
Practical Hadoop
Migration

How to Integrate Your RDBMS with the
Hadoop Ecosystem and Re-Architect
Relational Applications to NoSQL
—
Bhushan Lakhe
Foreword by Milind Bhandarkar

www.allitebooks.com

http://www.allitebooks.org

 Practical Hadoop
Migration

 How to Integrate Your RDBMS with
the Hadoop Ecosystem and

Re-Architect Relational
Applications to NoSQL

 Bhushan Lakhe

www.allitebooks.com

http://www.allitebooks.org

 Practical Hadoop Migration: How to Integrate Your RDBMS with the Hadoop Ecosystem and
Re-Architect Relational Applications to NoSQL

Bhushan Lakhe
Darien, Illinois
USA

ISBN-13 (pbk): 978-1-4842-1288-2 ISBN-13 (electronic): 978-1-4842-1287-5
DOI 10.1007/978-1-4842-1287-5

Library of Congress Control Number: 2016948866

Copyright © 2016 by Bhushan Lakhe

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Robert Hutchinson
Development Editor: Matthew Moodie
Technical Reviewer: Robert L. Geiger
Editorial Board: Steve Anglin, Aaron Black, Pramila Balan, Laura Berendson, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James
Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Designed by FreePik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go
to www.apress.com/source-code/ .

 Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

 To my mother….

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword ... xv

About the Author ... xvii

About the Technical Reviewer .. xix

Acknowledgments .. xxi

Introduction .. xxiii

 ■ Chapter 1: RDBMS Meets Hadoop: Integrating, Re-Architecting,
and Transitioning .. 1

 ■ Part I: Relational Database Management Systems:
A Review of Design Principles, Models and
Best Practices .. 25

 ■Chapter 2: Understanding RDBMS Design Principles 27

 ■Chapter 3: Using SSADM for Relational Design 53

 ■Chapter 4: RDBMS Design and Implementation Tools 89

 ■ Part II: Hadoop: A Review of the Hadoop Ecosystem,
NoSQL Design Principles and Best Practices 101

 ■Chapter 5: The Hadoop Ecosystem ... 103

 ■ Chapter 6: Re-Architecting for NoSQL: Design Principles,
Models and Best Practices ... 117

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

 ■ Part III: Integrating Relational Database Management
Systems with the Hadoop Distributed File System 149

 ■Chapter 7: Data Lake Integration Design Principles 151

 ■ Chapter 8: Implementing SQOOP and Flume-based Data
Transfers ... 189

 ■ Part IV: Transitioning from Relational to NoSQL
Design Models .. 207

 ■ Chapter 9: Lambda Architecture for Real-time Hadoop
Applications .. 209

 ■Chapter 10: Implementing and Optimizing the Transition 253

 ■ Part V: Case Study for Designing and Implementing
a Hadoop-based Solution ... 277

 ■Chapter 11: Case Study: Implementing Lambda Architecture 279

Index .. 303

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Foreword ... xv

About the Author ... xvii

About the Technical Reviewer .. xix

Acknowledgments .. xxi

Introduction .. xxiii

 ■ Chapter 1: RDBMS Meets Hadoop: Integrating, Re-Architecting,
and Transitioning .. 1

Conceptual Differences Between Relational and
HDFS NoSQL Databases .. 2

Relational Design and Hadoop in Conjunction:
Advantages and Challenges .. 6

Type of Data .. 9

Data Volume .. 9

Business Need .. 10

Deciding to Integrate, Re-Architect, or Transition 10

Type of Data .. 10

Type of Application ... 11

Business Objectives.. 12

How to Integrate, Re-Architect, or Transition ... 13

Integration .. 13

Re-Architecting Using Lambda Architecture ... 16

Transition to Hadoop/NoSQL ... 21

Summary ... 23

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

 ■ Part I: Relational Database Management Systems:
A Review of Design Principles, Models and
Best Practices .. 25

 ■Chapter 2: Understanding RDBMS Design Principles 27

Overview of Design Methodologies ... 28

Top-down .. 28

Bottom-up ... 29

SSADM .. 29

Exploring Design Methodologies ... 30

Top-down .. 30

Bottom-up ... 34

SSADM .. 36

Components of Database Design .. 40

Normal Forms ... 41

Keys in Relational Design ... 45

Optionality and Cardinality.. 46

Supertypes and Subtypes ... 48

Summary ... 51

 ■Chapter 3: Using SSADM for Relational Design 53

Feasibility Study .. 54

Project Initiation Plan.. 55

Requirements and User Catalogue ... 58

Current Environment Description ... 61

Proposed Environment Description .. 63

Problem Defi nition .. 65

Feasibility Study Report .. 66

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Requirements Analysis .. 68

Investigation of Current Environment ... 68

Business System Options ... 74

Requirements Specifi cation .. 75

Data Flow Model ... 75

Logical Data Model ... 77

Function Defi nitions .. 78

Effect Correspondence Diagrams (ECDs).. 79

Entity Life Histories (ELHs).. 81

Logical System Specifi cation .. 83

Technical Systems Options ... 83

Logical Design .. 84

Physical Design ... 86

Logical to Physical Transformation ... 86

Space Estimation Growth Provisioning ... 87

Optimizing Physical Design .. 87

Summary ... 88

 ■Chapter 4: RDBMS Design and Implementation Tools 89

Database Design Tools .. 90

CASE tools .. 90

Diagramming Tools ... 95

Administration and Monitoring Applications ... 96

Database Administration or Management Applications .. 97

Monitoring Applications .. 98

Summary ... 99

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

 ■ Part II: Hadoop: A Review of the Hadoop Ecosystem,
NoSQL Design Principles and Best Practices 101

 ■Chapter 5: The Hadoop Ecosystem ... 103

Query Tools .. 104

Spark SQL ... 104

Presto ... 107

Analytic Tools .. 108

Apache Kylin ... 109

In-Memory Processing Tools ... 112

Flink .. 113

Search and Messaging Tools ... 115

Summary ... 116

 ■ Chapter 6: Re-Architecting for NoSQL: Design Principles,
Models and Best Practices ... 117

Design Principles for Re-Architecting Relational Applications to
NoSQL Environments ... 118

Selecting an Appropriate NoSQL Database ... 118

Concurrency and Security for NoSQL ... 130

Designing the Transition Model ... 132

Denormalization of Relational (OLTP) Data ... 132

Denormalization of Relational (OLAP) Data ... 136

Implementing the Final Model ... 138

Columnar Database as a NoSQL Target .. 139

Document Database as a NoSQL Target ... 143

Best Practices for NoSQL Re-Architecture .. 146

Summary ... 148

■ CONTENTS

xi

 ■ Part III: Integrating Relational Database Management
Systems with the Hadoop Distributed File System 149

 ■Chapter 7: Data Lake Integration Design Principles 151

Data Lake vs. Data Warehouse .. 152

Data Warehouse .. 152

Data Lake .. 156

Concept of a Data Lake ... 157

Data Reservoirs .. 158

Exploratory Lakes ... 167

Analytical Lakes .. 181

Factors for a Successful Implementation .. 187

Summary ... 188

 ■ Chapter 8: Implementing SQOOP and Flume-based
Data Transfers .. 189

Deciding on an ETL Tool .. 190

Sqoop vs. Flume ... 190

Processing Streaming Data .. 191

Using SQOOP for Data Transfer ... 195

Using Flume for Data Transfer ... 198

Flume Architecture ... 199

Understanding and Using Flume Components.. 200

Implementing Log Consolidation Using Flume ... 202

Summary ... 204

■ CONTENTS

xii

 ■ Part IV: Transitioning from Relational to NoSQL
Design Models .. 207

 ■ Chapter 9: Lambda Architecture for Real-time Hadoop
Applications .. 209

Defi ning and Using the Lambda Layers ... 210

Batch Layer ... 211

Serving Layer .. 224

Speed Layer .. 229

Pros and Cons of Using Lambda ... 234

Benefi ts of Lambda... 234

Issues with Lambda .. 235

The Kappa Architecture .. 236

Future Architectures1 ... 238

A Bit of History .. 238

Butterfl y Architecture.. 240

Summary ... 250

 ■Chapter 10: Implementing and Optimizing the Transition 253

Hardware Confi guration .. 254

Cluster Confi guration .. 254

Operating System Confi guration ... 255

Hadoop Confi guration .. 257

HDFS Confi guration .. 258

Choosing an Optimal File Format ... 266

Indexing Considerations for Performance .. 274

Choosing a NoSQL Solution and Optimizing Your Data Model 275

Summary ... 276

■ CONTENTS

xiii

 ■ Part V: Case Study for Designing and Implementing a
Hadoop-based Solution .. 277

 ■Chapter 11: Case Study: Implementing Lambda Architecture 279

The Business Problem and Solution .. 280

Solution Design ... 280

Hardware .. 280

Software ... 282

Database Design ... 282

Implementing Batch Layer .. 286

Implementing the Serving Layer... 289

Implementing the Speed Layer ... 292

Storage Structures (for Master Data and Views) .. 296

Other Performance Considerations... 297

Reference Architectures ... 298

Changes to Implementation for Latest Architectures ... 299

Summary ... 301

Index .. 303

xv

 Foreword

 We are in the midst of one of the biggest transformations of Information Technology
(IT). Rapidly evolving business requirements have demanded agility in all aspects of IT.
As more and more paper-based business processes are getting digital, rapid application
development, staging, and deployment have become the norm. In addition, the data
exhaust from these digital applications has become enormous and needs to be analyzed
in real time. Growing volumes of historical data is considered valuable for improving
business efficiency and identifying future trends and disruptions. Ubiquitous end-user
connectivity, cost-efficient software and hardware sensors, and democratization of
content production have led to the deluge of data generated in enterprises. As a result,
the traditional data infrastructure has to be revamped. Of course, this cannot be done
overnight. To prepare your IT to meet the new requirements of the business, one has to
carefully plan re-architecting the data infrastructure so that existing business processes
remain available during this transition.

 Hadoop and NoSQL platforms have emerged in the last decade to address the
business requirements of large web-scale companies. Capabilities of these platforms
are evolving rapidly, and, as a result, have created a lot of hype in the industry. However,
none of these platforms is a panacea for all the needs of a modern business. One needs
to carefully consider various business use cases and determine which platform is most
suitable for each specific use case. Introducing immature platforms for use cases that
are not suited for them is the leading cause of failure of data infrastructure projects. Data
architects of today need to understand a variety of data platforms, their design goals, their
current and future data protection capabilities, access methods, and performance sweet
spots, and how they compare in features against traditional data platforms. As a result,
traditional database administrators and business analysts are overwhelmed by the sheer
number of new technologies and the rapidly changing data landscape.

 This book is written with those readers in mind. It cuts through the hype and gives
a practical way to transition to the modern data architectures. Although it may feel like
new technologies are emerging every day, the key to evaluating these technologies is to
align your current and future business use cases and requirements to the design-center
of these new technologies. This book helps readers understand various aspects of the
modern data platforms and helps navigate the emerging data architecture. I am confident
that it will help you avoid the complexity of implementing modern data architecture and
allow seamless transition for your business.

 —Milind Bhandarkar, PhD
 Founder and CEO, Ampool, Inc.

■ FOREWORD

xvi

 Milind Bhandarkar was the founding member of the team at Yahoo! that took Apache
Hadoop from 20-node prototype to datacenter-scale production system, and has been
contributing and working with Hadoop since version 0.1.0. He started the Yahoo! Grid
solutions team focused on training, consulting, and supporting hundreds of new migrants
to Hadoop. Parallel programming languages and paradigms has been his area of focus
for over 20 years. He has worked at the Center for Development of Advanced Computing
(C-DAC), National Center for Supercomputing Applications (NCSA), Center for Simulation
of Advanced Rockets, Siebel Systems, Pathscale Inc. (acquired by QLogic), Yahoo!, and
Linkedin. Until 2013, Milind was chief architect at Greenplum Labs, a division of EMC.
Most recently, he was chief scientist at Pivotal Software. Milind holds his PhD degree in
computer science from the University of Illinois at Urbana-Champaign.

xvii

 About the Author

 Bhushan Lakhe is a Big Data professional, technology
evangelist, author, and avid blogger who resides in the
windy city of Chicago. After graduating in 1988 from
one of India’s leading universities (Birla Institute of
Technology and Science, Pilani), he started his career
with India’s biggest software house, Tata Consultancy
Services. Thereafter, he joined ICL, a British computer
company, and worked with prestigious British clients.
Moving to Chicago in 1995, he worked as a consultant
with Fortune 50 companies like Leo Burnett, Blue Cross,
Motorola, JPMorgan Chase, and British Petroleum,
often in a critical and pioneering role.

 After a seven-year stint executing successful Big
Data (as well as data warehouse) projects for IBM’s
clients (and receiving the company’s prestigious
Gerstner Award in 2012), Mr. Lakhe spent two years
helping Unisys Corporation’s clients with Big Data

implementations, and thereafter two years as senior vice president (information and data
architecture) at Ipsos (the world’s third-largest market research corporation), helping
design global data architecture and Big Data strategy.

 Currently, Mr. Lakhe heads the Big Data practice for HCL America, a $7 billion
global consulting company with offices in 31 countries. At HCL, Mr. Lakhe is involved in
architecting Big Data solutions for Fortune 500 corporations. Mr. Lakhe is active in the
Chicago Hadoop community and is co-organizer for a Meetup group (www.meetup.com/
ambariCloud-Big-Data-Meetup/) where he regularly talks about new Hadoop
technologies and tools. You can find Mr. Lakhe on LinkedIn at www.linkedin.com/in/
bhushanlakhe .

http://www.meetup.com/ambariCloud-Big-Data-Meetup/
http://www.meetup.com/ambariCloud-Big-Data-Meetup/
http://www.linkedin.com/in/bhushanlakhe
http://www.linkedin.com/in/bhushanlakhe

xix

 About the Technical
Reviewer

 Robert L. Geiger is currently Chief Architect and
acting VP of engineering at Ampool Inc., an early stage
startup in the Big Data and analytics infrastructure
space. Before joining Ampool, he worked as an
architect and developer in the solutions/SaaS space
at a B2B deep learning based startup, and prior to that
as an architect and team lead at Pivotal Inc., working
in the areas of security and analytics as a service
for the Hadoop ecosystem. Prior to Pivotal, Robert
served as a developer and VP, engineering at a small
distributed database startup, TransLattice. Robert spent
several years in the security space working on and
leading teams in at Symantec on distributed intrusion
detection systems. His career started with Motorola
Labs in Illinois where he worked on distributed IP over
wireless systems, crypto/security, and e-commerce
after graduating from University of Illinois Champaign-
Urbana.

xxi

 Acknowledgments

 This is my second book for Apress (the first being Practical Hadoop Security) continuing
the Practical Hadoop series, and I want to thank Apress for giving me the opportunity
to write it. I would like to thank the Hadoop community and the user forums that bring
innovation to this technology and keep the world interested! I have learned a lot from the
selfless people in the Hadoop community who believe in being Good Samaritans.

 On a personal note, I want to thank my friend Satya Kondapalli for making a forum
of Hadoop enthusiasts available through our Meetup group Ambaricloud. I also want
to thank our sponsors Hortonworks for supporting us. Finally, I would like to thank my
friend Milind Bhandarkar (of Ampool) for taking time from his busy schedule to write a
foreword and a whole section about his new Butterfly architecture.

 I am grateful to my editors, Rita Fernando, Robert Hutchinson, and Matthew Moodie
at Apress for their help in getting this book toegther. Rita has been there throughout to
answer any questions that I have, to improve my drafts, and to keep me on schedule.
Robert Hutchinson’s help with the book structure has been immensely valuable. And
I am also very thankful to Robert Geiger for taking time to review my second book
technically. Bob always had great suggestions for improving a topic, recommending
additional details, and of course resolving technical shortcomings.

 Finally, the writing of this book wouldn’t have been possible without the constant
support from my family (my wife, Swati, and my kids, Anish and Riya) for the second
time in the last three years, and I’m looking forward to spending lots more time with all of
them.

xxiii

 Introduction

 I have spent more than 20 years consulting for large corporations, and when I started,
it was just relational databases. Eventually, the volumes of accumulated historical data
grew, and it was not possible to manage and analyze this data with good performance.
So, corporations started thinking about separating the parts (of data) useful for analaysis
(or generating insights) from the descriptive data. They soon realized that a fundamental
change was needed in the relational design, and a new paradigm called data warehousing
was born. Thanks to the work done by Bill Inmon and Ralph Kimball, the world started
thinking (and designing) in terms of Star schemas and dimensions and facts. ETL (extract,
transform, load) processes were designed to load the data warehouses.

 The next step was making sure that large volumes of data could be retrieved
with good performance. Specialized software was developed, and RDBMS solutions
(Oracle, Sysbase, SQL Server) added processing for data warehouses. For the next level
of performance, it was clear that data needed to be preprocessed, and data cubes were
designed. Since magnetic disk drives were slow, SSDs (solid state devices) were designed,
and software that cached (or held data in RAM) data for speed of processing and retrieval
became popular. So, with all these advanced measures for performance, why is Hadoop
or NoSQL needed? For two reasons.

 First, it is important to note that all this while, the data being processed either was
relational data (for RDBMS) or had started as relational data (for data warehouses). This
was structured data, and the type of analysis (and insights) possible was very specific (to
the application that generated the data). The rigid structure of a warehouse put severe
limits on the insights or data explorations that were possible, since you start with a design
and fit data into it. Also, due to the very high volumes, warehouses couldn’t perform per
expectations, and a newer technology was needed to effectively manage this data.

 Second, in recent years, new types of data were introduced: unstructured or
semi-structured data. Social media became very popular and were a new avenue for
corporations to communicate directly with people once they realized the power behind
it. Corporations wanted to know what people thought about their products, services,
employees, and of course the corporations themselves. Also, with e-commerce forming
a large part of all the businesses, corporations wanted to make sure they were preferred
over their competitors—and if that was not the case, they wanted to know why. Finally,
there was a need to analyze some other types of unstructured data, like sensor data from
electrical and electronic devices, or data from mobile devices sensors, that was also very
high volume. All this data was usually hundreds of gigabytes per day.

 Conventional warehouse technology was incapable of processing or managing this
data. So, a new technology had to be designed to process it, and with good performance
(since total volumes were in terabytes). In some cases, as the unstructured data (or
insights from it) needed to be combined with structured data, the new technology needed
to support interfacing with data warehouses or RDBMS.

■ INTRODUCTION

xxiv

 Hadoop offers all these capabilities and in addition allows a schema-on-read
(meaning you can define metadata while performing analysis) that offers a lot of flexiblity
for performing exploratory analysis or generating new insights from your data.

 This gets us to the final question: how do you migrate or integrate your existing
RDBMS-based applications with Hadoop and analyze structured as well as unstructured
data in tandem? Well, you have to read rest of the book to know that!

 Who This Book Is For
 This book is an excellent resource for IT management planning to migrate or integrate
their existing RDBMS environment with Big Data technologies or Big Data architects who
are designing a migration/integration process. This book is also for Hadoop developers
who want to implement migration/integration process or students who’d like to learn
about designing Hadoop applications that can successfully process relational data along
with unstructured data. This book assumes a basic understanding of Hadoop, Kerberos,
relational databases, Hive, Spark, and an intermediate level understanding of Linux.

 Downloading the Code
 The source code for this book is available in ZIP file format in the Downloads section of
the Apress Web site (www.apress.com/9781484212882).

 Contacting the Author
 You can reach Bhushan Lakhe at blakhe@aol.com or bclakhe@gmail.com.

http://www.apress.com/9781484212882

1© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_1

 CHAPTER 1

 RDBMS Meets Hadoop:
Integrating, Re-Architecting,
and Transitioning

 Recently, I was at the Strata + Hadoop World Conference, chatting with a senior executive
of a major food corporation who used a relational solution for storing all its data. I asked
him casually if they were thinking about using a Big Data solution, and his response
was: “We already did and it’s too slow!” I was amazed and checked the facts again. This
corporation had even availed of the consulting services of a major Hadoop vendor and
yet was still not able to harness the power of Big Data.

 I thought about the issue and possible reasons why this might have occurred. To start
with, a Hadoop vendor can tune his Hadoop installation but can’t guarantee that generic
tuning will be valid for specific type of data. Second, the food corporation’s database
administrators and architects probably had no idea how to transform their relational data
for use with Hadoop. This is not an isolated occurrence, and most of the corporations
who want to make the transition to using of relational data with Hadoop are in a similar
situation. The result is a Hadoop cluster that’s slow and inefficient and performs nowhere
close to the expectations that Big Data hype has generated.

 Third, all NoSQL databases are not created equal. NoSQL databases vary greatly in
their handling of data as well as in the models they use internally to manage data. They
only work well with certain kind of data. So, it’s very important to know the type of your
data and select a NoSQL solution that matches it.

 Finally, success in applying NoSQL solutions to relational data depends on
identifying your objective in using Hadoop/NoSQL and on accommodating your data
volumes. Hadoop is not a cure-all that can magically speed up all your data processing—
it can only be used for specific type of processing (which I discuss further in this chapter).
And Hadoop works best for larger volumes of data and is not efficient for lower data
volumes due to the various overheads associated.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1287-5_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1848-8_1

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

2

 So, having defined the problem, let’s think about a solution. You are probably
familiar with the myriad design methodologies and frameworks that are available for
use with relational data, but do you know of similar resources for Hadoop? Probably not.
There is a good reason for that—none exists yet. Lambda is being developed as a design
methodology (Chapter 12), but it is not mature yet and not very easy to implement.

 So, what’s the alternative? Do you need to rely on the expertise of your data architects
to design this transition, or are there generic steps you can follow? How do you ensure an
efficient and functionally reliable transition? I answer these questions in this book and
demonstrate how you can successfully transition your relational data to Hadoop.

 First, it is important to understand how Hadoop and NoSQL differ from the relational
design. I briefly discuss that in this chapter and also discuss the benefits as well as
challenges associated with using Hadoop and NoSQL.

 It is also important to decide whether your data (and what you want to do with it) is
suited for use with Hadoop. Therefore, factors such as type of data, data volume, and your
business needs are important to consider. There are some more factors that you need to
consider, and the latter part of this chapter discusses them at length. Typically, the four
“V”s (volume, velocity, variety, and veracity) separate NoSQL data from relational data,
but that rule of thumb may not always hold true.

 So, let me start the discussion with conceptual differences between relational
technology and Hadoop. That’s the next section.

 Conceptual Differences Between Relational and
HDFS NoSQL Databases
 Database design has had a few facelifts since E.F. Codd presented his paper on relational
design in 1970. 1 Leading relational database systems today (such as Oracle or Microsoft
SQL Server) may not be following Codd’s vision completely; but definitely use the
underlying concepts without much of modification. There is a central database server
that holds the data and provides access to users (as defined by Database Administrator)
after authentication. There are database objects such as views (for managing granular
permissions) or triggers (to manipulate data as per data ‘relations’) or indexes for
performance (while reading or modifying data).

 The main feature, however, is that relations can be defined for your data. Let me
explain using a quick example. Think of an insurance company selling various (life,
disability, home) policies to individual customers. A good identifier to use (for identifying
a customer uniquely) is customers’ social security number. Since a customer may buy
multiple policies from the insurance company and those details may be stored in separate
database tables, there should be a way to relate all that data to the customer it belongs to.

 Relational technology implements that easily by making the social security
number as a primary key or primary identifier for the customer table and a foreign
key or referential identifier (an identifier to identify the parent or originator of the
information) for all the related tables, such as life_policies or home_policies .
Figure 1-1 summarizes a sample implementation.

 1 www.seas.upenn.edu/~zives/03f/cis550/codd.pdf “A Relational Model of Data for Large
Shared Data Banks”

http://dx.doi.org/10.1007/978-1-4842-1287-5_12
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

3

 As you can see in Figure 1-1 , the policy data is related to customers. This relation
is established using the social security number. So, all the policy records for a customer
can be retrieved using their social security number. Any modifications to the customer
identifier (social security number) are propagated to maintain data integrity.

 Next, let me discuss Hadoop and NoSQL databases that use HDFS for storage. HBase
is a popular NoSQL database and therefore can be used as an example. Since HDFS is
a distributed file system, data will be spread across all the data nodes in contrast to a
central server. Kerberos is used for authentication, but HBase has very limited capability
for granular authorization as opposed to relational databases. HBase offers indexing
capabilities, but they are very limited and are no match for the advanced indexing
techniques offered by RDBMS (relational database management systems). However, the
main difference is absence of relations. Unlike RDBMSs, HBase data is not related. Data
for HBase tables is simply held in HDFS files.

 As you can see in Figure 1-2 , the policy data is not related automatically with a
customer. Any relating that’s necessary will have to be done programmatically. For example,
if you need to list all the policies that customer “Isaac Newton” holds, you will need to
know the tables that hold policies for customers (here, Hbase tables Life_policies and
 Home_policies). Then you will need to know a common identifier to use (social security
number) to match the rows that belong to this customer. Any changes to the identifier can’t
be propagated automatically and will need to be implemented manually.

 Figure 1-1. Relational storage of data (logical)

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

4

 So, for example, if an error in social security number is discovered, then all the files
containing that information will need to be updated separately (programmatically).
Unlike RDBMS, HDFS or HBase doesn’t offer any utilities to do that for you. The reason
is that HBase (or any other HDFS-based NoSQL databases) doesn’t offer any referential
integrity—simply due to their purpose. HBase is not meant for interactive queries over a
small dataset; it is best suited for a large batch processing environment (similar to data
warehousing environments) involving immutable data. Till recently, updates for HBase
involved loading the changed row in a staging table and doing a left outer join with the
main data table to overwrite the row (making sure the staging and main data table had
the same key).

 With the new version of HBase, updates, deletes, and inserts are now supported,
but for small datasets these operations will be very slow (compared to RDBMS) because
they’re executed as Hadoop MapReduce jobs that have high latency and incur substantial
overheads in job submission and scheduling.

 Starting with a large block size used by HDFS (default 64 MB) and distributed
architecture that spreads data over a large number of DataNodes (helping parallel reads
using MapReduce or Yarn), HBase (and other HDFS based NoSQL databases) are meant
to perform efficiently for large datasets. Any transformations that need to be applied
involve reading the whole table and not a single row. Distributed processing on DataNodes
using MapReduce (or Yarn on recent versions) provides the speed and efficiency for such
reads. Again, due to the distributed architecture, it is much more efficient to write the
transformed data to a new “file” (or staging table for HBase). For the same reason, Hadoop
and NoSQL databases are better equipped to store (and process) large image or video files,
large blocks of natural language text, or semi-structured as well as sensor data.

Home_policies

Life_policies

Customer

234-56-2243~Albert~Einstein ~1 oak drive, Palatine, IL 60421~ 8472453333
345-86-1223~Stephen ~Hawking ~100 Maple ct. , Darien , IL ~60561~6304271623
453-65-2244~Thomas ~Edison~55 Pine st. , Naperville , IL 60660~6307246565
294-85-4553~Isaac~New ton~99 Redwood drive, Woodridge, IL 60561~6304275454

45341441 ~01/24/1962 ~N~Y~72~234-56-2243
41441442 ~03/18/1972 ~Y~Y~60~294-85-4553
41671443 ~10/12/1976 ~Y~N~64~453-65-2244
41489744 ~09/06/1968 ~N~N~82~345-86-1223

45341441~1 oak drive, Palatine, IL 60421~500,000~4,000~234 -56-2243
45356442~100 Maple ct. , Darien , IL 60561~750,000~5,000~345-86-1223
45987443~55 Pine st. , Naperville , IL 60660~1,100,000~8,000~45 3-65-2244
45671444 ~99 Redwood drive, Woodridge, IL 60561~300,000~2,000~29 4-85-4553

 Figure 1-2. NoSQL storage of data

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

5

 Compare this with a small page size for RDBMS (for example, Microsoft SQL Server
uses a page size of 8 KB) and absence of an efficient mechanism to distribute the read
(or update) operations and you will realize why NoSQL databases will always win in
any scenarios that involve data warehouses and large datasets. The strength of RDBMS,
though, is where there are small datasets with complex relationships and extensive
analysis is required on parts of it. Also, where referential integrity is important to be
implemented over a dataset, NoSQL databases are no match for RDBMS.

 To summarize, RDBMS is more suited for a large number of data manipulations for
smaller datasets where ACID (Atomicity, Consistency, Isolation, Durability) compliance
is necessary; whereas NoSQL databases are more suited for a smaller number of data
manipulations to large datasets that can work with the “eventual consistency” model.
Table 1-1 provides a handy comparison between the two technologies (relational and
NoSQL).

 Table 1-1. Comparative Features of RDBMS vs. NoSQL

 Feature HDFS-based NoSQL RDBMS

 1 Large datasets Efficient and fast Not efficient

 2 Small datasets Not efficient Efficient and fast

 3 Searches Not efficient Efficient and fast

 4 Large read operations Efficient and fast Not efficient

 5 Updates Not efficient Efficient and fast

 6 Data relations Not supported Supported

 7 Authentication/Authorization Kerberos Built-in

 8 Data storage Distributed over
DataNodes

 Central Database
server

 9 ACID compliant No Yes

 10 Concurrent updates to dataset Not supported Supported

 11 Fault tolerance Built-in Not built-in

 12 Scalability Easily scalable Not easily scalable

 Figure 1-3 shows the physical data storage configurations (for the preceding
example) including a Hadoop cluster (Hive/NoSQL) and RDBMS (Microsoft SQL Server).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

6

 Relational Design and Hadoop in Conjunction:
Advantages and Challenges
 The preceding section talked about how different these two technologies are. So, why
bother bringing them together? What’s the effort involved, and is it worth that effort? I’ll
discuss these questions one at a time.

DataNode3

Au
th

or
iz

at
io

n
(u

si
ng

 S
en

tr
y)

RD
BM

S
Au

th
or

iz
at

io
n

(u
se

r a
nd

 ro
le

 p
er

m
is

si
on

s)

RD
BM

S
En

cr
yp

tio
n

Au
th

en
tic

at
io

n
(u

si
ng

 K
er

be
ro

s)

DataNode2DataNode1

1

4 2 5

3 1

2

5

3

4

DataNodes
hold the
actual data
blocks

Please observe
two replicated
copies of each
data block
spread over
multiple
DataNodes

NameNode (holds Metadata only)

Filename Blocks DataNode
/usr/hive/warehouse/Customer

/usr/hive/warehouse/Life_policies

/usr/hive/warehouse/Home_policies

1 1, 2
4 1, 3
2 1, 3
3 2, 3
5 2, 3

NameNode
holds metadata
only

Hadoop cluster with NoSQL data

NoSQL
clients

RDBMS Server with Relational data
User databases
hold database
metadata as well
as user data

System database

User Database1
Tables: Customer,
Life_policies, Home_policies

User Database 2

Local
storage

RDBMS
clients

System
database holds
server metadata

Local storage
holds system
and user
databases

RD
BM

S
Au

th
en

tic
at

io
n

(u
si

ng
 R

DB
M

S
or

 O
S

lo
gi

ns
)

 Figure 1-3. Physical data storage configurations (NoSQL and RDBMS)

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

7

 I will start with the advantages of combining these two technologies. If you review
Table 1-1 , you will realize that these technologies complement each other nicely. If a
large volume of historical data is gathered via RDBMS, you can use NoSQL databases
to analyze it. That;s because Hadoop is better equipped to read large datasets and
transform them—the only condition being that transformation is applied to the whole
dataset (for efficiency). So, how best can you leverage use of Hadoop/NoSQL in your
environment? Here are a few ideas:

• Transform data into (valuable) information: Data, by itself, is
just numbers (or text). You need to add perspective to your data
in order for it to be valuable for your business needs. Hadoop can
assist you by generating a large number of analytics for your data.
For example, if Hadoop is used for analyzing the data generated
by auto-sensors, it can consolidate, summarize, and analyze the
data and provide reports by time-slices (such as hourly, daily,
weekly, and so on) and provide you vital statistics such as average
temperature of the engine, average crankshaft RPM, number of
warnings per hours, and so forth.

• Gain insights through mapping multiple data structures to
a single dataset: When using RDBMS for your data needs, you
are aware of the need to specify a data structure before using it.
Referring to the example in the last section, if SQL Server is used
to store Customer and policy data, then you need to define a user
database and Customer as well as policy table structures. You can
only store data after that. In contrast, Customer data within HDFS
is simply held as a file, and structure can be attached to it while
it is read. This concept, known as schema on read , offers a lot of
flexibility while reading the data. A good use of this concept might
be in a case where a fact table holds the sales figures for a product
and can be read as “Yearly sales” or also can be read as “Buying
trends by region.”

• Use historical data for predictive analysis: In a lot of cases, there
is a large amount of historical data to be analyzed and used for
predicting future trends. Hadoop can be (and is) successfully used
to churn through the terabytes of data, consolidate it, and use it in
your predictive models. For example, past garment-buying trends
in spring and fall for the prior ten years can assist a departmental
store in stocking the right type of garments; spending habits of
a customer over the last five years can help them mail the right
coupons to him.

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

8

• Build a robust fault-tolerant system: Hadoop offers fault
tolerance and redundancy by default. Each data block is
replicated thrice as default configuration and can be adjusted
as per the needs. RDBMS can be configured for real-time
replication, but any solution used to implement replication needs
extensive setup and monitoring and also impacts performance
due to replication overheads. In addition, due to the way updates
are implemented for Hadoop, there is fault tolerance for human
mistakes, too, since updated data is mostly written to a new file,
leaving original data unchanged.

• Serve a wide range of workloads : Hadoop can be used to cater
to a wide range of applications. For example, a social media
application where eventual consistency is acceptable or low-
latency reads as well as ad-hoc queries where performance
is paramount. With components (such as Spark) offering in-
memory processing or ACID compliance (Hive 0.14), Hadoop is
now a more versatile platform compared to any of the RDBMS.

• Design a linearly scalable system: The issue with scaling an
RDBMS-based system is that it only scales up—and that too not
easily. There is downtime and risk involved (since the server
needs to be supplemented with additional hardware resources)
and though newer versions (of RDBMS) support distributed
computing model, the necessary configuration is difficult and
needs complex setup and monitoring. Hadoop, in contrast, scales
out easily without any downtime, and it is easy and fast to add or
remove DataNodes for a Hadoop cluster.

• Design an extensible system: A Hadoop cluster is easily
extensible (features can be added easily without downtime).
Troubleshooting is easy due to extensive logging using the flexible
and comprehensive Log4j API and requires minimal maintenance
or manual intervention. Compare that with RDBMS, which
requires extensive monitoring and setup for continued normal
operation.

 If Hadoop deployment has so many advantages, why doesn’t everyone implement
it in their environment? The reason (as explained earlier) is that Hadoop is not the best
solution for all types of data or business needs. Additionally, even if there’s a match, there
are a number of challenges in introducing Hadoop to your organization, which I discuss
in the next section.

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

9

 Type of Data
 The following are things to consider, depending on the type of data you are dealing with:

• Workload: Hadoop is most suited for read-heavy workloads.
If you have a transactional system (currently using RDBMS),
then there is extra effort involved in deriving a denormalized
warehouse-like version of your database and having it ingested
via an appropriate Hadoop tool (such as Sqoop or Flume) into
HDFS. Any updates to this data have to be processed as reads
from source file, applying updates (as appropriate) and writing
out to a staging file that becomes the new source. Though new
versions of some NoSQL databases (Hive 0.14) support updates, it
is more efficient to handle them in this manner.

• High Latency: With most NoSQL databases, there is an increase
in latency with increasing throughput. If you need low latency
for your application, you will need to benchmark and adjust your
hardware resources. This task requires a good understanding
of Hadoop monitoring and various Hadoop daemons and also
expertise in configuring a Hadoop cluster.

• Data dependencies: If your relational data is column oriented
or nested (with multiple levels of nesting), you have more work
ahead of you. Since there is no join in NoSQL, you will need
to denormalize your data before you store it within a NoSQL
database (or HDFS). Also, cascading changes to dependent data
(similar to foreign key relationships within RDBMS) needs to be
handled programmatically. There are no tools available within
NoSQL databases to provide this functionality.

• Schema: Your schema (for data stored within RDBMS) is static
and if you need to make it semi-dynamic or completely dynamic,
you need to make appropriate changes in order to adapt it for
NoSQL usage.

 Data Volume
 Hadoop is not suitable for low data volumes due to the overheads it incurs while reading or
writing files (these tasks translate to MapReduce jobs and incur substantial overheads while
performing job submission or scheduling). There is a lot of debate about the “magic number”
you can use as critical volume for moving to Hadoop, but it varies for the type of data you have
and, of course, for your business needs. From my personal experience, Hadoop should only
be considered for volumes larger than 5 TB (and with a high growth rate).

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

10

 Business Need
 If your business need for moving to Hadoop doesn’t match your existing data, then
there is work involved—especially if it is the type of data Hadoop/NoSQL are not good
at processing. For example, if your business need is complex analytics for subsets of
normalized relational data with frequent updates, then you need to denormalize your data
and also establish a policy and timeline to apply the updates (once a day, twice a day, and
so on). There is also additional work involved in separating the fact data from dimensional
data as the need may be. If, however, you want to use Hadoop for analyzing the browsing
habits of thousands of your potential customers and determine what percentage of
that converted to actual sales, then the work involved may be minimal—because you
probably have all the required data available in separate NoSQL tables—albeit it may be in
unstructured or semi-structured format (which NoSQL has no problems processing).

 Of course, there may be more specific challenges for your environment, and I have
only discussed challenges in moving the data. There may be additional challenges in
modifying the front-end user interfaces (to work with Hadoop/NoSQL) as well!

 Deciding to Integrate, Re-Architect, or Transition
 Once you have decided to introduce Hadoop/NoSQL in your environment, here are
some of the next questions: how do you make Hadoop work best with your existing
applications/data? Do you transition some of your applications to Hadoop or simply
integrate existing applications with Hadoop? A slightly more drastic approach is to
completely re-architect your application for Hadoop/NoSQL usage.

 Unfortunately, there is no short answer to these questions, and the decision can
only be made after careful consideration of a number of relevant factors. The next section
discusses those factors.

 Type of Data
 The type of data you currently have (within your applications) can have an impact in
multiple ways:

• Structured/Unstructured data: If most of your application data is
structured and there is no possibility of adding any semi-structured
or unstructured data sources, then the best approach is integration.
It is best to integrate your existing applications with Hadoop/
NoSQL. You can either think about designing and implementing
a data lake, or if you only need to analyze a small part of your data,
then simply have a data-ingestion process to copy data into HDFS
and use Hive or HBase to process it for analysis and querying.
Alternatively, if you have a semi-structured or unstructured data
sources, then depending on their percentage (to structured data),
you can either transition your application completely to NoSQL or
re-architect your application partially (or completely) to NoSQL if
you have a large percentage of semi-structured/unstructured data
currently (or expected in the immediate future).

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

11

• Normalized relational data: If a large percentage of your data
is highly normalized relational data, then probably you have a
complex application with a high amount of data dependency
involved. Since NoSQL databases are not capable of supporting
data dependencies and relations, you can’t really think about
re-architecting or transitioning your application to NoSQL. Your
best chance is integration, and that too with additional effort.
You can think of a data lake but need to de-normalize and flatten
your data (remove hierarchical relationships) and remove all
the data dependencies. The concept is similar to building a data
warehouse, but instead of a rigid fact/dimensional structure of a
dimensional model, you need to simply de-normalize the tables
and try to create flat structures that (ideally) need no joins or very
few joins, since Hadoop/NoSQL is not good at processing joins.

 Type of Application
 As you have seen earlier, NoSQL is suited for certain types of applications only. Here is
how it impacts the decision to integrate, transition, or re-architect:

• Data mart/Analytics: Hadoop is most suited for single write/
multiple read scenarios, and that’s what occurs in a data mart. Data
is incrementally loaded and read/processed for analysis multiple
times after. There are no updates to warehouse data, simply
increments. That works well with Hadoop’s efficiency for large read
operations (and also inefficiency with updates). Therefore, for data
mart applications, it’s best to re-architect and transition to Hadoop/
NoSQL rather than integrate. Again, it may not be possible to move
a whole enterprise data warehouse (EDW) to Hadoop, but it may
certainly be possible to re-architect and transition some of the
data marts to Hadoop (I discuss details of data marts that can be
transitioned to Hadoop in Chapters 9 and 11).

• ETL (batch processing) applications: It is possible to utilize
Hadoop/NoSQL for ETL processing effectively, since in most
cases it involves reading source data, applying transformations
(to the complete dataset), and writing transformed data to the
target. This again can use Hadoop’s ability for efficient serial
reads/writes and applying transformations unconditionally and
uniformly to a large dataset. Therefore, for ETL applications,
it is best to re-architect and transition to Hadoop rather than
integrate. The caution here is making sure there are very few
(or ideally no) data dependencies in the data that is being
transformed. Given NoSQL’s lack of join capability and inability
to process relations within normalized data, either the data-
lookup tasks should be maintained within RDBMS, or, if not
possible, transition to NoSQL should be avoided.

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_11

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

12

• Social media applications: Currently, use of social media is
increasing every day, and corporations like to use social media
applications for everything, starting with product launches to
post-mortems of product failures. Most social media data is
unstructured or semi-structured. NoSQL is good at processing
this data, and you should definitely think about re-architecting
and transitioning to Hadoop for any such applications.

• User behavioral capture: Many e-commerce websites like to
capture user clicks and analyze their browsing habits. Due to the
large volume and unstructured nature of such data, Hadoop/
NoSQL are ideally suited to process it. You should certainly
re-architect/transition these applications to NoSQL.

• Log analysis applications: Any mid-size or large corporation
uses a large number of applications, and these applications
generate a large number of log files. In case of troubleshooting
or security issues, it is almost impossible to analyze these log
files. Other important information can be derived from log files,
like average processing time for batch processing tasks, number
of failures and their details, user access and resource details
(accessed by the users), and so on. Hadoop/NoSQL is ideally
suited to process this large volume of semi-structured data, and
you should certainly design new applications based in Hadoop/
NoSQL for these purposes or re-architect/transition any existing
applications to Hadoop. You are certain to see the benefits,

 Business Objectives
 Last but not least, business objectives drive and override any decisions made. Here are
some of the business objectives that can impact the decision to integrate/re-architect/
transition:

• Provide near-real time analytics: There may be situations where
a business needs to have strategic advantage by providing ways
to analyze its data in near real time for higher management. For
example, if the Chief Marketing Officer (CMO) has access to
up-to-date sales of the new product launched by region (or city),
he can probably address the sales issues better. In these cases,
designing a data lake can provide quick insights into the sales
data. Therefore, integrating existing application(s) with Hadoop/
NoSQL is the best strategy here.

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

13

• Reduce hardware cost: Sometimes an application is useful for
an organization but it needs proprietary or high-cost hardware.
If there are budgetary constraints or simply organizational policy
that can’t be overridden, Hadoop can be useful for cost reduction.
There is of course time/effort/price involved in re-architecting/
transitioning an application to Hadoop; but cost analysis of
hardware ownership/rental (as well as maintenance) compared
to one-time re-architect/transition cost and hosting on cheaper
hardware can help you make the right decision.

• Design for scalability and fault-tolerance: In some situations,
there may be a need for easy scalability (for example, if a business
is anticipating high growth in the near future) and fault tolerance
(if demanded by functional need or a client). If this is a new
requirement, it may be cost-prohibitive to add these features to
existing applications, and Hadoop/NoSQL can certainly be a
viable alternative. A careful cost analysis of additional hardware,
software, and resources (to support the new requirements)
compared to one-time re-architect/transition cost and hosting on
cheaper hardware can help you make the right decision.

 I have only introduced the preceding criteria briefly here and will discuss it in much
more detail in later chapters. The next section talks about what each of these techniques
involves.

 How to Integrate, Re-Architect, or Transition
 I discuss these approaches in detail in later chapters. The objective of this section is
just to introduce the concepts with quick examples. Let me start with the least intrusive
approach: integration with existing application(s).

 Integration
 Think of a scenario where a global corporation has its data dispersed in large
applications, and it is almost impossible to analyze the data in conjunction while
maintaining it at the same granularity. If doesn’t offer the flexibility to derive new insights
from it, what is the use of such data held on expensive hardware and employing resources
to maintain it? The data lake is a new paradigm that can be useful in these scenarios.
Pentaho CTO James Dixon is credited with coining the term. A data lake is simply the
accumulation of your application data held in HDFS without any transformations applied
to it. It typically is characterized by the following:

• Small cost for big size: A data lake doesn’t need expensive
hardware to implement a large Hadoop cluster. Use of commodity
hardware provides a big cost saving (and implementation at
fraction of the cost) compared to traditional data warehouses
(implemented using RDBMS).

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

14

• Data fidelity: While in a data lake, data is guaranteed to be
preserved in its original form and without any transformations
applied to it.

• Accessibility: A data lake removes the multiple silos that divide
the data by application, departments, roles, and so forth and
make it easily and equally accessible to everyone within an
organization.

• Dynamic schema: Data stored in a data lake doesn’t need to be
bound by a predefined rigid schema and can be structured as per
need, offering flexibility for insightful analysis.

 Broadly, data lakes can be categorized as follows:

• Data reservoir: When data from multiple applications is held
without silos and organized using data governance as well as
indexing (or cataloging) for fast retrieval, it constitutes a data
 reservoir . Data here is organized and ready for analysis, but no
analysis is defined, although a reservoir may consist of data from
isolated data marts along with data from unstructured sources.

• Exploratory lake: Organizations with specialized data
scientists, business analysts, or statisticians can perform custom
analytical queries to gain new insights from data stored in a data
lake. Many times this doesn’t even involve IT and is a purely
exploratory effort followed by visualizations (presented to higher
management) in order to verify the relevance and utility of the
analytics performed. Due to the way data is held in a data lake,
it is possible to perform quick iterations of these analytics to the
satisfaction of decision makers.

• Analytical lake: Some organizations have an established process
to feed their analytical models for advanced analysis, such as
predictive analysis (what may happen) or prescriptive analysis
(what we should do about it) and use data from a data lake as
input for those models. A data lake (or its subset) can also act as a
staging area for a data mart or enterprise data warehouse (EDW).

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

15

 Data governance is an important consideration for implementing data lakes. It is
important to establish data governance processes for a data lake lest it turn into a data
“swamp.” For example, the fact that metadata can be maintained separately from underlying
data also makes it harder to govern—unless uniform metadata standards are followed that
help users understand data interrelations. Of course, that still doesn’t eliminate the danger
of individual end users ascribing data attributes to data (from the data lake) that are only
relevant in their own business context and don’t follow organizational metadata standards
or governance conventions. The same issue may arise about consistency of semantics
within the data. Here are some important aspects of data governance:

• MDM integration: For a data lake, MDM integration is a
bidirectional process. Master data for an organization can be
a good starting point, but metadata in a data lake can grow
and mature over time with user interaction since individual
user perspectives and insights can result in new ways to look
at (and analyze) the same data. This is an important benefit of
maintaining the metadata and underlying data separately within
a data lake. Additionally, tagging and linking metadata can help
organize it further and assist in generating more insights and
intelligence.

• Data quality: The objective of data quality is to make sure that
data (within a data lake) is valid, consistent, and reliable. Quality
of incoming data needs to be accessed using data profiling.
 Data profiling is a process that discovers contradictions,
inconsistencies, and redundancies within your data by analyzing
its content and structure. Correctional rules need to be set up to
transform the data. The corrected output needs to be monitored
over time to ensure that all the defined rules are transforming the
data correctly and also to modify or add rules as necessary.

• Security policy: It is a common misconception that since data
within a data lake doesn’t have any silos, the same applies to
access control, and it is unrestricted as well. Data governance
needs processes performing authentication, authorization,
encryption, and monitoring to reduce the risk of unauthorized
access as well as updates to data.

• Encryption: Due to the distributed nature of Hadoop, there is
large amount of inter-node data transfer as well as data transfer
between DataNodes and client. To prevent unauthorized access
to this data in transit as well as data stored on DataNodes (data
at rest), encryption is necessary. There are a number of ways
encryption “at rest” can be implemented for Hadoop, and doing
so is necessary. As for inter-node communication, it can be
configured to be encrypted.

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

16

• Masking of PII (Personally identifiable information) and
other sensitive data: Encryption can help prevent unauthorized
access, but even users who are authorized to access data may
not be permitted to access certain sensitive information such as
personal information for clients, their healthcare data, and so on.
Also, federal regulations for certain industries (such as insurance,
healthcare, financial) prevent such access to all employees.
Therefore, any such sensitive data needs to be masked and
protected by additional passwords.

 If you consider the features (described earlier in this section) and considerations for
a governed data lake, the design will look something like Figure 1-4 .

Metadata

User
access

Au
th

or
iz

at
io

n
(e

.g
. S

en
tr

y)

Da
ta

 Q
ua

lit
y

pr
oc

es
si

ng
 (e

.g
. p

ro
fil

in
g)

Data Governance
(for access)

Data Governance
(for input data)

Data Governance
(for data within
lake) such as
MDM
integration and
tagging / linking

Structured
data sources

Unstructured
data sources

Structured and
Unstructured Data

Near
real-
time
user
defined
Analytics

Formatted output to Data
mart / EDW or Analytical
models for advanced
analysis (e.g. predictive or
prescriptive analysis)

Data Analysts /
users tag and link
data

Data Lake
(data with encryption at rest and PII

masking applied)

Data Scientists / users
tag and link metadata

Au
th

en
tic

at
io

n
(e

.g
. K

er
be

ro
s)

 Figure 1-4. Data Lake

 Re-Architecting Using Lambda Architecture
 Re-architecting an application for Hadoop/NoSQL environment involves redesigning the data
and query layers completely for HDFS/NoSQL storage and processing. Typically, Hadoop
is used for batch processing, which means that for an interactive application that needs
ad hoc queries executed, re-architecting for Hadoop can pose a problem. Especially if the
functionality needs low latency for data retrieval, Hadoop/NoSQL won’t be able to deliver it.

 Nathan Marz has provided an architectural solution to counter this problem known
as Lambda architecture . It suggests that you build your Big Data system as a series of
layers with each layer providing specific functionality and the next layer building upon
functionality provided by earlier layer (as shown in Figure 1-5). This architectural
solution can be used for re-architecting an application for Hadoop or designing a new
application meant to be used with Hadoop/NoSQL.

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

17

 There are three layers. The batch layer is the first layer that computes views used
for querying. The serving layer is the second layer that indexes the view created in first
layer and serves them. The speed layer is the third layer that provides real-time querying
functionality within Lambda architecture.

 Batch Layer
 Executing queries on a huge dataset (the highlight of Hadoop-based systems) requires
a large amount of resources and can be very slow. Sometimes it may even abort due
to lack of resources. A smart workaround can be to precompute data in advance and
make it ready for queries. The precomputed data can be indexed to speed up random
reads (since Hadoop is not very good at them). This concept is not very different from
the RDBMS materialized views that can be indexed. However, for the Hadoop world it is
new, and these precomputed views or batch views constitute the batch layer for Lambda
architecture.

 When you want to execute a query, you can design and run a function on that batch
view instead of on the whole dataset. The indexed batch view facilitates a quick retrieval
of values (you need) since it is indexed and a subset of the data. You can create multiple
batch views for your dataset covering varied functionalities and suited for varied analytics
as per your need. In addition, parallelism for data retrieval is always guaranteed due to
the distributed nature of Hadoop.

 For example, a clothing web retailer collects data through a Hadoop-based system
that records all user clicks (including sales transactions). For them, a batch view that
isolates all the sales transactions by geographical locations may be useful for the sales
department, and another batch view with user clicks and dates might be useful for data
scientists to analyze product interest by season or time of year.

Speed layer (for real time querying)

Serving layer (serving batch views)

Indexed batch views

User
queries

Complete dataset

Batch layer

 Figure 1-5. Layers of Lambda architecture

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

18

 In some cases, if your dataset is enormous, even the batch views may be huge, and
you can think about breaking them up further. For example, the clothing web retailer
has user clicks and sales generating billions of records per month. If you have your batch
views by quarter, the volumes may still be large for quick processing of queries, and you
may want to design an additional batch layer with views by month. That will reduce your
processing time (since you will only process the latest month, as opposed to a quarter)
but may complicate your retrieval strategy since you will need to determine the correct
view to query, and multiple views if need be (if durations span across months).

 Indexing the views is a very important step (after the batch view creation) and
will need to be performed by someone with good understanding of your data as well
as functional needs (analytics and frequently executed queries). If your indexes do not
coincide with your queries, you will experience performance issues.

 The obvious question one has with this approach is about the time or latency for
creating such batch views. Because these views are created from the whole dataset,
clearly they will use of lot of system resources, and even if you compute them nightly, they
are not going to have all the data collected by your system. Data may get added while (or
after) these views are computed, and your query results will be outdated by many hours.
The next layers of Lambda deal with that issue.

 Serving Layer
 The serving layer serves the views. The indexed batch views that were created in the batch
layer need to be “hosted” somewhere they can be accessed without much latency.

 Therefore, the serving layer needs to be a specialized distributed database that
can load the batch views and support good performance for random reads as well as
sequential data retrieval. The serving layer also needs to be capable of swapping a batch
view with a newer version when it is made available by the batch layer so that user
queries can return up-to-date results (it needs to support batch updates).

 But because user queries are not going to update the batch views, the serving layer doesn’t
need to support random writes, and because random writes cause most of the complexity in
databases, the serving layer distributed databases can be extremely simple. That simplicity
gives them robustness, predictability, and ease of configuration (as well as operation). It
concurs with the philosophy of the Lambda architecture which believes in moving the
complexity from batch and serving layers to the speed layer, which essentially is discardable.

 One last point to remember about the serving layer is that no single distributed
database can be recommended or used. You need to consider the nature of your data
before deciding on the serving layer, because each distributed (or NoSQL) database has
its own strengths, and you need to make sure it matches your data.

 Speed Layer
 The serving layer updates after the batch layer finishes processing a batch view. This
means that the only data not included in the updated batch view is the data that was
added while the update (for batch view) was processing. The purpose of the speed layer is
to make that data available—and quickly (as the name suggests).

 The basic functionality of a speed layer is similar to the batch layer, since it also
produces views based on data it receives. The difference is that the speed layer only
processes new or recent data that’s not processed by the batch layer, whereas the batch

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

19

layer uses all the data for computing the views. Another difference is that the batch layer
updates a view by recomputing (or rebuilding) it, whereas the speed layer performs
incremental processing on a view and only processes the delta (or difference) by
comparing it with the last time incremental processing was done.

 So, for example, if a view in speed layer was processed at 10:45 p.m. and the next
processing is done at 11:00 p.m., then only the data received between 10:45 and 11 will
be processed. These processing differences help the speed layer in achieving the smallest
latencies possible. Because the speed layer views are almost real time (depending on your
processing latency, you may process every five minutes, resulting in processing or data
latency of five minutes), you can also term them as real-time views.

 Therefore, you can see that you have a system that is almost real time and can
answer any queries correctly, yet it offers all the benefits of a Hadoop-based system.
Figure 1-6 shows how a query can provide results at almost real time using the
workflow of Lambda architecture.

Batch layerSpeed layer

Serving layer

New data collected
between 10:45 p.m.
and 11:00 p.m.

Data between
10:45 p.m. and
11:00 p.m. being
processedComplete ‘master’

dataset

Batch views computed
till 10:45 p.m.

Data till 11:00
p.m. processed
and available

Real time view3

Real time view2

Real time view1

Batch view1

Batch view1

Batch view1 Data till 10:45 p.m.
served

User query at
11:05 p.m.

Query results include
data till 11:00 p.m.

 Figure 1-6. Query processing within Lambda architecture

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

20

 The last thing to remember (about the Lambda architecture) is that the speed layer
is disposable. Any new data also triggers processing within the batch layer, and while the
real-time views are being used (from the speed layer), recomputation of views continues
within the batch layer. Once those batch views (from the batch layer) are recomputed
and served by the serving layer, parts of real-time views are not needed (because that
data is already available through batch views) and can be discarded. So, for the preceding
example, if the batch views are completely processed by 11:15 p.m., then any query after
11:15 p.m. will be processed as shown in Figure 1-7 .

 Figure 1-7. Disposable speed layer within Lambda architecture

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

21

 Lambda architecture supports a property called complexity isolation , which pushes
processing complexity to layers whose results are temporary. Because the speed layer
involves much more processing complexity (compared to the batch or serving layers), the
fact that speed layer results are temporary agrees philosophically with the architecture.
Also, in case of any data or processing issues, the entire contents of the speed layer can
easily be discarded and rebuilt quickly.

 I discuss Lambda architecture in more detail in Chapter 8 , and there is also a case
study in Chapter 15 .

 Transition to Hadoop/NoSQL
 Transition implies migrating an existing application (possibly using RDBMS for data
storage and processing) to a Hadoop/NoSQL-based environment. You can leverage the
re-architecting technique described in the last section, but there’s an additional step
involved: data migration. Also, you don’t have to use Lambda architecture for your new
system. You can select a suitable NoSQL database for use (based on your functional need
and data volumes) and simply have your application front-end interface write to it. Of
course, you have to make sure your front end can write data in a format acceptable to the
NoSQL database and can also read data from it.

 A large number of NoSQL databases are available (about 150 as listed by nosql-
database.org), and they vary greatly in functionality and features. This section talks
about some of the criteria you can use to select the most appropriate NoSQL database for
your purposes.

 Type of Data
 You need to consider the type of data you plan to collect and store within your NoSQL
database. Unlike RDBMS, NoSQL databases don’t have a uniform way of storing data.
Actually, they don’t even use the same model for data storage. For example, NoSQL
databases like MongoDB are document stores or document databases. It is important to
choose a NoSQL database that matches the type of data you have.

 Broadly, there are four types of NoSQL databases:

• Key-value store: These databases store data as key-value pairs
with a hash table to index and manage the data. Prominent
examples include Riak and Amazon DynamoDB.

• Document store: A document is a set of key-value pairs. These
database systems store data as documents within databases
(collection of documents). Examples: MongoDB and CouchDB.

• Column store: Data is held and processed in storage blocks that
contain data by columns (or groups of columns called column
 families). Examples: HBase and Cassandra.

http://dx.doi.org/10.1007/978-1-4842-1287-5_8
http://dx.doi.org/10.1007/978-1-4842-1287-5_15

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

22

• Graph databases: These databases allow you to store entities
(nodes) and relationships (edges) between these entities. Nodes
and edges have properties, and edges also have directional
significance. A graph lets the data be stored once and then
interpreted in different ways based on relationships between
nodes. Examples include Neo4J, OrientDB, and FlockDB.

 Data Volume
 You need to consider the data volume because some NoSQL databases (for example,
MongoDB) use memory-based computations for speed (and therefore do not scale
horizontally) whereas others do not and therefore can easily scale out. If your data
volumes are high, it is probably better to use a solution like Cassandra that can scale out
easily.

 Data Distribution
 You need to consider how widely the data needs to be distributed geographically from
a performance perspective. Some NoSQL databases use master/slave (or “primary/
secondary”) architectures, which can only scale read operations versus peer-to-peer
architectures that can scale both reads and writes. So, depending on your application
behavior, you can decide which architecture would match your needs.

 Migrating the Data
 After you decide on an appropriate NoSQL solution, you need to design ETL to migrate
the data from your application(s) to the target database. Sometimes it is necessary to
build a transition model or a staging database and move the data to it, before migrating
to its ultimate destination. There may be multiple reasons for this approach such as a
difference in data models of source and target databases or need for denormalizing or
transforming the data or simply for performance reasons—the source may have too much
data that the target probably can’t load in a single iteration or entity. Chapter 7 discusses
construction of a transitional model. For now, Figure 1-8 summarizes the steps for
transition to Hadoop/NoSQL.

http://dx.doi.org/10.1007/978-1-4842-1287-5_7

CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

23

 Summary
 Everyone wants to utilize the power of Big Data in their environment. Unfortunately,
decision makers often don’t consider all the parameters before concluding that Big Data
is right for their organization. Sometimes the lack of proper experience on the part of the
technical staff (that provides technical evaluation) is an issue.

 Moreover, lack of understanding of NoSQL databases and their nuances is a major
issue. It doesn’t help that there are no formal frameworks or design methodologies for
Hadoop implementations. Lambda is just introduced, but it may not be applicable or
useful in all possible scenarios (besides not being easy to implement).

 The Hadoop/NoSQL world is ever evolving, innovative, and driven by a lot of smart
people. It offers useful technologies and clever solutions for a large variety of problems.
You just need to be cognizant of the implementation issues and carefully consider your
individual environment and needs before you introduce NoSQL in it—that’s all.

 In this chapter, I have tried to summarize the pros and cons of Hadoop/NoSQL
implementations, and hopefully they will guide you in making the right decisions. Later
chapters elaborate on the concepts introduced here.

Decide on
NoSQL solution

RDBMS based
application

Transition data
model or staging

database

NoSQL
destination

ETL

ETL

 Figure 1-8. Transition to Hadoop/NoSQL

 PART I

 Relational Database
Management Systems:
A Review of Design
Principles, Models and
Best Practices

27© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_2

 CHAPTER 2

 Understanding RDBMS
Design Principles

 I always enjoy interviewing the junior members of our database architecture community.
I asked someone if he had ever used or heard of “SSADM” (structured systems analysis
and design method). The answer was negative, and honestly, it didn’t surprise me. I
thought the term was probably before his time, or maybe it never got popular in the US
(I had used it in earlier part of my career in the UK). But even some of my senior colleagues
and friends had not heard of SSADM, or even about Accenture’s METHOD/1—which is
very American.

 My experience working in Chicago clued me in to the lack of awareness and
understanding that most corporations have when it comes to database design
methodologies. The buzzwords top-down , bottom-up , and conceptual to physical model
were the extent that most of the corporate database designers (that I knew) indulged in.
Subsequently, I have also seen the effects of that apathy when it comes to making design
changes to an application or tracking the origin of some of the changes made.

 Database design, however, is not all about the methodologies. It’s about the
implementation of these frameworks. More importantly, it’s about creating the best
design for automating and accurately representing a business process and collecting/
storing the data that’s the result of executing that business process. Design methods
should be used as a reference, and any variations needed for effective implementation
should be made. For example, you may know that none of the leading RDBMS (Oracle
or Sybase or Microsoft SQL Server) can strictly qualify as “relational” databases because
they don’t satisfy all the criteria as specified by E.F. Codd in his paper “A Relational Model
of Data for Large Shared Data Banks.”

 So, it’s good to follow the frameworks as guidelines. But functional accuracy and
performance of a system are more important—and a good database designer knows that.
For almost 50 years now, “relational” databases are the most popular databases, and
the new NoSQL technology can’t offer some of the design flexibility and ease of use that
are the highlight of RDBMS. Of course, NoSQL has many advantages too, but it helps to
understand the strengths of RDBMS through the robustness and descriptiveness of its
frameworks—the design methodologies.

 What exactly are these methodologies, and how do they facilitate design? I will start
with some of the popular design approaches (which can’t be termed methodology) and
then discuss some more extensive and descriptive design methodologies.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

28

 One last thought before I start with the overview of design methodologies. Why
spend time understanding the older relational technology and design if the ultimate
aim is to work with the cutting edge distributed NoSQL database technology? Well, in
my opinion, it will assist you in transitioning your applications better. A lot of technical
resources don’t get a chance to understand relational design techniques (especially with
the advent of newer technologies), and the initial chapters provide an overview that
will provide a quick information refresh, in some cases. In others, they provide concise
discussion enabling a good understanding of relational design methodologies.

 Overview of Design Methodologies
 Design methodologies provide a framework around which you can “build” and
implement your database designs. You can start with a business requirement, understand
business processes, and then build process and data flows. That will lead you to a
conceptual and thereafter a logical data model. Finally, implement the logical model to a
physical database. Done!

 Can you sum up database design in four sentences any better? Well, there’s much
more to designing a database, since it summarizes the data processing of a certain
functional area of your organization. All the entities (tables) map to results of (execution
of) a single or multiple business processes, and the process inter-relations are symbolized
by relations between entities and their attributes (columns). For example, consider an
inventory management system. The Customer tables corresponds to a business process
that manages (adds, updates, or deletes) customer details. Sales table corresponds to the
sales transactions that customers perform. Subsequently, the relation between Customer
and Sales tables accurately corresponds to the relation between processes that manage
customer details and ones that manages sales details.

 Let me start with a simple design method and then discuss some more complicated ones.

 Top-down
 The top-down design method starts (as the name indicates) at the top. The system
design starts with an overview or list of objectives defining the purpose of the system.
This is followed by design of first-level subsystems or modules and then the subsequent
level of modules till you reach the last modular level—the entities themselves. A
module may have multiple submodules or no modules at all. The details for each of the
modules are filled in as last steps, after the whole modular structure is decide on. This
design approach is more suitable for new application development or bigger (modular)
enhancements to an application.

 A good example is an insurance company’s requirement of designing a claims
archival system. The objectives are: moving claims older than two years to slower,
long-term storage (thereby releasing high-speed storage for more productive purposes),
modifying reporting and an ad hoc querying system to access archival database for older
claims, and shrinking the claims database and rebuilding indexes for better performance.
The next section discusses the various levels (of modules) required to achieve our
objectives.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

29

 Bottom-up
 The bottom-up design method starts at the bottom level, or at a lowest business process
level. The individual business processes and thereby entities and their groupings derive
functionality of a “module” or subsystem level and subsystems (corresponding to
business processes for a department or division of an organization) combine to form
a logical model. A conceptual model is derived from the logical model and provides a
modular view of the system, thereby making it easy to add or modify functionality.

 Because this design is developed with modular (or subsystem) isolation, there is
always a risk associated with data mismatch or data duplication between the modules.
But it is a faster design approach and may save time in some cases. It is more suited for
scenarios where new functionality is added to an existing application or there is a need to
reuse code or design fragments for quick development.

 If you are to implement the claims archival system mentioned earlier using a
bottom-up design approach, you will start by designing the actual entities that are
required to hold archived data. I discuss this example in greater detail in the next section.

 SSADM
 Structured systems administration and design methodology is a design methodology every
bit as extensive as its name sounds. It starts with a feasibility study and culminates in a
physical design accurately depicting the functional need that facilitated the design. The
methodology discusses specific details for performing each of the design steps that makes the
implementation easy and successful. SSADM was developed by the Office of Government
Commerce of British Treasury in early 1980s and follows the waterfall software process model.

