicate
data asynchronously between servers and clients.

 This is a long chapter, as we’re going to try to cover most of the aspects of Play
2’s asynchronous feature. But because this is an essential Play 2 feature, it’s worth it.

 Before we start, a little introduction to asynchronous data is useful.

This chapter covers
 Handling data asynchronously

 Scheduling asynchronous tasks

 Streaming HTTP responses

 Unidirectional communication with Comet

 Bidirectional communication with WebSockets
207

208 CHAPTER 9 Asynchronous data
9.1 What do we mean by asynchronous data?
Traditional web frameworks use “call-and-return,” also known as synchronous process-
ing. It means that the client of a service calls the service and then stops; it waits for the
service to complete its task before the client code continues. If the client code has
nothing else to do, this places a burden on the system running the client, since it has
to keep the code hanging around in memory with nothing going on. For example,
let’s imagine you’re requesting a report to be displayed on the page. Generating the
report is a pretty intensive computation. Using synchronous processing means that
every client will have to wait for this intensive computation to finish, as illustrated in
figure 9.1.

 In contrast, if we were to delegate the intensive processing to another subsystem,
our framework would have more time to answer the other clients or do other things.
For example, we could call one of the services to compute the report and another one
to calculate a second report. Those two reports could be executed in parallel instead
of sequentially. In these cases, what’s called for is asynchronous processing. You can
think of this as the client firing off a request message to a service and then doing some
other work. The service does its work and, when it’s done, it fires a response message
back to the client.

 To accomplish this kind of functionality, Play uses an event-driven middleware
framework called Akka1 to process every client request. This means that every time a
request is sent, the processing of the request is delegated to the Akka event-driven
framework, making Play asynchronous by nature. Once the Akka subsystem finishes
processing the request, Akka calls back to Play, and Play issues a response to the client.
Figure 9.2 illustrates precisely that.

 By default, Play is intended to work with short requests. That means that if a
request’s processing time is long (for example, waiting for a long computation), it’ll

1 Akka is also part of the type-safe stack. If you want to know more about Akka, visit http://akka.io and read
Akka in Action: http://www.manning.com/roestenburg/.

Server’s actionClient’s action

Time

Data transfer

ProcessingWait

Data transfer

ProcessingWait

Figure 9.1 Web framework
with synchronous architecture

http://www.manning.com/roestenburg/
http://akka.io

209Handling asynchronous data
block the Akka component of the Play application (the Akka thread pool is saturat-
ing) and hinder your application’s responsiveness. We therefore need to make sure
we’re programming using Play’s asynchronous special features, explained in the next
section.

9.2 Handling asynchronous data
Let’s see an example of how asynchronous programming actually works in a Play
application. Our warehouse application needs a dashboard. The dashboard contains
several reports indicating the current warehouse performance (also known as key per-
formance indicators or KPI). These reports are quite heavy to compute. Therefore it
would be much better to execute them in parallel. Figure 9.3 shows what we want to
achieve.

Server’s action

Processing units

Client’s action

Time

Data transfer

Akka
dispatcher

Processing

Processing

Processing

Processing

Processing

Figure 9.2 Play’s
asynchronous
architecture

Server’s actionClient’s action

Time

Data transfer

KPIWait

Data transfer

KPI

KPI

KPI

KPI

KPI

KPI = Key performance indicator report

Wait

Figure 9.3 Parallel execution in Play

210 CHAPTER 9 Asynchronous data
9.2.1 Handling asynchronous requests

Let’s see how we can compute two reports in parallel from a request. Let’s create a
Reports controller and a Report model in our project. The following listing shows
where to create our file.

warehouse
├─ app
│ ├─ controllers
│ │ └─ Reports.java
│ ├─ models
│ │ └─ Report.java
│ ├─ views
├─ conf
│ └─ routes
├─ public
└─ test

The Report model is simple and consists of faking some computation. The following
listing shows how the report generation is simulated.

package models;
import play.Logger;

public class Report {
String name;

public Report(String name) {
this.name = name;

}

public void execute() {
long start = System.currentTimeMillis();

Logger.info("starting intensive " + name + " report at " + start);
try {

Thread.sleep(5000);
} catch(Exception e) {}
Logger.info("done with intensive " + name + " report ");

Logger.info("took "
+ ((System.currentTimeMillis() - start) / 1000) + "s");

}

public String toString() {
return name;

}
}

The report model is straightforward and consists of a report name and the execute()
method to simulate the report generation.

 As you know, an action method must return a Result. In order to be asynchro-
nous, we need to return a Promise of a Result (Promise<Result>) instead. A Promise

Listing 9.1 Project directory structure

Listing 9.2 Model that simulates a report generation

Our new controller

Our new model

Simulate report generation by suspending
current thread for five seconds

211Handling asynchronous data
is a commitment to do or not do something. A Promise<Result> will eventually be
redeemed with a value of type Result. By giving a Promise<Result> instead of a regu-
lar Result, we are able to compute the result without blocking anything. Play will then
serve this result as soon as the promise is redeemed.

 A simple way to execute a block of code asynchronously and to get a Promise is to
use the play.libs.Akka helpers, as listing 9.3 shows. To run code asynchronously, all
that is needed is to implement the Callable interface. You can look at Akka helpers as
helpers that execute code snippets in another thread. Akka allows you to distribute
those “threads” on other servers as well, but that’s a different subject. You can find
more information on the subject in the excellent book2 published by Manning.

package controllers;

import models.Report;
import java.util.List;

import java.util.concurrent.Callable;
import play.*;
import play.libs.F.Promise;
import play.libs.F.Function;
import play.mvc.*;
import views.html.*;

public class Reports extends Controller {

public static Result index() {

Promise<Report> promiseOfKPIReport =
play.libs.Akka.future(

new Callable<Report>() {
public Report call() {

return intensiveKPIReport();
}

}
);
Promise<Report> promiseOfETAReport =
play.libs.Akka.future(

new Callable<Report>() {
public Report call() {

return intensiveETAReport();
}

}
);
Promise<List<Report>> promises =

Promise.waitAll(promiseOfKPIReport, promiseOfETAReport);
return async(

Listing 9.3 Controller that executes report generation in parallel

2 Akka in Action, http://www.manning.com/roestenburg/, by Raymond Roestenburg, Rob Bakker, and Rob
Williams.

Indicates that
this report
generation runs
asynchronously

Indicates that we want
results of report

generation to be on
the Promise object

Indicates
that we
want to
return a

result that
will be

computed
later on

http://www.manning.com/roestenburg/

212 CHAPTER 9 Asynchronous data

o

promises.map(
new Function<List<Report>, Result>() {

public Result apply(List<Report> reports) {
return ok(report.render(reports));

}
}

)
);

}

public static Report intensiveKPIReport() {
Report r = new Report("KPI report");
r.execute();
return r;

}

public static Report intensiveETAReport() {
Report r = new Report("ETA report");
r.execute();
return r;

}
}

The preceding code needs careful explanation. First, we’re wrapping each report gen-
eration inside blocks of code that are run asynchronously (using the Callable imple-
mentations). Then we tell our client that, before we can return a response, we need to
wait for both reports to be generated. Using the Promise object allows Play not to wait
for the reports to be processed, but to suspend the current request. You may have
noticed also that we use the async() method to wrap our Result object. This tells Play
that whatever we’re doing, don’t wait for it, because it’s going to take some time.
Instead, once the processing of the report is done, the Promise object will make sure
Play knows when it’s time to return a Result.

9.2.2 Returning the asynchronous result

You probably noticed that we returned a Result that is in fact a Promise of a result.
This is done using the async() method, as shown in the following code sample:

Promise<List<Report>> promises =
Promise.waitAll(promiseOfKPIReport, promiseOfETAReport);

return async(
promises.map(

new Function<List<Report>, Result>() {
public Result apply(List<Report> reports) {

return ok(index.render(reports));
}

}
)

);

The async() method itself takes a Promise object. The Promise object is nothing
more than a holder that indicates when the report’s processing is finished. This is
called redeeming the promise.

Once we have
ur result, we

are giving
back a Result Render the

reports. The
view will be
created later on.

This is
effectively an
inner class that
we implement;
it simulates a
function given
as parameter

The apply
method is

acting as a
constructor

here

213Handling asynchronous data
Once the Promise is redeemed, we execute a function that takes the List of newly
generated reports and returns a Result. The Result is then sent back to our client.
Figure 9.4 shows the sequence of events.

 It’s important to realize that generating the reports doesn’t block the code in our
controller’s action method. We are effectively suspending the current client request so
that Play can spend time on other clients. The actual report generation is handled by
the Akka helpers (that is, other threads), and Play won’t block at any point, allowing it
to serve a large number of requests simultaneously. This is also rather useful when you
need to process multiple sources of information in order to compute a response for
your clients.

 Let’s create the views/report.scala.html file to perform the computation and
display our simulated generated reports. The following listing shows the views
/report .scala.html file content.

@(reports: List[models.Report])

@main("Reports") {
<h2>Reports</h2>

@for(report <- reports) {

@report ready to be downloaded
here

}

}

We now need to add a new entry to our routes file.

GET /reports/ controllers.Reports.index()

Now, if you point your browser to http://localhost:9000/reports/ you should see the
following in your log:

Listing 9.4 views/report.scala.html view file

Time Request Start async report

ETA report finishedResponse

KPI report
job ETA report

job

Browser
(client)

Play
application
controller

Figure 9.4 Sequence events generated reports

http://localhost:9000/reports/

214 CHAPTER 9 Asynchronous data

Repo

Repo
[info] play - database [default] connected at jdbc:h2:mem:play

play - Application started (Dev)

application - starting intensive KPI report report at 1381609106439

application - starting intensive ETA report report at 1381609106439

application - done with intensive ETA report report at 1381609111444

application - done with intensive KPI report report at 1381609111444

application - took 5s application - took 5s

It’s interesting to note that report generation starts at the same time and finishes at
the same time. They’re executed in parallel instead of sequentially. Figure 9.5 shows
the application’s screen after report generation.

 We’re now able to execute jobs in an asynchronous way and in parallel. Let’s see
how we can schedule those jobs.

9.3 Scheduling asynchronous tasks
In Play, you can schedule repetitive tasks using Akka, either by using an actor or by
passing a Runnable class. For example, to send an order to the default actor every five
seconds:

Akka.system().scheduler().schedule(
Duration.create(4, SECONDS),
Duration.create(5, SECONDS),
defaultActor,
new Order(),
Akka.system().dispatcher(),
null

);

Report
KPI
starts

rt ETA
starts

rt KPI
ends

Report ETA ends

Figure 9.5 Screenshot of our application once the reports are generated

215Streaming HTTP responses
The Akka.system.scheduler allows us to schedule a background job; the job starts
four seconds after initialization and occurs every five seconds. Every five seconds, we
send a new Order to the default actor. Explaining an actor is outside the topic of this
book, but actors are concurrent processes that communicate by exchanging messages.
Actors can also be seen as a form of active objects for which invoking a method corre-
sponds to sending a message. You can read more about actors and Akka in the excel-
lent Akka in Action book3 published by Manning.

 Instead of an actor, you can use a class that implements Runnable and pass your
business logic inside the run() method:

Akka.system().scheduler().schedule(
Duration.create(10, TimeUnit.SECONDS),
new Runnable() {

public void run() {
// Your business logic here.

}
}

);

Let’s see how Play responds to clients, and how Play can stream large amounts of data
back to its clients.

9.4 Streaming HTTP responses
As we’ve seen in the earlier chapters, after receiving and interpreting a request mes-
sage, the Play server responds with an HTTP response message.

 Sometimes we also want to stream information to the clients. This means that we
want to continuously send data to our web clients. As an example for our application,
we want to stream the expedited orders; we want to see our client orders on a screen
as soon as they’re entered. People in the warehouse can then pack and ship those
orders as soon as they see them. Figure 9.6 shows our final application.

 But before we start streaming our expedited orders, let’s recap the different meth-
ods to return data with Play and, from there, see how streaming data is different from
a technical point of view.

9.4.1 Standard responses and Content-Length header

When you send a standard (non-streaming) HTTP response, Play automatically sends
the appropriate Content-Length HTTP header with the response, which lets the client
know how many bytes are in the response, and the connection between client and
server is closed as soon as all bytes have been transmitted. For this to work, Play needs
to know the entire content of the response before it starts sending it.

3 Akka in Action, http://www.manning.com/roestenburg/, by Raymond Roestenburg, Rob Bakker, and Rob
Williams.

http://www.manning.com/roestenburg/

216 CHAPTER 9 Asynchronous data
For example, the following code sends back the “Hello World” message to clients:

public static Result index() {
return ok("Hello World")

}

Since Play knows the entire response body (“Hello World”), Play sets the appropriate
Content-Length HTTP header, as well as any other mandatory headers. You don’t
have to specify anything yourself to make this happen.

 This would be the appropriate method to use if the number of expedited orders
was fixed. But for our use case, the number of expedited orders is unpredictable; we
want to stream them as they arrive. Play can’t calculate the length of the response, and
we don’t know if and when to close the connection. Therefore, this method of send-
ing responses is not suitable in this case.

 Another problem with this approach is that the entire response must be loaded
into memory—which can be problematic if the response is very big, such as when
transferring big files.

9.4.2 Serving files

Play is able to stream a file to web clients without loading the file’s content into mem-
ory. That is useful if you want to send back larger files to web clients. If we take our
previous report example, once the report computation is done, we can easily send
back the computed report as a PDF file:

public static Result retrievePdf(String reportId) {
return ok(new java.io.File(report.asPdfFile());

}

Figure 9.6 Screenshot
of our future application

217Streaming HTTP responses
Again, Play will set the appropriate Content-Length HTTP header. It can do this
because it can tell how big the file is before it starts sending out the response. Addi-
tionally, this helper will determine the Content-Type header from the filename and
set the Content-Disposition header to specify how the web browser should handle
this response. Once the response is consumed, the connection is again closed.

 Like the previous approach, this approach only works because the size of the
response is known beforehand. We’re still no closer to sending content that is com-
puted on the fly, without knowing how big the content will be.

 We just saw how to stream large files to our web clients with a fixed-size response.
Let’s see how we can stream arbitrarily sized data back to our clients.

9.4.3 Chunked responses

Our application example needs to stream expedited orders. There is no predefined
content length; it could really be an infinite number. For this kind of response we
have to use chunked transfer encoding, and Play provides full support for that.

 As the name suggests, chunked transfer encoding sends the response in multiple
chunks. The way this works is that these chunks of data are sent out as soon as a reason-
able number of bytes becomes available. The server first sends out the size of the next
chunk, and then the chunk itself. This is repeated until the response is complete.

 The advantage of this approach is that we can serve live data as it becomes avail-
able. The drawback is that since the web browser doesn’t know the content size, it isn’t
able to display a proper download progress bar, which isn’t an issue for our expedited
orders.

 Let’s say we have a service that provides our expedited orders from another system
as soon as they are entered. We can ask Play to stream this content directly using a
chunked response:

public static Result index() {
InputStream is = getExpeditedOrders(); return ok(is);

}

This requires us to implement the expedited-orders service to return an InputStream.
Expedited orders are written to the input stream as soon as they are entered.

 Another (simpler) alternative is to implement your own chunked response
builder. The Play Java API supports both text and binary chunked streams (via String
and byte[]). Listing 9.5 shows the liveUpdate() action method of our Application
.java controller file.

public static Result liveUpdate() {
// Prepare a chunked text stream Chunks<String>
chunks = new StringChunks() {

// Called when the stream is ready
public void onReady(Chunks.Out<String> out) {

ExpeditedOrders.registerChunkOut(out);

Listing 9.5 Streaming expedited orders: Application controller

Method called when the
connection is established
with the client

218 CHAPTER 9 Asynchronous data

Soc
list

D

Exped
}

}

response().setContentType("text/html;charset=UTF-8");

ok(chunks);
}

The onReady() method is called whenever Play is ready to send out data, and it’s
therefore safe to write to the output stream. It gives you a Chunks.Out channel to write
to. Let’s say we have an asynchronous process somewhere pushing to this stream; you
can safely use that channel to push information to the web client. Listing 9.6 shows a
simple example of such a service. This service should live in the models package.

public class ExpeditedOrders extends UntypedActor {
static List<Chunks.Out<String>> outs =

new ArrayList<Chunks.Out<String>>();
static ActorRef defaultActor =

Akka.system().actorOf(new Props(ExpeditedOrders.class));

static {
Akka.system().scheduler().schedule(

Duration.create(4, SECONDS),
Duration.create(5, SECONDS),
defaultActor,
new Order(),
Akka.system().dispatcher()

);
}

public static void registerChunkOut(
Chunks.Out<String> out) {

ExpeditedOrders.outs.add(out);
}

public void onReceive(Object message)
throws Exception {

Order order = (Order)message;
// Writing to our channel

for(Chunks.Out<String> out: outs) {
 // Send enough data to be displayed
 char[] buffer = new char[1024 * 5];
 Arrays.fill(buffer, ' ');
 out.write(new String(buffer));
 out.write("" +
 order.toString() + "");

}
}

}

Listing 9.6 The ExpeditedOrders service

Indicates to client
that we’re sending
back HTML

ExpeditedOrders
object is an actor,
allowing us to schedule
it at regular intervals

kets as a
 that we
want to
write to

efault actor
uses

itedOrders
object Schedule ExpeditedOrders

to call its onReceive
method every five seconds
with a new Order object

Register socket from clients
we want to write on

Every five seconds, this method
is executed and a new order is
passed as an argument

Fill in empty data so the chunk
size is reached. This allows us
to display the line without
waiting for extra data.

Send back a script with the order to
display it on the page; we append the
order to the html element with id
container.

219Streaming HTTP responses
The class ExpeditedOrders might look cryptic, but with a bit of explanation it’s quite
straightforward. As seen in section 9.3, the Akka.system.scheduler allows us to
schedule a background job; the job starts four seconds after initialization and occurs
every five seconds. The container for this job is the ExpeditedOrder object, and we
send to the container a new Order.

 Every five seconds, a new order is created and sent to the ExpeditedOrder object.
Upon receipt, the ExpeditedOrders onchange method writes to all the channel out-
puts (the Chunks.outs list object) and sends a chunk to every connected web client,
streaming the orders. Once the data is received, the client executes the script element
and adds the order to the current page.

 We now need to create our Order model class. The following listing shows the
Order class.

public class Order {

public Order() {}

public String toString() {
return "Order " + nextId() + " date " + new Date();

}

private static String nextId() {
Random random = new Random();
return new BigInteger(30, random).toString(9);

}

}

To see the orders streamed, we need to edit the index.scala.html view with the fol-
lowing:

@(message: String)
@main("live streaming") {

<p>
<iframe id="messages" style="width:100%;height:100%"

src="@routes.Application.liveUpdate()"></iframe>
</p>

}

We need to update our routes file with the following:

GET /live controllers.Application.index()
GET /live-update controllers.Application.liveUpdate()

If you point your browser to http://localhost:9000/live you should now see live orders
appearing on your screen.

 As you can see, streaming data is straightforward with a bit of explanation. But this
doesn’t do much by itself. Let’s go a step further and see how we can use the chunks
mechanism from our views.

Listing 9.7 The Order model class

Generate a random
unique ID

http://localhost:9000/live

220 CHAPTER 9 Asynchronous data
9.5 Unidirectional communication with Comet
Comet sockets are a useful application of
chunked transfer encoding. Comet is a web
application model in which a long-held
HTTP request allows a web server to push
data to a browser, without the browser
explicitly requesting it. Figure 9.7 illus-
trates how Comet works.

 With Comet, the browser starts a
request, and the server keeps the connec-
tion open until it has something to send.
It’s more efficient than traditional long
polling, in which a web client queries the
server at regular intervals to see if there
are new messages. But it only allows for
receiving messages from the server: it’s a
unidirectional communication protocol.

 Comet is an umbrella term, encom-
passing multiple techniques for achieving
this interaction. All these methods rely on
features included by default in browsers,
such as JavaScript, rather than on nondefault plugins. The Comet approach differs
from the original model of the web, in which a browser requests one complete web
page at a time.

 A Comet socket is just a chunked text/HTML response (see the previous section
about chunks) containing only HTML <script> elements. In each chunk, we write a
<script> tag containing JavaScript that is immediately executed by the web browser
upon receipt. This way we can send events live to the web browser from the server; for
each message, wrap it in a <script> tag that calls a JavaScript callback function, and
write it to the chunked response.

 To illustrate how Comet works, let’s extend our previous example with the con-
cepts we just mentioned. Listing 9.8 shows how to send back script commands from
the server.

public void onReceive(Object message) throws Exception {
Order order = (Order)message;
for(Chunks.Out<String> out: outs) {

out.write("<script type=\"text/javascript\">" +
"parent.jQuery('#container').append('" +
order.toString() + "');</script>");

}
}

Listing 9.8 The scheduler onReceive method

Write to all registered clients a JavaScript
command to be executed by the client; append
order to the html element with id container

Server’s actionClient’s action

Time

Open
connection

Push data

Push data

Push data

Push data

Server
push
data

Figure 9.7 Unidirectional communication with
Comet

221Unidirectional communication with Comet

t
We now need to change our view to reflect our new Comet implementation. Let’s edit
our comet.html file. Listing 9.9 shows the new view.