 The main design steps for SSADM are as follows:

• Feasibility study

• Investigation of the current environment

• Business system options

• Requirements specification

• Technical system options

• Logical design

• Physical design

 Again, if you want to use SSADM to design a claims archival system, you will need
to start with a feasibility study that will involve evaluation of available disk space and
time required for moving the claims data. Investigation of the current environment will
involve checking the volume of data that needs to be moved. Business and technical
system options are not relevant in this case, as the functionality of the same system
(or application) is being extended. Requirements specifications will have details of the
functionality required—design details for new archival objects and queries to archive
data, modifications to query/reporting system to use new archival objects as needed, and
instructions for shrinking/reindexing the claims database. Logical and physical design
will have the structures for newly designed archival objects.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

30

 Exploring Design Methodologies
 The objective of a design method is to accurately represent the business processes
and their data storage needs for a business. There are a number of ways to make sure
that your approach results in a correct model: the data-driven model, process-driven
model, blended (combination of data- and process-driven), object-oriented, prototyping
(RAD—rapid application development), and agile. In practice, object-oriented design
is not used for databases any more (because object-oriented databases are not used),
and mostly blended models are used, unless the organization is in a hurry and wants
a prototype ready quickly. A combination of top-down and bottom-up is usualy used,
rather than one method.

 Top-down
 Top-down design approach is about planning and achieving a good understanding of the
objectives for designing the system. It was conceptualized in the 1970s by Harlan Mills
and Niklaus Wirth at IBM. Pros and cons to this approach are as follows. First the pros: it
starts with objectives/overview of the system and thus helps in designing a more cohesive
system, it develops better interfacing between modules, and design modularity facilitates
a complete and documented coverage of necessary functionality. Now the cons: the main
issue with this design approach is the development time needed. Also, until the modules
have reached the final or entity level, design activities can’t start.

 A design method usually starts at the requirements phase (because unless a
database is “required,” you can’t design it). I have seen two extremes for the requirement
phase. Either the client wants to start with a conceptual model right away and skip the
requirement gathering and documentation, or the client spends too much time gathering
requirements to make sure there is no need to refer back to the users of the system being
designed. You need to make sure high-level requirements are documented, but don’t
spend too much time on the details because they are bound to change.

 Of course, it might also help to broadly classify them. For example, some
requirements can’t be implemented directly, like “system needs to be easily extensible
without redesigning it.” These are the “not implementable” requirements. The second
category is the “implementable” ones—“The system needs to automatically include a
new product in appropriate product catalog.” The last one is ‘conflicting’ requirements
like “every new product needs to be included in the main catalog” and “seasonal products
should not be included in the main product catalog.” Finally, if your development phases
are already planned, it helps to classify requirements by phases as well. For example, “row
level security is only needed in phase 2.”

 The next step is using the requirements to document the objectives and build a
first level of modules or subsystems that will lead toward building a conceptual model

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

31

(since the top-down approach involves starting with a generic model that covers all the
high level requirements or objectives). In this case, the objectives are as follows:

 1. Moving claims older than two years to slower, long-term
storage (thereby releasing high speed storage for more
productive purposes)

 2. Modifying reporting and ad hoc querying system to access
archival claims objects for older claims (since now the claims
data is distributed in two sets of entities)

 3. Shrinking claims database and rebuilding indexes (for better
performance)

 So, the first level modules will be:

• Archival system

• Modifications to query and reporting system

• Database maintenance

 For modules “modifications to query and reporting system” and “database
maintenance,” the second level modules will be modified scripts and new scripts for
database maintenance (shrinking, rebuilding indexes, and so on) respectively.

 The second level modules for “archival system” will be:

• Designing new archival objects

• Designing queries to archive data

 The third and lowest level will be designing the actual archival objects and queries
themselves. For that purpose, it will help to have a conceptual model. But how do you
build a conceptual model?

 For a top-down design approach, you can start with a generic model that covers
all your high level requirements. But how can you choose a generic model that matches
your requirements? Well, to start with, you can use a conceptual model (available for your
organization) for a functional area that broadly matches your requirements or objectives.
If no such model is available, you can review the enterprise conceptual model (covering
all application areas) and choose a part of it that matches your requirements or
objectives.

 Assuming that either of the previously mentioned models is available, you can
choose appropriate “entity groups” (for matching “subject areas” that cover your
objectives or business requirements). If you consider the claims archival system example
from the previous section, you can use the “claims processing” subject area as a generic
model to start with. Figure 2-1 shows the conceptual model for claims processing.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

32

 As a next step, you can remove the processing from the generic model that does not
concur with your requirements or objectives. In this case, you simply need to archive
all the claims data that is more than two years old. So, you need to focus on the group
of entities that hold claims data. Also, because claims data is related and distributed in
normalized entities, it is important to make sure that all the related entities are archived
and all related records are archived. In the conceptual model, you can safely start with all
the entities starting with Claim and evaluate them.

 Consider Claim (claim details), Claim_resubmission (resubmitted claims), Claim_
line_item (claim lifecycle details), or Claim_settlement (settlement details for a claim).
All these entities are related and hold time-bound claim details. Therefore, they should be
considered for archival. Claim_type , Claim_property_data , Claim_property , and Claim_
status_type are static reference values that are not time-bound, but they may change
in the future, and it is still important to archive them. So, if you decide that and create a
logical model (the next step per the design methodology), it will look like Figure 2-2 .

may result
in

has

has

has many

has

Claim
Type

for

Claim_settlement

settled using

Claim_line_item

for

may result in

Claim_resubmission

for

Claim

has

Claim
Status Type

described by

Claim Status belongs to

owns

Policy_holder

has
Policy

Claim_property

Claim_property_data

 Figure 2-1. Conceptual model for claims processing

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

33

 The last step for this design methodology is generating a physical model using the
logical model. Because you want to differentiate between the regular Claims entities and
the ones used for archival, you might want to consider adding a prefix like arch for the
entities used for archival. Case tools such as Erwin can help you forward engineer (or
transform) your logical model to a physical model depending on the RDBMS of your choice.

 For example, if Microsoft SQL Server is chosen as the target RDBMS, then SQL
Server data types will be used. Again, Erwin can generate Transact-SQL scripts to create
the tables (along with primary and foreign keys for referential integrity) within your SQL
Server database. That’s the final task for the module “Designing new archival objects.”
The other module “Designing queries to archive data” will have tasks to write queries for
moving the data to the newly created archival objects.

 If you are familiar with software process models, you will notice that the top-down
design methodology works similarly to the software process model build-and-fix. As with
the build-and-fix model, you start with business requirements and build the first version
of a system. By the time your detailed modular design and individual tasks are complete
along with build, business requirements may change and you need to iteratively modify
your system to incorporate all the latest requirements as well as changes to previous ones.
Figure 2-3 shows the process model.

 Figure 2-2. Logical model for claims processing

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

34

 Bottom-up
 If you review the project plans of projects you have recently worked on (as well as the
design task details), you will realize that you can’t determine the design approach that was
used. Even after you have a discussion with the data architect or enterprise architect, it
will be evident to you that a single design approach was not used. Rather, a mixed design
approach was employed, most probably a combination of top-down and bottom-up.

 Big software projects start with specific high level business requirements and
objectives and proceed with module design, following the top-down approach. However,
the strategy disintegrates quickly since the module leads want to complete their
individual tasks within the stipulated time and hence want to reuse existing code and
sometimes even existing modules. This adds the bottom-up approach to the mix. In some
cases, the functionality of an operational system is expanded to match the objectives of
the system being designed.

 Using the bottom-up design approach, the initial focus is on the lowest modular
level or individual entities that form the basis of higher level modules. After designing
these entities, they are grouped to form next level modules. This process is continued till
a hierarchical or modular system is complete that delivers the necessary functionality.
This is like knowing broadly what a machine is supposed to do and designing individual
modules in great detail that provide parts of the required functionality. In the end, you
hope that the combined functionality provided by the individual modules matches what
is required as the machine’s functionality—and that the modules interface with each
other perfectly.

 A big advantage of this approach is reusability and the time/money it might save. Of
course, the designer needs to have the necessary experience (or intuition) to decide on
modular functionality.

Business
requirements

Build first (or
next as
applicable)
version

Operations
mode

Retirement

Maintenance / Enhancements

Changed business
requirements or
details added

Development

 Figure 2-3. Software process models: build-and-fix model

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

35

 Let’s talk about how you can implement the claims archival example (discussed
in the last section) using a bottom-up approach. To start with, you will need to review
the claims processing conceptual model and decide which entities need to be archived.
Once you have decided that, you need to design the archival entities. Prefixing them
with arch (to differentiate from regular claims entities), you can design entities such as
 arch_claim_item , arch_claim_resubmission , arch_claim_settlement , and so on. You
can validate (start/end validity) to all the reference or metadata entities like Claim_type
or Claim_status_type .

 Next will be the design of the process required to populate these entities and
removing the archived records from associated claim tables, claim_item , claim_
resubmission , and claim_settlement . After that, the new entities can be added to the
logical model and finally to the conceptual model as grouping Archival .

 Now, since any claim-related query or report needs to read from regular as well as
archived claims data, the reporting system needs to be modified to read from the correct
objects based on dates the report is requested for. That will be the next module of this
new system.

 Finally, because a large amount of data is removed from existing database objects
and added to the new ones, database maintenance must be performed to ensure that
database performance is not affected. That will be the last module of the new system. So,
finally, the claims-processing system can have a new top level module called Archival .

 If you review carefully, you will realize that we have designed the same system, but
by performing the same steps in opposite order. This design method resembles a software
process model called incremental, shown in Figure 2-4 .

Implement and
test first build

Implement, Integrate and test
successive builds until product is
complete

Operations mode

Retirement

Development

Maintenance / Enhancements

 Figure 2-4. Software process models: incremental model

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

36

 As you can see from Figure 2-4 , sthis ystem is built incrementally using successive
builds till you complete all the development (required to provide the necessary
functionality). You can think of this approach as a sequence of agile scrums, too.

 SSADM
 In the 1970s, the initial attempts for establishing design methods or frameworks were
simply an attempt to automate the manual systems. They just imitated the logical
business flow and thus didn’t add much value. These semi-formal design methods
contained redundant and duplicate information, lacked clarity of method (no well-
defined steps), and had a number of inconsistencies. SSADM was the first attempt toward
formalizing the design strategy. Initiated in 1981, the current version of SSADM is V4.2
launched in 1995. SSADM uses three main techniques for design:

• Logical data modeling: During this LDM stage, the data needs
of the system (being designed) are identified and documented.
Next, a model is designed by separating data into entities (specific
information that a business process generates and needs to be
recorded) and relationships (the association between entities).

• Data flow modeling: As the names suggests, focuses on data
movements within a system. More specifically, data flow
modeling (DFM) depicts the processes or activities that transform
data while considering all the data stores as well as external
entities that may be sources or targets of data for the system.
The direction data move is also important for DFM. DFM is an
adaptation of prior models by Yourdon and DeMarco.

• Entity behavior modeling: Links the earlier design stages to
deliver a complete design. LDM separates data in entities. DFM
documents the processes that transform data within a system.
EBM links individual entities with the events or processes that
affect them (and their data) as well as the sequence in which
these events or processes occur.

 Feasibility Study
 Projects or products originate from business objectives and needs. During the initial
discussion of the idea or objective, little attention is imparted to the practicality or
feasibility of that objective. Subsequently, when the management asks a product team
to implement it, they have to determine whether the objective is achievable (especially
for potentially large projects/products). Several aspects are considered to make this
determination:

• Technical —Is the product or project technically viable?

• Monitory —Does the organization have the necessary budget
available to execute the project?

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

37

• Compatibility —Will the new product interface easily with existing
systems within the organization?

• Integrity —Will the new product compromise the professional (or
moral) integrity of the organization in any way?

 The output from this stage is a feasibility study document. As per SSADM guidelines,
this document should also contain details of all the options that were considered for a
feasibility study (including the ones that were rejected and the reason for rejection).

 Investigation of the Current Environment

 This involves referring to existing application documentation, exploring the current
application, and conducting discussions with application users, developers, and
administrators to develop a good understanding of the system. This helps in the
following:

• Understanding business terminology

• Understanding frequently used application features and how they
are used

• Developing a data model

• Defining the scope of the application

 The outputs from this stage are requirement details (for the new system or
application), existing services and user details, logical and physical data models, data
flow diagram, and a data dictionary (all for the existing system).

 Business System Options

 At this stage, the analyst compares the requirements and objectives (for developing the
new system) with the functionality of the existing system. It may be possible to modify
the existing system slightly to match the objectives, or it may be necessary to develop a
completely new system to achieve the objectives and satisfy the requirements.

 As an output from this stage, the analyst develops and presents a number of possible
business system options to achieve the necessary objectives.

 Requirements Specification

 This is arguably the most important and most complex step. One reason is that the analyst
needs to have all the details of logical specifications of the proposed system. It is of course
important to have these specifications error-free, unambiguous, consistent, and concise.

 Another reason this step is complex is that the analyst needs to build a logical data
model (at least the entity-relationship diagram) as well as a data flow diagram (DFD)
to make sure that the logical specifications are accurate, even though they are not the
expected outputs from this stage.

 The output from this stage is a comprehensive requirements specification document.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

38

 Technical System Options

 In an earlier stage, the analyst had enough information to propose possible business
options. Now with the technical requirements ready and available, it is possible for the
analyst to present a number of technical system options that can be used. These options
are evaluated, and the best possible option is selected before moving on to the next stage.

 Logical Design

 This design stage specifies the logical map of processes pertaining to the proposed
application and also the entities affected by those processes. Information about the data
and inter-relationships is included as well.

 The outputs from this stage are:

• Data dictionary

• Logical data model

• Logical process model

 Physical Design

 The final stage of SSADM uses the logical design specifications (from the last stage) and
translates them into physical database structures (for the proposed implementation
target like Oracle or Microsoft SQL Server). This involves:

• Attaching database-specific datatypes for columns

• Implementing referential integrity constraints using primary
keys, foreign keys or triggers (discussed in the next section), and
nullability

• Defining indexes and specifying function details (structure as well
as implementation)

• Listing the hardware and software requirements

 The output from this stage is complete physical design that the implementation team
(including administrators) can use to build the required system.

 So, these are the stage details for SSADM. I will discuss an example (and complete
design) using SSADM as a design method. As with any other design method, there are
pros and cons to using SSADM.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

39

 Pros and Cons of SSADM
 SSADM provides the following advantages:

• Excellent isolation between logical and physical design of the
system. Benefits are:

• Freedom to implement logical design using the database of
your choice.

• Isolation of issues between logical and physical designs.
In fact, if you identify issues with your logical design after
physical implementation, you can modify the physical
implementation to resolve the issues.

• Clearly defined and well-documented steps that lead to a
complete design

• Involvement of a wide range of resources (analysts, business
users, administrators, application users, and developers) offers
a good perspective that reflects in design and also reduces
possibility of error (in understanding or implementing the
requirements)

 Now the cons:

• The implementation time for SSADM is long, and any changes
need to be processed through all the stages. For example,
if requirements change while the physical design is being
worked on, you need to start with checking feasibility of those
requirements, check whether they are already implemented in
existing system, change requirement specifications, and then
apply changes to logical/physical data models.

• There is considerable cost and time involved in training resources
to use SSADM and implement using it.

 As a closing thought, I want you to review the waterfall software process model and
consider the similarities between it and SSADM. Similar to SSADM, the waterfall model
is comprehensive with a large number of steps. As you can see in Figure 2-5 , changes to
requirements or specifications involve rework to all the subsequent stages, which can be
time consuming (although it does help maintain consistency within your system—at any
stage, requirement specifications match the existing physical system).

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

40

Requirements

Verify

Specifications

Verify

Planning

Verify

Design

Verify

Retirement

Development

Maintenance / Enhancements

Implementation

Verify

Integration

Verify

Operations mode

Changed Requirements

Verify

 Figure 2-5. Software process models: waterfall model

 Components of Database Design
 It’s time to focus on primary constructs used for relational database design. You will
need to use them at the conceptual and logical design stage. I am sure you have used
primary keys or foreign keys or triggers for some database development project before,
but it is still interesting to see where these components fit in the scope of relational
design. Constructs like supertypes or subtypes are not very frequently used (or at least not
understood), and constructs like cardinality or self-referencing relationships need to be
completely understood in order to design well.

 The most discussed relational concept is normal forms . It is a highlight of relational
design but sadly is still not very clear to a lot of designers. I will discuss the three normal
forms with an example. I will also cover Boyce Code normal form (BCNF) briefly for your
understanding, even though it’s mostly theoretical and rarely used in practice.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

41

 Finally, you need to understand that holding your data in third normal form is not
always the best option. For reporting or warehousing, you need to denormalize data. I
discuss that concept with an example too.

 Normal Forms
 Normalization is a process that efficiently organizes data by identifying and removing
any data redundancy, keeping cross-references (within data) intact. The objective is to
remove data redundancy completely and gain better organization of data. Normalization
is a multistep process, and depending on how much of this process is applied to the data,
it is said to be in first , second , or third normal forms.

 There are higher forms of normalization, such as BCNF, fourth normal form, and fifth
normal form, although they are theoretical and rarely used in real world.

 First Normal Form
 The objective of first normal form is to identify and isolate any repeating groups of data to
separate tables, of course, keeping cross-references to source data intact. A data row may
have one or more repeating groups, and as a first step you need to identify them. Here’s
an example. Consider an insurance company that sells health insurance. Customers who
own valid policies file claims using a toll-free phone number answered by the company’s
call center. Based on a short conversation, here’s what’s captured typically for a claim:

 ClaimId, ClaimSubmissionDate, CustomerName, DateOfBirth,
SocialSecurityNumber, CustomerAddress, ClaimNotes, ClaimType,
ClaimShortDesc1, PhysicianId1, ClaimShortDesc2, PhysicianId2,
ClaimShortDesc3, PhysicianId3, NumberOfResubmissions

 ClaimId is a system-generated number that increments for each new claim.
 ClaimType indicates type of the claim (such as dental, vision, medical, and so forth),
 ClaimShortDesc (1–3) have short descriptions of the actual complaints as the claim
progresses and the complaint is referred to another physician or a specialist. PhysicianId
(1–3) are identifiers for the physicians involved in the treatment of the patient. A claim
may have one or more (up to three) medical conditions and physicians associated with it.
 NumberOfResubmissions has a count of how many times this claim has been resubmitted
for processing. Here is some sample data:

 13666969 , 6/1/2015 09:30:13, Bobby Simpson, 02/12/1964, 219-44-3211, 1 Oak
st. Darien IL 60561, Consulted Physician out of network since closest and
then a specialist, Medical, Severe stomach pain, 43211, Cramp of abdominal
muscles, 12456, NULL, NULL, 0

 13666970 , 6/1/2015 10:00:23, Alan Border, 03/22/1961, 239-32-5674, 21
Maple st. Naperville IL 60563, Cause of pain still not determined,
Medical, Pain in left shoulder, 31341, Left shoulder dislocation, 11232,
Physiotherapy, 54543, 1

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

42

 13666971 , 6/1/2015 10:05:11, Steve Waugh, 12/14/1970, 246-56-9867, 32
Madison ct. Woodridge IL 60517 , Most probably seasonal allergies, Vision,
 Dry itchy eyes, 73443, Eye infection, 33342, NULL, NULL, 0

 13666972 , 6/1/2015 11:29:16, Ricky Ponting, 10/03/1965, 223-43-7658, 54
Argyle st. Westmont IL 60559, Dentist recommended removing tooth; but
patient not agreeing, Dental, Severe pain in maxillary first molar, 41414, NULL,
NULL, NULL, NULL, 1

 13666973 , 6/1/2015 12:09:18, Bobby Simpson, 02/12/1964, 219-44-3211, 1 Oak
st. Darien IL 60561, Referred to Ophthalmologist by regular Optometrist,
Vision, Double vision, 33562, Change of prescription, 25251, NULL, NULL, 0

 13666974 , 6/1/2015 14:06:41, Ricky Ponting, 10/03/1965, 223-43-7658, 54
Argyle st. Westmont IL 60559, Most probably seasonal allergies, Vision,
 Dry itchy eyes, 63462, NULL, NULL, NULL, NULL, 0

 A quick review of the data will make you realize that this data has a repeating group
(marked in bold) and subsequently data duplication. It has some other issues as well
(which I discuss a little later). The repeating block of data is medical conditions and
physician details associated with a claim.

 Also, with this table design, there’s a provision to capture up to three medical
conditions and associated physicians. But what happens if more than three medical
conditions are associated with a claim? Since it happens rarely, designers of this system
asked call center representatives to open a new claim and refer to that new number in the
notes section of the current claim! That is a bad workaround, and this design issue needs
to be resolved.

 To get this table in first normal form, you need to move the medical condition data to
a separate table. Will that resolve the other issue (of associating more than three medical
conditions with a claim) too? Let’s see.

 Now, before we move the repeating data to a new table, you need to make sure you
can cross-reference it and also that it still relates to the correct claim. First, see if you can
you identify each row of data uniquely for your Claims table. In this case, you can; since
the ClaimId is a system-generated unique number and can be used to identify a row
uniquely. Such an identifier is known as a primary key , and the column can be designated
as such.

 Next, you need to identify rows uniquely for the new table. Since there are multiple
medical conditions associated with a single claim, just the ClaimId won’t suffice as a
primary key. You will need to add a sequence number additionally to make the primary
key unique. Besides, in this case, sequence does have significance (since it stores the
sequence in which the medical conditions were diagnosed for a claim) and may be useful
for analysis.

 So, after moving data to a new table (call it ClaimMCdata), the new tables will look
like Figures 2-6 and 2-7 .

https://www.google.com/search?rlz=1C1PRFC_enUS598US598&espv=2&biw=1600&bih=760&q=60517&stick=H4sIAAAAAAAAAGOovnz8BQMDAx8HsxKXfq6-gWG8RVJeRua0GZGaTLPSNAoS1uSYxetcE9jyHAA5duj3KwAAAA

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

43

 After the removal of repeating groups from Claims , you can see that the data is more
manageable (as shown in Figures 2-6 and 2-7). Also, you must have observed that the
new table ClaimMCdata doesn’t need to have multiple columns like ClaimShortDesc1 ,
 PhysicianId1 , and so on. You can simply add a row per medical condition for a claim,
without being limited by three medical conditions. So, the design issue for a claim having
more than three medical conditions is resolved as well.

 The table Claims is now in first normal form, but you do need to think about the next
normal form—and how to get there.

13666969

Claims
ClaimId

Claim
Submission
Date
6/1/2015 09:30:13 Bobby Simpson 02/12/1964 219-44-3211 1 Oak st.

Darien IL 60561
Consulted Physician
out of network since
closest and then a
specialist

Medical 0

13666970 6/1/2015 10:00:23 Alan Border 03/22/1961 239-32-5674 21 Maple st.
Naperville IL
60563

Cause of pain still
not determined

Medical 1

13666971 6/1/2015 10:05:11 Steve Waugh 12/14/1970 246-56-9867 32 Madison ct.
Woodridge IL
60517

Most probably
seasonal allergies

Vision 0

13666972 6/1/2015 11:29:16 Ricky Ponting 10/03/1965 223-43-7658 54 Argyle st.
Westmont IL
60559

Dentist
recommended
removing tooth; but
patient not agreeing

Dental 1

13666973 6/1/2015 12:09:18 Bobby Simpson 02/12/1964 219-44-3211 1 Oak st.
Darien IL 60561

Referred to
Opthalmologist by
regular Optometrist

Vision 0

13666974 6/1/2015 14:06:41 Ricky Ponting 10/03/1965 223-43-7658 54 Argyle st.
Westmont IL
60559

Most probably
seasonal allergies

Vision 0

Customer
Name

DateOf
Birth

Customer
Address

ClaimNotes ClaimType NumberOf
Resubmis
sions

Social
Security
Number

 Figure 2-6. Claims data in first normal form

ClaimMCdata

13666969 1 Severe stomach pain 43211
13666969 2 Cramp of abdominal muscles 12456
13666970 1 Pain in left shoulder 31341
13666970 2 Left shoulder dislocation 11232
13666970 3 Physiotherapy 54543
13666971 1 Dry itchy eyes 73443
13666971 2 Eye infection 33342
13666972 1 Severe pain in maxillary first molar 41414
13666973 1 Double vision 33562
13666973 2 Change of prescription 25251
13666974 1 Dry itchy eyes 63462

ClaimId CMCdataSeqNum ClaimShortDesc PhysicianId

 Figure 2-7. Medical condition data moved to a separate table

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

44

 Second Normal Form
 The formal definition for an entity to be in second normal form is if all of its non-key
attributes are individually dependent on the group of key attributes only and not
dependant on a part of that key attribute group. In other words, an entity is in second
normal form if its non-key attributes are free from any partial-key dependencies or no
part of the key determines a non-key attribute.

 So, it is easy to see that entities with a single attribute as key are automatically in
second normal form (as there are no partial-key dependencies possible). That is also the
reason a system-generated sequential number (used as an identifier) serves well as a
primary key.

 For the entity (or table) Claims , since the system generated identifier (ClaimId) is
used as a primary key, it is automatically in second normal form. For the other entity
 ClaimMCdata , the primary key is a combination of ClaimId and CMCdataSeqNum , and it is
easy to see that there are no partial-key dependencies, and it is in second normal form too.

 Third Normal Form
 An entity is in third normal form if and only if no non-key column (or group of columns)
determines another non-key column (or group of columns), and all the non-key columns
are determined by (or functionally dependent on) the group of key columns only. In other
words, both these conditions need to be satisfied:

• All non-key items dependent only on group of key columns

• No non-key columns (or group) dependent on another non-key
column (or group)

 Are the entities Claims and ClaimMCdata in third normal form? For the entity Claims ,
if you review columns sequentially, you will observe that fourth column DateOfBirth
functionally depends on non-key column SocialSecurityNumber instead of the key
column ClaimId . The columns CustomerName and CustomerAddress depend on column
 SocialSecurityNumber too. Because this violates the requirements for third normal
form, you need to move these columns to a separate entity. Call it CustomerDetails .
Now, if you move all the customer information columns to a separate entity, how will
you cross-reference it for a claim? You need an identifier for each customer record that
can be placed within a claim record and reference the customer information located in
 CustomerDetails . You can use a system-generated sequential number as identifier and
call it CustomerId .

 If you review the ClaimMCdata entity, you will realize that it is already in third normal
form. The non-key attributes ClaimShortDesc and PhysicianId are dependent on the key
attributes ClaimId and CMCdataSeqNum only and no other non-key attributes.

 So, after moving the customer data columns from the Claims entity, Figure 2-8 shows
how Claims and CustomerDetails will look.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

45

 If you review the entities again (Figure 2-8), you will discover that you can apply both
the conditions for third normal form successfully to entities Claims , ClaimMCdata , and
 CustomerDetails .

 Keys in Relational Design
 Keys have special usage and purpose within relational design. A key is an alphanumeric
pattern or a column value that identifies (or references) a data row uniquely either
partially or completely. So, a key can be used to identify a data row (primary key), serve as
alternate or candidate key (columns that can be possibly used as whole or part of primary
key), be a foreign key (cross-reference), or a surrogate key (system-generated sequential
or random numbers, transparent to users).

 Let’s go through each of these using the entity design from the last section. In case
you are new to IE notation for logical models, the columns above the line (within the
entity box) are primary key columns. As you can see in Figure 2-9 , ClaimId is the primary
key for entity Claims , and CustomerId is the primary key for entity CustomerDetails .
These (as mentioned) are system-generated numbers guaranteed to be unique for that
column and hence can be used for identifying a data row uniquely. As per the definition
for a surrogate key , ClaimId and CustomerId are good examples of surrogate keys, which
are used (or generated) in cases where no natural key (combination of columns that can
uniquely identify a data row) exists.

 Figure 2-8. Claims and CustomerDetails data in third normal form

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

46

 In the case of ClaimMCdata , since a claim can have multiple medical conditions
associated with it, I added CMCdataSeqNum (sequence number) as part of the primary key
to make it uniquely identify a data row.

 The CustomerDetails entity has an example of alternate key or candidate key as
shown in Figure 2-9 . As you are aware, a system-generated identifier called CustomerId
is used as primary key. But it is also possible to use the SocialSecurityNumber column
as a key, since it can uniquely identify a customer. In this case, you don’t need to worry
about moving the column to a separate table, as there are no attributes only dependent
on SocialSecurityNumber .

 You may recall that before I moved all the customer information to a separate entity
 CustomerDetails , I placed an identifier called CustomerId within a claim record, so that
you can cross-reference information for the customer who filed it using it. CustomerId is
of course the primary identifier or primary key for entity CustomerDetails . This key that’s
used for cross-referencing information from another entity is known as a foreign key . For
IE notation, a foreign key column is marked with FK within parentheses. Another foreign
key you can see is ClaimId for entity ClaimMCdata . It references the claim information the
medical condition information belongs to.

 Optionality and Cardinality
 Optionality and cardinality are diagramming conventions for describing relationships.
For example, consider the following relation between Claims and ClaimMCdata . The
crow’s foot means many and the absence of it means one. That’s the cardinality of
a relation. Also, the circle means optional and the bar means mandatory. That’s the
optionality of a relation.

 Subsequently, the relation can be read as “a claim may result in none or many
medical condition records.” It can also be read as “a claim medical condition record will
always have a corresponding claim record exist for it.”

 Figure 2-9. Primary and foreign keys for claims processing

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

47

 While considering dependencies, a relationship that “identifies” the records in the
child table or dependent table is an identifying relationship. The child table inherits
the primary key of the parent and may need to supplement it with an attribute for
uniqueness. In Figure 2-10 , Claims has an identifying relationship with ClaimMCdata and
as you see, ClaimMCdata had to supplement its primary key with a sequence number for
uniqueness (since a claim record may be inherited by many ClaimMCdata records).

 Figure 2-10. Optionality and cardinality in Claims processing

 There are non-identifying relationships too. For example, the relation between
 Claims and CustomerDetails entities discussed earlier is a non-identifying relation.
A CustomerDetails record is not inherited by a Claim record; the foreign key attribute
 CustomerId simply acts as a pointer or cross-reference to customer details for the
customer who filed the claim. The non-identifying nature of the relationship is indicated
by a dotted line (instead of solid) and by CustomerId not being a part of the primary key
for Claim .

 Now, all the relations from the preceding model are of one-to-many or zero-to-may
cardinality. What happens if there’s a relation that has “many-to-many” cardinality?
You need to use a mapping table to break that relation into two one-to-many’ relations.
Consider the following part of claims processing logical model shown in Figure 2-11 . The
entities Claim and Claim_property have a many-to-many relationship, since a property
may be applicable to many claims and a claim may have many properties. To represent
this relation within a logical model, you need to create a mapping table Claim_property_
data and map claims with their respective properties and vice versa.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

48

 To summarize, optionality and cardinality bring clarity to the relations and
help document them better. They also make the logical model more readable and
understandable.

 Supertypes and Subtypes
 Supertypes and subtypes are among the most useful logical constructs for relational
design. Supertypes correspond to entity classes (a group or type of multiple entities
usually associated with the same business process or used for providing same business
functionality) and subtypes represent a different level of entity class too. You can think of
supertypes and subtypes as supersets and subsets with respect to entities.

 Supertypes and subtypes are best used at the conceptual modeling stage and
therefore are well-suited for the top-down design approach. They assist in providing
concise documentation of business rules as well as exploring alternative data models.
Because subtypes and supertypes are not directly implemented by any RDBMS, you need
to break them up in separate entities before the logical or physical data modeling stage.

 Here’s an example to discuss the concepts of supertype and subtypes. Consider the
following part of claims processing logical model (again), as shown in Figure 2-12 . To
recapitulate, Claim holds the claim data, Claim_type holds all the types for claim (Auto ,
 Health , Home , and so on), and Claim_property holds all the possible properties for
claims.

 Figure 2-11. Resolving a many-to-many relationship

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

49

 Figure 2-12. Use of mapping entities to assign properties based on claim type

 As I already explained, the entities Claim and Claim_property have a many-to-many
relationship, and Claim_property_data is a mapping table that maps claims with their
respective properties. Similarly, Claim_property and Claim_type have a many-to-many
relationship, and Claim_property_claim_type is a mapping table that maps claim types
with their respective properties.

 The purpose of these four tables (Claim_property , Claim_property_data , Claim_
type , and Claim_property_claim_type) is to make sure that a specific type of claim
only has the necessary properties available to it that are governed by the claim type. For
example, a home insurance policy won’t have VIN as a property, and an auto policy won’t
have estimated reconstruction cost as a property.

 Is it possible to redesign this part of the logical model using supertypes and
subtypes? Yes, if Claim is used as a supertype and the various types of claims (Auto ,
 Health , Home) as subtypes, this part can be redesigned, and the four tables that were
added (to accommodate the specific properties of a type of claim) can be removed. The
design will look like Figure 2-13 .

Claim

Dental Claims Medical Claims

Home ClaimsAutoClaims

ClaimId
CustomerId
ClaimSubmissionDate
ClaimNotes

 Figure 2-13. Use of supertypes/subtypes to assign properties based on claim type

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

50

 The expanded logical model will look like Figure 2-14 .

 Figure 2-14. Logical model using supertypes/subtypes for claims processing

 The supertype Claim has a number of common or shared attributes (ClaimId ,
 CustomerId , ClaimSubmissionDate , ClaimNotes) that will be inherited by all the subtypes
(AutoClaims , HomeClaims , DentalClaims , MedicalClaims), and the subtypes will have
their own specific attributes. So, AutoClaims may have attributes like InsureeVIN ,
 OtherVehicleVIN , IncidentLocation , and TicketNumber , whereas MedicalClaims may
have attributes like MedicalCondition , Physician , and so on.

 This is another way to ensure that a specific type of claim will only have valid and
applicable properties stored for it. There are pros and cons of both designs. The design
with separate entities for properties and type (with mapping tables) provides more
flexibility, and any addition or removal of properties doesn’t result in a change to the

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

51

logical model. But it is harder to understand and maintain. The design with supertypes
and subtypes is much easier to understand and maintain; but inflexible. Any changes to
properties of a specific type of claim will result in changes to the entity structure and will
be difficult to implement. You can choose the approach that suits your environment.

 There are a few things to be noted about supertypes and subtypes that will help you
understand these concepts better:

• Subtypes for a (supertype) should be mutually exclusive
(non-overlapping) and exhaustive. In the given example, the
subtypes (Auto , Home , Medical claims) are mutually exclusive. But
if there’s a functional overlap, it complicates the design and you
need to find ways to remove the overlap.

• Creating partitions is a technique used sometimes to remove
overlaps, especially since some CASE tools allow multiple
breakdowns (partitions) into complete, non-overlapping
subtypes. For example, if the auto and home policies both cover
third-party liability and have difference in coverages, it will cause
an overlap and possibly need a resolution through partitions
(such as auto policies with home coverage, auto policies without
home coverage, and home coverage without auto coverage).

• Subtypes and supertypes can participate in relationships (just like
entities), but only for a conceptual model (not for logical/physical
model, since supertypes/subtypes are not supported directly by
any RDBMS).

• Subtypes can be used with several levels of nesting and can form
a hierarchy.

 I hope this chapter gave you a good orientation of the critical building blocks of
relational design. We will be using all these constructs to analyze a real-world business
scenario and design a logical/physical model to store the outputs from execution of
relevant business processes.

 Summary
 A lot of people might question coverage of relational database design in this era of NoSQL
databases with cutting edge technology and distributed architecture. I personally feel
that since most of the database world is still operating within the structure, constraints,
and regularity of relational databases, there is relevance to this discussion. Unless you
understand what you are using, you can’t transform it to what you want it to be. Most of
the existing applications were designed a while back and use relational design features
extensively. To migrate these applications to a newer technology, you certainly need a
good understanding of what features were used and what do they do.

CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

52

 More importantly, there are no tools available for NoSQL design specifically and
most of the architects use relational design tools for creating data models that are targeted
for NoSQL databases. For example, re-architecting RDBMS data involves denormalization
and aggregation of entities (since NoSQL databases are not very good at processing
joins). These tasks need to be (and are) performed using relational database modeling
tools. Also, unless you understand the concepts of denormalization and aggregation, you
can’t modify your model to fit a NoSQL solution. That’s why it is important to familiarize
yourself with the relational design concepts covered in Chapters 2 and 3 . As another
example, it will be difficult to understand column-based storage of Columnar NoSQL
databases or embedded document structure of Document-oriented NoSQL databases
unless you understand how normalized data is organized in rows for relational databases.
That also means you need to understand the concept of normalization.

 Many of the time-tested and useful concepts of relational design are adopted for
NoSQL. Knowing and understanding the relational concepts will certainly help you
draw parallels with the corresponding NoSQL features and make the learning process
easier and more interesting. I will demonstrate how the relational design changes to a
more flatter, data duplicated version for implementation into Columnar or Document
databases in the later chapters (Chapter 6). Though the data volumes increase (with
duplication), you can see how performance enhances for NoSQL solutions.

 On a different note, one important thing to remember about frameworks or
methodologies is that they are design guidelines or suggestions. You don’t need to follow
them verbatim, and it is best to adopt them as well as you can for your environment. I
have often seen the best designs where architects have used their creativity to supplement
the formal design steps with something specifically useful for their purpose.

 This chapter summarized the leading design methods and useful components of
relational design. I am sure this will assist you in understanding the process of database
design using the method SSADM, the topic of the next chapter.

http://dx.doi.org/10.1007/978-1-4842-1287-5_2
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://dx.doi.org/10.1007/978-1-4842-1287-5_6

53© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_3

 CHAPTER 3

 Using SSADM for Relational
Design

 I worked for a British computer company in the 1990s, and it was company policy to use
SSADM (Structured Systems Analysis and Design Method) for any new projects. At the time,
we were working on a part of the London Underground (also called the Tube) automation.
I went to my manager with the time estimate for a new module that I was designing. The
estimate was high, and he asked, “What are all these tasks for gathering requirement
specifications and technical system options?” I said those were SSADM-based tasks. He
replied: “We can do the documentation later. Right now, get on with the database design
and front-end development.” A lot of years later, that attitude has not gone away.

 Now for some obvious questions. What’s the relevance of SSADM for Hadoop
migration? Can you use SSADM with NoSQL databases? Why does it need to be a part of
this Hadoop book? Think about this: most of the systems that you may want to interface
with or migrate to Hadoop may have used a subset of SSADM for their design. Having a
good understanding of SSADM helps you grasp the source system design better.

 More importantly, the logical design process remains the same for a system whether
you implement it using relational technology or a NoSQL solution. Only the physical
implementation steps differ per your chosen target technology. Besides, SSADM is a
superset of most of the design techniques used today. So, it will definitely help you to
understand the extensive design steps specified by SSADM and will ultimately help you
present your design in an organized manner that’s also self-documenting.

 Because the logical design process is independent of target technology used for
implementation, you can use any SSADM-based tools (or in general any relational design
tools) for system design—even if you plan to use NoSQL to implement your design. That’s
also the reason why no specific NoSQL design tools are available.

 Getting back to SSADM (and design methodologies in general), formal design
methodologies are sometimes intimidating, and the reason is very simple. Architects
and modelers try to fit in their designs into the specific steps that a design method has
elaborately described. Instead, a designer should use the method as a framework or
guideline and supplement the design with specific requirements that are necessary
in their environment (and also feel free to omit the steps that are redundant). In case
of SSADM, too, the documentation clearly mentions the need to apply (or omit) steps
depending on your need.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

54

 Moreover, if you think carefully, you will realize that the development process you
follow (based on your development/design experience) is not very different from SSADM.
It’s just not formalized or categorized into specific steps or modules (as in the case of
SSADM). For example, you may not do a “feasibility study” and come with a feasibility
report, but you will (most probably) make sure that the system (you plan to develop) is
technically feasible, required by your organization, and that the management is ready to
spend money for its development. This may also be true about most of the SSADM steps.

 SSADM is not very popular in the Americas, but the reason I am using it as an example of
design methodology is because of its extensiveness and exhaustiveness. I feel it will give you
a good understanding of the (formal) process of software development. What you need to be
careful about is making sure that you drive the process and not let the process drive you.

 You already know the steps that SSADM involves and what they do (at a high level).
In this chapter, I discuss a real-world scenario and use the SSADM framework to design a
database solution that will efficiently hold the data that the business processes generate
(for the scenario I am discussing). So, let’s start with the first SSADM module: feasibility study.

 Feasibility Study
 Informally, you (or your management) always make sure that the system you plan to
implement is practically possible. You also make sure your organization is ready to pay
the bill. SSADM simply formalizes this process and also helps you create documentation
that may be useful in future to record what the business need for this development was.

 When you rely on making decisions in an informal manner or when you rely on
experience of involved resources, it is possible that you may overlook some aspects that
may impact your decision. SSADM makes sure you don’t. Also, it will be useful to conduct
a feasibility study, irrespective of your implementation target being a RDBMS-based
system or a NoSQL-based solution. Therefore, this design stage can be used even for a
NoSQL-based system.

 So, how do you apply SSADM to conduct a feasibility study for a real-world business
scenario? Let me discuss the scenario first.

 “YourState Insurance” is a leading insurance company that sells health insurance
to its US-based customers. The company’s dynamic vice president of marketing, being a
former baseball player, wants to add a “Loss of Play“ policy for active baseball players and
their clubs. Subsequently, he directs his research department, risk management group,
and IT architecture group to determine if this new line of business can be profitable. The
following are the salient features of the new policy he wants YourState insurance to sell:

• Policy will insure an active player’s contract.

• Policy will exclude coverage for any chronic or pre-existing
conditions a player is known to have.

• Policy will consider the player’s age, past injuries, and schedule
while deciding premium.

• Policy will offer coverage within two-year intervals only
(for long-term contracts) and price will be adjusted after every
two years.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

55

 Using SSADM techniques, the IT architect as well as business users from the
research department and risk management group have started the feasibility study.

 Project Initiation Plan
 To start with, an IT project manager (along with the architect) prepared a project
initiation document. It contained the following sections:

 1. Introduction : This section provided the following information:

 a. Background of the project : History and what exactly
prompted to research the feasibility of this new “Loss of
Play” policy

 b. Goals : SMART (specific, measurable, achievable, realistic,
and time-bounded) objectives

 c. Project authorization : Formal email from marketing VP,
mandating this project and confirming its sponsorship

 2. Project definition : Defined all aspects of the project such as
the following:

 a. Key deliverables : This project will deliver the following
key deliverables:

• Business case (benefits and risk of the new policy) and
business system options

• Requirements specifications

• Technical system options

• Data flow diagram

• Logical data model

• Logical process model

• Physical data model (target database)

 b. Constraints : This project has the following constraints:

• Financial budget for this research is capped at $250,000,
and this includes employee time

• The research for this policy will be limited to the state of
New York (to start with)

• This research will be limited to coverage of contracts of
$10 million or more (for individual players)

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

56

 c. Assumptions : The following assumptions are made:

• Injury and precondition data for players (to be insured)
is available

• Club schedule (for the player to be insured) for next two
years is available

 d. Exclusions : Any baseball club registered or
headquartered outside the state of New York is excluded

 e. Interfaces : This project will have the following interfaces:

• “Baseball Loss of Play” graphical user interface (internal)

• Claims processing system (internal)

 f. External dependencies : Current dependencies are the
following:

• Accessibility to player contracts

• Accessibility to medical history of the player

 g. Tolerance : Project manager is authorized to expenses
up to $250,000, use of three resources for three months
starting with commencement of the project.

 h. Benefits : The main benefit of this project is a possible
addition of a new line of business. If found feasible, it
will provide expansion to the types of policies offered by
YourState insurance company.

 i. Costs : Initial costs for this project are $160,000

 Area Cost

 Project management $50,000

 Infrastructure (hardware/software) $20,000

 IT resources $40,000

 Business resources $50,000

 j. Approach/Process/Execution and milestones:

• Approach : The approach for analysis will be based on
design methodology SSADM, and the deliverables will
closely follow the SSADM modules and corresponding
deliverables

• Milestones : Again, the milestones correspond closely to
SSADM deliverables and are as follows:

• Feasibility study report

• Requirements specification

• Technical system options

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

57

• Data and process flow diagrams

• GUI specifications

• Logical data model

• Physical data model

• Graphical user interface

 k. Contingency plans : In case of any contingencies, a
packaged solution (that can be customized for our needs)
will be sought

 l. Project organization structure:

• SRO (senior responsible owner) for the project is vice
president (marketing)

• Project manager reports to SRO and is also
answerable to project board

• Project team has following members:

 Name Division/Organization

 Solution architect IT

 Senior analyst Research department

 Senior analyst Risk management group

 m. Communication and stakeholders:

• Communication method : The key communications
channels are:

• Weekly reports

• Weekly meeting

• Stakeholders : The stakeholder map in Note A has the
details

 n. Reporting cycle : Following are the details about reporting
for this project:

• Project initiation : The project will formally start when
the SRO and project board have approved this project
initiation document

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

58

• Reporting periods:

• Project team with project manager—weekly

• Project manager with SRO—monthly

• SRO with project board—quarterly

• Decision points : Key decisions must be taken after each
of the milestones

• Exception reporting will be performed by project
manager in case agreed tolerances are exceeded

• Project issues will be available in the issue log attached
to Note B

• The project will be formally closed by SRO on
completion of all milestones or after feasibility study
report (if it is not deemed feasible)

• Note A: Stakeholder map

 Stakeholder Interest Information Requirements

 SRO Sponsor Details on how milestones are progressing

 Business development Sponsor Details on how the new policy will benefit
the business

 IT Development Technical details needed to develop the
system

 Claims department User How the new system is used

• Note B: Issue Log

 Issue # Issue title Description Logged by Owner Action & Progress Action Date Status

 Requirements and User Catalogue
 The requirement and user catalogues serve a very important purpose of documenting
functional requirements for a system and the prospective users (along with their
roles). These catalogues also provide a quick overview for designers (and users) to
make sure all the requirements are documented and accurately reflect the required
functionality.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

59

 Requirements Catalogue
 A requirements catalogue lists all the functional requirements and the non-functional
requirements that originate from it. The catalogue entries also list out benefits, related
documents, and related requirements for each of the functional requirements. For the
current project, here are the entries from the requirements catalogue:

 Project : Loss of
Play policy

 Author BL Date 6.19.15 Version 1 Page 1 of 3

 Source : Discussion with VP, Marketing Priority High Owner ST Req ID 01

 Functional Requirement :
 A Loss of Play policy needs to be added for active baseball players and their clubs. The
policy should insure an active player’s contract excluding coverage for any chronic or
pre-existing conditions a player is known to have. It should also consider the player’s
age, his past injuries, and his schedule while deciding premium and offer coverage
within two-year intervals only (for long-term contracts). Premium should be adjusted
every two years.

 Benefits
 This policy will be a new line of business that may result in a substantial amount of
profit since there are not many such policies available currently.

 Comments/suggested solutions
 A team of IT architect and business analysts is performing a feasibility study to
determine whether this project is viable and beneficial for YourState insurance
company.

 Related documents
 Project initiation plan, interview, and observation notes (gathered by the team
performing the feasibility study), current and proposed environment descriptions.

 Related requirements
 02

 Resolution
 Accepted by VP, marketing and project board

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

60

 Project : Loss
of Play Policy

 Author BL Date 6.19.15 Version 1 Page 2

 Source : Discussion with VP,
marketing

 Priority High Owner ST Req ID 02

 Functional requirement :
 A web interface needs to be developed for the proposed Loss of Play policy if the
feasibility study finds the project viable and YourState management decides to add the
new policy as a new line of business. This interface will need to store the policy data
within the central Claims database and be a part of the YourState Claims application
used by the claims department.
 Business event : Loss of Play web interface added

 Non-functional requirements

 Description
 Claim
submitted
through web
interface

 Expected
response
 Immediately

 Acceptable
range
 Under five
seconds

 Comments
 Claim needs to be stored within the
database within five seconds and
confirmation received (to the agent
inputting it)

 Benefits
 The web interface is necessary for the claims department to enter the claim
information or view/modify claim status.

 Comments/suggested solutions
 The development of this interface depends on the outcome of a feasibility study
(requirement id 01) and if the project proceeds, then a team will develop the necessary
web interface as per the design specifications (please refer to the project initiation
plan for details).

 Related documents
 Project initiation plan, current and proposed environment descriptions.

 Related requirements
 01

 Resolution
 Accepted by VP, marketing and project board, but subject to a viable feasibility report.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

61

 User Catalogue
 The user catalogue lists out the possible users with their job titles (for the proposed system)
and descriptions of their job activities. Following is the user catalogue for this project:

 User Activity

 Claims adjuster View or modify existing claims

 IT System administration and technical support

 Marketing View claims

 Call center representative Create new claims

 Current Environment Description
 This section describes the existing environment in detail and is helpful in providing an
overview of the existing system. It covers the hardware and software configurations, data
flow, and logical data model. It is necessary to know what exists before designing a new
system that is meant to supplement the current system’s functionality.

 Current System Description
 Hardware: Windows 2008 R2 (Datacenter edition) server-based physical cluster with
64 CPUs, 1 TB RAM, and 20 TB SAN storage. Database used is SQL Server 2008 R2
(Datacenter edition). The Claims database is one of the largest databases with a size of
10 TB and covers claims for last three years. Earlier claims are archived in the archival
database. The daily volume of claims is between 2,000 and 3,000 and includes claims filed
using YourStates’ toll-free phone number as well as the web-based claim filing system.
Every night, an automated process allocates claims to claims adjusters based on several
parameters (such as type of claim and the adjusters’ expertise, number of claims an
adjuster is working on, location, and so on).

 Current Physical Data Flow Model
 A data flow model provides functional details of how data flows within the existing
system. Figure 3-1 shows data flow for the Policy and Claims processing system for
YourState insurance company.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

62

 As you can see, a policy can be bought or a claim can be filed either online or by
calling the YourState toll-free phone number. Customer, policy, and coverage information
is accessed and verified before filing a claim. If a customer has the necessary coverage,
then a claim is filed (record inserted in Claims database).

 Current Logical Data Model
 The logical model shows how the key entities within a system are interrelated and also
provides details of those relationships. The logical data model in Figure 3-2 shows the
relationships for key entities within the Claims processing system.

 Figure 3-1. Data flow for Policy and Claims processing system

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

63

 Proposed Environment Description
 This section describes the three important aspects of the proposed new system: event
flow, data flow, and functional logic that events employ to capture data. I will discuss each
of these in detail. Let me start with the business activity model that outlines the business
processes along with the details of the activities that make up a process and show the
process/activity interconnections as well as interactions.

 Business Activity Model
 A business activity model focuses on critical business processes and models the essential
activities within these processes. Activities can be further divided into tasks (for clarity). It
also shows the business events that invoke the business processes and the business rules
involved in invoking and performing the required activities.

 In Figure 3-3 , events are represented by circles, activities by rectangles, business
processes by dotted rectangles, and diamonds represent a decision point. So, the event
“request for a quote” from a prospective client invokes the business process “policy
quote” that has underlying activities such as documentation review by risk management
group and issual of quote, client review (of quote), and in case the client has any queries
or reservations, the quote is sent back to risk management group for another review and
modification(s). Client acceptance of the quote invokes the next event “request for issual
of policy.” That in turn invokes the next business process “policy issual” and culminates
in issual of a policy and capture of information to appropriate databases within the
YourState insurance company.

 Figure 3-2. Claims processing logical data model

http://www.businessdictionary.com/definition/activity.html
http://www.businessdictionary.com/definition/process.html

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

64

 To summarize, this business activity model captures the complete business
requirement of issuing a Loss of play policy to prospective clients.

 Data Specification
 This section describes the new entities that are required to store data for the proposed
system. In this case, a few new entities are required to support the new Loss of Play policy,
and they are as follows:

• PlayerInjuries : This entity records past baseball injuries for a
player and is used in conjunction with a player’s medical history to
determine the premium for Loss of Play policy for a baseball player.

• PlayerSchedule : This entity stores the schedule details for
current and next season for a baseball player.

• PlayerChronicConditions : This entity records existing chronic
health conditions for a baseball player and is used to determine
the premium for Loss of Play policy for a baseball player.

• PlayerContracts : This entity records details of the contract a
baseball player has with his club (the club that’s requesting policy
coverage) and is used to determine the premium for Loss of Play
policy for a baseball player.

Request
for a
quote

Client reviews
the quote

Rejected

Accepted

Back to RMG
for a modified
quote

feedback

Request
for issual
of Policy

Corporate Sales group
prepares contract and
files a bilaterally signed
copy

Policy documentation
issued to the client and
appropriate records added
to related databases

Risk Management group
reviews the necessary
documentation and
provides a quote

Business process Policy issual

Business
process
Policy
quote

 Figure 3-3. Business activity model for Loss of Play policy issual

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

65

 Function Specification
 This section specifies the new functions and events required to implement the new
system. A data flow model shows where these events and functions fit in with respect to
the whole system. For the proposed Loss of Play policy, the new events are as follows:

• Request for a Loss of Play policy quote

• Request for a Loss of Play policy issual

• Request for a Loss of Play policy cancellation

• Request for a Loss of Play policy claim

 The new functions required to support the new policy are as follows:

• GetPlayerInjuryInfo : Load past injury information for a
baseball player in entity PlayerInjuries

• GetPlayerChronicCondInfo : Load information about
a baseball player’s chronic medical conditions in entity
 PlayerChronicConditions

• GetPlayerContractDetails : Load information about a baseball
player’s contract in entity PlayerContracts

• GetPlayerScheduleInfo : Load information about a baseball
player’s schedule for current and next season in entity
 PlayerSchedule

• CalculateLossOfPlayPremium : To calculate the premium
for a contract using the supplied documentation and the
information collected by functions GetPlayerInjuryInfo ,
 GetPlayerChronicCondInfo , GetPlayerContractDetails , and
 GetPlayerScheduleInfo

• EvalLossOfPlayClaim: To evaluate a Loss of Play claim filed by a client

 Problem Definition
 The problem or need for this project is discussed in great detail in the project definition
sub-section of the project initiation plan. Also, the requirements catalogue defines the
necessity of the project, thereby discussing the problem at hand. However, to recapitulate,
here are the requirements in order of priority (highest priority first):

• Feasibility of a new policy Loss of Play that will insure an active
baseball player’s contract (excluding coverage for recurrence of
any chronic or pre-existing conditions a player is known to have)

• Consider technical, financial, legal, and organizational feasibility
and also consider that this policy will offer coverage for a maximum
of two years only (policy renewable after revaluation of premium)

• Feasibility of implementation of this policy (in terms of design
and development by IT)

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

66

 Feasibility Study Report
 A feasibility report is the final outcome or deliverable of the feasibility study module of
SSADM. It usually has the following sections and subsections; although some of these
sections might be excluded as per your individual need and applicability:

• Management or executive summary

• Introduction

• Purpose

• Project history

• Methodology

• General information

• Current systems and processes

• Current operations

• Physical environment

• User organization

• System objectives

• Issues

• Assumptions and constraints

• Alternatives

• Alternative1

• Description

• Benefits and costs

• Alternative2 (and so on for more alternatives)

• Comparison of Alternatives

• Recommendations and conclusions

 A careful review of earlier sections will confirm that the information needed in
introduction section is already provided by corresponding sections within the project
initiation plan and the information required by the general information is covered by the
current environment and proposed environment sections discussed earlier. Subsequently,
let me focus on the sections not covered, starting with the alternatives section:

• Alternatives : Based on extensive study of the current environment,
proposed system requirements, and constraints defined by the
project initiation plan, the following alternatives are feasible:

• Alternative1 : Develop a new subsystem that will work
seamlessly with the existing Policy and Claims processing
system using business and IT resources.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

67

• Alternative2: Have business analysts and IT architects
prepare detailed specifications of the proposed system
and hire a software development company to do the
development.

• Alternative3: Buy a software application that provides similar
functionality and have IT resources customize it to match the
necessary functionality.

• Comparison of alternatives: The first alternative
(in-house development) may be slow and may lack in
quality (depending on the resources), but it is the most
affordable and offers the most control. The second
(custom development by a software development vendor)
is fast, may offer better quality, but is expensive and
also may lack adequate control over development and
functionality and may require changes (to developed
system). The third alternative (customized package
solution) might be the most expensive, but offers
technical support and ease of change.

• Recommendation and conclusion: After comparing the available
alternatives, recommendation is to use the first alternative and
develop the subsystem in-house using IT resources.

 The other section that’s not covered earlier is the management summary or
executive summary. Let me discuss that now:

• Management summary: Provides a brief summary that describes
the purpose, methods, issues, and results of the feasibility study.

 Following is the management summary for this feasibility study:

 The purpose of this feasibility study was to determine if introducing a new
Loss of Play policy (that will insure an active baseball player’s contract
excluding coverage for recurrence of any chronic or pre-existing conditions
a player is known to have) for YourState insurance company is feasible
(considering technical, financial, legal and organizational feasibility).

 Method used for conducting this feasibility study was SSADM (and the
feasibility module). Techniques and deliverables were used as defined by
SSADM documentation.

 There were no issues encountered while conducting this study and
three alternatives were evaluated. The alternative involving in-house
development of the necessary subsystem and train internal (YourState)
resources to manage the system was recommended due to its affordability
as well as best control over development and functionality.

 This concludes the feasibility study module. Next up: requirements analysis.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

68

 Requirements Analysis
 This module uses the outputs from the feasibility study module and continues the design
process using SSADM guidelines and techniques. The main focus of this module is to
perform a detailed analysis of the current environment through available documentation
and also interviews with users performing varied roles to support the current system.
This analysis leads to extensive documentation of the current environment and covering
the details of services provided by the current system, users and their roles (as well as
activities), logical data model, and physical data flow. As a result of this analysis, it is
possible to specify the business system options for the proposed system.

 Subsequently, there are two main stages for this module: investigation of current
environment and business system options. Please note the independence of this SSADM
stage from the implementation target (RDBMS or NoSQL). Therefore, this design stage
can be used even for a NoSQL-based system.

 Investigation of Current Environment
 This stage focuses on conducting a thorough analysis of the existing environment and
documenting the scope or boundaries of the current system (to start with). The next task is
documenting the functionality or services provided by the current system along with user
roles and activities. There are a number of outputs or deliverables from this stage that provide
extensive information as needed and that also help in designing the business system options.

 As you may recall, some of the deliverables (such as logical data model or physical
data flow) were already discussed while conducting the feasibility study, though not
in much depth. I will discuss additional details for those deliverables and also discuss
the additional ones that I have yet to mention. Let me start with a list of outputs
(or deliverables) for this stage:

• Current data flow model

• Current logical data model

• Requirements catalogue

• User catalogue

• Logical data store/entity cross reference

• Logical view of current services and system scope

 Current Data Flow Model
 YourState insurance company has an existing system that processes new policies for new
or existing customers and also manages them. It also stores claims (that the customers
file) and the up-to-date status for them. Figure 3-4 shows the data flow model (presented
earlier in the last module) with more details.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

69

 Let me discuss the data flow briefly. A new customer can buy one of the policies
offered by YourState online (using the website) or call the toll-free number. In either case,
customer information is captured within the policy-holder entity and the policy-related
information is captured within the policy entity. A temporary policy is issued subject
to verification of the information provided as well as payment information. If all the
information is verified to be correct and payment processes successfully, then a policy is
issued and mailed to the customer.

 A claim can be similarly filed online or by calling YourState’s toll-free number.
Customer information and claim details are captured (in both cases) and the assigned
claims adjuster verifies coverage (for policy against which a claim is filed) and then
assigns a field agent (if necessary) to investigate the claim. If that’s not necessary, then
documentation is requested from customer as necessary. A claim is settled in accordance
with the company’s norms and of course following the county, state, and federal laws.

 Current Logical Data Model
 Figure 3-5 is the logical data model for the existing Policy and Claims processing system.
It shows the major entities and their inter-relationships.

 Figure 3-4. Detailed data flow for Policy and Claims processing system

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

70

 As you can see, the entities Claim and Policy are central to the processing. They
(of course) store claim and policy details. The entity Policy_owner stores information
about the policy owner(s)—individual or corporate. Policies and claims can be of
different types, and Policy_type and Claim_type store the details. Status of claim is
stored within Claim_status and Claim_line_item as well as Claim_settlement hold
settlement details for a claim. If a claim is rejected and resubmitted for evaluation, those
details are stored within entity Claim_resubmission . This model uses the crows feet or
 information engineering notation to show the relationships between different entities.

 Requirements Catalogue
 This requirement catalogue pertains to the development of the existing Policy and Claims
processing system and dates back to 2010 when this system was developed. Earlier,
YourState insurance used a packaged solution which was customized for its needs, but
didn’t provide all the functionality it needed and also cost them in licensing fees as well
as delays for getting technical support.

 Figure 3-5. Logical data model for Policy and Claims processing system (attribute level)

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

71

 Project : Policy/Claims
processing system

 Author BL Date 4.22.10 Version 3.3 Page 1

 Source : Approved requirement by
VP, business development

 Priority High Owner ST ReqID 01

 Functional requirement :
 A comprehensive policy and claims processing system needs to be developed by IT
for our internal use. This system needs to be able to capture customer and policy
information and also support filing and processing of a claim throughout its lifecycle.
Most recent claim status needs to be displayed and updateable easily. Business logic
(specified in requirements specifications) needs to be applied while issuing policy,
calculating premium, and also processing claims.

 Non-functional requirements

 Description
 Policy/Claim
information
submitted through
web interface

 Expected
response
 Immediately

 Acceptable
range
 Under 5
seconds

 Comments
 Policy or Claim needs to be
stored within the database
within 5 seconds and
confirmation received (to the
agent inputting it)

 Policy/Claim
retrieved for display
and update

 5 seconds Under 10
seconds

 It is imperative that an agent
has this information available
as quickly as possible

 Benefits
 This system will help manage our policies and claims more effectively (as compared
to the packaged application in use currently) and will also save $500,000 per year in
licensing fees for the current software application and additional expenses for support.
Lastly, it will reduce the delays in bug fixes and technical support.

 Comments/suggested solutions
 A team of IT architect and business analysts is performing a feasibility study to
determine if this project is viable and beneficial for YourState insurance company

 Related documents
 Project initiation plan, interview, and observation notes (gathered by the team
performing feasibility study), current and proposed environment descriptions

 Resolution
 Accepted by VP, business development and project board

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

72

 User Catalogue
 The user catalogue lists out the users with their job titles (for the existing system) and
descriptions of their job activities. Following is the user catalogue for this project:

 User Activity

 Claims Adjuster View or modify existing claims

 IT System Administration and technical
support

 Marketing View customer information, policies, and
claims

 Call center representative Create new policies and claims

 Business development and support View and modify customer and policy
information

 Logical Data Store/Entity Cross-Reference
 This process involves comparing the LDM with DFM and resolving the inconsistencies.
Several checks are used for this purpose:

 1. Matching DFM processes with LDM entities : You need to verify
that all the entities in your LDM have a corresponding process
within DFM that modifies them. Following is an example of
such a match (I have not displayed all such matches, but it will
be a good exercise to identify the ones that I have left out).

Please note that the entities like Policy_type hold static
reference data and may have a process like static data
maintenance (not shown in DFM) associated with them.

 DFM Process LDM Entities Affected

 Policy , Policy_owner

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

73

 2. Data stores in logical DFM should have a one-to-one relationship
with entities in LDM. A data store may have many entities within
it, but an entity should only exist in a single data store. If there
any exceptions, they should be justified individually.

 In this case, there is a single data store (Claims) and all the
entities within LDM are a part of it.

 3. Ensure that the elementary processes defined in the DFM can
get the data they require by navigating through the data model.

 This is a reverse check (compared to # 1), as it makes sure that
the DFM processes access entities from LDM. For the Policy and
Claims processing system, all the processes within DFM write to
 Policy and Claim entities only and therefore pass this check.

 Logical View of Current Services and System Scope
 The prime purpose of this step is to convert the current physical DFM into a logical DFM
by eliminating external physical factors, duplication, and redundancy, using the LDM
(which by definition is already logical) as a reference for validation. What does this mean?

 A data flow model has combination of processes—logical and physical. Also, there
are some data stores that only service the physical implementation of the current system
and don’t contribute to the logical implementation. For example, there may be a data
store dedicated to logging performing data and there may be processes populating that
data. These kinds of processes and data stores need to be eliminated from the data flow
model (to convert it to a logical DFM). Lastly, processes/data stores that are duplicated
need to be considered for combination.

 In case of the Policy and Claims processing system, I have not shown any processes
catering to physical implementations. Also, as mentioned earlier, there are processes
for maintaining static reference data, but I have not shown them in the DFM as well.
Subsequently, the DFM is already a logical DFM, and it is easy to prepare a logical view of
services provided:

• Add or modify customers and policies (using YourState web-site
or toll-free phone number)

• File and process claims for customers (using YourState web-site
or toll-free phone number)

 As you can see, the scope of this system is also automatically documented (by
specifying the services provided).

 To summarize, what is the purpose or benefit of creating this logical view of services?
Well, a logical view can be useful in providing the thinking or strategy behind the physical
implementation of a system. So, in case the situation changes and a particular decision
is questioned, the logical view has a record of the logic behind that decision and makes it
easy to cross-check.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

74

 Business System Options
 At this stage, having completed the feasibility study, as well as investigation of the existing
system, and having reviewed the requirements and user catalogue, there are a number of
possibilities for the required logical system. The functionality within each of the BSOs is
based on the following implementation strategies:

 1. Don’t add the Loss of Play policy.

 2. Try to buy an off-the-shelf package that provides required
functionality for adding Loss of Play policy.

 3. Develop the necessary system using internal IT resources.

 4. Hire expert resources on contract to develop the system.

 5. Have a software development company develop the
application for a predetermined price.

 None of the BSOs associated with the preceding strategies offered an ideal solution,
and all of them had pros and cons. Ultimately, after much deliberation, three options
(options 3, 4, 5) were shortlisted and forwarded to the project board with detailed analysis:

• Alternative1: Develop a new subsystem that will work seamlessly
with the existing Policy and Claims processing system using
business and IT resources. The call center and policy department
will need to provide additional training to resources who will
manage the new policy. IT will develop the sub-system that will
consist of the additional database entities and a web interface.

• Benefits and costs: The main benefits are cost and complete
control over development/functionality. With in-house
development, total cost will only be about $200,000.

• Alternative2: Hire expert resources on contract to develop
a solution that provides necessary functionality and have
knowledge transfer to IT resources for maintaining and
supporting it (also training to call center and policy deptartment).

• Benefits and costs: The main benefits are time, quality of
development, and ease of modifications. Although, with
contract resources, total cost will be little higher (compared
to alternative1) at $275,000.

• Alternative3: Have business analysts and IT architects prepare
detailed specifications of the proposed system and hire a custom
software development company to do the development. The call
center and policy department will still need to provide additional
training to resources who will manage the new policy.

• Benefits and costs: The main benefits are time and quality
of development. Although, with custom development, total
development cost will be higher at about $325,000.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

75

• Comparison of alternatives: The first alternative (in-house
development) may be slow and may lack in quality (depending on
the resources), but is the most affordable and also offers the most
control. The second (custom development by contract resources)
is fast and may offer better quality, but is a little expensive and
also may lack adequate control over development. The third
alternative (customized package solution) might be the most
expensive but offers technical support and ease of change.

• Project board decision and conclusion: After comparing the
available alternatives, the project board decided that the second
alternative is the best option for YourState insurance and decided
to develop the subsystem in-house using a combination of IT
resources and expert contract resources.

 Requirements Specification
 This is the most complex module because it involves full logical specifications as a deliverable.
The requirements specified in the feasibility study module are used as a starting point and
the business system option from the requirement analysis module is used as a framework
to develop an accurate, unambiguous, and consistent logical specification document. This
specification focuses on system functionality rather than implementation.

 The architect prepares the following deliverables to effectively produce the logical
specification:

• Data-flow model (DFM)

• Logical data model (LDM)

• Function definitions (of all functions required for functioning of
the system)

• Entity life-histories (ELHs) that describe all events through the life
of an entity

• Effect correspondence diagrams (ECDs) that describe how each
event interacts with all relevant entities

 Note that this stage is useful and necessary regardless of implementation target
(RDBMS or NoSQL). Therefore, this design stage can be used even for NoSQL-based
system. I will discuss content and notations for all these deliverables using the new Loss
of Play policy as an example, starting with the data flow model.

 Data Flow Model
 I discussed the current Policy and Claim processing system in detail in the last section.
That gives you a good idea about the processing of a claim or creation of a new policy for
a customer. Subsequently, when a new policy is added to the repertoire of the YourState
insurance company, the new processing needs to match the existing business processes

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

76

(since the Loss of Play policy is just a new policy for the same company) and standards,
since there shouldn’t be a need to design a new process for each new policy added.
However, there are a few things to remember about the new policy:

• Additional processing: A number of requests for information need
to be generated since the premium relies on it.

• No online or phone issual: The premiums (as well as insured
amount) involved are relatively large, and there is a need for
manual verification and signing. Therefore, policy will need to be
issued after both parties sign the agreement.

• No automated claim processing: Any claims need to be processed
as per predetermined logic and also subject to thorough manual
investigation (since the claim amount is expected to be high).

 So, to summarize, there is a combination of manual processes and automated logic
for issuing the Loss of Play policy as well as processing claims associated with it. Noting
that, Figure 3-6 is the data flow model for the Loss of Play policy.

 You can see that there are two separate streams of processing for buying a policy and
filing a claim, and they both use a mix of manual and automated processing.

 Figure 3-6. Data flow model for “Loss of Play” policy and claim processing

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

77

 Logical Data Model
 The logical data model inherits entities used by Policy and Claims processing, but
that’s expected and works well. There are five new entities: LossOfPlayProspect ,
 PlayerInjuries , PlayerContracts , PlayerChronicConditions , and PlayerSchedule .
The model in Figure 3-7 shows their inter-relations.

 The entity LossOfPlayProspect is central to the Loss of Play policy processing,
and you can see that the primary key (ProspectId) is propagated as reference (foreign
key) to other related entities. When a prospective customer (club holding a baseball
player’s contract) requests a Loss of Play policy, certain data is collected about the
player (whose contract needs to be insured) and stored within entities PlayerInjuries ,
 PlayerContracts , and PlayerChronicConditions . The player’s schedule (for current and
next season) is also stored within an entity called PlayerSchedule . All this information
is used to quote a premium for insuring a player’s contract. Again, the quoted premium
may be negotiated by the customer and final premium may be different (hence separate
columns in entity LossOfPlayProspect). Also, since all the prospects may not materialize
as customers, the relationship between entities Policy and LossOfPlayProspect is
zero-to-one (on both sides, since every policy may not start as a Loss of Play prospect).

 Figure 3-7. Logical data model for Loss of Play policy and claim processing

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

78

 Lastly, the player contracts are also captured (for review) in entity PlayerContracts
and actual contracts are scanned and stored as images.

 Function Definitions
 This section defines all the functions that are required for making the new Loss of Play
policy available to the customers. Some of these functions may be implemented within a
database, and others may be implemented at the web-interface (used by customers and
agents). I will mark the functions accordingly.

 GetPlayerInjuryInfo
 This function loads past injury information for a baseball player in entity PlayerInjuries .
Data comes from two sources: media and player’s medical history. Since it takes time for
a player’s injury to be reported on his medical history (or sometimes an injury is not even
recorded if a player is treated privately), data from media is also leveraged to cross-check.
The gathering of data from media is a mix of automated and manual processing. Raw
data gathered using keyword searches is reviewed manually, and relevant data is input
via web-interface in a temporary table. Data received through medical history is also
input via web interface into the same temporary table. A supervising agent reviews the
data and then invokes the function GetPlayerInjuryInfo , which loads the data in entity
 PlayerInjuries . Input to this function is ProspectId and name of the player.

 GetPlayerChronicCondInfo
 This function loads information about a baseball player’s chronic medical conditions
in entity PlayerChronicConditions . Similar to GetPlayerInjuryInfo , data from
multiple sources is input into a temporary table, reviewed, and then loaded to entity
 PlayerChronicConditions . Input to this function is ProspectId and name of the player.

 GetPlayerContractDetails
 This function loads information about a baseball player’s contract in entity
 PlayerContracts . A scanned image is stored within the database along with contract
details such as start and end dates. Contract data is first loaded to a temporary table
and upon successful review, loaded to entity PlayerContracts . Input to this function is
 ProspectId and name of the player.

 GetPlayerScheduleInfo
 This function loads information about a baseball player’s schedule for current and next
season in entity PlayerSchedule . Information about a player’s schedule is requested from
his club (club holding his contract and requesting coverage for it) and cross-checked with
published schedule (by media). Schedule is first loaded to a temporary table and, upon
review, loaded to entity PlayerChronicConditions . Input to this function is ProspectId
and name of the player.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

79

 CalculateLossOfPlayPremium
 This function is used to calculate the premium for a contract using the information
collected by functions GetPlayerInjuryInfo , GetPlayerChronicCondInfo ,
 GetPlayerContractDetails , and GetPlayerScheduleInfo in conjunction with
(a confidential) algorithm. Upon invocation, the inputs (to this function) ProspectId and
name of the player are used to retrieve necessary information (from appropriate entities)
and calculations performed to get the magic number (premium for Loss of Play policy).

 EvalLossOfPlayClaim
 This function pre-evaluates a Loss of Play claim filed by a client based on certain
proprietary (for YourState insurance company) logic. Only certain types of claims can be
pre-evaluated and still need manual intervention to check the outcome. The purpose of
this function is to filter out trivial or frivolous claims and save time for agents to who are
assigned to evaluate a claim. Inputs are ProspectId and name of the player.

 There’s a very interesting (and exclusively SSADM-based) concept called entity-event
modelling . An entity-event model is a graphic representation of how business events
affect the entities within an information system. Business events trigger processes, which
in turn affect entities. An entity-event model consists of a set of:

• Entity life histories (ELHs)

• Effect correspondence diagrams (ECDs)

 I will start with ECDs and discuss the concept along with notations. I will then
provide ECDs for the major events for Loss of Play policy.

 Effect Correspondence Diagrams (ECDs)
 ECDs describe how each event interacts with all relevant entities or how a particular
business event affects specific set of entities. An ECD captures a snapshot of the part of
system state which is updated by an event. Because ECD deals with a single event, it is
more static than ELH and therefore acts as a bridge between LDM and more dynamic
modelling of event sequences by ELH.

 The possible major events for Loss of Play policy are as follows:

• Request for a Loss of Play policy quote

• Request for a Loss of Play policy issual

• Request for a Loss of Play policy cancellation

• Request for a Loss of Play policy claim

 I will provide ECDs for these events and discuss notations simultaneously.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

80

 The ECD for a policy quote is easy to follow (see Figure 3-8). When the
process (Policy Quote) starts, an identifying instance of LossOfPlayProspect is
created and that is followed by creation of multiple instances of PlayerInjuries ,
 PlayerChronicConditions , PlayerSchedule , and a single instance of PlayerContracts .
The star in the upper right corner denotes iterations or multiple instances.

 When a new policy needs to be issued, it is checked whether the prospect exists
as a policy owner. If the policy owner doesn’t exist, a single instance of policy owner
is created, and the PolicyOwnerId is updated for the corresponding prospect instance
(see Figure 3-9). Next, a single instance of Policy is created.

 When a policy is cancelled, the status is updated for relevant instance of Policy to
mark it inactive or cancelled (Figure 3-10).

 While filing a claim, a single instance of object Claim is created, and multiple
instances of Claim_property_data are created along with appropriate values for the
properties added. See Figure 3-11 .

LossOfPlayProspect PlayerInjuriesPlayerChronicConditions

Policy Quote

PlayerContracts

Player Schedule

Set of
PlayerChronicConditions

Set of
PlayerInjuries

Set of
PlayerSchedule

 Figure 3-8. ECD for event “quote for Loss of Play policy”

LossOfPlayProspect Policy Policy_owner

Policy Issual

 Figure 3-9. ECD for event “issual of Loss of Play policy”

Policy

Policy Cancellation

 Figure 3-10. ECD for event”cancellation of Loss of Play policy”

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

81

 Entity Life Histories (ELHs)
 For an entity, ELH shows the effects caused by various business events sequentially.
ELHs are drawn using the structured design constructs of sequence, selection, iteration,
and parallelism. Notation used is almost the same as ECDs with addition of levels. The
first level is the entity itself, and the second level is the type of events. The third level
contains individual events that modify the (data for an) entity. The last level contains the
processing operations that modify the entitiess. Levels two and four may not be necessary
in some cases and may be eliminated.

 I will now present and discuss ELHs for more frequently used entities such as
 Policy , Claim , and LossOfPlayProspect .

 The lifecycle for the Policy entity is very simple. It is either created by an agent
(resulting from a call from customer via YourState toll-free number) or by a function
activated through online request for a policy (and after the basic checks are performed).
The circle on the upper right corner of second level rectangles denotes a selection
or option. The policy is modified by authorized agents as per the need. A function is
provided for that purpose on the internal web interface. A policy cancellation is update of
status to inactive or closed . See Figure 3-12 .

 The lifecycle of a claim is similar to policy as far as the creation (or filing) is concerned,
but modification involves adjustment or evaluation of a claim. A claims adjuster does that
and updates the status (approved or rejected). If approved, the next processes modify

Claim
Claim_property_data

Set of
Claim_property_data

Claim filing

 Figure 3-11. ECD for event “claim filing for Loss of Play policy”

Policy

ModifyCreate Cancel

Create
policy as per
online
request

Create
policy as
per request
by phone

Update
policy as
needed
through web
interface

Update policy
status as
‘inactive’ or
‘closed’ through
web interface

 Figure 3-12. ELH for entity Policy

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

82

claim settlement–related entities (claim_line_item , claim_settlement). If rejected and
resubmitted for review, the status is updated accordingly and details are captured in a claim
resubmission–related entity (claim_resubmission). See Figure 3-13 .

 Last, for entity LossOfPlayProspect , an entry is created after the initial meeting
with an agent and the relevant documents are received. This process is a little different
(compared to other policies) due to the high amounts (for premium as well as claims)
involved. If a prospect buys a Loss of Play policy, then PolicyOwnerId is updated for that
prospect. Any other updates to prospect information are accommodated similarly. If a
prospect doesn’t buy a policy within 6 months, his details are removed. See Figure 3-14 .

Claim

SettleFile Resubmit

File a claim
as per
online
request

File a claim
as per
request by
phone

Claims adjuster
investigates and
settles or rejects a
claim and updates
status

Claim status
updated when a
customer resubmits
a rejected claim for
review

 Figure 3-13. ELH for entity Claim

LossOfPlayProspect

ModifyCreate Remove

Agent creates entry
for a Prospect after
collecting relevant
documents

Update Prospect
information or add
PolicyOwnerId if
converts to a customer
(buys a policy)

Remove
Prospect after a
predetermined
period

 Figure 3-14. ELH for entity LossOfPlayProspect

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

83

 Logical System Specification
 This module is about assembling, linking all the design deliverables and preparing for
a physical implementation. However, before a final listing is prepared, technical system
options (for implementation) are explored, and a choice is made by the project board
regarding the option to be used. I will briefly discuss the possible technical system
options for the new Loss of Play policy discussed in this chapter and then discuss the
deliverables for the logical design stage. Almost all the deliverables are already discussed
earlier in this chapter, so I will focus on the ones that are not.

 Again, note that even this stage is independent of implementation target (RDBMS or
NoSQL). Only the possible technical options are discussed here. Target technology can
still be chosen depending on your need. Therefore, this design stage can be used even for
NoSQL-based systema.

 Technical Systems Options
 The Loss of Play policy discussed in this chapter extends the type of policies offered by
the YourState insurance company and since it already offers a large number of policies, it
has an existing information system to sell and support these policies via a web interface
(as well as a toll-free phone number). Therefore, the following technical systems options
were presented to the project board:

• Option 1: Design a separate web interface and database for the
new policy. Use separate database and web servers.

• Option 2: Use the existing web interface and add functionality
to sell and manage the new policy. Also, add the new database
objects (as needed) to the existing database (used by all other
policies). Last, scale out the existing database and web servers to
handle additional data and user traffic.

• Option 3: Design a separate web interface to sell and manage the
new policy, but share the existing database for policy and claim
processing. Last, scale out the existing database and web servers
to handle additional data and user traffic.

 The project board evaluated these three options and chose the third option.
Subsequently, it was decided to use the existing database, but develop a new web
interface for processing the Loss of Play policies and claims. One of the reasons was a
mix of manual and automated processing that would be hard to handle for the existing
interface (since all the processing for existing policies is automated).

 Next, reviewing the hardware (Windows 2008 R2 Datacenter edition, server-based
physical cluster with 64 CPUs, 1 TB RAM, and 20 TB SAN storage), it was decided to add
100 GB RAM and 2 TB of storage. The operating system and database (SQL Server 2008 R2
Datacenter edition) was determined to be capable of handling the additional connections.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

84

 Logical Design
 This is a very important stage where all the design deliverables are consolidated,
cross-checked, and linked to facilitate a successful physical implementation of the
system. Any design gaps are identified and resolved. Explanations and notes (that will
help implementation) are added. As per SSADM guidelines, the following deliverables
are expected as output (from this stage):

• The logical process model

• Update processing model (ECD)

• Enquiry processing model (EAP)

• The dialogues

• Function definitions

• The menu and command structures

• The requirements catalogue

• The data catalogue

• The system LDM

 Update Processing Model
 Typically, the update processing model brings together the operations that constitute
the update function (for an information system). The model is then presented in form of
a structure chart accompanied by descriptions of operations that constitute it. Function
definitions and ECDs are used to construct these models since they provide information about
events and how an event affects the entities within LDM. I discuss functions and ECDs earlier
in this section, and it will be good exercise to segregate update functions, prepare ECDs for
them, and then construct an update processing model using these ECDs as a starting point.
Please remember that the update processing models are at event level, not function level.

 Enquiry Processing Model
 An enquiry processing model differs from the UPM as there are no events (to define
processing around them) and the enquiry constitutes a single function. So, EPMs are at
function level. Enquiry access path or EAP (which shows how an enquiry interacts with
the logical database) is used as a basis to construct the EPMs. Figure 3-15 shows an EAP
for the Loss of Play policy search.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

85

 You may have already observed that the notation for EAP is exactly same as for ELH
or ECD. A star in the upper right corner for iteration or multiple instances and a circle
in upper right corner for optional relationship (either-or relationship). The beginning
of search processing is indicated by the inclined downward arrow. ClaimId (for which
details are sought) is input, and a search is made in the Claim entity. If a match is found,
the claim record is retrieved along with corresponding line item records. Multiple line
items may exist for a Claim (as indicated) and for each of them, status is checked to
determine whether that line item is settled or resubmitted for review (in case it was
rejected). Accordingly, the details are output to be displayed.

 The EAPs for search functions can be developed for other entities as required.
 As far as the GUI (graphical user interface) is concerned, dialogues, menu and

command structures are beyond the scope of this discussion (as the focus here is use of
SSADM for database design) and the GUI deliverables are pertaining to front-end web-
interface. The only other deliverable left to discuss is data catalogue or data dictionary.
Let me discuss it briefly.

 Data Catalogue
 Data catalogue is the data dictionary most of us are familiar with. The following format is
recommended for the logical data dictionary. Note that the attribute types and sizes do
not refer to a particular physical database implementation and therefore may change as
per the database system used as a target for physical implementation. Figure 3-16 uses
the LossOfPlayProspect entity as the only example (I’m not including the whole data
dictionary for brevity and relevance to the discussion), as it will ably demonstrate the
concept and provide necessary understanding.

ClaimId

Claim Set of

Claim_line_item

Claim_line_item

Operations List

1. Get input ClaimId

2. Retrieve Claim record, on error
fail with error message

3. Get all the Claim_line_items
associated with the Claim

4. Check if the claim_line_item is
settled or resubmitted for
review

5. If settled, get details of
settlement

6. If resubmitted for review, get
details of resubmission

7. Output details of settled line
items

8. Output details of resubmitted
line items

Claim_settlement Claim_resubmission

1 2
3 4 8 7

5 6

 Figure 3-15. EAP for claim status enquiry

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

86

 Physical Design
 The final module of SSADM provides guidelines for physical implementation of
the logical design completed using techniques discussed in the earlier modules.
Essentially, SSADM being a design methodology, can’t get into the finer details of the
implementations, but it does provide high level guidance and attempts to make the
implementation as efficient as possible. There are two aspects of the implementation:

• Physical data design

• Physical process specification

 Since the focus of this chapter is database design, I will focus on the physical data
design. An important thing to note is that a physical implementation always relies on
the expertise of the implementer (for the platform or software used for implementation).
The following steps are followed:

• Transformation from logical data model (LDM) to physical
data model

• Initial space estimation and provision for growth

• Optimization of physical design and regular maintenance

 At this stage, the details of physical implementation will change depending on the
target technology you choose for your implementation (RDBMS or NoSQL).

 Logical to Physical Transformation
 This transformation involves substituting appropriate data types for the logical attributes,
implementing the referential integrity constraints, and adding relevant supporting
objects to the physical database to support the relationships specified within a logical
data model.

 Figure 3-16. Data dictionary entry for entity LossOfPlayProspect

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

87

 A number of case tools (for example, ERwin) can be used to implement this
transformation. Of course, you need to choose your target database system and then
make sure that the case tool you plan to use supports it. The process of transforming a
logical model to physical is known as forward engineering , and a case tool can accept a
logical model as input and “forward engineer” it to a physical model. Output is provided
as scripts (using the target RDBMS query language), that can be executed on the target
server to create the necessary database objects within the database of your choice. This
includes database tables, indexes, keys (primary/foreign), and triggers (if necessary).
Logical data types are translated into physical data types and implemented by the
RDBMS. After completion of this process, the physical database structure is ready for use.

 Space Estimation Growth Provisioning
 A physical data structure (resulting from the last step) will occupy space, and you need
to estimate your initial storage needs. For the Loss of Play policy, it was decided to add 2
TB of storage to account for the additional space needed to store policy and claim data,
as well as scanned documentation (required to determine the premium) and player
contracts. That is a good start, but what happens next year? Or the year after?

 You need to know the growth rate for the additional data created by the new policy.
For example, if you determine that the growth rate is 15%, then 15% space will be required
additionally each year. So, each year 300 GB (15% of 2 TB) will be required to support the
growth. You have to make sure that this additional disk space is added annually.

 Optimizing Physical Design
 Optimizing your physical design depends largely on the target RDBMS of your choice
because optimization is specific to the architecture of your database system. However, a
part of the optimization is SQL-specific and that tuning can be applicable to any database
system supporting SQL. Broadly, optimization or tuning can be performed at the
following levels:

• Server level : This tuning involves adjusting the server
configuration parameters to support the type of expected
processing. For example, for an OLAP or warehousing
environment, a large amount of data is read (and not updated). So
server can support reads without any locks (with the most lenient
isolation level) that will provide speed for read access.

• Database level : This involves tuning the database settings. Using
the same example of a warehousing environment, since there are
no update transactions expected, transaction logs can be small
and without any mechanism for recovery.

CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

88

• Application level : This tunes the application database and
involves adding appropriate indexes or statistics and making
sure all the frequently executed queries use indexed scans (for
performance). Also, target database system–specific tuning is
performed. For example, if SQL Server is the target database,
frequently used queries should use a clustered index (since that is
the order data is stored physically in) for performance.

 Important thing to note about the tuning is that it’s not a one type setup. You need to
review it periodically and adjust as necessary. Your system may be operating optimally right
now, but that doesn’t guarantee that it will continue to be optimal after six months, when
2 TB of data is added or 1 TB is updated. Therefore, you need to review all your settings
periodically and adjust them. Also, indexes or statistics need to be rebuilt frequently for
guaranteeing sustained performance levels. That constitutes database maintenance and
preferably needs to be automated or scheduled by your database administrator.

 Summary
 In this chapter, I have discussed SSADM and all the possible deliverables following the
SSADM design methodology. SSADM is quite old, and there are no attempts to modify
it for use with the latest database design techniques. However, that doesn’t mean it’s
not relevant anymore. In fact, it represents one of the most extensive and logical design
methods for relational database design, which is a major reason I used it as an example.
It’s just that some of the techniques can be replaced with more efficient ones that were
not available at the time SSADM was designed.

 If you have a quick look at the design methods used today, you will realize that they
represent subsets of SSADM. None of them is so thorough in design tasks or covers all the
deliverables SSADM did a lot of years back.

 That leads to the second thing to note about SSADM. I have discussed all the
deliverables, but obviously they may not be necessary for your environment. You need to
make a conscious decision about what deliverables are relevant and only present those as
part of your design.

 Also, since some of the techniques that SSADM describes are now replaced by better
and more efficient ones, you should feel free to combine them with SSADM guidelines.
After all, even the SSADM documentation clearly says that the techniques described are
guidelines and not rules required to be followed verbatim.

 If you are still questioning why you just read a long chapter discussing SSADM and
its deliverables, it will be useful for any migrations that you plan from RDBMS to NoSQL
databases. This chapter is meant to help you understand the design documentation (and
the logical/physical design) for a relational application effectively and ultimately help you
perform a successful migration. Also, as I have discussed at every SSADM design stage,
SSADM design techniques are independent of implementation target (RDBMS or NoSQL)
and therefore are useful for design of any systems that you plan to implement.

89© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_4

 CHAPTER 4

 RDBMS Design and
Implementation Tools

 It was 2001 and since the dot-com bubble was completely deflated, budgets were tight.
I was redesigning a claims-reimbursement system for a major insurance company in
downtown Chicago and needed a good CASE tool. I mentioned that to my manager,
and the blank look prompted me to explain what it does. “Well, can’t you use Word?” I
explained that I couldn’t do what was needed using a word processor. The next question
was whether there was any open source or “free” software available. It was surprising to
see that a corporation ready to spend millions for consulting was not willing to spend a
few thousand dollars for a necessary database tool.

 I have frequently seen a general level of apathy and lack of understanding for many
specialized database tools. Also, with the advent of technology and new techniques and
tools crowding the market on a daily basis, it is hard for the new database professionals
to understand or gain expertise with database tools used for design, monitoring, or
diagraming (flow-charting). I feel it will be helpful to understand the types of tools
available for RDBMS implementation and their features.

 The popular RDBMS implementation tools range from design to administration and
monitoring. Any RDBMS implementation starts with design. There are two types of tools
used for design. The first is a CASE tool that assists with conceptual and logical design
as well as transformation to a physical database structure. The second is a diagraming or
flow-charting tool that assists with drawing the different types of models associated with
database design. I discuss both if these tools in this chapter.

 There is another set of applications sometimes used by developers to transition
RDBMS data to an object-oriented model. These frameworks are referred to as object
relational mapping (ORM) frameworks. They are useful if you plan to represent your
relational database as an ODBMS (object-oriented database). Hibernate and Spring
are popular frameworks that can be used for this purpose. They offer features like high
performance, scalability, reliability, extensibility, and idiomatic persistence (ability to
develop persistent classes that follow object-oriented idioms including inheritance,
polymorphism, association, and composition) that assist in a successful, fast, and easy
ORM transition that reduces your development time.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

90

 Getting back to RDBMS, after a database is designed and implemented as a physical
structure (for a target RDBMS), it needs to be managed and maintained on a daily basis.
New databases may need to be created, allocated space (for databases) may need to be
expanded, or users may need to be added or provided access to new objects. Database
administration tools help to perform all these tasks easily and quickly.

 Finally, a database (and the database server) needs to be monitored for
performance, unauthorized access, and any kind of failures that may result in service
interruption. In many cases, the tools used for database administration also provide
monitoring functionality, but some cases do warrant use of specialized monitoring tools
that provide a wider range of features and flexibility.

 Database Design Tools
 Chapter 3 discusses the database design process using SSADM as a method. As you may
note, a large number of models and deliverables are produced as part of the design process.
These models/deliverables are related, and it is necessary to show the relationship clearly.
It is cumbersome and time-consuming to draw these models separately and show the
existing relationships. CASE tools help with this process by assisting in building the initial
(logical/conceptual) model, using it to generate a model for the next stage, and continuing
the process till the last stage (physical data structure) is reached.

 The diagraming or flow-charting tools don’t provide this kind of extensive
functionality but do have extensive libraries of predesigned templates that help in
creating a flow-chart or diagram very quickly. From personal experience, diagraming
tools are more useful for models like data flow diagrams or business activity models.

 CASE tools
 CASE tools are tools that assist in implementing the processes associated with computer-
aided software engineering (CASE). They’re used for designing and implementing
software applications. Several factors influenced the development of CASE tools, such
as CAD (computer-aided design) or “active data dictionary.” Database designers noticed
the ease that CAD packages provided for drafting (the manual process of drawing various
views of machine component designs to scale) with their prebuilt templates, library
of shapes, and features needed. More useful features like ease of modifications and
propagating the designs to CNC machines for actual part manufacturing impressed these
database designers too.

 Another major influence was the data dictionary of a database . Designers
experimented by extending the range of metadata held in a dictionary to include
application attributes and substituting at runtime. This “active dictionary” led to
 model-driven engineering , but didn’t have a graphical representation of any of the
metadata. Once the graphical representation was added (inspired by CAD), it led to the
development of earliest CASE tools.

 So, how do the CASE tools help the database design process? By helping with graphical
representation of the design stages and also with propagation of the designed models to later
stage, right till culmination of the design process leading to a physical database structure.
Because CASE tools assist with specific tasks in the software development lifecycle (SDLC),

http://dx.doi.org/10.1007/978-1-4842-1287-5_3
https://en.wikipedia.org/wiki/Data_dictionary#Data dictionary
https://en.wikipedia.org/wiki/Database#Database
https://en.wikipedia.org/wiki/Metadata#Metadata
https://en.wikipedia.org/wiki/Model-driven_engineering#Model-driven engineering

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

91

they are useful in implementing database design methodologies. As you may have noticed in
Chapter 3 , I used the CASE tool Erwin to design various deliverables associated with design
method SSADM; such as the logical design model (LDM) or physical data model (PDM). To
summarize, CASE tools can assist the design process in following ways:

• Building design layers for your application design

• Categorizing your design using subject areas

• Controlling physical display level of your models

• Forward or reverse engineering as needed

• Helping in creating reusable components for your design

• Propagating a change easily and quickly through the design stages

 Building and Using Design Layers
 A set of data models used for a particular purpose in the application development process
constitute a design layer. Within this layer hierarchy, the first layer is often a logical data model
that summarizes the business requirements (for an application). The second design layer
transforms these business requirements and creates corresponding database implementation
rules for a physical data model (note, a generic physical model may be created using
generic ODBC as the target database). The third and final design layer represents physical
implementations of the same data model for different target server platforms.

 If the logical data model from the first layer is an enterprise data model, then it can
be further divided into logical models corresponding to separate applications for an
organization. Figure 4-1 summarizes these layers.

1st design layer
Enterprise-wide logical data model

Logical data model

Generic Physical data model

Database specific Physical data model
(Oracle, SQL Server, Sybase)

Logical data model

Generic Physical data model

Database specific Physical data model
(Oracle, SQL Server, Sybase)

Policy and Claim processing Human resources 3 rd design layer

2 nd

design
layer

 Figure 4-1. Design layers for relational OLTP application

http://dx.doi.org/10.1007/978-1-4842-1287-5_3

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

92

 The most important thing to remember about the design layer is that you must
be able to link the models in different design layers and synchronize changes made
in different layers (that is, make and propagate changes to other layers). A successful
hierarchy is characterized by well-linked models (from different design layers) using
a common model source and the ability to apply transforms across the design layer
(keeping linked models in sync).

 CASE tools like Erwin, ER/Studio, or Enterprise Architect provide all the features
necessary to define a logical model and apply transformations to derive the generic or
specific physical models from it. That way, the link is maintained through the design
layer, and any modifications can be applied to the logical data model and the related
physical models quickly regenerated.

 Categorizing Design Using Subject Areas
 Many times, when you start reviewing a large data model, it is intimidating and not very
informative or intuitive. The reason is that it presents you with a large number of related
entities without telling you what functionality they (or their subsets) provide. All you
know is that the model belongs to a system that provides some functionality (such as
accounting, human resource management, policy and claims management, and so on).

 Subject areas group the entities by the subsets of functionality they provide for an
information system. By classifying the entities in this manner, subject areas provide a quick
subclassification of functionality and make database models easier to understand and read.

 Consider the logical model for Policy and Claims processing from earlier chapters.
You have seen how it looks without subject areas (Figure 3-7). With subject areas defined,
you can see the difference in Figure 4-2 .

 Figure 4-2. Subject areas for a Policy and Claim processing application

http://dx.doi.org/10.1007/978-1-4842-1287-5_3#Fig7

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

93

 As you can see, it is much easier to get the context of the entities now, and you can
probably guess what their purpose is. For example, for the Loss of Play policy subject area,
it is easy to see that the entity LossOfPlayProspect is central to that policy processing,
and the other entities simply provide information about the player (whose contract the
prospect is trying to insure). Similar information can be derived quickly and easily from
the other subject areas as well.

 When subject areas are implemented using CASE tools, they can be displayed singly
or as part of the main subject area. Even if you don’t define specific subject areas, a main
subject area is defined by default, and all entities are a part of it. When you add an entity
to a specific subject area, it still remains a part of the main subject area, and any changes
made to it in one subject area are automatically implemented in all the other subject
areas (that the entity is a part of).

 Display Level of a Model
 CASE tools offer various display levels for the data models, such as the following:

• Entity (just the entities and relationships between them)

• Attribute (entities and attributes)

• Primary key (primary keys for all entities)

• Keys (primary and foreign keys for all entities)

• Definition (entity definitions and relations)

• Icon (entity and icons)

 These display levels are useful in controlling the visualization depending on your
need. For example, if you only want to display the entity relationships, then entity display
level will suffice, or if you want to show the primary and foreign key relationships, the
keys display level will be relevant (Figure 4-2 uses the keys display level). By displaying
only the necessary level of detail, display levels make it easier to focus on the relevant
details.

 Forward and Reverse Engineering
 Forward engineering involves creating physical table structures within a schema/
database for target RDBMS. You can use the design layer concept and create a generic
physical model as an intermediate step if necessary. Many CASE tools can read data
models prepared using diagramming tools and then forward engineer them as well.

 How does a CASE tool implement this feature? Well, as a final step, a CASE tool provides
data definition language (DDL) scripts using query language (that the target RDBMS
supports). But before that, there are multiple options that you can select for your target
scripts. The options deal with choosing the database objects and properties that you want
to import, specifying whether you want to infer primary keys or relationships from indexes,
setting case conversion options, generating index scripts (for implementing primary key,
foreign key, and alternate key relationships), implementing referential integrity through
triggers, and so forth, and can be selected easily through point-and-click menus.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

94

 Reverse engineering, as you might expect, is the reverse of forward engineering.
A physical database (with objects) is a starting point. The process reads metadata for
all the objects, determines the relationships, and creates a physical data model. Taking
advantage of an existing database speeds the design of a new data model and the
subsequent delivery of new systems. A logical data model can then be easily generated
(using the physical model). DDL scripts (for database objects that need to be reverse
engineered) can also be used if connecting to a database (and reading metadata) is not
possible. Figure 4-3 summarizes the process.

Physical Data Model

CREATE TABLE Claim (c1 int,
INDEX ix_1 NONCLUSTERED (c1))
CREATE TABLE Policy (c1 int INDEX
ix_1 NONCLUSTERED (c1))
CREATE TABLE LossOfPlayProspect
(c1 int, c2 int INDEX ix_1
NONCLUSTERED)
CREATE TABLE Claim_type (c1 int,
c2 int, INDEX ix_1 NONCLUSTERED
(c1,c2))
…………………………………

Database DB1

Reverse engineering function
within a CASE tool

DDL script

Database connection

OR

 Figure 4-3. Reverse engineering process

 It is important to make sure that referential integrity constraints are defined for the
database (or scripted within DDL scripts) before trying to reverse engineer it. Otherwise,
all you are going to see are the entity boxes. Of course, some relationships may still be
missing from the model, but you will need to add them manually (for example, recursive
relationships or supertype/subtype relationships).

 Creating Reusable Components
 One of the strengths of the CASE tools is the ability to create a range of components
that can be easily reused. For example, domains. A domain is a model object that can
be used to allocate attribute or column properties. Use of domains makes your model
consistent because you can reuse them multiple times. Domains also make it easy to
capture specific settings for your environment for quick reuse within your data models.
For example, if you need to use a status attribute with a specific set of values only, you can
create a domain and use it as needed.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

95

 Domains also help in reducing development and maintenance time. Any changes to
a domain result in changing all the associated attributes or columns. CASE tools provide
a library or dictionary that holds physical and logical domains that you create. Generally,
some of the domain properties include:

• Domain name and column name

• Column datatype, default value, and valid value(s)

• Domain comment or note and column comment or name

• User-defined properties

 CASE tools make it easy to reuse the entity objects and even subject areas between
different models. So, you can think about them as reusable components too. Many CASE
tools generate a data dictionary using entity and attribute definitions input for a model.
Those definitions can also be reused (along with entities) between models and will
reduce the laborious task of entering these definitions multiple times.

 Propagating a Change Easily and Quickly
 CASE tool features such as forward and reverse engineering, physical/logical views of a
model, and quick generation of a generic physical model help in propagating any design
modifications quickly to the physical data structures. This is especially important if the
change is made to a key entity that is referenced by multiple entities. As you can imagine,
attempts to cascade such a change manually would take time and possibility introduce
error.

 For example, an insurance company uses a ClaimId that goes up to 99,999,999. They
introduce a new policy that is really popular, and now they hit the 100 million+ mark. So,
 ClaimId needs to increase in size. ClaimId is referenced by a large number of tables, and
a change in size needs to be reflected in all those tables. CASE tools can help you quickly
generate scripts that can implement this change easily and without any errors.

 Diagramming Tools
 The focus of a diagramming tool is to provide a large library of shapes, icons and
templates that will facilitate quick drawing of a model. You can draw any model (or flow
chart) that’s part of the SSADM deliverables (or otherwise necessary). CASE tools don’t
provide flow-charting or free-form drawing functionality. For example, if you need to
draw a data flow diagram, then you will need to use a diagramming tool, not a CASE tool.

 Finally, diagramming tools let you insert pictures, CAD drawings, charts, clip art, or
data graphics in your model. This feature can be useful where your model refers to a lot of
external sources or subsystems.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

96

 The common templates/shape libraries provided by diagramming tools are as follows:

• Data flow diagram shapes

• EPC (event process) diagram shapes

• Work flow objects

• Cross-functional flowchart shapes

• BPMN basic shapes

• Gane-Sarson shapes

• Engineering (electrical/mechanical/process) shapes

• ER diagrams

• UML diagram shapes

 Popular diagramming tools include Visio, Draw.IO, Gliffy, eDraw, Dynamic
Draw, and others; the templates, shapes, or features they offer may differ slightly, but
conceptually they are very similar.

 So, the diagramming tools offer much more flexibility and speed for drawing a large
variety of models, but as far as data modelling is concerned, they can’t match the features
provided by CASE tools. In general, diagramming tools can’t:

• Reverse engineer

• Forward engineer

• Link models

• Propagate changes (from one model to another)

• Categorize using subject areas

 CASE tools and diagramming tools have their own strengths, and your exact need
would decide which of them suits best for your environment. Both offer a variety of
modeling functions that you can leverage.

 Administration and Monitoring Applications
 The purpose of these tools is to assist in managing the physical database structures.
Managing a database system typically involves tasks such as creating and managing
databases and objects, users and roles, space usage, and backup schedules, and doing
database maintenance (such as re-indexing, recreating statistics, and doing other tasks).

 Monitoring a database involves setting up automated tasks for monitoring resource
usage by processes, database connections, and individual users, and setting up alerts
when certain threshold values are reached. In some cases, monitoring simply captures
metrics of interest and stores them for a certain time period (one month, one year, and so
on) for access to historical usage and, of course, auditing.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

97

 Database Administration or Management Applications
 Most of the relational databases have similar structures (for obvious reasons), and that
makes the task of designing a common graphical user interface for them easy. A few
companies have successfully designed interfaces that work with all the leading RDBMS.
Most of the database administration interfaces have the following capabilities:

• Modify database server as well as database and schema related
configuration

• Add/modify/delete database objects such as tables, views,
triggers, and stored procedures

• Add/modify/delete logins/users/roles and manage permissions
for users/roles

• Manage disk space allocation and shrink databases to release
allocated (but unused) space

• Perform database maintenance (re-indexing or building indexes)
including backups

• Schedule and manage database-related tasks/jobs and document
their results/status

• Manage locking/blocking/deadlocks for database server and
record all the actions (for example, killed or deadlocked sessions)

• Configure SMTP or any other protocol for use by database servers
to send alerts to configured email addresses or phone numbers

• Monitor replication and mirrored environments for data integrity

• Set up and configure access, security, and encryption
functionality

 All the leading RDBMS have their own database administration interfaces, but the
problem occurs when you need to manage different RDBMS using a common interface.
That’s where an interface developed by a third party or a neutral vendor is useful.
Companies such as Redgate or Embarcadero (DBArtisan) have developed popular tools,
and companies like EMS have also developed free multi-database tools.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

98

 Monitoring Applications
 Monitoring tools support a large range of functionality including monitoring
performance, locking/blocking activity, database connections and security breaches,
resource usage, and job outputs. They are expected to generate alerts when any
(previously set up) thresholds are exceeded and also provide troubleshooting or
debugging capabilities in case of any functional or performance issues. These tools
establish a performance baseline, isolate performance problems, identify bottlenecks,
and also provide query statistics. Here is a detailed (but generic) task list:

• Monitor inefficient or expensive (using more system resources)
SQL queries and stored procedures that may cause excessive
locking, blocks, or deadlocks, especially focusing on frequently
executed queries. Configure thresholds for resource usage (on
individual servers) for greater flexibility, making it easy to see the
most expensive queries (for example, by sorting in descending
order of resource usage).

• Support troubleshooting of problematic queries with query plan
(sequential task listing of a query execution as planned by the
query optimizer of a database server) diagnostic capabilities.
View summarized performance statistics for databases and users
along with individual query details such as execution plans. For
example, a query may be failing due to insufficient memory,
excessive number of users trying to connect to a database
concurrently, or index fragmentation, and a detailed query plan
may be the only way to know it.

• Avoid false alarms by setting alert thresholds based on historical
statistical analysis of your server performance data. Continuous
monitoring can capture and store data over a time period, making
it easy to create historical data.

• Perform heuristic analysis of occurred events or behavior and
derive a percentage of likelihood that an event could happen in
the near future. For example, system peak usage during 9:00 a.m.
to 10:00 a.m. on Monday mornings for the time entry application
causes network performance issues, resulting in blocks on
database server.

• Monitor operating system metrics for a more comprehensive
and accurate diagnosis of performance or security issues. For
example, termination of a database transaction may correspond
with memory fault for a server, and it may not be possible to
correlate these events unless the OS event log is monitored.

• Support setup and capture of traces (sequential listing of
commands sent for execution to the database server, along with
runtime parameter substitution) to files for further analysis.

CHAPTER 4 ■ RDBMS DESIGN AND IMPLEMENTATION TOOLS

99

• Maintain historical data of worst-performing SQL queries.

• Assist in establishing a precise link between resource contention
and response time.

 Most of the leading RDBMS vendors have their own monitoring and debugging
tools (for example, Microsoft SQL Server has Profiler), but there are excellent third-party
tools available that offer a large number of additional features and ease of use. Here
are some of the leading third-party monitoring tools available currently: LogicMonitor,
MyOra, Foglight, SolarWinds, Redgate SQL Monitor, Idera SQL Diagnostic Manager, and
SQLSentry.

 Summary
 Some may question the inclusion of this small chapter. Don’t we all know about CASE
tools and diagramming tools? Haven’t we used them enough? Probably we have—but
maybe not all of these tools, or all of the features within these tools. Again, remember that
the real focus is migration of RDBMS-based data to NoSQL environments.

 Some of the deliverables you need to use for the data transfer may be output from
the tools discussed. Understanding how these tools work will also help you understand
those deliverables better.

 Conversely, a few aspects of the (RDBMS to NoSQL) data transfer may require the
use of advanced tools, and this chapter serves as a quick reference. It will make your
task (of rapidly identifying a tool to match your requirement) much easier. I have also
provided listings of the leading vendors and software packages for each of the tools,
which should serve as a handy reference too. And I discussed forward and reverse
engineering.

 Finally, CASE tools or DBA (database administrator)/monitoring applications
are rarely discussed in a vendor-neutral manner, and therefore I have covered generic
features at a conceptual level to provide a better understanding. Surprisingly, you will
notice that all the leading vendors provide these features (more or less), although the
terminology they use may differ.

 PART II

 Hadoop: A Review of
the Hadoop Ecosystem,
NoSQL Design Principles
and Best Practices

103© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_5

 CHAPTER 5

 The Hadoop Ecosystem

 Couple of years back, I was taking a train home one evening and catching up on my round
up of new Hadoop tools. A co-passenger was having a covert look at my laptop, and after
a while his curiosity was just piqued too much to let it go. “What area do you work in?” he
enquired. I said I was an architect and focused on Big Data as well as warehousing. “Big
Data!” he exclaimed. “Sounds like black magic to me.” That was the common sentiment a
few years back and has not changed much since.

 It is often confusing and overwhelming when you start using the Hadoop ecosystem,
and it takes time to know and understand each of the important (and popular)
components. This chapter is designed to speed up that process with brief and concise
information about important components and vendor applications that you can choose
for your deployment.

 The Hadoop ecosystem is the newest addition to the ever-emerging arena of
data-processing technologies, and is here to stay. Just like UNIX of the 80s and 90s, it is
in transition, and new products are created almost daily. It is extremely difficult to keep
abreast of the new products, but is probably worth your time to have a brief look at the
new products in various categories related to Hadoop and NoSQL. The products may
change in near future, but this chapter aims to give you a good understanding of the
front-runners and the features they offer.

 The categories I have considered (for Hadoop products) are generic, such as
query tools, analytical tools, search tools, messaging systems, databases, and so on.
The included tools, however, offer specific functionality. I have also tried to focus on
open source products (with a few priced, commercial exceptions), since they are easily
accessible for experimentation and innovation. Big Data, as you know, is all about
innovation. I have also included products in incubation (at Apache) and some that are
not written about very much but which are useful.

 I discuss the query tool Shark (Spark SQL now). You can think of Shark as Hive with
Spark engine (instead of MapReduce). Kylin is contributed by eBay and is an excellent
analytical tool. It helps you build cubes for data stored within HDFS. Since there are no
new tools for messaging, I will briefly discuss Kafka and discuss Solr/Elastic search (as
search tools) for the same reason. In-memory processing is still largely dominated by
Spark, but Apache Flink is a new player in that area. Flink is a large-scale data-processing
engine that offers in-memory data streaming and therefore extremely fast processing for
data-intensive as well as iterative jobs.

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

104

 Query Tools
 A query tool is an interface that allows you to select or filter your data based on certain
specific criteria, providing a subset of your data. It is important to create such specific
subsets in the NoSQL world, because NoSQL database systems (and Hadoop) work
with datasets as opposed to databases and tables. It is also important to understand
the concept of datasets and how they differ from data stored in conventional relational
databases. Another important thing to remember about the query tools: they don’t
have their own data storage. Some query tools (such as Hive) store the metadata in a
repository, but not the data that’s being processed by them.

 Before now, the choice for such query tools was very limited, especially for ones
supporting SQL interface. And MapReduce performance was a limitation. Now the
next-generation products like Stinger, Impala, Presto, and Shark (Spark SQL) don’t use
MapReduce and claim low latency. Some of these tools use their own distributed engine
for query processing (and execution), and Spark SQL uses the Spark engine. In-memory
processing is a key benefit for Spark, but other in-memory solutions are also emerging.
NoSQL solutions like VoltDB and SploutSQL can add performance to your Hadoop
data. A popular query tool like Hive is getting a performance facelift through distributed
frameworks like Spark or Apache Tez (developed by Hortonworks) to reduce latency and
help with performance. What are the benefits of this approach and how does that help
you? I discuss the details shortly and will start my discussion with Spark SQL.

 Spark SQL
 Three years back, Spark SQL started as Shark at UC Berkeley and was developed as a
faster SQL alternative to the moderately performing Hive. Shark effectively challenged
the doubts about inefficiency of query processing on general data-processing engines.
It was the first time that an interactive SQL tool was built on top of a generic processing
engine (Spark) and performed so well. The availability of a SQL engine on top of a
generic processing engine offers additional benefits, such as consolidation of data access
methods like batch processing, streaming, and machine learning.

 Recently, Shark development was ended and folded into the Spark SQL project. Also,
Hive on Spark (HIVE-7292) was introduced. Spark SQL will now provide all of Shark’s
features (as well as some additional ones) for existing Shark users. Therefore, Spark
SQL will provide both an upgrade path from Shark 0.9 server and also new features like
integration with Spark programs.

 Although Spark SQL has a lot of benefits (compared to Hive), many organizations
currently use Hive extensively. The Hive community proposed a new initiative that would
add Spark as an alternative execution engine (instead of MapReduce) to Hive. This will
make transition to Spark easier for them. This initiative is known as “Hive on Spark,” or
HIVE-7292.

 Figure 5-1 summarizes the architectural differences between Hive, HIVE-7292, and
Spark SQL.

https://issues.apache.org/jira/browse/HIVE-7292
https://issues.apache.org/jira/browse/HIVE-7292

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

105

 A few years back, when the Shark project started, Hive (using MapReduce) was the
only SQL interface available for Hadoop. Hive compiled SQL into MapReduce jobs and
supported a variety of formats. Performance issues necessitated supplementing Hive
with proprietary enterprise data warehouses (EDWs) that required rigid and lengthy ETL
pipelines. The vast difference in performance questioned the query-processing capability
on general data-processing engines itself and speculated whether specialized runtime
engines (such as EDWs) were necessary for performance.

 Shark effectively demonstrated that the performance deficiencies (which made
Hive slow) were inherent to the Hive architecture and could be overcome by using Spark
as a processing engine (instead of MapReduce). Also, this solution can scale as well
as MapReduce. A powerful SQL query engine working with a general data-processing
engine can help support various types of data access such as batch processing, streaming,
or machine learning, and enables application of advanced models (to the data) easier.

 To start with, Shark achieved performance improvement (over Hive) by using
Spark as a physical engine for execution (as opposed to MapReduce) while still using
the Hive code base. The Shark development team realized that the Hive code base was
a significant overhead since it was hard to maintain and optimize. Also, performance
optimizations and sophisticated analytics were almost impossible to achieve using
this code base that was designed for MapReduce. Subsequently, it was decided to end
development for Shark and repurpose the resources to develop a new component for
Spark—Spark SQL.

SQL interface

SPARK engine

Data stored in HDFS

Hive

HIVE -7292Spark SQL

SPARK engine

Hive interface

MapReduce engine

Hive interface

 Figure 5-1. Architectural differences between Spark SQL, Hive, and HIVE-7292

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

106

 Of course, the knowledge and understanding gained through Shark usage (by users)
was actively applied by the development team while designing Spark SQL and thus has
resulted in a more powerful SQL interface that also maintains compatibility with Shark/
Hive. Also, Spark SQL supports all existing Hive data formats, user-defined functions
(UDFs), and the Hive metastore. Lastly, with features that will be introduced in the
next version of Spark (1.1.0), Spark SQL will be faster (compared to Shark) by almost an
order of magnitude. Thus, it will be an excellent resource to manipulate structured or
semi-structured data and will support data ingestion from varied formats and sources
(such as JSON, Parquet, Hive, or any other EDWs) as well as advanced analytics using
sophisticated programming APIs. The long-term goal for Spark SQL is to provide an
interface that supports both SQL and advanced analytics (machine learning, statistics,
and so on).

 To summarize, here are some of the key features of Spark SQL (latest version):

• In-memory data processing: Spark SQL provides the option to
explicitly load data in memory for speeding up query processing.
Also, it uses an efficient, compressed, column-oriented format for
holding data in memory, helping to fit larger datasets.

• Fault tolerance: Spark SQL is well suited for short- as well as long-
running queries. It can recover from mid-query faults as it uses
the Spark engine for processing.

• Data sources API: Provides a single interface for loading and
storing data. Provides prepackaged sources with the Apache
Spark distribution as well as provision for integrating external
(custom) data sources. Examples of built-in or prepackaged
sources are JSON, JDBC, Parquet, Hive, MySQL, PostgreSQL,
HDFS, and AWS S3. External sources (currently available) include
CSV, Apache Avro , HBase, Cassandra, Elasticsearch, and Amazon
Redshift.

• Dataframes: A dataframe is a distributed dataset organized into
named columns. Logically, it is similar to a table in a relational
database or a Dataframe in R/Python. Dataframes can be sourced
from structured data files, Hive tables, external databases, or
existing resilient distributed dataset (RDDs), an immutable
distributed collection of records that can be stored in memory or
on disk.

• Catalyst (rule and cost-based optimizer): Dataframes expose more
application semantics to the core Spark engine, and therefore
Spark can use Catalyst to optimize the queries.

• Python API (PySpark): Python is widely used with Big Data, but
Python programs don’t perform as well as the JVMs due to the
more dynamic nature of the language. Using the new DataFrame
API, Python programs can now perform as well as JVMs as the
Catalyst optimizer compiles DataFrame operations into JVM
bytecode.

http://spark-packages.org/package/databricks/spark-avro

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

107

• Statistical and mathematical functions: Spark SQL supports
a wide range of functions such as random data generation,
summary and descriptive statistics, sample covariance and
correlation, cross-tabulation (a.k.a. contingency table), and
mathematical functions like cos , sin , floor , ceil .

 Figure 5-2 shows the Spark ecosystem and where Spark SQL fits into it.

Spark core engine

SPARK
Streaming

MLlib

GraphX

Spark R

Catalyst
optimizer

SPARK SQL

Data Sources API PySpark API Dataframes Mathematical
& Statistical
functions

User interface

 Figure 5-2. Spark ecosystem

 Presto
 Presto is a distributed SQL query engine developed by Facebook and open sourced for
use by the Apache community. It is optimized for interactive queries (including complex
analytic queries). You can use standard ANSI SQL syntax including aggregations, joins,
and window functions.

 Presto does not use MapReduce as underlying execution model. For example, Hive
converts queries into a series of MapReduce tasks that execute singly in a predetermined
order. Each task reads data from disk and writes intermediate output back to disk. In
comparison, the Presto engine uses a custom query and execution engine that supports
SQL semantics. Since all the processing is in memory and pipelined across the network
between stages, unnecessary I/O (as well as associated latency) is avoided. This pipelined
execution model runs stages in parallel and passes on data from one stage to the next as
soon as it is available. This helps in reducing latency for many types of queries.

 Figure 5-3 shows the system architecture for Presto. The client initiates a query and
sends SQL to the Presto coordinator process. The coordinator parses, analyzes, and plans
execution for the input query. The scheduler is responsible for coordinating the execution
pipeline, assigning work to nodes based on their network proximity (the ones closest to
the data would be used) and monitoring progress.

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

108

 The scheduler is also responsible for spawning worker threads (as required).
These worker threads access storage (using the appropriate storage driver) and retrieve
data. The client then pulls the consolidated and processed data from the output stage,
which in turn pulls data from underlying intermediate stages. As discussed earlier, all
this processing occurs in memory and therefore provides speed to the entire query
processing.

 Analytic Tools
 Analytic tools are the ones that scan most (or all) of the data and perform processing
that derives information or knowledge from it. Broadly, these tools can be classified in
two categories. The first category is tools performing aggregations (these aggregations
being very similar to what data-warehousing queries perform). Some of these tools
support SQL; others do not. I will discuss an interesting product (Apache Kylin) in this
subcategory.

 My second category comprises tools providing the capability to perform custom
algorithmic processing, including predictive and prescriptive analytics. Traditionally,
these were performed using HBase or Cassandra with HDFS storage. Spark is the latest
entry in this space, with better performance, but other interesting tools provide this
functionality too.

 Some NoSQL databases do not provide aggregation support (for example,
Cassandra, HBase). Precomputing aggregates while ingesting data and storing them
(for later use) is an alternative.

 Finally, there are products that don’t fit into one category or the other. For example,
Druid (NoSQL analytic engine for aggregation) can also ingest data in real time like
Storm. Druid stores the aggregates in memory (across the cluster) for faster access.

Presto client

Presto coordinator

Presto worker s

Parser /
Analyzer

Planner

Scheduler

Pr
es

to
 s

to
ra

ge
 d

riv
er

Da
ta

 s
to

ra
ge

 (H
Ba

se
, H

DF
S

et
c.

)Metadata API

Data Location API

Data
Stream API

Data
Stream API

Data
Stream API

Transfor
mations

Transfor
mations

Transfor
mations

Coordinates
processing

Initiates Query

Retrieve and
Process data

Output transformed
data to client

Data sources

 Figure 5-3. Presto architecture

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

109

 Apache Kylin
 Apache Kylin is an open source distributed analytics tool developed by eBay. Kylin
provides a SQL interface along with the capability to perform multidimensional analysis
(OLAP) on Hadoop and supporting very large datasets. To add performance to these
capabilities, Kylin prebuilds MOLAP cubes. In addition, it has distributed architecture
that can benefit from MapReduce (or any other framework for processing distributed
data) and also provides high concurrency. In addition to the SQL interface, Kylin also
works well with other BI tools like Spotfire, Tableau, or MicroStrategy.

 Following are the key features of Kylin:

• Scalable and fast OLAP engine: Kylin reduces query latency even
for very large datasets. This is attributed to the architecture that
prebuilds cubes along with calculations.

• ANSI SQL support and interactive querying: Since we have all
used SQL for such a long time, Kylin’s support for most ANSI
SQL query functions is a useful feature and speeds up the
development process. Interactive queries offer flexibility and
speed (through prebuilt cubes).

• MOLAP cube: Using file storage and prebuilding calculations
provide speed to a MOLAP or multidimensional cube. Besides,
the traditional weakness of MOLAP (limits on data inclusion
within a cube) doesn’t exist for Kylin. For example, users can
easily prebuild a cube in Kylin for more than 10+ billion raw data
records.

• BI tool integration: Integration with BI tools is very important
for performing advanced analytics and reporting. Kylin can
be interfaced with business intelligence tools such as Tableau,
Spotfire, Microstrategy, and many other third-party applications.

• Open source ODBC driver: Kylin’s ODBC driver is developed for
accessing data sources as required and thoroughly tested with the
Report-writing application Tableau. The driver is open sourced to
the Apache community so that it is easy to customize it for your
specific use.

• Easy and effective management: The following features provide
ease of use and management:

• Job management and monitoring

• Compression and encoding for reducing storage needs

• Incremental data refresh for cubes (this allows you to process
changed data only, reducing processing time)

• Web interface for managing, building, monitoring, and
querying cubes

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

110

• Performance enhancement: The following features provide
additional performance enhancement:

• Kyline leverages the use of the HBase coprocessor for query
performance. For simple additive or aggregating operations
(such as sum, count, or like), pushing the computation to
the region or master server (where it can work on the data
directly without network traffic overhead) can provide a
substantial improvement in performance.

• Kylin uses the “HyperLogLog” algorithm for determining
distinct counts within a query. This algorithm approximates
the number of distinct elements in a dataset, reducing
memory consumption significantly and allowing use of very
large datasets.

• Flexible and granular security: Kylin allows you to set up ACLs
(access control lists) at the granular level of a cube or a project
and also provides support for LDAP integration. This helps in
integrating with corporate security easily.

• Fault tolerance: Kylin supports fault tolerance at the system as
well as data levels:

• Data fault tolerance: Cubes in Kylin can be partitioned into
segments, and the advantage is that you can refresh (or
rebuild) an individual segment without impacting the whole
cube. So, you can have a strategy to build segments daily,
weekly, or monthly as needed. Any data errors detected
or changes needed can be applied to the segment of least
granularity and thus provide effective fault tolerance without
the need to rebuild the whole cube. Data changes that
can’t be accommodated by the least level of granularity will
need rebuild at a higher level (for example, any data issues
discovered after a week will need the weekly segments to
be rebuilt). So, you need to balance the data error tolerance
and query performance. Higher granularity for segments
will provide a higher tolerance to data errors/changes,
but will also cause more scans to execute for each query.
Importantly, a cube is still available for use when some of its
segments are being rebuilt.

• System fault tolerance: Kylin inherits the system redundancy
and fault tolerance that HDFS and HBase provide.
Additionally, you can safely retry any failed build steps
without any adverse effects. This ensures integrity and
correctness of the final version of the build, regardless of any
number of intermediate failures or retries.

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

111

 Kylin Architecture
 I discussed Spark SQL and Presto in the last few sections. A number of SQL-on-Hadoop
tools are available. So why use Kylin? Because most of these tools need to scan the dataset
partially or fully to answer your query. Not only that, any joins (within your query) may
trigger data transfer across the nodes, and depending on network traffic latency, the
response you receive might not be what you would like.

 In contrast, Kylin precomputes aggregations for all dimensions and stores the
resultant values in a cube. The process followed for building cube(s) is extensive and
considers all possible combinations of dimensions, thus ensuring coverage for a larger
number of queries. Also, Kylin generates pre-join HiveQL (based on metadata) for joining
fact tables with dimension tables. The pre-joins and pre-aggregation results are stored in
HBase. So, most of the queries are served by the MOLAP (multidimensional OLAP) cubes
and are substantially fast. Queries that can’t use a cube are routed to a Hive table that
holds the metadata and thus execute as ROLAP (relational OLAP using star or snowflake
schema). In essence, Kylin provides HOLAP (hybrid OLAP) architecture.

 The next releases of Kylin are planned with Spark SQL replacing Hive (for additional
speed and in-memory processing), Lambda architecture (for providing near real-time
results), in-memory analytics (for performance), and capacity management. Also, there
are plans to use the Spark engine.

 The flow-chart in Figure 5-4 summarizes the cube build process within Kylin.

Build dictionary for
Dimension tables

and copy it to HDFS

Execute Hive Query
to build a flat table

joining Fact table and
Dimensions

Execute MapReduce job to
build cuboids (as HDFS

sequence files) with
aggregates for all possible
Dimensional combinations

with fact table

Calculate key distribution
of HDFS sequence files

and split the keys evenly

Convert HDFS sequence
files to HBase Hfiles

Load HFile
to HBase

 Figure 5-4. Kylin cube build process

 Finally, let me summarize this discussion with a comprehensive Kylin architecture
diagram. Figure 5-5 shows the main components of the Kylin engine: REST server, query
engine, metadata manager, and job engine.

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

112

 The REST server interfaces with client queries and passes them on to the query
engine. If the query results can be computed using the cube data, then the results are
returned almost instantly, but if they can’t be computed (from the cube data), then the
slower route is used, which involves using the Hive schema. You can add extensions or
interfaces to Kylin core engine as needed.

 In-Memory Processing Tools
 For the last couple of years, memory-based processing has been dominated by Spark and
Storm. Although both are extremely versatile and useful products, Apache Flink has some
features that offer a definite advantage over these tested and proven products.

REST server

Job engine

Metadata Manager MOLAP
cube

Hive

Client
applications
using REST API

SQL based BI tools
like Tableau using

JDBC / ODBC

Query engine
(Calcite)

Kylin core engine

Initiation of
client request

RESTful server resolves and
passes on to the Query engine

Query engine tries to get the data from
cube; if unsuccessful gets the metadata
from metadata manager and data from
Hive star / snow-flake schema

Slower query
response

Faster
query
response

Job engine is responsible for building cubes as well
as scheduling incremental data updates to it

Input schema
data

Output key
value pairs

Kylin extensions
(plugins to
support
additional
features)

Kylin
Integration
(with
monitoring,
alerts etc.)

Kylin user
interface
(provision to
build 3 party rd

user interfaces)

5

2

3

1

4

6

 Figure 5-5. Kylin architecture

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

113

 Flink
 Flink is a large-scale data-processing engine that offers in-memory data streaming and
therefore extremely fast processing for data-intensive as well as iterative jobs. How does
Flink differ from Spark? Well, Spark is primarily a batch-processing framework that can
closely simulate stream processing. Flink is primarily a stream-processing framework that
can also perform batch processing. Spark is not a pure stream-processing engine but in fact
performs fast-batch operations on small parts of incoming data or does “micro-batching.”
This may not be an issue for most applications, but for financial or real-time systems (where
low latency is required), every millisecond is critical, and even a small performance issue
can lead to severe monetary consequences.

 You can also think of Flink as a replacement for Hadoop MapReduce that works in
batch and streaming modes and uses directed graphs (instead of mapping and reducer
jobs), thereby leveraging in-memory processing for a much better performance.

 Flink has an excellent optimization engine. The Flink optimizer analyzes input code
(to the cluster) and decides on the best pipeline (as it deems fit) for executing that code
for a specific setup (which may be differ as per cluster hardware and number of nodes).
For performance, iterative processing is performed on the same nodes (instead of the
cluster running each iteration independently). Using optimizer hints, it is also possible to
perform delta iterations only on parts of your dataset that may have changed.

 Flink can work with YARN and also can run existing MapReduce jobs directly on its
execution engine, providing an easy upgrade for organizations already using MapReduce.
Finally, Flink works with on Apache Tez (only for batch processing), giving up some
performance for scalability.

 As for managing memory, Flink implements its own memory management inside
the JVM (of DataFlow engine), thereby helping applications to scale easily and be less
affected by JVM’s garbage collection overhead. This also (nearly) eliminates the memory
usage abnormalities (or spikes) often seen on Spark clusters. It is possible to dump a
JSON representation of the pipelines Flink has constructed for your job (through a
built-in HTML viewer), making debugging easy.

 Fault tolerance is an important consideration for streaming applications, and Flink’s
fault tolerance mechanism is based on Chandy-Lamport distributed snapshots. This
algorithm enables a process in a distributed system to determine the global state of the
system during a computation and can be used for checkpointing. The mechanism uses
small amount of system resources (thereby maintaining high throughput rates) and still
provides a guaranteed level of consistency.

 A lot of organizations (using Hadoop) are opting for a real-time streaming
architecture (as opposed to the existing batch architecture). Static HDFS files are being
supplemented with event streams, and batch workloads are being replaced with stream
processors to deliver lower latency applications. The main reason for this transition is
that the datasets and use cases that make up most of the workloads for Hadoop clusters
are event-based (for example, event or audit logs). Another reason is that now stream
processing technology is developed enough to handle more complex requirements.
Finally, there are applications (like processing sensor data) that need continuous queries
and can only be supported by a streaming architecture.

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

114

 Usually, stream architecture consists of the following modules:

• Gathering and consolidating event streams

• Collecting, holding the streams centrally, and distributing them

• Analyzing the streams and creating derived streams

 The first step is performed using applications like Flume or Sqoop, but it depends
largely on the data sources. Input events may consist of data coming from (relational/
NoSQL) databases, machine-generated logs, or from sensors. This data needs to be
cleaned and consolidated.

 Applications like Kafka can be used for performing the second step. Kafka can collect
event streams and log as well as buffer them. Kafka also offers fault tolerance (which is
necessary in this case) while holding and distributing the streams.

 The final step involves performing analytics on the streams. It may involve creating
counters, aggregating them, consolidating streams, or creating derived data streams for
further use. Apache Flink can be (and is) used to implement this step.

 Flink Architecture
 Remember that Flink is only a framework for distributed data analysis. At the core, Flink
has a streaming iterative data flow engine. Flink uses two major APIs (the DataSet API for
processing batch data and the DataStream API for processing event streams) on top of the
core engine to provide the versatile functionality of processing dissimilar data with equal
ease. The growing popularity of Flink has resulted in the development of domain-specific
libraries and APIs built on top of these two major APIs.

 Currently, the following libraries are available: Machine Learning library, a graph
analysis library (Gelly), and a SQL-like API (Table). In addition, there are other projects
that work on top of Flink, such as Google Cloud Dataflow and Apache MRQL. Finally,
the Flink core engine can work with a variety of data-processing frameworks such as
YARN/Apache Tez, can work as a standalone Flink cluster, or can be embedded in other
applications. Figure 5-6 summarizes the architecture.

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

115

 Search and Messaging Tools
 Search tools provide capability to index and search (primarily) for text data. So, they
are applicable for certain types of data only. These search tools (for Hadoop) are not as
flexible or extensive as the search utilities for relational databases, for obvious reasons,
but they do have a place. Since a lot of NoSQL databases lack necessary secondary
indexing capabilities, these products are sometimes used to augment them. Solr and
Elastic Search for Hadoop are popular products in this category, and both use Lucene as
the underlying indexing engine.

 Messaging systems deliver messages in source-destination and publish- subscribe
mode. Typically these systems work on top of real-time stream processors like Flink
or Spark Streaming. Kafka is a popular messaging system (briefly discussed in the last
section) that additionally allows you to have random access to your messages.