@main("COMET") {
<iframe style="display:none" id="messages"

src="@routes.Application.liveUpdate.unique"></iframe>

<ul id="container" style=" text-align:center"
class="nav nav-tabs nav-stacked">

}

For each chunk we receive, we add the order to the div with the ID container. The
chunk we’re receiving evaluates the script tag. The script tag refers to the parent
jQuery functions. Because the iframe receives the orders through the liveUpdate
action method, the end user sees the current page as a normal web page. We now only
need to update our route file with the following routes:

GET /live controllers.Application.index()

GET /live-update controllers.Application.liveUpdate()

If you run this action from a web browser (http://localhost:9000/live), you’ll see live
orders getting displayed on the web page.

 Play provides a Comet helper to handle these Comet-chunked streams that does
almost the same as what we just wrote. Actually it does more, such as pushing initial
blank buffer data for browser compatibility and supporting both String and JSON
messages. Let’s rewrite the previous example to use Comet (see listing 9.10).

public static Result liveUpdate() {
Comet comet = new Comet("parent.cometMessage") {

public void onConnected() {
ExpeditedOrders.registerChunkOut(this);

}
};

return ok(comet);
}

We need to slightly change the ExpeditedOrders class as well. Listing 9.11 shows our
new ExpeditedOrders implementation.

public class ExpeditedOrders extends UntypedActor {

static List<Comet> comets = new ArrayList<Comet>();

Listing 9.9 Comet client-side implementation (our view)

Listing 9.10 liveUpdate

Listing 9.11 ExpeditedOrders listing with Comet implementation

The iframe that
sets up a
permanent
connection to
our server

This route displays the web page tha
shows the orders’ IDs

This route streams
the orders

Indicates we are using
Comet protocol;
parent.cometMessage
refers to the JavaScript
client code to be
executed

Upon web client
connection,

register client

Comet client registry

http://localhost:9000/live

222 CHAPTER 9 Asynchronous data
...

public static void registerChunkOut(Comet out) {
ExpeditedOrders.comets.add(out);

}

public void onReceive(Object message) throws Exception {
Order order = (Order)message;
for(Comet comet: comets) {

comet.sendMessage(order.toString());
}

}

}

The standard technique for writing a Comet socket is to load an infinite, chunked
Comet response in an iframe and specify a callback calling the parent frame with an
HTML page. Let’s rewrite our comet.html view, as in the following listing.

@(message: String)
@main("COMET") {
<script type="text/javascript">
var cometMessage = function(event) {

console.log('Received event: ' + event)
$("#container").append("" +

event + "")
}
</script>
<div class="hero-unit">
<h1>Current Orders</h1>
<p>Prepare them all!</p>
</div>
<iframe style="display:none" id="messages"
src="@routes.Application.liveUpdate.unique"></iframe>
<ul id="container" style=" text-align:center"

class="nav nav-tabs nav-stacked">
}

Comet essentially consists of opening a permanent connection to the server through
an iframe HTML element. The server can then decide when to send chunked
responses to the web client. Each time a response is sent, the JavaScript callback func-
tion cometMessage is called. The response is passed as a function argument. In our
case, the web client then updates the web page and appends the response. Due to the
nature of Play, it allows a lot of connections to be open concurrently without saturat-
ing the server. In fact, as we previously explained, for each connection open there is
no matching thread. This allows the Play server to scale to thousands of concurrent
open connections. But you’ll still have one socket open per connection.

 This solution allows us to push data from the server to the client. To send data
from the web client to the server, you might want to use AJAX requests in combination
with Comet. But this is out of scope for this book. The protocol doesn’t allow you to

Listing 9.12 Client-side Comet implementation (our view)

Add a new client to registry

Send message to client; note
that we don’t need to pass
script instructions anymore

JavaScript function invoked
when a chunked response is
sent by server

Append response to
container element

iframe that opens
permanent connection
with server

223Bidirectional communication with WebSockets
push data from web clients to the server; it’s a one-way, live communication. You can
read more on this subject in the excellent Manning book Single Page Web Applications
by Michael S. Mikowski and Josh C. Powell (www.manning.com/mikowski/). This
brings us to the next section, about WebSocket: a protocol that makes bidirectional
communication possible.

9.6 Bidirectional communication with WebSockets
Until now, we’ve only seen that the web supports one-way communication: the web cli-
ent issues a request to the server, and the server sends a response. We’ve also seen how
to stream data from the server to web clients, effectively making a permanent connec-
tion between web clients and the server and allowing us to push data to web clients.
We could stop right here, as it’s a long chapter already, but we think it might be worth-
while to know about the use cases for which you really need to have a bidirectional
means of communication—such as whenever you need real-time interactions with
your users.

 Let’s try to extend our previous example. We’re now able to display an order’s list
in real time. Each order needs to be processed by the warehouse operators. In the
warehouse, different people will prepare different orders. If we don’t allow operators
to notify others that they’re working on a particular order, chances are the same order
will be prepared twice. What we want is to allow people to click on an order and notify
all other operators that the order is being processed.

 Figure 9.8 shows the resulting application.

Figure 9.8 WebSocket
pickup order application

www.manning.com/mikowski/

224 CHAPTER 9 Asynchronous data
 We want to receive live data, but we also want to send back data over the same con-
nection. Happily, modern web browsers natively support such two-way live communi-
cation via WebSockets. WebSocket is a web technology providing bidirectional, full-
duplex communication channels over a single TCP connection.

9.6.1 WebSockets explained

The WebSocket API is being standardized by
the W3C, and the WebSocket protocol has
been standardized by the IETF as RFC 6455
(http://tools.ietf.org/html/rfc6455). Web-
Socket can be used by any client or server
application, even if the primary focus is web
clients and web servers. The protocol simply
defines a standard way to enable bidirectional
communication between servers and clients.
It also defines a JavaScript API to be used from
within web browsers. Figure 9.9 shows the
bidirectional nature of the protocol.

 In addition, the communication happens
over the regular TCP port number 80, which is
of benefit for those environments which block
nonstandard internet connections using a
firewall. The WebSocket protocol is currently
supported in several browsers, including
Safari, Firefox, and Google Chrome. Web-
Socket also requires server-side support from
the web applications in order to work.

 Until now we’ve been using a simple action method to handle standard HTTP
requests and send back standard HTTP results. WebSockets are a totally different beast
and can’t be handled via standard actions. To handle a WebSocket, your method must
return a WebSocket instead of a Result. Play’s server-side WebSocket support defines
one method to interact with clients:

/**
* Called when the WebSocket is ready
*
* @param in The Socket in.
* @param out The Socket out.
*/
public abstract void onReady(In<A> in, Out<A> out);

This method is the entry point for our code. Our action method must return a Web-
Socket result that must implement this method. How exactly do we interact with the
clients, then? The answer is easy: we can interact through the In and Out objects.

Server’s actionClient’s action

Time

Open
connection

Send data

Send data

Push data

Push data

Push data

Push data

Figure 9.9 Bidirectional communication
with WebSocket

http://tools.ietf.org/html/rfc6455

225Bidirectional communication with WebSockets
 The In object allows you to add handlers to incoming events. To handle client mes-
sages, you can use the following two methods by providing a callback handler:

 onMessage()—This method calls the provided handler when a client sends a
message.

 onClose()—This method calls the provided handler when a client closes its
connection with the server.

To send messages to clients, two methods need to be implemented:

 write—Send a message to clients.
 close—Close the connection with clients.

Messages are either of type String or type byte[]. A WebSocket has access to the
request headers (from the HTTP request that initiates the WebSocket connection),
allowing you to retrieve standard headers and session data. But it doesn’t have access
to any request body, nor to the HTTP response. Once the WebSocket is ready, you get
both in and out channels.

 At first glance, it’s surprising, since all action handling must happen in a callback
method. To interact with WebSocket, our action must return a WebSocket result and
implement the WebSocket Result class. Listing 9.13 shows a basic example that sends
hello to our clients and prints any client messages to the console.

public static WebSocket<String> hello() {
return new WebSocket<String>() {

public void onReady(WebSocket.In<String> in,
WebSocket.Out<String> out) {

in.onMessage(new Callback<String>() {
public void invoke(String event) {

System.out.println(event);
}

});

in.onClose(new Callback0() {
public void invoke() {

System.out.println("Disconnected");
}

});

out.write("Hello client!");

}
};

}

The Play server-side implementation is straightforward. The only tricky part consists of
adding the Callback handlers: they’re the interfaces that you need to implement.
Listing 9.14 shows the client-side implementation. Edit the new index.html view, and
add the listing content to the view.

Listing 9.13 Basic WebSocket example

Return WebSocket Result instance

Implement onReady
method, giving access
to incoming and
outgoing channels
(can read and write
from/to clients)

Add callback
handler to

process any
incoming
messages

Add callback
handler to
process any
closed
connections

Send “hello”
message to
clients

226 CHAPTER 9 Asynchronous data

@main(message) {
<script type="text/javascript" charset="utf-8">
$(function() {
var WS = window['MozWebSocket'] ? MozWebSocket : WebSocket
var socket =
new WS("@routes.Application.hello.webSocketURL(request)")

var receiveEvent = function(event) {
console.log(event.data)
socket.send("hello server")

}
socket.onmessage = receiveEvent

});
</script>

}

Last but not least, to make our example work, we need to add a rule to our hello()
action method. Add the following line to the routes file:

GET /hello controllers.Application.hello()

Now if you point your browser to http://localhost:9000/, you should see the same
output as shown in figure 9.10 in your console.

 Looking at your browser console, you should see the same output as figure 9.11.

Listing 9.14 Basic WebSocket example, client-side view

The reverse
routing
notation,
asking for the
WebSocket
version;
translates to
ws://localhost:
9000/hello

Client-side
handler to
process any
incoming
messages
from server

Print
incoming
message
data to

browser
console

Send back
“hello” to

server

Figure 9.10
Output server side

Figure 9.11 Output
client side

http://localhost:9000/

227Bidirectional communication with WebSockets
What just happened? The web client made the request. The server set up the Web-
Socket connection and sent out a “Hello client!” message. The client then received
the message, logged it, and sent back “Hello server.”

9.6.2 A more advanced application with WebSockets

We now have the elements to finish building our example application. Let’s use Web-
Sockets to display live orders and notify all warehouse operators when an order is being
processed. If we remove our previous Comet implementation and substitute our new
WebSocket implementation, we end up with listings 9.15 and 9.16 on the server side.

public static WebSocket<String> liveUpdate() {
return new WebSocket<String>() {

// Called when the WebSocket Handshake is done.
public void onReady(final WebSocket.In<String> in,

final WebSocket.Out<String> out) {

// For each event received on the socket,
in.onMessage(new Callback<String>() {

public void invoke(String event) {
ExpeditedOrders.notifyOthers(out, event

+ " is being processed");
}

});

// When the socket is closed.
in.onClose(new Callback0() {

public void invoke() {
ExpeditedOrders.unregister(out);

}
});

ExpeditedOrders.register(out);

}
};

}

This code is really close to what we saw before; when our socket is ready, we start listen-
ing for incoming events. For each incoming event, we use our ExpeditedOrders
object to notify any other clients that someone picked up a shipment in order to pre-
pare it.

 In order to keep track of the client’s connection, register its WebSocket.Out object
with a registry on the ExpeditedOrders object.

 Let’s now look at the ExpeditedOrders object to see how to notify other clients, as
listing 9.16 shows.

Listing 9.15 Server-side listing of our WebSocket application

The connection
is established

Listen to any
incoming
message

A client
disconnects

Register
WebSocket to
expedited
order object

228 CHAPTER 9 Asynchronous data

public class ExpeditedOrders extends UntypedActor {
static List<WebSocket.Out<String>> members
= new ArrayList<WebSocket.Out<String>>();

static ActorRef defaultActor
= Akka.system().actorOf(new Props(ExpeditedOrders.class));

static {
Akka.system().scheduler().schedule(

Duration.create(4, SECONDS),
Duration.create(5, SECONDS),
defaultActor,
new Order(),
Akka.system().dispatcher()

);
}

public static void register(WebSocket.Out<String> out) {
members.add(out);

}

public static void unregister(WebSocket.Out<String> out) {
members.remove(out);

}

public static void notifyOthers(WebSocket.Out<String> me,
String event) {

for(WebSocket.Out<String> out: members) {
if (!out.equals(me))
out.write(event);

}
}

public static void notifyAll(String event) {
for(WebSocket.Out<String> out: members) {

out.write(event);
}

}

public void onReceive(Object message)
throws Exception {

Order order = (Order)message; notifyAll(order.toString());
}

}

You’ll notice that listing 9.16 is similar to the Comet ExpeditedOrders implementa-
tion. We have two methods: one to notify all web clients (notifyAll()) and another
one to notify only other clients (notifyOthers()). The latter is used whenever we are
notified of a client picking up an order. After all, we only need to notify other clients
that the order is being taken care of.

 Every five seconds, the onReceived() method is called with a new Order as a
parameter. We then notify all web clients that a new order has been sent, using the
notifyAll() method.

Listing 9.16 The server-side component that notifies our clients

The registry, a list of open
sockets to web clients

Initialize
scheduler

The default actor/scheduler;
it’ll be scheduled

every five seconds

Send message to all
the web clients other
than the one specified
in parameter

Send message to
all web clients

This method called
every five seconds by
actor/scheduler

229Bidirectional communication with WebSockets
The notifyOthers() method is called whenever a user clicks on an order, signalling
the server that a particular client is taking care of an order. The onMessage() control-
ler’s method is then called. In turn, it calls the notifyOthers() method on the
ExpeditedOrders object. Figure 9.12 illustrates the sequence of events.

 It’s important to note that the WebSocket protocol is bidirectional and allows for a
client to send messages to the web server (unlike the Comet protocol). The following
listing shows the client-side implementation, in order to send and receive messages on
the client.

@(message: String)

@main(message) {
<script type="text/javascript" charset="utf-8">
$(function() {

var WS = window['MozWebSocket'] ? MozWebSocket : WebSocket
var socket

= new WS("@routes.Application.liveUpdate.webSocketURL(request)")

var sendMessage = function() {
socket.send($(this).text())
$(this).css("background-color", "#EEE")

}
var receiveEvent = function(event) {

var a = $("" + event.data + "")
$("#container").append(a)
if (event.data.match(/processed/g)) {

a.css("background-color", "#EEE")
} else {

a.click(sendMessage)
}

}
socket.onmessage = receiveEvent

Listing 9.17 Client-side WebSocket part of our application

Time onMessage

Browser 1
(client)
onClick

(sendMessage)

Play
application
controller

onMessage
method

notifyOthers

ExpeditedOrders

receiveEvent

receiveEvent

Browser 3
(client)

Browser 2
(client)

Figure 9.12 Sequence diagram of a client clicking on an order

Set up
WebSocket
connection

Function
to send

message to
web server

On receipt of message from
server, create new HTML
element with order information

Add listener on the
mouse click that
sends message to
server if order wasn’t
already processed

230 CHAPTER 9 Asynchronous data
});
</script>

<div class="hero-unit">
<h1>Current Orders</h1>
<p>Prepare them all!</p>

</div>
<ul id="container" class="nav nav-tabs nav-stacked">

}

This client-side implementation is straightforward. We have two functions: the
socket.onMessage that is triggered every time a message is received, and
socket.send, which allows us to send a message to the web server.

 Now open two different browsers, navigate to http://localhost:9000/live in each of
them, and click on an order in one of the browsers. You’ll then see a message in the
other browser indicating the order has been picked up and is being processed, as
shown in figure 9.13.

 As you can see, WebSockets are easy to use, and they facilitate real-time communica-
tion between clients and servers, making it easier to build interactive web applications.

Figure 9.13 Order being processed

http://localhost:9000/live

231Summary
9.7 Summary
In this chapter, you learned advanced techniques for manipulating asynchronous
data. This has been a long chapter, but you’ve learned a lot. You saw how to process
requests asynchronously and how to return an asynchronous result. Asynchronous
results allow you to process a large number of requests concurrently. This is important
when you have to deal with multiple data sources.

 You also saw how to stream data, from fixed-size data such as a file to arbitrary-
length responses. From there, you learned about the concept of chunked responses.
To better understand how chunked responses can be put to use, you saw a demonstra-
tion of how they’re used within the Comet protocol. The chapter ended by explaining
the newer WebSocket protocol and how to use it from Play applications.

 In the next chapter, you’re going to find out about Play’s security mechanisms and
see how to secure your application.

Security
In this chapter, we’ll first look at Play 2 security concepts to understand what it
means from a developer’s point of view to secure your application. We’ll review the
different types of attacks our application can be exposed to and the tools Play 2
provides to secure our application. We’ll then move forward to actually implement
security in our application, with basic authentication as an example, using filters.
This section shows a low-level framework security implementation, but of course
Play provides built-in helpers for authentication and authorization. Last, we’ll see
how to use those helpers together with action composition to add more fine-
grained security constraints to our application.

10.1 Play security concepts
Web application frameworks are made to help developers building web applica-
tions. Some of them also help secure the web application. One framework is not
more secure than another: if you use them correctly, you’ll be able to build secure

This chapter covers
 Play security concepts

 Adding basic authentication with filters

 Fine-grained authentication with action composition
232

233Play security concepts
apps with many frameworks. Some frameworks have some clever helper methods, for
example against SQL injection, which makes it easier to build secure web applications.

 In general there’s no such thing as plug-and-play security. Security depends on the
people using the framework, and sometimes on the development method. And it
depends on all layers of a web application environment: the back-end storage, the web
server, and the web application itself (and possibly other layers or applications).

 It’s estimated that about 75% of attacks are at the web application layer. In 2004, a
study found “that out of 97% of the over 300 Web sites audited were found vulnerable
to web application attack.”1 Web applications are relatively easy to attack, as they’re
simple to understand and manipulate. The threats against web applications include
user account hijacking, bypassing access control, reading or modifying sensitive data,
or presenting fraudulent content. Or an attacker might be able to steal users’ per-
sonal information, steal money, or cause brand name damage by modifying company
resources.

 In order to prevent attacks, minimize their impact, and remove points of attack,
you first have to fully understand the attack methods in order to find the correct
countermeasures. That’s the aim of this section, which will expose some of the most
common web application security issues.

10.1.1 Play 2 session

Often you need to keep information associated with a user, in particular the user’s
login status. Without a session, the user would need to pass credentials with each
request. That’s what sessions are for: a set of cookies stored in the user’s browser that
identify the user to the website, and provide other information your web application
may choose to store there rather than in the data layer (for example, the user’s locale).

 With Play 2, a session is a cookie that lives on the client side. So it’s important to
understand the implications of this. You can’t store large objects in the session;
instead you should store them in the database and save their IDs in the session.

 This will eliminate synchronization headaches and it won’t fill up your session stor-
age space. This will also be a good idea if you modify the structure of an object while
old versions of it are still in some user’s cookies. Critical data shouldn’t be stored in
session. If the user clears his cookies or closes the browser, they’ll be lost. And with
client-side session storage, the user can read the data.

 The cookie session is a hash of key/values, signed but not encrypted. It’s signed against
a secret key stored in the file conf/application.conf. The property application
.secret defines the hash the cookie is signed against. The cookie is signed using the
keyed-hash message authentication code SHA1 algorithm. It means that nobody can
tamper with the cookie content. Every time a request is received, Play 2 verifies that the
cookie hasn’t been tampered with. Here’s what the application.secret key looks like:

application.secret="6uU34sXWd:vm/...19]6H4omJ0pvNgQOIw"

1 http://www.blackhat.com/presentations/win-usa-04/bh-win-04-grossman/bh-win-04-grossman-up.pdf

http://www.blackhat.com/presentations/win-usa-04/bh-win-04-grossman/bh-win-04-grossman-up.pdf

234 CHAPTER 10 Security
As your secret is safe, it’s not possible for a third party to forge sessions. It’s important
to keep it private: don’t commit it in a public repository, and when you install an appli-
cation written by someone else, change the secret key to your own.

 Don’t store critical data: since it’s not encrypted, you shouldn’t store critical data
in the session. The cookie’s content (your session) can be seen by looking at the user
cookie, or by sniffing the connection on a local network or over WiFi. As we said previ-
ously, the session is stored in a cookie, and cookies are limited to 4 KB. In addition to
this limit, only strings can be stored.

10.1.2 Cross-site scripting

Cross-site scripting is one of the most com-
mon vulnerabilities in web applications. It
consists of injecting malicious JavaScript
into web pages using forms that your appli-
cation provides. Using JavaScript, one can
easily redirect users to another website,
asking them for personal information.

 For example, in our application, when
adding a product, the user is asked to fill
in a description for the product, as shown
in figure 10.1. If you blindly include what
commenters have written into your HTML
page, you’re opening your site to attacks.