Programmatic client
access to Flink Libraries

on-top projects

Data processing frameworks (YARN, Tez, Flink
clusters)

Flink Dataflow engine

Libraries (Hadoop M/R,
Gelly, Table, FlinkML)

On-top projects (Google
Dataflow, MRQL)

For batch
processing

For event
stream processing

Dataset API DataStream API

 Figure 5-6. Flink architecture

CHAPTER 5 ■ THE HADOOP ECOSYSTEM

116

 Summary
 If you have worked with Hadoop for the past five years, you have probably noticed that
the Hadoop world is in a state of constant transition, and applications get added (or
vanish) almost daily. It is almost impossible to keep track of all the new projects, and
therefore it is a difficult task to select perfectly synchronized components for your Big
Data needs. By the time you have finalized, new components emerge that better suit your
needs!

 In this chapter, I have tried to provide a holistic view of the product categories and
new products available as of today, and hopefully this will provide a good overview and
a starting point for you. However, you still need to do your research and due diligence
while choosing components that must satisfy your business requirements. Remember, if a
new component (just introduced in the marketplace) matches your needs better but will
impact your project deadlines by a month, it should be acceptable if it gives you an edge
over the competition or improves your process efficiency by a large percentage.

 You also need to understand that choosing any of these components involves
complex engineering tradeoffs and you need to choose the option involving least amount
of tradeoffs (and most benefits). Your prime objective should serve as a good starting
point (for choosing main components), and you should try and build a system around it.

 This chapter also serves as a transition to the Big Data world from relational
technology. The later chapters discuss the design concepts for implementing Big Data
solutions, and therefore the Hadoop product categories this chapter has discussed will be
helpful in understanding them.

117© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_6

 CHAPTER 6

 Re-Architecting for NoSQL:
Design Principles, Models
and Best Practices

 I was recently at a Gartner seminar about data monetization , delivered by Doug Laney.
Doug talked about an interesting concept of assigning monetary value to the data
your organization has gathered historically. He also talked about the concepts of data
bartering and paying taxes using information instead of money (which apparently he
mentioned to a couple of IRS officials and enjoyed their reactions). Doug aptly terms the
economics of data as infonomics . Creation of a new discipline to monetize data efficiently,
I feel, highlights the growing importance of data (and information) in today’s world.

 Now think of the underlying issue with infonomics—how do you organize,
consolidate, analyze, and present large volumes of data? Since the concept involves
utilizing all the data your organization has gathered over the years, data volumes will be
large. Also, like anything else that needs to sold, the end product needs to be useful and
presentable. A Big Data solution can be utilized successfully to organize and analyze large
volumes of data. Of course, you need to re-architect your data for NoSQL usage, since
relational data can’t be used as-is with NoSQL databases. Certain transformations need
to be applied, which I discuss in this chapter.

 There are a lot of features of relational databases that you simply assume are
available for any database system. For example, defining fine-grained security
(or authorization) or referential integrity constraints or statistics. Also, things like
concurrent updates or data type validations are handled automatically by the RDBMS.
For NoSQL databases, only some of these features are available, but only with add-ons
(and lots of extra work to install/configure/integrate with other components) or custom
development involving time and money. For example, you have to transform your data
to preserve data integrity (without availability of referential integrity) or deliver better
performance without availability of advanced level of indexing or statistics. RDBMS
provides all these features to you in one (relatively) easy-to-use package.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

118

 Absence of referential integrity prompts denormalization of data. That reminds us of
data warehouses, and although the transformation techniques are similar, NoSQL takes
it a step further by eliminating any joins altogether. As you may recall, for star schemas, a
fact table needs to be joined with appropriate dimension tables for effective (and flexible)
filtering of data. With NoSQL databases, even those joins are not advisable. So, joins need
to be eliminated completely.

 Another important thing to remember is that many of the data integrity, validation,
or concurrency features were not necessary for a lot of applications, and that actually
facilitated development of NoSQL databases—they trade these features for better
performance and scalability.

 Some thought also needs to be given to non-datacentric factors such as security
(authentication/authorization) or concurrency, since these features are provided by
default within a RDBMS, whereas they are not available easily for NoSQL solutions.

 As a concluding thought, you must remember the functional difference in RDBMS
database design and NoSQL database design. RDBMS database design is a reflection
of the business functionality and processes, whereas NoSQL design essentially reflects
data access pattern and facilitation of performance for it (data within NoSQL database is
denormalized to facilitate quick retrieval and processing).

 Design Principles for Re-Architecting Relational
Applications to NoSQL Environments
 NoSQL databases primarily focus on the data usage patterns and rearrange data to
facilitate performance. With the HDFS storage (in some cases), scalability and fault
tolerance are available by default. Because I am discussing transition, I am assuming that
there is an existing RDBMS-based system that provides necessary business functionality.

 Therefore, as a first step, you need to review the existing data and the processing
that needs to be transitioned to NoSQL. As you are well aware, there are several types of
NoSQL databases (key-value stores, columnar databases, document databases, and graph
databases). Based on your data characteristics and processing requirements, you must
decide what type of NoSQL database suits your needs best.

 As a next step, data within the (selected) NoSQL database will need to be
denormalized, aggregated, and presented to facilitate analysis and ad hoc queries. I
discuss each of these aspects of transition in detail. Finally, I discuss the implementation
of non-datacentric features like security or concurrency for NoSQL solutions.

 Selecting an Appropriate NoSQL Database
 To start with, I am assuming that you have spent some time considering whether you
really need to use NoSQL in your environment and made your decision using the various
factors discussed in Chapter 1 . Note that Hadoop and NoSQL operate on datasets as
opposed to databases and tables in a relational environment. So you can think of a
NoSQL database as a collection of datasets . This section discusses the major types of
NoSQL databases and their potential applications.

http://dx.doi.org/10.1007/978-1-4842-1287-5_1

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

119

 Key-Value Stores
 These databases consist of a global collection of key-value pairs. What does a key-value
pair mean in this context? Let’s assume that a dataset with global sales details is accessed
frequently for a marketing analytics system, and because there may be millions of sales
records for popular products, retrieval takes time. It will help if this dataset is cached. So,
a key can be defined that has this dataset as value, and then a quick data retrieval can be
ensured by referring to the key.

 A common problem is multiple keys pointing to the same dataset. If you can make sure
that all the values (datasets) in your key store have unique keys, then you can successfully
use it like a hash table. Key-value stores are mostly used as cache stores or key-based data.
Remember, you will have issues if you try to query the same data using multiple keys.

 Scaling out with key-value stores is easy and can be achieved by hashing the keys.
Some key-value stores automatically do that for you. In general, key-value stores work
well for applications performing lots of small reads/writes or continuous streaming
because of good performance gains due to in-memory processing. Some popular key-
value stores are Memcache, Redis, Aerospike, and Riak.

 What kind of applications can you utilize the key-value stores for? Consider this scenario.
When you browse a retail website, a random cookie value is associated with a large chunk of
serialized data on the server, often created for every visitor. These cookies then hang around for
weeks, taking up valuable database space. A key-value store can be used to create a key entry
for a visitor with a 24-hour (or as required) expiry, thereby releasing the space automatically.

 Also, consider a simple capped log implementation. You can append items to a log
key (mapped to a file that captures log records) and retain only the last few items. You can
use this to keep track of the system state without scanning through the ever-increasing
amounts of logging information.

 To summarize, key-value stores can be utilized for data that consists of:

• A large number of small read/write operations

• Operations on multiple data structures

• Fluid data types or requires a flexible number of columns

 Finally, how can you use a key-value store for your application? Here is an example
using the key-value store Memcached. A typical Memcached installation has one or more
servers that cache the data (value) along with a unique key as requested by any of the
clients. The key can then be used to retrieve that data quickly in the future. The cached
data has expiry duration specified and is removed from cache once that duration is
reached. If multiple servers are available, more data can be cached (because memory for
all the servers gets added for usage).

 Because Memcached calls and programming languages will change based on the
API used, I will use pseudocode to demonstrate the concept. For this example, assume
that the server IP is 63.1.4.52 and the port used is 2200. Then, the sequence of commands
will be similar to the following:

 # pseudocode to define new cache and server

 memcacheclt = new Memcache
 memcacheclt:add_server('63.1.4.52:2200')

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

120

 Memcached can be used for reducing load on SQL databases by caching the
frequently accessed data. Of course, it doesn’t offer a centralized query cache (as offered
by RDBMS) or use any middleware to implement caching and hence doesn’t have a big
problem when a cache is invalidated (possibly due to data change).

 # Define data cache (value) and key for data within Sales table

 sql = "SELECT * FROM Sales WHERE Product_id = ?"
 key = 'SQL:' . Product_id . ':' . md5sum(sql)

 If you are not familiar with md5sum , it is a program that calculates and verifies 128-bit
 MD5 hashes for files as well as strings. The MD5 hash (or checksum) serves as a compact
digital fingerprint of a string or a file. Although an unlimited number of files (or strings)
can have any given MD5 hash, it is really unlikely that any two non-identical files (or
strings) will have the same MD5 hash. This helps in ensuring uniqueness of keys. Note
that the underlying MD5 algorithm is no longer considered secure (although it doesn’t
need to be, especially for SQL strings), but because any change to a string (or file) will
cause its MD5 hash to change, md5sum can be used to verify the integrity of files or strings.

 # To start with, check if the key-value pair is defined
 if (defined result = memcacheclt:get(key)) {
 return result
 } else {

 # execute sql to create key-value pair
 handler = run_sql(sql, Product_id)

 # Since you get back a handler or pointer object (after
 # executing SQL), you need to convert it to an array for caching
 final_array = handler:convert_to_an_array

 # Cache it for ten minutes
 memcacheclt:set(key, final_array, 10 * 60)
 return final_array
}

 When you cache sales rows for this product, you will see the same data for up to ten
minutes. Which means it will take up to ten minutes to see any data changes that you
make (unless you actively invalidate the cache by making a change to the data). Typically,
you can use key-value databases for web applications and hold user profiles/preferences,
session details, and shopping carts.

https://en.wikipedia.org/wiki/MD5#MD5
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic hash function
https://en.wikipedia.org/wiki/Checksum#Checksum
https://en.wikipedia.org/wiki/MD5#Security#MD5

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

121

 Document Databases
 A document-oriented database stores and manages data stored as documents. A
 document can be a grouping of structured or semi-structured data . Document-oriented
databases can be thought of as a subclass of the key-value store s, since the way data
is stored and retrieved is similar, but the way data is processed is different. For a key-
value store, the data is inherently opaque to the database; it is just value for a key. In
comparison, a document-oriented system reads the internal structure of the data (or
document) to extract metadata and uses it for further processing and optimization.
Document-oriented databases extract type information from the data itself and group
related information together for ease of use. For example, XML databases (a specific
subclass) are optimized for extracting metadata from XML documents. Also, document
databases are typically optimized for complex random text searches (for example,
elasticsearch) as well.

 With document-oriented databases, you get the flexibility of having every instance
of data be different from others, and this lends valuable support for optional values as
well as updates. That’s why they are so popular with web applications —which change
frequently, may have semi-structured data, and also need to be deployed quickly. Next,
let me discuss what a document is, using an example. Consider the following text:

 Blue striped shirt
 226453
 20
 12345
 IL (US)

 Although it may be clear to you that this document contains the details for a clothing
item, it is not clear as to what the other individual fields represent. If this information
is stored in a key-value store, the semantic content (that this inventory item for a web
retailer represents) may be lost and the database will have no way to optimize or index
this data effectively. It may be possible to employ additional logic to separate the string
into fields and assign fields to columns within a table, but it will not be a simple task.
Without metadata, parsing free form data like this can be complex. Now consider the
same document marked up in pseudo-XML:

 <Item>
 <ItemName>Blue striped shirt</ItemName>
 <ItemType>Male Shirt</ItemType>
 <ItemSize>Large</ItemType>
 <ItemNumber>226453</ ItemNumber>
 <Quantity>20</Quantity>
 <WarehouseNum>12345</WarehouseNum>
 <State>IL</State>
 <Country>US</Country>
 </Item>

https://en.wikipedia.org/wiki/Semi-structured_model#Semi-structured model
https://en.wikipedia.org/wiki/Key-value_store#Key-value store
https://en.wikipedia.org/wiki/Metadata#Metadata
https://en.wikipedia.org/wiki/XML_database#XML database
https://en.wikipedia.org/wiki/XML#XML
https://en.wikipedia.org/wiki/Web_application#Web application

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

122

 So now, the document includes both data as well as metadata and that explains each
of the fields. This way, it is possible to query the data like “find all the <Item>s located
in <state> of ‘IL’” or design index on the state field for performance. You can combine
search conditions just like any other database, but the major difference is embedding of
metadata within the document itself, and that eliminates the need for predefining the
database fields. It also offers the flexibility of adding or removing certain fields, and thus
every document in the database can have a different format. One <Item> may have <Size>
while the other may have <Style> instead. That doesn’t invalidate the earlier query of
looking for items located in Illinois for this data.

 The embedded metadata also allows the document format to be changed without
affecting the existing documents. Let’s say that a new <ItemPicture> field is added to the
new documents. It won’t affect any existing documents—they simply won’t have a picture
associated with them. Also, in general, any queries based on fields that are not a part of a
document won’t retrieve them.

 Popular formats for documents include XML, YAML, JSON, and BSON. Some
documents don’t contain clearly defined metadata (for example, PDFs), and the database
managing them may provide ways to map data using indexing or may include predefined
formats based on XML such as MathML, JATS, or DocBook. In some cases, schema
languages like DTD, XSD, or Relax NG are used to map documents to a more usable
format. JSON is about the most popular format (used mostly for interactive web-based
applications) by a number of document-oriented databases.

 Documents can be stored using a unique key for reference and retrieved using it.
A key can be a string, a URI , or a path. It helps to create an index on the key field for
speeding up document retrieval. More indexes can be created to speed up frequent
searches. Most of the popular document-oriented databases provide tools to extract
and index almost all the metadata as well as the data content for documents that they
manage. Queries are further supported by availability of a query language, making it easy
for the users.

 Document-oriented databases can be used for data that consists of the following:

• A wide variety of data types and may have a number of access
patterns

• A need to build CRUD (create, read, update, delete) apps

• Data types like JSON, HTTP, REST, JavaScript, and used with
web-based applications

• Processing that involves a lot of small (and possibly volatile)
continuous reads and writes

• Fluid data types or requires a flexible number of columns (due to
optional data)

• Large media (BLOB types) or semi-structured

 Applications suited for document databases are event logging, e-commerce
applications, and content management applications. Popular document-oriented
database systems are MongoDB, CouchDB, and OrientDB.

https://en.wikipedia.org/wiki/URI#URI

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

123

 Columnar Databases
 A columnar database organizes its data in columns instead of rows. This re-orients the
focus of data and helps in writing/reading data from hard disk storage more efficiently,
thereby speeding up the queries performed on a dataset. A data column consists of
name and value (and sometimes a timestamp). Each row can have a different number of
columns. A row key can be used for queries, or secondary indexes (created on column
values) can be used too.

 For a columnar database, column values are physically grouped together as opposed
to rows. Because the data is stored in record order, 5th entry for column 1 and the 5th
entry for column 2 are part of the same record. This enables individual data elements
(such as the following product details) to be accessed in columns as a group, instead of an
individual row-by-row access.

 Here is an example of a product table:

 ID ProductName Category Quantity Price
 1 Green Tea bags Tea 100 3.99
 2 Black Tea bags Tea 100 2.99
 3 GingerTea bags Tea 100 4.99

 For a row-oriented database, the data would be stored like: 1,Green Tea bags,
Tea,100,3.99;2,Black Tea bags,Tea,100,2.99;3,Ginger Tea bags,Tea,100, 4.99;

 For a column-oriented database, the data will be stored as: 1,2,3; Green Tea
bags,Black Tea bags,Ginger Tea bags;Tea,Tea,Tea;100,100,100;3.99, 2.99,4.99;

 But why organize the data in columns? One reason is the compression it provides for
storage. As a result, columnar operations (such as MIN, MAX, SUM, COUNT, and AVG)
can be performed very speedily. Also, because a columnar database is self-indexing,
it can store data more efficiently (disk space–wise) compared to a relational database
management system (RDBMS). Also, data compression offered by columnar databases is
a big advantage. The benefits of these features can be seen for a large data volume, where
data access performance is of essence. Otherwise, for smaller volumes, databases offering
 in-memory analytics can easily make the relative benefits of row-oriented versus column
oriented databases somewhat irrelevant, due their speed—although data compression
offered by columnar databases can still be useful, since memory is expensive and
compression can help you fit in datasets using smaller RAM.

 What kind of applications can make use of columnar databases? As stated earlier,
large data volume is required to see the difference in performance. In addition, columnar
databases are well suited for large amount of data aggregated in a few columns. Columnar
databases do not support ACID transactions and are more useful where “eventual
consistency” can be tolerated.

 Another thing to remember about columnar databases is that they perform as
well for applications where writes are more frequent as they do for queries. Also, these
databases perform well where applications need to access only a few columns (of large
numbers of rows) at once. Columnar databases can speed up your analytical queries by
helping you focus on the necessary columns without reading through thousands of rows.

 Finally, columnar databases can also be used for time-dependent columns (or for data
that has expiry), since it is possible to set up automatic column expiry after a specific date.

http://searchdatamanagement.techtarget.com/definition/data
http://searchdatamanagement.techtarget.com/definition/data
http://searchsqlserver.techtarget.com/definition/relational-database-management-system
http://searchbusinessanalytics.techtarget.com/definition/in-memory-analytics
http://whatis.techtarget.com/definition/aggregate

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

124

 Though the concept of a column store has earlier been implemented as part of
relational databases, RDBMS doesn’t provide the flexibility of columns differing across
column family rows, which is permitted by NoSQL columnar databases (you can have
varying number of columns for each row).

 As is widely known, columnar databases are derived from Google’s Big Table.
Popular distributed scale-out columnar databases include HBase and Cassandra.

 To summarize, you can use distributed scale-out columnar databases if your data:

• Needs high availability and redundancy

• Needs to span multiple data centers in different geographical
locations and you need a distributed and partition-tolerant
option capable of handling long latencies

• Has continuous data streams that don’t need any consistency
guarantees

• Has fluid data types and dynamic fields

• Has a potential for truly large volumes of data, such as hundreds
of terabytes, and need aggregations on a few columns

 Typically, the following kinds of applications can benefit from this kind of Big Data
processing capability:

• Data analytics (user behavior, network traffic, log files)

• Bioinformatics (genetic and proteomic data)

• Stock market analysis (trade data)

• Web-scale applications (search engines)

• Social network services

 Graph Databases
 Graph databases have their origin in the graph theory proposed by the Swiss
mathematician Leonard Paul Euler. Main components of graph databases are nodes and
 edges (or relationships). Both nodes and relationships can have properties associated with
them. In addition, nodes can also be labeled with zero or more labels. Nodes represent
entities that you might want to monitor (or query), and relationships are relations that
exist between the nodes. Properties (or attributes) provide information about the nodes
or the relationships.

 For example, if “Practical Hadoop Security” were one of the nodes, one might have it
tied to properties such as “book,” “security reference material,” or “220 pages,” depending
on which aspects of “Practical Hadoop Security” are relevant to a particular database.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

125

 Graph databases are often faster (compared with relational databases) for complex
queries on large datasets, since they do not require expensive join operations. As they are
not dependent on a static schema, they perform better for frequently changing data as
well as evolving schemas. However, they can’t perform as well (as relational databases)
for static schemas with large numbers of data elements. Graph databases, of course, work
best for graph-like queries (such as computing the shortest path between two nodes or a
graph’s diameter computation).

 For scenarios with complex inter-related relationships (for example, queries
involving multiple highways connecting cities, proteins interacting with other proteins,
and employees working with other employees) between various nodes (or entities) graph
databases work best. That’s why graph databases are well-suited for the following types of
problem domains:

• Network and IT infrastructure management

• Identity and access management

• Business process management

• Product and service recommendations

• Social networking

 An important thing to remember about graph databases is that they don’t work well
for processing large volumes of data and therefore for applications involving large-scale
graphs (such as social networks), columnar (or other suitable) databases are frequently
used for storage and retrieval, while graph operations work as a top processing layer that
contributes performance (for example, Titan graph database).

 I’ll use LinkedIn’s architecture as an example. LinkedIn uses a combination of
Oracle, Voldemort, Espresso, Pinot, and XML for data storage. Databases are partitioned
horizontally and vertically (for performance). Due to partitioning, it is not possible to
implement referential integrity or cross-domain JOINs. Also, an eventual consistency
model is used and therefore data is not guaranteed to be consistent. Voldemort and
Pinot are key-value stores. Espresso is LinkedIn’s online, distributed, fault-tolerant
NoSQL database and is used by over 30 LinkedIn applications, including member profile,
InMail (the member-to-member messaging system), parts of the home page, mobile
applications, and so on. Oracle is used sparingly due to its cost.

 Voldemort is a simple key lookup system and is used for quickly looking up small
pieces of data (such as for a user profile, data like jobs you might be interested in , people
you may know , and so forth). Pinot is used for larger key-value lookups like historical
data (give me all the Big Data jobs from January to March) and is scalable for storing large
amounts of data.

 The Cloud is a server that caches the entire LinkedIn network graph in memory
(LinkedIn has developed a proprietary graph database for this purpose, which sits at the
center of nearly every operation). Each instance of Cloud supports 22 million nodes and
120 million edges and needs 12 GB RAM. There were 40 Cloud instances in production by
2008 (I’m not sure how many instances there are now). The Cloud instances are updated
in real time with updated data and are persisted to disk on shutdown. Having everything
in RAM is a limitation, but because partitioning graphs is hard, there are no other options.

https://en.wikipedia.org/wiki/Relational_databases#Relational databases
https://en.wikipedia.org/wiki/Join_(SQL)#Join (SQL)

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

126

 Though the Cloud caches the entire LinkedIn network, each user needs to see
information relevant to him only and since computing these individual user views is
expensive, LinkedIn does it only when a user connects and keeps it cached. This cached
network view is not updated during the session, unless the user himself adds/removes a
link (also, it’s not updated if any of the user’s contacts make changes).

 For searches, a customized version of the Lucene search engine is used, and because
cached data is searched, the results are returned really quickly. Kafka and Databus are
used for data replication, and Zoie (real-time search and indexing engine that uses
Lucene), Bobo (faceted search library for Lucene, facets being attributes of users such as
industry, previous companies, patents, and so on), and SenseiDB (real-time, faceted, key-
value and full-text search engine) for online searches.

 Figure 6-1 shows the LinkedIn architecture as of 2012. There may have been changes
to it since, but consider it as an example of using a graph database for analysis with other
NoSQL databases used for storage.

In-memory Graph

User Profile
(public) app

Web app for
Recruiters

Cloud Database
Replicas

Replication server

read only

read

write

Communication
service

LinkedIn
web app

read

write

read only

Main
Databases

Oracle / Voldemort

/ Espresso

updates

User Profile
service

profile updates

pr
of

ile
 u

pd
at

esDatabase

Updates for connections
Zoie + Bobo + SenseiDB

(Search engines)

Databus /
Kafka

Database

via jdbc

 Figure 6-1. LinkedIn architecture

 Popular graph databases are Neo4j, AllegroGraph, and InfoGrid. I will demonstrate
the major concepts for graph databases through a quick example using the Neo4j
database.

 Graph data modeling is a process in which a user represents a specific domain
through a connected graph of nodes and relationships. This graph is then used to
answer questions in the form of Cypher (Neo4j query language) queries. Let me start by
describing the domain (for my example) first.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

127

 Domain Description

 Consider the following description of the connection between two people, James and
Scott. They work for the same company. Both James and Scott have bought a set of
candle-holders from Amazon.com.

 We can use this statement to identify components nodes, labels, and relationships
and build our model.

 Nodes

 Node is a primary component and can have attributes (properties), relationships (with
other nodes), and labels. Typically, nodes are entities with a unique conceptual identity.
In this case, the following nodes need to be defined:

• James

• Scott

• Set of candle-holders

 Labels

 Next, let’s decide if you need to assign any labels to your nodes. A label is used for
grouping nodes into sets and is optional. If defined, database queries can use labels
instead of individual nodes, making it easier to write compact and more efficient queries.
For this example, let’s define two labels:

• Person (applied to nodes James and Scott)

• Object (applied to node Candle-holder set)

 Relationships

 The following interactions can be identified between these nodes:

• James is a colleague of Scott

• Scott is a colleague of James

• James bought a set of candle-holders

• Scott bought a set of candle-holders

 Next, I’ll connect the nodes together to demonstrate their interactions and complete
the graph data model. Nodes labeled Person can be connected by the colleague of
relationship. Nodes labeled Object can be connected with nodes labeled as Person using
 has bought relationship, as shown in Figure 6-2 .

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

128

 Creating Attributes

 Nodes, by themselves, don’t provide any useful information and can’t answer the
questions that may be asked. The attributes depend on information that may be required
for the nodes. For example:

• When did James and Scott become colleagues?

• What’s the price for the set of candle-holders?

• From where did James and Scott buy the set of candle-holders?

• How old is James?

 Addition of the following attributes help answer those questions (note that the
attributes are added as key-value pairs) as shown in Figure 6-3 .

ScottJames

Set of Candle-holders

has bought
has bought

Colleague of

Colleague of

 Figure 6-2. Graph data model for Neo4j-based example

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

129

 Let’s add the attribute data to the database using Neo4j query language Cypher:

 // Create Entities or Nodes
 CREATE (James:Person { name: "James", age: 37 })
 CREATE (Scott:Person { name: "Scott", age: 53 })
 CREATE (sch:Object { Object_name: "Set of candle-holders", price: "$50" })

 // Create relations
 CREATE (Scott)-[:COLLEAGUE_OF { since: 1072339200 }]->(James)
 CREATE (James)-[:HAS_BOUGHT { on: 1418976000 }]->(sch)
 CREATE (Scott)-[:HAS_BOUGHT { on: 1420272000 }]->(sch)

 Note that the dates used (1072339200, 1418976000, and 1420272000) are epoch times
(epoch time is seconds elapsed since January 1st, 1970, not counting leap seconds). So, if
you convert 12/25/03 08:00 to epoch time, you will get 1072339200 as a result.

 Finally, here’s a sample query that answers “What’s the price of a set of candle-holders?”

 MATCH (sch:Object { object_name: "Set of candle-holders" })
 RETURN sch.price as price

 To summarize, graph databases can be used when the data:

• Has complex relations as in social network data

• Needs to dynamically build relations between entities that may
have dynamic or changing properties

Name: James
Age: 37

has bought on:

12/19/14

ha
s b

ou
gh

t on
:

1/3
/15

Colleague of
Since: 12/25/03

Colleague of
Since: 12/25/03

Name: Scott
Age: 53

Seller: Amazon.com

Object_name: Set of
Candle-holders
Price: $50

 Figure 6-3. Graph data model for Neo4j-based example (with attributes)

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

130

• May need complex or nested joins for the queries involved

• Belongs to location services or recommendation engines

 This completes my discussion about selecting an appropriate NoSQL database
solution based on your data and processing needs. Next, I discuss the changes you need
to make to your data for re-architecting your application for NoSQL usage.

 Concurrency and Security for NoSQL
 The concepts of concurrency and security work a little differently for NoSQL
environments (compared to RDBMS). Mechanisms to implement concurrency (like
locking or transaction isolation levels) don’t exist for most of the NoSQL databases.
Security needs to be implemented using third-party solutions and is not integrated with
databases. So, these features that are available by default for RDBMS need to be simulated
for some NoSQL environments. This is one of the tradeoffs for better performance offered
by NoSQL. I’ll now discuss these concepts in detail.

 Concurrency
 When a user is updating data from a table within a RDBMS database, other users can’t
modify the same data, since it is locked (via exclusive write lock). Before locking data for
an update, RDBMS waits to gain exclusive control of the dataset while users are reading
the data with a shared read lock . Once there are no shared locks, the dataset is locked
using an exclusive write lock . Concurrency is handled effectively using the database
locking. RDBMS supports ACID (atomicity, consistency, isolation, and durability)
transactions, that provide reliability of data.

 NoSQL databases don’t support ACID compliance for transactions but do have
alternate strategies. Optimistic concurrency control (OCC) is one of them. OCC assumes
that multiple transactions may complete without mutual interference. Therefore,
transactions are allowed to use data resources without acquiring locks on them. However,
every transaction verifies that the data used (read or written) by it is not modified by any
other transaction. If conflicting modifications exist, the committing transaction rolls
back. OCC can only be used in environments with low data contention, since otherwise
the overhead of restarting transactions will negate the performance advantage and high
throughput gained by avoiding locking.

 Typically, since most NoSQL databases operate on the philosophy of “single write,
multiple reads” (especially open source). They are not expecting concurrent updates
and therefore are not designed to support them. By default, most of the distributed data
systems support eventual consistency . Any system that has multiple nodes processing
read requests can’t contact other nodes (to verify the data that’s provided) while
processing a read request, if it has to deliver good performance (since verification will
involve additional time). Therefore, the data provided may or may not be the latest; the
best you can hope for is for nodes to synchronize and be eventually consistent. This
concept is also known as BASE (basically available).

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

131

 Now, if your application needs some level of concurrency control (maybe not as
rigid as ACID compliance), what do you do? Here are some additional ways you can
implement concurrency in your NoSQL environments:

• You can use ZooKeeper. The way Zookeeper works is by
facilitating distributed locking using a quorum.

• You can use one of the well-tested algorithms for distributed
consensus—for example, Paxos along with MVCC (multiversion
concurrency control).

• As you have seen, locking in ACID-compliant database
environments can cause readers (SELECTs) and writers
(UPDATEs) to wait for each other (to complete). This situation
is resolved by using MVCC. A version is a snapshot of data at a
point-in-time. While querying a table, the readers get access
to the current version of the data, and updates may happen
simultaneously (in parallel). Therefore, the same query at a later
point in time may use a newer version and yield different results.

• You can use the CAP model, which states that any networked
shared-data system can only have two of three desirable
properties: consistency (C), which means you get a single up-to-
date copy of your data; high availability (A) of data (for updates);
and tolerance to network partitions (P).

• Although designers still need to choose between consistency
and availability when partitions are present, with the advent
of contemporary networking systems, there is lot of flexibility
possible for handling partitions and also recovering from them.
Therefore, a modified CAP goal can be to maximize combinations
of consistency and availability required for a specific application.
Of course, this needs to be accompanied by plans for continuity
during a partition and also for recovery later, thus overcoming
perceived limitations for CAP.

 Security
 Security is another RDBMS feature that you never even think of as a feature. In the open
source NoSQL world, there is no extensive integrated security implementation. There is
no built-in authentication or authorization. There is no built-in encryption or masking
either. All these features need to be implemented through separate applications or API,
and you need to make sure that the applications or APIs are well integrated. Some of the
NoSQL solutions available commercially (for example, MongoDB by 10Gen or Cassandra
by Datastax) are including authentication, masking, and encryption features with their
products, but they still lack effective means for authorization or granular security.
Besides, all the commercial NoSQL products don’t offer these features.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

132

 Getting back to open source products, Kerberos is widely used for authentication
with a large number of open source NoSQL solutions. Kerberos is developed by MIT, is an
open source application easily available, and works with a wide number of Linux flavors
as well as HDFS. It also works well with Apache applications like HBase, Hive, Pig, and
others. Most of the major Hadoop vendor distributions work with Kerberos, and that’s
why some of them are now including Kerberos with their distributions. Because Kerberos
has been available for a long time, there is extensive documentation about installation,
configuration, and possible issues as well as solutions.

 Authorization can be performed using HDFS ACLs or using Apache Sentry (if you
are using Hive). Also, there are components like Apache Knox or Apache Ranger available
now to offer a comprehensive security solution. You can use Ranger (or Knox) to create
access policies (for users or groups) for various Apache components like HDFS, Hive,
or Hbase, which provide granular (table-level) permissions. Knox also offers LDAP
integration, making it easy to integrate security for Hadoop with your corporate security.
Finally, most Hadoop vendors (and some NoSQL databases) provide their own custom
tools for authorization.

 Data encryption is available in transit as well as at rest (when data is stored on a
physical disk drive), using encryption and compression APIs developed by the Apache
foundation. Also, there are open source encrypted file systems like eCryptfs that can
be used successfully with Hadoop and NoSQL solutions. In addition, most of the major
Hadoop vendors provide interfaces with third-party encryption tools.

 Finally, there are excellent open source monitoring tools like Ganglia and Nagios
available to monitor system resources and unauthorized access to NoSQL databases.

 In conclusion, the combined strategy of implementing tools for authentication,
authorization, encryption, and monitoring results in a robust security option for NoSQL
databases. Open source databases mostly use open source tools, whereas NoSQL
databases available commercially (paid) use their own custom tools to implement the
combined security strategy.

 Designing the Transition Model
 The last section discussed criteria for selecting an appropriate NoSQL database. As a
next step, the data (located within RDBMS) needs to be transformed for NoSQL usage.
This involves denormalization and also, in some cases, conversion to star schema
before denormalization. In either case, it needs to be ensured that there are no joins, no
relations, and few tables as a final result.

 Also, note that the process for data migration will depend on which NoSQL technology
you choose. For example, the process for transitioning RDBMS data into a columnar
database (such as Hbase or Cassandra) will differ from the one for key-value stores like Riak
or to document stores like MongoDB. I discuss these processes in detail next.

 Denormalization of Relational (OLTP) Data
 Consider a scenario where OLTP (online transaction processing) relational data needs to
be moved to NoSQL environment for better performance. Based on data and application,
it is decided that the target NoSQL environment will be Cassandra (a columnar database).
Figure 6-4 shows the logical data model for the relational database that holds the data.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

133

 Figure 6-4. Logical data model for Claims processing system (relational design)

 This is the same claims processing application discussed in detail in Chapter 3 . Figure 6-4
shows it again for easy and quick reference. For brevity, I will only transform it partially.

 Because NoSQL databases focus on queries and more frequently used datasets,
imagine a scenario where the YourState insurance company (using this Claims processing
system) encountered a big issue due to increased percentage of fraudulent claims often
filed by unauthorized people and decided to implement a new procedure for filing
claims. This procedure involved some additional processing and slowed the claim filing
process, resulting in complaints by genuine policy holders with legitimate claim requests.

 The CIO for YourState insurance asked his chief architect to come up with a solution,
who decided to leverage the power of Big Data and NoSQL. He analyzed the situation
(and reason for slow performance) as follows:

• Policy-holder verification involves joining policy_owner
(3 million policy holders) and their policies (about 4 million rows)

• Checking claims for a policy holder involves a join with claim
(about 20 million claims for last 2 years)

• Getting claim details involves joins with other claim related tables
and further slows down the information retrieval

http://dx.doi.org/10.1007/978-1-4842-1287-5_3

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

134

 The CIO thanked the chief architect and asked him to suggest a remediation plan.
Following was the remediation plan suggested by the chief architect:

• Denormalize and combine Policy_owner , Policy_type , and
 Policy tables to a temporary table

• Denormalize and combine Claim table with appropriate claim-
related tables (such as Claim_property , Claim_type , Claim_
line_item , and so on) as needed to eliminate as many joins as
possible and output to a temporary table

• Export data from temporary tables to columnar and document
databases and test performance

 As a first step, Policy , Policy_type , and Policy_owner tables were denormalized as
shown in Figure 6-5 .

 Figure 6-5. Denormalization of policy data

 The objective here is to reduce the number of joins, since at a high volume, there is
a big performance impact on policy (and owner) information retrieval. Also, small tables
like Policy_type can easily be combined to reduce the impact.

 Also, please note that secondary indexes will need to be added for column
 PolicyOwnerSSNFEIN , PolicyOwnerName , and PolicyOwnerPhoneNumber , since most of the
customers calling in (for filing claims or other claim-related services) will use one of these
identifiers for locating their information. I will discuss addition of secondary indexes
while implementing the final model.

 As a next step, I’ll denormalize claim-related data to eliminate joins and provide
speed for retrieval as shown in Figure 6-6 .

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

135

 For claim data, the denormalization is a little different (compared to policy). Also, as
you can see, I have kept three tables in the final count. The reason is expected processing.
For claims, the primary purpose of data access by customers is to get claim details or
claim status or file a new claim. In most of those situations, claim property information or
claim resubmission information is not needed (except when a customer calls to resubmit
a claim or needs status on resubmission), because the percentage of resubmitted claims
is only 12% for YourState, and claim properties are rarely needed for customer enquiries.

 Therefore, I decided to keep those entities (claim_resubmission and claim)
separate from the claim_line_item entity, which holds details of a claim and up-to-date
status. In this case, combining all the entities will simply increase record length (thereby
increasing access time), and because the property or resubmission columns are not
accessed frequently, will not provide a good value.

 Also, in this case, secondary indexes will be required for columns PolicyId ,
 ClaimSubmissionDate , ClaimStatus (for tables Claim and Claim_line_item),
and for columns ClaimResubmissionDate and ReviewerEmployeeId (for table
 ClaimResubmission).

 Note that I have only demonstrated the concept of denormalization for this
application and the total effort (or denormalization required) may be more extensive, if
you need to migrate your data to a NoSQL environment. Also, this application was OLTP,
and the technique for OLAP-based data (or star schemas) is a little different.

 Figure 6-6. Denormalization of claim data

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

136

 Denormalization of Relational (OLAP) Data
 In the case of OLAP applications, since most of the denormalization is already performed
(while designing a star schema), you simply need to eliminate the joins (between fact
table and dimensions) by adding the dimensional data to the fact table for queries you
are most interested in. You may also want to do it only for narrow dimensions with a
larger number of records. The reason is if the dimension is wide, then it will make the
record length really large. Also, you may want to remove facts that you are not interested
in (to reduce the record length). I’ll discuss this approach with a quick example.

 Figure 6-7 is a star schema for a generic sales analysis system. Sales_facts is a
fact table, and you can see dimensions such as Customer , Location , Date , Product , and
 Sales_Reps .

 Figure 6-7. Sales analysis star schema example

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

137

 The fact table Sales_facts only has two facts—total sales and number of items sold.
This company has had a great year sales-wise, and the sales fact table has 100 million
records. There are 500,000 customers who contributed to these sales along with 1,000 sales
representatives, 300 locations, and 700,000 products. The sales volume poses an issue
for analysis that focuses on products bought location-wise by certain type of customers,
since the resulting join (100 million × 500,000 × 300) is huge. Every time there is an analytic
query involving these dimensions, it takes a long time to get the results back.

 Therefore, it was decided to check whether a NoSQL solution could perform better
(as compared to a RDBMS-based ROLAP solution). The data architect denormalized the
schema (for the type of specific analysis needed) and designed a denormalized version of
the schema, as shown in Figure 6-8 .

 Figure 6-8. Sales analysis star schema—denormalized

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

138

 The first step is combining the relevant part of dimension tables with the fact data
(to avoid joins). Based on the performance need, it can be easily concluded that columns
from dimensions Customer , Location , and Product need to be added to the fact table. So,
you can remove the dimension Sales_Reps from the dataset, since it is not relevant to this
requirement. Next, you can evaluate the columns in the considered dimensions and since
the columns ProductId , ProductSerialNum , LocationId (from Product dimension),
 CustomerId , LocationId , and CustomerSince (from Customer dimension) are not
relevant to this dataset, they can be removed as well.

 The Date dimension is not combined for two reasons. First, it is small and only has
730 rows (for two years). Second, only a few queries might use it, since the analytical
focus of this dataset is not time.

 Last, there are only two measures or facts, and since both are relevant to the
dataset, none needs to be removed. Secondary indexes will be needed for boosting
performance and can be created for columns CustomerName , ProductName , IndustryType ,
 CustomerType , State , City , and so on.

 To conclude, the final denormalized models (for OLTP as well as OLAP) constitute
the transitional models for NoSQL targeted re-architecture. The reason I term them as
 transitional is because they will change as per the target NoSQL solution that’s planned to
be used.

 The next section discusses a target implementation of these transitional models
using columnar databases and document databases as targets.

 Implementing the Final Model
 I started with design principles for re-architecting relational applications to NoSQL
environments. First, I discussed how to select NoSQL technology (key-value, columnar,
document, graph) based on type of your data and target application. Then I discussed
implementation of concurrency and security for NoSQL environments. After that, I went
over designing transition models for your relational data. As a last step, I will talk about
implementing these transition models to target the NoSQL database of your choice.
Broadly, there are four steps involved in the re-architecture process:

 1. Evaluate and choose the type of NoSQL technology that
best fits your data/application needs. Try using the chosen
technology for a small project and verify features/ease of use.

 2. Denormalize relational data and represent resulting model
using NoSQL technology of your choice (document, key-
value, column, or graph as appropriate).

 3. Design/develop ETL (extract, transform, load) logic to migrate
your data from relational database to NoSQL environment
using tool(s) of your choice.

 4. Redesign your application queries to read data from your
NoSQL database .

 I’ll discuss implementation of a final model using a columnar NoSQL database as a
target and a transition model as an input.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

139

 Columnar Database as a NoSQL Target
 I have discussed the concept of columnar databases in the section “Selecting a NoSQL
Database” earlier in this chapter. In this section, I will use Cassandra (a popular columnar
database) as an implementation target for the transitional model designed in the last
section. Some changes are needed to the model for use with Cassandra. Also, you have to
make sure that the data is in format that Cassandra can read.

 For example, JSON (JavaScript Object Notation) is a format that Cassandra can
understand and hence will work as a notation for specifying schema. An important thing to
note about schema is that Cassandra won’t enforce a schema for input data (like RDBMS). If
you need schema compliance, your application layer needs to handle schema enforcement.

 Getting back to the JSON format, it can be used as a standard for exchanging
information about specific entities between separate programs (like web browsers that
can interpret JavaScript and web applications that can process the JSON format). Though
JSON can be used to represent primitive data types like integers, it is more frequently
used to represent complex data including key-value pairs or specifically named attributes
(for example, name=Bhushan , state=IL) or arrays (for example, 12456 , 636262 , 863636), or
even arrays of attributes ({name=Bhushan, state=IL},{name=Anish, state=IL}).

 Getting back to Cassandra, two types of JSON data structures can be imported directly
into Cassandra. Here’s the first structure: keystore->columnfamily->rowkey->column.

 {
 "keystore":
 {
 "columnfamily":
 {
 "rowkey":
 {
 "column name": "column value"
 }}}

 Sometimes multiple columns need to be grouped, and therefore another layer needs
to be added to accommodate multiple columns. This layer, called supercolumn, is the
second type of JSON structure for Cassandra:

 keystore->columnfamily->rowkey->supercolumn->column

 {
 "keystore":
 {
 "columnfamily":
 {
 "rowkey":
 {
 "supercolumn":
 {
 "column name1": "column value",
 "column name2": "column value"
 }}}}}

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

140

 For the Claims processing data model (that we built the transition model for), let me
demonstrate how the Policy data can be structured in a keystore called Implementation_
Database :

 {
 "Implementation_Database":
 {
 "Policy":
 {
 "PolicyId":
 {
 "GeneralInfo":
 {
 "PolicyStartDate": "column value",
 "PolicyNotes": "column value",
 "PolicyEndDate": "column value",
 "PolicyStatus": "column value"
 }
 "OwnerInfo":
 {
 "PolicyOwnerSSNFEIN": "column value",
 "PolicyOwnerName": "column value",
 "PolicyOwnerAddress": "column value",
 "PolicyOwnerType": "column value",
 "PolicyOwnerPhoneNumber": "column value"
 }}}}}

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

141

 Note that I have created two supercolumns: GeneralInfo and OwnerInfo . These
are to classify the policy information as it exists naturally within the Claims processing
database (that is, without denormalization). You can similarly represent all the
denormalized tables using JSON and then think about migrating data.

 Though supercolumns allow column groupings and make the schema more readable
(by allowing subgroups of columns), you should note the following about the supercolumns:

• Subcolumns of a super column (for example, PolicyOwnerSSNFEIN ,
 PolicyOwnerName , and so on for supercolumn OwnerInfo) are not
indexed. Therefore, reading a subcolumn will de-serialize the rest
of them and cause adverse performance impact.

• Secondary indexing doesn’t work for subcolumns. Since a
subcolumn is not indexed separately, when a supercolumn is
loaded in memory, all of its subcolumns are loaded as well.

 Similar functionality (to a supercolumn) can be achieved using a composite column.
It’s a regular column with subcolumns encoded in it. All the benefits of regular columns
such as sorting and range scans are available for composite columns.

 For the Policy table (or column family for Cassandra), you can represent the
structure without using supercolumn, as follows:

 {
 "Implementation_Database":
 {
 "Policy":
 {
 "PolicyId":
 {
 "PolicyStartDate": "column value",
 "PolicyNotes": "column value",
 "PolicyEndDate": "column value",
 "PolicyStatus": "column value",
 "PolicyOwnerSSNFEIN": "column value",
 "PolicyOwnerName": "column value",
 "PolicyOwnerAddress": "column value",
 "PolicyOwnerType": "column value",
 "PolicyOwnerPhoneNumber": "column value"
 }}}}

 A sample record would look like this:

 {
 "9876543210":
 {"PolicyStartDate": "2015-06-10","PolicyNotes": "Credit
needs to be checked","PolicyEndDate": "2016-06-10","PolicyStatus":
"Active","PolicyOwnerSSNFEIN": "234-56-7890","PolicyOwnerName": "Joe
Shmoe","PolicyOwnerAddress": "1 Oak st., Lisle, IL 60532","PolicyOwnerType":
"Individual","PolicyOwnerPhoneNumber": "6309861230"}}

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

142

 To get back to the implementation of transition model, you can represent the
denormalized claim related entities (Claim , Claim_resubmission , Claim_line_item)
using the JSON notation (as an exercise).

 The next task is migrating relational data to Cassandra. You need to design ETL
for that purpose. This can be achieved by developing scripts using a scripting language
of your choice—Java, Python, .net, and Ruby are some of the options. You can also use
relational database–specific languages like Transact-SQL (or PL/SQL). Flat files following
the JSON format (that matches your table or Cassandra column family structure) can be
generated and loaded into the target table (column family).

 As a working example, the following Transact-SQL code generates a JSON-
formatted data file for Policy table (assumed to be) in a MS SQL Server database.
The code is generic, and you can substitute any SQL Server table name (and primary
key column name) and execute it in a database to generate a JSON data file. The
only assumption is that first column is primary key; but you can easily modify it for a
composite key:

 -- declare variables
 declare @i smallint, @rowkey varchar(500), @ccount smallint, @final_str
varchar(2000)
 declare @cname varchar(500), @rec_str varchar(1000), @dyn_str nvarchar(500)
 declare @res nvarchar(100), @parm nvarchar(200)

 -- initialize them
 SET @Parm = N'@res nvarchar(500) OUTPUT';
 set @i = 2
 select @cname = ' '
 select @rec_str = ''

 -- take a count of number of columns table has
 select @ccount=count(*) from information_schema.COLUMNS where TABLE_NAME =
'Policy'

 -- generate string for rowkey
 select rowkey='{"' + convert(varchar(10),PolicyId) + '":{' from policy

 -- generate string for rest of the columns
 While @i <= @ccount
 BEGIN

 -- select each column in order
 select @cname=COLUMN_NAME from information_schema.COLUMNS where TABLE_NAME =
'Policy' and ORDINAL_POSITION = @i

 -- generate string to execute and get column value
 select @dyn_str = 'select @res=' + @cname + ' from Policy'
 EXEC sp_executesql @dyn_str, @parm, @res=@res OUTPUT;

 set @i = @i+1

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

143

 -- concatenate the column name and value
 select @rec_str = @rec_str + '"' + @cname + '": "' + convert(varchar(100),@
res) + '",'

 END

 -- Output JSON for the data record after removing the trailing comma and
adding curly brackets

 select substring(@rec_str,1,(LEN(@rec_str)-1)) + '}}'

 You can generate data files similarly for all other relational tables and load the
resulting JSON files in appropriate Cassandra column families. If you review the task list
at the beginning of this section, you will realize that tasks 1–3 are now complete and you
are ready for the final task: redesign of queries accessing your new data source. Cassandra
offers a rich query language called CQL that can help you write complex queries for your
application, and you can refer to the command reference at https://cassandra.apache.
org/doc/cql3/CQL.html#CassandraQueryLanguageCQLv3.2.0 .

 Next, I discuss the same implementation using a document-oriented database as a
target and use MongoDB as an example (of a document-oriented database).

 Document Database as a NoSQL Target
 I discuss document databases in a previous section while discussing how to select
a NoSQL technology based on your data and application needs. That was more of a
generic introduction. In this section, you will know more about document databases
(and MongoDB specifically) and how to implement a transition model (from relational
database) using them.

 Let me start with the terminology differences between relational and MongoDB.
A database in MongoDB has collections similar to tables within RDBMS database. A
 collection holds data as documents , which are equivalent of data rows. Just as a a data
row stores data within its set of columns, a document stores data within fields and uses
a JSON-like structure (called BSON) for storage. Here’s how the Policy record (from the
example in the previous section) will be stored in MongoDB:

 {
 "_id": ObjectId("5244bb32d8124270060001b4"),
 "PolicyStartDate": "2015-06-10","PolicyNotes": "Credit needs
to be checked","PolicyEndDate": "2016-06-10","PolicyStatus":
"Active","PolicyOwnerSSNFEIN": "234-56-7890","PolicyOwnerName": "Joe
Shmoe","PolicyOwnerAddress": "1 Oak st., Lisle, IL 60532","PolicyOwnerType":
"Individual","PolicyOwnerPhoneNumber": "6309861230"}

 If you compare the storage format with Cassandra, you will notice that the only difference
is the first "_id" field added by MongoDB that replaces the PolicyId key column in the
relational Policy table. Each document in a MongoDB collection has this unique auto-
generated 12-byte _id field, which serves as a primary key or rowkey for a document. Table 6-1
summarizes the term and concept differences between MongoDB and relational databases.

https://cassandra.apache.org/doc/cql3/CQL.html#CassandraQueryLanguageCQLv3.2.0
https://cassandra.apache.org/doc/cql3/CQL.html#CassandraQueryLanguageCQLv3.2.0

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

144

 For MongoDB, one interesting difference (compared to RDBMS) to note is that
different documents within a collection can have different schemas or structures.
Therefore, it is possible for one document to have nine fields and the other document to
have ten fields. Fields can easily be added, removed, or modified without impacting read
or write access to the data. Data types of the fields may differ for instances as well. So, a
field can hold integer type data for one instance and may hold an array for the next.

 Considering these architecture concepts, I’ll move on to target model implementation
for MongoDB. Document databases (unlike columnar ones) don’t have columns,
supercolumns, or composite columns for storage. The format is simple with a first _id field
added as row key and rest of the fields following as key-value pairs separated by comma and
bound by curly brackets. Subsequently, you can represent the denormalized Policy table
(from earlier sections) within MongoDB, as shown in Figure 6-9 .

 I have already shown how the corresponding document will look like. You can
represent the denormalized claim related entities (Claim , Claim_resubmission , Claim_
line_item) using the BSON notation (as an exercise).

 The next task is migrating relational data to MongoDB, and you need to design ETL
for that purpose. This can be achieved by developing scripts using a scripting language
of your choice (for example, Java, Python, .net, or Ruby), but you can also modify and
reuse the Transact-SQL script developed in the last section for loading data within the
Cassandra column family structure.

 Figure 6-9. Policy table represented as MongoDB collection

 Table 6-1. Term and Concept Differences Between MongoDB and Relational Databases

 Relational Term MongoDB Term

 Table Collection

 Row Document

 Column Field

 Relationships Linked or embedded documents

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

145

 As a working example, the following Transact-SQL code generates a BSON-formatted
data file for Policy table (assumed to be) in a MS SQL Server database. The code is
generic and you can substitute any SQL Server table name (and primary key column
name) and execute it in a database to generate a BSON data file. The only assumption is
that first column (PolicyId) is primary key:

 -- declare variables
 declare @i smallint, @rowkey varchar(500), @ccount smallint, @final_str
varchar(2000)
 declare @cname varchar(500), @rec_str varchar(1000), @dyn_str nvarchar(500)
 declare @res nvarchar(100), @parm nvarchar(200)

 -- initialize them
 SET @Parm = N'@res nvarchar(500) OUTPUT';
 set @i = 2
 select @cname = ' '
 select @rec_str = ''

 -- take a count of number of columns table has
 select @ccount=count(*) from information_schema.COLUMNS where TABLE_NAME =
'Policy'

 -- Since MongoDB will generate string for '_id' column or rowkey
 select rowkey='{'

 -- generate string for rest of the columns
 While @i <= @ccount
 BEGIN

 -- select each column in order
 select @cname=COLUMN_NAME from information_schema.COLUMNS where TABLE_NAME =
'Policy' and ORDINAL_POSITION = @i

 -- generate string to execute and get column value
 select @dyn_str = 'select @res=' + @cname + ' from Policy'

 EXEC sp_executesql @dyn_str, @parm, @res=@res OUTPUT;

 set @i = @i+1

 -- concatenate the column name and value
 select @rec_str = @rec_str + '"' + @cname + '": "' + convert(varchar(100),@
res) + '",'

 END

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

146

 -- Output BSON for the data record after removing the trailing comma and
adding curly bracket

 select substring(@rec_str,1,(LEN(@rec_str)-1)) + '}'

 You can generate data files similarly for all other relational tables and load the
resulting BSON files in appropriate MongoDB collections. Reviewing the task list at the
beginning of this section will make you realize that tasks 1–3 are now complete, and
you are ready for the final task—redesign of queries accessing your new data source.
MongoDB offers a query language that can help you write complex queries for your
application and you can refer to the command reference at https://docs.mongodb.org/
manual/reference/command/ .

 Please note that the MongoDB query language syntax is quite different from SQL
syntax. Here’s a quick comparison of these syntaxes through a query:

 SELECT PolicyStartDate, PolicyEndDate FROM Policy where PolicyOwnerName
='Joe Shmoe' AND PolicyStatus = 'Active'

 MongoDB:

 db.posts.find({user_
name:"mark",PolicyStatus:"Active"},{PolicyStartDate:1,PolicyEndDate:1})

 Best Practices for NoSQL Re-Architecture
 Relational modeling often starts with business requirements and capturing of data for
business processes. In contrast, NoSQL data modeling is driven by application-specific access
patterns or frequently executed queries that need to be supported. That’s why NoSQL data
modeling requires a better understanding of data structures and business-related processing
than relational database modeling does. Here are some of the best practices that need to be
followed at the design stage (while re-architecting relational data to NoSQL):

• Denormalization: Denormalization is duplication of same
data into multiple documents (or tables) for simplifying query
processing or to fit the user data into a specific target data model.
Denormalization helps in reducing the joins and therefore
processing complexity for a query processor in distributed
systems (which NoSQL environments often are).

• Schema fluidity: Allows for designing entities with complex internal
structures (nesting) and changing the entity structures as needed.
This helps in minimization of one-to-many relationships (through
nested entities) and thereby reduction in joins. This can also help in
modeling of heterogeneous business entities using one collection of
documents or one table. Caution should be exerted for update flows
(for these entities), since embedding along with denormalization can
impact updates adversely in terms of performance and consistency.

https://docs.mongodb.org/manual/reference/command/
https://docs.mongodb.org/manual/reference/command/

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

147

• Application joins: Joins are rarely supported by NoSQL databases
and therefore are often eliminated at the design stage with
denormalization and aggregates (embedding nested entities).
However, for many-to-many relationships, linked entities are
used (instead of embedded entities) and require joins. Also, when
entity internals (for nested entities) are frequently modified, it
is better to use linked entities rather than embedding them and
then join the records at query time (as opposed to updating an
embedded value).

• Atomic aggregation: As discussed in previous sections, NoSQL
solutions don’t provide ACID compliance for transactions, but
support eventual consistency or in some cases application-
managed MVCC. The aggregates technique for NoSQL data
modelling can provide some of the ACID properties

 For relational databases, since normalized data is located in
multiple entities, it requires multi-place updates. For NoSQL,
by using aggregates, denormalized data is held as a single
business entity (or one document, row, or key-value pair) and
can be updated atomically. This doesn’t provide a complete
transactional solution, but if the target NoSQL database
provides certain guaranties of atomicity (or locks), then
atomicity can be implemented up to a degree.

• Dimensionality reduction: This is a technique that allows
mapping of multidimensional data to a non-multidimensional
model. Dimensionality reduction involves converting data of high
dimensionality into data of lower dimensionality, so that each
of the lower dimensions conveys much more information. Also,
dimensions that can be derived from other dimensions can be
eliminated. The final version of mapped non-multidimensional
data is more compact and provides all the information contained
in the initial multidimensional model.

 As a final thought, denormalization is easier to perform for the relational data
(as demonstrated in earlier section) as compared to NoSQL data, and therefore it is
beneficial to denormalize the model before implementing it for a NoSQL target.

 As a best practice, careful evaluation of an appropriate NoSQL solution needs to
be conducted based in your data as well as application processing needs and the prior
section “Selecting an Appropriate NoSQL Database” discusses the process in detail.

 After the schema design stage is complete and schema is represented using the
selected NoSQL solution, operational tuning also needs to be performed for the target
NoSQL database. For example, secondary indexes need to be added for performance
enhancement. Any additional performance tuning (specific to the target database) needs
to be performed as well.

 Last, there are best practices specific to NoSQL solutions (that are well documented
by their vendors) that should be followed after implementing the general best practices
described in this section.

CHAPTER 6 ■ RE-ARCHITECTING FOR NOSQL: DESIGN PRINCIPLES, MODELS AND BEST PRACTICES

148

 Summary
 NoSQL is a new player in the enterprise database area, and there are few people who have
actual hands-on experience in redesigning or re-architecting relational applications to get
optimal performance using the new platform and tools. The situation is also complicated
by the fact that there are few tools available that allow designing for NoSQL databases.
For example, you are familiar with Erwin or ER/Studio or Enterprise Architect. Can any
of these tools assist you in designing your NoSQL solution or prepare a logical/physical
model? The answer is no. Also, think about a scenario where your organization is using
multiple NoSQL databases and needs a common interface to manage them. Is such an
interface available? The answer is no.

 What happens in the real world is that NoSQL design is done using relational
design tools. Of course, there’s nothing wrong with implementing denormalization or
aggregation using relational database modeling tools. It works. Unfortunately, the same
concept can’t be used for managing NoSQL databases, and you are limited to using
multiple interfaces if your organization employs them for various applications.

 In this chapter, I have tried to provide a detailed overview of different types of
NoSQL technologies and applications they can be used for. I have also discussed the
generic criteria you need to consider while selecting a NoSQL technology that suits your
organizational needs the best. This of course needs to be matched by a lot of reserch and
consolidation effort in order to make the right decision. The whole process may seem a
bit complicated, but that’s how all technology transitions are. I have provided examples to
help understand the concepts and hopefully they do help.

 The re-architecture process for your environment may have extra steps (or fewer
ones), but understanding the concepts (and steps) behind this redesign process will
certainly help you transition successfully. Finally, it will help you to review the section
“Deciding to Integrate, Re-Architect, or Transition” from Chapter 1 before you decide that
re-architecting is the best solution for you.

http://dx.doi.org/10.1007/978-1-4842-1287-5_1

 PART III

 Integrating Relational
Database Management
Systems with the Hadoop
Distributed File System

151

 CHAPTER 7

 Data Lake Integration
Design Principles

 I was talking with a friend at Gartner and he said that (as per the current stats), most
of the data lake implementations are failures. I asked what most meant and he replied,
“Over 95 percent.” I was surprised and didn’t believe him. I also joked that probably
Gartner should publish a paper on causes of failures for data lake implementations,
classify them, and provide percentages for each of the causes. More seriously, a lot of data
lake implementations do fail or are abandoned for various reasons. In the Chicago area,
I know of at least two huge corporations that abandoned such an effort and went back to
their proprietary data warehouse platforms.

 What is a data lake and what’s the purpose of it? What are the benefits that it offers?
Do the benefits justify the investment? Most importantly, what are some of the big pitfalls
while implementing a data lake? In this chapter, I discuss some of the factors that you
need to consider to make your data lake implementation a success.

 A data lake is simply a massive but easily accessible and scalable data repository
for storing uncategorized pools of data “as is.” James Dixon, CTO of Pentaho, is credited
with introducing the term data lake to promote a new way of organizing the Big Data
that comes in from the wide range of connected devices such as sensors, smart devices,
web applications, and all other devices connected to the Internet. Due to the volume and
nature of data (unstructured or semi-structured), it would be impossible to process it using
traditional business intelligence techniques (such as a data warehouses) and analyze it using
traditional data-analysis techniques. A data lake holds the raw input data (that it receives)
without any transformations and that enables the users to transform and process it in
multiple ways in the future. Because the data is held in a single repository without any silos,
it is easier to access, combine, and analyze. In addition, the raw data doesn’t have schema
attached to it. Schema or metadata is maintained separately and can be applied as needed.

 So, with all the schema and accessibility restrictions removed, you can access and
process any data within your corporate data lake, right? Wrong! A data lake does have
security implemented just like any other application and also has mechanisms for data
cleansing, profiling, metadata management, and governance. The data persisted to a data
lake may be immediately or potentially of interest to an organization and therefore data-
cleansing steps are implemented before storing it. Systems and processes are put in place
to follow the defined principles of quality which may include de-duplication, merging/
purging, harmonizing, parsing, standardizing, and more.

© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_7

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

152

 The flexibility of accessing data without silos and analyzing it without having to place
it into a rigid data warehouse structure is the real strength of a data lake. It is natural to
compare a data lake with an established way of storing large amount of historical data—a
data warehouse. I discuss how a data lake differs conceptually and structurally from a
data warehouse in the next section.

 Data Lake vs. Data Warehouse
 Until a few years back, there was only a single option for storing, organizing, and
analyzing large volumes of historical data: a data warehouse. The only sub-option was
whether you endorsed the all-encompassing enterprise wide data warehouse (EDW)
approach suggested by Bill Inmon or preferred the shorter, focused version of a data mart,
proposed by Ralph Kimball. As you may know, conventional data warehouses are set-
oriented. Set-oriented data processing is a strong point of SQL based relational databases.
Also, data within warehouses is intrinsically strongly typed.

 Now there is an additional option for holding (and analyzing) large volume of data:
a data lake. The real question is, can a data lake replace a data warehouse or a data
mart? Or can it only supplement? There is no clear answer to this question, and it largely
depends on your objective (behind building a lake or a warehouse), type of data, and
probable users. I cover the features, pros, and cons of both these approaches in detail.

 Data Warehouse
 In 1988, Barry Devlin and Paul Murphy from IBM published a paper called “An architecture
for a business and information system” that introduced concept of a data warehouse.
Bill Inmon published “Building the Data Warehouse” in 1992 that discussed design
and implementation of an enterprise wide data warehouse, and in 1996, Ralph Kimball
introduced dimensional modeling and data marts in his book The Data Warehouse Toolkit .

 So, data warehouses have been around for more than 25 years and are an established
methodology for data consolidation, organization, and processing. There have been
a number of modifications and enhancements for designing and implementing
warehouses. Also, there are a large number of tools available for implementing
warehouses. There are advanced structures such as cubes that can help enhance
performance for retrieval of analyzed and summarized data, by performing the necessary
calculations and aggregations in advance.

 A data warehouse reorganizes transactional data by “subject areas” or functional
divisions as opposed to storage in “normalized” data tables. Consolidating the measures
or “facts” required from a functional area, data is then organized in fact tables (that
contain all the facts or measures) and dimension tables that provide information about
the facts. The resulting schema is called a star schema, with a fact table at the center
surrounded by supporting dimensions. Sometimes, if the dimensional data has hierarchy,
the multiple levels of dimensional data are maintained resulting in a snowflake schema
instead of a star schema. A transactional database (for an application) may result in
multiple functional or subject areas and also may contain multiple fact tables depending
on the measures users are interested in. Figure 7-1 shows a simple star schema, and
Figure 7-2 shows a possible snowflake version of it.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

153

 Figure 7-1. Example of a star schema

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

154

 So, as you can observe for this simple sales management system, the fact table Sales
holds the measures of interest (here, TotalSales and NumItems) at the lowest possible
granularity (such as daily sales, weekly sales, or monthly sales) and dimension tables
provide details of the measures and also can be used as attributes to filter out data as
required. For example, total sales for February, total sales for a product or a customer for
February, and so on.

 The snowflake version of the schema has a couple of additional tables that specify
additional relationships of the dimensional tables. It is of course possible to denormalize
those dimension tables and get all the data within a single table, but that would reduce the
readability of the schema, and it would be harder to understand the way data is organized
for those dimensions. Besides, the dimensional tables are fairly small (compared to fact
tables) and therefore the joins to retrieve data from them wouldn’t be costly.

 Structures such as cubes perform aggregations in advance and store them at
various granularities (aggregates by time or by geographical region or demographics).
That way, any queries that need specific aggregated data can retrieve that data almost
instantaneously. Even if the data is not pre-aggregated, the star schema reduces joins and
helps perform the aggregations fairly quickly. Data warehouse implementations by major

 Figure 7-2. Example of a snowflake schema

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

155

vendors have a wide range of tools (such as indexing, caching, and so forth) to facilitate
retrieval and aggregations at lightning speed. These of course are the benefits of storing
your data in a warehouse.

 A big limitation of data warehouses is that they store data from various sources in a
specific static structure—fact table(s) and supporting dimensions. The defined measures
and dimensions drive the type of analysis that is possible on that data. This severely
restricts the possible insights that can be gained from your data and restricts the scope
(of possible output from your warehouse) to canned reports, pre-defined dashboards
(with limited user interaction), and at the most parameterized reporting capability. If the
users need any additional insights, they need to build ad hoc queries (again limited by
measures from the fact table) that may not perform well (especially for large datasets).

 For example, consider the already mentioned sales management system and assume
that you want to correlate sales of specific items with seasons or type of business your
customer has or size of your customer’s company. Because dimensions with any of the
required information don’t exist, it’s not possible to establish any of those correlations.
Moreover, a warehouse doesn’t exactly facilitate the process of correlating data or
discovering patterns in your data.

 Combining data from multiple warehouses (mapping to various applications)
would involve huge joins between multiple fact tables and may not be practical. Also,
since warehouses don’t have distributed architecture, the data retrieval may be further
impeded by lack of parallelism and speed of disk drives used by the involved warehouses.
Finally, the stringent structure of a warehouse may not be able to accommodate
unstructured or semi-structured data, unless the data is severely transformed to fit into it.

 Here are the pros of a warehouse:

• Data is organized in static structures that facilitate speedy
retrieval of data for predefined processing.

• Data retrieval can be further facilitated by vendor BI (business
intelligence) features such as cubes, indexing, or caching mechanisms.

• It’s possible to perform complex aggregations or calculations in
advance and store the results for fast response.

 And now the cons:

• A data warehouse stores data in a specific static structure that
drives the type of possible analysis. This severely restricts the
possible insights that can be gained from your data.

• Combining data from multiple warehouses (mapping to various
applications) would be almost impossible due to:

• Huge joins between multiple fact tables

• Lack of distributed architecture (and subsequently parallelism)

• Heavy dependence on the speed of disk drives used (due to
lack of other supporting mechanisms like parallelism)

• The static structure of a warehouse may not be able to
accommodate unstructured or semi-structured data unless the
data is severely transformed to fit into it.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

156

 Data Lake
 A data lake can remedy the issues discussed in the preceding section. I will review the
architectural differences that a data lake has (compared to a data warehouse).

 Conceptually, data from the various applications (that a corporation has) is ingested
into a lake without any transformations applied to it and is stored “as-is.” However,
practically, such data is not very useful and therefore some data cleansing (such as
removing duplicates or blanks, conforming to date formats, and so on) is applied to this
data along with metadata generation and cataloguing. HDFS is a popular destination for
this data due to the low hardware cost, redundancy, and distributed architecture that
allows parallelism for data access (read or write) and also allows expansion “on-the-
fly” or without making your system unavailable to users. Additionally, HDFS supports
MapReduce or YARN for distributed processing, further enhancing the performance.

 In order to provide flexibility for your queries, a data lake maintains the metadata
separately. So you are not limited by static structures while querying your data or
extracting your own insights. This is sometimes called schema on read , since a schema
can be specified for your data while reading it (as opposed to first defining the static
schema and then inserting data into it).

 Because data is not accumulated in huge fact tables, joins may not be as expensive
or slow for data held within a lake. Besides, there are no silos created by individual
applications, and data access is only limited by a user’s role within an organization (and
authorization to access certain data).

 Finally, an HDFS-based data lake can easily accommodate unstructured or semi-
structured data held in JSON, Parquet, ORC, or any other file formats. For HDFS, it doesn’t
make any difference what format is used for storing data. Data blocks are distributed over
available DataNodes and replicated for redundancy. So, combining unstructured or semi-
structured data with structured data is quite possible, although transforming and linking
such data may need complex transformations and extensive programming effort.

 If a data lake offers all these advantages over a data warehouse, why aren’t all
warehouses migrated to lakes? Well, data lakes can’t be used for every data consolidation
and analysis scenario. Extensive programming is required to simulate simple features that
are available by default within warehouses. While working with relational databases or
vendor-supported database and warehouse systems, you don’t need to write programs
or functions for every small feature that you need. For example, databases have triggers
for referential integrity. Also, you can just define primary or foreign keys and be sure that
your data is clean and well referenced. If you need to simulate these features or referential
integrity within your data lake, you will need complex logic (supplemented by extensive
programming) for any data modifications.

 Lastly, HDFS doesn’t perform well for small volumes or a large number of small
files. So, if your data volume is smaller than a couple of terabytes and/or contains a large
number of small data files, then overhead of distributed processing (for MapReduce or
YARN) impacts performance badly, and the result is poorly performing system. In such
cases, it is not recommended to use HDFS or a HDFS based data lake.

 To summarize, here are the pros of data lake:

• Not restricted by a static schema. Can use a “schema on read.”

• Data is not accumulated in huge fact tables; joins may not be as
expensive or slow for data held within a lake.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

157

• A data lake can easily accommodate unstructured or semi-
structured data held in JSON, Parquet, ORC, or any other file
formats.

• HDFS-based data lake offers advantages such as low hardware
cost, redundancy, and distributed architecture that allows
parallelism for data access (read or write).

• Additional space can be allocated to a data lake on-the-fly or
without making system unavailable to the users. Also, HDFS
supports MapReduce or YARN for distributed processing, further
enhancing the performance.

 And now for the cons:

• Data lakes don’t perform well for volumes less than a couple of
terabytes or for a large number of small data files. This is due to
the inherent architectural issues of HDFS for small data volumes
or large number of small files.

• No way to implement referential integrity or data inter-
relationships within a data lake.

• Most of the features available within relational databases or data
warehouses need to be implemented programmatically.

• Advanced structures such as cubes or caching mechanisms are
not available for performance enhancement.

 To summarize, you need to use a data lake or a data warehouse based on your
objective (type of analysis you need), data volume, and type of data (structured/semi-
structured/unstructured).

 Concept of a Data Lake
 The world around us is changing constantly and so are the data sources. Around six to eight
years back, the only sources of data were user input for applications (that a company used)
or data/logs generated programmatically. All these sources generated structured data that
followed specific rules, and data management was simple. A data warehouse was the only
option for consolidating, managing, and analyzing large amount of structured data.

 Today, that’s not true anymore. The extensive use of social media, professional
networks, and other web applications generate massive amounts of semi-structured
and unstructured data that’s very beneficial to analyze. Also, sensors for a large variety
of machines generate huge quantities of data that must be analyzed. Conventional data
warehouses are not capable of performing this task. Subsequently, you need to look for
new options or platforms that can assist in processing this data—and fast.

 Data lakes are categorized based on their intended purpose:

 1. Data reservoirs : Reservoirs are simply a governed
accumulation of data in HDFS that’s cleansed and subjected
to profiling rules.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

158

 2. Exploratory lakes : Exploratory lakes are a collection of
application data ingested in HDFS with nominal cleansing
and with transformations or formating applied or merging
(from multiple sources) done as needed.

 3. Analytical lakes : Analytical lakes ingest data within HDFS and
feed it to their analytical models for advanced analysis such as
predictive analysis or prescriptive analysis. This data (or a part
of it) can also act as a staging area for a data mart or enterprise
data warehouse (EDW).

 Let me now discuss each of these types in detail, with examples.

 Data Reservoirs
 Many times, the data gathered by an organization does not need to be used immediately.
It may simply be held for future usage. A good example is log data from various
applications or auditing. That doesn’t need to be used immediately, but if and when
there is a performance problem or a security breach, you need those log files. Depending
on the number of applications your organization has or criticality of those applications,
you may have a large number of files that possibly need to be sorted, correlated, and
processed for information. HDFS offers a good storage platform for this type of data. Note
that there is no need to attach a schema to this data. Depending on the need, a subset can
be extracted quickly for troubleshooting.

 Also, there are situations where large amount of historical data is accumulated over
time in a data lake but no analysis is defined, since it is not currently needed. All these
situations result in a data reservoir, which is really a governed data lake with security, data
cleansing, and data profiling defined, but without any analytics. Another common role for
a data reservoir may be to act as a data distribution broker (between different systems that
it interfaces with). Because the latest values from original data sources are continuously
entering the data reservoir, a selected subset of those values can be distributed to other
systems. These subsets of values can also be accessed (as required) through real-time
interfaces, providing the latest set of data as needed.

 Data from multiple applications is held within a data reservoir without silos and
is available to users depending on their role within an organization. In addition, data
governance as well as indexing (or cataloging for fast retrieval) is performed on the data.
Data here is organized and ready for analysis, but no analysis is defined. A reservoir
may consist of data from isolated data marts (data pre-analyzed in the data mart), but
no analysis may have been defined on that data in the reservoir. A data reservoir may
contain data from unstructured or semi-structured sources that is indexed or tagged as
applicable.

 After it is established that data from a particular data source is required to be a part
of the data reservoir, it is ingested into the data reservoir. The ingestion process usually
includes an initial copy of data into one or more of the data reservoir repositories,
followed by defining a process of performing incremental updates (to the data) as it
changes in the original sources.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

159

 Finally, even though the data reservoir appears to be a collection of data sources, it
really needs to have a complex set of components for actively governing, protecting, and
managing the data. The internals of the data reservoir consist of a number of subsystems,
covered in the following subsections.

 Data Reservoir Repositories
 Data repositories are at the core of a data reservoir. Data within these repositories is
shared and used by all the users within an organization who functionally need to have
access to it. Each of these repositories corresponds to an application or functionality
within an organization. Data within these repositories is maintained and refreshed
per the organizational policy. For example, if the functional need for an application
may necessitate maintaining data for the last five years for analysis, the corresponding
data reservoir repository needs to be configured to hold data for the last five years and
overwrite any older data.

 Each of the repositories may have different archival and refresh rules, depending
on the application it corresponds to. The administrator for a data reservoir needs to
understand and configure the repositories as required. Each repository either offers
unique information or provides a unique perspective for a dataset. If a new application
is added (for an organization), it may result in a new data repository being added to your
reservoir, and removal of an application may similarly prompt removal of a repository
from your data reservoir. Since some of the applications may have data duplication, that
may carry over to the repositories and subsequently, the same kind of data may be shared
by multiple repositories.

 Data Reservoir Services
 Data reservoir services manage the data stored within various repositories. This involves
refreshing the data (within repositories) as per business rules, keeping shared data (within
multiple repositories) synchronized, providing feeds of transformed data as required,
removing obsolete data as necessary, and providing an interface to the user community to
access data within a repository. An index or a catalog is used to help users locate the data
they need as well as verify that it is exactly what they need for their analysis.

 Another important function performed by these services is access control. These
services control and provide user access for the data reservoir repositories based on
preconfigured roles. Sometimes authentication and any granular permissions that are
required authorization, as well as masking (of personally identifiable information, or PII),
are managed by specialized governance services (covered in the next section).

 Governance Engine
 Sometimes the governance tasks are performed by specialist middleware. These
tasks include access control, auditing, monitoring, data cleansing and profiling, data
transformations, and workflow management. There are separate services performing
these tasks, and are all part of the middleware. Some organizations prefer to use separate
solutions to perform these tasks.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

160

 Security requirements can originate from various sources. The following are the
types of key security threats you need to guard against:

• Deliberate (theft, denial of service, corruption, or removal of
information)

• Accidental

• Failures

 In addition, legal, statutory, regulatory, and contractual requirements (as well as
business requirements and objectives) drive your security configuration. Authentication
is the first step in establishing effective security.

 Authentication

 Kerberos is one of the most popular options used with Hadoop for authentication.
Developed by MIT, Kerberos has been around since the 1980s. The current version was
designed in 1993 and is freely available as an open source download. Kerberos is most
commonly used for securing Hadoop clusters and providing secure user authentication.
Kerberos offers a single sign-on approach. A client needs to provide a password only once
per session and then can transparently access all the authorized services. Kerberos also is
compatible with many widely used systems, such as Microsoft’s Active Directory.

 A client requests access to a Kerberos-enabled service using Kerberos client
libraries. The Kerberos client contacts the Kerberos Distribution Center (KDC—the
central Kerberos server that hosts the credential database) and requests access. If the
provided credentials (login/password) are valid, KDC provides requested access. KDC
uses an internal database for storing credentials, along with two main components,
the authentication server and ticket granting server. (Check out Chapter 4 in my book
 Practical Hadoop Security (Apress, 2014). See www.apress.com/9781430265443 .

 Most Hadoop vendors provide Kerberos with their Hadoop distributions, along with
detailed instructions for configuring it. You can also refer to the Kerberos installation
guide at http://web.mit.edu/kerberos/krb5-1.6/krb5-1.6/doc/krb5-install.html
for installation and configuration.

 Authorization

 The users and groups set up through Kerberos can help you manage permissions at the
file level for Hadoop. However, if you need more granular permissions or need to create
roles that group permissions (for ease of use and quickly assigning a set of permissions
for group of files), you need to use tools for authorization control.

 Popular open source tools include HDFS ACLs and Apache Sentry. Of course, most
Hadoop vendors provide their own tools for authorization. For example, Hortonworks
provides its versions of Apache Ranger and Apache Knox (both developed by
Hortonworks and committed to Apache foundation). Cloudera provides its version of
Apache Sentry (developed by Cloudera and committed to Apache foundation).

http://dx.doi.org/10.1007/978-1-4842-1287-5_4
http://www.apress.com/9781430265443
http://web.mit.edu/kerberos/krb5-1.6/krb5-1.6/doc/krb5-install.html

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

161

 As per the HDFS permission model, for any file access request, HDFS enforces
permissions for the most specific user class applicable. For example, if the requester is
a file owner, then owner class permissions are checked. If the requester is a member of
group owning the file, then group class permissions are checked. If the requester is not
a file owner or member of the file-owner’s group, then “others” class permissions are
checked. This permission model works well for most situations, but not all.

 For instance, if the sales team, the manager of the IT department, and the finance
controller are responsible for managing the sale prices for a sales management system
and need write permission to the Purchase_price file, the existing groups (for access
control) would not be sufficient to implement these security requirements, because all
these personnel belong to different departments (and possibly HDFS groups). You could
create a new owner group called Price_modifiers , but keeping the group’s membership
up-to-date could be problematic as personnel changes, resulting in wrong or inadequate
permissions due to manual errors or oversights.

 Used for restricting access to data, ACLs provide a very good alternative in such
situations where your permission needs are complex and specific. Because HDFS
uses the same (POSIX-based) permission model as Linux, HDFS ACLs are modeled
after POSIX ACLs that have been used by UNIX and Linux for a long time. ACLs are
available in Apache Hadoop 2.4.0 as well as all the other major vendor distributions.
You can use the HDFS ACLs to define file permissions for specific users or groups in
addition to the file’s owner and group. ACL usage for a file does result in additional
memory usage for NameNode, however, so your best practice is to reserve ACLs for
exceptional circumstances and use individual and group ownerships for regular security
implementation.

 Refer to Chapter 5 in my book Practical Hadoop Security (Apress, 2014). See
 www.apress.com/9781430265443 for details on how HDFS ACLs work and for detailed
examples for setup and use.

 PII Masking

 In addition to authentication and authorization, PII masking is mandated by compliance
regulations for financial, insurance, medical, and a few other industries. Given the
volume and complexity of the data, it is best not to attempt masking manually. If data
within your organization is governed by any federal regulations, you may want to choose
a solution from the large number of priced solutions available that can discover and mask
sensitive PII data for your dataset. If your data reservoir contains any PII data, it is a good
idea to evaluate a solution that meets the needs of your environment and deploy it as one
of the services for data governance.

 The way these masking solutions work is that they encrypt or scramble the sensitive
data, and only authorized users (who have the decrypting or unscrambling key) can view
it. There are options to maintain these keys at the session level or transaction level as
need be. The client interfaces can also use a certificate for decrypting—to avoid entering
a key every time there’s a need to access the encrypted data.

http://dx.doi.org/10.1007/978-1-4842-1287-5_5
http://www.apress.com/9781430265443

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

162

 Encryption

 Encryption of sensitive data and restricting access to it are important functions of data
security services. Data masking supplements encryption, but it doesn’t eliminate the
need for it. If data needs to be encrypted, there are two types of encryption that need to
be considered:

• Encryption at rest : Involves encrypting data that’s stored on a disk
drive (or multiple disk drives)

• Encryption in transit : Involves encrypting data in transit (that
is, while data is communicated between a server and a client or
between different components of a system)

 Encryption at Rest
 A data reservoir is implemented using a HDFS cluster. For a HDFS cluster, data at rest
is the data distributed to all the DataNodes. If your data is sensitive, or if encryption is
necessary for compliance with legal regulations like the insurance industry’s HIPAA or
the financial industry’s SOX, you need to use this type of encryption.

 Although no Hadoop distribution currently provides encryption at rest, major
vendors such as Cloudera and Hortonworks offer solutions developed by third-party
vendors. For example, Cloudera uses zNcrypt (earlier from Gazzang but now acquired by
Cloudera) to provide encryption at rest for files and data blocks. Amazon Web Services
(AWS) offers encryption at rest with its Elastic MapReduce web service and S3 storage. All
these solutions are proprietary or limit you to a particular distribution of Hadoop.

 For an open source solution to encrypt Hadoop data at rest, you can use the
functionality provided by Project Rhino. In 2013, Intel started an open source project to
improve the security capabilities of Hadoop and the Hadoop ecosystem by contributing
code to Apache. This code is not yet implemented in the Apache Foundation’s Hadoop
distribution, but it contains functionality that includes distributed key management and
the capability to do encryption at rest.

 Specifically, the Intel distribution used cryptography codecs to implement
encryption and offered file-level encryption that could be used with Hive or HBase. It
used symmetric as well as asymmetric keys in conjunction with Java keystores. You can
refer to the following JIRA articles for Apache foundation:

 Hadoop HDFS/HDFS-6134 (Transparent data at rest
encryption) : Because of privacy and security regulations
for many industries, sensitive data at rest must be in
encrypted form. For example, the healthcare industry
(HIPAA regulations), the card payment industry (PCI DSS
regulations), and the US government (FISMA regulations).

 This JIRA aims to provide a mechanism to encrypt HDFS
data at rest that can be used transparently by any application
accessing HDFS via the Hadoop Filesystem Java API, Hadoop
libhdfs C library, or the WebHDFS REST API. The resulting
implementation should be able to be used in compliance with
different regulation requirements.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

163

 Hadoop Common/HADOOP-10150 (Hadoop cryptographic
file system) : There is an increasing need for securing
data when Hadoop customers use various upper layer
applications, such as MapReduce, Hive, Pig, HBase, and so on.

 HADOOP CFS (HADOOP Cryptographic File System) is used
to secure data, based on the HADOOP “FilterFileSystem”
decorating DFS or other file systems, and transparent to upper
layer applications. It’s configurable, scalable, and fast.

 Encryption in Transit
 It is very important to secure inter-process communication for Hadoop. Just using an
authentication mechanism (like Kerberos) is not enough. You also have to secure all the
means of communication Hadoop uses to transfer data between its daemons as well as
communication between clients and the Hadoop cluster. You can achieve this by having
the right communication protocols encrypted.

 Inter-node communication in Hadoop uses the remote procedure call (RPC),
TCP/IP, and HTTP protocols. Specifically, RPC is used for communication between
NameNode, JobTracker, DataNodes, and Hadoop clients. Also, the actual reading and
writing of file data between clients and DataNodes uses the TCP/IP protocol, which is not
secured by default, leaving the communication open to attacks. Lastly, the HTTP protocol
is used for communication by web consoles, for communication between NameNode/
Secondary NameNode, and also for MapReduce shuffle data transfers. This HTTP
communication is also open to attacks unless secured.

 To encrypt TCP/IP communication, for example, an SASL wrapper is required on top
of the Hadoop data transfer protocol to ensure secured data transfer between the Hadoop
client and DataNode. The current version of Hadoop allows network encryption (in
conjunction with Kerberos) by setting explicit values in configuration files core-site.xml
and hdfs-site.xml . To secure inter-process communications between Hadoop daemons,
which use the RPC protocol, you need to use the SASL framework.

 See Chapter 4 in my book Practical Hadoop Security (Apress, 2014) and
 www.apress.com/9781430265443 for more on how encryption in transit can be configured
for your Hadoop cluster.

 Data Quality Services

 Data cleansing and profiling are the major components of Data Quality services.
Typically, the data cleansing process starts by performing statistical analysis on tables,
rows, and columns. Next step is categorizing and evaluating data against business rules.
Last step is validating data against patterns such as phone numbers, zip codes, or credit
card number formats.

 Data profiling results show where data quality is lacking, requiring data cleansing
services (for resolving the inconsistencies). I discuss both these components in detail.

http://dx.doi.org/10.1007/978-1-4842-1287-5_4
http://www.apress.com/9781430265443

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

164

 Data Cleansing
 Typically, data cleansing is performed in four stages:

• Mapping stage: A data source (to be cleansed) is mapped to
appropriate reference domain(s) from a repository (also called
knowledge base).

• Automated cleansing stage: Changes (based on the knowledge
base) are proposed for the data to be cleansed. Sometimes some
of these changes are made without manual interaction.

• Interactive cleansing stage: Data stewards can review the proposed
data changes and accept or reject them.

• Export stage: Lets you export the cleansed data with changes applied.

 Those stages work well for single domains, but what happens for a source composite
domain (a domain consisting of two or more single domains) that maps to a data field
that consists of multiple related terms? The multiple fields (for example, last name, first
name, and so on) can be mapped to individual domains in the composite domain that’s
used as a reference for data cleansing. Another approach is to have logic built in to the
mapping service that will resolve the multiple fields and map them serially with the
composite domain used as reference.

 Matching

 As part of the mapping process, you need to create matching rules as part of your
matching policy. You can create a matching policy with the following:

• Create a mapping process that identifies the data source and map
(single or composite) domains to columns

• Create a matching policy process that contains one or more
matching rules and test each of matching rules separately

• Create a matching results process that runs all the matching rules
together and, if satisfied, adds the policy to the knowledge base

 For the individual matching rules, you can specify whether you need a 100% match
with the reference value or if a partial match will qualify as well. You can have multiple
matching rules as part of a matching policy, but not multiple policies. Also, you can tweak
individual matching rules and add or remove them based on input data.

 For example, an organization decided to merge duplicate records for all their
customers when it discovered that its customers used different formats while specifying
their names (while buying from its retail website), and that resulted in the multiple
customer IDs assigned to the same customer. Here are the rules they set up for merging:

 1. Detect if name order is switched : Detect whether name orders
are switched for first and last names (such as matching “John
Dave” to “Dave John” for attributes first and last name.

 2. Match names and initials : Match initials with names (match
“M” with “Mark”) for attributes first name and middle names.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

165

 3. Match partial names : Match substrings for names (match
“Mitch” to “Mitchell” or “Beth” to “Elizabeth”) for attributes
first name and middle names.

 4. Match using phonetics : Match using Soundex or Double
Metaphone algorithm (match “Smith” to “Smyth” or “Jon” to
“John”) for attributes first, middle, and last names.

 5. Match compound names : Match compound names (match
“De Villiers” to “Devilliers” or “VanDamme” to “Van
Damme”) for attributes last names.

 6. Detect missing hyphen : Detect whether hyphens are missing
for attribute last name (match “Hillary Rodham Clinton” to
“Hillary Rodham-Clinton”).

 Data Profiling
 Data profiling is a process of analyzing data for a data source and displaying the statistics.
Profiling can be used to measure data quality and has two major goals: to facilitate the
data quality processes for supporting your choices and to assess how effective those
processes are. To summarize, data profiling performs the following types of tasks:

• Creation of statistical profile : Involves generating statistics
(such as counts, percentage of data) for blank field values, null
values, duplicates, unique data values, most and least frequently
occurring data values, and so on.

• Textual analysis : Involves developing profiles for text fields, which
include minimum/maximum/average length, repetitiveness of
data values

• Numeric analysis : Involves analysis of numeric fields and
calculation of arithmetic means, ranges, quartile distributions
(usually first and third quartile), standard deviation, and
variances

• Pattern-based analysis : Involves assessment of data for
conformance with commonly used patterns such as email
addresses, credit card numbers, postal codes, or specialized
patterns like SKU or serial numbers

 Data profiling provides the following benefits:

• Helps identify data quality issues and provides insight into the
quality of source data

• Assesses the effectiveness of data quality processing, data
cleansing, and matching

• Can generate notifications for significant statistics or events
that may require action; usually, condition that occurred and
recommended action (for remedying that condition) are notified

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

166

 To summarize, the discussed services are necessary to add and maintain quality
for your data. Figure 7-3 shows a graphical view of a proposed data reservoir with all the
necessary services.

 Here’s the sequence of operations generally performed on data ingested within a
data reservoir:

• Data load or ingestion (required)

• Data cleansing and profiling (required)

• Indexing or cataloguing (required)

• The description of the data source may include details like:

• Name of the data source (short and long description)

• Data type stored within the data source and details of its
classification

• Data structure (for structured data) and possible data
column information for semi-structured or unstructured
data sources

• Data location (in terms of its physical location and also the
electronic address)

Data Reservoir

Data Reservoir
Repositories

Shared Data
repositories

Derived Data
repositories

Data Management services Data Governance services

Data
Ingestion
services

Data
Indexing

and
Cataloguing

services

Data Security
services

(Authentication
Authorization

Masking
Encryption)

Data Quality
services

(Cleansing
Profiling

Matching)

External
Data
sources

Metadata
services

Metadata

Catalog / Index

Feeds for
advanced
Analytical
modeling

Ad hoc /
Real-time
Analytics

 Figure 7-3. Data reservoir with all necessary services

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

167

• This description of a data source can help someone looking for
data to discover and assess the appropriate data sources.

• Relationship discovery (optional) can help to create a better
understanding of the data

• Tagging (optional) can help add attributes to your data and
retrieve quickly based on them

• Data governance (including security configuration)

 Factors for a Successful Implementation
• A well-defined objective and design

• An extensive and well-defined governance process (including
security)

• Well-designed data repositories

 Exploratory Lakes
 Exploratory lakes can be built using a similar process to that of building a data reservoir,
with the main difference being lack of services for data management as well as data
governance. Also, the shared data repositories may need to transform or be reformatted
as a result of the data exploration activities, and data from multiple sources may need to
be combined. Exploratory lakes may have some basic data cleansing done (for example,
duplicate or blank removal), but data profiling, stringent access control, or metadata
extraction (or assignment) is not performed for exploratory lakes. The reason is that
exploration activities focus on patterns within your data and gaining insights rather than
getting your data perfect for consumption by warehouses or for visualizations. That’s why
you can’t use your data reservoir for exploratory activities and vice versa.

 Typically, organizations that employ specialized data scientists, business analysts, or
statisticians may have them perform custom analytical queries to gain new insights from
data stored in a data lake. These exploratory efforts may not involve IT and may be followed
by visualizations (presented to higher management) in order to verify the relevance and
utility of the analytics performed. Due to the way data is held in a data lake, it is possible to
perform quick iterations of these analytics to the satisfaction of decision makers.

 Generically, data exploration is a process of experimenting with and visualizing
your data to discover and understand the patterns and trends in that data. It may involve
reformatting your data or applying transformations or may also need you to combine
values from multiple data sources. That’s why it’s better to make a copy of your data
(only the parts you are exploring, since the total data in your lake may run into multiple
terabytes) while performing exploratory analytics and not modify your real data—
unless you (and your management) are sure that you will be implementing the changes
permanently.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

168

 A preferable method is to copy all the required repositories (required ones only!) to a
development or work area, perform data transformations for your explorations on those
repositories, and once you are sure what explorations are being implemented, apply
transformations (corresponding to those explorations only) to the data repositories in
your data lake.

 Sometimes data exploration may result in new analytics models, business rules,
or possibly derived repositories. The deployment of these changes may also result in
changes to the systems that interface with any of these repositories. So, you need to make
sure that the changes you make to your exploratory data lake are implemented for all the
related systems.

 Data Validation for Exploratory Analysis
 It is always a good idea to make sure that the data you are analyzing is valid. Here are
some steps you can perform prior to exploratory data analysis:

 1. Decide on questions of interest : Questions help in focusing
on knowledge or insights that you may seek from your data.
They also provide direction to the limitless possibilities your
explorations may head toward. You have to (of course) start
with the most important question: Do I have all the relevant
data to answer these questions? In particular, a pointed
question can help eliminate variables (or data) that are not
immediately relevant and may serve as a dimension-reduction
tool (a tool to reduce redundant information).

 For example, if your dataset is health insurance claim data,
then the question What’s the percentage of claims filed by
unmarried males? eliminates all the insured population that’s
not unmarried and male.

 2. Load necessary data : You need to load all the necessary
repositories in a work area and review the data. You may
need to perform data cleansing and profiling on that data
and transform/combine it as need indicates. Sometimes, if
your dataset is too large, you may want to copy a data sample
(or multiple samples) from it to save space and valuable
resources for analysis.

 3. Determine data structure : Next, you need to determine the
structure of your data. That is, identify the data types for data
fields (or columns) and also determine what information they
hold, within the data rows for each of the repositories that you
need to analyze. Unless you know what information each of
the data fields holds, you can’t possibly perform any analysis.
You may need to use the data catalog as well as metadata for
this purpose (as a starting point). As with any exploratory
analysis, you may modify or add metadata at the end of your
data explorations.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

169

 For example, the data row “Bhushan Lakhe~1 Oak
st.~Chicago~ IL~60605” in one of the repositories may not
mean anything unless accompanied by structure information
that tells you that “~” is a field delimiter (or separator) and the
fields are name , address line1 , city , state , and zip (in that
order).

 4. Perform basic inspection and statistical review : You might
want to start by making sure that your dataset looks complete
and if time-bound, contains the timestamps corresponding to
start and end date ranges. Next, you may want to check basic
statistics for any numerical fields such as mean, variance,
range, 1st and 3rd quartile values, or nulls. For large datasets,
these steps will be performed on the sample data set that you
have chosen.

 5. Validate with at least one external data source : You need to
make sure that the data you are analyzing is not corrupted
or incomplete or having any data type mismatch issues. A
good way to start is with record count. You then compare the
record count with the source system (where data was ingested
from). To eliminate data type mismatch possibilities, visual
inspection is a good start. As a next step, you may want to
compute descriptive statistics such as mean or variances and
compare with the source system.

 Once the data you are trying to analyze is validated, you can start your exploratory
analysis.

 Exploratory Analysis Through Visualizations
 When you are exploring your data, using visualizations (such as plots) can quickly
provide key information about your data, such as basic properties (such as minimum,
maximum, or median), or help you find patterns in your data (values reduce with elapsed
time, data values follow a distribution such as Poisson or chi-square, and so forth). This
is important in the initial stages of data analysis, since it gives you a quick start and a
definite direction to follow for your data explorations. Ultimately, as you progress with
your analysis, visualizations can be helpful in determining possible modeling strategies.
Also, post-analysis, graphics can be used to cross-check an analysis if your results are
unexpected. Finally, visualization is a powerful tool to communicate your results or
findings to others (especially non-technical or management stakeholders).

 Exploratory graphs serve the purpose of quickly checking your data with the
objective of developing a good personal understanding of the data and deciding on
immediate goals for analyzing it. That’s why finer details like axis labels, legends, or
descriptive text are not necessary for exploratory graphs. However, multiple colors or plot
symbol sizes are necessary to use for conveying various dimensions of information.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

170

 R is a programming language popularly used for statistical computing and graphics
and is currently supported by the R Foundation for Statistical Computing at
 www.r-project.org . The R language is also used for developing statistical software
and performing data analysis. Major relational and NoSQL databases have now provided
support and interfaces with R. Microsoft is the latest to support R processing and
visualizations for MS SQL Server 2014.

 Written by Ross Ihaka and Robert Gentleman (at the University of Auckland, New
Zealand), R is enhanced and supported currently by the R Development Core Team.
R is a GNU project and is freely available under the GNU General Public License. Also,
precompiled binary versions are available for various operating systems. R uses a
command-line interface, but R Studio provides a graphical front end and is very popular.

 R provides simple and easy-to-use command-line functions for accessing data
stored in a relational or NoSQL database. The functions read.table() and read.csv()
can be used for reading tabular data in an R dataframe (in-memory data matrix or table).
Note that read.table() should be used for files with any character as delimiter, whereas
 read.csv() is meant to be used for comma-separated (CSV) files only (with comma as
a delimiter). The function readLines() can be used for reading lines of a text file and
processing them. So, for example, the following command line will load data from a file
 Mydata.dat that has first line as headers and ~ as a delimiter into a dataframe called MyDf
(> is R’s command line prompt):

 > MyDf <- read.table("Mydata.dat", header=T, sep="~");

 For large datasets, you can limit the rows using the nrows option. For example, this
command will only load the first 100 lines from file Mydata.dat :

 > MyDf <- read.table("Mydata.dat", header=T, sep="~", nrows = 100);

 R also provides an easy way to access data from any database that supports ODBC
connection through a package called RODBC. You can install and use it as follows:

 > install.packages("RODBC")
 > library(RODBC)

 So, if you have your data stored in a Microsoft SQL Server database MyDB , and one of
the tables is MyTable , then you can load it in a dataframe MySQLDf as follows. Note that
when you are connecting to the database, you need to open a connection to the database
using the command odbcConnect() , and after you have completed your database
operations, you need to close the connection using the command odbcClose() . In the
following, MyODBDC is the name of the ODBC user data source:

 > DBHandle <- odbcConnect("MyODBC")
 > MySQLDf <- sqlFetch(DBHandle, "MyTable")
 > odbcClose(DBHandle)

http://www.r-project.org/

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

171

 Sometimes, you may have a huge data table and want to load only the top 100 rows
or use a query to load data in a dataframe. The following command loads the top 100
rows from table MyTable in a dataframe:

 > MySQLDf <- sqlQuery(DBHandle, 'select top 100 * from MyTable')

 If you have multiple databases on your server and don’t want to create ODBC
connections for each of them, you can use a construct like the following:

 > DBHandle <- odbcDriverConnect('driver={SQL Server}; server=MySQLhost;
database=MyDB; trusted_connection=true')

 This quick tutorial of R is by no means exhaustive and is only meant to give you some
idea as to how your data can be loaded in a dataframe in R. Refer to the R manual or a
good R book (such as R Programming for Data Science by Roger Peng (Lean Publishing,
2016) for more. Check out https://leanpub.com/rprogramming if you want to gain a
better understanding of R. I will use R for demonstrating statistical computations as well
as graphic visualizations.

 Here are some ways of summarizing one-dimensional data effectively:

• Five-number summary: You can use this summary to quickly get
the distribution for your data and it consists of the minimum, 25th
percentile, median, 75th percentile, and maximum for the input
data set. The R function fivenum() can be used on the command
line as follows (> is R’s command line prompt, and any text after #
is considered a comment:

 > x <- c(1,3,5,7,9,2,4,5) # input dataset
 > fivenum(x) # compute five number summary
 [1] 1.0 2.5 4.5 6.0 9.0

 So, for this dataset (which is monthly profit for a company
in millions of dollars for the last eight months in the state of
Illinois), 1.0 is minimum, 2.5 is the 25th percentile, 4.5 is the
median, 6.0 is the 75th percentile, and 9.0 is the maximum.

• Boxplots: Boxplots are mostly used when you need to
visualize distribution of a single variable and provide a visual
representation for the five-number summary along with
additional information (such as outliers). Outliers are values that
are more than 1.5 IQRs (IQR is the difference in values of the 25th
and 75th percentile) above or below the 25th or 75th percentile.
So, for this example, any values less than –2.75 or greater than
11.25 will be outliers. Outliers (when valid values) signify unusual
data values that may have a specific reason for occurrence and
need to be investigated separately. Outliers also impact the five-
number summary unfavorably (due to the presence of values
outside the normal value range for a variable).

https://leanpub.com/rprogramming

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

172

 Getting back to boxplots, they can be drawn in R using the
 boxplot() function (see Figure 7-4):

 > boxplot(x) # draw a boxplot of dataset x

 Bar plot: You can use bar plots (see Figure 7-5) for visualizing
your data when it is grouped and you want to quickly compare
data across the groupings. Considering the example (showing
profit for a company for the last two months) again, you can use a
bar plot to compare profits by week. So, each of the weekly profit
entries can be thought of as a “group.” You can, of course, create
groupings as sums, counts, or any other aggregate functions and
use the resulting dataset as input for barplot function. A barplot
can be drawn in R using the barplot() function:

 >barplot(x, main="Weekly Profits in US Million Dollars", xlab="Week
(starting least recent)", ylim=c(0,10), ylab="Profits (US Million
dollars)",names.arg = c(1,2,3,4,5,6,7,8))

 Figure 7-4. Boxplot for a dataset

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

173

 Since the height of the bar is proportional to the data value of a
grouping (in this case, weekly profits), it is easy to compare the
values (visually) across groups.

• Histograms: You can use histograms where you need to show
the complete distribution of the data, as opposed to the five data
points shown by the boxplots. Histograms help you check the
pattern(s) within your data for any symmetry, multi-modality,
or conformance to any of the standard distributions (such as
normal or chi-square). The hist() function within R can draw a
histogram for your dataset (see Figure 7-6).

 > hist(x, breaks=8, xlim=c(1,10), main="Histogram for weekly profits",
xlab="Weekly profits (Million US dollars", col = "grey")

 Figure 7-5. Barplot for a dataset

 Figure 7-6. Histogram for a dataset

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

174

 You can review the histogram quickly and easily understand
the following:

• The range of data values is between 1 and 9

• The frequency of data values 1–2 and 4–5 is 2

• The rest of the values have a frequency of 1

 The Plot command and its variations (boxplot() , hist() , barplot()) are
good for basic plotting, but if you need complex plotting (for example, combining or
superimposing charts or advanced graphics) then you need to use the ggplot2 library
within R. It is available as a package and can be installed simply by typing install.
packages("ggplot2") at the R command prompt. For more information, about ggplot ,
see http://ggplot2.org .

 Once you have installed the library ggplot2 , you can load it using the command
 library(ggplot2) at the R command prompt. The command qplot() can be then used
to create complex plots. For example, the histogram from the last example can be created
as the following, using qplot() as shown in Figure 7-7 :

 > qplot(x, geom="histogram", xlab="Profit (Million US dollars)",
ylab="Frequency",bins=20)

 As you can see, the graphics are nicer and have a more professional look. I use
 ggplot2 more extensively in the next section.

 So, to summarize, the preceding plots are popular visualizations for one-dimensional
data or a dataset for a single variable. If your dataset (for a single variable) is really large
with millions of rows, you can sample your dataset and use the same plotting techniques.
Note that R uses a lot of memory, and you need to calculate the memory usage proactively
(before you analyze a dataset in R). Failure to do so may result in a crash.

 Figure 7-7. Histogram using the ggplot2 library

http://ggplot2.org/

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

175

 While you are exploring and analyzing your data, you will need to investigate data in
two dimensions and beyond. There are a number of additional techniques used for that
purpose (I discuss them next):

• Multiple or overlayed plots : You can draw (or overlay) multiple
boxplots or histograms within the same plot, and this can help
you identify the relationship between two variables more easily
(especially when the variables belong to the same category). For
example, the weekly profits (from the dataset used earlier) for the
last two months are for state of Illinois. The profits (for the same
period) for the state of Indiana are as follows: (0, 1, 1, 2, 5, 1, 2, 8).
If the profits for Illinois are called IlliProf and profits for Indiana
are called IndiProf , you can overlay the boxplots (using qplot()
command from ggplot2 library) as follows (the result is shown in
Figure 7-8):

 > qplot(ind, values, data=stack(data.frame(IlliProf,IndiProf)),
geom="boxplot") + theme(axis.text=element_text(size=16,face="bold"),axis.
title=element_text(size=12))

 You can, of course, overlay more boxplots (corresponding to
additional variables) by adding them to the data.frame function.
The theme() function is used to override the properties of the
default theme (for example, text size for axis labels). Refer to
 http://docs.ggplot2.org/current/theme.html for details of
the theme function.

 Figure 7-8. Multiple boxplots for comparing variables

http://docs.ggplot2.org/current/theme.html

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

176

• Scatterplots: Typically, you can use scatterplots for visualizing
two (or more) continuous or quantitative variables. Continuous
variables can be measured using a scale and have a numerical
value. In general, a continuous variable is measured, not counted.
For example, Length (measured in inches or centimeters), Height ,
 Weight , Temperature , Time , Distance . In some cases, variables
may need to be transformed (such as computing log or square
root) for effective visualization. You can visually compare the
profit values for the states of Illinois and Indiana through a
scatterplot, as shown in Figure 7-9 . I have used different shapes
for datasets dat1 and dat2 .

 To start with, I created dataframes from state-wise weekly profit
datasets for the states of Illinois and Indiana (dat1 , dat2):

 >dat1 <- data.frame(c(1,2,3,4,5,6,7,8),IlliProf)
 >dat2 <- data.frame(c(1,2,3,4,5,6,7,8),IndiProf)

 Next, I unified the column names for these datasets to facilitate
use of the rbind command (which combines dataframes by rows)
and combined the dataframes:

 > colnames(dat1) <- c("WeekNumber", "Profit")
 > colnames(dat2) <- c("WeekNumber", "Profit")
 > dat <- rbind(dat1, dat2)

 Finally, I created labels for use by shape aesthetics and used ggplot
to create the overlayed scatterplot using the combined dataframe
created in the last step (the result is shown in Figure 7-9):

 Figure 7-9. Overlayed scatterplots for comparing variables

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

177

 > dat$dataset <- factor(c(rep("dat1", dim(dat1)[1]), rep("dat2", dim(dat2)[1])))
 > ggplot(dat, aes(x=WeekNumber, y=Profit, shape=dataset)) + geom_
point(size=5) + theme(axis.text=element_text(size=14,face="bold"), axis.
title=element_text(size=14), legend.text=element_text(size=14), legend.
title=element_text(size=14))

 Note the different shapes of the two datasets (circle and triangle)
that make it easy to differentiate and compare the values. Colors
or sizes can also be used for the same purpose. Also, note the
use of theme() function to change the axis text/title and legend
text/title. You can adjust the text sizes for various components
of a plot using this function or join the data points via a line for
facilitating understanding of any correlations.

 Correlation
 Correlation results from a relationship or dependence of one variable on another and
can also be determined statistically for two datasets. R offers a function called cor() for
this purpose. A correlation coefficient describes the amount by which two data variables
vary together. You just need to use the two numeric variables you want to examine as
the arguments to the cor() function. For example, if you want to check how the weekly
profits for state of Illinois correlate with the ones for state of Indiana, you can use the
following R command:

 > cor(IlliProf, IndiProf, method="spearman")
 [1] 0.7656655

 The closer the value to 1, the stronger the correlation. For the cor() function, the
method parameter refers to the type of correlation coefficient to be computed, and
the possible values are "pearson" (default), "kendall" , or "spearman" (named after
the British statisticians who created those coefficients). Also, a negative correlation is
possible between two variables when they vary in opposite directions. Finally, as a more
practical application, you can calculate the correlation among multiple variables at once,
just as you can plot the relations among multiple variables.

 So, for example, if you have a dataframe that has sales details for a cosmetics retailer,
and the retailer’s management needs to know which geographical locations are selling
a particular item more (so that they can introduce more items from that category in that
store), they can create multiple attributes for each of their locations (such as location
within a mall or strip mall, located near a major clothing retailer, located in area with
certain demographic, and so on) and check which attribute is most closely related with
the sale of an item. That can give them a good idea about what category of items may
be sold at a location depending on the value of its attributes. If you assume that the
dataframe is called dfSales , then the following R command can be used for determining
the correlation (assuming there are five attribute values represented numerically)
between various attributes and sales:

 >with(dfSales, cor(Attr1, Attr2, Attr3, Attr4, Attr5, Sales))

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

178

 For huge data frames, you can use subsets based on the values of any of the columns
or date. So, for the preceding dataframe, if there are millions of records for each location,
and if attr2 holds the zip, you can save the subset as a new dataframe and analyze the
sales for zip code 60561 as follows:

 >dfSales60561 <- subset(dfSales, Attr == 60561)
 >with(dfSales, cor(Attr1, Attr2, Attr3, Attr4, Attr5, Sales))

 If you need to analyze sales for zip 60561 after January 1, 2016, and before February
1, 2016, you can use the following command and use the resulting subset with the with()
command:

 >dfSales60561Jan16 <- subset(dfSales60561, date >= as.Date("2016-01-01") &
date < as.Date("2016-02-01"))

 Lastly, you can visually determine whether a correlation exists between two variables
by inspecting the pattern of data values. A similar or same pattern indicates a possible
correlation. I have used the cor() function to determine whether there is a possible
correlation between weekly profits for the states of Illinois and Indiana. Let me overlay
these datasets using a line plot on the same plot (as shown in Figure 7-10):

 > ggplot(dat, aes(x=WeekNumber, y=Profit, linetype=dataset))+geom_
line(size=1) + theme(axis.text=element_text(size=14,face="bold"),axis.
title=element_text(size=14), legend.text=element_text(size=14),legend.
title=element_text(size=14))

 Figure 7-10. Determining correlation visually using an overlayed line plot

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

179

 As you may observe, the command used to generate this overlayed line plot is almost
same as the one used to generate the overlayed scatterplot, with two differences:

• Within aes() , line type is used to differentiate (instead of shape)
between datasets (linetype=dataset instead of shape=dataset).

• The function geom_line() is used instead of geom_point() .

 As far as the visual inspection is concerned, you can conclude that the data patterns
are similar, but not very similar. So, a correlation might exist, but not a very strong
correlation (and that is supported by the result from cor() function being 0.7).

 Clustering
 The last technique used for exploratory analysis is clustering , or cluster analysis , a popular
technique for visualizing multidimensional data. Clustering easy to use and can serve
as a really quick way to understand a multidimensional dataset. Clustering involves
organizing data values (that are close) together and classifying them as distinct groups. I
will discuss two types of clustering:

• Hierarchical clustering

• K-means clustering

 Hierarchical Clustering

 Hierarchical clustering aims to organize your data into a hierarchy. There are two approaches
to achieve this objective: agglomerative or “bottom up” and divisive or “top down.”

 The agglomerative approach starts by assuming individual data points as clusters ,
and then you start gathering them together into small clusters, which are grouped as part
of bigger clusters. Bigger clusters are grouped together recursively until you have one big,
massive cluster. To summarize, here are the steps followed:

 1. Locate the two closest data points in your dataset

 2. Group them together and call them a cluster

 3. Use your cluster, find a new data point, and repeat

 The divisive approach is exactly the opposite. You start with all your data points as
part of one big cluster, and the cluster is split recursively as you move down to form a
hierarchy (of smaller clusters).

 Both these methodologies need you to measure the distance between two points
and also require you to have an approach for merging two data points to create a new
 cluster . Therefore, it is important to use a distance metric that works best for your data—
otherwise, your clusters won’t be valid and you won’t get any useful information from
them. The following are commonly used distance metrics:

• Euclidean distance: This is the “straight-line” distance between
two points.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

180

• Manhattan distance: Between two points, this is the sum of the
absolute differences of their Cartesian coordinates. It is also
known as city block distance , since you need to think how many
“city blocks” do you need to travel to get from point A to point B
(on a grid or lattice of city blocks).

 When you are merging clusters, how should you measure the distance from a data
point to a merged cluster of points or between two merged clusters? One approach
(called complete) is to use maximun distance between the two groups—that is, find two
points within these groups that are furthest apart and use that as the distance between
the groups. Another approach is average merging , which computes the average of the
coordinate values in each group and uses that as the distance between the two clusters.
 Complete merging is the default method used by the hclust() function in R. For details
of the hclust() function in R see https://stat.ethz.ch/R-manual/R-devel/library/
stats/html/hclust.html .

 There’s not necessarily a correct merging approach that will work for any given
application, so you need to choose a merging approach that works best for your data.
Usually a lot of experimentation and exploration is needed to extract meaningful patterns
and clusters from your data.

 K-means Clustering

 The K-means clustering approach has the objective of finding the centroids
(or multidimensional center point) of a fixed number of clusters within your
multidimensional data. As with hierarchical clustering, this algorithm is also iterative.
The level of difficulty is high because you need to locate the centroids in a high-
dimensional space, and that’s why you need an algorithm that’s capable of making these
computations.

 K-means clustering uses a partitioning approach, and data is partitioned into a
number of groups at each iteration of this algorithm. This algorithm requires you to pre-
specify the number of estimated clusters. Even though you may not know in advance, you
should guess and run the algorithm. You can, of course, change the number of clusters
and run the algorithm again to see if anything changes. Following are the steps:

 1. Specify the number of clusters (>= 2)

 2. Specify a random set of points as the centroids of these clusters

 3. Assign data points to their closest centroid (and thereby a cluster)

 4. Calculate centroid positions again and iterate

 This approach also requires a defined distance metric (in addition to the fixed
number of clusters and initial guess for cluster centroids), and the same distance metrics
(as used for hierarchical clustering) can be used. Unfortunately, there’s no defined
method for determining the initial centroid configuration, and many algorithms simply
select data points randomly (from your dataset) as the initial centroids. The K-means
algorithm produces a final estimate of cluster centroids (their coordinates).

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

181

 Factors for a Successful Implementation
• A well-defined objective for data exploration and a detailed plan

• Availability of qualified data scientists to design data exploration
as per objective

• Availability of expert data visalization professionals to quickly
create visualization for data insights developed by data scientists

 To summarize, I have discussed popular techniques for data exploration (and
analysis) for data held in a lake. The next section covers techniques for using your data
lake as an analytical lake:

 Analytical Lakes
 Some organizations have a stable and established process to use data held in a lake.
Instead of just holding the data (in a lake) or performing exploratory analysis to disccover
new insights from their data, they use the data (from their lake) to feed their analytical
models for advanced analysis, such as predictive analysis (what may happen) or
prescriptive analysis (what should we do about it). A data lake (or a part of it) can also act
as a staging area for a data mart or EDW.

 In addition, real-time processing (and analytics) can also be performed within an
analytical lake environment. In fact, real-time processing is gaining increasing popularity
for newly designed architecures. Good examples are application of learning algorithms
for decision making or providing fast insights. Credit card companies use real-time
analytics to detect unusual card activity (for example, card used in China for a US-based
customer).

 An insurance company in South Africa used learning algorithms and predictive
models with their claim data for detecting fraudulent claims and came up with startling
insights, like claims filed between 10:00 p.m. and 5:00 a.m. were largely fraudulent. Most
of the genuine ones were filed between 9:00 a.m. and 11:00 a.m.!

 This section briefly discusses all these techniques.

 Using Data for Analytical Models
 Predictive models are used more frequently (as compared to prescriptive models), so I
will discusss usage of data (from a lake) with predictive models. The main objective of a
 predictive model (sometimes also called machine learning or pattern recognition) is to
generate the most accurate estimates of quantities or events associated with the input data.

 R uses two main conventions for specifying models:

• Formula interface

• Non-formula (or “matrix”) interface

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

182

 The formula interface uses syntax like this: outcome ~ var1 + var2 + where
 var1 , var2 , (and so on) are explicitly listed predictors for the outcome. Consider the
following formula that would predict the grading of a diamond using four characteristics:

 modelFunction(grading ~ CtWeight + Cut + Color + Clarity, data = DiamondGrading)

 The formula interface has pros and cons. For example, transformations can be
specified inline. But unfortunately, R does not efficiently store the formula information,
and thus datasets containing a large number of predictors may unnecessarily slow the
computations.

 The non–formula interface uses a matrix or dataframe to specify the predictors for
the model, and the outcome is assigned to a vector object. For example:

 modelFunction(a = GradePredictors, b = grading)

 Predictive modeling in R usually follows a similar workflow:

• Create model using the basic function: fit <-
abc(trainingData, outcome)

• Cross-check the model properties using visualizations (print,
plot) or commands (summary) or any other methods

• Use the predict method to predict outcomes for new data sets:
 predict(fit, newData) .

 Since the various modeling packages are developed in isolation (with each other),
there are inconsistencies in the way these models are specified or predictions are made.
For example, many models use a single method for model specification (such as formula
or matrix only).

 Model Building Steps

 Common steps used for building a model are:

• Estimation of model parameters (predictors, outcomes, and so forth)

• Determination of tuning parameters values (that can’t be
calculated directly from the data) for validation

• Determining the performance of the final model (that will
generalize to any new data)

 How can you use your data to find an optimal model? Usually data is split into
 training and test data sets:

• Training data set: Used to estimate model parameters and also to
pick the values of the parameter(s) that determine complexity for
the model.

• Test or validation data set: Can be used to validate the model
efficacy. Of course, you should not use this data for training.

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

183

 Be careful while determining the split between your training and testing data. If you
use too much data for training, that will prevent you from getting a good assessment of
predictive performance. You may end up with a model that fits the training data very well
but does not generalize (know as overfitting). On the other hand, if you use too much data
for testing, there won’t be enough data to get a good assessment of model parameters.
Even though the best (statistical) course of action would be to use all the available data
for model building and use statistical methods to get good estimates of error, many
users of these models prefer to have an unused (by training) dataset for validating and
evaluating performance.

 There are a few different ways to do the split (between training and testing data),
such as the following:

• Simple random sampling (R function sample() can be used to
create a random data sample)

• Stratified sampling (based on the outcome)

• Using date or methods that focus on the distribution of the
predictors

 Once you have a set of predictions (using a model), various metrics can be used to
evaluate performance:

• For regression models, R2 is very popular.

• The root mean square error is a common metric for
understanding the performance.

• Spearman’s correlation can be used for models that are used to
rank samples (cor(, method = "spearman")).

 You have to make sure to use separate datasets for training the model and testing for
valid estimates (using your model).

 Using Data as a Staging Area for EDW or Data Mart
 This refers to the possible use of your data lake as an operational data store (ODS). Since
your data lake consists of data from various online transation processing (OLTP) as well
as online analytical processing (OLAP) applications, it may be possible to build an ODS
by cleaning, transforming, and holding the data in temporary or transitional structures
that map to your EDW or any of your existing data marts. This, of course can only use
structured data from your lake. Designing ODS is a complex topic and beyond the scope
of this chapter (and the book). Check out Chapter 3 of Bill Inmon’s book Building the
Data Warehouse (Wiley, 2008) for futher details. Here’s a link to the book: http://www.
wiley.com/WileyCDA/WileyTitle/productCd-0764599445.html .

http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764599445.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764599445.html

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

184

 Real-Time Processing and Analytics
 Real-time processing for data in a data lake can conceptually have processing similar to
Lambda architecture. The differences:

• There will only be two layers: batch and real-time (instead of
batch, presentation, and speed).

• The batch layer will move all the data for an application (for
which real-time processing is needed) to lake one-time only—no
need to redo this processing.

• Real-time data update will be performed using data streaming
through Spark streaming, Amazon Kinesis, or a similar solution.

 I discuss batch processing in great detail in Chapter 9 . I will discuss data streaming
briefly in the next section.

 Event Stream Processing

 Originally, ESP started as custom data flow–centric processing to detect specific
conditions and act on them (for example, fraud for financial systems) and is a technology
to enable detection, consumption, and processing of high-volume, high-speed events in
near real-time to support analysis.

 Typically, ESP is comprised of:

• Application server that captures and processes high-speed events
(transactions) based on specific logic

• Development environment for processing/transforming OLTP
data

• Components including engine, GUI development tools,
connectors (to get data feeds from various sources), visualization
interface, and data storage structures

• Usually separate languages for coding (or development) and
querying

 ESP is used to support real-time, on-the-fly analytics to identify time-critical
business situations using:

• High-speed querying of data in event streams and applying
mathematical algorithms

• Application of complex logic to data streams

 Figure 7-11 shows an example of ESP for a hospital management system that should
help clarify the ESP concepts.

http://dx.doi.org/10.1007/978-1-4842-1287-5_9

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

185

 The main components of an event stream processor are: data transfer engine
(responsible for capturing event data from a source using connectors or interfaces
developed using lower level languages like Java or C++), memory structure (for holding
event data in memory and passing on to execution engine for further processing), and
execution engine (that executes logic for transforming event data). Figure 7-12 shows
where these components fit in the architecture.

A Hospital Management
system records details of
incoming patients:

• Each incoming
patient entry is an
“event”

• A patient entry
contains a set of
predefined
attributes

The ESP engine processes each event in real
time

• Each event is processed using
predefined rules (e.g. patients over
70 to be assigned to senior doctors
only)

• Rules can be defined using multiple
methods, viz. SQL, XML, Java, C++

• Some events may not be processed
or rejected (e.g. walk-in patient
entries need not be stored)

Dashboard may be used
to display aggregated
summaries that can be
drilled through (for
details)

 Figure 7-11. Example of ESP

Input event
stream from
Event Producer Data

Transfer
engine

Persistent
storage

In-
memory
storage

Execution
Engine

Event
consumers

(DBMS,
Dashboards,
Message Bus

etc.)

Includes “connectors” that handle
capturing or receiving data from
Event producers

Memory structure where event
details are delivered and available for
Execution engine to manipulate and
process

Executes the logic or rules defined to
manipulate the event’s data and
generates the resulting event detail

Database that retains event details
for future analysis

Event Stream Processor

 Figure 7-12. ESP internals

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

186

 Following are the types of event processing that’s commonly performed:

• Aggregation : Aggregate values within a time window or quantity
of events (sum, average, and so forth)

• Pattern detect : Identify combination of events over a period of
time (minutes/hour/day)

• Filtering : Remove events matching specific values or categories/
types

• Calculations : Numerical processing (using SQL-like query
language or Java)

• Thresholds : Define a minimum or maximum acceptable attribute
value for an event

• Transform/Convert : Apply data transformation processing,
convert data types, data values, and so on

• Derive : Estimate or deduce data values using statistical or
predictive models

 Complex Event Processing
 Event cloud or complex event processing involves processing a series of related events
together to identify patterns and correlations. For example, as seen in Figure 7-13 , my
BMW displays a warning message to brake slow if the temperature is below 32 degrees,
the air pressure in tires is low, and it’s snowing.

Temperature sensor
registers 30 degrees

Tire pressure sensor
registers low air

pressure

Windshield sensor
registers snow

Complex
event

processor
Car dashboard

 Figure 7-13. Example of complex event processing

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

187

 Apache Foundation offers excellent open source options for ESP, such as Samza, Spark,
Storm, and Flafka (Flume + Kafka). Here are the leading ESP (priced) product vendors:

• DataTorrent : RTS

• Informatica : RulePoint

• IBM : InfoSphere Streams, Operational Decision Manager

• Microsoft : Stream Insight

• SAP/SAS : Event Stream Processor

• Tibco : BusinessEvents, Streambase

 There are a lot of real-world applications of ESP. Here are a few common ones:

• Managing traffic on streets, or traffic control

• Processing brain neuron signals using a Hadoop computing cluster

• Fraud detection and prevention using correlations, causation,
and predictive modeling for insurance companies

• Advertisement-targeting platforms are using Hadoop to capture
and analyze click stream, transaction, video, and social media data

• Managing content, posts, images, and videos on social media
platforms

• Financial agencies are using Big Data Hadoop to reduce
risk, analyze fraud patterns, identify rogue traders, more
precisely target their marketing campaigns based on customer
segmentation, and improve customer satisfaction

• Processing unstructured data like sensor output from medical
devices, doctor’s notes, lab results, imaging reports, medical
correspondence, and clinical data

 Factors for a Successful Implementation
• A detailed plan for one of the following objectives:

• Design for interfacing with existing EDW

• Designing predictive, regression, propensity, or presecriptive
models and feeding data to these models

• Ingesting real-time streaming data and processing it for
analytics

• Availabiity of qualified analytics professionals to design analytic
models or descriptive analyrics as needed

• Availability of qualified ETL professionals for developing
interfaces for data ingestion and transformations as needed

CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES

188

 Summary
 Over the last few years, data lake has turned into a buzzword that management (who
decides to invest in a lake) and implementors (architects, developers, users) too often
implement before thinking it through. That’s why most implementations fail. Data lakes
are not about using economic storage through Hadoop clusters for archival and are
not even about the data storage without silos or distributed processing. Data lakes are
about turning your data into information, knowledge, and wisdom. If you can generate
one useful insight per application from your lake, then I would consider your data lake
implementation a huge success.

 Data lakes provide you the freedom to explore your data without any unwanted
consequences, and without the inhibitions of a static schema or a rigid data structure.
You also have the freedom of saving any new schema insights as new metadata. So you
are only limited by your creativity. These are all the pros, or good parts.

 The cons or bad parts deal with all the non-lake activities that you need to perform,
such as defining security, governance, data cleansing/profiling, and master data
management, because a data lake doesn’t mean that anyone from your organization
can access any data as they like. Structured and non-structured data need to be
processed separately. Besides, applications that use the same data with dissimilar units
of measurement (maybe due to country-wise differences regarding usage or non-usage
of the metric system) are still going to cause you issues if you need to analyze their data
together—unless you spend time harmonizing the units. Real-time streaming or stream
analytics are still going to be difficult to configure and use.

 To summarize, data lakes are not going to provide answers or insights for all your
applicational needs. They are just the beginning of a new paradigm in data processing,
not the end. A tool is only as good as the use you make of it. The real data insights have
to come from you—data lakes just offer a medium for you to visualize them and then
present them to rest of the world.

189© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_8

 CHAPTER 8

 Implementing SQOOP and
Flume-based Data Transfers

 About five years back, when the Apache Hadoop ecosystem was ready for its data
processing challenges, it introduced its own tools for data ingestion, including Sqoop
and Flume. These tools were initially unfamiliar, as was rest of the Hadoop ecosystem.
I was assisting an IBM client (a big health insurance company) with its data warehousing
needs, and its RDBMS-based solution was not performing well. The company also had a
lot of historical data on mainframes, and the big volume of that data (about 10 TB) was an
issue. Though Hadoop was new, I convinced the client of the need for a ten-node Hadoop
pilot and used Sqoop to pull the data into HDFS (Hadoop Distributed File System).
We had tried with 2 TB only, but the response time was about 1/50th of the mainframe
response time, even with old hardware and slow disks. This encouraged us (as well as the
client) and finally we deployed the solution for production usage.

 A large number of organizations are offloading the extract-transform-load (ETF) jobs
to Hadoop. There are a number of reasons for this. Optimal usage of processing resources
(because ETL processing is offloaded to a commodity-hardware–based Hadoop cluster),
optimal usage of disk space (again, Hadoop cluster uses budget-friendly disk drives) for
transitional storage, performance (due to distributed processing), and redundancy (data
blocks are replicated on a Hadoop cluster) are the major ones.

 Now, as the Hadoop ecosystem has matured, more tools are available for data
transfer. Also, Hadoop started as a batch-processing solution, but currently with the
advent of tools like Spark, Storm, Apex, and Kafka for streaming, Hadoop is also being
used as a real-time analytic solution. Subsequently, tools for ingestion of events or
streaming data are added to the Hadoop ecosystem.

 One important consideration is the type of source data you have (structured,
semi-structured, unstructured, or a mix) and what your objective is (for transforming it).
Your ETL tools need to have connectivity to source as well as target systems. Another
consideration is use of graphical tools for data pipelining (or defining stages of
transformations from source to target) that reduce the development time or command-line
tools as well as lower level programming language–based tools that offer greater flexibility.
Of course, code development will take a longer time with such usage, but if you have
complex transformation needs, then there is no easy option.

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

190

 Finally, most of the Hadoop distribution vendors have added their own proprietary
tools for data ingestion. For example, Microsoft provides Azure Data Factory for ingesting
data into in its HD Insight platform (a Windows-based adaptation of the Hortonworks
Hadoop distribution). Though most of these tools provide a graphical interface,
substantial development time is involved in creating jobs for data ingestion.

 So, how do you decide what’s the best tool for your environment? Let me discuss
some parameters to consider.

 Deciding on an ETL Tool
 If you decide to integrate your RDBMS-based application with Hadoop, then you are
planning to use Hadoop as your enterprise data hub. Once the data is in HDFS, then you
perform aggregation and analytics (asynchronously as batch or streaming as a real-time
system). Therefore, you will need to design ETL for moving data in and out of Hadoop.
Sqoop and Flume are popular tools for this purpose and can be used to populate HDFS
and refresh it periodically as batch processing. If you need to ingest data in real time, then
you need to use a tool such as Kafka, Flink, or Spark Streaming for ingesting streaming
data (and storing it using an appropriate target). This section discusses how.

 Sqoop vs. Flume
 Let me start with Flume. It’s really a framework for collecting and integrating data within
Hadoop. Flume uses processes called agents to collect and store the data. These agents
can read data from a variety of sources, like web servers, application servers, system logs,
or even mobile devices and write output to HDFS. For high volumes of data, you can
configure multiple Flume agents and implement horizontal scaling.

 Sqoop is more of a connectivity tool or utility for moving data between structured
data stores (such as relational databases and data warehouses) and Hadoop. Sqoop is
designed for an efficient transfer of bulk data and supports all the leading relational
databases like Oracle, Microsoft SQL Server, DB2, and others. Also, since Sqoop is based
on a connector architecture, it supports the use of third-party plugins or connectors
to provide connectivity to new external systems. Sqoop provides performance by
transferring data in parallel.

 So, the typical use cases for Flume are log consolidation (for example, consolidating
audit logs from all the NameNodes for an organization), or capturing and filtering tweets,
or capturing clickstream data for customer product searches (for a web retailer). Because
Flume architecture is event-driven, it finds use in scenarios where you have certain events
to capture (and store) either on a continuous basis or within a predefined time window.

 Sqoop usage focuses on moving large volumes of data between RDBMS (or a
data warehouse) and Hadoop. Sqoop doesn’t deal with event streams. It’s more about
a predefined transfer of data using connectors capable of reading data from specific
sources and writing it to specific targets. Hadoop is not always the target. Sometimes, data
processed by Hadoop needs to be transferred back to an RDBMS or a data warehouse.

 To summarize, Sqoop is used for ad hoc or scheduled data transfer between
structured sources and HDFS. Table 8-1 summarizes the differences between these tools.

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

191

 Processing Streaming Data
 Chapter 7 discusses event stream processing concepts. This section compares the open
source Apache tools available for processing streaming data. At the forefront is Spark
Streaming. The other options are Samza, Storm, and Flafka (Flume + Kafka). There are,
of course, solutions from all the major vendors, such as RTS from DataTorrent, RulePoint
from Informatica, InfoSphere Streams from IBM, and Stream Insight from Microsoft. I will
not be discussing these solutions. I’ll start with Spark.

 Spark and Spark Streaming
 Spark is a popular distributed computing engine that provides a variety of tools such
as Spark SQL (query tool), Spark Streaming (event stream processing), MLib (machine
learning), GraphX (graphics libraries), and Spark R (R functions for analytics). Spark
Streaming is an extension of core Spark API that enables scalable, high-throughput,
fault-tolerant stream processing of live data streams. Data can be ingested (into Spark)
from sources like Kafka, Flume, Twitter, and Amazon Kinesis and can be processed using
complex algorithms expressed with high-level functions like map (transform), reduce
(aggregate), and join (combine data streams). Processed data can be pushed out to HDFS,
databases, or live dashboards, or you can also apply Spark’s machine learning or
graph-processing algorithms on data streams.

 Table 8-1. Feature Comparison for Sqoop and Flume

 Sqoop Flume

 Sqoop is mostly used for data transfer
from (and to) structured data sources
such as RDBMS.

 Flume is used for moving bulk streaming
data into HDFS.

 Sqoop has a connector-based architecture.
A connector is code that is capable of
connecting to the respective data source
and fetching the data to be written to HDFS,
or vice versa.

 Flume has an agent-based architecture.
An agent is code or program that fetches
streaming data from the source.