 Using this technique, an attacker
could:

 Show a pop-up to your visitors
 Redirect your visitors to a site con-

trolled by the attacker
 Steal information that’s supposed to

be visible only to the current user,
and send it back to the attacker’s
site

Consequently it’s crucial to protect yourself from those attacks. That’s why, by default,
Play 2 will escape any content entered by the user. For example, if the user enters

<script>alert("hello user");</script>

in the description field, Play 2, when displaying the content, will escape it so the
JavaScript won’t be executed. Instead, it’ll render the following HTML code:

<script>alert("hello user");</script>

Figure 10.1 New product form

235Play security concepts
By default, Play 2 is protecting you against the cross-site scripting attack. If for some
reason you want to allow the raw data to be rendered, you can use the @Html directive
in your template. So, following our previous example:

@Html(product.description)

The user will see the pop-up in figure 10.2. This is why you have to be extra careful
when using the @Html directive in the templates.

10.1.3 SQL injection

SQL injection is an exploit that consists of using user input to execute an SQL query
that wasn’t intended by the developer. This can be used to destroy data, or to get
access to data that shouldn’t be visible to the current user. For example, when you’re
using high-level “find” methods, you should be covered against SQL injection. When
you build your own queries manually, you need to be careful not to concatenate
strings with + but instead use question marks (?) and let the underlying persistence
service correctly escape the data.

 For example, using JPA style, the following is subject to SQL injection:

JPA.em().createQuery("select * from product where name=" + name);

This means that someone could insert the following name:

'nicolas';drop table users;

Obviously this is not desirable.
 Instead you should use the following:

JPA.em().createQuery("SELECT * from product where name= ?1")
.setParameter(1, name);

10.1.4 Cross-site request forgery

This attack method works by including malicious code or a link that accesses a web
application into a page that the authenticated user is viewing. If the session for that
web application hasn’t timed out, an attacker may execute unauthorized commands.

 In our case, this might be a link to our warehouse application. For example, a user
might be browsing a chat forum where another user, Bob, has posted a message. Sup-
pose that Bob has crafted an HTML image element that references an action on our
warehouse website (rather than an image file).

Figure 10.2 Pop-up window hello user

236 CHAPTER 10 Security
 Bob’s post might look like this:

Hello! Look here:

Because our warehouse application keeps authentication information in a cookie, if
the cookie hasn’t expired, then the attempt by the browser to load the image will sub-
mit the product transfer form with the cookie, thus authorizing a transaction without
the original user’s approval. Play 2 provides a simple mechanism that prevents cross-
site request forgery attacks: the only way to secure critical actions properly is to issue
an authenticity token. The idea is to generate a unique token on the form for a given
user and check that this same token is submitted with the form. Happily, Play 2 pro-
vides all the tools to do so.

 We’re going to secure our new product form against cross-site request forgery. In
order to do that, we have to enable a special filter. We’re going to explain everything
about filters in the next section. For now, to enable the filter, we need to import the
filters module into our application project.

 This is done by editing the file build.sbt. The following shows where to locate the
build.sbt file:

warehouse
├─ app
├─ conf
├─ public
├─ project
│ └─ test
└─ build.sbt

We then need to add the filter module to our build.sbt file. This is easily done in
the libraryDependencies section of the ApplicationBuild project class.

name := "warehouse"

version := "1.0-SNAPSHOT"

libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache,
"com.google.guava" % "guava" % "14.0",
filters

)

play.Project.playJavaSettings

We also need to create a new class called Global.java that extends GlobalSettings.
The following shows where to create the new Global class.

warehouse
├─ app
│ └─ Global.java

Listing 10.1 build.sbt

The filters module

237Play security concepts
├─ conf
├─ public
├─ project
└─ test

The following listing shows the new filters() method of our Global.java class.

import play.*;
import play.api.mvc.EssentialFilter;
import play.filters.csrf.CSRFFilter;

public class Global extends GlobalSettings {

...

@Override
public <T extends EssentialFilter> Class<T>[] filters() {

Class[] filters = {CSRFFilter.class};
return filters;

}

...

}

The Global class extends the GlobalSettings class. This class calls methods during
your application lifecycle, namely onStart, onStop, onError, and so forth. You can
look at the javadoc class for more information. In our case, we want to provide a filter
that allows us to counter the cross-site request forgery attack.

 We now need to change our product form to include the generated token. Let’s
change our details.scala.html form located in the app/views/products directory
as shown in the following:

warehouse
├─ app
│ ├─ controllers
│ ├─ models
│ └─ views
│ └─ products
│ └─ details.scala.html
├─ conf
├─ public
├─ project
└─ test

We now need to change our form to use the specific CSRF helper. In the details
.scala.html file, we need to replace the following line:

@helper.form(action = routes.Products.save(),
'enctype -> "multipart/form-data") {

With the following:

@helper.form(action = helper.CSRF(routes.Products.save()),

'enctype -> "multipart/form-data") {

Listing 10.2 Global.java

Global class is our
application entry point

Override filter methods to
provide our custom filters

CSRFFilter that takes
care of cross-site
request forgery attack

238 CHAPTER 10 Security
Now, if you refresh your page and point your browser to http://localhost:9000
/products/new, in the HTML source code you should see the following:

<form action="/products/?csrfToken=d671e4ba123be8408bb6"
method="POST" enctype="multipart/form-data">

The csrfToken is automatically generated and Play 2 will automatically check that this
is a valid CSRF token for the given POST request. If someone tampers with it, you’ll
receive an invalid CSRF token error message like the following:

Invalid CSRF Token

You can fine-tune the CSRF filter using the following properties in your application
.conf:

csrf.token.name=csrfToken

csrf.cookie.name=

csrf.tokenInBody=true

csrf.cookie.createIfNotFound=true

csrf.unsafe.methods=POST

We just used a filter, but it’s important to understand exactly how filters work in Play 2,
as you might need to code some.

10.2 Adding basic authentication with filters
In this section we’re going to discuss filters, an advanced Play 2 feature. In the next
section, we’ll see how we can use more out-of-the-box Play authentication features,
but it’s important to understand the more advanced features as well. It’s time to
secure our warehouse application and to only let selected users access it. For this,
we’re going to implement basic authentication. Basic authentication is simple and is
supported by all browsers. When the server wants the user agent to authenticate
itself, it can send a request for authentication. This request should be sent using the
HTTP 401 Not Authorized response code containing a WWW-Authenticate HTTP
header. The WWW-Authenticate header for basic authentication (used most often) is
constructed as follows:

WWW-Authenticate: Basic realm="warehouse app"

On the client side, when the user agent wants to send the server authentication creden-
tials, it may use the Authorization header. The Authorization header is constructed
as follows: Username and password are combined into a string: username:password.

Name of CSRF token

If not defined, we search for csrf.token.name in Play
session cookie; otherwise a separate cookie is created

Is token sent with body when issuing a
POST or is it part of requested URL only?

Do we create a token
if we don’t find one?

Method to check token upon (| separated).
Could be POST|PUT|DELETE for example.

http://localhost:9000 /products/new
http://localhost:9000 /products/new

239Adding basic authentication with filters
The resulting string literal is then encoded using Base64. The authorization method
and a space are then placed before the encoded string (for example, “Basic”). So if the
user agent uses Nicolas as the username and secret as the password then the header is
formed as follows:

Authorization: Basic bmljb2xhczpzZWNyZXQ===

Figure 10.3 summarizes the basic authentication protocol we just explained.
 To implement the basic authentication protocol, we need to check every incoming

request for the Authorization header to see if the client is authorized. If there’s a
value for the Authorization header, we need to decode it and to check the username
and password. We could do that for every action method we implement, but this isn’t
handy, as we really want the authentication to be applied over the whole application.
This is where filters come in handy.

 Filters are essentially pieces of code that are applied to every incoming request
and/or response. Filters are also reusable from project to project. This is actually dif-
ferent from implementing custom code in the Global class and overriding the
onRequest method (this method is called at the same moment as filters, actually).

Web
application

client

Web
application

server

Web
application

client

Request
page

No authorization header

Send 401 response code
with WWW-Authenticate:

Basic realm=
"Warehouse app" header

Web client displays
a pop-up window

Web client displays
a pop-up window

Web
application

client

Web
application

server

Web
application

clientRequest
page
with

Authorization: Basic
QWxhZGRpbjpvcGVuIHNlc2FtZQ==

header

With allowed authorization header

Send the
requested page

Web
application

client

Web
application

server

Web
application

client

Request
page

With incorrect authorization header

Send 401 response code
with WWW-Authenticate:

Basic realm=
"Warehouse app" header

Figure 10.3 Basic authentication

240 CHAPTER 10 Security
 As a reminder, when an HTTP request is made, Play 2 parses the request header.
Then the request body is received. Next Play 2 parses the body, as explained in chap-
ter 9. The next thing is to send the HTTP response. An HTTP response is a set of
response headers, followed by a response body. Filters act just after Play 2 parses the
HTTP request headers of an incoming request and before the body is parsed.

 In Play 2, a filter is more of a Scala feature than a Java one. But it’s still possible to
create a filter in Java, even if some parts might be strange to a normal Java developer.
Let’s see in detail how we can create our basic authentication filter.

 First, we need to create a new BasicAuthenticationFilter Java class in the utils
package:

warehouse
├─ app
│ └─ utils
│ └─ BasicAuthenticationFilter.java
├─ conf
├─ public
├─ project
└─ test

A filter always implements the EssentialFilter interface. This interface only has one
method, apply, that takes an EssentialAction and returns an EssentialAction. An
EssentialAction is an interface that essentially represents what needs to be sent back
to the web client: HTTP headers and a body. For example, an OK response is an
EssentialAction with an HTTP header response code 200 and a body text ok. So basi-
cally, a filter allows you to chain EssentialActions to apply a piece of code to them.
In our case, we want to check for an Authorization header, and if the username and
password included in this header are valid, proceed with the next EssentialAction.
EssentialActions are chained one after another—all we need to implement is our
own EssentialAction.

 Because we’re using Scala code from Java, we need to slightly adapt our code.
We’re going to dive into the advanced Play 2 mechanism. The first thing to do is to
create an abstract class that will allow us to reuse Scala functions property and that
extends the EssentialAction interface. This is easily done with the following code.
We won’t go into details, but the AbstractFunction1 is a Scala-Java bridge provided
by the Scala library.

public abstract class JavaEssentialAction extends
AbstractFunction1<RequestHeader, Iteratee<byte[], Result>>

implements EssentialAction

We’re now ready to implement our BasicAuthenticationFilter. The following
listing shows the complete source code of our basic authentication filter.

241Adding basic authentication with filters

Au

e

package utils;

import static play.mvc.Results.*;
import play.api.libs.iteratee.*;
import play.api.libs.iteratee.Done;
import play.api.mvc.*;
import play.libs.Scala;
import scala.Option;
import scala.Tuple2;
import scala.collection.Seq;
import scala.runtime.AbstractFunction1;
import sun.misc.BASE64Decoder;

import java.util.ArrayList;
import java.util.List;

public class BasicAuthenticationFilter implements EssentialFilter {

public BasicAuthenticationFilter() {
// Left empty

}

public EssentialAction apply(final EssentialAction next) {

return new JavaEssentialAction() {

@Override
public EssentialAction apply() {

return next.apply();
}

@Override
public Iteratee<byte[], SimpleResult> apply(RequestHeader rh) {
Option<String> authorization=rh.headers().get("Authorization");
if (!authorization.isEmpty()) {
String auth = authorization.get();
BASE64Decoder decoder = new BASE64Decoder();
String passanduser = auth.split(" ")[1];
try {
String[] pass = new String(decoder.decodeBuffer(passanduser))

.split(":");
String username = pass[0];
String password = pass[1];
if ("nicolas".equals(username)&&"nicolas".equals(password)){
return next.apply(rh);

}
} catch(Exception e) {
// Nothing

}
}

Listing 10.3 BasicAuthenticationFilter.java

Implement
EssentialFilter

interface

Empty constructor needed by Play 2

Implement the only method from
EssentialFilter interface. The next parameter
lets us continue with next action (chaining).

Implement EssentialAction
(a JavaEssentialAction that’s
Scala compatible)

Apply method from EssentialAction.
Forward to next essential action.

Apply method that takes RequestHeader as
parameter and return response in form of a body

and a Result (Iteratee<byte[], Result>)

Extract
thorization
header. It’s
ither empty
or contains
our header.

If we have an Authorization
header, proceed with
decoding this content

Decode
username

and
password If username and password

match, proceed with next
EssentialAction

242 CHAPTER 10 Security

Conver
t

(Scala’s
type)

with
Scala
List<Tuple2<String, String>> list
= new ArrayList<Tuple2<String, String>>();

Tuple2<String, String> t =
new Tuple2<String, String>("WWW-Authenticate",

"Basic realm=\"warehouse app\"");
list.add(t);
Seq<Tuple2<String, String>> seq = Scala.toSeq(list);
return Done.apply(

unauthorized("Forbidden access to the warehouse app").
getWrappedSimpleResult().withHeaders(seq), null);

}
};

}

public abstract class JavaEssentialAction extends
AbstractFunction1<RequestHeader, Iteratee<byte[], SimpleResult>>

implements EssentialAction {}
}

The preceding listing might seem complicated at first, but it’s not that complex. It has
two distinct parts: the EssentialFilter implementation and the EssentialAction
implementation. The EssentialFilter part consists of implementing the apply
method. It allows us to apply the next filter or action if the authentication is success-
ful. The EssentialAction implementation mainly consists of implementing its own
apply method. This implementation extracts the Authorization header and per-
forms the authentication check. If successful, we pass it on to the next EssentialAc-
tion; otherwise we send a response with a forbidden result.

 The only thing left to do is to enable our BasicAuthentication filter. As we’ve
seen in section 10.1.4, we need to enable it in the Global Java class. Here’s where to
locate the class:

warehouse
├─ app
│ └─ Global.java
├─ conf
├─ public
├─ project
└─ test

We just need to include our new filter inside the filters method. The following list-
ing shows how to do that.

import play.*;
import play.api.mvc.*;
import play.filters.csrf.CSRFFilter;
import utils.BasicAuthenticationFilter;

Listing 10.4 Global.java

t our list
o a Scala
sequence
 own list

to pass it
on to the
Headers
 method

Return response with Result forbidden, content
“Forbidden access to ...” and a WWW-Authenticate

header. Again we are getting the Scala object type.

Implement our Java essential action by extending the Scala
abstractFunction. This is required as we can’t directly implement
the Scala EssentialAction trait (a more powerful Scala interface).

243Fine-grained authentication with action composition
public class Global extends GlobalSettings {
...
public <T extends EssentialFilter> Class<T>[] filters() {
Class[] filters={CSRFFilter.class,BasicAuthenticationFilter.class};
return filters;

}
...
}

Now that our filter is activated, if we point our browser to http://localhost:9000/, we
should see a pop-up window as in figure 10.4.

 Our application has now basic security!
 It’s important to note that filters have a broad range of application: compression,

caching, authentication, logging, and so on. Filters aren’t confined to authentication
mechanisms. Filters apply to all incoming requests and can be chained one to
another. Note that for basic authentication, we could have used the Global class as
seen in section 6.2.3 and implemented the onRequest() method. It would’ve been
really straightforward: check the headers for basic authentication, and if it’s valid, call
the super.onRouteRequest() method; otherwise return a not-authorized status code.
But that would’ve been way too easy for this advanced section, and not as much fun.
In this section, we’re giving conceptual background to help you understand how secu-
rity works, but of course Play provides built-in helpers for authentication and authori-
zation. The next chapter details those.

 We’re now going to see how to add authentication for part of our application using
action composition.

10.3 Fine-grained authentication with action composition
We already presented action composition in section 5.4.3. We’re now going to see how
to use action composition to implement fine-grained authentication. The first step is
probably to present our users with a login screen. For that we need to create a simple
form that contains username and password.

 We’ll add a simple Java form to our application controller. The following shows the
Application.java file we need to edit.

Our new
BasicAuthenticatorFilter

Figure 10.4 Basic
authentication pop up

http://localhost:9000/

244 CHAPTER 10 Security
warehouse
├─ app
│ └─ controllers
│ └─ Application.java
├─ conf
├─ public
├─ project
└─ test

For our purposes, we need to declare a static inner class called Login at the end of it:

public static class Login {

public String email;
public String password;

}

This class will hold our user information. For now, the authenticate action that pro-
cesses the user information does nothing. We now need an action to render our login
form and an action to process the login form. This is easily done by adding listing 10.5
to our application controller.

import static play.data.Form.form;
...

public static Result login() {
return ok(

login.render(form(Login.class))
);

}

public static Result authenticate() {
return ok();

}

All that’s left to do is to create the login form. We need to create a new view as shown
in the following:

warehouse
├─ app
│ └─ views
│ └─ login.scala.html
├─ conf
├─ public
├─ project
└─ test

Listing 10.6 shows the content of our view. It should now be easy for you to understand.

Listing 10.5 Displaying the login form

245Fine-grained authentication with action composition

@(loginForm: Form[Application.Login])
@import helper._
@import helper.twitterBootstrap._

@main("Please sign in to the warehouse application") {
@helper.form(helper.CSRF(routes.Application.authenticate)) {

<h1>Sign in</h1>
<p>

<input type="email" name="email" placeholder="Email"
value="@loginForm("email").value">

</p>
<p>

<input type="password" name="password"
placeholder="Password">

</p>
<p>

<button type="submit">Sign in</button>
</p>

}

}

Last, we need to modify our conf/routes file to include the following routes:

GET /login controllers.Application.login()
POST /authenticate controllers.Application.authenticate()

If you now point your browser to http://localhost:9000/login you should see the
same form as figure 10.5.

 We’re now ready to implement the core authentication methods. Before we can
start, we need a simple model object that represents our users. Let’s create a file in
app/models/ called User.java. Listing 10.7 shows the content of the class.

Listing 10.6 login.scala.html

Figure 10.5 Login form

http://localhost:9000/login

246 CHAPTER 10 Security

e
p

@Entity
public class User extends Model {

@Id
public Long id;
@Constraints.Required
public String email;
@Constraints.Required
public String password;

public User() {
}

public User(String email, String password) {
this.email = email;
this.password = password;

}

public static User authenticate(String email,
String password) {

// Should be something like
// return finder.where().eq("email", email)
// .eq("password", password).findUnique();
if ("nicolas".equals(email)

&& "nicolas".equals(password))
return new User("nicolas", "nicolas");

else
return null;

}

public static Finder<Long, User> finder
= new Finder<Long, User>(Long.class, User.class);

}

We now only need to slightly modify our application controller to call the User
authenticate method. The following listing shows the content of our authenticate
method.

public static Result authenticate() {

Form<Login> loginForm = form(Login.class)

.bindFromRequest();

String email = loginForm.get().email;

String password = loginForm.get().email;

if (User.authenticate(email, password) == null){

return forbidden("invalid password");

}

session().clear();

session("email", email);

Listing 10.7 User.java

Listing 10.8 The authenticate method

User authentication method
always returns nicolas for this
example. It’s trivial to perform
a database search.

Bind our login
form parameters

Extract
mail and
assword

Perform actual
authentication against DB;
in our case we always
return nicolas for simplicity

Login failed,
return “Forbidden”

Clear session

Add user’s email to session. This
indicates user is logged in.

247Fine-grained authentication with action composition
return redirect(

routes.Products.index()

);

}

The implementation of the authenticate method is trivial, and the annotations in
listing 10.8 should be clear enough. The important thing to remember is that we’ll
use the email session attribute later to find the currently logged-in user.

NOTE We could’ve used the login form’s validate method as we saw in sec-
tion 6.4.3, but to simplify the explanation we chose not to.

Now that we’re able to log in, we can start protecting actions with authentication. Play
allows us to do this using action composition. Action composition is the ability to com-
pose multiple actions together in a chain. Each action can do something to the
request before delegating to the next action, and can also modify the result. An action
can also decide not to pass the request on to the next action, and instead generate the
result itself. We already explained how action composition works in section 5.4.3, so in
this section, we’ll put our knowledge into practice. We’re also going to see how Play 2
provides action composition helpers, making it even easier.

 In our case, Play 2 comes with a built-in authenticator action, Security.Authenticator,
which we’ll extend to add our logic. We’ll call this authenticator Secured. We’ll create
a Secured class in our app/controllers directory. The following listing shows the Secured
class content.

package controllers;

import play.mvc.Http.Context;
import play.mvc.Result;
import play.mvc.Security;

public class Secured extends Security.Authenticator {

@Override
public String getUsername(Context ctx) {

return ctx.session().get("email");
}

@Override
public Result onUnauthorized(Context ctx) {

return redirect(routes.Application.login());
}

}

We need to implement two methods. getUsername is used to get the username of the
current logged-in user. In our case this is the email address that we set in the email
attribute in the session when the user logged in (the application’s authenticate
method). If this method returns a value, then the authenticator considers the user to

Listing 10.9 Secured.java

Redirect user to product page

248 CHAPTER 10 Security
be logged in and lets the request proceed. If the method returns null, then the
authenticator will block the request and instead invoke onUnauthorized, which we’ve
implemented to redirect to our login screen.