 HDFS is a either source or destination for
data using Sqoop.

 Flume writes data to various channels,
and HDFS may be one of the channels
(or destinations).

 Data loads for Sqoop are not event driven. Flume can have data loads that are event
driven.

 Typical use cases for Sqoop involve data
transfer from (or to) RDBMS, like Oracle,
SQL Server, MySQL, or document databases
like MongoDB, CouchDB, or warehouses
like Teradata, or columnar databases like
HBase or Cassandra.

 Typical use cases for Flume are load of
streaming data such as tweets generated
on Twitter, clickstream data from web
applications, or log files from a web server.

http://dx.doi.org/10.1007/978-1-4842-1287-5_7

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

192

 Spark uses the concept of resilient distributed datasets (RDDs). These are collections
of objects spread across a cluster and persistent in memory. They are built quickly through
parallel transformations and are resilient (as the name suggests), which means they are
rebuilt automatically on failure. Transformations such as filtering, union, join, and group
by, or actions such as sum, count, for each, and more can be performed on RDDs.

 Spark Streaming doesn’t process streams one at a time, but divides them in small
batches of time intervals before processing them. This process is called micro-batching .
The Spark abstraction for a continuous stream of data is DStream (for discretized stream),
which is really a micro-batch or sequence of RDDs (as shown in Figure 8-1). Spark
Streaming offers support for merging historical data with streaming data.

Input data stream
from sources like
Kafka, Flume,
Twitter or Amazon
Kinesis

Spark
Streaming RDD1 RDD2 RDD3

Spark
Engine

Micro-batched
input DStream

RDD1 RDD2 RDD3

Micro-batched output DStream (transformed)

 Figure 8-1. Spark Streaming processing

 You can write Spark Streaming programs using Scala, Java, or Python by referencing
appropriate DStreams and applying functions to them. You can use functions like map
(process each element of DStream through a function), union (return a new DStream that
contains the union of the elements in the source DStream and other Dstream), count
(return a count of elements in each RDD of the source Dstream), reduce (return a new
DStream by aggregating the elements in each RDD of the source Dstream), and so on.

 DStreams can also be used as input for MLib, Spark SQL, or GraphX (for further
processing and analysis). Every input DStream (except file stream) is associated with a
receiver (Scala doc, Java doc) object, which receives the data from a source and stores it
in Spark’s memory for processing. You can receive multiple streams of data in parallel in
your streaming application by creating multiple input Dstreams, associated with multiple
receivers.

 Storm
 Using Storm, you can design a directed graph of real-time computation (called a topology)
and execute it on a Hadoop cluster where the master node will distribute the code
among worker nodes to execute it. Storm defines spouts, or data streams comprised

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

193

of immutable sets of key-value pairs called tuples. A tuple or a data row (a collection
of elements in ordered sequence) is a basic unit of abstraction for Storm), and bolts
(processes that transform input streams using functions, filters, aggregations, and
joins) transform those streams. Bolts can (optionally) pass data to other bolts down the
processing pipeline.

 Since Storm processes a single event at a time (as opposed to micro-batching), it
has really low latency and can be used for real-time analytics, ML, budgeting, and more.
However, it has no concept of look back aggregations. Also, using Storm, it is not easy to
combine batch processing with streaming data.

 For stream processing, tuples are either randomly distributed across all the tasks
running a bolt, or specific fields from all the tuples are grouped and routed to the same
task. Tasks are threads executed by worker processes or JVMs, as shown in Figure 8-2 .

Input data streams
from sources like
Kafka, Flume,
Twitter or Amazon
Kinesis

Spout1

Bolt1

Spout2 Bolt2

Bolt3

Bolt4

Bolt5

Thread1

Thread2

JVM

Transformed
data streams

Bolt2

 Figure 8-2. Storm streaming

 Trident is a high-level abstraction processing library that works with the core storm
API and is often used to add functionality and reliability. This library offers a range of
functions for joins, aggregations, grouping, and more. More importantly, it enables Storm
to use the “exactly once” delivery pattern (which means that a data packet is delivered
only once without any loss or duplicates) and adds reliability to its delivery.

 Samza
 Originally developed at LinkedIn, Samza is a distributed stream processing framework.
A data stream is divided in a number of partitions (ordered sequence of messages). A
job processes stream(s) and is divided in a number of tasks. Each task processes data
from partitions from the input stream(s) and processes messages within a partition
sequentially. Figure 8-3 shows job processing within Samza.

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

194

 For Samza, processing (and coordination) is performed by the Samza API, but
the execution and streaming layers are pluggable. So, you can select solutions that are
appropriate for your environment. By default, YARN is used as execution layer, and Kafka
is used as the streaming layer.

 Having reviewed these stream processing solutions briefly, where do you use any of
these solutions? Figure 8-4 has a detailed comparison. You can review the features that
are of interest to you and decide on the solution appropriate for your environment.

Input data streams
from sources like
Kafka, Flume, Twitter
or Amazon Kinesis

Transformed
data streams

Partition 0

Partition 2 Partition 1

Stream1

Stream2

Task2

Partition 1

Partition 0

Task1

Samza job

A partition is ordered sequence of messages

Pa
rti

tio
n 0

Partition 1

 Figure 8-3. Samza job processing

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

195

 Figure 8-4. Feature comparison between Spark, Storm, and Samza

 For example, if you have a retail banking environment and you are using a stream
processing solution for fraud detection, a sub-second response is important for you,
and Storm or Samza would be better options for you. If, however, you are interested in
implementing Kappa architecture for your data lake, then you would be using Spark
Streaming or Samza. If you have data scientists who are well versed in R, then Spark
Streaming would be of interest.

 Using SQOOP for Data Transfer
 Sqoop is a data-transfer tool based on connector architecture. What this means is that
it supports third-party plugins or connectors that provide connectivity to relational or
NoSQL database systems. Being a part of the Hadoop ecosystem, it has read and write
capabilities to HDFS.

 Even though most of the current database management systems (DBMS) support
SQL as a query language, there are differences between various DBMS with respect to
SQL dialect (to some extent). These differences pose challenges for data transfer across
the systems. Sqoop connectors help overcome these challenges effectively and make the
data transfer (between database systems) easy and fast.

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

196

 The range of Sqoop’s connectors includes popular RDBMS such as MySQL,
PostgreSQL, Oracle, SQL Server, and DB2. Sqoop also provides a generic JDBC connector
that can be used to connect to any database that supports Java’s JDBC protocol. Lastly,
Sqoop’s optimized MySQL and PostgreSQL connectors (which use database-specific APIs)
perform bulk transfers efficiently. Figure 8-5 shows the details of Sqoop architecture.

Hadoop Ecosystem
(HDFS, Hive, HBase)

SQL Server
connector

SQL Server

Sqoop

Oracle

Oracle
connector

MongoDB
connector

MongoDB

Import / Export

 Figure 8-5. Sqoop architecture

 If you need to use Sqoop for data import/export, download, install, and configure
it (see http://mirrors.ibiblio.org/apache/sqoop/1.4.6/). More details are at
 https://sqoop.apache.org/docs/1.99.1/Installation.html . Note that the download
links refer to Sqoop version 1.4.6—use the latest version). After that, you can download
and install connectors for the data sources you want to use.

 For example, if you want to import data from MySQL to HDFS, you will need to
download the MySQL connector first (http://ftp.ntu.edu.tw/MySQL/Downloads/
Connector-J/), unzip the archive mysql-connector-java-5.1.36.tar.gz to extract the jar
file, and finally move mysql-connector-java-5.1.36-bin.jar to the /usr/lib/sqoop/lib
directory (again, the links refer to the existing version and might change for a later version).
The following commands can be used for the purpose (# is the Linux command prompt):

 # tar -zxf mysql-connector-java-5.1.36.tar.gz
 # cd mysql-connector-java-5.1.36
 # mv mysql-connector-java-5.1.36-bin.jar /usr/lib/sqoop/lib

 After that, you can use the connector for import/export. For example, the next command
imports a table called MyTbl from MySQL database server to the HDFS directory MyData :

 $ sqoop import \
 --connect jdbc:mysql://localhost/userdb \
 --username root \
 --table MyTbl \
 --m 1 \
 --target-dir /MyData

http://mirrors.ibiblio.org/apache/sqoop/1.4.6/
https://sqoop.apache.org/docs/1.99.1/Installation.html
http://ftp.ntu.edu.tw/MySQL/Downloads/Connector-J/
http://ftp.ntu.edu.tw/MySQL/Downloads/Connector-J/

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

197

 Now, the preceding command will get the data for the whole table from MySQL. But
what if you only need data for the last day? Or the last week? Sqoop offers incremental
load of data using values for any of the columns within the data table. So, if the table
 MyTbl has a date column with timestamp or last modified date (modified_date), you can
use that to get data for the last day as follows (assuming you are doing the incremental
load on 2/29/16 and want to load the data for 2/28/16):

 $ sqoop import
 --connect jdbc:mysql://localhost/userdb \
 --username Myusr \
 --password Mypwd \
 --table MyTbl \
 --m 1 \
 --target-dir /MyData/incremental_table
 --check-column modified_date
 --incremental lastmodified
 --last-value 2016-01-27

 However, note that the preceding command will fetch all the rows for table MyTbl
that were added (or modified) starting 2/28/16 00:01. So, if your application allows for
updates or modifications to the existing records, this command will get the updated rows
for you as well. What if you just need the newly added rows?

 Sqoop provides another mode for incremental load, called append (instead of
 lastmodified), that will only get you the newly appended records (for a table). You
can’t use a timestamp or last modified date for this mode (for obvious reasons). You will
need to use an ID column that has increasing values, and you need to know the largest
value loaded by the last incremental load. For example, if MyTbl has a MyId column that
holds the self-incrementing ID, and you determine that the last incremental load loaded
maximum ID value of 9834, then the following command will fetch all the records that
were added after that load:

 $ sqoop import
 --connect jdbc:mysql://localhost/userdb \
 --username Myusr \
 --password Mypwd \
 --table MyTbl \
 --m 1 \
 --target-dir /MyData/incremental_table
 --check-column modified_date
 --incremental append
 --last-value 9834

 To summarize, Sqoop supports two types of incremental imports, append and
 lastmodified , and can be used in conjunction with the --incremental argument to
specify the incremental import you need to perform. You can use append mode if you are
importing rows for a table where new rows are added with increasing row ID values. Then
you can specify the row ID column with the --check-column option and import rows
where the check column has a value greater than the one specified with --last-value .

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

198

 Alternatively, you can use the lastmodified mode if your table doesn’t have a row ID
column with increasing value but contains a last-modified column. In that case, you can use
the last-modified column with --check-column option and import rows where the check
column has a value greater than the timestamp (or date) specified with --last-value .

 For production usage, you will need to create a script that first determines the
 --last-value for the previous incremental load and then substitutes that value within
your Sqoop command to fetch the records you need. You can then schedule this script as
a job for incremental load.

 See the Sqoop user manual for command-line options you can use with Sqoop:
 https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_incremental_imports .

 Finally, I will mention an additional way to load data incrementally. You can leverage
the query parameter and use a SQL select statement to limit the import to new or
changed records only as follows:

 $ sqoop import
 --connect jdbc:mysql://localhost/userdb \
 --username Myusr \
 --password Mypwd \
 --table MyTbl \
 --m 1 \
 --target-dir /MyData/incremental_table
 --query 'select * from MyTbl where modified_date > 2016-01-27'

 You can structure the query to match your incremental load needs or the structure
of your source data table. The advantage with using the query option is that you can
have better control over the data that needs to be imported, and you can specify multiple
conditions to filter your data more effectively.

 Using Flume for Data Transfer
 The strengths of Flume (as a data-transfer mechanism) are in the capabilities of processing
streaming data and consolidating data from multiple sources. That’s the reason Flume is
used for event and audit log consolidations. Also, Flume works well with Log4j-based
logging that’s very popular for Hadoop installations. Browsing through various Hadoop
logs while troubleshooting a job or investigating a security breach can be difficult and
may introduce a manual error. Defining a Flume agent (with related configuration) may
initially take time, but you only need to do it once. Subsequent modifications to the agent
are easier and quicker, and most importantly, the process of consolidating logs (for an
issue) becomes easier and faster.

 In some cases, the volume of log data may be massive, and a well-defined Flume
agent can filter necessary data without any manual intervention. Flume is reliable,
scalable, and easy to customize. Flume also supports dynamic configuration and
contextual routing.

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_incremental_imports

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

199

 Flume Architecture
 Flume architecture revolves around generation of an event (atomic data unit transported
by Flume) by a client and its processing by an agent . Here are definitions of key terms:

 Client: An entity that produces events and makes them
available to one or more Agents for processing.

 Event: Atomic unit of data transported by Flume from its point
of origin (source) to its final destination (sink). Event is a byte
array with (or without) header(s).

 Source(s): Event data receptor(s). Sources receive the data
generated by an event (or from a channel) and output it to one
or many channels. For example, Syslog can be used as a source.

 Channel: Temporary data pipe. A channel is a temporary
holding area for an event after it is received from a source and
being output to a sink. Memory (RAM) or a file can be used as
a channel.

 Sink: Data destination. A sink is used as destination for event
data. One of the most popular sinks is HDFS, that is, logs or
other events are stored within HDFS as files.

 Interceptor: Inspects, transforms, or filters events as needed.
For example, a timestamp interceptor adds a timestamp
header for an event, or a regex_filter interceptor filters out
events per the specified regular expression.

 Channel selector: Process of writing an event to one or more
configured channels based on a header. An event can be
 replicated (written to all the channels) or multiplexed (directed
to different channels based on a header such as port). For
example, and event received on port 12345 goes to channel1,
if received on port 54321 goes to channel2, and so on.

 Sink processor: Process of writing to a sink (from defined
sink group) based on load balancing or failover strategy
(as chosen).

 Agent: A process or a Java Virtual Machine (JVM) that runs the
dataflow to transport events from a source to a sink, utilizing
other components like interceptors (for filtering events) or
channels (for temporary storage). Flume deploys as one or
more agents as required.

 Figure 8-6 shows how these Flume components fit in the overall architecture. The
next section discusses each of the these Flume components briefly.

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

200

 Understanding and Using Flume Components
 The last section reviewed definitions for the major Flume components. We also saw
where each of those components fit in the overall Flume architecture. Now it’s time to
discuss two of the most important components in detail.

 Source
 A source is a flume component that receives event data from a client and places it on one
or more channels (remember, a source needs at least one channel to function). Popular
sources include Syslog, Netcat, Exec, and others.

 The Exec source runs a command outside Flume and turns the output into a Flume
event. To use the Exec source, I will define a source s1 and set all its relevant properties in
the Flume agent configuration file (called flume.conf and located in /etc/flume/conf).
I’ll start with the type property and set it to exec :

 s_agent.sources=s1
 s_agent.sources.s1.type=exec

 All sources in Flume are required to specify the list of channels to write events to
using the channels (plural) property. We will use a single channel here:

 s_agent.sources.s1.channels=c1

Agent

Event
replicated or
multiplexed
to channel(s)

Event written
based on load
balancing or
failover strategy

Source
accepts
event

To next
channel if
required

Generates
events

Client

Source Interceptor

Channel1

Sink
Processor

Sink1 Sink2 Sink3

Transforms or
filters out
events

Channel
Selector

Channel2 Channel3

 Figure 8-6. Flume architecture with major components

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

201

 The only other required parameter is the command property, which tells Flume
what command to pass to the operating system. For instance, we can use the following
command that prints newly added lines from HDFS audit log:

 s_agent.sources.s1.command= tail -f hdfs-audit.log

 Note that the –f (or follow) option of Linux tail command appends data, as the
file grows. By default, the input file (here hdfs-audit.log) is checked for growth every
second, but you can change that time interval if you want. There are other properties you
can define for Exec source, and you can refer to properties for different Flume sources at:
 https://flume.apache.org/FlumeUserGuide.html#flume-sources .

 To conclude, this is how we can configure a single source s1 for an agent named
 s_agent . The source, an exec source, will extract relevant rows for a job from the HDFS
audit log file hdfs-audit.log . All events will be written to the c1 channel.

 Sink
 A sink is a flume component that removes events from a channel and transmits them to
their next destination (which might be a source). This transfer is transactional, that is,
agents use transactional exchange to guarantee delivery across destinations—data is not
removed from a channel unless the data transfer to next destination is successful. Sinks
require exactly one channel to function. Here are the different types of sinks:

• Terminal sinks that deposit events to their final destination (for
example, HDFS, HBase)

• Auto-consuming sinks (such as Null sink)

• IPC sink for agent-to-agent communication (for example,
Avro, Thrift)

 If your requirements can’t be met by any of these sinks, you can write a custom sink
for your purposes by extending the org.apache.flume.sink.Abstractsink class.

 HDFS is a popular sink used with Flume. An HDFS sink can be used to open a file in
HDFS, write streaming data into it, and close it after the data stream has ended or stopped.
To use the HDFS sink, you need to set the type parameter on your named sink to hdfs :

 s_agent.sinks.sink1.type=hdfs

 This defines a HDFS sink named sink1 for the agent named s_agent . There are some
additional required parameters you need to specify, starting with a path in HDFS where
you want to write the data:

 s_agent.sinks.sink1.hdfs.path=/usr/flume/mydata

https://flume.apache.org/FlumeUserGuide.html#flume-sources

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

202

 I have used an absolute path without a server name, but you can use an absolute
path with a server name (hdfs://namenode/usr/flume/mydata) or a relative path
(mydata) as you may need. The last mandatory parameter (channel) for the HDFS sink
(or any sink) specifies the name of the channel that it will be reading from:

 s_agent.sinks.sink1.channel=ch1

 This tells the sink1 sink to read events from the ch1 channel. For a complete
listing of sink properties, please refer to https://flume.apache.org/FlumeUserGuide.
html#flume-sinks .

 Implementing Log Consolidation Using Flume
 Earlier in this section, I discussed Flume architecture and also discussed sources and
sinks briefly. That will help you understand how Flume can be used for data transfer.
To enhance that understanding and illustrate how you can perform aggregation and
consolidation using Flume, I will now talk about a brief working example. Since Flume is
used extensively for consolidating audit and other Hadoop component logs, I will use that
as an example.

 My objective for this example is to set up agents on each of my source servers and
set up an agent on my target server (within my Hadoop cluster) used for collecting or
consolidating logs. Subsequently, I will demonstrate setup of a source server (since
that setup can be replicated for as many sources as you need) and the target server,
each of which with its own configuration file. I have installed Flume on all my source
servers and my Hadoop cluster. Here’s the source agent configuration file with key
entries specified:

 ## SOURCE AGENT ##
 ## configuration file location: /etc/flume/conf/flume-src.conf
 ## START Agent: /etc/flume/bin/flume-ng agent -c conf -f conf/flume-src.conf
-n s_agent

 ## exec-source
 s_agent.sources = MyServer
 s_agent.sources.apache_server.type = exec
 s_agent.sources.apache_server.command = tail -f /etc/httpd/logs/access_log
 s_agent.sources.apache_server.batchSize = 1
 s_agent.sources.apache_server.channels = memoryChannel
 s_agent.sources.apache_server.interceptors = itime

 ## timestamp-interceptor
 s_agent.sources.apache_server.interceptors.itime.type = timestamp

 ## memory-channel
 s_agent.channels = memoryChannel
 s_agent.channels.memoryChannel.type = memory
 s_agent.channels.memoryChannel.capacity = 100

https://flume.apache.org/FlumeUserGuide.html#flume-sinks
https://flume.apache.org/FlumeUserGuide.html#flume-sinks

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

203

 ## Send to Flume Collector
 ## avro-sink
 s_agent.sinks = avro_sink
 s_agent.sinks.avro_sink.type = avro
 s_agent.sinks.avro_sink.channel = memoryChannel
 s_agent.sinks.avro_sink.hostname = 10.243.169.122
 s_agent.sinks.avro_sink.port = 4545

 As you can observe from this configuration, the source server is called MyServer .
The command used for data capture is the Linux tail command. Log entries are held
in memory (channel memoryChannel) instead of a file. Interceptors are used for filtering,
and here, the interceptor itime uses timestamp to determine which entries are new. The
source agent then sends the log entries to a corresponding Flume agent for collection
(located on my Hadoop cluster—the IP address corresponds to my network’s external IP
address). The target server has a corresponding configuration file set up as the following:

 ## TARGET AGENT ##
 ## configuration file location: /etc/flume/conf/flume-col.conf
 ## START Agent: flume-ng agent -c conf -f /etc/flume/conf/flume-col.conf -n target

 ## avro-source
 target.sources = AvroIn
 target.sources.AvroIn.type = avro
 target.sources.AvroIn.bind = 0.0.0.0
 target.sources.AvroIn.port = 4545
 target.sources.AvroIn.channels = mc1

 ## Channels ##
 ## Source writes to a channel for one sink
 target.channels = mc1

 ## memory-channel
 target.channels.mc1.type = memory
 target.channels.mc1.capacity = 500

 ## Sinks ##
 target.sinks = LogConsolidator

 ## Write to HDFS
 ## hdfs-sink
 target.sinks.LogConsolidator.type = hdfs
 target.sinks.LogConsolidator.channel = mc1
 target.sinks.LogConsolidator.hdfs.path = /user/flume/MyData/%{log_type}/%y%m%d
 target.sinks.LogConsolidator.hdfs.fileType = DataStream
 target.sinks.LogConsolidator.hdfs.writeFormat = Text
 target.sinks.LogConsolidator.hdfs.rollSize = 0
 target.sinks.LogConsolidator.hdfs.rollCount = 10000
 target.sinks.LogConsolidator.hdfs.rollInterval = 600

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

204

 Note that Apache AVRO is the file format that’s being used for transmitting the
data, and Flume is listening on port 4545 (since the source agent is sending data to
port 4545). The sink collector channel mc1 writes file entries to HDFS. The maximum
number of events (log entries in this case) Flume will store in this channel (log entry
persistence) is 500. What this means is that if the target server crashes and more than 500
log transactions are queued, only 500 transactions will be saved—unless you can clear the
channel (by writing the transactions to HDFS). This limit can be increased (by changing
the value for parameter target.channels.mc1.capacity), if you have enough memory or
disk space available.

 As a last step, I need to start Flume agents on source servers as well as my target
Hadoop cluster. On source servers:

 $ /etc/flume/bin/flume-ng agent -c conf -f conf/flume-src.conf -n s_agent

 And on my target Hadoop cluster:

 $ /etc/flume/bin/flume-ng agent -c conf -f /etc/flume/conf/flume-col.conf -n
target

 You can add more sources and install Flume agents to send the files to your target
cluster. Flume doesn’t perform any transformations, but you can use Linux shell utilities
or programming languages like Python or Scala to apply transformations to source data
as you need.

 Summary
 The Hadoop world and the Big Data arena are in a very dynamic period, and new Apache
components (as well as priced solutions) are added almost weekly. Many of these
solutions focus on analytics. Some talk about real-time analytics, others provide textual
and sentiment analysis. There are analytics solutions that even analyze social media data
in other languages (like Chinese or German or Spanish). Then there are data-discovery
solutions that categorize and mask sensitive data or create metadata for your data. There
are, however, no additions to the Apache repertoire for ETL processing. There are a few
priced solutions available, but they don’t add enough value to spend money and time
(for retraining your resources).

 Streaming analytics is gaining a lot of popularity, and Kafka, Storm, Spark, and
Samza are used extensively. That’s the reason I have discussed them briefly, but there
is still a huge dependence on Sqoop and Flume for ETL. The newer versions of these
components are adding useful features, and it would be good to see them performing
some real transformations in addition to data import or export. Meanwhile, due to the
maturity of these components, large amounts of prebuilt solutions are available, and new
plug-in connectors for Sqoop are added regularly.

 It will help you to do some web research for your ETL requirements, if you plan to
use Flume, Sqoop, or even Kafka, Spark, and Storm.

CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

205

 Of course, you need to be careful and not get carried away by the Spark-mania since
Spark is developed using Scala and there are a lot of issues that users are discovering with
time. Also, to put things in perspective, Scala has 0.5% market saturation (about as much
as Lisp), compared to 21.5% for Java. In fact, with the introduction of native functional
programming constructs for Java (with release 1.8), there are no advantages for using
Scala. Add a huge number of transitive dependencies that Spark (and Scala) introduce
(compared to other alternatives), and it’s not an attractive proposition anymore. Since
developers need to master all these dependencies to gain a good working understanding
of Spark, there are very few true experts available in the market. Spark Python is also a
popular option now (since it’s as fast as Scala), and more data scientists are comfortable
using it.

 So, what are the alternatives? Apache Ignite, Apache Drill, Apache Kylin, Apache
Geode, and Apache Beam are all good alternatives. If you are interested in processing
streming data, you should review these components.

 PART IV

 Transitioning from
Relational to NoSQL
Design Models

209© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_9

 CHAPTER 9

 Lambda Architecture
for Real-time Hadoop
Applications

 Some time back, I was at IBM Global Services interviewing candidates for a DBA position.
I asked candidates about the paramount task they would perform as a DBA at a client
site. I expected production backups as an answer, and only one out of six candidates
answered correctly. A simple task and yet overlooked by most. Curiously, absence of a
well-defined process for backing up data is what ultimately led Nathan Marz to one of the
most talked about architectures for Big Data. By his own admission (in his book Big Data:
Principles and Best Practices of Scalable Realtime Data Systems (Manning, 2015), Nathan
overlooked backing up data before performing routine maintenance work and, since the
maintenance involved deleting data, set the project back several weeks by accidentally
deleting some important data. That experience apparently shaped his views about how
a system should be architected. It made him realize that the new architecture should not
only be tolerant to machine failure, but to human mistakes as well.

 The Lambda architecture (which Nathan designed) focuses on immutable data
and batch computations, as opposed to incremental computation. The basic premise of
Lambda is that incremental computations and updates add complexity to processing and
thereby impact performance. The architecture can be simplified and made more efficient
by avoiding (or at least reducing) incremental updates. Data immutability is provided
by building a batch layer (without modifying the master dataset) that caters to user
queries and data needs. There is also a serving layer to bring additional efficiency to data
distribution.

 The final layer (speed layer) is the only one that performs incremental computations
to get the latest modifications to the data after the batch layer was computed. This way,
the volume of data that’s involved in incremental computation is low and the overall
performance impact minimal. Query responses are computed using a combined data set
(a union of data from the batch layer and the speed layer).

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

210

 You can see that this architecture simplifies a number of tasks. Adding new features
is easy because it may involve adding processing (queries) or at the most new views
(enhancement to the batch layer). Recovery from human mistakes is easily possible
because you can rebuild views from batch layer or speed layer as required. Performance
optimization can be achieved easily as well, by tuning the batch layer or indexing views
as necessary. Finally, this architecture is generic enough to be applied to any data-
processing environment.

 This is just a brief introduction to Lambda, but you can see how useful this
architecture can be for designing real-time or near real-time systems using NoSQL
databases. Add the well-known benefits of Hadoop (fault tolerance, distributed
computing, low cost, performance, scalability) to this solution, and you can use this
architecture to design an efficient, cost-effective, and high-performance real-time system.

 The Lambda architecture has the following objectives:

• Processing should leave (base) data unchanged and build an
access layer (tuned for user queries) enabling easy recovery from
human errors.

• Processing should be performed asynchronously, ahead of time
(of data access) and in a batch mode,

• Incremental computations should be reduced to a minimum (or if
possible eliminated).

 Now let’s discuss the layers of Lambda architecture in detail and also how you can
build a good real-time system using it.

 Defining and Using the Lambda Layers
 In the previous section, I discussed the origin and philosophy behind Lambda
architecture. I also briefly mentioned the layers or components of Lambda and their
purpose. In this section, I discuss these in detail and also explain how they can be
implemented for real-world scenarios.

 These layers are logical, or at a conceptual level. When implementing them, the
NoSQL databases you need to use are physical and have their own shortcomings—if used
in isolation. It is good to understand their strengths (and weaknesses) while using them for
your implementation. For example, a columnar database like Cassandra can offer a high
throughput but offers a very limited data model (compared to RDBMS). So, there is work
involved in adapting your relational schema to it. I discuss this transition in Chapter 8 , and
as you have seen, you need to complete several tasks for a successful transition.

 Another thing to note is the mutability of datasets associated with any NoSQL
databases when used in isolation. However, when these NoSQL databases are used as a
part of Lambda architecture, the total solution easily overcomes mutability and is human
fault tolerant. Let’s see how that happens. I’ll start with the first layer—the batch layer.

http://dx.doi.org/10.1007/978-1-4842-1287-5_8

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

211

 Batch Layer
 Latency is a common issue encountered while dealing with huge datasets. Distributed
processing mechanisms like MapReduce or YARN may try to minimize it, but considering
the use of these huge datasets for analytics and the complex processing involved, the
total time used for the processing is not acceptable most of the time. As a result, either the
processing needs to be divided in smaller units (which may not be possible every time)
or possible user queries are limited in their scope. Lambda architecture tries to remedy
this situation by performing precomputations on the data (termed master data), based
on anticipated queries. The technique involves building views (and indexing them) that
may possibly support most of the user queries or read access to data. Since these views
are computed from large datasets, they take time to build and therefore this operation
is performed asynchronously or in batch mode . These preemptive views form the batch
layer or first layer of Lambda architecture.

 I will discuss how these views are built using the master data, but first I’ll talk about
designing and creating the master data set (that you need to use for your batch layer).

 Designing Your Master Data
 Considering all possible scenarios, either you may need to re-architect (or migrate)
an existing RDBMS-based application to NoSQL (in case near real-time queries are
required) or you may be designing a brand new NoSQL-based system with a need
for near real-time queries. Steps to follow are similar and start with the logical model
discussed in Chapters 2 and 3 .

 It may seem odd to construct a logical data model for NoSQL implementation, but as
explained in Chapter 3 , there are several compelling reasons for it. Absence of modeling
tools and techniques for NoSQL modeling is a major reason. Another reason is that the
procedure for analyzing a business process and establishing a model for capturing data
(generated by it) remains almost the same. What changes is the final representation of the
model and the way you store it. Nathan Marz proposes a “fact-based” model for holding
the master dataset.

 Fact-Based Model

 To start with, let’s define data as information that can’t be derived from any other
information. For the fact-based model, data is deconstructed in fundamental units called
 facts . Fact data is immutable or not updatable. So, any updates to data result in addition
of a new data row (or unit) that’s differentiated using a timestamp. This is to ensure that
information (or history, in conventional terms) is not lost. Data immutability has two
important advantages:

• Human-fault tolerance : With a mutable data model, any faulty
or undesired data modifications can overwrite good data
permanently and can’t be recovered. With an immutable model,
bad data can simply be deleted without any adverse effects.

http://dx.doi.org/10.1007/978-1-4842-1287-5_2
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://dx.doi.org/10.1007/978-1-4842-1287-5_3

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

212

• Simplicity : Mutable data models need the data to be indexed for
speedy retrieval and updates. With an immutable data model,
indexing is not needed since you simply append new data to your
master dataset. This simplifies storing master data.

 So, how are “facts” generated from data and how are they made immutable? Let me
discuss this concept using an example. DataScourerNinjas.com has a very interesting
business model. It procures and tracks information about thousands of corporations
and sells it to companies developing software. The information is useful for software
manufacturers in targeting these corporations for specific software that they develop.
Figure 9-1 gives a peek into the type of data DataScourerNinjas gathers:

Corporation
Business
category

Business
details

IT
strength

Customer
support
strength

Yearly
revenue

Profit
last
year

Payroll
software
or vendor

Helpdesk
software
or vendor

Toyota motors Automobile Sedans, SUVs,
Minivans

5000 2000 $70 Billion $3 Billion ADP Zendesk

Accenture Consulting Management
and Technical
consulting

3000 500 $32 Billion $3 Billion Custom Salesforce

General Electric Energy Electrical
distribution,
Electric motors

10,000 2000 $148 Billion $15 Billion ADP SAP – CRM

 Figure 9-1. Potential corporate software sales targets (mutable information)

 Consider a situation where a data issue is detected with one of the entries, Profit
last year , (for all corporations) and all entries for another corporation. The data is not
reliable and needs to be collected again (partially or completely). Or, consider a scenario
where the values need to be recorded for a corporation for last six months (since that’s
when it “qualified” for DataScourerNinjas to track information for it). Following are the
issues with this data in these situations:

• It’s not possible to know that data is collected in parts at different
times.

• It’s not possible to know what the past or historical values were
(since part of data is overwritten).

 This is an example of mutable schema. When data changes, it overwrites the existing
data. Also, since parts of data might be more dynamic (changing often) than others,
ideally it should be possible to maintain history of all the parts of data separately. This is
not possible with mutable schema. So, how can the preceding design issues be resolved?
Lambda has a possible solution: fact-based schema. How can the preceding mutable
schema be represented as an immutable fact-based schema? Look at Figure 9-2 .

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

213

 The idea really is very simple. First, separate the “facts” that can change
independently (of each other) and then track them (separately). Consider the example
just given. For a corporation, strength of customer support can increase temporarily if
there is an issue that draws a lot of customer reaction. But that may not impact the payroll
software that they use or the strength of their IT. So, it’s important to separate these facts
and maintain a separate history. How do you achieve immutability? Every time there is
a change in value, a new row is added along with the timestamp (corresponding to the
date/time when the value change occurred). The values may change at different times,
but there is a way to know when each of these changes occurred.

 You may observe that the column Corporation is included in all the datasets. The
reason is that it is used an identifier to uniquely identify the data (across the facts). In this
case, it identifies the corporation the data refers to. However, it is not a unique identifier,
since the new records that are added will only have the timestamp different. So, the
unique identifier will be Corporation and Timestamp. Let’s look at how this model can
be used to support facts about the information tracking system I am using as an example
(Figure 9-3).

Toyota motors 5000 3500 8/1/2015 09:30:13

Accenture 3000 2900 9/2 /2015 10:00:23

General Electric 10,000 6000 9/13/2015 10:05:11

Toyota motors

Corporation

CorpBusDetails

CorpHelpDeskDetails

CorpFinDetails

CorpPayrollDetails

CorpITDetails

CorpCustSupDetails

Business
category

Business
details Timestamp

Automobile Sedans, SUVs,
Minivans

8/1/2015
09:30:13

Accenture Consulting Management
and Technical
consulting

9/2 /2015
10:00:23

General Electric Energy Electrical
distribution,
Electric motors

9/13/2015
10:05:11

Toyota motors 2000 1500 8/1/2015 09:30:13

Accenture 1000 600 9/2 /2015 10:00:23

General Electric 2000 1700 9/13/2015 10:05:11Toyota motors Zendesk 8/1/2015 09:30:13

Accenture Salesforce 9/2 /2015 10:00:23

General Electric SAP – CRM 9/13/2015 10:05:11

Toyota motors $4 Billion $70 Billion 1/1/2015 0:00:01

Accenture $3 Billion $32 Billion 1/1 /2015 00:00: 01

General Electric $15 Billion $148 Billion 1/1/2015 00:00:01
Toyota motors $3 Billion $50 Billion 1/1/2014 00:00:01

Accenture $2 Billion $22 Billion 1/1 /2014 00:00: 01

General Electric $10 Billion $138 Billion 1/1/2014 00:00:01

Toyota motors ADP 8/1/2015 09:30:13

Accenture Custom 9/2/2015 10:00:23
General Electric ADP 9/13/2015 10:05:11

Corporation

Corporation

Corporation

Corporation

Corporation

Helpdesk software
or vendor

Cust Support
strength

Males Timestamp

Timestamp

Timestamp

Timestamp

Yearly
revenue

Profit last
year

IT strength CollegeGrads Timestamp

Payroll software
or vendor

0

 Figure 9-2. Fact-based immutable schema

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

214

 Consider this fact: Accenture uses Salesforce as help desk software as of 9/2/2015
10:00:23. It is eternally true and is immutable—since a new fact will be added with a
corresponding timestamp (in the future), leaving this fact untouched (or unmodified).

 Unlike a relational database, where you need to worry about the underlying
relations, interconnectivity of data, and update performance, you can keep on adding
millions of facts—all time stamped for effective batch processing without worrying about
any updates. Also, because there is no incremental processing involved, you don’t need to
worry about performance. In the next section, I discuss how this fact-based model is used
for batch processing.

 Applying a Fact-based Model to Relational Applications

 Although Lambda defines fact as a fundamental unit of data, in the case of real-world
systems with structured data, a fact can be an atomic unit of data constituted by a specific
group of columns and can be identified using a unique identifier (primary key), since
the non-key columns are only dependent on the key columns for identification. So, in
relational terms, a fact can be a table in the third normal form. (I am sure Nathan didn’t
have this interpretation in his mind while designing Lambda, but it’s surely interesting to
see how it can be applied to relational systems, albeit with some modifications.)

 Consider a simplistic sales management system. A retailer sells a number of products
and registers the sales in a table, shown in Figure 9-4 . The sales data is denormalized and
“facts” (product, customer, and location metadata in this case) are mutable. Why is this
data mutable? Well, think of a situation where customer JCPenney decides to move to
another location or the retailer decides to stock the item Men’s Striped Cotton shirt
at a different warehouse. First, it will be difficult (and slow) to update all the rows with
appropriate metadata. Second, information or history will be lost after the updates, since
there is no way to specify the date/time of modification.

General Electric has IT strength of 10,000
(as of 9/13/2015 10:05:11)

Accenture uses Salesforce as Helpdesk software
(as of 9/2/2015 10:00:23)

Toyota Motors uses ADP as a Payroll vendor
(as of 8/1/2015 09:30:13)

Toyota Motors has Customer support strength of 2000
(as of 8/1/2015 09:30:13)

Information
Tracking system

Facts are atomic and therefore
can’t be divided any further into
meaningful components

Facts are time stamped to
facilitate immutability and are
eternally true

 Figure 9-3. Facts represented by immutable tracking system schema

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

215

SalesID SalesDate TotalSales Product Ptype PLocation PPrice Customer
Name

Customer
Address

Customer
Type

102525525 8/1/2015 09:30:13 $3,450 Men’s Striped
Cotton shirt
(large)

Men’s
cotton
garment

1234 Lemont road
Darien IL 60561

$23 JCPenney 1 Oak St.
Darien IL 60561

Corporate

126262666 9/2 /2015 10:00:23 $7,740 Men’s Denim
shorts
(Medium)

Men’s
denim
garment

1649 Halstead St.
Chicago, IL 60604

$18 Kohls 21 Maple St.
Naperville IL
60563

Corporate

137737373 9/13/2015
10:05:11

$9,966 Women’s
solid cotton
skirt (black)

Women’s
cotton
garment

1234 Lemont road
Darien IL 60561

$33 Kohls 21 Maple St.
Naperville IL
60563

Corporate

146366467 10/1 6/2015
11:29:16

$3,120 Gray Woolen
scarf

Women’s
woolen
accessory

1234 Lemont road
Darien IL 60561

$10 Old Navy 54 Argyle St.
Westmont IL
60559

Corporate

136669735 10/1 3/2015
12:09:18

$9,656 Women’s
woolen skirt
(polka dots)

Women’s
woolen
garment

1649 Halstead St.
Chicago, IL 60604

$34 Old Navy 54 Argyle St.
Westmont IL
60559

Corporate

136566656 10/20/2015
14:06:41

$2,160 Men’s gloves
(Black
leather)

Men’s
leather
accessory

1649 Halstead St.
Chicago, IL 60604

$20 JCPenney 1 Oak St.
Darien IL 60561

Corporate

 Figure 9-4. Denormalized mutable sales schema

 Can this data be represented using a fact-based model (especially considering the
modified definition of a fact)?

 Follow these steps to convert this schema to an immutable fact-based schema:

• Extract atomic logical groupings

• Add timestamp to each grouping

 As you can observe in Figure 9-5 , I have added identifiers for each of the tables, and
the sales table doesn’t contain any metadata any more. Metadata is moved to separate
tables, but to make it immutable, you need to add a timestamp column. Then each row
will reflect the values as of a specific date/time, and information will not be lost. The
immutable data will now look as shown in Figure 9-5 .

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

216

 Another issue to consider is uniqueness of data. Because it’s possible to generate
a new row for any changes to a data row, the unique identifiers (ID columns such
as CustomerID , LocationID , and others that I defined) will not be unique unless
supplemented by a timestamp. Lambda recommends adding a timestamp column for
every fact, and for our example, a fact is identified by each of the data tables. Complete
change history is available with this approach as well, since we assume that a new row
will be added if any of the column values change.

 Immutability of this schema also makes it eternally true . In fact, any data row
provides the version of truth for the contained information as of the date/time of the
associated timestamp. I’ll now demonstrate how this model can be used to support facts
about the sales management system that I am using as an example.

 Figure 9-6 shows examples of facts about the sales management system and also
demonstrates two important properties of facts: atomicity and eternal truth .

Sales Location

Product

1 Men’s Striped
Cotton shirt (large)

Men’s cotton
garment

1 $23 8/1/2015 09:30:13

2 Men’s Denim
shorts (Medium)

Men’s denim
garment

2 $18 9/2 /2015 10:00:23

3 Women’s solid
cotton skirt (black)

Women’s cotton
garment

1 $33 9/13/2015 10:05:11

4 Gray Woolen scarf Women’s woolen
accessory

1 $10 10/1 6/2015 11:29:16

5 Women’s woolen
skirt (polka dots)

Women’s woolen
garment

2 $34 10/1 3/2015 12:09:18

6 Men’s gloves
(Black leather)

Men’s leather
accessory

2 $20 10/20/2015 14:06:41

Customer

1 JCPenney Corporate 1 Oak St. Darien IL 60561 8/1/2015 09:30:13

2 Kohls Corporate 21 Maple St. Naperville IL 60563 9/2 /2015 10:00:23

3 Old Navy Corporate 54 Argyle St. Westmont IL 60559 10/1 3/2015 12:09:18

1 1234 Lemont
road

Darien IL 60561 8/1/2015
09:30:13

2 1649
Halstead St.

Chicago IL 60604 9/2 /2015
10:00:23

102525525 8/1/2015 09:30:13 $3,450 1 1

126262666 9/2 /2015 10:00:23 $7,740 2 2

137737373 9/13/2015 10:05:11 $9,966 3 2

146366467 10/1 6/2015 11:29:16 $3,120 4 3

13666973 5 10/1 3/2015 12:09:18 $9,656 5 3

136566656 10/20/2015 14:06:41 $2,160 6 1

SalesID SalesDate
Total
Sales

Product
ID

Customer
ID Location

ID

Location
ID

Unit
Price

Product
ID

Customer
ID

CName CType
CStreet
Address

CCity CState CZip

PName PCategory

Street
Address

City State Zip
LTime
stamp

PTimestamp

CTimestamp

 Figure 9-5. Immutable version of sales schema

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

217

 Facts are atomic because it’s not possible to divide them further into meaningful
components. For example, the fact that JC Penney is a customer (since it bought items)
can’t be divided further, since parts of that fact won’t be meaningful in the context of sales
management system (or even otherwise). An important consequence of being atomic
is non-redundancy of information across distinct facts. The timestamp provides a time
context since a fact becomes true (or starts existing) at a particular time and then remains
 true eternally after that. Both these properties make the fact-based model a simple and
expressive one for your dataset.

 Last, an important point to note about this example of a sales management system
is that it uses a complex fact as opposed to a columnar fact suggested by Lambda
architecture. A columnar fact (adding a timestamp to maintain the change history of
a column) may be suitable in the context of a system with few data components, but it
would be impossible to implement for complex relational applications, and my focus
is implementation of Lambda architecture to re-architect relational systems or design
complex systems with a large number of data components.

 If you are familiar with data warehouse systems, you may also draw similarities with
type 2 dimensions that maintain history for an attribute or column. To summarize, the
fact-based schema offers the following benefits:

• Time-specific queries : Data can be queried for any time-specific
historical values that are supported by your dataset. For example,
if you need to know total sales for Kohl’s between September 1,
2015, to October 30, 2015, or products available as of September
15, 2015, then it is easily possible and supported.

• Human-fault tolerance : This is achieved by simply removing or
deleting erroneous facts. Valid facts are unaffected.

Sales management
system

JCPenney is a new customer
(as of 8/1/2015 09:30:13)

Customer Old Navy bought 312 Gray Woolen scarfs
(as of 10/16/2015 11:29:16)

Product Men’s Striped Cotton shirt (large) available
at location 1234 Lemont road, Darien, IL 60561

(as of 8/1/2015 09:30:13)

Location 1649 Halstead St, Chicago, IL 60604 available
(as of 9/2/2015 10:00:23)

Facts are atomic and therefore
can’t be divided any further into
meaningful components Facts are time stamped to

facilitate immutability and are
eternally true

 Figure 9-6. Facts represented by immutable sales schema

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

218

• Advantages of normalized and denormalized forms : This key
advantage is because of the structure of the Lambda architecture.
The fact-based model is normalized and used for data storage.
Data updates are handled by inserting new rows with the latest
timestamp. As you know, queries don’t perform well for a
normalized model. Therefore, data storage and query-processing
layers are separated, and queries are supported by denormalized
views, built as a part of the batch layer. So, you keep your data in
normalized and denormalized forms and can receive the benefits
of both.

 Having designed your schema, you can use techniques discussed in Chapter 8 to
adapt it for NoSQL solution appropriate for your environment and use it for data storage.
The fact-based model is a conceptual or logical model and can be implemented using an
appropriate NoSQL solution. In the next section, I discuss building denormalized batch
views for query processing.

 Building Batch Views
 The purpose for building batch views is to facilitate performance for user access (such
as queries, reporting, and so on). Any user interaction with a huge dataset (mostly the
case where NoSQL is used) needs a large amount of resources, can still not perform well
(slow), and may even fail due to lack of resources. If joins and aggregations are performed
in advance and stored as data objects, any queries that use these data objects (instead of a
master dataset) might perform better. The precomputed data can be indexed to speed up
reads and random seeks (which Hadoop and NoSQL are not very good at). This concept
is very similar to the RDBMS materialized views that can be indexed. These precomputed
views or batch views constitute the batch layer for Lambda architecture.

 Designing Batch Views for Your Fact-based Model

 While designing a batch view, you need to focus on your prime objective: any queries that
need to be executed against your master dataset should now execute through a function
on the (newly designed) batch view instead of the whole dataset. That way, the indexed
batch view can facilitate a quick retrieval of values you need. You can create multiple
batch views for your dataset to cover all the functionality required by your application.
Although, the more batch views you create, the longer it will take to rebuild your batch
layer. So, you have to maintain a balance (between number of views and available
processing time) and decide on an optimal number of views to match your processing
power, priorities (in terms of query frequencies), and processing time for rebuild.

 One important point to note is that parallelism for data retrieval and processing is
always guaranteed if you use a Hadoop-based NoSQL solution (due to the distributed
nature of Hadoop). There are, of course, other benefits of using HDFS for storing your
master dataset as well as the batch views.

http://dx.doi.org/10.1007/978-1-4842-1287-5_8

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

219

 I’m going to look at how batch views can be built for applications we designed fact-
based models for (in the previous section): the information tracking system and the sales
management system. The information tracking system is designed by DataScourerNinjas
and used by their potential customers, who are software companies that design and sell
software offering specific functionality (payroll, customer relationship management, and
so on).

 From their experience, most of the software companies look for potential customers
who have been profitable for last five years and have a large customer support staff (at
least average of 1,000) for last five years. Some of the companies look for short-term
profitability of the last three years but insist on dealing with companies that have IT
full of college graduates (at least 60%) for the last three years. Also, since these software
products are specific to an industry, it is important to focus on companies in a specific
business category. Considering these factors, they designed the following batch views:

• Companies profitable for last five years (included columns:
 Corporation , Profit last year)

• Companies that have an average customer support staff of 1,000
(or more) for the last five years

• Companies that have IT with at least 60% of college graduates (on
average) for the last three years

 One more thing to consider while designing batch views is their size. In some cases,
if your dataset is really huge, the batch views will be huge as well and you may need to
think about breaking them up further. For example, consider the information tracking
system under discussion. Assume that there is a huge boom that results in thousands of
new companies, and DataScourerNinjas is successful in getting data for them. If you have
your batch views by month, the volumes may still be large for quick processing of queries,
and you may want to redesign your batch layer with views by a week or even a day. That
will increase your (total) processing time (since you will only process weekly or daily,
as opposed to a month), but will help with performance and also reduce size (as well as
processing) for your speed layer.

 Implementing Batch Views

 A few things to consider about the batch view designed in the last section. This view can
easily be implemented using HDFS for storage, and any of the available NoSQL solutions
such as HBase, Cassandra, or MongoDB. Alternatively, you can leave the data in HDFS
and use Hive for metadata management and MySQL for holding the metadata. Nathan
suggests that you write your own functions and abstractions using Java or any other
language of your choice, because using packaged NoSQL solutions adds complexity and
can affect performance.

 I will use Hive for demonstrating the concept (of designing and building batch
views), for several reasons. Writing code for MapReduce has its own limitations, keeping
in mind the various distributed engines that are available on a regular basis (at least in
the recent past). Besides, I don’t expect everyone using this book to be adept at Java or
C# programming. And this chapter is more about understanding the concept of Lambda
architecture rather than writing code that you can use in a production environment.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

220

 Also, for appending vertical or time-based data, Nathan has developed a Java-based
application called Pail. You can think of Pail as a container for HDFS. The Thrift (the
interface that Nathan uses for serialization) schema creates Java objects. These Thrift
Java objects are serialized and deserialized by implementing the PailStructure interface
and also useful in implementing vertical partitioning. These are advanced topics that use
Java programming—therefore, I have preferred a more generic approach (that may be
easier to understand to a wider audience) involving using Hive partitions (daily, weekly,
or monthly as your application may warrant) to append new data. I have used Hive
partitions to demonstrate the concept of how new data can be managed for your master
dataset and processed in the batch views that are created.

 You can assume that a memory-based database solution is used (such as VoltDB,
Apache Geode, or Ampool) by the web interface to hold the data for a day and then
is transferred nightly to HDFS. So, I will create the four Hive tables that will hold the
master data for this system. This is a first step required for implementing the batch views
discussed earlier. I have also used a timestamp for partitioning the tables.

 If you need to perform transactions or need ACID support, you need to perform
some configuration changes for Hive before you create the new tables. As you may be
aware, CRUD (create, read, update, delete) operations are supported in Hive from 0.14
onwards. To enable support for CRUD operations, make sure your hive-site.xml file has
the following parameters configured:

 hive.support.concurrency – true
 hive.enforce.bucketing – true
 hive.exec.dynamic.partition.mode – nonstrict
 hive.txn.manager –org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
 hive.compactor.initiator.on – true
 hive.compactor.worker.threads – 1

 Restart Hive after implementing these configuration changes. Additionally, a
ZooKeeper instance must be up and running when using ZooKeeper Hive lock manager.
Refer to the following links for additional setup details:

 http://zookeeper.apache.org/doc/r3.1.2/recipes.html#sc_recipes_Locks
 https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTrans
actions-LockManager

 Remember, transactions are supported on objects stored using the ORC file format
only. Lastly, you will need to enable support for ACID properties while creating a table
and specify bucketing or key columns (which, by the way, can’t be updated). So, your
 create table statements will need to have the following construct:

 clustered by <key column(s)> into <number of buckets> stored as orc
TBLPROPERTIES ('transactional'='true')

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

221

 I am not using transactional support for my example, and therefore, here’s the code
to create these Hive tables:

 CREATE TABLE CorpBusDetails(
 Corporation STRING,
 BusCategory STRING,
 BusDetails STRING
)
 PARTITIONED BY (AsOf TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

 CREATE TABLE CorpCustSupDetails(
 Corporation STRING,
 CustSuppStrength INT,
 Males INT)
 PARTITIONED BY (AsOf TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

 CREATE TABLE CorpITDetails(
 Corporation STRING,
 ITStrength INT,
 ColGrads INT)
 PARTITIONED BY (AsOf TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

 CREATE TABLE CorpFinDetails(
 Corporation STRING,
 YrlyRevenue BIGINT,
 ProfLastYear BIGINT)
 PARTITIONED BY (AsOf TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

 Note that these tables are stored as files within HDFS, and Hive just holds the
metadata in order to manage data modifications (and manipulation via queries) more
effectively. So, how will new data be added on a daily basis? Using dynamic partitions.
You will need to enable dynamic partitioning for your Hive installation and adjust a few
configuration parameters. Read the details at https://cwiki.apache.org/confluence/
display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts .

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

222

 Any new data can be appended by creating a staging table (pointing at the file
holding new data) and adding the new partition to a table, as follows:

 CREATE EXTERNAL TABLE CorpBusDetails_stg(
 Corporation STRING,
 BusCategory STRING,
 BusDetails STRING,
 AsOf TIMESTAMP
) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"
 LOCATION "/TrackingInfo/CorpBusDetails/staging";

 FROM CorpBusDetails_stg INSERT OVERWRITE TABLE CorpBusDetails PARTITION
(AsOf) SELECT Corporation,BusCategory,BusDetails,AsOf;

 You will notice that the staging table has an additional column and points to
a staging directory (holding the new data) for table CorpBusDetails . The same
principle can be applied for adding new data to tables CorpCustSupDetails and
 CorpProfitDetails . Also, the process of copying new data file to the appropriate staging
directory, creating staging table, and adding the new partition to base table can be
automated and scheduled.

 The next step is creating the batch views. I will first create a table called
 BatchProcHist to maintain history of batch views created:

 CREATE TABLE BatchProcHist(
 ViewName STRING,
 CreatedAt timestamp)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

 Next, I will create the first view: Companies profitable for last 5 years . The easiest
way to determine this is to add the profits for last five years and make sure it’s a positive
integer. Here’s how you can quickly calculate that using a temporary table:

 Create table Profitemp1 as Select ProfLastYear, AsOf, Corporation from
CorpProfitDetails where year(AsOf) <= year(from_unixtime(unix_timestamp()))
and year(AsOf) >= (year(from_unixtime(unix_timestamp())) – 5)

 Create table ProfLFiveView as select Corporation, sum(ProfLastYear) as
ProfLastFive from Profitemp1 group by Corporation having sum(ProfLastYear) > 0

 INSERT INTO TABLE BatchProcHist
 VALUES ('ProfLFiveView', from_unixtime(unix_timestamp());

 As you must have observed, I also wrote a history record to table BatchProcHist after
I created the first batch view.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

223

 The second view involves calculating an average (Companies that have average
customer support staff equal to or more than 1,000 for the last five years). Because you will
need to calculate the up-to-date average for the speed layer, you will need to store the
count of records used for calculating that average as well:

 Create table CustSuptemp1 as Select CustSuppStrength, AsOf, Corporation from
CorpCustSupDetails where year(AsOf) <= year(from_unixtime(unix_timestamp()))
and year(AsOf) >= (year(from_unixtime(unix_timestamp())) – 5)

 Create table AveCS1000View as select Corporation, sum(CustSuppStrength)
as TotalCustSup, count(CustSuppStrength) as CountCustSup,
(sum(CustSuppStrength) / count(CustSuppStrength)) as AveLastFive from
CustSuptemp1 group by Corporation having (AveLastFive >= 1000)

 INSERT INTO TABLE BatchProcHist
 VALUES ('AveCS1000View', from_unixtime(unix_timestamp());

 The temporary tables (Profitemp1 , Profitemp2 , and CustSuptemp1) can be dropped
at this point. They will be created the next time these batch views are rebuilt.

 You can build the last batch view (as an exercise), and additional views can be built
similarly as per functionality that’s required to be supported. As a last step, secondary
indexes need to be created to facilitate speedy retrieval, but that’s done in the serving
layer. Just as an example, for the first batch view designed, the following secondary
indexes will help performance:

• Corporation

• ProfLastFive , Corporation

 Remember that creating secondary indexes involves processing time and disk space.
So, you need to be careful while designing these indexes and optimize their usage. Also,
because indexing the views is a very important step (from performance, disk space,
and processing time perspectives), it will need to be performed by someone with a
good understanding of your data as well as functional needs (analytics and frequently
executed queries). If your indexes do not coincide with your queries, you will experience
performance issues and also waste valuable system resources (and time) building them.

 One important point to note about the batch views is the size and changeability of
your dataset. If your dataset is enormous or really dynamic, the resulting batch views may
be huge or may be missing a lot of new data, and you may have to perform processing
in smaller batches. For example, consider the tracking system example. Assume there
is a sudden boom in the market and a lot of new companies are getting added to the
repertoire of DataScourerNinjas on a weekly basis. If you rebuild your batch views every
month, a lot of new data may have been added in that period that’s not a part of the
batch views (it will be available through speed layer for your queries, but may reduce the
efficiency and speed of the speed layer due to larger volume of records). Therefore, you
may want to rebuild batch views every week instead of every month. This will also keep
your speed layer small and better managed.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

224

 For enormous datasets, you may want to split batch views by week (instead of
month) too, since that will reduce your processing resources and time per view (since
you will only process a week as opposed to a month), but may complicate your retrieval
strategy (since you will need to determine the correct view to query and multiple views if
the duration spans across weeks).

 Last, the obvious question you may have with this approach is about the time or
latency for creating such batch views. Since these views are created from the whole
master dataset, clearly they will use a large amount of system resources, and still the
computing may not complete within the available maintenance window. Even if it does,
they may not have all the data collected by your system, since data might get added while
(or after) these views are computed, and your query results might be outdated by many
hours. How can Lambda provide near real-time results? The answer lies in the next layers
of Lambda and the way they overcome the data latency issue.

 Serving Layer
 The serving layer “serves” the batch views or provides fast access with minimum latency.
Therefore, the serving layer needs to be a specialized distributed database that can host
the batch views and support good performance for random as well as sequential data
access. The serving layer also needs to be capable of quickly swapping a batch view with a
newer version when it is rebuilt by the batch layer, so that user queries can return up-to-
date results. So, it needs to support batch updates.

 The important thing to remember here is that the serving layer swaps the new batch
view rebuilt by the batch layer—not processed incrementally. Lambda architecture
doesn’t perform any incremental processing in the batch or serving layer. There are
several issues with incremental processing. Any incremental processing involves updates,
inserts, and deletes. All these operations involve random writes, since a database needs
to manage space. For example, if a key column gets updated, the record needs to move to
a different page and will involve removal of record from a page and insertion on another
page. The first operation will leave unused space on a page and the second will need
the database server to look for unused space. Wherever enough space is available, the
record will be inserted (of course following some kind of insertion algorithm) randomly.
Similarly when records are deleted, space is available on a page that can be used.

 So, incremental processing creates pockets of unused space and therefore a a need
for online compaction to effectively manage space. This processing consumes valuable
system resources that can otherwise be used for other purposes. Another complexity
added by incremental processing is the need to write atomically and also synchronize
reads and writes so that half-written values are never read. This of course needs to be
implemented through isolation levels and ACID transactions and adds a lot of complexity
to processing.

 Therefore, if incremental processing is not expected, your database server won’t
suffer from the operational burden of managing online compaction or ACID compliance.
To summarize, the following features are expected from the serving layer:

• Ability to host batch views, optimizing latency and throughput

• No need to support random writes but ability to replace batch
views as batch updates

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

225

• Error tolerance (since views can be quickly redeployed from the
batch layer)

• Robustness, predictability, and ease of configuration (as well as
operation)

• Indexing capability for fast retrieval

 One last point to remember about the serving layer is that there is no single
distributed database that can be recommended or used. You need to consider the nature
of your data before deciding on the serving layer, since each distributed (or NoSQL)
database has its own strengths and you need to make sure that it matches your data.

 ElephantDB
 Nathan proposes use of ElephantDB; a database that serves or deploys key-value data
from Hadoop for fast and efficient access. ElephantDB has two major components:

• Library used by MapReduce jobs for creating an indexed key-
value dataset, stored on a distributed file system

• Daemon or background process that can provide a read-only,
random access subset of a deployed dataset

 A cluster of servers that serves a full dataset is called a ring . ElephantDB server
doesn’t support random writes and uses a Thrift interface, making it possible for most of
the languages to easily read from it.

 ElephantDB is not very easy to interface with Hive, and using it requires advanced
programming knowledge. Besides, there are limitations using indexing in ElephantDB,
and it doesn’t provide a SQL interface for querying. Subsequently, I will use SploutSQL
as serving layer since SploutSQL doesn’t need any programming to deploy or server Hive
objects and also provides SQL as query language, making querying easier and eliminating
time in learning a new query language.

 Splout SQL
 Splout SQL is a read-only database and that simplifies its architecture. Here are the
salient features (of its architecture):

• Splout can be installed on a set of commodity hardware machines
to form a cluster. Every machine (or node) runs a DNode service
and optionally a QNode service (there must be at least one QNode
service for a cluster).

• QNodes interface with users via REST API and serve user queries
or receive deploy requests.

• QNodes communicate with appropriate DNode(s) for serving a
query, and the DNode(s) respond back with necessary data set.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

226

• Splout leverages a Hadoop cluster for indexing (as well as
balancing using pre-sampling) the data, and resultant files are
retrieved by the DNodes as part of a data deploy request. You can
sort your data before insertion for contiguity and to minimizing
disk seeks.

• Data is partitioned (as per your need) and distributed across
nodes. Also, queries are restricted to a single partition and
therefore are fast.

• Generation and deployment of data can be simultaneous and
don’t impact each other.

• High availability and scalability is inherited through the use of
Hadoop.

• Data is deployed as a Tablespace , which is a group of tables with a
common partitioning schema.

• For easier management, Tablespaces are versioned, and multiple
Tablespaces can be deployed simultaneously.

• Splout can import data directly from Hive, cascading, or Pig.

• QNodes and DNodes are implemented as Java services.

• Splout uses Pangool for low-level Java Hadoop development and
generates SQLite files used by DNodes for serving data.

 Figure 9-7 summarizes the Splout processing and interfaces.

Source data from
Hive, Cascading or Pig

Splout Hadoop cluster
using Pangool Hadoop API

Client
connection

QNODE QNODE QNODE

DNODE DNODE DNODE DNODE

Client connections with Query,
Deploy or Rollback requests

QNode layer for
interfacing with clients
using REST API

DNode layer for interfacing
with Splout Hadoop cluster
and retrieving data

Number of QNodes can
be configured as per
user traffic

Number of DNodes can
be configured as per
data volume

 Figure 9-7. Splout SQL processing and interfaces

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

227

 To use Splout SQL, you will need to install it. See the instructions at
 http://sploutsql.com/gettingstarted.html . You need to configure Splout after
installation and specify location of jar files as well as your Hadoop installation. After
that, you can start the QNode and DNode services on Splout cluster nodes. If you are
importing data from Hive (as in the example I have used), add Hive conf/ and lib/
folders to the HADOOP_CLASSPATH environment variable:

 export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/conf:$HIVE_HOME/lib/*

 Next, generate tablespaces and tables. For the information tracking information
system in my example, I have created a batch view (as a Hive table). I’ll discuss steps to
serve or deploy it using Splout SQL. First, for creating or generating a tablespace, you
need to use the generate tool. This tool uses a JSON tablespace descriptor as I show next.
You need to specify the input type and the Hive database and table names. Note that you
don’t need to specify input paths, since you have already specified directory for Hive
installation, and therefore Splout can locate the appropriate Hive metastore and retrieve
the necessary Hive tables from the appropriate database. The tablespace descriptor file
can be created in the Splout SQL installation directory:

 {
 "name": "AveCS1000Space",
 "nPartitions": 1,
 "partitionedTables": [{
 "name": "AveCS1000View",
 "partitionFields": "Corporation",
 "tableInputs": [{
 "inputType": "HIVE",
 "hiveTableName": "AveCS1000View",
 "hiveDbName": "TrackInfo"
 }]
 }]
 }

 The information is provided in the file AveCS1000Space.json . The tablespace will be
called AveCS1000Space and currently has only a single table AveCS1000View defined—that
was created earlier in the last section. The database name is TrackInfo and I have chosen
to create one partition for my data. I have used the name Corporation as a partitioning
column, since this column will be a part of almost all the queries.

 It is very important to partition the tablespace correctly becauseit is used for
balancing data before indexing and deploying it. Usually, a frequently used key
column for tables within a tablespace is used as a partitioning key. All the tables within
a tablespace need to use columns of same type as partitioning key. For example, if
tablespace A contains tables Tbl1 and Tbl2 , and if Tbl11 is partitioned by a pair of (string,
int) columns, Tbl2 should also be partitioned by a pair of (string , int) columns.

 Note that when a table is partitioned by a single or multiple columns, Splout
concatenates the value of those columns to form a single string. Therefore, partitioning is
a function of a row, and it is also possible to partition using arbitrary functions (such as a
JavaScript function that takes the last five characters of a field).

http://sploutsql.com/gettingstarted.html

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

228

 Getting back to the deployment, the following command can be executed from
command line to generate the tablespace AveCS1000Space (from the Splout SQL
installation directory):

 hadoop jar splout-*-hadoop.jar generate -tf file:///`pwd`/ AveCS1000Space.
json -o out-TrackingInfo_splout_example

 For performance, you may need to add indexes to your tablespace, and Splout allows
you to add indexes easily. You just need to modify the command used to generate the
tablespace. For example, the following index will help performance:

 TotalCustSup, Corporation

 The following command will add the second index while generating the tablespace
 AveCS1000Space:

 hadoop jar splout-hadoop-*-hadoop.jar simple-generate –it HIVE –hdb
TrackInfo –htn AveCS1000View -o out-TrackingInfo_splout_example -pby
Corporation -p 1 -idx "TotalCustSup" -t AveCS1000View -tb AveCS1000Space

 I have not included the column Corporation since it is a partitioning column and
is already indexed. The -idx option just adds more columns to the index. Also, note
that I am using a different generator (simple-generate) instead of the one used earlier
(generate), and therefore the command line options are different. There is no json
configuration file and therefore, all the configuration (such as Hive database, table name,
partitioning column, and so forth) has to be specified with the command.

 A major disadvantage of using simple-generate instead of generate is that you can
only have a single table in your tablespace, but that’s usually the case. For the tracking
information system example, you will need to generate four separate tablespaces for four
batch views (or Hive/Splout tables)—if you need to supplement the indexes. If not, then
you can simply create a single tablespace with all four tables in it (using the generate
generator instead of simple-generate).

 After the tablespace is generated successfully, deploy it as follows:

 hadoop jar splout-hadoop-*-hadoop.jar deploy -q http://localhost:4412 -root
out-TrackingInfo_splout_example -ts AveCS1000Space

 Note that localhost is the host QNode (to which the client is connected) is running
on, and localhost will be automatically substituted by the first valid private IP address at
runtime (as specified in the configuration file).

 Once a tablespace is deployed, you can use it in any of your queries. For example,
if you need to populate a web app using information for Toyota Motors, you can use the
REST API, as follows:

 http://localhost:4412/api/query/ AveCS1000Space?sql=SELECT * FROM
AveCS1000View;&key='Toyota Motors'

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

229

 I have demonstrated how Splout SQL can be used successfully to serve your batch
views for use by your applications. Next, I talk about how you can access data that’s not
yet processed by the batch layer and include it in your query results.

 Speed Layer
 You have seen that the latency of the batch layer makes it difficult to have up-to-date or
near real-time data accessible for your queries. The purpose of the speed layer is to make
that data available without any delays. In terms of functionality, a speed layer is very
similar to the batch layer (since it also produces views based on master data too). The
difference is that the speed layer only processes new or recent data (not yet processed by
the batch layer), whereas the batch layer uses all the data for computing the views.

 Another difference is that the batch layer updates a view by recomputing (or
rebuilding) it, whereas the speed layer performs incremental processing on a view
and only processes the delta (or new) transactions that were performed after the
last time incremental processing was done. So, if your incoming data transactions
are timestamped, and you extract them from your master dataset, then depending
on whether a record was modified or added, you can modify your speed layer view
accordingly.

 Considering the differences in speed layer processing (compared to batch layer),
you will realize that the architecture for the speed layer will differ depending on whether
the speed layer (or near real-time) views are updated synchronously or asynchronously.
What I mean by a synchronous update is applying any updates to master data directly to
the speed layer views. Since a cluster will always have a fixed or predetermined capacity
(for handling updates or any other dat-intensive operations), it can get overloaded with
requests during peak usages. This can affect performance and functionality (if some
requests are denied due to resource unavailability). In contrast, asynchronous update
requests are placed in a queue with the actual updates occurring at a later time. The delay
in applying asynchronous updates would depend on a lot of factors, such as volume of
updates, processing resources required (and available), functional need for near real-
time data, and so on, but it does offer an effective way to accommodate larger number of
requests and is not affected by peak usage spikes.

 Asynchronous updates provide many benefits, such as processing multiple messages
from the queue and increasing throughput and handling varying load by buffering
additional requests (till the load reduces and processing resources are available). You
don’t have these benefits with synchronous updates because there is no mechanism
available to control the update volume and thus it can easily overload and crash your
database system or lead to dropped requests, timeouts, and other errors that may disrupt
your application.

 The decision to use synchronous and asynchronous updates can also be based on
the type of processing that your application performs. For example, synchronous updates
can be used for transactional systems with user interaction that requires coordination
with the user interface and completion of request needs to be guaranteed. Asynchronous
updates can be more useful for analytics applications or applications that focus more on
complex computations and aggregations rather than interactive user input. Looking at
the benefits of asynchronous processing, I would suggest using it unless you have a very
specific need for incorporating data at real-time in your speed layer views.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

230

 To summarize, you will need the following features supported while implementing
the speed layer:

• Random reads and writes

• Support for wide range of data types including date/time

• Ability to perform scheduled or ad hoc updates

• Ability to support joins and any incremental update tasks (update,
insert) with acceptable level of performance

• Support Indexing and provide SQL query interface for
performance and ease of use

• Ability to interface with the Hadoop ecosystem with ease

• Provide scalability and fault tolerance

• Ability to provide in-memory processing for performance

 After careful evaluation of choices, I short-listed Spark SQL and VoltDB. However,
I quickly realized that VoltDB can’t read from Hive (or HDFS) and hence discarded
it. Although, while comparing these two choices, I realized that Spark SQL had its
own shortcomings and even though they are not very relevant for the example I am
demonstrating, they might be significant in some cases. They are:

• Transactional support is not offered by Spark SQL.

• Spark SQL DataFrames do not support indexes. Indexing is
helpful for random Read/write performance.

• Spark SQL does not include storage natively, so you would need
to use an external data store for storage.

 I discuss Spark SQL in detail in Chapter 5 under “Query Tools” and the subsection
“Spark SQL.” That will help you understand the Spark architecture and where Spark SQL
fits into it. For now, let me demonstrate usage of Spark SQL as the speed layer. I have
demonstrated how to build batch and serving layers for tracking information system. Now
I will build a speed layer.

 The Lambda architecture defines the speed layer to be composed of records that are
yet to be processed by the batch layer. So, as a first step, you need to determine what those
records are. You might recall that a history record was inserted in table BatchProcHist
after a batch view was built. So, the most recent record for a batch view can give us the
date/time of most recent build and therefore help determine what the unprocessed
records are. Because Hive doesn’t support query results to be assigned to variables, I will
write the most recent record for the first batch view to a table:

 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from
BatchProcHist group by ViewName having ViewName = 'ProfLFiveView';

http://dx.doi.org/10.1007/978-1-4842-1287-5_5

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

231

 But what happens if the speed layer has processed any new records from the master
dataset since this batch view was built? Well, you need to check that and only consider
the unprocessed records for updating the view (now a Spark data frame registered as a
table). I’ll call the speed layer view ProfLFiveView_S . Just like the batch views, speed
layer views also write to the audit table BatchProcHist . So, I will write the most recent
record for the first speed layer view to the same table (where I captured most recent
record for the first batch view):

 Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'ProfLFiveView_S';

 Now I just need to determine which of these records is the most recent and use that
as a basis to process the records for the first speed layer view:

 Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable;

 Finally, get the unprocessed records from the master data set and create the speed
layer view. Also, add the timestamp and write a record to the audit history table:

 Create table Profitemp1_S as Select a.ProfLastYear, a.AsOf, a.Corporation
from CorpProfitDetails a, MaxTbl1 b where a.AsOf > b.MaxDate;

 Create table ProfLFiveView_S as select Corporation, sum(ProfLastYear) as
ProfLastFive from Profitemp1 group by Corporation

 INSERT INTO TABLE BatchProcHist
 VALUES ('ProfLFiveView_S', from_unixtime(unix_timestamp());

 Temporary tables MaxTable , Profitemp1_S , and MaxTbl1 can be dropped at this
point. Also, note that I didn’t use the condition having sum(ProfLastYear) > 0 while
creating the view ProfLFiveView_S . The reason is that this sum is only for the new
records of corporations that are profitable for last five years. To get the up-to-date
sum, add it to the sum from the batch layer, and the updated profit will be determined
automatically (taking into account the total profit or loss for the new records as indicated
by a positive or negative number).

 Let me assume that speed layer views are built every week. So, what happens when
you need to update your speed layer views to accommodate new data and remove data
that is already a part of the batch layer views (if batch layer views are rebuilt meanwhile)?
There are two possible approaches:

• Rebuild the speed layer view considering the unprocessed records
only (just like we built for the first time).

• Don’t drop the temporary table Profitemp1_S after the first
round of processing and delete expired (already part of rebuilt
batch view) records from it and add the new records. Then
just perform the aggregation and rebuild the speed layer view
 ProfLFiveView_S .

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

232

 Remember, in order to perform a delete operation, you will need to change Hive
configuration for CRUD support and add transactional support for table Profitemp1_S
(discussed in the section for batch layer views).

 I would consider the size of the speed layer view to decide between these options.
If the view is not really huge and can be rebuilt quickly, I choose the rebuild option.
However, if the view is huge and will take substantial processing and time to rebuild, I
enable transactional support and simply add the new records and remove the processed
(by batch layer) records from temporary table Profitemp1 . The same logic (as discussed
earlier in this section) can be used to retrieve the most recent processing date/times for
batch and speed layer views and thereafter retrieve the unprocessed records from the
master data set as needed. After the records in table Profitemp1 are adjusted (expired
records deleted and unprocessed records added), aggregation can be performed to build
the updated view.

 One more critical point to consider is the dependence of speed layer processing on
batch layer processing. At a minimum, you need to expire or remove speed layer records
that are processed by the batch layer. You can of course rebuild or add any new records
also (to your speed layer view).

 Next, I’ll discuss building a speed layer view for the second batch view. As you may
remember, it involves calculating an average (Companies that have average customer
support staff equal to or more than 1,000 for last five years). I’ll talk about how updated
averages can be calculated for the corresponding speed layer view.

 As a first step, let’s get the most recent processing times (for batch and speed layer)
for the view AveCS1000View :

 Create table MaxTable as select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'AveCS1000View';

 Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'AveCS1000View _S';

 Now I just need to determine which of these records is most recent and use that as a
basis to process the records for the first speed layer view:

 Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable;

 Finally, get the unprocessed records from the master data set and create the speed
layer view. Also, add the timestamp and write a record to the audit history table:

 Create table CustSuptemp1_S as Select a.CustSuppStrength, a.AsOf,
a.Corporation from CorpCustSupDetails a, MaxTbl1 b where a.AsOf > b.MaxDate;

 Create table CustSuptemp2_S as select Corporation, sum(CustSuppStrength) as
TotalCustSup, count(CustSuppStrength) as CountCustSup from CustSuptemp1_S
group by Corporation;

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

233

 Create table AveCS1000View_S as select a.Corporation, (a.TotalCustSup +
b.TotalCustSup) as TotalCustSup, (a.CountCustSup + b.CountCustSup) as
CountCustSup, ((a.TotalCustSup + b.TotalCustSup) / (a.CountCustSup +
b.CountCustSup)) as AveLastFive from CustSuptemp2_S a, AveCS1000View b where
a.Corporation = b.Corporation and (AveLastFive >= 1000)

 INSERT INTO TABLE BatchProcHist
 VALUES ('AveCS1000View_S', from_unixtime(unix_timestamp());

 Note that I had to use an additional temporary table so that I could add as well as
count the CustSuppStrength numbers for the unprocessed records and the ones from the
corresponding batch view—since this view calculates averages.

 Having discussed all this logic for developing the speed layer, let me turn to the
Spark interface and implementation of speed layer using Spark. As you may know, Spark
uses dataframes and RDDs (resilient distributed datasets) as in-memory constructs that
you can leverage for queries and performance. Spark also allows you to execute queries
against Hive databases using the SQLContext . Both these concepts are useful for the
speed layer implementation. You can use Scala, Python, or R within a Spark shell.

 As a first step, you need to construct a HiveContext , which inherits from SQLContext
and enables you to find tables in the Hive MetaStore and also supports queries using
HiveQL. You do not have an existing Hive deployment for creating a HiveContext . If you
don’t have a hive-site.xml specifying Hive configuration and directories, the context
automatically creates metastore_db and warehouse in the current directory. Here, I am
using Scala, and sc is an existing SparkContext:

 val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

 val sqlContext.sql("Create table MaxTable as select ViewName, max(CreatedAt)
from BatchProcHist group by ViewName having ViewName = 'AveCS1000View'")

 val sqlContext.sql("Insert into MaxTable select ViewName, max(CreatedAt)
from BatchProcHist group by ViewName having ViewName = 'AveCS1000View _S'")

 You can similarly execute all the HiveQL commands necessary to create the speed
layer view AveCS1000View_S . For the last step (when the view is created), instead of
creating the view, you can simply execute the select statement and read the result in a
dataframe, as follows:

 val resultsDF = sqlContext.sql("select a.Corporation, (a.TotalCustSup +
b.TotalCustSup) as TotalCustSup, (a.CountCustSup + b.CountCustSup) as
CountCustSup, ((a.TotalCustSup + b.TotalCustSup) / (a.CountCustSup +
b.CountCustSup)) as AveLastFive from CustSuptemp2_S a, AveCS1000View b where
a.Corporation = b.Corporation and (AveLastFive >= 1000)")

 You can register the resultant dataframe as a temporary table and then execute any
queries against it:

 val resultsDF.registerTempTable("AveCS1000View _S")
 val results = sqlContext.sql("SELECT Corporation FROM AveCS1000View _S")

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

234

 You will need to use a query tool that can read from Hive and Spark to combine
results from batch layer and speed layer views. There are enough choices, and of course
you can also use Spark SQL as a query tool too.

 There are a few things you need to note about Hive and Spark SQL integration. Because
of the large number of dependencies that Hive has, it is not included in the default Spark
assembly. You can enable Hive support by using the -Phive and -Phive-thriftserver
flags to Spark’s build. This will build a new assembly jar that includes Hive. Make sure
this Hive assembly jar is present on all the data nodes, as they will need access to the Hive
serialization and deserialization libraries (SerDes) for accessing data stored in Hive.

 Also, Hive configuration is supplied by copying your hive-site.xml file in the
 $HADOOP_HOME/conf directory. Please note if you are using a YARN cluster (yarn-
cluster mode), the datanucleus jars should be in the lib_managed/jars directory, and
 hive-site.xml under the $HADOOP_HOME/conf directory for the driver and all executors
launched by the YARN cluster. The easiest way to achieve this is by adding them through
the --jars option and --file option of the spark-submit command.

 It is often said that the biggest issue with Lambda is maintaining two separate sets of
code for batch and speed layers. By using Spark SQL and Hive, I think there’s no need to
maintain two sets of code—one is enough. That definitely simplifies the implementation.

 Pros and Cons of Using Lambda
 The Lambda architecture defines how batch and stream processing can work together
to deliver a complete solution while using a NoSQL solution. Lambda architecture
enables you to run ad hoc queries against all your data efficiently and in near real time.
The idea is to precompute the results as a set of views and query the views instead of
the master dataset. This architecture offers a number of benefits over the traditional
NoSQL architectures (or the lack of) and redefines the role of NoSQL and Hadoop for
data processing. However, there are issues with Lambda too. It can’t solve all your data-
processing problems. I discuss pros and cons of Lambda in this section, starting with the
pros.

 Benefits of Lambda
 One of the most discussed benefits is data immutability. Also, how storage and query
layers can have different storage structures. Another popular feature is Lambda’s
reprocessing abilities. Let me discuss all these features briefly:

• Lambda architecture emphasizes data immutability. Input data
is retained without any changes to it. Processed and transformed
data is written out separately, but it’s always possible to access
to input data received in its original form. This also saves data
from corruption due to human errors or hardware faults and adds
resilience to the architecture.

• Data is transformed in a series of modular stages, and that helps
in debugging (each stage independently) as well as making the
workflows tractable.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

235

• It is easily possible to reprocess your data (processing input
data again to re-derive output). Why is this needed? It is always
possible that there are code changes within your application (due
to change of functionality or discovery of an issue or a bug). If the
modified code is used to derive output data from an input stream,
you will need to reprocess your input using the new code. If you
recall, a batch layer is rebuilt every time new data is processed. So,
reprocessing of data is supported as well as performed by default.

• Lambda makes it possible to store your master dataset
normalized, while offering the flexibility to denormalize your
real-time and batch views as needed. This can help your queries
perform better for NoSQL data, since NoSQL databases typically
don’t perform well for joins or sub-queries. The data separation
also allows you to fine-tune each data layer as needed.

• The master dataset (being an immutable data store) can be used
as a reliable source for analytics. Since it has a complete record
or history of all the application data, it is possible to analyze any
subsets of data or look for patterns within it.

• Lambda facilitates the use of near real-time data within your
queries.

 Issues with Lambda
 Lambda has many useful features, but can it be used in all situations and for all kinds of
data? Are there any inherent weaknesses or flaws that need to be addressed while using
it? I’ll talk about answers to these questions and more:

• Lambda (and Nathan) makes an assumption that real-time
processing is less accurate, less powerful, and unnecessarily more
complex compared to batch processing. That’s not necessarily
true. For example, many leading stream-processing systems
(Storm, Spark, Amazon Kinesis) can provide a semantic guarantee
as strong as any batch system.

• The claim that the Lambda architecture “beats the CAP
theorem” is not true. Lambda is essentially an architecture for
asynchronous processing. Therefore, the computed results are
not immediately consistent with the incoming data.

• A big problem with Lambda architecture is that you need to
maintain code (that needs to produce the same result) in two
separate distributed systems (for batch and speed layers). Since
you need to engineer your code specifically for the framework
it runs on, the resulting operational complexity of systems
implementing the Lambda architecture is huge.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

236

 One proposed approach for resolving this issue is to have a
language or framework that abstracts over both the real-time and
batch framework. That way, your code can be used for stream
processing or MapReduce as needed. Kappa architecture and
Butterfly architecture (by Milind Bhandarkar) are targeted at
overcoming this issue. Both these architectures are discussed in
this chapter.

• The operational burden of managing and tuning two operational
systems (for batch and speed layers) is very high. Also, any time
you plan to add new features, you can only consider features that
can be supported by the intersection of the two systems. This may
also prevent you from using popular Hadoop components and
tools such as Hive, Pig, Crunch, Cascading, Oozie, and others.

 Lambda has its pros and cons and is not suitable for all kinds of data or business
objectives. There is already an alternative to Lambda called Kappa, which I cover in the
next section.

 The Kappa Architecture
 In summer 2014, Jay Kreps coined the term Kappa architecture in an article for O’Reilly
Radar. Jay was just commenting on Lambda architecture and issues with it. So, what is
Kappa and how is it different from Lambda?

 The concept is very simple. Use a stream-processing engine (Spark, Kafka, and
so on) that allows you to retain the full log of the data you might need to reprocess. If
there is a need to do reprocessing, start a second instance of your stream processing job
that will process from the beginning of the retained data and write the output to a new
destination (such as a table or file). When the second job completes processing, switch
the application to read from the new output destination. After that, you can stop the old
version of the job and delete the old output destination. Figure 9-8 illustrates the Kappa
architecture.

queries

Current stream
processing job

New stream
processing job

Client
requests

Output of current job

Output of new job

Input data
stream

Stream processing engine

Serving layer

 Figure 9-8. Kappa architecture

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

237

 One of the reasons Kappa architecture was designed was to avoid maintaining
two separate code bases for the batch and speed layers. Also, if batch and speed layers
are replaced by a streaming layer (processed by a stream-processing engine), then a
single stream-processing engine needs to handle real-time data processing as well as
continuous data reprocessing (as data needs to be reprocessed when there are code
changes).

 Therefore, Kappa architecture has two layers: stream processing and serving. The
stream-processing layer is responsible for executing the stream-processing jobs. Usually,
a single stream-processing job takes care of real-time data processing. If there are
code changes (to the stream-processing job) and data needs to be reprocessed, then a
modified stream-processing job is executed additionally to complete that task. Serving
layer is used to query the results.

 Various open source technologies like Apache Kafka, HBase, HDFS, Spark, Drill,
Storm, or Samza can be used to implement Kappa. For example, data can be ingested
using a publish-subscribe messaging system like Apache Kafka. HDFS can be used
for persistent storage. Any low-latency systems (such as Apache Storm, Samza, or
Spark Streaming) can be used to implement the stream-processing layer in the Kappa
architecture.

 Now, it is possible to use Apache Spark to develop the batch and speed layers in
the Lambda architecture (for a single code base). The serving layer can be implemented
using Splout queries using Apache Drill. How do you choose one architecture over
the other? Well, that depends on characteristics of the application that needs to be
implemented.

 For example, when the algorithms that need to be applied to the real-time data and
to the historical data are identical, it is a good case to use Kappa architecture. But if the
expected outputs for the real-time and batch algorithms are different, then the batch and
real-time layers cannot be merged, and Lambda architecture must be used. Are there
any situations where this happens? Consider a scenario where your batch layer needs
to process a billion records and compute daily and weekly averages. Here, generation
of the batch model will need so much time and resources that you will need to use
approximation models for computing real-time views. So, you can’t merge processing for
your batch and real-time layers, and therefore you can’t use Kappa—Lambda would be
your only possible model.

 I have highlighted several benefits of Kappa architecture, but you need to understand
that it can’t be used in every situation. It can’t solve all your Big Data processing
problems. There are of course other alternatives, such Zeta architecture or Iot-a,
proposed by Michael Hausenblas. A number of architectural alternatives are available
now, and you should evaluate your environment and make a prudent decision based on
your data, processing needs, business objectives, and hardware resources available.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

238

 Future Architectures 1
 As we witness the current transformation in data architecture, where RDBMS is being
supplemented by large scale non-relational stores, such as HDFS, MongoDB, Cassandra,
and HBase, a more fundamental shift is on its way, which would require larger changes
to modern data architectures. Although the current shift was mandated by business
requirements for the connected world, the next wave will be dictated by operational cost
optimization, transformative changes in the underlying infrastructure technology, and
newer use-cases such as the Internet of Things (IoT), Deep Learning, and Conversational
User Interfaces (CUI).

 In order to hazard a guess about what the future of data architecture holds, let us take
a brief tour of how we arrived at the current data architecture.

 A Bit of History
 Prior to the popularity of relational databases, multiple data models were being used
and among those, hierarchical and navigational data systems were used extensively
on mainframe-based systems. Because the number of clients for these data systems
was limited, they remained monolithic, and more often than not, were offered by the
mainframe manufacturer and bundled with hardware.

 As the relational model was proposed (more than 40 years ago) and deemed suitable
for a majority of data applications, it became very popular for prevalent use-cases in
banking, insurance, and the financial services industry. Relational database systems
became the default back-end data systems (as a store of record) in a variety of verticals.
The advent of client-server systems (where multiple clients would access the data stored
and served by the same server) created importance for up-front data modelling, SQL,
formal data manipulation semantics (ACID) led to query concurrency improvements,
rule-based and cost-based query optimization, and standard access methods (ODBC
and JDBC), and resulted in a plethora of visual tools for building database-backed
applications and data visualizations.

 Clients’ access to these operational databases was a mix of CRUD primitives
on either single or very few records. To provide consistency across multiple CRUD
operations, a notion of transactions was introduced (where either all the operations were
carried out atomically or none at all). Thus, these data systems were known as OLTP
(on-line transactional processing) systems, and their performance was measured in
transactions-per-second.

 Most business intelligence (BI) and reporting workloads used very different
access patterns. These queries were mostly read-only queries on a large amount of
historical data. Although the operational data systems were initially used to handle
both transactional and analytical workloads, they could not fulfill the low-latency
transactions and high-throughput analytics simultaneously. Thus, to serve this new class
of applications, data systems specialized in OLAP (on-line analytical processing) were
devised.

 1 This section was kindly contributed by Milind Bhandarkar, PhD, founder of Ampool, Inc. Milind’s
brief bio is included with the foreward he wrote

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

239

 Because these OLAP systems had to handle large amounts of historical data, often
they were built as MPP (massively parallel processing) systems on a shared-nothing
distributed architecture. This created two silos of structured data in organizations—one
for structured transactions and another for structured analytics. Even though both
these systems were designed with relational data models in mind, often one would
need to integrate multiple transactional data stores across multiple departments to
provide the full historical data in the analytical data system. Thus, a notion of periodic
ETL (extract-transform-load) was born, which would capture data changes across
multiple transactional data stores, map their relationships, and structure them into fact/
dimension tables with a star schema or snowflake schema. The analytical query engines
and the storage for these analytical data were quite different from their transactional
counterparts, since the analytical data once stored would almost never have to change (as
it was a historical record of business transactions).

 In the world of structured operational and analytical data stores, semi-
structured data (such as server logs) and unstructured data (such as natural language
communication in customer interactions) were either discarded or kept in an archival
store for compliance reasons. Centralized file systems became a popular choice of data
stores for semi-structured and unstructured historical datasets with specialized access
layers (such as keyword search).

 Apache Hadoop aimed to solve the semi-structured and unstructured data analytics
workloads problem by providing HDFS on commodity hardware and collocating it with a
batch-oriented flexible distributed data-processing paradigm called MapReduce. As the
Hadoop ecosystem expanded, it was to tackle more and more data-processing workloads.
Thus, there were scripting languages such as Pig, SQL-like query languages such as Hive,
and a NoSQL store, HBase, that used HDFS for persistent storage.

 Eventually, the compute resource management capability was separated from the
batch-oriented programming model and allowed a proliferation of data-processing
frameworks to run on top of data stored in HDFS. These included traditional MPP data
warehouses (such as Apache HAWQ), streaming analytics systems (such as Apache
Apex), and transactional SQL engines (such as Apache Trafodion). This gave rise to
the notion of a data lake, where all the raw data across the enterprise and external data
sources would be loaded and made available for flexible analytics, using best-of-breed
data-processing engines on the same granular data.

 Although Apache Hadoop and associated projects have rapidly evolved to promise a
unified analytics platform, the key core component of Hadoop, the HDFS, has never been
designed with interactive, streaming, and transactional workloads in mind and thus has
become a hindrance in achieving that goal. As a result, multiple architectures, such as
the Lambda and Kappa architectures, were proposed (to unify multiple data-processing
workloads). Unfortunately, they remain quite difficult to implement.

 For the Lambda architecture, the speed, serving, and batch layers need three
different implementations of data-processing frameworks for the same functionality
(depending on the speed and scale needed), and it is the responsibility of the
implementer to transport data across these three layers—a non-trivial task. In addition,
one cannot guarantee data consistency across the three layers without introducing yet
another distributed transaction engine (between the data applications and the Lambda
architecture).

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

240

 The Kappa architecture, introduced by the creators of Apache Kafka, relies on a
distributed log as the primary source of data. A distributed log provides decoupling
between data producers and data consumers. It allows different batch analytics engines
and streaming analytics engines to consume data from the same data bus, thus solving
the data consistency problem introduced in the Lambda architecture. But the difficulty
of implementing data processing in the speed, serving, and batch layers in three different
engines remains.

 The primary difficulty in implementing the speed, serving, and batch layers in
the same unified architecture is due to the deficiencies of the distributed file system in
the Hadoop ecosystem. If we were to provide a replacement for HDFS (or if we could
augment the HDFS with a storage component that can serve the speed and serving layers
while keeping data consistent with HDFS for batch processing), one could truly provide
a unified data processing platform. This observation leads to the Butterfly architecture,
described next.

 Butterfly Architecture
 The main intention of the Butterfly architecture is to unify data-processing tasks for batch,
serving, and speed layers in a single platform. To implement the Butterfly architecture,
we need to treat data with new, more general abstractions that are different from
current abstractions (such as files, directories, or tables and indexes). In the Butterfly
architecture, we organize data as a collection of three types of abstractions:

• Datasets : This is the most flexible abstraction, a partitioned
collection of arbitrary records. No structure is imposed on
records. In other words, interpreting what is in the records is left
to the processing framework with the aid of a system catalog.
This is equivalent to schema-on-read data, which is the only kind
of data managed by current Hadoop/NoSQL data systems. The
system catalog stores information about each dataset (as well as
relationships among multiple datasets). Each dataset is given a
unique identifier, and the catalog is a logical set of RDF triplets
denoted by (Relation, Object1, Object2). For example, to indicate
that dataset with ID 4596 is named SearchLog , the catalog has an
entry (NameOf, 4596, "SearchLog"). As another example, to
indicate the location of dataset 4596 to be in HDFS, an entry
(Location, 4596, "hdfs://namenode:port/user/data/
something") exists in the system catalog. Note that this is a logical
representation of the system metadata about datasets and may be
represented physically as a set of fixed-width tables, for reasons
of efficiency. These datasets could be stored on multiple storage
systems, and even multiple partitions from a single dataset may
be stored across multiple storage back ends. In addition, when a
dataset is stored as a stream of bytes in files or transferred across
network, the serialization and deserialization formats are user-
defined or operator-defined.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

241

• Dataframes : Dataframes are structured datasets. They are
partitioned with a user-specified partitioning key contained
in the individual records. The dataframes could be mutable
or immutable. Immutable dataframes may not be modified in
any way (once they are created), while individual records of a
mutable dataframe could be inserted, updated, or deleted. They
are typically created by multiple computation frameworks by
processing datasets. Dataframes are very similar to structured
tables in relational database management systems (with
predefined schema). Immutable dataframes are suitable for
analytical workloads, whereas mutable dataframes are used for
transactional CRUD workloads.

• Event streams : Event streams are unbounded dataframes. At least
one of the fields in these records (events) is mostly monotonically
increasing. Usually, this field is a timestamp or a sequence
number. Optionally, streams may have a window size specified as
either a number of records (in case of monotonically increasing
field its sequence number), or time duration (in case the
monotonically decreasing field its timestamp). Within a window,
there could be some out-of-order arrival of events. However,
across windows, the sequence number or timestamp is strictly
monotonically increasing.

 The main differentiating characteristic of the Butterfly architecture is the flexibility
in computational paradigm on top of each of the preceding data abstractions. Thus, a
multitude of computational engines, such as MPP SQL-engines (Apache Impala, Apache
Drill, or Apache HAWQ), MapReduce, Apache Spark, Apache Flink, Apache Hive, or
Apache Tez can process datasets, dataframes, and event streams.

 These computation steps can be strung together to form data pipelines , which are
orchestrated by an external scheduler. A resource manager (associated with pluggable
resource schedulers that are data aware) is a must for implementing the Butterfly
architecture. Both Apache YARN and Apache Mesos, along with orchestration framework
(such as Kubernetes or hybrid resource management framework such as Apache
Myriad (incubating)), have emerged in the last few years to fulfill this role. The Butterfly
architecture and associated data flows are illustrated in Figure 9-9 .

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

242

 Storage for Butterfly Architecture
 In order to efficiently implement the Butterfly architecture, one needs a fast storage
engine for data exchange across the data pipelines as well as streaming ingestion and
analytics. Optimized implementations for immutable and mutable dataframes are
needed for allowing fast batch-oriented queries and fast transactions, which allow
coexistence of multiple workloads in a single system. Traditional disk-based storage
systems make this unification extremely difficult. However, the emergence of NVMe-
connected Flash, NVDIMMS (non-volatile dynamic memory modules), and a new class
of persistent memory (SCM, or storage class memory) provides a perfect storage medium
in which high-throughput scan-oriented workloads and low-latency random access
workloads can coexist. Table 9-1 characterizes the current and projected performance of
various storage layers, along with their approximate associated cost.

 Table 9-1. Types of Storage and Their Costs

 Storage Type Approx. Cost
per GB

 I/O OPS/Sec Throughput Cost per GB for
Billion IOPS

 Cost per
GB for GB/s
Throughput

 DRAM $6 20 Million 50 GB/s $300 $0.12

 SCM $2 (projected) 10 Million 10 GB/s $200 $0.20

 NAND Flash $0.50 1 Million 1 GB/s $500 $0.50

 HDD $0.03 100 100 MB/s $30,000 $0.30

 Figure 9-9. Butterfly architecture

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

243

 As you can see from Table 9-1 , current generation of DDR4 DRAM is the most cost-
efficient for throughput-oriented workloads, and the emerging Storage Class Memory
(SCM) is the most cost-effective for random access workloads. Of course, cost is not the
only consideration for building systems—storage density as well as power consumption
are two other factors to consider. Since the new SCM promises to have much higher
densities and much lower power consumption than DRAM, they have the potential of
becoming the primary storage layer for a fast unified data platform.

 Most existing databases and data-storage systems have been designed with the
performance characteristics and storage densities of HDDs. Thus, they tend to avoid
random access at all costs, and in order to avoid long latencies, they tend to parallelize
their random access workloads either by spreading data across multiple hard disk drives
in a disk array or by fetching all the data in expensive server-side DRAM while running
sequential access workloads on data stored on hard disk drives. Thus, they introduce a lot
of complexity to keep the data consistent and available across workloads (in case of disk
failures). Also, hard disk drives (having mechanical parts) are much more prone to failure
than solid state devices such as Flash, SCM, and DRAM.

 For fully implementing the Butterfly architecture, one needs to cost-efficiently utilize
the various classes of solid state memory. Ampool is building a novel storage technology
for implementing the Butterfly architecture.

 Ampool
 Ampool’s core product is a memory-centric, distributed, data-aware object storage
optimized for both transactional and analytical workloads. These features of Ampool
product are discussed in the following section:

 Memory-centric : Although DRAM costs have rapidly
declined over the years, they are still very high compared
to other storage media (such as SSD and hard disk drives).
Fortunately, not all the data that needs to be analyzed in
the enterprise needs the kind of performance that DRAM
provides. Also, as the data becomes older, it is accessed less
and less frequently. Thus colder data can be stored on hard
disk drives, warm data can be stored on SSDs, and only data
that is most frequently accessed (and needs fastest access)
can be stored in DRAM. Manually moving data across these
storage tiers is cumbersome and prone to error. Ampool
implements smart tiering that monitors the usage of data and
automatically moves the data across tiers, as it is accessed
infrequently.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

244

 Distributed : Although the DRAM and storage density has
increased dramatically over the years, adding more and more
DRAM and storage to a single system (scaling up) does not
scale the overall system performance proportionally with
the cost. Thus, even memory-centric storage systems need
to be clustered and distributed for linear scalability, fault
tolerance, and disaster recovery. Ampool storage is designed
as a distributed system from the ground up. Data is replicated
across address spaces of various machines in the cluster (in
order to be highly available). In addition, the changes in data
are propagated via a scalable message bus across a wide area
network (for disaster recovery).

 Object store : Historically, the most common types of storage
systems were categorized into a block store or file system.
Each has its own advantages. A block store can be shared
across different operating systems and has much lower
overhead of accessing a random piece of data. However,
network round-trips to fetch individual blocks are often
insufficient for today’s large-scale data workloads. In addition,
since the basic unit of read and write is a 4 KB block, small
updates (as well as small reads) result in a lot of unnecessary
data traffic over the network or on the local disks. Filesystems
are the most commonly used abstraction for storage and are
available in various flavors across multiple operating systems.

 In addition, several scalable distributed filesystems are
available from multiple vendors. However, implementing
filesystem semantics (which involves maintenance
and navigation of a hierarchical name space structure),
maintaining consistency and atomicity across filesystem
operations, and providing random reads and writes in place
in files, imposes a lot of overhead for the filesystem servers
(as well as clients). Typically, the filesystem read/write access
has 50–100 microsecond latency. When the filesystem was
implemented on top of slow rotating disks (which had a 10
millisecond latency), the filesystem latency was negligible
compared to the underlying storage media latency. However,
with the new fast random access storage (such as SSDs and
NVRAM), which have only a few microseconds latency, the
filesystem abstraction has overwhelmingly high overheads.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

245

 Figure 9-10. Ampool architecture

 In the last decade, because of the emergence of public clouds
and their hostage storage solutions, a third kind of storage
abstraction—object store—has become popular. Object
stores have a flat hierarchy. To access an object, one only
needs a bucket ID and an object ID (rather than navigating
a hierarchical name space). In addition, object stores have
rich metadata associated with each object and bucket, so that
operations such as filters and content searches can be pushed
down to the storage layer, reducing network bandwidth
requirement and load on CPU. Object stores are ideal for
the new classes of storage media because of the low CPU
overhead, simpler semantics, and scalability—especially with
a large number of data stored as objects.

 Data-aware : Most of the existing object stores do not interpret
the contents of the objects natively. Therefore, their utility is
limited, and indeed, the most common use of object stores
is as blob stores to store and retrieve multimedia (such
as images or video). If one were to implement analytical
workloads on data stored in an object store, it needs fetching
the entire object (which may be megabytes or gigabytes in
size) to the CPU, imposing a schema on it, deserializing it,
and then performing the necessary analytical computations
on it. The Ampool object store stores extensive metadata
about objects (such as schema, versions, partitioning key,
and various statistics about the contents of the objects),
such that common operations like projections, filtering, and
aggregates can be pushed down to the object store. This helps
in speeding up most analytical computations and avoids
network bottlenecks prevalent in other distributed storage
systems. A block diagram for the current version of Ampool is
shown in Figure 9-10 .

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

246

 In addition to the core memory-centric object store, Ampool includes several
optimized connectors that allow existing computational engines to efficiently store and
retrieve data from the Ampool object store. Although the number of connectors is rapidly
increasing with every version of Ampool, the current connectors provided out of the
box include Apache Spark, Apache Hive, Apache Trafodion (in collaboration with Esgyn
Corporation), Apache Apex (in collaboration with Datatorrent, Inc.), and CDAP (Cask
Data Application Platform, in collaboration with Cask Data, Inc.). Although the Ampool
system is in itself a fully distributed storage system able to maintain large volumes of
operational persistent data, it provides several persistent storage connectors to load and
store data. Connectors available include Hadoop Distributed File System (HDFS), Apache
Hive, and Apache HBase. Ampool can be deployed as a separate system with Hadoop
components or with an existing running Hadoop cluster (either with Apache Ambari
or Cloudera Manager) and can be monitored and managed with provided tools or by
connecting the JMX metrics produced by Ampool to any JMX-compatible monitoring
system.

 By providing fast analytical storage for (both immutable and mutable) dataframes,
datasets, and for extensions for event streams, Ampool provides the missing piece for
implementing the Butterfly architecture and allows unification of various transactional
and analytical workloads.

 Example Use Case: Ad Tech Data Pipeline
 Acme.io is a very popular content aggregation company that has a web-based portal
and also a mobile app with tens of millions of users, who frequently visit using multiple
devices several times a day to get hyper-personalized content. Acme has several
advertising customers who pay to display their advertisements on all devices. Acme is
one of many “Web 3.0” companies and has a deep understanding of its users’ precise
interests as well as exact demographic data—based on which, it personalizes the content.
It has an ever-growing taxonomy of its users’ interests, and advertisers can target users by
demographics as well as their precise interests. Here is Acme’s business in numbers:

• 100 million registered users with 50 million daily unique users

• 100,000 advertisements across 10,000 advertising campaigns

• 10 million pieces of content (news, photos, audio, video)

• 50,000 keywords in 50 topics and 500 subtopics as user interests

 Acme has several hundred machines serving advertisements. Using a unique
matching algorithm that fetches a user’s interests, it finds the best match within a few
milliseconds and serves the ad within appropriate content.

 Acme has a lot of data scientists and Hadoop expertise. It operates a large Hadoop
cluster for providing personalized recommendations of content to its users. However,
the batch-oriented nature of Hadoop has so far prevented the company from using that
Hadoop infrastructure for real-time ad serving, streaming analytics on advertisement
logs, and providing real-time feedback on campaign performance to its customers.
Also, for its business and marketing analysts, who want to perform ad hoc queries on
the advertising data to target larger pool of customers, Acme has set up a separate data

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

247

repository apart from both the real-time analytics and batch analytics systems. As a result,
the operating expenses of its data infrastructure has more than tripled. Worse, Acme
incurs a huge overhead just trying to keep the data in sync across these three platforms.
Since the same data is kept in multiple places, there is lag and discrepancies in the data,
repetitive tasks for data cleansing, and ensuring data quality and maintaining data
governance. This wastes more than 80% of valuable time of Acme data scientists and Big
Data infrastructure specialists.

 Acme architects and technologists decided to replace the entire data infrastructure
with modern Flash and memory-based architecture and had a deep-dive with Acme data
pipeline developers. They realized that they will have to rewrite the last five years’ worth of
data-analysis work with the new, unfamiliar, and immature technologies. Retraining the
data practitioners alone would take several years. Instead, they decided to do incremental,
piecemeal upgrades to the data infrastructure, moving towards the Butterfly architecture
from their current Lambda architecture, using Ampool memory-centric storage.

 The Data

 Exactly four large data sets are used in Acme’s data analysis pipeline: user profiles,
advertisements, content metadata, and ad serving logs.

 User Profiles
 User profiles contain details about every registered user. The schema for user profile is as
follows:

• UserID: UUID

• Age: 0..255

• Sex: M/F/Unknown

• Location: Lat-Long

• Registration timestamp: TS

• Interests: Comma-separated list of (topic:subtopic:keyword)

 Advertisements
 This dataset contains all the details about all the advertisements available for displaying
within content. The schema for this data set is as follows:

• AdID: UUID

• CampaignID: UUID

• CustomerID: UUID

• AdType: {banner, modal, search, video}

• AdPlatform: {web, mobile}

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

248

• Keywords: comma-separated list of (topic:subtopic:keyword)

• PPC: $ per click

• PPM: $ per 1000 display

• PPB: $ per conversion

 Content Metadata
 The content dataset contains all the metadata about the content. The schema for the
content dataset is as follows:

• ContentID: UUID

• ContentType: {news, video, audio, photo}

• Keywords: Comma separated list of (topic:subtopic:keyword)

 Ad Serving Logs
 This dataset is streamed continuously from the ad servers. Each entry in this log has the
following fields, of which some may be null:

• TimeStamp: TS

• IPAddress: IPv4/IPv6

• UserID: UUID

• AdID: UUID

• ContentID: UUID

• AdType: {banner, modal, search, video}

• AdPlatform: {web, mobile}

• EventType: {View, Click, Conversion}

 Computations

 Following computational steps are performed on the data in Acme’s advertisement
analytics data pipelines.

 Ingestion and Streaming Analytics
 Ad servers produce ad click, view, and conversion events to Kafka brokers. Kafka
consumers are embedded in the Apache Apex (DataTorrent) streaming analytics
platform. For every event consumed, the following computations are done:

 1. Parsing the event record

 2. Extracting timestamp, ad ID, event type, and ad type

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

249

 3. Looking up campaign ID from ad ID

 4. Windowed aggregation of event types for each ad ID and
campaign ID

 5. Storing these aggregates in Ampool

 6. Visualizing these aggregations in a streaming visualization
dashboard of DataTorrent for a campaign ID and all ads in
that campaign

 7. The output of the streaming analytics is as follows:

 a. (Ad-ID, Time-Window, Number-Of-Views, Number-Of-
Clicks, Number-Of-Conversions, Total-PPV, Total, PPC,
Total PPConversion)

 b. (Campaign-ID, Time Window, Number-Of-Views,
Number-Of-Clicks, Number-Of-Conversions, Total-PPV,
Total, PPC, Total PPConversion)

 Second streaming ingestion pipeline keeps the user table, ad table, and content table
updated. While the ads are being displayed, clicked, and converted, new users are being
registered, and existing users’ information is being updated. New campaigns are created,
existing campaigns are modified, new ads are created, and existing ads are updated.
These inserts and updates are being done simultaneously, rather than periodically. In
the second pipeline, we use Kafka consumers to get insert and update records and apply
these inserts and updates to respective tables in Ampool in real time. The steps in this
pipeline are as follows:

 1. Ingest a {user, campaign, ad} {update, insert} event from Kafka
broker.

 2. Parse the event to determine which table is to be updated.

 3. Update the respective table.

 4. Keep track of total number of updates.

 5. When 1% of the records are either new or updated, launch the
batch computation and reset update counters.

 Batch Model Building
 In this batch-oriented computation, we build ad targeting models. The inputs for this
pipeline are the user table, ad table, and content table. And output of this pipeline are two
new tables:

 1. (User-ID, Ad-Id1, weight1, Ad-Id2, weight 2, Ad-Id3, weight3)

 2. (Content-ID, Ad-Id1, weight1, Ad-Id2, weight2, Ad-Id3,
weight3)

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

250

 These tables represent the top three most relevant ads for every user and for all
content. These tables are then used for the ad serving systems, such that when a user
visits particular content, the best match among these ads is chosen, based on one lookup
each in the user table and content table.

 Relevance of an ad for a user of a content is determined by cosine similarity in the
list of keywords, and topics and subtopics. This batch model building pipeline, built using
CDAP, has the following steps:

 1. A MapReduce job to extract the relevant fields from user
table and ad table, and join based on topics, subtopics, and
keywords.

 2. A Spark job to filter the top three matching keywords and
compute the weights of ads for those keywords using cosine
similarity.

 3. Repeat the preceding steps for the content table and ad table.

 Interactive and Ad Hoc SQL Queries
 The interactive and ad hoc queries are performed on varying windows of the aggregates
for campaigns and ads using Apache Trafodion (EsgynDB). Here are some examples of
the queries:

 1. What was the {per-minute, hourly, daily} conversion rate for
an ad? For a campaign?

 2. How many ads were clicked on as a percentage of viewed, per
hour for a campaign?

 3. How much money does a campaign owe to Acme.io for the
whole day?

 4. What are the most clicked ads and campaigns per hour?

 5. How many male users does Acme have aged 0–21, 21–40?

 The results of these queries can be displayed on the screen (interactively) and for the
queries resulting in time-windowed data, visualized using a tool such as Tableau.

 Summary
 A few years back, when Nathan Marz first introduced Lambda architecture, there was a
rush of excitement through the Big Data community because at the time there were no
options for real-time processing of streaming data using Hadoop. The role of Hadoop and
NoSQL was relegated to ETL or at the most batch processing. The introduction of Lambda
changed that. For the first time, it was demonstrated that Hadoop had a possible use for
real-time processing.

CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

251

 However, as the excitement wore off, problems with this architecture were soon
noticed. Lambda is a good starting point, but you need to adapt it for your individual
environment. Use of Lambda is also restrictive (in most cases) for choice of components
of the Hadoop ecosystem you plan to use. Nathan has demonstrated his concepts by
developing Java code for every small task related to Lambda, but that’s not practical. If
you plan to build your data lake (that’s where I see the most use for Lambda) using the
various production systems in your environment, developing fact-based model(s) for
those systems will be a difficult and time-consuming task. I have already demonstrated
the process using a real-world example. That should give you a good idea about the effort
involved.

 So, where can you use Lambda? And is there a real use for it? You can follow the
“web-click” examples in Nathan’s book and probably develop similar Java code to
implement systems to gather and analyze social media data or data for your e-commerce
systems or maybe IoT-related systems. But can you use Lambda to interface with
relational systems? And more importantly, can you develop fact-based models for
such interfaces? There is no absolute affirmative or negative answer to this question. It
depends on the complexity of your source system and also your objective—what do you
want to do with the data once it is in Hadoop?

 Finally, is Lambda going to survive the onslaught of bleeding-edge, stream-
processing engines like Spark that also remove the major hurdle of managing two
distributed systems for providing batch and real-time functionality? I feel that only time
will tell.

253© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_10

 CHAPTER 10

 Implementing and
Optimizing the Transition

 Recently, I have seen a number of organizations reversing their decision about using Big
Data. These organizations represent diverse industries and therefore may not withstand
the logic of Hadoop not being suitable for a particular industry. In most of these cases
(apparently), performance and lack of usability were the main issues for deciding against
using Big Data technologies. Granted that open source software does not have extensive
and easy-to-understand documentation or means to troubleshoot, but these days, there
are enough vendors selling supported Hadoop distributions and software with easy-to-
use browser interfaces for performing all kinds of tasks starting with data ingestion to the
end result: analytics.

 So, why the hesitance and reluctance to invest money in Hadoop? Why has Hadoop
not replaced a large number of data warehouses? Why is Hadoop still not a main
application platform for big corporations? There is no short answer to any of these
questions. I want to focus on the perceived lack of huge performance gain—a major factor
for wanting to choose Hadoop to replace the older technologies. I will talk about how you
can extract optimal performance from your Hadoop cluster using performance tuning at
the hardware, operating system, Hadoop configuration, and data stages.

 You’ve probably heard that Hadoop clusters can be built using commodity hardware,
but that’s not really true for production environments. I will discuss some typical
hardware configurations for production and development environments. I will cover why
you need to start with the operating system for performance tuning. I will also discuss the
major configuration parameters that impact performance and explain how and why need
to be tuned.

 After you have your operating system tuned, you need to work on Hadoop
configuration parameters and change them to gain optimal performance for your specific
environment. And as you know, Hadoop holds data as files, so the storage format for
these files is very important. There are reasons why a particular format needs to be used
for storage, and I talk about the factors you need to consider while deciding a storage
format. Also, considering the high data volumes, data compression is essential. I discuss
the types of compression codecs and pros/cons. Finally, I cover special indexing and
caching techniques that will help with performance.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

254

 Of course, as a first step for getting optimal performance from your Hadoop cluster,
you need to run baseline stress tests and identify the problem areas or areas where
performance is not as expected. I will start with Hadoop hardware configurations for
production/development environments.

 Hardware Configuration
 You can’t assume that a Hadoop cluster can be constructed using old, discarded,
commodity hardware. You need to use servers with multiple CPUs (containing multiple
cores) and with enough RAM. Your production cluster needs to have more powerful
hardware than your development environment, and of course your NameNode
(master node) needs to be more powerful than the DataNodes (worker nodes for either
environment). This is just a quick summary.

 Cluster Configuration
 The HDFS master node (NameNode) needs to have more memory than the worker
nodes. Also, the storage for the master node should be RAID, and because it’s a SPOF
(single point of failure), it needs to be replicated for failover scenarios. A NameNode
needs to be configured based on the amount of data (as well as number of files you
plan for the cluster to hold). And you need to consider growth projections and data
compression while configuring.

 Here’s how you can calculate the cluster size for production usage. Let me start with
spacing for a node and total number of nodes. Since operating system and other essential
applications on a node need some space (roughly 25% of total space) and data blocks are
replicated based on a replication factor (default 3):

 HDFS space per node = (Raw disk space per node – 25% non-DFS local storage)/
(Replication Factor)

 Number of Worker nodes = Total HDFS space/HDFS space per node

 Consider the following for startup (individual) worker node configuration:

• Latest generation processor(s) with 12 to 16 cores (total)

• 4–8 GB memory per core

• 1–3 TB SATA disks per core

• 1GbE NIC

 For a NameNode:

• 4–6 cores (total)

• Start with memory as follows: (3 GB + 1 GB for every 100 TB of raw
disk space or 1 million file objects)

• Needs to be replicated (for failover)

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

255

• RAID-1 storage

• NameNode should run on a 64-bit OS to avoid 3 GB limit on JVM
heap size

 If you are using YARN, you can use 2 GB RAM and 1 core CPU as a starter
configuration for the YARN master node, the Resource Manager (as a rule of thumb). But
you might want to boost up the hardware for a really busy Resource Manager (a lot of
scheduled jobs). Of course, you need to do workload profiling and review the resource
usage at peak-time workloads. If there is maximum usage for a resource, adjust the
resource allocation accordingly.

 The size of your development environment depends on your application usage. If
you are using a vendor product, then you might use your development environment only
for version upgrades or customizations (to the vendor product). In that case, you can
probably halve the hardware resources per node and may also want to reduce by half the
number of worker nodes for your development environment.

 However, if your application is home-grown (or developed within your corporation),
then you might want to allocate 70–80% of hardware resources per worker node (as
compared with production) and also use a count of 70–80% worker nodes (as compared
with production), because you might have to process a larger number of enhancements
(to the application) and may need to test out performance for them too. For a really
dynamic development environment, you may need to match development resources
(with production) and may need larger space to facilitate holding multiple versions of
data (for testing).

 Note that these are only guidelines for a generic cluster. You should consult
your vendor (for Hadoop distribution) documentation or seek expert advice for your
individual configuration needs.

 Operating System Configuration
 It is important to consult OS documentation before you start with performance tuning
for your Hadoop cluster. Remember, HDFS is simply a file system (albeit distributed, fault
tolerant, and with a lot of good features) that runs within the purview of the OS for your
individual (master or worker) nodes. Some of the adjustments for your OS are intuitive,
whereas others need a good understanding of it. Because RHEL (Red Hat Enterprise
Linux) or CentOS are popular Linux flavors used for Hadoop clusters, I will assume the
OS is one of them. I’ll start with the intuitive adjustments:

• Turn off the Power Savings option : You need this BIOS setting to
optimize performance for applications (instead of just switching
off during idle time). Change this to PerfOptimized in your BIOS
settings.

• Turn off caching on disk controller : Hadoop doesn’t use it.

• Mount disk volumes using the option NOATIME : By default, the OS
records the last accessed (read or write) date for a file. This option
turns off that behavior and thereby speeds up access (since it is
not used by Hadoop).

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

256

 There are a number of advantages in using the ext4 filesystem (instead of ext3), such
as multi-block and delayed allocation. Therefore, you should consider using it. And now,
some not-so-intuitive settings:

• Disable transparent Huge page compaction : When enabled, this
feature tells the Linux kernel to allocate 2 MB pages to a Linux
process (whenever possible). But since the compaction part
seems to cause a problem with Hadoop jobs and results in high
CPU usage, it needs to be disabled. For RHEL, you can use the
following command:

 echo never > sys/kernel/mm/redhat_transparent_hugepages/defrag

 In order to make that change permanent, add the following
script in your /etc/rc.local file:

 if test -f /sys/kernel/mm/redhat_transparent_hugepage/defrag;
then echo never > /sys/kernel/mm/redhat_transparent_hugepage/
defrag ;fi

• Reduce FS reserve blocks space : There is 5% space reserved for
special operations (such as file delete by root when the filesystem
is full), but Hadoop doesn’t need this space, so it can be removed.
Use the following command:

 tune2fs -m 0 /dev/sdXY

• Increase open file handles and files : By default, the number of
open file count is 1024 for each user, which might result in errors
like java.io.FileNotFoundException: (Too many open files) .
Therefore, the number of open file limit needs to be set. For Linux,
there are three limits: soft limit (can be set by a user), hard limit
(only set by root or superuser), and system-wide limit (set by
root in configuration file for the server). Choose a high value
(like 4032) as your soft limit (that a user can set up to), a higher
value (say, 32832) as the hard limit (that root can set up to), and
a really high value (for example, 6544018) for system-wide file
descriptors, since that’s the total file descriptors possible for the
whole system. Use the following commands:

 ulimit –S 4096
 ulimit –H 32832
 sysctl –w fs.file-max=6544018

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

257

• Memory swapping : In Hadoop, swapping (swapping in-
memory data with filesystem) reduces job performance. So,
keep maximum data in-memory and configure your OS to do a
memory swap only if it is OOM (OutOfMemory). To achieve that,
set the value for parameter vm.swappiness kernel to 0 . Use the
following command:

 sysctl -w vm.swappiness=0

 Note that the sysctl command will set the values for your
session. To persist this value, add the following line to
configuration file /etc/sysctl.conf :

 vm.swappiness=0

 For the file descriptor value (above) to persist, add the
following line to configuration file /etc/sysctl.conf :

 fs.file-max=6544018

 Hadoop being a distributed file system, there is a lot of inter-node communication
using the network. Subsequently, the network performance is important, so the
network packet size is important too. Maximum transmission unit (MTU) indicates
the packet size that can be sent using the TCP/IP protocol. The default size for MTU is
1500; you can increase it to 9000. A value of MTU that’s greater than its default value is
called jumbo frames . You can change the value of MTU by adding the following line in
configuration file /etc/sysconfig/network-scripts/ifcfg-eth0 (or whatever your eth
device name is):

 MTU=9000

 You must restart the network service for this change to take effect. Also, before
modifying this value, make sure that all the nodes in your cluster (including switches)
support jumbo frames. If not, don’t make this change.

 The next section discusses the Hadoop configuration parameters that are important
to consider from a performance perspective.

 Hadoop Configuration
 Hadoop configuration can be broadly grouped into three categories: HDFS, JVM, and
YARN (including MapReduce as a container). I discuss all these categories along with
tunable parameters in each of them.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

258

 HDFS Configuration
 HDFS holds your data and therefore is a key consideration for data access. You have to
make sure that the data writes and reads are performed with optimal performance.
I shared some configuration details for NameNode and DataNodes earlier, but note the
details of some fast drives that you can use.

 Also, you should perform some generic tasks like time synchronization, version
control, and cluster balancing. It is important to synchronize time on all your cluster
nodes. Failing to do so may result in errors, and it may even be difficult to know what
the real time of those errors was. It is similarly important to use version control for
configuration. You don’t want to be in a situation where some nodes are at a particular
version and others are at another. HDFS provides a utility (Balancer) to redistribute
data in a uniform manner on your DataNodes. That helps in distributing processing
(uniformly) as well and should be used after cluster expansion.

 Getting back to configuration, you can consider key parameters such as block size or
buffer size. Here’s a complete list:

• Drive type : Even though RAID arrays are not required for
DataNode storage (since HDFS replicates the data blocks as per
specified replication factor), it will help to have fast SATA drives
to hold your data. SSD (solid state drive) storage is ideal, but
because it is expensive, you can use SSHD (solid state hybrid
drive) storage that offers 7,200 RPM or SATA III drives offering
10,000 RPM.

• Multiple disk mount points for your DataNodes and NameNode :
For DataNodes, the comma-separated list of mount-points
(or directories) will spread the data across them and thereby
provide optimal access performance. For NameNode, multiple
directories (or mount-points) provide metadata redundancy.
HDFS makes sure that data blocks for your files are replicated
across DataNodes for redundancy. The relevant properties in
 hdfs-site.xml :

 dfs.datanode.data.dir
 dfs.namenode.name.dir

• DFS block size : This is a very important consideration. Review
your expected file sizes and their usage. For example, if your data
files are large but a large number of user queries retrieve small
datasets (500 MB–5 GB), then you might want to start with a block
size of 64 MB or 128 MB since you write once and read multiple
times. You can override block size while writing new files and
have different block sizes for files as per their expected use. The
relevant property in hdfs-site.xml :

 dfs.block.size

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

259

• Local filesystem buffer : This is the buffer size (controlled by
property io.file.buffer.size) used by HDFS for its I/O
operations. It should be increased to 64 KB or 128 KB for
performance gains. Also, depending on how much RAM you
have available, you can set io.sort.factor (number of maps
to merge while sorting a file) to 20 or 25 (the default is 10). Note
that the value for io.sort.mb (the amount of memory used by a
mappers to collect map output) should be 10 * io.sort.factor .
So, 10 mapper task instances with io.sort.mb = 200 means your
total RAM allocation for sorting is 2 GB. The relevant properties in
 core-site.xml :

 io.file.buffer.size

 And mapred-site.xml:

 io.sort.factor
 io.sort.mb

• Short-circuit reads : As a general rule, when a client requests
a data block (for a file) from HDFS, the client contacts the
appropriate DataNode and the data is sent to the client using a
TCP connection. If the data block being requested resides on the
same node as the client, then it is more efficient (for the client) to
bypass the network and read the block data directly from the disk
(termed a short-circuit read). Short-circuit reads can be enabled
by setting the property dfs.client.read.shortcircuit to true .
The relevant properties in hdfs-site.xml :

 dfs.client.read.shortcircuit

 You also need to set additional properties for this purpose. For
details, see https://hadoop.apache.org/docs/r2.4.1/hadoop-
project-dist/hadoop-hdfs/ShortCircuitLocalReads.html .

• NameNode/DataNode concurrency : For large clusters, it is
imperative to have more threads for maximum concurrency. The
parameter dfs.namenode.handler.count controls the number of
server threads for the NameNode and should be increased from
the default value of 10 to 50 or 100 (depending on the size of the
cluster and available memory). The parameter dfs.datanode.
handler.count similarly indicates the number of threads
handling block requests for a DataNode. If you have multiple
physical disks (for each of your DataNodes), you can increase the
throughput by increasing this number from default value of 3 to 5
or more. The relevant properties in hdfs-site.xml :

 dfs.namenode.handler.count
 dfs.datanode.handler.count

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

260

• DataNode Failed volumes tolerated : This property is set to 0 by
default. If a data volume fails, DataNode will shut down. Setting it
to a higher value (2 or 3) will prevent the DataNode from shutting
down when a single data volume fails. The relevant properties in
 hdfs-site.xml :

 dfs.datanode.failed.volumes.tolerated

 The preceding list is not exhaustive. See the Apache documentation for a complete list
of parameters defined in the files core-site.xml , hdfs-site.xml , and mapred-site.xml
(or YARN configuration files if you are using yarn).

 Also please visit www.odpi.org for complete details of the new ODPi standard that’s
being developed for standardization of core Hadoop components and certification of
Hadoop distributions. Development of this standard will provide version control and
harmony to the core Hadoop components and simplify their usage.

 ODPi is a nonprofit organization that’s developing a common reference specification
called ODPi Core. Because Apache Hadoop, its components, and its distributions are
evolving very quickly and diversely, it has resulted in slowing the Big Data ecosystem.
The concept of a standard ODPi core will save on cost and reduce complexity and
thereby accelerate the development of Big Data solutions by providing specifications for a
common runtime and also assist in creating reference implementations and test suites.

 JVM/YARN/MapReduce Configuration
 All the Hadoop daemons are JVMs and therefore it is important to understand how
you can get optimal performance for a JVM. There are some general guidelines and
then means to facilitate troubleshooting, since there may be certain reasons or specific
concerns for your environment that may drive certain configuration parameter values,
and these values may not follow the generic guidelines.

 Generic JVM Guidelines
 Note that the following guidelines are generic and that your specific environment may
have specific requirements that may not benefit from them.

• Use 64-bit JVM for all daemons with compressed OOPS enabled : It
is important to use 64-bit JVMs for 64-bit environments because
that enables you to use maximum possible hardware resources
(memory).

 Using compressed OOPs (ordinary object pointers) is a technique
for reducing the size of Java objects in 64-bit environments. A
big benefit is that you can fit a bigger JVM using same amount
of memory. A big drawback of this technique is that address
uncompressing needs to be done before accessing memory
referenced by compressed OOPs. This affects performance and
uses valuable CPU resources. Starting from Java 6 update 18,
Oracle (by default) enables the option UseCompressedOops in JVM
based on maximum Java heap size.

http://www.odpi.org/

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

261

• Optimal Java heap size : When a JVM starts executing, it gets some
memory from the OS and uses this memory for all its needs. Part
of this memory is called Java heap memory . It’s a good idea to
set the minimum (or starting) and maximum heap size to the
same value (that is, set Xmx == Xms). Don’t use Java defaults for
parameters such as NewSize or MaxNewSize. For JVMs larger than
4 GB, you can use the ratio 1/8 to 1/6 (size of new JVM to old JVM)
for MaxNewSize .

• Using low-latency GC collector : Garbage collection (GC) is re-
use of heap space belonging to deleted objects or completed
processes. You should use the concurrent algorithm or collector
using option UseConcMarkSweepGC . That’s because you need to
keep the GC pauses shorter (even though that uses more CPU
time for GC) in case of a JVM for Hadoop daemons, which have
more dynamic memory usage. Note that the concurrent collector
needs more RAM allocated to the JVM (than the serial or parallel
collectors for GC).

 The option ParallelGCThreads=<N> sets the number of the
GC worker threads. You should set the value of N to be same
as the number of logical processors (up to 8). For more logical
processors, set N to be approximately 5/8 of the number of logical
processors (except for larger SPARC systems where N can be
approximately 5/16 of the number of logical processors).

 Use a high number of GC threads for NameNode and JobTracker
(ResourceManager for YARN), since you need the GC process
without any latency for more effective memory utilization.

• JVM configuration options for debugging :

• -verbose:gc -Xloggc:<file> : This option logs garbage
collection event information to a file. In addition to the
information -verbose:gc gives, each reported event is
preceded by the time (in seconds) since the first garbage-
collection event.

• -XX:+PrintGCDetails: This option activates the “detailed”
GC logging mode, which differs depending on the GC
algorithm used. Here’s a sample: [GC [PSYoungGen:
246648K->243136K(375296K), 0,0935090 secs] . This entry
refers to a young generation GC instance, which reduced the
occupied heap memory from 246648K to 243136K and took
0.0935090 seconds.

• -XX:ErrorFile=<file>: The filename is used to specify a
location for the fatal error log file (in case of fatal errors for JVM).

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

262

• -XX:+HeapDumpOnOutOfMemoryError: This command-
line option tells the JVM to generate a heap dump when it
can’t allocate heap memory to a request. Since there is no
overhead for using this option, it can be used for production
systems (where it takes a long time to know that JVM is out of
memory). The heap dump is in HPROF binary format, so it
can be analyzed using any tools that can import this format
(such as jhat). By default, the heap dump is created in a file
called java_pid<JVM pid>.hprof , in the working directory
of JVM.

 Generic YARN/MapReduce Guidelines
 MapReduce was the framework (for distributed processing of a job) Hadoop started with,
but this was replaced by YARN (sometimes referred as MapReduce 2) in later versions.
Many organizations still use MapReduce for various reasons. Therefore, I I’ll give some
tips for optimizing MapReduce configuration.

 Optimizing MapReduce Applications

 MapReduce is a programming model used for processing large datasets using a parallel,
distributed algorithm on Hadoop clusters. A MapReduce program consists of a Map
method that performs filtering and sorting (such as sorting sales by product names) and
a Reduce method that performs a summarization or aggregation (for example, counting
sales by products). The MapReduce framework distributes processing on various nodes
of a cluster, runs tasks in parallel, manages all communication/data transfers between the
various parts of the system, and provides redundancy and fault tolerance.

 Here are some notes on optimizing the use of MapReduce:

• Speculative execution: All the nodes of your cluster may not be
operating at the same speed—maybe one of the nodes is slower.
To account for difference in machine capabilities, Hadoop
schedules redundant copies of the same task across several
nodes that do not have other work to perform, a process known
as speculative execution . When a task completes, it notifies the
JobTracker, and the copy of a task that finishes first becomes the
definitive copy. Other copies that are executing speculatively are
abandoned, and the reducers receive their inputs from mapper
completing successfully first.

 Speculative execution is enabled by default. If you have identical
nodes, you can save valuable resources by disabling this behavior.
You can disable speculative execution for the mappers and
reducers by setting the mapreduce.map.tasks.speculative.
execution and mapreduce.reduce.tasks.speculative.
execution options to false .

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

263

• Combiner functions : A combiner is a function that can be used
for decreasing the amount of data be processed by reducers.
A combiner needs to match the input/output key and value
types of your mapper and can be used for a single mapper. By
decreasing the data passed in to a reducer, a combiner also helps
reduce I/O and network traffic, thereby improving performance.

• Data compression : You can use an appropriate codec for
compressing data to reduce I/O and network traffic, thereby
improving performance. Various codecs such as LZO, Snappy,
and others can be used for compression depending on the format
for your data (discussed later in this chapter).

• Distributed cache : Enables you to cache files frequently used by
your applications. Once you cache a file for your job, Hadoop will
make it available on all DataNodes (in HDFS, not in memory)
where your map/reduce tasks are executing. So, you can access
the cache file as local file for your job(s). This saves on valuable
I/O and improves performance. See http://hadoop.apache.
org/docs/r2.6.3/api/org/apache/hadoop/filecache/
DistributedCache.html for more details.

 If you use Hive, you can develop a UDF (user-defined function)
using Java and use this functionality. The command ADD FILE
<filename> in Hive adds a distributed cache file that’s distributed
to every node.