 The only thing left to do is to use the Secured authenticator. Again, this is trivial.
All we need to do is to annotate the controller or the methods we want to be secured
using the following notation:

@Security.Authenticated(Secured.class)

In our case, we want to secure the product controller but not the application controller
(because we need to call the authenticate and login methods without being logged
in). Open the app/controller/Products.java file and add the Authenticated anno-
tation to the class declaration.

...
import play.mvc.Security;
...
@Security.Authenticated(Secured.class)
public class Products extends Controller {

Play 2’s action composition mechanism makes sure that when the @Security
.Authenticated annotation is encountered, the cookie session is checked for the
user’s email. This is basically a helper for what you learned about action composition
in chapter 5.

 Now, try to access the product page—http://localhost:9000/products/. If you’re
not already logged in, you’ll be redirected to the login page. Same thing if you try to
access the product form—http://localhost:9000/product/new. Our application is no
longer public. The @Security.Authenticated method can also be applied at the
action method level.

10.4 Summary
In this chapter, you learned how Play 2 deals with web application security concerns.
We first saw the general security concepts and the common security breaches. As an
example, we added protection against cross-site request forgery to our application.
From there, we learned what filters are and how to implement basic authentication
using them. We also saw that filters apply to all requests, so they’re a potential tool for
securing the whole web application. We saw how to use action composition to imple-
ment fine-grained authentication. We then put our knowledge into practice: using
Play 2 helpers, we secured our warehouse web application, allowing only selected
users to access it.

 Our application is almost done, and in the next chapter, we’re going to learn how
to deploy it.

http://localhost:9000/products/
http://localhost:9000/product/new

Modules and deployment
Now that we’ve seen how to do a lot of things for ourselves in Play, it’s time to see
how to use code that others have made. This chapter explains how to use Play mod-
ules, but also how to create your own and publish them so that others can use
them. The second half of the chapter deals with how to deploy your application to
production on your own machines or in the cloud. It also explains how to set up a
front-end proxy and use SSL.

11.1 Modules
Any kind of serious software development project will use libraries to decrease the
effort required from developers. JVM developers have access to a large body of
libraries that can save them a lot of time and stop them re-inventing the wheel. In

This chapter covers
 Using modules and creating your own

 Publishing your modules

 Splitting your application into multiple
sub-applications

 Deploying your application

 Configuring the production environment
249

250 CHAPTER 11 Modules and deployment
chapter 2, we saw how we could use build.sbt to add a dependency on any library to
use any Java library, just as you normally would. But Play provides an additional form
of code reuse in the form of modules. Currently available modules for Play 2 provide
anything from alternate template engines to NoSQL-database layers. This section will
explain how to use a commonly used module and, later on, how to build one yourself.

 We’ll show you how to use the SecureSocial module. Another module that is fre-
quently used is the Mailer1 module, which, as you might guess from the name, allows
you to send email.

11.1.1 Using modules

Play modules are, just like any other library, a collection of files in a JAR. The differ-
ence is that there will be some Play-specific non-class files in this JAR and that the code
depends on Play. This means that you add a module to your project the same way you
add any other library: you add it to libraryDependencies in build.sbt.

 Let’s say we want our application’s users to log in and, later, possibly allow them to
log in with OAuth. If we can find a module that allows us to do this, we won’t have to
waste time writing our own code. You can find a comprehensive list of modules that
are available in the Play 2 modules directory.2

 If we search for “social” on that page, we’ll find a module named SecureSocial
which seems to fit the bill.3 Each module’s entry shows a URL and a short description.
We can now follow the URL to find out how to use the module. The entry for Secure-
Social points you to the module’s website.4 Once you navigate to the installation
instructions, you’ll have to add a dependency and a resolver. A resolver is how we tell
SBT where to look for libraries that can’t be found in the default repositories.

 Let’s get started. Open build.sbt and add the new dependency to library-
Dependencies and the resolver in the project settings. Your build.sbt should now
look like the following listing:

ame := "warehouse"

version := "1.0-SNAPSHOT"

libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache,
"com.google.guava" % "guava" % "14.0",
filters,

1 https://github.com/typesafehub/play-plugins
2 http://www.playframework.com/documentation/2.1.1/Modules
3 SecureSocial is for authentication (logging in). It works well in combination with the Deadbolt 2 module, which

does authorization (permission checking).
4 http://securesocial.ws/

Listing 11.1 The build properties—build.sbt

http://securesocial.ws/
https://github.com/typesafehub/play-plugins
http://www.playframework.com/documentation/2.1.1/Modules

251Modules
"securesocial" %% "securesocial" % "master-SNAPSHOT"
)

resolvers += Resolver.url("sbt-plugin-snapshots",
url("http://repo.scala-sbt.org/scalasbt/sbt-plugin-snapshots/")

)(Resolver.ivyStylePatterns)

play.Project.playJavaSettings

If you were already in the Play console, you’ll want to let SBT know about your changes
by running the reload command. This will make SBT reread all the files that make up
the project’s configuration. If you’re using an IDE with a Play-generated project, you
should also regenerate the project (using idea for IDEA, eclipse for Eclipse) so that
your IDE knows about the module.

 To use SecureSocial, we need to disable the CSRF filter we added in chapter 10. This
is easily done by commenting out the following filters line in our Global.java file:

public <T extends EssentialFilter> Class<T>[] filters() {
//Class[] filters={CSRFFilter.class,BasicAuthenticationFilter.class};

Class[] filters={};
return filters;

}

Now we can start using the module in our application. According to the documenta-
tion, SecureSocial provides an annotation @SecureSocial.SecuredAction that we can
use to secure our action methods. It also adds a user to the current context, which
tells us the current user.

 Changing our application so that the user has to log in via OAuth is now a simple
matter of annotating our actions in all the relevant places. This would be all the
actions in the Products controller. For example:

import import securesocial.core.java.SecureSocial;
....

public class Products extends Controller {
...

@SecureSocial.SecuredAction
public static Result newProduct() {

return ok(details.render(productForm));
}

...
}

Running the application after this change would probably fail, since there are still a
couple of things we need to provide. First, SecureSocial requires us to provide an
implementation of UserService; this is what SecureSocial delegates to in order to
store and retrieve users. Listing 11.2 shows a simple implementation that stores every-
thing in memory.

252 CHAPTER 11 Modules and deployment

package utils;

import play.Application;
import securesocial.core.Identity;
import securesocial.core.identityId;
import securesocial.core.java.BaseUserService;
import securesocial.core.java.Token;

import java.util.HashMap;
import java.util.Map;

public class SimpleUserService extends BaseUserService {
private HashMap<String, Identity> users

= new HashMap<String, Identity>();
private HashMap<String, Token> tokens

= new HashMap<String, Identity>();

public SimpleUserService(Application application) {
super(application);

}

@Override
public Identity doSave(Identity user) {

users.put(user.identityId().userId() +
user.identityId().providerId(), user);

return user;
}

@Override
public void doSave(Token token) {

tokens.put(token.uuid, token);
}

@Override
public Identity doFind(IdentityId identityId) {

return users.get(identityId.userId() + identityId.providerId());
}

@Override
public Token doFindToken(String tokenId) {

return tokens.get(tokenId);
}

@Override
public Identity doFindByEmailAndProvider(String email,

String providerId) {
for (Identity user : users.values()) {

if(user.identityId().providerId().equals(providerId) &&
user.email().isDefined() && user.email().get()
.equalsIgnoreCase(email)) {

return user;
}

}
return null;

}

Listing 11.2 Simple UserService—app/utils/SimpleUserService.java

Stores users

Stores login tokens

Saves a user

Saves a token

Looks up
users by ID

Looks up a token

Looks up
users by
email
address

253Modules
@Override
public void doDeleteToken(String uuid) {

tokens.remove(uuid);
}

@Override
public void doDeleteExpiredTokens() {

for (Map.Entry<String, Token> entry : tokens.entrySet()) {
if(entry.getValue().isExpired()) {
tokens.remove(entry.getKey());

}
}

}
}

Second, we have to provide some configuration to tell SecureSocial what we want it to
do. Since SecureSocial comes with a bunch of optional plugins that help it do its job,
we’ll have to create a conf/play.plugins with the following contents.

9994:securesocial.core.DefaultAuthenticatorStore
9995:securesocial.core.DefaultIdGenerator
9996:securesocial.core.providers.utils.DefaultPasswordValidator
9997:securesocial.controllers.DefaultTemplatesPlugin
9998:utils.SimpleUserService
9999:securesocial.core.providers.utils.BCryptPasswordHasher
10004:securesocial.core.providers.UsernamePasswordProvider

For now we’ll just set up SecureSocial to use email and password for logins; this is why
we’re only enabling a couple of the available plugins. When you’re building your own
applications, you can follow SecureSocial’s instructions to set up OAuth with one or
more of the OAuth providers it supports. Now we can create the file conf/securesocial
.conf with the following contents:

userpass {
withUserNameSupport=false
sendWelcomeEmail=false
enableGravatarSupport=false
tokenDuration=60
tokenDeleteInterval=5
minimumPasswordLength=8
enableTokenJob=true
hasher=bcrypt

}

securesocial {
onLoginGoTo=/
onLogoutGoTo=/signin
ssl=false

}

To fully use SecureSocial, you’ll need to configure some provider such as Twitter.
We’ll skip this step but feel free to refer to the SecureSocial documentation to add
your tokens against Twitter, for example.

Deletes a token

Deletes expired tokens

The plugin we just wrote

254 CHAPTER 11 Modules and deployment
 In order for Play to load the settings in this file, it needs to be included from the
regular configuration file. Put the following line in conf/application.conf:

include "securesocial.conf"

Now we need to add some routes so that our users can actually log in. For this exam-
ple we’ll just add the login and logout routes:

GET /signin securesocial.controllers.LoginPage.login
GET /logout securesocial.controllers.LoginPage.logout
GET /authenticate/:provider
securesocial.controllers.

ProviderController.authenticate(provider)
POST /authenticate/:provider
securesocial.controllers.

ProviderController.authenticateByPost(provider)
GET /not-authorized
securesocial.controllers.ProviderController.notAuthorized

User Registration and password handling
(only needed if you are using UsernamePasswordProvider)
GET /signup
securesocial.controllers.Registration.startSignUp

POST /signup
securesocial.controllers.Registration.handleStartSignUp

GET /signup/:token
securesocial.controllers.Registration.signUp(token)

POST /signup/:token
securesocial.controllers.Registration.handleSignUp(token)

GET /reset
securesocial.controllers.Registration.startResetPassword

POST /reset
securesocial.controllers.Registration.handleStartResetPassword

GET /reset/:token
securesocial.controllers.Registration.resetPassword(token)

POST /reset/:token
securesocial.controllers.Registration.handleResetPassword(token)

GET /password
securesocial.controllers.PasswordChange.page
POST /password
securesocial.controllers.PasswordChange.handlePasswordChange

If you point your browser to http://localhost:9000/products/new or if you click on
the New Product button, you should now see a login page.

 We now have a complete working example that shows how to use just one of a large
number of useful modules. Unfortunately, you’ll have to figure out for yourself how to
use any of the other available modules, if you need them. Now that we know what a
module looks like from an application developer’s perspective, let’s look at how to
build one for yourself.

11.1.2 Creating modules

Creating a Play module is as easy as making a Play application. In fact, that’s how you
start a new module—you create a new Play application as the starting point. Let’s cre-

http://localhost:9000/products/new

255Modules
ate a bar code module. This module will allow a user of this module to add bar code
images to any page by simply including a tag. Run the following command:

play new barcode

Now that you have a new application, can now remove everything in public and the
sample controller and view. You should also remove application.conf since configu-
ration, if any, will be done from the application using our module.

WRITE THE CODE

We said we wanted our user5 to be able to add a bar code image by including a tag in a
page. This means our module will need a tag (that renders an HTML img element), a
controller (that renders a bar code), and a route that will connect the tag’s img ele-
ment with the bar code controller.

 But first, we’ll need something to create our bar code images for us. We’ll use a
library aptly named barcode4j. Go ahead and add the dependency to build.sbt:

libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache,
"net.sf.barcode4j" % "barcode4j" % "2.1"

)

Now, let’s create the controller. Though a controller for a module is just like a control-
ler in a regular application, putting it in the controllers package isn’t a good idea: it
might clash with our users’ controllers. Therefore, let’s make a package: com.github
.playforjava.controllers.

 Let’s start with the view. Create a file barcode.scala.html in app/views/tags and
add the following:

@(ean: String)

Including the controller part is less straightforward; were we to put our controller
in app/controllers, like we’ve been doing until now, things might break, because
someone might add the same controller name. Let’s make a package com.github
.playforjava.barcodes.controllers for our controller that’s unlikely to clash with
anything in a regular Play application, and put the controller there. Create the direc-
tory structure for the package, and create the class shown in the following listing there.

package com.github.playforjava.barcodes;

import org.krysalis.barcode4j.impl.upcean.EAN13Bean;
import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider;
import play.mvc.Controller;
import play.mvc.Result;

5 Our user, in this case, is another developer who will add this module as a dependency to their project.

Listing 11.3 app/com/github/playforjava/barcodes/Barcodes.java

256 CHAPTER 11 Modules and deployment
import java.awt.image.BufferedImage;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

public class Barcodes extends Controller {

public static Result barcode(String ean) {
ByteArrayOutputStream out = new ByteArrayOutputStream();
BitmapCanvasProvider provider = new BitmapCanvasProvider(out,

"image/png", 144, BufferedImage.TYPE_BYTE_BINARY, false, 0);

try {
new EAN13Bean().generateBarcode(provider, ean);
provider.finish();
return ok(out.toByteArray());

} catch (IOException e) {
return badRequest("Could not render barcode. " + e.getMessage());

} finally {
try { out.close(); } catch(Exception e) {}

}
}

}

The Barcodes controller contains a single action, barcodes(), that utilizes barcode4j to
generate a bar code image. Of course, we need to provide a route to it. Because we pro-
vide the routes through a module, we need to create a new routes file called barcode
.routes in the config directory. This will allows us to identify the routes file and import
the routes from another application. We’re going to remove the “/barcode” prefix
from the route, since the importing application can provide its own prefix when it
imports the route. The route will therefore look like this:

GET /:ean
com.github.playforjava.barcodes.Barcodes.barcode(ean: String)

That’s it: we have a module that provides bar code rendering functionality for any Play
application that needs it. We can now have a look at how to publish our module.

Bitmap object
represents
a bar code

Generate bar code

Send back
the bar
code as

image
bytes

Clashing package names
Play encourages the use of short package names, like controllers and models.
This is perfectly fine if the source code you’re writing never leaves your premises. But
this becomes a problem when you write code to be used by other developers—espe-
cially if you stick to Play’s default package names like controllers and models. Not
only do you run the risk of causing name clashes with the developer’s code, but in
Play particularly, they can end up with two different controllers.routes classes,
which will definitely break things in ways that make it difficult to figure out what’s
wrong.

For modules, our advice is to name your packages like we’ve always done in the JVM
world: use the reverse notation of a domain (and path, if necessary) that you control.
This way you won’t leave your users confused or worse—annoyed with you because
you made them waste their time.

257Modules
PUBLISH

Since Play uses Maven/Ivy repositories to get its dependencies, that’s what we’ll have
to publish to. Fortunately SBT can produce the necessary files for us. It uses appName
in build.sbt as the artifactId and groupId. This isn’t usually what we want, so we’ll
add an organization property to the build settings in the same file.

...

organization := "playforjava"

...

Now we just need a place to publish to. If you already have a repository that you want
to publish to, you can tell SBT where it is by setting the publishTo key and, if neces-
sary, your credentials with the credentials key. Assuming your repository is at
http://maven.example.com/releases and you call it “My Maven repository”, this is
how you’d set it up:

...

publishTo := Some("My Maven repository" at
"http://maven.example.com/releases"),

credentials += Credentials(Path.userHome / ".repo-credentials")

...

In this example, ~/.repo-credentials is a properties file with the following proper-
ties: realm, host, user, and password. Another way of adding your credentials is to do
it directly in a .sbt file with the following syntax:

credentials += Credentials("Repository Realm",
"maven.example.com", "username",
"hashed-password")

Replace the credentials in the example as appropriate.
 You might not have a publicly accessible Maven or Ivy repository to publish to.

That’s okay; we can use something like GitHub. Apart from providing a place to host
your Git repositories, GitHub makes it easy for anyone to have their own website, and
if you don’t need anything fancy, it only takes a few steps.

SETTING UP A REPOSITORY

GitHub has a feature that allows you to publish a website as a sub-domain of
github.com, called Pages. Their documentation6 explains how to set up either a
User/Organization Pages site or a Project Pages site. Which one you choose doesn’t
matter for the purposes of this book, since how we’ll be using it doesn’t change much.
Which one you choose for the modules you’ll be publishing (very soon, no doubt) is
wholly up to you and depends on the particulars of your situation.

 Let’s get started with a User/Organization Pages site. According to GitHub’s
instructions, we’re supposed to create a new repo and give it the same name as the user

6 http://pages.github.com

http://pages.github.com

258 CHAPTER 11 Modules and deployment
or organization (depending on the type of account the site is for) with .github.io
appended. For this book’s Pages site, that would be playforjava.github.io. Once
you’ve pushed something to your new repo—an index.html for instance—you’ll be
able to point your browser to “your” site, http://playforjava.github.io/ in our
example, and see the result. You might have to wait a couple of minutes, according to
GitHub’s instructions, before your site is actually up and running.

 If you want to create a Project Pages site, you have to create a new branch called
gh-pages in the corresponding Git repo and put your site’s files in that branch. These
pages will show up as a new subdirectory under your .github.com site; for example,
http://playforjava.github.io/some-repo if the repo is called some-repo. Since
this new branch has nothing to do with your other branches, you’ll want to start the
gh-pages branch with an orphan commit. An orphan commit is a commit with no par-
ents—you won’t see anything connected to this commit below it in the commit log.
Furthermore, there’ll be no connections between this branch and the other branches:
there won’t be any shared history between them. You can make this commit with the
following command:

git checkout --orphan gh-pages

Since git creates the new branch with the current checkout as its basis and puts its
contents in the index, you’ll want to remove everything by issuing the following:

git rm -f .

Everything we commit to the gh-pages branch and push to GitHub will show up on
the Pages site. Now that we have a place to publish our module, we need to start think-
ing about testing the module in its intended environment, another Play application.
We wouldn’t want to publish a buggy module, would we?

TESTING THE MODULE

It’s probably a good idea to test our module, in the environment of a Play application,
before we release it to the world. Fortunately, this is easy to do. If you run the publish-
local command, SBT will publish the module to your local Ivy cache. Now it’s simple
to create a new project and include our module. Let’s quickly create this project and
test our module:

play new module-test

Add a dependency to the module in build.sbt:

...

libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache,
"playforjava" %% "barcode" % "1.0-SNAPSHOT"

)
...

259Modules
Import the module’s route by adding the following line at the end of your
conf/routes.conf file:

-> /barcode barcode.Routes

The following listing shows the template index.scala.html, which uses the
tags/barcode template that we created earlier.

@(message: String)

@main("Welcome to Play") {

@tags.barcode("1234567890128")

}

If we run our test application and point our browser to it,
we can see that our module does what it’s supposed to do.
Figure 11.1 shows a bar code generated by our application.

 Now that we know our module works, we can finally
publish it.

PUBLISHING THE MODULE

We’ve made a module, tested it, and set up a repository where we can publish it. The
next step is actually publishing the module. Since, in our example, we have to publish
to a Git repository, the process will consist of generating the necessary files, copying
them to the repository, committing the changes, and pushing them to GitHub. The
Play console (or SBT, if you prefer) can generate the files for us and if we configure it
correctly, it can put the files in the right place for us. If we add the right publishTo set-
ting in our project’s settings, Play will write the files to our Pages repo clone and we’ll
just need to commit and push. The following listing shows what the final version of
build.sbt looks like.

name := "barcode"

version := "1.0-SNAPSHOT"

organization := "playforjava"

publishTo := Some(Resolver.file("Our repository",
new File("/Users/sietse/playforjava.github.com")))

libraryDependencies ++= Seq(
javaJdbc,
javaEbean,
cache,
"net.sf.barcode4j" % "barcode4j" % "2.1"

)

play.Project.playJavaSettings

Listing 11.4 Bar code template—app/views/index.scala.html

Listing 11.5 build.sbt

Figure 11.1 Generated
bar code

260 CHAPTER 11 Modules and deployment

ap
dep
Be sure to replace the path of the publishing repo with your own. Now, if we issue the
publish command in the Play console, commit, and push the changes in the Pages
repo, we’ll have published our module. Note that, since we never updated the version
number, we’ve published a snapshot version. This has a specific meaning in the world
of Maven artifacts and no sane project will rely on snapshot versions other than for
development and testing. If you’re happy with the state of your module, update the
version to 1.0 or any version number you like (without the -SNAPSHOT part) and pub-
lish that. Don’t forget to increment the version number and add -SNAPSHOT back
afterward, lest you release a development version with an already existing production
version number.

11.2 Splitting your application
into multiple sub-applications
When projects grow, or if the application scope requires a large team, it’s better to split
your application up into several smaller applications. Having several small applications
allows you to distribute the work better and helps to ensure that each single applica-
tion stays simple and manageable. This is where Play sub-applications come in handy.

 A sub-application is a Play application within a Play application. It’s time to give you
an overview on how this works and how you can structure your project. Let’s pretend
that our application needs to be handled by two different teams: Team A will take
care of the product details while Team B will handle the reports. We therefore need
two sub-applications inside our application: the report application and the product
application.

 Application dependencies are declared in the build.sbt file at the root of the
project. A sub-application is also called a sub-project. Our current main application is
going to be shared by both sub-applications. Both the report and product applications
depend on some common libraries as well. The common libraries include the model
classes that are shared between all the sub-applications. The build.sbt file with the two
sub-projects and the common library have extra lines, as shown in the followng listing.

lazy val common = project

.settings(playJavaSettings: _*)

lazy val report = project

.settings(playJavaSettings: _*)

.dependsOn(common)

lazy val product = project

.settings(playJavaSettings: _*)

.dependsOn(common)

lazy val root = project.in(file("."))

.dependsOn(common)

Listing 11.6 Directory structure of our application and sub-applications

Common libraries such as utils and models packages

Tell the build system
it’s a Play application
structure

Report
sub-

plication
ends on

common

Product sub-application
depends on common

261Splitting your application into multiple sub-applications
.dependsOn(product)

.dependsOn(report)

.aggregate(common, product, report)

The aggregate() function is important, as it tells the build system to automatically
recompile a sub-application if one changes. The depends() function indicates that
one project depends on another project and thus compilation of the other project
must happen first. Also, the classes from the other project are made available after
compilation.

 Our directory structure looks like the following listing.

app
├─ controllers
└─ views

build.sbt
common

├─ app
│ ├─ controllers
│ ├─ models
│ ├─ views
│ └─ utils
├─ conf
│ └─ commons.routes
└─ build.sbt

conf
logs
product

├─ app
│ ├─ controllers
│ └─ views
├─ conf
│ └─ product.routes
└─ build.sbt

conf
project
public
report

├─ app
│ ├─ controllers
│ └─ views
├─ conf
│ └─ report.routes
└─ build.sbt

conf
├─ routes

target
test

You can switch from one sub-application to another using the Play console. For exam-
ple, project report allows you to switch to the report project:

Listing 11.7 Directory structure of our application and sub-applications

Main play application depends on all
sub-applications and needs to compile
all the sub-applications (aggregate)

Specific routes shared by
all subapplications (such
as authentication)

Declare library
dependencies for
common sub-application

Specific routes for
product sub-application

Declare library
dependencies for product
sub-application

Specific routes for
report sub-application

Declare library dependencies
for report sub-application

The main application routes file

262 CHAPTER 11 Modules and deployment
$ play
[info] Loading project definition from /ch11.2/project
[info] Set current project to warehouse (in build file:/ch11.2/)

_
_ __ | | __ _ _ _

| '_ \| |/ _' | || |
| __/|_|____|__ /
|_| |__/

play 2.2.0 built with Scala 2.10.2 (running Java 1.6.0_65),
http://www.playframework.com

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[warehouse] $ project report
[info] Set current project to report (in build file:/ch11.2/)

To list all the sub-applications, use the projects command. You can then select a proj-
ect using the project [name] command. Then use the normal Play commands to
compile, test, or start the project (test, run, and so on).

 Each sub-project contains a build.sbt file that can contain its own dependencies,
as explained in chapter 2. More interesting, you can also import all the routes from
your sub-applications into the main application. This works in exactly the same way as
for modules, as explained in section 11.1.2.

 For example, to add all the routes from the report sub-application, you’d add the
following line your main routes file:

-> /report report.Routes

This means that the sub-application routes are made available at http://localhost
:9000/report from the main application. It’s also important to notice that the reversed
route will be controllers.report.routes.Report.index(). The assets—the public
folder from the sub-application—can also be accessed using the same pattern:
controllers.report.routes.Assets.at("...").

 We now have a complete overview on how we could split up our applications to sat-
isfy larger team or application complexity.

11.3 Deploying to production
Finally you’re done. Your Play application is done, it’s great, and it’ll rule the world.
That’s when you realize you’re not done yet. Your application still needs to be
deployed to production. There are various ways to do that. You might want to deploy
your application standalone on your own server, or maybe on the infrastructure of a
cloud provider. If you’re in an enterprise Java environment, chances are that you want
or need to deploy on an application server.

 In this section we’ll go through the various options and help you decide which way
is best for you.

http://localhost:9000/report
http://localhost:9000/report

263Deploying to production
11.3.1 Packing up your application

When you use play run, your application is started in development mode. This is
unsuitable for running your application in production, because at each request Play
checks whether any files are changed, greatly slowing down your application.

 As a better alternative, you can use play start. This will start play in production
mode. In production mode, a new JVM is forked for your application, and it runs sepa-
rately from SBT. You can still see your application’s logging output to verify that it
started correctly. When you’ve seen enough, type Ctrl-D, and the SBT process will
terminate but leave your application running. You can stop this application with
play stop.

 Though play start starts your application in the proper mode, it’s often still not
a suitable way of starting your app. It requires interaction to detach and end the SBT
process from your application. Generally, you’ll want your application to start without
human intervention. Also, you may not always have the play command available on
the machine where you want to deploy.

 For this, Play provides the stage and dist tasks. When running play stage, Play
compiles your application to a JAR file, and—together with all the dependency JARs—
puts it in the target/staged directory. It also creates a start script in target/start.

 With this script, you can start your application without the play command. Just
running target/start will start your application.

PLAY DOESN’T SUPPORT WINDOWS IN DIST MODE Unfortunately, Play doesn’t
support Windows while working in production mode. This is because running
a Windows service is not at all comparable to running a background process
on a Unix-based environment. For this reason, the stage and dist tasks won’t
work on Windows.

The dist task does something similar, and zips up the start script and dependencies
into a file. After running play dist, you get a directory dist, which contains a zip file
with your application. You can transfer this zip file to the server where you want to
deploy, unzip it, and run the start script that’s contained in the zip file. You might
need to make the start script executable first with chmod +x start.

 The stage and dist commands make particularly nice distributions. All your
dependencies are packed with your application, including Play and Scala! This means
that the only thing you need on the target machine is a Java installation. This makes
an application packaged with the dist command extremely portable.

11.3.2 Working with multiple configurations

During development, you only need a single application configuration in the file
conf/application.conf. But when you deploy to production, you need to be able to
use different configuration settings. This applies to settings that are either machine-
or environment-specific, such as directory paths, and to sensitive information such as
database passwords. In this section, we’ll see how we can configure the production
environment separately.

264 CHAPTER 11 Modules and deployment
 At first you expect to avoid this issue by deploying the application and then editing
the configuration by hand. This doesn’t work, or is at least inconvenient, because the
application is packaged in a JAR file. Besides, modifying the distributed application is
error-prone and less convenient to automate.

What you need is a default application configuration that’s “safe” for the test environ-
ment. A safe configuration is one that won’t cause unwanted side effects when you do
things like running tests.

 Suppose your application sends email notifications to users. In the test environ-
ment, it would be useful to configure the application to override the recipient email
address, and use a safe email address like info@example.com instead. Put the follow-
ing in conf/application.conf:

mail.override.enabled = true
mail.override.address = "info@example.org"

include "development.conf"

The first two lines of this configuration override email recipient addresses, making the
application send all notifications to one address, info@example.org, so that continu-
ous integration doesn’t mean continuous spam for your system’s real users.

 The last line includes settings from another configuration file in the same direc-
tory called development.conf. This allows each developer to override the default test
configuration in their development environment, perhaps to send all email notifica-
tions to their own email address. Developers can create their own conf/develop-
ment.conf and override the email address—be sure to add this file to .gitignore or
your source control system’s equivalent.

mail.override.address = "code.monkey@paperclip-logistics.com"

This configuration overrides the earlier test environment configuration in application
.conf. This works because if the application configuration contains the same setting
twice, the second value overrides the first. Note that the developer doesn’t have to over-
ride the email.override.enabled setting, because it’s already set to true in the default
test environment configuration.

Don’t use the same credentials for your production database
You might not be the first person to consider the “pragmatic” solution of using the
same settings for development, test, and production environments, to avoid the need
for separate configurations. This seems like a good idea right up until the moment
when a team member mistakenly thinks he’s logged into a development environment
and deletes the entire production database.

If you use different database credentials for each environment, perhaps adding test
or dev to user names, then you have to try a lot harder to make this kind of mistake.

265Deploying to production
 A nice thing about the configuration library is that the configuration doesn’t break
if the development.conf file doesn’t exist; the library silently ignores it. This means
developers don’t have to provide their own overrides if they don’t need to, perhaps
because they’re not working on email notifications.

 Make sure to add conf/development.conf to the .gitignore file, or whatever your
version control system uses to specify files that aren’t under version control, so that one
developer’s configuration doesn’t affect anyone else’s development environment.

 Finally, we have to set up the production environment configuration. In this case,
including a file that overrides the default settings, like we just did with development
.conf, isn’t such a good idea because there will be no error if the file is missing. In
addition, the file location might not be known in advance, often because the produc-
tion configuration file is in a different directory on the server (keeping production
database passwords safe from developers).

 For production, then, we can use a separate /etc/paperclips/production.conf
configuration file:

include "application.conf"

email.override.enabled=false

This time, the file starts by loading the default configuration in application.conf as
a resource from the deployment archive, which is followed by the production environ-
ment settings. To use the production configuration instead of the default configura-
tion, specify the file as a system property when starting the application:

play "start -Dconfig.file=/etc/paperclips/production.conf"

In this case, you’ll get an error if the file is missing.

(Starting server.
Type Ctrl+D to exit logs, the server will remain in background)

Play server process ID is 61819
Oops, cannot start the server.
Configuration error:
Configuration error[/etc/paperclips/production.conf:
/etc/paperclips/production.conf (No such file or directory)]

Alternatively, instead of -Dconfig.file, you can use -Dconfig.url to load the
configuration file from a remote location.

11.3.3 Creating native packages for a package manager

A zip file may be pretty universal, but the operating system you intend to deploy on
likely has a more advanced package management tool. If you’re using Debian or
Ubuntu or a derivative, an apt package is more appropriate, whereas many other
Linux distributions use rpm packages.

 You can package up your application as one of these packages. The SBT plugin sbt-
native-packager helps you create these deb and rpm packages as well as Homebrew
packages that can be used on Mac OS X and MSI packages for Windows. This plugin is

266 CHAPTER 11 Modules and deployment
powerful, but it’s a plugin for SBT and not specific for Play. So it’ll require some
thought and effort to make packages for your Play application.

 There are also somewhat more specialized plugins built upon the sbt-native-
packager plugin. The play2-native-packager plugin builds deb packages for Debian or
Ubuntu, and the play2-ubuntu-package plugin builds lightweight deb packages
designed specifically for recent versions of Ubuntu.

11.3.4 Setting up a front-end proxy

Generally, web applications are run on port 80. This is a privileged port on Unix
machines, which means that programs running under a regular user account can’t
bind to such a port. This explains why Play doesn’t use port 80 as the default port
number, but something else.

 Of course, you can tweak the permissions so that it’s possible to run your Play
application on port 80, and let it serve web traffic directly. But the common way to let
your application be available on port 80 is to set up a front-end proxy, like HAProxy,
nginx, or even Apache. This proxy will bind to port 80 and redirect all traffic intended
for your Play application, which listens to an unprivileged port.

 The use of a proxy isn’t limited to making the application available on a specific
port. It can also provide load balancing between multiple instances of your applica-
tion. You can, for example, run two instances of your application and let the front-end
proxy divide traffic between the two instances. This means you’re not bound to a sin-
gle machine; you can utilize multiple machines for your application.

 It also gives you the ability to do upgrades without downtime. If you have a front-
end proxy do load balancing between two application instances, you can take one
instance down, upgrade it, and bring it back up, all without downtime. When the
upgraded instance is up, you can do the same to the other one. When done, you’ve
upgraded your application with zero downtime for your clients.

 HAProxy is a powerful and reliable proxy that has a plethora of advanced options,
but is still easy to get started with.

 Suppose that we want to set up HAProxy to listen on port 80 and redirect traffic to
two instances of our Play application. We’ll also use WebSockets in this application
(these are explained in chapter 9), so we must make sure that these connections are
properly proxied as well.

 This can be accomplished with a configuration file as shown in the following listing:

global
daemon
maxconn 256

defaults
mode http
timeout connect 5s
timeout client 50s

Listing 11.8 HAProxy configuration

267Deploying to production
timeout server 50s

option forwardfor

option http-server-close

frontend http-in

bind *:80

default_backend playapp

backend playapp
server s1 127.0.0.1:9000 maxconn 32 check
server s2 127.0.0.1:9001 maxconn 32 check

Here we set up HAProxy to listen to port 80 D and use the playapp back end as the
default back end for incoming traffic E. The playapp back end is configured to con-
tain two servers: one listening on port 9000 F, and the second one on port 9001. The
check option in the server lines causes HAProxy to periodically try to establish a TCP
connection to the back-end server to see if it’s up. If it’s not up, no requests will be
sent to that server.

 HAProxy creates the connection to the Play applications, so from the Play applica-
tion’s perspective, HAProxy is the client. It’s often useful to have the original client’s
IP address as well in the Play application, for example for logging purposes.
That’s why we set the forwardfor option B, which makes HAProxy add a header
X-Forwarded-For that contains the original client’s IP address to the request.

 Finally, because we want to use WebSockets, we set the http-server-close
option C, which makes HAProxy close the connection to Play after each request. This
prevents a new WebSocket connection from being sent to the server over an existing
TCP connection, which doesn’t work.

 Apache is the most commonly used web server, and it also has proxy capabilities. It
doesn’t support WebSockets, but that’s not a problem if your application doesn’t use
them. If you’re already using Apache, it might be interesting to stick to using Apache
as a proxy, to reduce the number of different components in your architecture. The
following listing shows a typical Apache configuration.

<VirtualHost example.com:80>
ServerName example.com
ServerAdmin webmaster@example.com

ErrorLog /var/log/apache2/example.com-error.log
CustomLog /var/log/apache2/example.com-access.log combined

ProxyRequests Off
ProxyPreserveHost On
ProxyPass / http://localhost:9000/
ProxyPassReverse / http://localhost:9000/

<Proxy http://localhost:9000/*>
Order deny,allow

Listing 11.9 Apache front-end proxy configuration

Add X-Forwarded-For headerB

Don’t keep connections openC

Bind to port 80D

Configure back endE

Configure back-
end servers

F

268 CHAPTER 11 Modules and deployment
Allow from all
</Proxy>

</VirtualHost>

This example sets up a front-end proxy for the site example.com, and proxies requests
to localhost, on port 9000.

 Apache, like HAProxy, is also capable of load balancing between multiple back-end
servers. For this, we slightly change the configuration, as shown in the following listing.

<VirtualHost example.com:80>
ServerName example.com
ServerAdmin webmaster@example.com

ErrorLog /var/log/apache2/example.com-error.log
CustomLog /var/log/apache2/example.com-access.log combined

ProxyRequests Off
ProxyPreserveHost On
ProxyPass / balancer://playapps/
ProxyPassReverse / http://localhost:9000/
ProxyPassReverse / http://localhost:9001/

<Proxy balancer://playapps>
BalancerMember http://localhost:9000

BalancerMember http://localhost:9001
Order deny, allow
Allow From all

</Proxy>
</VirtualHost>

If you’re trying to run multiple instances of your application from the same directory,
you’ll get an error: This application is already running (Or delete /path/to/RUNNING_PID
file). This is caused by each instance wanting to store its own process ID in the
RUNNING_PID file.

 You can change the file where Play stores its process ID with the pidfile.path set-
ting. So for example:

target/start -Dhttp.port=9001 -Dpidfile.path=PID_9001

If you set the pidfile.path to /dev/null, no PID file will be created.

11.3.5 Using SSL

Starting with version 2.1, Play supports SSL. It uses the libraries in java.security to
read a private key and certificates from a key store.

 Play can automatically generate a key store for you with a self-signed certificate.
This is useful in development mode. All you need to start experimenting with SSL is to
set the https.port system property:

play -Dhttps.port=9001 run

Listing 11.10 Apache front-end proxy and load-balancing configuration

Make proxy load
balance between
the two instances

269Deploying to production
This will start your application, and it will listen on port 9000 for HTTP traffic, as well
as on port 9001 for HTTPS traffic. If you point your browser to https://localhost
:9001/, you should get a warning that the certificate is not trusted. This is expected
because you don’t have a certificate signed by a trusted certificate authority yet. But
during development it’s safe to ignore this, and allow this certificate in your browser.

 The generated key store is saved in conf/generated.keystore, and Play will reuse
it if you restart your application so you don’t get the certificate warning again and
again.

 If you want to use SSL in production, you need to get a certificate that’s either
trusted by your organization if it’s for an internal application, or one signed by an
authority that’s trusted by major browser vendors if it’s to be used for a public applica-
tion. These certificates can be bought from commercial vendors.

 The process likely involves generating a private key, creating a certificate signing
request (or CSR), and sending the CSR to the certificate vendor. They will create a
certificate and send it back to you, together with root and intermediate certificates.
Finally, you need to create a Java key store containing your private key, your generated
certificate, and the root and intermediate certificates. Your certificate vendor should
have instructions on how to do this.

 Once you have a key store file with your key and certificates, you need to point Play
to it. You need to set https.keyStore to point to your key store, and set https.key-
StorePassword to your password:

play -Dhttps.port=9001 -Dhttps.keyStore=mykeystore.jks
-Dhttp.keyStorePassword=mypassword run

Even though Play supports SSL, the recommended way to use SSL with Play in produc-
tion is to let the front end—like HAProxy or Apache—handle it.

11.3.6 Deploying to a cloud provider

Deploying a Play application isn’t hard. The target and dist commands package
your application with all dependencies, and to run it you only need Java. But you’ll
still need to set up a front-end proxy. You’ll also need scripts to start your application
when the machine reboots, and a place to store the logs.

 There are service providers that take even these concerns away. Platform as a service
providers like Heroku, Cloudbees, or Cloud Foundry allow you to upload your Play
application to them, and their system will manage starting it and upgrading it without
downtime. Those platforms have a web interface to manage basic application proper-
ties like domain name, and they provide a range of additional services like database

Configuration settings versus system properties
Note that http.port, https.port, https.keyStore, and https.keyStore-
Password are not configuration settings but Java system properties.

https://localhost :9001/
https://localhost :9001/

270 CHAPTER 11 Modules and deployment
instances or logging systems. Finally, they can easily spawn more instances of your
application when there’s a lot of traffic, and scale down when it gets quieter.

 In short, if you want to minimize the effort of running and scaling your applica-
tion, these providers are an excellent choice.

 Each of these providers works a little differently from the others, but the main idea
is the same. You install a command-line tool from the provider, and you use this to
upload your application to the platform. The command-line tool also allows you to
check the status of your application, restart it, retrieve the logs, and so on.

11.3.7 Deploying to an application server

Play is a full-stack framework; a Play application can be deployed without the need of
an application server or servlet container, unlike most other Java web frameworks.

 If you work in a big organization that uses JVM technologies, chances are that all
web applications are deployed on an application server, and that the only way that
your precious Play 2 application will ever be allowed to hook up to the internet is
through an application server.

 This poses a problem, because Play doesn’t use the servlet API, which makes it
impossible to run on an application server that expects web applications to use it.

 Luckily, there’s a plugin for Play 2, play2-war-plugin, that can package your applica-
tion as a WAR. It provides a layer between the servlet API and your Play application.

 Some of the more advanced features of Play, like WebSockets, don’t work with all
servlet API versions, and there are also differences in the capabilities of Play 2.0 and
Play 2.1. So make sure you check the compatibility matrix on the plugin’s web page to
determine whether your application and server will match.

11.4 Summary
In this chapter we’ve learned how to include a module in an application and how to
use one popular module. We’ve extracted generic functionality from our original
application and turned it into a module of our own. Furthermore, we now know how
to publish a module so that others can use it.

 In the second half of this chapter we learned the different strategies for deploying
our applications to production and how to configure front-end proxies and use SSL.
Finally we’ve looked at several cloud providers that support Play and seen that we can
run our Play 2 application on an application server if necessary.

 In the next chapter, we’ll see how we can test our modules and applications.

Testing your application
Now that we have a complete application, we need to start thinking about further
development and maintenance. But as you evolve your application, new bugs may
creep into your code, and changes in external factors may introduce errors in your
application even if you never touch it.

 Automated testing is an invaluable tool when you want to make sure that your
application still works like you expect it to. In addition, automated tests also help
you during development—they allow you to verify that your code does what you
think it does.

 In this chapter, we’ll show you different kinds of tests that help you test applica-
tions at different levels, and how Play helps you create and run these tests.

This chapter covers
 An introduction to testing with Play

 Explaining the different levels of testing

 Unit, functional, and integration testing with Play
and JUnit

 Browser testing with Play and Selenium
271

272 CHAPTER 12 Testing your application
12.1 Testing Play applications
As we’ve seen in the previous chapters, a Play application consists of several core com-
ponents—controllers, models, view templates, routes, forms, and so on. One of the
nice things about Play is that they all result in runnable code. This means that for all
these concepts, there’s a class or method that you can access from your Java code. It
also means that you can take any separate component and test it by executing its code
and checking the result. This is the core principle of automated testing—run some
code, compare the result against an expected value, and return the findings. This
kind of testing is called unit testing. It’s called unit testing because you take an individ-
ual unit of code and... well... test it.

 Of course, you don’t only want to check the internal behavior of your application.
You also want to make sure that it interacts with the outside world—the browser or sys-
tem that’s calling your web app or API—correctly. This is called integration testing. Play
offers a library to test your web service API and integration with a tool called Selenium.
This will test how your application behaves in a browser.

 Play has facilities to make it possible to test every part of your application and make
running your tests easy. In this section, we’ll create our first unit test, and learn how to
run it. In the following sections, we’ll show you how to test every aspect of your appli-
cation.

 But first things first. Let’s see how to write and run tests in Play.

12.1.1 Writing tests

In Play 2, all tests are written using JUnit. JUnit is probably the most popular testing
framework for Java. In JUnit, a test is a method annotated with the @org.junit.Test
annotation. Inside a test method, you write some code and verify your assumptions
about that code using assertions—methods that compare an expected and an actual sit-
uation. JUnit provides a lot of assertion methods to help you make comparisons and
report exactly what’s wrong when an assertion fails.

 Let’s write a simple test to see how this works in practice. Any test you write should
go in your application’s test folder, so create one now. If you’re using an IDE, you
might have to regenerate your IDE project files for it to show up properly. In this
folder, create a new Java class called ApplicationTest, with the contents shown in the
following listing.

import org.junit.Test;
import static org.junit.Assert.*;

public class ApplicationTest {

@Test
public void passingTest() {

String first = "OK";
String second = "OK";

Listing 12.1 ApplicationTest.java

273Testing Play applications
assertEquals("This test will pass", first, second);
}

@Test
public void failingTest() {

String first = "OK";
String second = "NOT OK";
assertEquals("This test will fail", first, second);

}
}

As you can see, this test is a simple Java class: it doesn’t extend any classes or imple-
ment any interfaces. But we did create a static import of org.junit.Assert.*. The
Assert class, part of JUnit, contains a lot of static assertion methods. We import them
all statically, so that they’re directly available from our code in our class.

 The two methods in our class are the actual tests. To indicate that these are our test
methods, they have to be annotated with org.junit.Test. Our two tests, passingTest
and failingTest, compare two strings for equality. First we set up two strings, and
then we call assertEquals to do the comparison. The first parameter is optional, but
allows you to define a message about what you’re testing. If this were a real test, you’d
call some of your own code, and then compare the return value of some method calls,
or the state of your objects.

 Now that we have our tests, let’s see what happens if we run them.

12.1.2 Running tests

In Play 2, all tests are run from the Play 2 console. To run them, simply run the test
command. Play will run your tests. Go ahead and run the test we just wrote. You
should get output as shown in listing 12.2. You can also use the ~test (with a tilde)
command. The command allows you to run the test as soon as the code changes. This
is useful when using the test-driven development methodology. This method focuses
on writing the test first that defines the desired improvement or new function, then
producing the minimum amount of code to pass that test.

[test-test] $ test
[info] ApplicationTest
[error] Test ApplicationTest.failingTest failed:
These strings should be

equal expected:<[]OK> but was:<[NOT]OK>
[info] + ExampleTest.passingTest
[info] x ExampleTest.failingTest
[info]
[info]
[info] Total for test ApplicationTest
[info] Finished in 0.062 seconds
[info] 2 tests, 1 failures, 0 errors
[error] Failed: : Total 2, Failed 1, Errors 0, Passed 1,

Skipped 0

Listing 12.2 Running our test

274 CHAPTER 12 Testing your application
[error] Failed tests:
[error] ExampleTest
[error] test-test/test:test: Tests unsuccessful
[error] Total time: 0 s, completed Nov 10, 2012

8:36:09 PM

Now, this way of running tests is fine if you only have one, or maybe even a few tests,
but since the test command runs all the tests in your application, it’ll eventually be
too slow and there will be too much output to find what you’re looking for. Therefore,
if you ever want to focus on one test only, you can use the test-only command.

 The test-only command takes one or more class names as parameters, and will
execute only the tests in those classes. So, if you wanted to run our example test, you’d
run test-only ApplicationTest. The output would in this case be the same as
before, since it’s currently the only test we have.

 Unit tests are great for testing classes that are more or less standalone, and require
no outside dependencies that aren’t easily faked (we call that mocking the dependen-
cies). Examples of such are model classes or utility classes and methods. But not every
part of your application can exist in such a vacuum, as we’ll see next.

 Let’s write a more useful test to test our Product model. We want to test that our
findByEan() method introduced in chapter 3 works correctly. For this, we need to
add the following test:

@Test
public void findByEan() {
Product product = Product.findByEan("1111111111111");
assertThat(product.name).isEqualTo("Paperclip 1111111111111");

}

For now, go ahead and run the test. You’ll get the following output:

Test ApplicationTest.findByEan
failed: javax.persistence.PersistenceException:
java.sql.SQLException: Attempting to obtain a connection
from a pool that has already been shutdown.

That’s probably not what you expected. But what went wrong?
 Not all classes and methods (and therefore templates) are completely standalone.

Sometimes your code depends on objects and code from other methods and classes.
In Play, some code may depend on a running Play application. For example, your
code might need to read configuration, access the database, or just use one of Play’s
contexts (such as Session or Flash). When you try to run code like that outside the
scope of your Play application, you’ll encounter an error. That’s exactly what hap-
pened in this case:

java.sql.SQLException: Attempting to obtain a connection
from a pool that has already been shutdown

Our test tried to access the database, but Play isn’t running, and therefore the config-
uration isn’t loaded.

275Testing Play applications
 Now that we know what’s wrong, how do we fix it? Of course, Play has the tools for
you. Play allows you to use a fake application. By wrapping your test code in a fake appli-
cation, the Global object that loads initial data and the database access you’ve defined
are available by default. But things such as the session or request won’t be available.
You still need to pass those, as we’ll see later in the chapter.

 Play’s facilities to make testing easier can be found in the play.test.Helpers
class. Go ahead and add a static import for all its members:

import play.test.Helpers.*;

This will give us access to a bunch of things, but for now we’re interested in the
running() and fakeApplication() methods. The fakeApplication will give us our
fake application, whereas running() allows us to run code in the context of that appli-
cation. The running() method takes two parameters: Application to use as context,
and a block of code to run, represented by an implementation of Runnable, which
contains a run() method that will execute our code.1 Wrap the test in these methods:

@Test
public void findByEan() {
running(fakeApplication(), new Runnable() {

public void run() {
Product product = Product.findByEan("1111111111111");
assertThat(product.name).isEqualTo("Paperclip 1111111111111");

}
});

}

Please note that the Product with EAN 1111111111111 exists and has been added to our
evolution scripts as explained in section 7.5.3. We’re also using some helpers that allow
us to be more human when describing what we’re testing. Indeed, we’re asserting that
product.name is equal to "Paperclip 1111111111111". In order to use those helpers,
you need to import statically org.fest.assertions.Assertions.*:

import static org.fest.assertions.Assertions.*;

Rerunning the test gives us the expected results:

[error] Test ApplicationTest.failingTest failed:
This test will fail expected:<[]OK> but was:<[NOT]OK>
[info] play - Starting application default Akka system.
[info] play - Shutdown application default Akka system.
[info] ApplicationTest
[info] x failingTest
[info] + findByEan
[info] + pagination
[info] + passingTest
[info]
[info]
[info] Total for test ApplicationTest

1 This way of passing around runnable code is verbose, but will have to do until JDK 8 brings us lambdas, which
provide a much nicer syntax to do this kind of thing.

276 CHAPTER 12 Testing your application
[info] Finished in 0.019 seconds
[info] 4 tests, 1 failures, 0 errors

You can also observe that Play was bootstrapped correctly and made the database avail-
able to the tests. Let’s quickly create a pagination test:

@Test
public void pagination() {

running(fakeApplication(), new Runnable() {
public void run() {

Page<Product> products = Product.find(1);
assertThat(products.getTotalRowCount()).isEqualTo(50);
assertThat(products.getList().size()).isEqualTo(10);

}
});

}

Here we’re testing that whenever we’re performing pagination, the total number of
results is 50 and then we get 10 results for the current page. Of course, we pre-filled
our database with 50 products, as explained in section 7.5.3.

12.2 Functional testing
In this section we’re going to test various functions of our application. The first test is
to confirm that not every user can log in to our application.

12.2.1 Testing your controllers

In order to know if our application works correctly, we need to test that not everyone
can access the application. As you may remember, in our application, before you can
access the product listing, you need to show credentials. In plain English, the software
function is: “only authenticated users can access the product listing.” Let’s verify that
by writing the corresponding test.

 Create a new class under the test directory called FunctionalTest, and create the
test shown in the following listing.

Using a different configuration for tests
By default, fakeApplication() instantiates a fake Play application based on your
current application.conf file. But you might want to test a different setup some-
times, for example when you want to use a different database. For that reason, you
can supply a Map<String, String> as a parameter to fakeApplication(). You
can use that map to supply configuration key/value pairs, and they will override the
configuration from your application.conf.

277Functional testing

all

fakeR
simu

HTTP

import org.junit.*;

import java.util.*;

import play.mvc.*;

import play.test.*;

import play.libs.F.*;

import static play.test.Helpers.*;

import static org.fest.assertions.Assertions.*;

import com.google.common.collect.ImmutableMap;

public class FunctionalTest {

@Test

public void authenticateFailure() {

running(fakeApplication(), new Runnable() {

public void run() {

Result result = callAction(

controllers.routes.ref.Products.index(),

fakeRequest()

);

assertThat(status(result)).isEqualTo(SEE_OTHER);

assertThat(redirectLocation(result)).isEqualTo("/login");

}

});

}

}

In our test, we first start a fakeApplication B, as seen in the previous section, to
instantiate Play persistence and routing features. From there, we’re calling our
index() action method on the Products D controller through the generated routes
Java file with the callAction() method. You can actually access all action methods
from any controllers using the callAction method and passing a reference to an
action method. The callAction() C method also requires a Request object as argu-
ment: we’re passing a fakeRequest() E that mocks a Play request.

 We then test that we’re redirected. This is done by checking that the result status
code is SEE_OTHER (HTTP Redirect—303 status code) F. And finally, we test that the
redirect location is /login G.

 If you run the test now, you’ll see that it passes! Indeed, as long as we’re not
authenticated, we can’t display the product listing. It’s now time to test a successful
authentication. Let’s edit our FunctionalTest.java file and add the test shown in list-
ing 12.4.

Listing 12.3 FunctionalTest.java

Create a Play fakeApplication
to bootstrap our application

B

callAction() allows us to c
an action method via the
generated routes file

C

Reference to the index() action
method from the Products controllerDequest()

lates an
 request E

Asserts that the HTTP
result code is a redirect

F

Asserts that we’re redirected
to the /login page G

278 CHAPTER 12 Testing your application

@Test

public void authenticateSuccess() {

running(fakeApplication(), new Runnable() {

public void run() {

Result result = callAction(

controllers.routes.ref.Application.authenticate(),

fakeRequest()

.withFormUrlEncodedBody(ImmutableMap.of(

"email", "nicolas",

"password", "nicolas"))

);

assertThat(status(result))

.isEqualTo(SEE_OTHER);

assertThat(redirectLocation(result))

.isEqualTo("/");

assertThat(session(result).get("email"))

.isEqualTo("nicolas");

}

});

}

The test first starts a fakeApplication B, as seen previously. We then call the
authenticate() D method from the application controller that we defined in sec-
tion 10.3 using the callAction() method C. If you recall, the authenticate()D
method expects an email and a password through an HTTP form. We’re creating a
URL encoded form with the withFormUrlEncodedBody(ImmutableMap.of("email",
"nicolas", "password", "nicolas")) E method—the ImmutableMap isn’t really
relevant here; just consider it as a map. This is appended to our fakeRequest() that’s
given as a parameter to the callAction() method.

 We then test that we’re redirected F to the root application page G. Finally, we
make sure we’re signed in to the application H.

 Running the test shows that our application is working and that we can authenti-
cate. It’s now time to test our product listing web page.

12.2.2 Template testing

Let’s write our first test for a template. As you may recall, templates get compiled to
classes and methods, which means that they can be unit tested, just like any other bit
of code. We’ll create a test for the product list template. Figure 12.1 shows a reminder
of our products list.

Listing 12.4 FunctionalTest.java—authenticateSuccess

Create Play fakeApplication
to bootstrap our application

B

callAction() allows us to call an action
method via the generated routes file

C

Reference to
authenticate()
action method from
the Application
controllerD

Fake request with our
username and password
as an encoded formE

Asserts that the HTTP
result code is a redirectF

Asserts that we are
successfully redirected to
the root (/) web pageG

Asserts that we are correctly
authenticated by checking that the
session contains our login emailH

279Functional testing
So what can we test about this template? There are a few things:

 It should render HTML

 It should show products
 It should contain links
 It contains 10 products out of 50

We could use the render() method from our template and test the generated output.
The following listing shows an example of such a test.

@Test
public void displaysAllProducts() {

running(fakeApplication(), new Runnable() {
public void run() {
Page<Product> allProducts = Product.find(0);

Content rendered = views.html.catalog.render(allProducts);
assertThat("text/html").isEqualTo(rendered.contentType());
for(Product p : allProducts.getList()) {
assertThat(rendered.body()).contains(p.name);

}
}

});
}

Listing 12.5 Not working FunctionalTest.java

Figure 12.1 The products list

Retrieve
list of
products

B

Render
template

C

Asserts
on

output
D

280 CHAPTER 12 Testing your application

As
tha
g

OK s
This test isn’t going to work in our case because we can only use the render() method
for simple use cases, but it’s important to understand what’s going on. In this test, we
first need to retrieve a list of test products that we’ll pass to the template B, and then
we call the render method on our template’s class (views.html.catalog) C. That
method returns an object of type Content, on which we can run our assertions.

 Now we assert that the Content returned is of the expected type: text/html D.
Then, we check the rendered HTML for the names of our test products D.

 We can only use the render() method for simple use cases, when we’re not making
use of the Play scopes. As we stated earlier, the fakeApplication() doesn’t provide a
session nor a request. This means that things like the flash scope, the session scope,
and the request scope can’t be used. Actually, if they’re used by your template, Play will
give you an error stating that it has no HTTP context available. This is useful for testing
independent HTML components like the navigation menu we defined in section 8.4.1,
and this is why we presented this test. But this isn’t the case for the product listing page,
because we’re using the flash scope in our main.scala.html template.

 Let’s now see how to correctly implement our test for the product listing page. Let’s
edit our FunctionalTest.java file and add the test shown in the following listing.

@Test
public void listProductsOnTheFirstPage() {

running(fakeApplication(), new Runnable() {
public void run() {

Result result = callAction(
controllers.routes.ref.Products.list(0),
fakeRequest().withSession("email", "nicolas"));
assertThat(status(result)).isEqualTo(OK);
assertThat("text/html").

isEqualTo(contentType(result));
String content = contentAsString(result);
assertThat(content).

contains("1 - 10 / 50");
Page<Product> allProducts = Product.find(0);
for(Product p : allProducts.getList()) {

assertThat(content).contains(p.name);
}

}
});

}

This test is quite similar to the one we’ve seen previously using the callAction
method. We’re calling the list() action method from our Products controller.
That’s the action used to display the product listing. The list(0) indicates that we
want to display the first page. As annotated in the code, we then assert that Play
returns an OK status, Play is serving us HTML, and that we’re displaying the first page.
We then make sure that if we query the database directly for the first 10 products
(page 0), the same products are displayed on the first page.

Listing 12.6 FunctionalTest.java—listProductsOnTheFirstPage

Call Products.list() action
method (the /products in
our routes file) with a
session that authenticates
user nicolas

serts
t we

ot an
tatus
back

Asserts that we got
served text/html content

Asserts that we
are at the first
page and
displaying the
first 10 products
out of 50

Find all the
products for
the first page
(page 0)Make sure the product

coming out of the database
is displayed on the page

281Functional testing
 These tests are rudimentary, and string comparison is usually not the way to go to
test an HTML page. These tests suffice as a basic smoke test, but aren’t very good as a
complete web page test. Later in the chapter we’ll introduce browser testing, which is
a nicer and more complete way to correct the behavior of your web pages in a browser.

12.2.3 Testing the router

We’re now able to test three major components from our Play application: the model,
the controller, and the template. It’s time to consider testing another crucial part of
our Play application: the router.

 Until now, we’ve trusted that our routes were all correct and according to specifica-
tion. For example, in the previous section, we trusted that calling the list() action
method on the Products controller was the same as calling the /products/ URL. Let’s
see how we can make sure our assumptions are correct and enforce that the product
listing is served by the /products/ URL. Edit the file FunctionalTest.java one more
time and add the test shown in the following listing.

@Test
public void

listProductsOnTheFirstPageWithRouter() {
running(fakeApplication(), new Runnable() {
public void run() {

Result result =
routeAndCall(fakeRequest(GET, "/products/")
.withSession("email", "nicolas"));

assertThat(status(result)).isEqualTo(OK);
assertThat("text/html").isEqualTo(contentType(result));
String content = contentAsString(result);
assertThat(content).contains("1 - 10 / 50");

Page<Product> allProducts = Product.find(0);
for(Product p : allProducts.getList()) {

assertThat(content).contains(p.name);
}

}
});

}

This example is exactly the same as the previous one, except that this time we’re test-
ing the /products/ URL directly. We’re now using the routeAndCall() instead of the
callAction method. The routeAndCall() method takes two parameters: the URL we
want to test and the HTTP method it should call the URL with. The routeAndCall()
method is useful to test the not found or error pages, for example.

 Now that we’ve seen how we can test our application’s internals, let’s see how we
can test its interaction with the outside world. This is also called integration testing.

Listing 12.7 listProductsOnTheFirstPageWithRouter

routeAndCall() method
is used to call the
/products/ URL

282 CHAPTER 12 Testing your application
12.3 Integration testing
Integration testing is all about testing your application’s behavior when dealing with
the “outside world.” This can be anything from a user’s web browser to the communi-
cation with another web service—whether you’re calling it from your application, or
it’s calling your application.

 Integration testing differs from the way we’ve been testing so far. Up to now, we’ve
been testing our application’s code directly by calling methods and checking the
results. Integration testing tests your application as a whole, by verifying the behavior
of its external interface (your UI or web service API).

12.3.1 Testing your HTTP interface

As we’ve seen throughout the book, any web application, whether it’s a web service or
meant to be used through a web browser, consists of a set of HTTP URLs as far as the
outside world is concerned. When doing integration testing, you make these calls and
inspect the results. Other than testing something completely different, the actual test-
ing is the same—you run some code, and run assertions on the results. Play comes
with helpers to make this easy.

 The first step in writing an integration test is getting the application running. This
time, a fake application like we saw in section 12.2 isn’t enough—we need a running
server. For that, we’ll use the testServer() method, instead of the fakeApplication()
method that we saw in section 12.2. The testServer() method takes one parameter:
the port number on which the server will run.

 Other than using a TestServer instead of a FakeApplication, the mechanism for
testing with a test server is the same as when testing using a fake application: use the
running() method, and pass it the TestServer instance and a Runnable that contains
the test code. The following listing illustrates this.

public void myIntegrationTest() {
running(testServer(9001), new Runnable() {

@Override
public void run() {

// Test code goes here
}

});
}

To actually make our HTTP calls, we can use the WS class. The WS class is part of the WS
(WebService) library provided with Play and allows us to make web calls to remote sys-
tems from a client perspective. It’s straightforward to use, as we’ll see. We’ll test that
the products list URL returns status code 200 and has a non-empty body. Listing 12.9
shows the test. Go ahead and run it: it should pass.

Listing 12.8 Testing using a test server

283Integration testing

public void myIntegrationTest() {
running(testServer(9001), new Runnable() {

@Override
public void run() {

final WS.Response response =
WS.url("http://localhost:9001").get().get();

assertEquals(200, response.getStatus());
assertFalse(response.getBody().isEmpty());

}
});

}

Using the testing techniques we’ve seen so far, you can test a fair amount of your appli-
cation. If your application has no UI, but is “just” a web service, you can test pretty
much everything. But if you have a web application with an HTML/CSS/JavaScript user
interface, that’s a big part of your application that you can’t test just by verifying the
results of your Play code. You need a browser, and a way to automate testing your UI.

12.3.2 Browser testing

Play comes with integration for Selenium2 and FluentLenium.3 Selenium is a tool that
allows automated browser testing. It has support for several browsers, as well as
HtmlUnit, which is a way to do headless browser testing—browser testing without actu-
ally running a browser. FluentLenium is a test framework that allows you to write Sele-
nium tests much like you would a unit test, rather than recording and playing back
browser interaction, which is the “regular” way to create Selenium tests.

 Play makes it easy to run Selenium/FluentLenium tests. The basic approach is the
same as what we’ve seen with integration tests: use the running() method, and pass it
a TestServer and an object that holds your actual test code. The difference is that we
must now also pass it a browser configuration, and that our test code is contained in a
Callback rather than a Runnable.4

 Explaining all of Selenium and FluentLenium would require a whole book, so we
won’t attempt to do that here, but we’ll show you a basic test to illustrate how you can
use these tools with Play. If you’d like to know more, both Selenium and Fluent-
Lenium have excellent documentation.

 For our test, let’s see if the product list page works like we expect. We’re going
to test that the page actually contains the product list, and that clicking on a
product takes us to the product detail view. First, let’s set up the basic test structure.
Listing 12.10 shows how.

Listing 12.9 A simple test for an HTTP call

2 http://seleniumhq.org
3 https://github.com/FluentLenium/FluentLenium
4 We use a Callback because it can take a parameter, and a Runnable can’t.

http://seleniumhq.org
https://github.com/FluentLenium/FluentLenium

284 CHAPTER 12 Testing your application

import static play.test.Helpers.*;

import org.junit.Test;
import play.libs.F;
import play.test.TestBrowser;

import static org.junit.Assert.*;

public class IntegrationTest {

@Test
public void simpleProductsTest() {

running(testServer(3333), HTMLUNIT,
new F.Callback<TestBrowser>() {

@Override
public void invoke(TestBrowser browser)

throws Throwable {
// Test code here

}
});

}
}

We’ve configured our test to use the HTMLUNIT TestBrowser B, which instructs Play to
use Selenium with the headless HtmlUnit test browser. Since this browser is often
used, play.test.Helpers.HTMLUNIT makes this test browser conveniently available as
a constant. There’s also a FIREFOX constant that sets up the test to use Firefox, but
we’ll use HtmlUnit.

 Now that we have the framework for our test, let’s implement it. You might’ve
noticed that the invoke method is passed a browser parameter. That object actually
represents our test browser and allows us to interact with it using the FluentLenium
API. We’ll use it to create the following test:

1 Go to the URL for the product list page.
2 Assert that at least one link to a product is present on the page.
3 Click one of the products in the list.
4 Assert that the browser’s location has changed to the URL of the product

detail page.
5 Assert that the page displays the correct product name.

The bold verbs in our test steps highlight what kind of interaction we want with our
test browser: we want to be able to control navigation (go to), simulate user interac-
tion (click), and read information from the page so we can verify that it shows what we
expect (assert).

 The first step, navigating to the proper URL, is the easiest one to do, so let’s do that
first. We’ll use the goTo() method on the browser object, passing it the URL we want
to navigate to, like so:

browser.goTo("http://localhost:3333/products");

Listing 12.10 IntegrationTest.java

We’ll use the
HtmlUnit browser

B

This method will
hold our test code

285Integration testing
Now, presumably, our browser has opened the page at the URL we gave it. But how do
we verify that we’re actually where we want to be, and that the correct page is showing?
That’s step two of our test: “Assert that the product list is present on the page.”

 For assertions, we’ll use JUnit, just like we’ve been doing all along. The only thing
that’s not immediately obvious is how to ask the browser for information about the
page that is currently rendered. For that, we can use the FluentLenium API as well.

 If you’ve ever used CSS or jQuery, you’re probably familiar with selectors. Selectors
allow you to select elements of an HTML page by specifying element names, classes,
and IDs. FluentLenium allows you to use selectors for this purpose as well. Play’s inte-
gration with FluentLenium borrows the $ syntax from jQuery to give us access—the
browser object has a $() method that allows us to run selectors on the currently ren-
dered page.

 Now that we have the tools, let’s assert that we have a product list on our page. First,
we need to sign in to the application as an authorized user. We’re using the fill()
method to input our username and password in the login screen. The selector for our
input element is simply input[name='email'] and input[name='password'], as
defined in our HTML. We then submit the sign-in form and are redirected to the prod-
uct listing page, where we’re looking for at least one a element contained in a td ele-
ment. The selector for this is "table td a". To assert that we have at least one result,
we’ll use the isNotEmpty() method. The next listing shows the corresponding code.

import org.junit.*;

import play.mvc.*;
import play.test.*;
import play.libs.F.*;

import static play.test.Helpers.*;
import static org.fest.assertions.Assertions.*;

import static org.fluentlenium.core.filter.FilterConstructor.*;

public class IntegrationTest {

@Test
public void productListingTest() {
running(testServer(3333,
fakeApplication()),
HTMLUNIT, new Callback<TestBrowser>() {
public void invoke(TestBrowser browser) {
browser.goTo("http://localhost:3333");
// login
browser.fill("input[name='email']").with("nicolas");
browser.fill("input[name='password']").with("nicolas");
browser.submit("button[type='submit']");
assertThat(browser.$("table td a")).isNotEmpty();

}
});

}
}

Listing 12.11 Testing the presence of the product list

286 CHAPTER 12 Testing your application
Now that we’ve verified that our product list page correctly shows up in a browser, let’s
test some interaction. When we click the link, we expect to be taken to the product’s
detail page. To verify this behavior, we need to click the link, and then check the state
of the browser.

 To click the link, we can select it and then call the click() method on it. To then
check the location of the browser, we can call the url() method on the browser
object. Of course, the URL isn’t enough to convince us. To verify that this is the prod-
uct detail page, we’ll check its title for the product name. The final test is shown in the
following listing.

...
@Test
public void productListingTest() {
running(testServer(3333,
fakeApplication()),
HTMLUNIT, new Callback<TestBrowser>() {
public void invoke(TestBrowser browser) {
browser.goTo("http://localhost:3333");
// login
browser.fill("input[name='email']").with("nicolas");
browser.fill("input[name='password']").with("nicolas");
browser.submit("button[type='submit']");
assertThat(browser.$("table td a")).isNotEmpty();
browser.$("table td a").first().click();
assertThat("http://localhost:3333/products/0000000000000")
.isEqualTo(browser.url());

assertThat("Product (Paperclip 0)").isEqualTo(
browser.$("legend").getText());

}
});

}
...

If you haven’t yet, go ahead and run these tests—they should all pass fine. Now, these
tests may seem simple—why test if a link works, when you could just as easily check the
value of its href attribute? Well, though it’s correct that, in this case, we’re essentially
testing if the browser works, consider a JavaScript-heavy web page. An event handler
might actually break navigation functionality. There’s no way to test that without actu-
ally running the code in the browser. That is why browser tests are incredibly useful—
they test your web pages like a user would, without burdening an actual human with
all sorts of tedious clicking. Now that we’ve automated this kind of testing as well, we
can test our application at every level.

12.4 Summary
In this chapter, we’ve seen how Play helps you write automated tests. We’ve seen how
we can run JUnit tests, and the difference between unit, integration, and browser
tests. We’ve seen that we could test different parts of our Play application: the mod-

Listing 12.12 Testing interaction

287Summary
els, the controllers, the templates, and the router. Using FakeApplication, and the
running() method found in the play.test.Helpers class, your entire application
can be tested by calling the application code directly. The TestServer allows you to
call your application’s HTTP interface like a client application would, enabling you to
run integration tests. Play’s integration with Selenium and FluenLenium means that
you can easily test your application as the user sees it, including the effects of
JavaScript and user interaction.

 You’ve now made it through Play and learned a lot; you have the knowledge to
tackle modern web applications and can expand on that knowledge. As a final sugges-
tion, try to keep in touch with the Play community. It’s a busy and exciting place, and
we’d love to hear from you there. Hope you’ve enjoyed the ride!

index

Symbols

: (colon) 84
() parentheses 186
{ } curly braces 183
@ (at sign) 45, 181, 184
~ (tilde) 273
$ (dollar sign) 285

A

Accept-Language header 203
Acme Paperclip Company 22
action attribute 50
action methods

controllers and 74
defined 15
for CRUD applications

38–39
mapping URLs to 39–40
parameters 86
referring from one to

another 83
routes file 23

aggregate() function 261
AJAX (Asynchronous

JavaScript and XML) 222
Akka 74, 208
Anemic Domain Model 150
AnnotationDateFormatter

class 110
AnnotationFormatter

class 122
AnnotationNonEmptyFormat-

ter class 110
annotations, defining

custom 91

Apache 266
app directory

compiled assets 28
overview 27

app/views directory 17
application server

deployment 270
application.conf file

for testing 276
purpose of 23
secret key for signing

cookies 99
Application.java file 27
application.secret

property 233
application/form-URL-

encoded content
type 125

application/json content
type 125

ApplicationBuild class 236
applications

accessing and running 14
app directory

compiled assets 28
overview 27–28

CoffeeScript support 29
configuration files 23–24
creating 12
enterprise applications

challenges 63–64
overview 59–63
Play and 64–68
warehouse example

application 68–70
file structure of 22–23
Google Closure compiler 29

LESS support 29
public directory 26–27
reactive 63
running 13–14
SBT configuration files

24–26
structure of 13
warehouse example

application 22
See also CRUD

apt packages 265
asFormUrlEncoded()

method 125
asJson() method 124–125
asMultipartFormData()

method 125, 135
asRaw() method 125
Assert class 273
@AssertFalse annotation 128
@AssertTrue annotation 127
assets

CoffeeScript 200–201
directory for 29
LESS 199–200
using with templates 201

asText() method 125
asXml() method 124–125
async() method 212
asynchronous data

Comet 220–223
defined 7, 208–209
receiving request 210–212
returning result 212–214
scheduling tasks 214–215
streaming HTTP responses

chunked responses
217–219
289

290 INDEX
asynchronous data, streaming
HTTP responses
(continued)
Content-Length

header 215–216
overview 215
serving files 216–217

WebSockets
example using 227–230
overview 223–227

Asynchronous JavaScript and
XML. See AJAX

at sign (@) 45, 181, 184
attacks 233
authentication

basic authentication 238–243
with action

composition 243–248

B

badRequest() method 76
bar code controller 255
barcode4j 256
Base64 238
basic authentication 238–243
BasicAuthenticationFilter

class 240
bidirectional communication

with WebSockets
example using 227–230
overview 223–227

binary data body parsers 123
bind() method 116, 118
binding

data binding
form field binders

119–123
multiple values 110–114
overview 108–109
path binders 114–117
query string binders

117–119
single values 109–110

defined 85
form entries 50
parameters 16

body of template 181–183
body-parser API 124–126
@BodyParser.Of

annotation 124
Bootstrap 45–46
break points 34
browsers, testing 283–286
build.properties file 25

build.sbt file 25, 250, 260
bytecode enhancement 141

C

caching
public directory and 27
RESTful applications 66
session scope and 97

Call class 89
call() method 90
Cascading Style Sheets. See CSS
CatchAction class 90
certificate signing request.

See CSR
charset 96
check boxes, binding 112
chunked responses 217–219
classes for data models 142–143
client-side applications 65–66
close() method 225
Cloud Foundry 269
cloud provider, deploying

to 269–270
Cloudbees 269
codebase, keeping small 26
CoffeeScript

support for 29
using with templates

200–201
colon (:) 84
Comet 220–223
comma-separated values. See CSV
compilation

errors on 16
vs. evaluation 180

compiled assets 28
comprehensions 185
compression 27
conf directory 23, 203
configuration files

for applications 23–24
SBT configuration files

24–26
using different credentials for

production
environment 264

conflicting routes 87
console 18–19
@Constraint annotation 131
constraints, validation 51
container objects 104
Content class 78
Content-Disposition

header 217

Content-Length header
215–216

content-length, max 125
Content-Type header 96, 123,

217
context object 95
continuous integration 271
Control+D keyboard

shortcut 18
Controller class 75
controllers

action methods and 74
directory for 27
for CRUD applications

38–39
interceptors

@With annotation 89–91
extending 91–93

purpose of 73–74
results

overview 76
Redirect result 77
using in response

body 77–80
routing

conflicting routes 87
default values 87
dynamic path parts 84–86
fixed value as

parameter 87
overview 80–83
reverse routing 88–89
routes file 83–84, 87–88
type safety 83

scopes
context object 95
flash scope 98
history 93–94
overview 94
request scope 96
response scope 96–97
security and 99–101
session scope 97

structure of 74–75
testing 276–278

conversation scope 93
cookies 94, 233
Create, Retrieve, Update,

Delete. See CRUD
credentials for production

environment 264
credentials key 257
cross-site request forgery

235–238
cross-site scripting 234–235

291INDEX
CRUD (Create, Retrieve,
Update, Delete)

controllers and actions
38–39

delete button 53–55
list method 43
list template

adding Bootstrap 45–46
overview 43–45
rendering 46–47

mapping URLs to action
methods using routes
39–40

model class 40–41
product form

form object 48
input fields 49–50
overview 47–48
rendering 48–49
submitting 50–53

test data for 41–42
CSR (certificate signing

request) 269
CSRF helper 237
CSRF. See cross-site request

forgery
csrfToken parameter 238
CSS (Cascading Style

Sheets) 199
CSV (comma-separated

values) 181
curly braces { } 183

D

data access 9
data binding

form field binders 119–123
multiple values 110–114
overview 108–109
path binders 114–117
query string binders 117–119
single values 109–110

data models
class for 142–143
defined 139
getters and setters

Play creating
automatically 141

purpose of 139–141
JPA

built-in features for 175
configuring Play 173–174
persistence.xml file

174–175

mapping entities
configuring Ebean

146–147
overview 145–146
saving entities 149–151
viewing data in H2

Console 148–149
mapping relationships

many-to-many
relationship 159–161

one-to-many
relationship 152–154

one-to-many relationship
bidirectional 154–156

overview 151–152
warehouse address class

and 156–159
ORM

Ebean 145
overview 143–145

querying database
by ID 162
filtering selection 170–171
loading data on

startup 166–168
ordering 171–172
overview 161–162,

168–170
pagination 172–173
using Finder API 162–165

data unbinding 109
database management systems.

See DBMS
database querying

by ID 162
filtering selection 170–171
loading data on startup

166–168
ordering 171–172
overview 161–162, 168–170
pagination 172–173
using Finder API 162–165
See also persistence

DateFormatter 110
@DateTime annotation 110,

123
DBMS (database management

systems) 146–147
Deadbolt 2 module 250
deb packages 265
Debian 265
debugging using IDE 34–36
@DecimalMax annotation 128
@DecimalMin annotation 128
default welcome page 14

delete action for CRUD
applications 53–55

DELETE method (HTTP)
RESTful applications 66
using JavaScript to

process 54
web frameworks 6

dependencies
adding 25
dependency repositories 26
managed dependencies

advantages 26
resolving 25
transitive dependencies 26

dependency repositories 26
depends() function 261
deployment

application server 270
cloud provider 269–270
configuration files 263–265
creating native packages for

package manager 265–266
setting up front proxy

266–268
starting application in pro-

duction mode 263
using SSL 268–269

details.scala.html 112
Developer Experience. See DX
@Digits annotation 128
discardCookies() method 97
dist task 263
dollar sign ($) 285
downloading Play 10
downtime 8, 266
DX (Developer Experience) 4
dynamic path parts 84–86

E

Ebean
configuring 146–147
data access 9
overview 145

Eclipse 29–30
eclipse command 30
@Email annotation 127–128
enterprise applications

challenges 63–64
data access 9
flexibility 9
integration 9
large-team applications 9
modularity 10
overview 59–63

292 INDEX
enterprise applications
(continued)

Play and 64–68
security 9
simplicity 8–9
warehouse example

application 68–70
enterprise service bus. See ESB
entities, defined 144
entities, mapping

configuring Ebean 146–147
overview 145–146
saving entities 149–151
viewing data in H2

Console 148–149
@Entity annotation 152
errors

compilation 16
displaying validation errors

on form 132–134
ESB (enterprise service bus) 62
escaping @ character 184
EssentialAction interface 240
ETag headers 27
evaluation vs. compilation 180
events, and reactive

programming 7–8
evolution mechanism 154
evolution scripts 166
expression scope 183–184
expressions 178
Extensible Markup Language.

See XML

F

fake applications 275
file structure of

applications 22–23
file uploads 134–136
FilePart class 135
filters, basic authentication

using 238–243
find() method 162, 172
findAll() method 172
Finder API 162–165
Firefox 224
flash scope

defined 52
overview 98
setting message in 107

flexibility, enterprise features 9
FluentLenium 283, 285
for statement in templates 182
for-each loop in Scala 184

foreign key 152
Form class 104
Formats class 110, 123
Formatter 110, 120
forms

body-parser API 124–126
creating 104–105
data binding

form field binders
119–123

multiple values 110–114
overview 108–109
path binders 114–117
query string binders

117–119
single values 109–110

file uploads 134–136
filling with initial values

106–107
for CRUD applications

form object 48
input fields 49–50
overview 47–48
rendering 48–49
submitting 50–53

input helpers 104
overview 102–103
processing form input

107–108
route for 104
validation

@ValidateWith
method 130–131

built-in validators 126–128
displaying errors on

form 132–134
JSR-303 validation

131–132
partial validation 128–129
validate() method

129–130
forwardfor option 267
framework stack 4
front proxy 266–268
full-stack framework 5
functional testing

controllers 276–278
routers 281
templates 278–281

@Future annotation 128

G

ge() method 170
generated.keystore 269

generic types 44
GET method (HTTP)

overview 24
RESTful applications 66
routing requests 81
web frameworks 6

getErrorMessageKey()
method 130

getters and setters
Play creating

automatically 141
purpose of 139–141

GitHub Pages 257
.gitignore file 23
Global.java file 166
GlobalSettings class 236
Google Chrome 224
Google Closure Compiler 29,

201
Google Docs 8
Google Guava library 25
Groovy 179
gzip compression 27

H

H2
console 148–149
overview 146

HAProxy 266–267
hasError() method 126
headless browser testing 283
Hello World! example

accessing running
applications 14

application structure 13
changing controller class

14–16
compilation errors 16
creating applications 12
HTTP request

parameters 16–17
page templates 17–18
running applications

13–14
Helpers class 275
helpers for templates 49
Heroku 269
Hibernate 144
Homebrew 11
HTML (Hypertext Markup

Language) 181
Html class 78
@Html() directive 183, 235
HtmlUnit 283

293INDEX
HTTP (Hypertext Transfer Pro-
tocol)

"OK" response 15
in web frameworks 6
methods 24
parameters in request 16–17
response 43
testing interface 282–283

http.port property 269
https.keyStore property 269
https.keyStorePassword

property 269
https.port property 269
http-server-close option 267
Hypertext Markup Language.

See HTML
Hypertext Transfer Protocol. See

HTTP

I

I18N. See internationalization
IDE (integrated development

environment)
benefits of using 29
debugging Play

applications 34–36
Eclipse 29–30
IntelliJ IDEA 34
NetBeans 30–33

idempotent 69
IETF (Internet Engineering

Task Force) 224
if/else statements 186–187
images 27
includes, in view

templates 187–193
index.scala.html file 27
initial-data.yml 167
input fields

for CRUD applications
49–50

form helpers 104
InputStream class 217
installing Play 10–12
integrated development envi-

ronment. See IDE
integration testing

browser 283–286
defined 272
HTTP interface 282–283
overview 282

integration, and enterprise
applications 9, 61

IntelliJ IDEA 34

interceptors
@With annotation 89–91
extending 91–93

internationalization
defined 202
vs. localization 202
message files for 202–203
using in application

203–204
Internet Engineering Task

Force. See IETF
Internet, influence of 63
isValid() method 130, 132
iterating in view templates

184–186

J

Java
generic type arguments 44
Play and 5

Java Database Connectivity.
See JDBC

Java EE 6
Java Persistence API. See JPA
Java Servlet API 6
Java Virtual Machine. See JVM
javaCore library 25
javaEbean library 25
javaJdbc library 25
JavaScript 27
JavaScript Object Notation.

See JSON
javascriptUnbind()

method 118
JavaServer Faces 7
javax.persistence package 145
JDBC (Java Database

Connectivity) 9
JetBrains 34
jndiName property 173
JOIN clauses 143
JPA (Java Persistence API)

built-in features for 175
configuring Play 173–174
data access 9
integration using Play 9
persistence.xml file 174–175

jQuery 285
JSESSIONID parameter 93
JSON (JavaScript Object Nota-

tion)
body parsers 123
Scala templates 181

JSR-303 validation 126, 131–132

JUnit 272
JVM (Java Virtual Machine) 4

K

KPI (Key Performance
Indicators) 209

L

L10N. See localization
large-team applications 9
layouts for view templates

193–199
LDAP (Lightweight Directory

Access Protocol) 9
@Length annotation 128
LESS

support for 29
using with templates 199–200

lib directory 26
libraries 25
libraryDependencies 250
Lightweight Directory Access

Protocol. See LDAP
Linux 10
list template for CRUD applica-

tions
adding Bootstrap 45–46
overview 43–45
rendering 46–47

list.scala.html 117, 172
localization 202

M

Mac OSX
installing using

Homebrew 11
packages for 265
setting PATH variable 10

Mailer module 250
main.scala.html file 27
managed dependencies

advantages of using 26
defined 25

many-to-many
relationship 159–161

@ManyToOne annotation 152
mappedBy attribute 155, 161
mapping

entities
configuring Ebean 146–147
overview 145–146

294 INDEX
mapping, entities (continued)
saving entities 149–151
viewing data in H2

Console 148–149
relationships

and warehouse address
class 156–159

many-to-many
relationship 159–161

one-to-many
relationship 152–154

one-to-many relationship
bidirectional 154–156

overview 151–152
URLs, using routes 39–40

Maven 26
@Max annotation 127–128
@MaxLength annotation 127
message files for

internationalization
202–203

MessageFormat class 203
@Min annotation 127–128
minifying JavaScript 29
@MinLength annotation 127
mkString() method 133
mocking, defined 274
model class 40–41
modularity 9–10
modules

creating
code for 255–256
publishing 257, 259–260
setting up repository

257–258
testing 258–259

list online 250
naming 256
overview 249–250
splitting application into sub-

applications 260–262
using 250–254

MSI packages 265
multipart/form-data content

type 125
multistatement expressions 183
MySQL 147

N

natural key 145
navigation, testing 284
NetBeans 30–33
Netty 74
nginx 266

nonblocking applications 7
@NotEmpty annotation 127
notFound() method 76
@NotNull annotation 127
@Null annotation 127

O

OAuth 251, 253
Object Relational Mapping.

See ORM
ok() method 76, 78
onClose() method 225
onError() method 120
@OneToMany annotation 155
one-to-many relationship

bidirectional 154–156
one-directional 152–154

@OneToOne annotation 158
onMessage() method 225, 229
onStart() method 120, 166
onStop() method 120
orderBy() method 171
ordering database queries

171–172
@org.junit.Test annotation 272
ORM

Ebean 145
overview 143–145

orphan commit 258

P

PaaS (platform as a service) 269
packages

creating native
packages 265–266

naming 256
page templates. See templates
Pages, GitHub 257
pagination for database

queries 172–173
parameters

action methods 86
in HTTP request 16–17
templates 180

parentheses () 186
parse() method 121
@Past annotation 128
path binders 114–117
PATH variable, setting 10
PathBindable interface 115
@Pattern annotation 127–128
Perl 6

persistence
JPA

built-in features for 175
configuring Play 173–174
persistence.xml file

174–175
mapping entities

configuring Ebean
146–147

overview 145–146
saving entities 149–151
viewing data in H2

Console 148–149
mapping relationships

and warehouse address
class 156–159

many-to-many
relationship 159–161

one-to-many
relationship 152–154

one-to-many relationship
bidirectional 154–156

overview 151–152
module for 25
ORM (Object Relational

Mapping)
Ebean 145
overview 143–145

persistence.xml file 174–175
querying database

by ID 162
filtering selection 170–171
loading data on

startup 166–168
ordering 171–172
overview 161–162, 168–170
pagination 172–173
using Finder API 162–165

PHP 6
platform as a service. See PaaS
Play

accessing running
applications 14

application structure 13
changing controller class

14–16
compilation errors 16
console 18–19
creating applications 12
defined 3–4
enterprise applications

and 64–68
enterprise features

data access 9
flexibility 9

295INDEX
Play, enterprise features
(continued)
integration 9
large-team applications 9
modularity 10
security 9
simplicity 8–9

feature overview 4–5
HTTP request

parameters 16–17
installing 10–12
vs. Java EE 6
Java and 5
page templates 17–18
reactive programming

event driven 7–8
overview 7
resilient 8
responsive 8
scalable 8

running applications 13–14
Scala and 5
web frameworks

HTTP in 6
productivity 7
simplicity 7
usability 7

Play 2 for Scala 5
play command 18
play new command 12–13
play start command 263
play.data.validation.Constraints

package 51
play.mvc.Controller class 38
play.mvc.Result class 43
play.plugins file 253
play2-native-packager

plugin 266
play2-ubuntu-package

plugin 266
play2-war-plugin 270
plugins.sbt file 25
POC (proof-of-concept) 37
ports 266
POST method (HTTP)

overview 24
RESTful applications 66
routing requests 81
web frameworks 6

PostgreSQL 147
primary key 143, 145
print() method 121
privileged port 266
product form for CRUD appli-

cations
form object 48

input fields 49–50
overview 47–48
rendering 48–49
submitting 50–53

product.scala.html 104, 134
production mode

starting application in 263
using different credentials

for 264
Windows and 263

project directory 24
projects command 262
Promise result 210
proof-of-concept. See POC
properties, public vs. private 41
proxy 266–268
public assets 27
public directory 26–27
public properties 41
publish command 260
publishing modules 257,

259–260
publish-local command 258
publishTo key 257
PUT method (HTTP)

RESTful applications 66
web frameworks 6

Q

query string binders 117–119
querying database

by ID 162
filtering selection 170–171
loading data on startup

evolution scripts 166
YAML data file 166–168

ordering 171–172
overview 161–162, 168–170
pagination 172–173
using Finder API 162–165

QueryStringBindable
interface 118

R

reactive programming
event driven 7–8
overview 7
resilient 8
responsive 8
scalable 8

real-time communication 63
redeeming the promise 212

Redirect result 77
register() method 120
relational databases. See persis-

tence
relationships

many-to-many
relationship 159–161

one-to-many relationship
bidirectional 154–156
one-directional 152–154

overview 151–152
warehouse address class

and 156–159
reload command 251
remote debugging 34
render() method 181, 280
repositories 257–258
request() method 79
RequestBody class 124
requests

asynchronous data 210–212
request scope 96
routing of 38

@Required annotation
126–127

Required constraint 51
resilience of reactive

programming 8
resolving dependencies 25
resources_managed

directory 201
responses

asynchronous data 212–214
HTTP 43
response scope 96–97
streaming

chunked responses
217–219

Content-Length
header 215–216

overview 215
serving files 216–217

responsiveness of reactive
programming 8

RESTful applications 65
Result class 38, 43, 74
results

overview 76
Redirect result 77
using in response body 77–80

return type for action
methods 38

reverse routing 88–89
routes file

HTTP methods 23

296 INDEX
routes files (continued)
overview 83–84, 87–88
purpose of 23

routing
conflicting routes 87
default values 87
defined 17
dynamic path parts 84–86
fixed value as parameter 87
for forms 104
mapping URLs using 39–40
overview 80–83
reverse routing 88–89
route map components 23
routes file 83–84, 87–88
testing 281
type safety 83

rpm packages 265
Ruby on Rails 6

S

Safari 224
SBT configuration files 24–26
sbt-native-packager plugin 265
Scala

generic type arguments 44
Play and 3, 5
templates

advantages to using
178–181

assets 199–201
complexity of code 184
expression scope 183–184
if/else statements 186–187
includes 187–193
internationalization

202–204
iterating 184–186
layouts 193–199
template body 181–183
template definition 181

scalability
enterprise applications 61, 63
of reactive programming 8

ScalaDoc 184
scheduling asynchronous

tasks 214–215
scopes

context object 95
flash scope 98
history 93–94
overview 94
request scope 96
response scope 96–97

security and 99–101
session scope 97

Secure Sockets Layer. See SSL
SecureSocial module 250
securesocial.conf file 253
@SecureSocial.SecuredAction

annotation 251
security

authentication with action
composition 243–248

basic authentication 238–243
cross-site request

forgery 235–238
cross-site scripting 234–235
enterprise features 9
overview 232–233
scopes and 99–101
session 233–234
SQL injections 235

@Security.Authenticated
annotation 248

Security.Authenticator 247
selectors 285
Selenium 283
sequences 184
Service-Oriented Architecture.

See SOA
session scope

overview 97
string objects only 97
timeouts 100

session security 233–234
setFirstRow() method 172
setMaxRows() method 171–172
SHA1 algorithm 233
SimpleAction class 90
SimpleFormatter class 120–121
simplicity

complex applications and 64
for web frameworks 7

@Size annotation 128
SOA (Service-Oriented

Architecture) 61
socket.onMessage function 230
socket.send function 230
splitting application into sub-

applications 260–262
Spring Data 108
SQL injections 235
SSL (Secure Sockets

Layer) 268–269
stage task 263
starting/running

applications 13–14
stateless architecture 66
static pages 27

streaming HTTP responses
chunked responses 217–219
Content-Length header

215–216
overview 215
serving files 216–217

structure of applications 13
stylesheets 27
sub-applications, splitting appli-

cation into 260–262
submitting forms 50–53
sub-projects 260
synchronous processing 208
synthetic key 145

T

tags in templates 178
target directory 23
TCP (Transmission Control

Protocol) 224
templates

advantages to using 178–181
assets

CoffeeScript 200–201
LESS 199–200
using 201

complexity of code 184
expression scope 183–184
if/else statements 186–187
includes 187–193
internationalization

defined 202
message files 202–203
using in application

203–204
iterating 184–186
layouts 193–199
overview 17–18
template body 181–183
template definition 181
testing 278–281

testing
configuration for 276
functional testing

controllers 276–278
routers 281
templates 278–281

integration testing
browser 283–286
HTTP interface 282–283
overview 282

modules 258–259
overview 271–272
running tests 273–276

297INDEX
testing (continued)
writing tests 272–273

test-only command 274
text/plain content type 125
text/xml content type 125
thread safety

action methods 74
context object 95

tilde (~) 273
TODO result 77
transitive dependencies 26
Transmission Control Protocol.

See TCP
type conversion 85
type inference 181, 185
type safety 83, 180

U

Ubuntu 265
unbind() method 116, 118
unbinding 109
unidirectional communication

with Comet 220–223
Unified Expression

Language 178
uniform resource locator.

See URL
unique resource identifier.

See URI
unit testing 272
uploads, file 134–136
URI (unique resource

identifier) 73
URL (uniform resource locator)

designing using routes 24
path binders 114–117

user input
body-parser API 124–126
data binding

form field binders 119–123
multiple values 110–114
overview 108–109
path binders 114–117
query string binders

117–119
single values 109–110

file uploads 134–136
forms

creating 104–105
filling with initial

values 106–107
overview 102–103
processing form

input 107–108
route for 104

validation
@ValidateWith

method 130–131
built-in validators 126–128
displaying errors on

form 132–134
JSR-303 validation 131–132
partial validation 128–129
validate() method 129–130

V

@Valid annotation 128
@ValidateWith annotation 127,

130–131
validation

built-in validators 126–128
constraints 51
custom validators

@ValidateWith
annotation 130–131

JSR-303 validation 131–132
validate() method 129–130

displaying errors on
form 132–134

partial validation 128–129
versions of RESTful

applications 70
view templates

advantages to using 178–181
assets

CoffeeScript 200–201
LESS 199–200
using 201

complexity of code 184
expression scope 183–184
if/else statements 186–187
includes 187–193

internationalization
defined 202
message files 202–203
using in application

203–204
iterating 184–186
layouts 193–199
template body 181–183
template definition 181

views directory 17

W

WAR file, packaging as 270
warehouse example

application 22, 68–70
web frameworks

HTTP in 6
simplicity 7

WebSockets
example using 227–230
overview 223–227
results 225
setting up front proxy 267

where() method 170
Windows

production mode on 263
setting PATH variable 10

@With annotation 89–91
write() method 225
WWW-Authenticate header 238

X

X-Forwarded-For header 267
XML (Extensible Markup Lan-

guage)
body parsers 123
Scala templates 181

XSS. See cross-site scripting

Y

YAML data file 166–168

Leroux ● de Kaper

F
or a Java developer, the Play web application framework
is a breath of fresh air. With Play you get the power of
Scala’s strong type system and functional programming

model, and a rock-solid Java API that makes it a snap to create
stateless, event-driven, browser-based applications ready to
deploy against your existing infrastructure.

Play for Java teaches you to build Java-based web applications
using Play 2. This book starts with an overview example and
then explores each facet of a typical application by discussing
simple snippets as they are added to a larger example. Along
the way, you’ll contrast Play and JEE patterns and learn how
a stateless web application can fi t seamlessly in an enterprise
Java environment. You’ll also learn how to develop asynchro-
nous and reactive web applications.

What’s Inside
● Build Play 2 applications using Java
● Leverage your JEE skills
● Work in an asynchronous way
● Secure and test your Play application

The book requires a background in Java. No knowledge of
Play or of Scala is assumed.

Nicolas Leroux is a core developer of the Play framework.
Sietse de Kaper develops and deploys Java-based Play
applications.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/PlayforJava

$49.99 / Can $52.99 [INCLUDING eBOOK]

Play FOR JAVA

JAVA/WEB DEVELOPMENT

M A N N I N G

“Helps you transition
to more productive ways

 to build modern web apps.”
—From the Foreword by
 James Ward, Typesafe

“The easiest way to learn
 the easiest web framework.”—Franco Lombardo

 Molteni Informatica

“The defi nitive guide
 to Play 2 for Java.”

—Ricky Yim, DiUS Computing

“A good cocktail of theory
 and practical information.”—Jeroen Nouws, XTI

“An excellent tutorial on
 the Play 2 framework.”—Lochana C. Menikarachchi

PhD, University of Connecticut

SEE INSERT

	Play for Java
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the authors

	About the cover illustration

	Part 1 Introduction and first steps
	1 An introduction to Play
	1.1 What Play is
	1.1.1 Key features
	1.1.2 Java and Scala
	1.1.3 Play is not Java EE

	1.2 High-productivity web development
	1.2.1 Working with HTTP
	1.2.2 Simplicity, productivity, and usability

	1.3 Reactive programming
	1.3.1 Event-driven
	1.3.2 Scalable
	1.3.3 Resilient
	1.3.4 Responsive

	1.4 Play 2 enterprise features
	1.4.1 Simplicity
	1.4.2 Traditional data access
	1.4.3 Flexibility
	1.4.4 Integration
	1.4.5 Large-team applications
	1.4.6 Security
	1.4.7 Modularity

	1.5 Hello Play!
	1.5.1 Installing Play
	1.5.2 Creating your first application
	1.5.3 Play application structure
	1.5.4 Running the application
	1.5.5 Accessing the running application
	1.5.6 Changing the controller class
	1.5.7 Add a compilation error
	1.5.8 Use an HTTP request parameter
	1.5.9 Add an HTML page template

	1.6 The console
	1.7 Summary

	2 The parts of an application
	2.1 Introducing our application
	2.2 A rundown of a Play application
	2.3 Play’s configuration files
	2.4 Build configuration files
	2.5 Public assets
	2.6 Application code
	2.6.1 Compiled assets

	2.7 Setting up an IDE
	2.7.1 Eclipse
	2.7.2 NetBeans
	2.7.3 IntelliJ IDEA
	2.7.4 Using a debugger

	2.8 Summary

	3 A basic CRUD application
	3.1 Adding a controller and actions
	3.2 Mapping URLs to action methods using routes
	3.3 Adding a model and implementing functionality
	3.3.1 Creating a model class

	3.4 Mocking some data
	3.5 Implementing the list method
	3.5.1 The list template

	3.6 Adding the product form
	3.6.1 Constructing the form object
	3.6.2 Rendering the HTML form
	3.6.3 Rendering input fields

	3.7 Handling the form submission
	3.8 Adding a delete button
	3.9 Summary

	Part 2 Core functionality
	4 An enterprise app, Play-style
	4.1 Recalling what an enterprise application is
	4.2 Determining today’s enterprise application challenges
	4.3 Understanding Play’s application in an enterprise context
	4.4 Defining our warehouse enterprise application
	4.5 Summary

	5 Controllers— handling HTTP requests
	5.1 Controllers and action methods
	5.1.1 Action methods
	5.1.2 Examining our controller

	5.2 Returning results from action methods
	5.2.1 Results
	5.2.2 Redirect result
	5.2.3 Using results

	5.3 Using routing to wire URLs to action methods
	5.3.1 Translating HTTP to Java code
	5.3.2 The routes files explained
	5.3.3 Dynamic path parts
	5.3.4 Completing our routes file
	5.3.5 Reverse routing

	5.4 Interceptors
	5.4.1 The @With annotation
	5.4.2 Explaining our CatchAction
	5.4.3 Action composition

	5.5 About scopes
	5.5.1 A bit of history about the scopes
	5.5.2 Storing data with Play
	5.5.3 The context object
	5.5.4 The request scope
	5.5.5 The response scope
	5.5.6 The session scope
	5.5.7 The flash scope
	5.5.8 What about security?

	5.6 Summary

	6 Handling user input
	6.1 Forms
	6.1.1 Displaying the new product form
	6.1.2 Displaying the edit product form
	6.1.3 Processing form input

	6.2 Data binding
	6.2.1 Binding single values
	6.2.2 Binding multiple values
	6.2.3 Custom data binders and formatters

	6.3 Body parsers
	6.3.1 The body-parser API

	6.4 Validation
	6.4.1 Using the built-in validators
	6.4.2 Partial validation
	6.4.3 Creating a custom validator
	6.4.4 Displaying the validation errors on the form

	6.5 File uploads
	6.6 Summary

	7 Models and persistence
	7.1 Modeling the real world in code
	7.1.1 The reasons for getters and setters
	7.1.2 Let Play eliminate some noise for you
	7.1.3 Creating our classes

	7.2 Persistence and Object-Relational Mapping (ORM)
	7.2.1 About relational databases
	7.2.2 Bridging the relational world and the OO world
	7.2.3 Introducing Ebean

	7.3 Mapping basic entities
	7.3.1 Configuring Ebean and the database
	7.3.2 Inspecting the H2 database
	7.3.3 Saving our first entities

	7.4 Mapping relationships
	7.4.1 Mapping a one-to-many relationship
	7.4.2 Making the one-to-many relationship bidirectional
	7.4.3 Giving our warehouse an address
	7.4.4 Mapping the product–tag relationship

	7.5 Querying for objects
	7.5.1 Retrieving by ID
	7.5.2 Using the Finder API
	7.5.3 Loading initial data
	7.5.4 Creating more complex queries

	7.6 Using JPA instead of Ebean
	7.6.1 Configuring Play
	7.6.2 Adding Persistence.xml
	7.6.3 Built-in JPA helpers

	7.7 Summary

	8 Producing output with view templates
	8.1 The benefits of compiled, type-safe templates
	8.2 Scala template syntax
	8.2.1 Template definition
	8.2.2 Template body
	8.2.3 Expression scope

	8.3 Your basic building blocks
	8.3.1 Iterating
	8.3.2 Making decisions

	8.4 Structuring pages with template composition
	8.4.1 Includes
	8.4.2 Layouts

	8.5 Using LESS and CoffeeScript: the asset pipeline
	8.5.1 LESS
	8.5.2 CoffeeScript
	8.5.3 The asset pipeline

	8.6 Internationalization
	8.6.1 Configuration and message files
	8.6.2 Using messages in your application

	8.7 Summary

	Part 3 Advanced topics
	9 Asynchronous data
	9.1 What do we mean by asynchronous data?
	9.2 Handling asynchronous data
	9.2.1 Handling asynchronous requests
	9.2.2 Returning the asynchronous result

	9.3 Scheduling asynchronous tasks
	9.4 Streaming HTTP responses
	9.4.1 Standard responses and Content-Length header
	9.4.2 Serving files
	9.4.3 Chunked responses

	9.5 Unidirectional communication with Comet
	9.6 Bidirectional communication with WebSockets
	9.6.1 WebSockets explained
	9.6.2 A more advanced application with WebSockets

	9.7 Summary

	10 Security
	10.1 Play security concepts
	10.1.1 Play 2 session
	10.1.2 Cross-site scripting
	10.1.3 SQL injection
	10.1.4 Cross-site request forgery

	10.2 Adding basic authentication with filters
	10.3 Fine-grained authentication with action composition
	10.4 Summary

	11 Modules and deployment
	11.1 Modules
	11.1.1 Using modules
	11.1.2 Creating modules

	11.2 Splitting your application into multiple sub-applications
	11.3 Deploying to production
	11.3.1 Packing up your application
	11.3.2 Working with multiple configurations
	11.3.3 Creating native packages for a package manager
	11.3.4 Setting up a front-end proxy
	11.3.5 Using SSL
	11.3.6 Deploying to a cloud provider
	11.3.7 Deploying to an application server

	11.4 Summary

	12 Testing your application
	12.1 Testing Play applications
	12.1.1 Writing tests
	12.1.2 Running tests

	12.2 Functional testing
	12.2.1 Testing your controllers
	12.2.2 Template testing
	12.2.3 Testing the router

	12.3 Integration testing
	12.3.1 Testing your HTTP interface
	12.3.2 Browser testing

	12.4 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