• Granularity for MapReduce tasks : You can adjust the number
of mappers depending on the data processed by your jobs and
hardware resources available for execution. So, for example, if the
average mapper running time is shorter than a minute, you can
increase the mapred.min.split.size , so that fewer mappers are
allocated and mapper initialization overhead is reduced. You can
adjust the following parameters:

• Mapreduce.map.minsplitsize

• Mapreduce.map.maxsplitsize

• Number of reducers

• mapreduce.task.io.sort.factor: For any of your jobs where a
map task is running, each time the memory buffer reaches the
spill threshold, a new spill file is generated. So, after the map
task completes writing, there may be several spill files, and
these spill files are merged into a single and sorted output file.
This configuration property controls the maximum number of
streams (files) to merge at once. The default value is 10, but it can
be adjusted depending on your data volume along with the spill
threshold (80% by default).

http://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/filecache/DistributedCache.html
http://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/filecache/DistributedCache.html
http://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/filecache/DistributedCache.html

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

264

• mapreduce.task.io.sort.mb : When map task is executing, it
writes to a circular in-memory buffer and the size of this buffer
is defined by the io.sort.mb property. When this circular in-
memory buffer is filled (spill threshold is reached), output is
spilled to disk (in parallel using a separate thread). If the spilling
thread is slow to write and the buffer is 100% full, then the map
execution is stalled, so it’s important to tune this property for
optimal MapReduce performance. The default value is 100
MB and should be adjusted for your environment based on
performance and spill files generated.

• mapreduce.map.memory.mb/mapreduce.reduce.memory.
mb : These are the hard limits enforced by Hadoop for each
mapper or reducer task and define the maximum memory
that can be assigned to mapper or reducer’s container. The
default value is 1 GB, but you should set these values for your
environment as needed.

• mapreduce.map.java.opts/mapreduce.reduce.java.opts : This
is the maximum heap size of the JVM (–Xmx) for the mapper
or reducer task and should always be lower than the value for
property mapreduce.[map|reduce].memory.mb . Typically, this
value should be 80% of the value for property mapreduce.map.
memory.mb/mapreduce.reduce.memory.mb .

• mapreduce.reduce.shuffle.parallelcopies : As your job is
executing, various mappers are executing on nodes (for your
cluster), and their map output files are located locally (on the
node that’s executing the map task). These map tasks may
complete at different times, and therefore the reduce task starts
copying these outputs as soon as they complete. The number of
copier threads that the reducer task can use to fetch map outputs
in parallel, are defined by the property mapreduce.reduce.
shuffle.parallelcopies . The default value is 5 and should
be adjusted as per your data volumes and average number of
mappers.

 Optimizing YARN Execution

 YARN (yet another resource negotiator) is the latest resource management framework
for Apache Hadoop. This is essentially MapReduce version 2 with many new features like
dynamic memory assignment (for mappers and reducers). Major components of YARN
are as follows:

• ResourceManager : The master daemon process that
communicates with the client (requestor), tracks resource
availability on the cluster, and coordinates work by allocating
tasks to NodeManagers.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

265

• NodeManager : This is a worker daemon process that launches
and manages processes executing on worker nodes.

• ApplicationMaster : Manages a task (or a process) spawned
by NodeManager within a container , as requested by
ResourceManager.

• Container : Represents a request to hold resources (CPU/RAM) on
a worker node. For example, MapReduce is an application that
runs within YARN, and ApplicationMaster will spawn mappers
and reducers to run within a container (and request additional
containers to ResourceManager as needed).

 As shown in Figure 10-1 , when a client process requests resources to
ResourceManager, it locates a node with available resources and requests those resources
to the NodeManager (on that node). NodeManager, in turn, spawns a container, and
ApplicationMaster is invoked with it. ApplicationMaster manages the resources for
the application (the client process) and requests additional resources (if needed) to
ResourceManager.

 Figure 10-1 shows details of the YARN architecture.

ResourceManager

Holds total CPU + RAM
resources for the cluster

Container

20 vcores
+ 10 GB
RAM Requests

resources

Application
Process

Worker node

20 vcores
+ 10 GB
RAM

Container

NodeManager

20 vcores
+ 10 GB
RAM

ApplicationMaster

20 vcores
+ 10 GB
RAM

Spawns
additional
containers
as needed

Requests
resources to
NodeManager Spawns a container

and
ApplicationMaster

ApplicationMaster
requests additional
resources if needed

 Figure 10-1. YARN architecture

 Note the following:

• The total memory per node for a Hadoop cluster is determined by
property yarn.nodemanager.resource.memory-mb .

• Maximum memory that ResourceManager can allocate to the
ApplicationMaster container is determined by property yarn.
scheduler.maximum-allocation-mb . The default minimum
allocation is 1 GB but can be changed using property yarn.
scheduler.minimum-allocation-mb .

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

266

• ApplicationMaster can only request resources from
ResourceManager in increments of value for property yarn.
scheduler.minimum-allocation-mb and can’t exceed value for
property yarn.scheduler.maximum-allocation-mb .

• In case of MapReduce (as application), ApplicationMaster will
rounds off values for mapreduce.map.memory.mb and mapreduce.
reduce.memory.mb to multiples of value for yarn.scheduler.
minimum-allocation-mb .

 So, to summarize, here are some YARN properties that you can tune:

• yarn.scheduler.minimum-allocation-mb : Minimum size of
container that YARN will allow for running a job (default 1 GB).

• yarn.scheduler.maximum-allocation-mb : Largest size of
container that YARN will allow for running a job (default 8192m).

• yarn.nodemanager.resource.memory-mb : Total amount of
memory for containers on a worker node. This value should be:
(total memory) – (memory allocation for OS, Hadoop daemons,
and any other services).

• yarn.nodemanager.vmem-pmem-ratio : Defines ratio of virtual
memory to available physical memory. The default of 2.1 means
virtual memory will be double the size of physical memory.

• yarn.app.mapreduce.am.resource.mb : Memory allocated to
ApplicationMaster.

• yarn.app.mapreduce.am.command-opts : Heap size allocated to
ApplicationMaster (default (1 GB).

• yarn.nodemanager.resource.cpu-vcores : Number of cores that
a node manager can allocate to containers. This value should be:
(total number of cores on the node) – (cores allocated to Hadoop
daemons and any other daemons).

 This completes my discussion about YARN-related tuning and important parameters
to consider. Next, I look at how to optimize your data model for usage with NoSQL
solutions and also how to select a NoSQL solution for your environment.

 Choosing an Optimal File Format
 It is important to understand that the file format you choose to store your data can
directly affect the performance of queries against that data. There are a number of
parameters you need to consider while choosing the right format. The type of queries
you plan to execute is of course the most important one. The next one is the amount of
compression you need. And you need to make sure that the NoSQL solution you plan
to use supports the storage format. Fortunately, most NoSQL solutions make it easy to
convert data between formats.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

267

 File format affects query performance because it determines how quickly the dataset
can be read by the system in response to a specific query. The speed of data retrieval
is the biggest determinant of query performance. Now, the main (and most time-
consuming) task for data retrieval is moving data from disk to memory and vice versa
(unless you are using in-memory database). For example, if your dataset is 1 TB and you
use 7200 RPM drives with hardware interface SATA 6 GB/s, since your disk read rate is
close to 160 MB/s, it will take you about two hours to process a terabyte of data. For bigger
datasets, similar performance will be unacceptable.

 How can you improve your read performance? There are three ways. First, you
can parallelize your read and write operations by leveraging distributed storage and
computation technology. That will help you split up and distribute your data (and
queries) across multiple nodes. HDFS offers distributed storage (with fault tolerance)
and processing frameworks like MapReduce, YARN (or Spark) help you take processing
to data or process data locally on each of the worker nodes. This constitutes distributing
processing optimally on all the nodes (for a cluster) to complete a task (or a job) with
optimal performance.

 Secondly, you can reduce the total volume of data (that the query engine processes)
by storing your data in a file format that efficiently uses compression. File formats
support different compression algorithms and apply those algorithms to the data in
many different ways. Note that the tradeoff between compression algorithms is between
speed and the compression ratio. A higher compression ratio will take more time (and
also consume more CPU resources) for the compression or decompression to occur. Of
course, your file will be much smaller, and you will save on disk space.

 How much compression can you achieve using the compression schemes for various
file formats? Well, that depends on the combination of file format and compression
scheme. For example, for a text (CSV) file of about 1 GB, Snappy or GZIP can compress
the file to about 500 MB (if stored as a SequenceFile) or to about 300 MB (if stored using
ORCFile or Parquet format). Table 10-1 specifies the compression schemes valid for
various row-oriented and column-oriented file formats.

 Table 10-1. File Formats and Compression Scheme Support

 Compression Scheme
 File Format Snappy GZIP ZLIB BZIP2 None

 TextFile X

 SequenceFile X X X

 ORCFile X X

 RCFile X X X

 Parquet X X

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

268

 The third way you can improve your read performance is by using stored statistics
for aggregates. This is only supported by formats like Parquet and ORC and they can fetch
aggregated statistics (for example, aggregations based on min/max values and null count)
as pre-computed data. Also, Parquet and ORCfile formats optimize for read performance
at the expense of write performance (because of the Hadoop philosophy of write once
read multiple times).

 Finally, organizational schemes impact performance for various types of queries.
For example, queries that return a large number of columns (for a subset of rows) are
faster when data is stored in row-oriented formats. From experience, queries returning
more than 60% of columns benefit from row-oriented format. Alternatively, queries that
summarize or aggregate a few columns across all rows within a table (or a subset of it)
perform better, if data is stored in a column-oriented format. So, if you expect most of your
queries to be of the form select * from MyTable; you should use a row-oriented format.

 But if your queries are of the form select sum(MyColumn)from MyTable (that is, you
are performing aggregations or generating summary statistics for only a few columns
within your dataset), then you should probably use a column-oriented format. Next, I
discuss a few row and column formats and their properties.

 Row-based Formats
 The most popular row-based storage formats within the Hadoop ecosystem are text files,
sequence files, and Avro. I am sure you have worked with text files before. CSV files are
easy to work with and supported by nearly all the tools within (and outside) the Hadoop
ecosystem. Sequence files have also been used extensively within the Hadoop ecosystem.
Avro files have a very small footprint and therefore provide much better performance
(as compared with sequence files and text files). But Avro is not supported by many
applications (compared with the other two row-based file formats).

 Text Files

 The simplest and most commonly used file format is text files. Most of the database
systems or applications support exporting data to text formats like CSV or tab-delimited
files. Usually, these text files contain ASCII or UTF characters with individual fields
(or column values) separated by a special character called delimiter (such as comma,
semicolon, ampersand, or tab), with new lines separating records.

 Advantages of using text files are as follows:

• They are readable and very easy to work with.

• Large number of tools are available for manipulating them.

• Most applications and database systems can ingest (as well as
output) text files.

 Though text files are easy to work with, they don’t provide optimal performance. Text
files store all feld values (including numbers or Boolean values) as strings. So, if you need
to store an integer value of 500, a text file will convert this value to a string equivalent
(three characters “500”) and then write it to your file.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

269

 There are a couple of issues with storing all data as strings:

• Numbers and Booleans need more space if stored as strings (for
example, 50,000,000 as a string needs 8 bytes, but as an integer
needs 4 bytes; the Boolean value “False” stored as a string needs
5 bytes, but as a Boolean needs only 1 byte). This increased
space usage adds up and results in large files that take longer for
retrieval (to memory) and impact query performance adversely.

• Converting strings to appropriate data types adds an extra task
for your queries. This is especially important for Hadoop, where
most of the tools in the Hadoop ecosystem follow the philosophy
 schema on read or resolve data types on read. So, every time you
execute a query, this data-type conversion must be performed
(unless all your data is really strings or text) and will slow down
your queries as well as consume additional system resources.

 Sequence Files

 Sequences files are a popular file format for use with Hadoop ecosystem (after text files).
Sequence files use a binary format that holds data as records consisting of key-value
pairs. Here’s how a sequence file is structured:

 <File header><key1,(Doe,John,387-45-9876,1990-02-14,Chicago,IL)><sync marker>

 So, a sequence file consists of a file header followed by records (represented as key-
value pairs). The file header holds metadata about the file and data. A sync marker is used
as record terminator. Hive (as well as Impala) uses a simplified version of sequence files
that ignores the key portion of the record and encodes each row as a string with special
character '\01' used as row delimiter.

 For example, if you want to compress data for your Hive table that uses a sequence
file using compression scheme Snappy, set the following at the Hive command prompt:

 > set hive.exec.compress.output=true;
 > set mapred.output.compression.type=BLOCK;
 > set mapred.output.compress.codec=org.apache.hadoop.io.compress.
SnappyCodec;

 The primary advantage of using sequence files is that all components within the
Hadoop ecosystem support reads and writes to sequence files. Unfortunately, the way
Hive and Impala use sequence files reduces many of this format’s benefits and results
in files that are similar in size to text files (and subsequently have the same issues as text
files).

 Hive and Impala (by default) store data in sequence files as strings. This means they
use up as much space as text files, with numbers, Booleans, and other data types taking
up more space than they need to. Also, the sync markers within the file add to the file size
as well.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

270

 Avro

 Avro is the most advanced row-based format currently available and differs from the text
or sequence file formats as follows:

• Avro includes or embeds the schema of the data (corresponding
to a table) within the file. This eliminates the need for redefining
schema every time you share an Avro file between applications.

• Avro encodes fields based on their data type (as opposed to
storing all fields as text). This reduces the (uncompressed) file size
and also makes it possible to compress a file more effcectively.
Subsequently, network transfer time and file-processing time (for
data type conversions) is substantially reduced, providing your
queries much better performance.

• Avro eases schema changes (and thereby schema evolution).
Using Avro, it’s much easier to add columns without re-writing
the underlying data to match a new schema. If you need to add
a new column to your data, you can implement it by including
the additional field (in the end) and supplying a default value for
old records. For older records missing this value, Hive will simply
substitute the missing value by using the default value.

 Here’s how an Avro file is structured:

 <File metadata><sync marker><data block(object count,object size,data)>
<sync marker>

 The file consists of a file header (consisting file schema serialized as a JSON string
and compression codec information) followed by one or more data blocks. Each data
block consists of a number of records and metadata (such as record count, record size,
and others) and the actual data, which can be compressed using any of the supported
codecs. The following code creates a Hive table (Employee_avro) using the Avro file
format:

 > CREATE TABLE Employee_avro
 (lastname STRING COMMENT 'Employee last name',
 firstname STRING COMMENT 'Employee first name',
 dept_code SMALLINT COMMENT 'Department code',
 dob TIMESTAMP COMMENT 'Date of Birth',
 zip STRING COMMENT 'ZIP CODE',
 employee_since TIMESTAMP COMMENT 'Date of first visit')
 ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.
AvroContainerInputFormat'
 OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
 TBLPROPERTIES ('avro.schema.literal'='{

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

271

 "name": "employee_summary",
 "type": "record",
 "fields": [
 {"name":"lastname", "type":"string"},
 {"name":"firstname", "type":"string"},
 {"name":"dept_code", "type":"int"},
 {"name":"dob", "type":"string"},
 {"name": "zip", "type": "string},
 {"name": "employee_since", "type": "string"},
]}');

 The part that starts with "name": "employee_summary" is the JSON schema definition
and included in the file header (as part of file metadata). Compression codec can be
specified exactly the same way as specified for sequence files.

 Avro has some drawbacks as well:

• Using the Avro format can be more complicated than using any of
the text formats and may involve longer development time

• Very few applications (outside of the Hadoop ecosystem) support
this format or read it

• For Avro, you need to define your schema in advance, before you
actually write it to a file, which isn't possible in some cases

 To summarize, Avro is a great option for queries that use all or most of the columns
and is therefore useful for data warehouses; especially the ones with wide fact tables
consisting of hundreds of columns.

 Column-based Formats
 Columnar storage formats are more suited (and optimized) for analytic use cases because
you need to aggregate or summarize a small subset of columns. Consider the Employee
table from the last section and assume that there’s an additional column called Salary
that holds an employee’s salary. With a columnar file format, it will be much faster to
retrieve a list of employees with salaries more than double the average salary because a
columnar format holds data in columns, which makes it easy (and fast) to aggregate.

 The most popular columnar (or column-based) formats within the Hadoop
ecosystem are RCFile, Parquet, and ORCFile. Each has its own strengths and weakness,
and I discuss those in this section. Note that columnar storage formats aren’t just used
with the Hadoop ecosystem but also used by high performance analytic databases like
Greenplum or Vertica.

 So, to summarize, use a columnar format if:

• You frequently need to perform aggregation operations
(for example, count , avg , min , max) as part of your queries

• Most of your queries select only a small subset of columns and
also use a small number of columns as filters (in where clause)

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

272

 Lastly, be sure that the preceding conditions apply for your environment (before
choosing a columnar format), because if that’s not the case, then data stored in columnar
format and needing to retrieve the whole record will need to perform row reconstruction
(the process of taking all the columns that belong to a single row and composing them
back together). This involves a lot of work (non-contiguous data reads) for the system
since each row is not stored contiguously and will impact performance really badly.

 RCFile

 The Row Columnar (RC) file format (introduced in 2011) is one of the most popular
columnar formats used within the Hadoop ecosystem. It offers space efficiency and
thereby speeds queries because they have to retrieve less data. Data within RCFile is
structured as follows:

 <Row group1(<Metadata header><column1(values)><column2(values)>
<column3(values)><Sync marker>)>,<Row group2(...)>,<Row group3(...)>

 So, RCFile partitions data horizontally as well as vertically. First, data is partitioned
into multiple row groups and then within every row group the data is organized by
column. Also, the RCFile format ensures that all columns of a row are on a single node
(they fit within a single HDFS block) to reduce the cost of row reconstruction (if needed).
Finally, data in each row group is compressed by column (the compression codec can be
specified exactly the same way as specified for sequence or Avro files).

 As a major benefit (since RCFile was the first columnar format), almost all the tools
within Hadoop ecosystem support RCFile. Also, a lot of tools outside Hadoop ecosystem
support it, so it needs to be considered if you plan to use tools other than Hive or Impala
for running analytic queries across your data.

 However, compared to Parquet and ORCFiles, RCFile lacks a lot of advanced
features. For example, ORCFiles and Parquet allow you to store more complex data types,
have means for Hive to limit the data it loads into memory, and can encrypt data into
smaller files.

 ORCFile

 The ORC file format was introduced as successor to the RCFile format and adds a number
of features to it. For example, it uses complex data encoding schemes to further reduce
data size. It also stores metadata to make it easier for skipping rows that don’t fit common
query criteria and stores basic statistics on columns. This results in significantly faster
queries and highly compressed data. Data within ORCFiles is structured as follows:

 <Index Data><Row group1(...)><Stripe footer>,<Index Data><Row group2(...)>
<Stripe footer>………<File footer><Postscript>

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

273

 The structure of a data row group is identical to RCFile, but there’s an index data
block preceeding each row group, followed by a stripe footer. At the end of a data file,
there’s a file footer and a postscript marker. These additional blocks provide the advanced
functionality for ORCFile. The compression codec is specified as a table property.

 ORCFile is one of the most advanced columnar file formats available. It uses complex
functionality to reduce file space, making it easier for queries to identify critical parts
of a file and avoid file scans. A major problem is the lack of support for this format. For
example, Impala doesn’t currently support ORCFiles. So, use of ORCFile format may limit
the set of tools you can use with your data.

 Parquet

 The Parquet format was designed by engineers at Cloudera and Twitter. It is based on
 the record shredding and assembly algorithm described in the Dremel paper (Dremel is a
scalable, interactive ad hoc query system for analysis of read-only nested data designed
by Google).

 Parquet providess very efficient compression and encoding schemes and uses three
types of metadata: file metadata, column (chunk) metadata, and page header metadata.
At the highest level, file metadata contains information about schema, number of rows,
list of row groups, and list of keys/values. At the next level, rowgroup metadata contains
list of column chunks for a row group, total byte size and number of rows. Column chunk
metadata has the file path (for the chunk), file offsets, and column metadata (for columns
that are part of that chunk). Column chunks may contain a number of pages, and page
header metadata has the details (such as (un)compressed page size, Data page header(s),
index page header(s), and so on. Data and index page headers have the details of values
and encoding details. A Parquet structured file structure for M row groups and N columns
would look like the following:

 <FileMetaData><Row group1MetaData(<Column1MetaData(PageMetaData)>………
<ColumnNMetaData(PageMetaData)>)………<Row group2MetData(...)>……<Row
groupMMetData(...)><File footer>

 To summarize, Parquet implements a complex data materialization engine
incorporating advanced encoding techniques that achieves a balance between
compression and speed. Also, Parquet decides the right encoding format for each of your
data columns. You can choose the compression scheme for your Parquet file as following
(for Hive):

 > set parquet.compress=SNAPPY

 Fortunately, Parquet is supported more widely (compared to ORCFile) and is
certainly a recommended columnar format.

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

274

 Indexing Considerations for Performance
 Indexing is a very important consideration for query performance, and although Hadoop
doesn’t offer advanced levels of indexing (compared to RDBMS), there are some general
guidelines that you can follow. First, the indexing guidelines such as optimal use of
indexes (too many indexes will impact insert performance, or indexes should match
frequent query patterns, and so on) are valid. Also, for Hive, index partitioning should
match table partitioning (in terms of partitioning columns used). You can refer to Hive
indexing documentation at https://cwiki.apache.org/confluence/display/Hive/
IndexDev for a comprehensive explanation of Hive indexing.

 In this section, I focus on the two major types of indexes popularly used with Hadoop
and their optimal usage: compact indexes and bitmap indexes.

 Compact indexes
 In general, a compact index can be used for columns that contain a lot of distinct or
unique values (such as employee ID). You should use a compact index for columns that
contain numeric values. Internally, a compact index is stored (for example, in Hive) as
a sorted table with all the column(s) (to be indexed) values and the blocks where they
are stored. Because the index is also a table, you need to store it using an optimal format
(ORC, Parquet, Avro) matching your table format and compress it (if needed). If your
table is partitioned, then the index is also partitioned, although you may change the
partition structure for an index as needed. Make sure the index can be used for compact
binary search by setting the property IDXPROPERTIES 'hive.index.compact.binary.
search'='true' .

 After you create the index, you need to refresh or update it (if data in your source
table changes) as follows:

 > ALTER INDEX <Index name> ON <Table name> REBUILD;

 You can auto-update an index, but due to the high volume of data used with Hadoop,
it is a better idea to schedule the index updates manually for times when the system is not
in use.

 Bitmap Indexes
 A bitmap index is suitable for columns that have only a few distinct values (such as
gender or logical (yes/no) or categories or types). For these columns, the ratio of the
number of distinct values to the number of rows in the table is small. This ratio is known
as the degree of cardinality .

 Fully indexing a large table with traditional indexing can use a lot of disk space, and
bitmap indexes only use a fraction of the size of the indexed data in the table. The reason
is that an index provides a pointer to a data row (for a table) that contains a given key
value and thus contains a list of row IDs for each key value (corresponding to the rows
with that value).

https://cwiki.apache.org/confluence/display/Hive/IndexDev
https://cwiki.apache.org/confluence/display/Hive/IndexDev

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

275

 However, for a bitmap index, a bitmap for each key value is used instead of a list
of row IDs. Each bit in the bitmap corresponds to a row ID. If the bit is set, then the
data row (with the corresponding rowed) contains the key value. A mapping function
is used to convert the bit position to an actual row ID. Also, bitmap indexes compress
the bitmaps. So, for a small number of distinct key values, bitmap indexes offer better
compression. Since bitmaps from multiple bitmap indexes can be easily combined, you
should use single-column bitmap indexes. Similar to a compact index, you need to sort
the data in the column to be indexed for an effective bitmap index—otherwise, all the
blocks containing values in the bitmap index would be read. Therefore you should set
the property hive.enforce.sorting to true and describe in the create table statement
which columns should be sorted.

 Because a bitmap index (in Hive) is simply another table, you need to specify an
effective storage format and compression (if the index is large).

 Other index types are used for ORCFile and Parquest formats, such as storage index
(a min/max index that lets you skip data blocks if a value is not contained in it and is
suitable for numeric values and queries using the < , > , = operators), and aggregate index
(similar to a table with predefined aggregations, like count,sum,average for a specific
column, grouped by the same column).

 To conclude, you need to know and evaluate your data for effective indexing and also
develop mechanisms to update your indexes periodically based on data changes (to the
source table).

 Choosing a NoSQL Solution and Optimizing Your
Data Model
 The importance of selecting the correct NoSQL solution for your environment (and
your data) is often overlooked. For example, if your data is mostly unstructured and
your volume is small (about 2–5 TB), a columnar database won't be a suitable solution.
First, you need to know about the major types of NoSQL databases, their characteristics,
strengths/weaknesses, and how they perform for the type of processing you need (based
on your business need). Your decision will have a huge impact on performance and
supported functionality for your environment.

 For details on the types of NoSQL databases, their features, and criteria for choosing
the correct NoSQL database for your environment (based on your data), see Chapter 6
section “Selecting an Appropriate NoSQL Database”.

 An important point to note about NoSQL: it has really turned into (and will become
more of) LimitedSQL, as the original NoSQL key-value, MapReduce-based databases are
being replaced by the next-generation databases offering (simpler) SQL-based interfaces
useful for analytics. Also, the performance and functional capabilities of these databases
with LimitedSQL are improving constantly.

http://dx.doi.org/10.1007/978-1-4842-1287-5_6

CHAPTER 10 ■ IMPLEMENTING AND OPTIMIZING THE TRANSITION

276

 Getting back to NoSQL, after selecting an appropriate NoSQL solution, the next task
is getting your data ready for migration to NoSQL. In most cases, OLTP or OLAP systems
are migrated to NoSQL. Subsequently, you need to transform your data to work optimally
with a NoSQL database. For example, data held in a relational OLTP environment has
referential integrity defined and therefore you need to perform joins to retrieve the
required data. Relational databases typically perform well for join operations and have
features to enhance performance such as indexing, defining statistics, caching of data and
query plans, and so on. If you move the relational data to NoSQL environment, most of the
RDBMS features are not available. Also, NoSQL databases don’t perform well for joins.

 So, you have to redesign your data model and eliminate joins. You may have to
denormalize your data for that purpose and may also need to combine some data tables to
form larger tables. Different techniques need to be used for transforming your relational
(OLTP) or Star schema (OLAP) design for NoSQL usage. See Chapter 6 for more.

 Summary
 Performance tuning is a vast topic in itself and is specialized enough to warrant its own
book, considering the various subtopics involved. This chapter doesn’t claim to be
exhaustive in that respect. The purpose is to attract your attention to the different ways
you can tune your NoSQL environment. For example, the list of MapReduce or HDFS
parameters is not exhaustive. Refer to Apache documentation for a complete list of
parameters and tune any other parameters that are more relevant to your environment.
Or, if you consider indexing, carefully review your query needs and add the appropriate
type of indexes that I may not have covered.

 Also, consider the hardware aspect. A huge corporation like Teradata focuses largely
on designing hardware for managing petabytes of data. A couple of years back, Intel came
up with its hardware-based solution for facilitating encryption and decryption without
sacrificing performance. You may not want (or have the resources) to go that far. The
section on hardware optimization is meant to provide generic guidelines and also facilitate
your thought process to optimize the hardware you plan to use for your implementation.
You will have specific needs for your environment, but at least you have a good starting
point. It is, of course, not possible to consider all types of scenarios for optimization.

 There are different approaches adopted by organizations for performance tuning.
Some organizations just start with generic guidelines and then think about performance
tuning when they have specific problems. That way, they can focus on the problem
area and save on valuable resources (time and money). The issue with that approach
is that the immediate problem is fixed quickly, but does that guarantee there will be no
additional issues in that area? Or some other area? Of course not. That’s why you need to
start with good planning. Perform stress testing, consider the data growth (and increased
usage along with it), and also consider boundary conditions (minimum and maximum
possible values). Boundary conditions may be applicable to your hardware resources,
NoSQL solution, your network capacity, or even your technical support resources.

 Having a good understanding of growth coupled with boundary conditions will enable
you to plan effectively for any performance issues for the near future. As you know, with the
dynamism of technology (especially in the NoSQL world), no system is guaranteed to have
a very long life, but you can at least avoid issues in the immediate future if you are proactive
and anticipate issues instead of responding to them as they appear.

http://dx.doi.org/10.1007/978-1-4842-1287-5_6

 PART V

 Case Study for Designing
and Implementing a
Hadoop-based Solution

279© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_11

 CHAPTER 11

 Case Study: Implementing
Lambda Architecture

 Lambda architecture was one of first definitive ideas in Big Data architecture and, like
any new architecture, has its followers and detractors. How do you decide which side
you are on? I have a simple answer: it depends on the architecture’s applicability to
your environment. Lambda is definitely not suited for all Big Data use cases. Maybe one
of the newer architectures like Kappa or Fast Data architecture is more suited for your
environment. Maybe you don’t even need to have an architecture-based approach and
can simply start with a data reservoir and design analytics as required. Every environment
is unique in some ways and needs special design considerations, but the trick is to start
with a generic approach—and the most appropriate one.

 Why look for a new architectural approach towards data? Well, current RDBMS or
NoSQL-based systems are not resilient. Because most data systems support create, read,
update, and delete (CRUD) operations, there is a possibility of data corruption due to
update and delete operations. For example, it is possible to delete a large number of rows
when you actually intend to delete a single row. A software bug or hardware failure can
also corrupt data. The immutability of master data within Lambda architecture provides
an effective resolution to this issue.

 Also, with current database systems, you always need to make a trade-off in your
design, because you can either optimize for data storage (normalized design in third
normal form) or query processing (denormalized design—usually first or second normal
form). Lambda resolves this conundrum by separating your master data (stored using
third normal form) from your query layer (stored as denormalized views).

 So, how does an immutable data store capture changes to data? By dividing data in a
number of “facts” and capturing changes to these facts in the time space. So, any changes
to a fact are stored as a new fact record with a timestamp (to indicate when the change
occurred). Consider an employee record. Address for an employee is a fact. Any time the
employee moves, a new fact record can be added, along with a timestamp indicating when
she moved. This preserves the employee’s residential history (similar to type 2 dimension
in data warehousing)—but more importantly, it preserves all the facts associated with an
employee (in terms of his addresses). You can, of course, use the facts any way you need to.

 Finally, how do the Lambda layers facilitate near–real-time data delivery? I discuss
that using a real-world case study. I also briefly discuss the Kappa and Fast Data design
changes for the same use case. I’ll start by describing the business problem.

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

280

 The Business Problem and Solution
 Yourtown Insurance is an auto insurance company that recently has had to deal with a large
number of fraudulent claims. Subsequently, it added stringent guidelines and a lot of extra
processing for their claims. This resulted in tripling the processing time, and customers with
genuine claims, being unhappy, moved their business to other insurance companies.

 Yourtown Insurance hired experts in business processing (as well as software
performance) who analyzed the past claims (using statistical models) and created
a predictive model to determine whether a claim was possibly fraudulent. If a claim
was determined to be possibly fraudulent, then it was directed to a special queue that
performed additional processing and initiated an investigation if necessary. The rest of
the claims (ones determined not to be fraudulent) were processed quickly, as they had
been before additional processing was added.

 This strategy reduced the processing time for (genuine) claims and still was able
to identify (with about 80% accuracy) fraudulent claims. The consultants assured the IT
department that with time, the predictive model they built would become more accurate
and provide a larger percentage of accuracy. The model was built using a lot of factors for
determining fraudulent claims, such as: number of claims filed by the customer during last
year, filing time of the claim, weather conditions when claim was filed, age of the customer,
customer’s driving history, and more. As a result of the model evaluation, it was determined
that certain values for the above factors indicated fraudulence (or the lack of it).

 So, the claim parameters needed to be checked in real-time against aggregated (or
calculated) customer data. Because the claim data volume was very large (30 TB with 1%
monthly growth), it was decided to use Hadoop for data processing, and since there was a need
for real-time processing, Lambda architecture was chosen. Based on the volume, it was agreed
that the batch layer should be rebuilt every weekend and that the speed layer should hold data
for the past six days. Fraudulence would be decided based on historical data (available through
the batch layer) and the most recent data (available through the speed layer).

 This chapter discusses the design and implementation of this solution using
appropriate hardware, software, and programs that need to be developed.

 Solution Design
 I start with the hardware that’s necessary for building the Hadoop cluster, because
performance starts with appropriate hardware. Then I discuss the software components
necessary and any customizations (as required).

 Hardware
 The data size for this system is 30 TB with 1% monthly growth. For the next four years,
that’s a total growth of about 50%, or 15 TB. Because the batch layer denormalizes data,
you can assume that you will need roughly about 30% additional storage, taking the total
space requirement to 60 TB. Now, if you want your system to be available while the batch
layer is being rebuilt, then you will need to double your space (because you will need to
build the new views before removing the old ones). For this example, you can assume that
the system will be unavailable while the batch layer is being rebuilt. So, your final space
requirement is 60 TB.

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

281

 Chapter 10 discusses how to calculate the cluster size (for production usage). Here
I will start with worker node configuration and total number of nodes. OS and other
essential applications on a node need some space (roughly 2% of total space in this case,
since 2% of 2 TB is 40 GB—quite enough for operating system and software. Though
I have provided general guidelines and percentage of storage to reserve for operating
system and software, you also need to consider disk drive size and approximately how
much you need), and data blocks are replicated based on a replication factor (default 3).
Consider:

 HDFS space per node = (Raw disk space per node – 2% non-DFS local storage)/
(Replication Factor)

 Start with the following for startup (individual) worker node configuration:

• Latest generation processor(s) with 12 cores (total)

• 4 GB memory per core

• 2 TB SATA disks per core

• 1GbE NIC

 HDFS space per node = (2 TB – 2% non-DFS local storage)/3

 HDFS space per node is 653 GB:

 Number of Worker nodes = Total HDFS space/HDFS space per node

 Number of worker nodes = 60 TB/653 GB = 92 .
 For a NameNode:

• 6 cores (total)

• 4 GB RAM (3 GB + 1 GB for every 100 TB of raw disk space)

• Needs to be replicated (for failover)

• RAID-1 storage

• NameNode should run on a 64-bit OS to avoid 3 GB limit on JVM
heap size

 For YARN, you can use 4 GB RAM and a 4-core CPU as a starter configuration
for Resource Manager. If there is maximum usage for a resource, adjust the resource
allocation accordingly. To summarize, you need a 95-node cluster with 92 DataNodes,
NameNode (two nodes in failover configuration), and a node for YARN Resource
Manager.

 You can calculate the size of your development environment based on guidelines
provided in Chapter 10 . For good performance, SSHD (solid state hybrid drive) storage
that offers 7,200 RPM or SATA III drives offering 10,000 RPM can be used on DataNodes.
Finally, network proximity or being a part of the same subnet will help reduce the
intermodal network traffic and provide good performance.

http://dx.doi.org/10.1007/978-1-4842-1287-5_10
http://dx.doi.org/10.1007/978-1-4842-1287-5_10

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

282

 Software
 A browser-based application allows Yourtown’s customers to enter claims. The claim data
is stored using VoltDB and pushed to HDFS/Hive every hour. Batch layer views are built
using this data. So, HDFS/Hive for the batch layer. For the serving layer, I will use a read-
only database called Splout SQL. See Chapter 9 for more on Splout SQL. For the speed
layer, I will use Spark (along with Spark SQL).

 Database Design
 The claim system has a large number of tables with a lot of columns to capture all the
details. However, most of that data is not needed for fraud detection. Also, I don’t want to
oversimplify the predictive modeling process that uses a large number of parameters for
deriving the predictions. So, I will demonstrate the concept of fraud detection using some
parameters, but note that it’s a complex process and needs much more information than I
have room to provide here.

 You might remember the logical model used as an example in Chapter 3 (Figure 3-5).
Since the model is fairly generic, I’ll reproduce it here as an example.

 For our purposes, we can use the following tables (master data stored in HDFS) for
building batch views on:

• Claim

• Claim_status_type

• Policy

• Policy_owner

• Claim_line_item

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://dx.doi.org/10.1007/978-1-4842-1287-5_3#Fig5

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

283

• Claim_status

• Claim_type

• Policy_type

 Also, we can assume that the Policy_owner entity has additional columns
 PolicyOwnerDOB and PolicyStartDate , and the Claim entity has an additional column
 ClaimWeatherCond (to hold weather condition at time of filing a claim). An additional
entity, PO_Drv_Hist , holds the policy owner’s driving history details and has the attributes
shown in Figure 11-1 .

PolicyOwnerId (FK)

ViolationNum

ViolationSeverity

ViolationDate

ViolationDetails

 Figure 11-1. The PO_Drv_Hist entity

 There is a one-to-many relation between PolicyOwner and PO_Drv_Hist entities (as
you can see from the design). A policy owner may have one or more violations. If there are
no violations, then there won’t be a record for a PolicyOwner in the PO_Drv_Hist entity.
As you see, the master data is in a normalized form, but Lambda architecture allows you
to hold your master data normalized. You can, however, denormalize your data for the
batch (and subsequent) layers.

 Considering a Fact-based Model
 Let’s consider applying a fact-based model to this data. As mentioned in Chapter 9 , a
data model in third normal form that has timestamps (for preserving history) within
appropriate data tables can constitute a fact-based model.

 In this case, the data model being considered is already in third normal form. The
dynamic tables that will have records added frequently (Claim , Claim_resubmission ,
 Claim_settelement , Claim_status) already have a column to capture date/time. For
 Policy , I have added the column PolicyStartDate to hold the date when a policy is
added. The static tables holding application metadata (Claim_type , Claim_status_type ,
and so on) don’t have a timestamp column (and for a fact-based model, they should).
But you can assume (for this example) that the static data is not changing and therefore
you can denormalize the data (utilizing existing static data) and use it for your batch layer
views. In other words, the master data can be viewed as a fact-based model.

http://dx.doi.org/10.1007/978-1-4842-1287-5_9

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

284

 Data Conditions for Fraudulence
 Discussing the data conditions for determining fraudulence will help you design the
batch layer views (since you can then determine what data you need for your views):

 1. If a customer has filed more than 5 claims during last 12
months, there is a possibility of fraud (for his next claim).

 2. Claim filing time after 10 p.m. indicates possibility of
fraudulence.

 3. Weather conditions such as snow, rain, storm, avalanche,
tornado indicate possibility of fraudulence.

 4. Teenage drivers with at least 2 severity 1 violations in the last
12 months may file fraudulent claims.

 5. Drivers with at least 3 severity 1 violations in the last 12
months may file fraudulent claims.

 The insurance company (based on its predictive model) determined that claims
satisfying condition (1) along with two more of the other conditions needed to placed in
 additional evaluation/investigation queue. Also, claims satisfying conditions 2, 3, and
either 4 or 5 also needed to be placed in the additional evaluation/investigation queue.

 All the other claims were processed rapidly without any additional constraints, since
they were considered genuine.

 Batch Layer Design
 First, we denormalize the data. I will start with the Claim entity, and as you can see, I have
included columns from entities Claim_line_item , Claim_status , Claim_status_type ,
and Claim_type . Also, I have only included columns that I need. This will be used for
batch views related to claims.

 As a next step, I will denormalize the Policy entity and include columns from
entities Policy_owner and Policy_type . This will be used for policy-related batch views.
Note that I have added a LastModified attribute to both views (since they don’t have
attributes for time variance). The denormalized entities are shown in Figure 11-2 .

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

285

 I will start with claim-related batch views:

 1. The first step for this batch view will count the number
of claims for a policy for the last 12 months and have a
temporary table with counts greater than 5. As a second step,
this temporary table will be joined with the denormalized
 Policy entity to get the policy owner details, constituting the
batch view.

 2. The second batch view will filter claims by weather conditions
such as snow, rain, storm, avalanche, or tornado.

 Next, the policy-related batch views:

 3. The third batch view will list teenage drivers with at least 2
severity 1 violations in the last 12 months. As a first step, a
temporary table will be populated with drivers with 2 or more
severity 1 violations in the last 12 months using the PO_Drv_
Hist entity. Then the entries will be filtered using DOB (date
of birth) from the denormalized Policy entity for drivers with
ages less than or equal to 19.

 4. The fourth batch view will use the temporary table created for
the third batch view and filter the entries for drivers with age
greater than 19 years.

 As a next step, you need to derive these views from the master data held in HDFS.
Please note that these views are really Hive tables. I will describe the processing in the
next section.

 Figure 11-2. Denormalized Claim and Policy entities

ClaimId

PolicyId (FK)

ClaimSubmissionDate

ClaimSeqId

ClaimAmount

ClaimType

ClaimStatus

ClaimWeatherCond

LastModified

PolicyOwnerId

PolicyOwnerSSNFEIN

PolicyOwnerType

PolicyType

PolicyId

PolicyEndDate

LastModified

PolicyStartDate

PolicyOwnerDOB

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

286

 Implementing Batch Layer
 As explained in Chapter 9 , for several reasons, I will use HDFS for holding the master data
and the batch-layer views (Hive tables). Hive is really used for metadata management,
and you may use MySQL for holding the metadata.

 Also, for appending vertical or time-based data, I will use Hive partitions (daily, weekly,
or monthly as your application may warrant) to append new data. I have used Hive partitions
to demonstrate the concept of how new data can be managed for your master dataset and
processed in the batch views that are created. I have used timestamp LastModified for
partitioning the tables. Here are the Hive tables that constitute master data:

 CREATE TABLE ClaimsMaster(
 ClaimId INT,
 ClaimSeqId INT,
 PolicyId INT,
 ClaimSubmissionDate TIMESTAMP,
 ClaimType STRING,
 ClaimAmount INT,
 ClaimSTATUS STRING,
 ClaimWeatherCond STRING
)
 PARTITIONED BY (LastModified TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";
 CREATE TABLE PolicyMaster(
 PolicyId INT,
 PolicyOwnerId INT,
 PolicyOwnerDOB DATE,
 PolicyOwnerSSNFEIN STRING,
 PolicyOwnerType STRING,
 PolicyType STRING,
 PolicyStartDate TIMESTAMP
 PolicyEndDate TIMESTAMP)
 PARTITIONED BY (LastModified TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";
 CREATE TABLE PO_Drv_Hist(
 PolicyOwnerId INT,
 ViolationNum SMALLINT,
 ViolationSeverity TINYINT,
 ViolationDate TIMESTAMP,
 ViolationDetails STRING)
 PARTITIONED BY (LastModified TIMESTAMP)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

http://dx.doi.org/10.1007/978-1-4842-1287-5_9

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

287

 Next step is adding new data to these tables holding master data. As you know,
these tables are stored as files within HDFS, and Hive holds the metadata to manage data
modifications more effectively. New data can be added on a daily basis (or any other
necessary frequency) using dynamic partitions. You can create a staging table (pointing at
the file holding new data) and add the new partition to a table as follows:

 CREATE EXTERNAL TABLE ClaimsMaster_stg(
 ClaimId INT,
 ClaimSeqId INT,
 PolicyId INT,
 ClaimSubmissionDate TIMESTAMP,
 ClaimType STRING,
 ClaimAmount INT,
 ClaimSTATUS STRING,
 ClaimWeatherCond STRING,
 LastModified TIMESTAMP
) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"
 LOCATION "/InsuranceExample/ClaimsMaster/staging";

 FROM ClaimsMaster_stg INSERT OVERWRITE TABLE ClaimsMaster PARTITION
(LastModified) SELECT ClaimId, ClaimSeqId, PolicyId,
 ClaimSubmissionDate, ClaimType, ClaimAmount, ClaimSTATUS, ClaimWeatherCond,
LastModified;

 Note that the staging table has an additional column, pointing to a staging directory
(holding the new data) for table ClaimsMaster . The same principle can be applied for
adding new data to tables PolicyMaster and PO_Drv_Hist . Also, the process of copying
new data file to the appropriate staging directory, creating staging table and adding the
new partition to base table, can be automated and scheduled.

 Now I create the batch views. I will first create a table BatchProcHist to maintain a
history of batch views created:

 CREATE TABLE BatchProcHist(
 ViewName STRING,
 CreatedAt timestamp)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;";

 I will create the first view now in order to list policy owners with more than 5 claims
in the last 12 months. As a first step, I will get a list of policies with more than 5 claims (in
last 12 months) and write to a temporary table:

 Create table ClaimDeftemp1 as Select PolicyId, count(ClaimId) as
Claimcount from ClaimsMaster where datediff(current_date, add_months
(to_date(ClaimSubmissionDate),12)) <= 0
 group by PolicyId having count(ClaimId) > 5

 Note that I have only considered the date part of ClaimsubmissionDate and
compared with current date after adding a year to it.

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

288

 For the next step, I will join this temporary table with the denormalized Policy entity
to get the policy owner details, constituting the batch view:

 Create table ClaimDefView as Select P.PolicyOwnerID, P.PolicyId,
C.Claimcount from PolicyMaster P, ClaimDeftemp1 C where P.PolicyId =
C.PolicyId;

 Last, writing to the history table:

 INSERT INTO TABLE BatchProcHist
 VALUES ('ClaimDefView', from_unixtime(unix_timestamp());

 The second batch view filters claims by weather conditions such as snow, rain,
storm, avalanche, or tornado:

 CREATE table ClaimWeatherView as Select distinct ClaimId,
 ClaimWeatherCond from ClaimsMaster where ClaimWeatherCond in
('Snow','Rain','Storm','Avalanche','Tornado');

 Writing to the history table:

 INSERT INTO TABLE BatchProcHist
 VALUES ('ClaimWeatherView', from_unixtime(unix_timestamp());

 The objective of the third batch view is to list teenage drivers with at least 2 severity
1 violations in last 12 months. First, I populate a temporary table (listing drivers with 2 or
more severity 1 violations in the last 12 months):

 Create table TeenageVioltemp1 as Select PolicyOwnerId,
count(ViolationSeverity) as TotalViolations
 from PO_Drv_Hist where (datediff(current_date, add_months(to_
date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1)
 group by PolicyOwnerId
 having count(ViolationSeverity) > 2

 Next, the entries (from temporary table) will be filtered using DOB (date of birth) from
the denormalized Policy entity for drivers aged 19 and under:

 Create table TeenageViolView as Select T.PolicyOwnerId, T.TotalViolations
from TeenageVioltemp1 T, PolicyMaster P where T.PolicyOwnerId =
P.PolicyOwnerId and
 (datediff(current_date,add_months(P.PolicyOwnerDOB,228)) <= 0)

 Writing to history table:

 INSERT INTO TABLE BatchProcHist
 VALUES ('TeenageViolView', from_unixtime(unix_timestamp());

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

289

 I have used the add_months function to add 228 months, or 19 years, to the date of
birth (for drivers) and checked the difference (to determine if a driver is a teenager).

 The fourth batch view lists adult drivers with three or more violations. So, I will
create a new temporary table (similar to the third batch view) and filter the entries for
drivers with age greater than 19 years:

 Create table Violtemp1 as Select PolicyOwnerId, count(ViolationSeverity) as
TotalViolations
 from PO_Drv_Hist where (datediff(current_date, add_months
(to_date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1)
 group by PolicyOwnerId
 having count(ViolationSeverity) > 3

 Filtering for adult drivers:

 Create table AdultViolView as Select T.PolicyOwnerId, T.TotalViolations from
Violtemp1 T, PolicyMaster P where T.PolicyOwnerId = P.PolicyOwnerId and
 (datediff(add_months(P.PolicyOwnerDOB,228),current_date) < 0)

 Writing to history table:

 INSERT INTO TABLE BatchProcHist
 VALUES ('AdultViolView ', from_unixtime(unix_timestamp());

 Important: Don’t forget to remove the temporary tables you created—otherwise,
your scripts will abort with an error.

 So, having created the batch views, the next step is presenting or serving them.

 Implementing the Serving Layer
 I discuss the functionality and characteristics of serving layer in Chapter 9 . Basically, it
“serves” the batch views or provides fast access with minimum latency. That’s why the
serving layer needs to be a specialized distributed database that can:

• Host the batch views and support good performance for random
as well as sequential data access (reads only)

• Be capable of quickly swapping a batch view with a newer
version when it is rebuilt by the batch layer (that is, support batch
updates)

• Error-tolerance (since views can be quickly redeployed from the
batch layer)

• Indexing capability for fast retrieval

 Splout SQL was a solution in Chapter 9 —I will use that again. See Chapter 9 for
architectural and operational details of Splout SQL. Splout SQL can be used to deploy
batch-layer views as tables within tablespace(s). A tablespace is used for grouping tables

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_9

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

290

that have the same key column. The advantage is that you can partition multiple tables
using the same partitioning key. For Splout SQL, partitioning is important, because
it is used for balancing data before indexing and deploying it. Note that when a table
is partitioned by a single or multiple columns, Splout concatenates the value of those
columns to form a single string. Therefore, partitioning is a function of a row, and it is
also possible to partition using arbitrary functions (for example, a JavaScript function that
uses only the first eight characters of a column).

 For my example, observe that batch views 1, 3, and 4 use PolicyOwnerId as a key
column. So, you can design a tablespace with these three batch views (or Hive tables).
The other tablespace can hold the second batch view that uses ClaimId as a key column.
So, as a next step, you need to generate tablespaces and tables.

 For creating or generating a tablespace, you need to use the “generate” tool. This tool
uses a JSON tablespace descriptor, as shown in the following code. You need to specify
the input type and the Hive database and table names. The tablespace descriptor file can
be created in the Splout SQL installation directory:

 {
 "name": "PolicyTblspace",
 "nPartitions": 12,
 "partitionedTables": [{
 "name": "ClaimDefView",
 "partitionFields": "PolicyOwnerId",
 "tableInputs": [{
 "inputType": "HIVE",
 "hiveTableName": "ClaimDefView",
 "hiveDbName": "MyHiveDB"
 }]
 },
 {
 "name": "TeenageViolView",
 "partitionFields": "PolicyOwnerId",
 "tableInputs": [{
 "inputType": "HIVE",
 "hiveTableName": "TeenageViolView",
 "hiveDbName": "MyHiveDB"
 }]
 },
 {
 "name": "AdultViolView",
 "partitionFields": "PolicyOwnerId",
 "tableInputs": [{
 "inputType": "HIVE",
 "hiveTableName": "AdultViolView",
 "hiveDbName": "MyHiveDB"
 }]
 }]
 }

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

291

 Let me quickly review the information provided in this file (PolicyTblspace.json).
The tablespace will be called PolicyTblspace and currently has three tables (or batch
views) defined, ClaimDefView , TeenageViolView , and AdultViolView , that were created
in the last section. The database name is MyHiveDB (you need to use the database name
where you have created the Hive tables), and I have created 12 partitions for my data. I
have used PolicyOwnerId as a partitioning column since this column will be a part of
almost all the queries.

 To deploy this tablespace, the following command can be executed from the
(Linux) command line to generate the tablespace PolicyTblspace (from the Splout
SQL installation directory):

 hadoop jar splout-*-hadoop.jar generate -tf file:///`pwd`/ PolicyTblspace.
json -o out-MyHiveDB_splout_example

 For performance, you may need to add indexes to your tablespace, and Splout allows
you to add indexes easily. The catch is that you have to use a different generator called
 simple-generate instead of the generate tablespace generator that was used to generate
the PolicyTblspace tablespace. The limitation of using the simple-generate generator
is that your tablespace can only have a single table. Since the other tablespace for my
example only has one table (or batch view), I will demonstrate the simple-generate
usage for that tablespace. The following command will create an additional index while
generating the tablespace ClaimTblspace :

 hadoop jar splout-hadoop-*-hadoop.jar simple-generate –it HIVE –hdb MyHiveDB
–htn ClaimWeatherView -o out-MyHiveDB_splout_example -pby ClaimId -p 1 -idx
"ClaimWeatherCond" -t ClaimWeatherView -tb ClaimTblspace

 Note that I have not included the column ClaimId since it is a partitioning
column and is already indexed. The -idx option just adds more columns (in this case,
 ClaimWetaherCond) to the index. Also note that there is no json configuration file, and
therefore, all the configuration (such as Hive database, table name, partitioning column,
and so on) is specified with the command.

 After the tablespaces are generated successfully, you need to deploy them as follows:

 hadoop jar splout-hadoop-*-hadoop.jar deploy -q http://localhost:4412 -root
out-MyHiveDB1_splout_example -ts PolicyTblspace

 hadoop jar splout-hadoop-*-hadoop.jar deploy -q http://localhost:4412 -root
out-MyHiveDB2_splout_example -ts ClaimTblspace

 localhost is the host QNode (to which the client is connected) is running on, and
 localhost will be automatically substituted by the first valid private IP address at runtime
(as specified in the configuration file).

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

292

 Once a tablespace is deployed, you can use it in any of your queries. For example,
if you need to check whether a specific claim (ClaimId=14124736) was filed during
inclement weather conditions, you can use the REST API, as follows:

 http://localhost:4412/api/query/ClaimTblspace?sql=SELECT * FROM
ClaimWeatherView;&key=14124736

 You can use Splout SQL (or any other database solution of your liking) to deploy the
batch-layer views as demonstrated in this section. Next, I will discuss how you can access
data that’s not yet processed by the batch layer and include it in your query results.

 Implementing the Speed Layer
 To recapitulate, the purpose of the speed layer is to make data unprocessed by batch-
layer views available without any delays. Another difference (between speed-layer and
batch-layer views) is that the batch layer updates a view by recomputing (or rebuilding) it,
whereas the speed layer performs incremental processing on a view and only processes
the delta (or new) transactions that were performed after the last time incremental
processing was done. So, if your incoming data transactions are timestamped, and
you extract them from your master dataset, then depending on whether a record was
modified or added, you can modify your speed-layer view accordingly.

 The next thing you need to consider is whether you need to update the speed layer
synchronously (applying any updates to master data directly to the speed-layer views)
or asynchronously (queuing requests and actual updates occurring at a later time). For
this example, asynchronous updates will more useful because analytics applications
focus more on complex computations and aggregations rather than interactive user
input. Also, considering the high data volume, it would he beneficial to have more control
on the updates (for example, handling varying load by allocating additional requests
temporarily.

 I will use Spark to implement the speed layer. More specifically, I will use the Spark
processing engine and Spark SQL.

 Since the Lambda architecture defines the speed layer to be composed of records
that are yet to be processed by the batch layer, you need to determine what those records
are. You may recall that a history record was inserted in table BatchProcHist after each of
the batch views was built. So, the most recent record for a batch view can give us the date/
time of most recent build and therefore help determine what the unprocessed records
are. I will write the most recent record for the first batch view to a table (since Hive
doesn’t support query results to be assigned to variables):

 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from
BatchProcHist group by ViewName having ViewName = 'ClaimDefView';

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

293

 That gives you the most recent date/time when the batch layer view was built.
However, since speed layer views are processed more often, you also need to determine
the date/time of records last processed by the speed layer (since you only need to
consider the unprocessed records) for updating the view (here, a Spark dataframe
registered as a table). I’ll call the speed layer view ClaimDefView_S . Because speed-layer
views also write to the audit table BatchProcHist , I will write the most recent record for
the first speed-layer view to the same table (where I captured most recent record for the
first batch view):

 Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'ClaimDefView_S';

 Now, I just need to determine which of these records is most recent (just in case the
batch layer was rebuilt after the last speed-layer build) and use that as a basis to process
the records for the first speed layer view:

 Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable;

 Finally, get the unprocessed records from the master data set and create the speed-
layer view. Also, add the timestamp and write a record to the audit history table:

 Create table ClaimDeftemp11 as Select PolicyId, ClaimId from ClaimsMaster a,
MaxTbl1 b where where a.LastModified > b.MaxDate;

 Create table ClaimDeftemp12 as Select PolicyId, count(ClaimId) as
Claimcount from ClaimDeftemp11 where datediff(current_date, add_months
(to_date(ClaimSubmissionDate),12)) <= 0
 group by PolicyId having count(ClaimId) > 5

 As a final step, I will join this temporary table with the denormalized Policy entity to
get the policy owner details constituting the batch view and write a record to the history
table:

 Create table ClaimDefView_S as Select P.PolicyOwnerID, P.PolicyId,
C.Claimcount from PolicyMaster P, ClaimDeftemp12 C where P.PolicyId =
C.PolicyId;

 INSERT INTO TABLE BatchProcHist
 VALUES ('ClaimDefView_S', from_unixtime(unix_timestamp());

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

294

 Drop the temporary tables now (since we may recreate some of them for the next
speed-layer views):

 Drop Table MaxTable;
 Drop Table MaxTbl1;
 Drop Table ClaimDeftemp11;
 Drop Table ClaimDeftemp12;

 Other speed-layer views can be similarly created as follows:

 --View 2;
 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from
BatchProcHist group by ViewName having ViewName = 'ClaimWeatherView';

 Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'ClaimWeatherView_S';

 Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable;
 CREATE table ClaimWeatherView_S as Select distinct a.ClaimId,
a.ClaimWeatherCond from ClaimsMaster a, MaxTbl1 b where a.LastModified >
b.MaxDate and a.ClaimWeatherCond in ('Snow','Rain','Storm','Avalanche',
'Tornado');

 INSERT INTO TABLE BatchProcHist
 VALUES ('ClaimWeatherView_S', from_unixtime(unix_timestamp());
 Drop Table MaxTable;
 Drop Table MaxTbl1;
 --View 3;
 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from
BatchProcHist group by ViewName having ViewName = 'TeenageViolView';

 Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'TeenageViolView_S';

 Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable;

 Create table TeenageVioltemp11 as Select a.PolicyOwnerId,
a.ViolationSeverity from PO_Drv_Hist a, MaxTbl1 b where a.LastModified >
b.MaxDate;

 Create table TeenageVioltemp12 as Select PolicyOwnerId,
count(ViolationSeverity) as TotalViolations
 from TeenageVioltemp11 where (datediff(current_date, add_months
(to_date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1)
 group by PolicyOwnerId
 having count(ViolationSeverity) > 2

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

295

 Create table TeenageViolView_S as Select T.PolicyOwnerId, T.TotalViolations
from TeenageVioltemp12 T, PolicyMaster P where T.PolicyOwnerId =
P.PolicyOwnerId and
 (datediff(current_date,add_months(P.PolicyOwnerDOB,228)) <= 0)

 INSERT INTO TABLE BatchProcHist
 VALUES ('TeenageViolView_S', from_unixtime(unix_timestamp());

 Drop Table MaxTable;
 Drop Table MaxTbl1;
 Drop Table TeenageVioltemp11;
 Drop Table TeenageVioltemp12;

 --View 4;
 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from
BatchProcHist group by ViewName having ViewName = 'AdultViolView';

 Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist
group by ViewName having ViewName = 'AdultViolView_S';

 Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable;

 Create table Violtemp11 as Select a.PolicyOwnerId, a.ViolationSeverity from
PO_Drv_Hist a, MaxTbl1 b where a.LastModified > b.MaxDate;

 Create table Violtemp12 as Select PolicyOwnerId, count(ViolationSeverity) as
TotalViolations
 from Violtemp11 where (datediff(current_date, add_months
(to_date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1)
 group by PolicyOwnerId
 having count(ViolationSeverity) > 3

 Create table AdultViolView_S as Select T.PolicyOwnerId, T.TotalViolations
from Violtemp12 T, PolicyMaster P where T.PolicyOwnerId = P.PolicyOwnerId
and
 (datediff(add_months(P.PolicyOwnerDOB,228),current_date) < 0)

 INSERT INTO TABLE BatchProcHist
 VALUES ('AdultViolView_S', from_unixtime(unix_timestamp());

 Drop Table MaxTable;
 Drop Table MaxTbl1;
 Drop Table Violtemp11;
 Drop Table Violtemp12;

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

296

 Chapter 9 discusses all the operational details about interfacing Spark with Hadoop.
Here, I will briefly discuss using Spark SQL for getting data from Hive (into DataFrames)
and also executing DML (Data Manipulation Language—update, insert, or delete
commands) statements against Hive tables from Spark.

 As you may know, Spark uses dataframes and RDDs (resilient distributed datasets)
as in-memory constructs that you can leverage for queries and performance. Spark also
allows you to execute queries against Hive databases using the sqlContext . To start with,
you need to construct a HiveContext , which inherits from SQLContext and enables you to
find tables in the Hive MetaStore and also supports queries using HiveQL. Here, I am using
Scala, and sc is an existing SparkContext (you can use Python or R within a Spark shell):

 val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

 val sqlContext.sql("Create table MaxTable as select ViewName, max(CreatedAt)
from BatchProcHist group by ViewName having ViewName = 'ClaimDefView'")

 val sqlContext.sql("Insert into MaxTable select ViewName, max(CreatedAt)
from BatchProcHist group by ViewName having ViewName = 'ClaimDefView_S'")

 You can similarly execute all the HiveQL commands necessary to create the speed-
layer view ClaimDefView_S . For the last step (when the view is created), instead of
creating the view, you can simply execute the select statement and read the result in a
dataframe, as follows:

 val resultsDF = sqlContext.sql("Select P.PolicyOwnerID, P.PolicyId,
C.Claimcount from PolicyMaster P, ClaimDeftemp12 C where P.PolicyId =
C.PolicyId;")

 You can register the resultant dataframe as a temporary table and then execute any
queries against it:

 val resultsDF.registerTempTable("ClaimDefView_S")
 val results = sqlContext.sql("SELECT PolicyOwnerId FROM ClaimDefView_S")

 You will need to use a query tool that can read from Hive and Spark to combine
results from batch-layer and speed-layer views. There are enough choices, and of course
you can also use Spark SQL as a query tool too.

 Storage Structures (for Master Data and Views)
 Chapter 10 discusses how to select an optimal file format. In this section I will apply the
concepts discussed in Chapter 9 . So, let me briefly consider the parameters to choose the
right format:

• The type of queries (you plan to execute) is first and the most
important one. As you have seen from the batch views, the
queries for building master data involve choosing a small subset
of columns (from a larger set) with few filters. Also, there are
multiple aggregations required to build the batch-layer views.

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_10
http://dx.doi.org/10.1007/978-1-4842-1287-5_9

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

297

• The amount of compression you need. With a dataset sized at 30
TB (and 1% monthly growth), compression is a necessity.

• Ensure your NoSQL solution supports the storage format you plan
to use.

 Now, you may recall from Chapter 9 that a columnar format offers good compression
and is more suited for data needing aggregation operations (such as count , avg , min , max).
Also, columnar format provides good performance for use cases that involve selecting a small
subset of columns and also use a small number of columns as filters (in the where clause).

 Subsequently, you will benefit from using columnar format for storing data. The
next decision is which columnar format you should choose. The popular formats include
RCFile, ORCFile, and Parquet.

 The RCFile format is the first columnar format to be introduced and is supported
most widely within the Hadoop ecosystem (almost all the Hadoop tools support it) as
well as by tools outside Hadoop. Compared to Parquet and ORCFiles, RCFile lacks a lot
of advanced features such as support for storing more complex data types or providing
encryption. However, for the current example, there are no complex data types that need
to be supported, and there is no need for encryption. So, RCFile format can be used.

 If you see performance issues, switch to Parquet, which offers better compression
and achieves a balance between compression and speed. Also, Parquet is supported
widely by Hadoop as well as external (to the Hadoop ecosystem) tools.

 You should use an advanced distributed-processing framework like YARN (or Spark)
to help you speed up processing of this data and provide optimal performance (since the
data volume is fairly high).

 Other Performance Considerations
 I have not considered the tuning of OS configuration for this example because of the
availability of a large number of options for OSes. Since the configurations will change
(based on what OS or framework you choose), I don’t think it’s possible to provide finer
details. You can, however, refer to the HDFS and YARN tuning guidelines from Chapter
 10 as a starting point (if you plan to use YARN). And if you use Spark, there are specific
guidelines for tuning JVMs, in addition to the generic guidelines from Chapter 10 .

 Because Spark may hold large amounts of data in memory, it relies on Java’s
memory management and garbage collection (GC). So, understanding and tuning Java’s
GC options (and parameters) can help you get the best performance for your Spark
applications. A common issue with GC is that garbage collection takes a long time and
thereby affects performance for a program, sometimes even crashing.

 Java applications can use one of two strategies for garbage collection:

• Concurrent Mark Sweep (CMS) garbage collection: This strategy
aims at lower latency and therefore does not do compaction
(to save time). It’s more suited for real-time applications.

• ParallelOld garbage collection: This strategy targets higher
throughput and therefore performs whole-heap compaction,
which results in a big performance hit. This is more suited for
asynchronous or batch processing (for programs performing
aggregations, analysis, and so on).

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_10
http://dx.doi.org/10.1007/978-1-4842-1287-5_10

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

298

 JVM version 1.6 has introduced a third option for garbage collection called Garbage-
First GC (G1 GC). The G1 collector aims to achieve both high throughput and low latency
and is therefore a good option to use.

 To start with, note how Spark uses JVM. Spark’s executors divide JVM heap space in
two parts. The first part is used to hold data persistently cached into memory. The second
part is used as JVM heap space (for allocating memory for RDDs during transformations).

 You can adjust the ratio (of these parts) using the spark.storage.memoryFraction
parameter. This lets Spark control the total size of the cached RDD (less than (RDD heap
space volume * spark.storage.memoryFraction)). You need to consider memory usage
by both the parts for any meaningful GC analysis.

 If you observe that GC is taking more time, you should first check on usage of
memory space by your Spark applications. If your application uses less memory space for
RDDs, it will leave more heap space for program execution and thereby will increase GC
efficiency. If needed, you can improve performance by cleaning up cached RDDs that are
no longer used.

 It is preferable to use the new G1 collector, as it better handles growing heap sizes
that usually occur for Spark applications. It is of course not possible to provide a generic
strategy for GC tuning. You need to understand logging (by Spark) and use it for tuning in
conjunction with other parameters for memory management.

 Indexing is another area I have not considered, since indexing in your environment
will depend on the types of queries and their frequencies. Finally, I have used a generic
solution for storage (HDFS with Hive) for two reasons. First, Lambda has multiple
layers, and compatibility of multiple components needs to be ensured through usage of
components with widespread support. Second, the actual NoSQL solution you use will
depend on your specific type of data and also on what you want to do with it (in terms of
processing). So, me using a specific NoSQL solution may be useful only to a few people.
I have listed these areas (that I have not considered) more as a reminder for you to
consider for your specific environment.

 Reference Architectures
 In this chapter, I have discussed all aspects of designing and implementing a Hadoop-
based solution for a business requirement using the Lambda architecture. I started with
hardware, software, and then discussed design as per Lambda framework. Finally, I
discussed the steps for implementation. Of course, a production implementation has
many additional components, such as network, monitoring, alerts, and more, to make
the implementation a success. So, it will be helpful for you to review some complete
architectures to get an idea of what’s involved for production implementation of a
Hadoop-based system. The components (of course) change depending on the vendor (for
example, Microsoft, AWS, Hortonworks, Cloudera, and so on). For example, Figure 11-3
shows a Lambda implementation using AWS components. You can see the use of
Kinesis to get streaming data and use of a Spark cluster (implemented using EC2s) to
process that data. The batch layer is implemented using EMRs that form a Hadoop
cluster with a MasterNode and four DataNodes. The speed-layer views can be delivered
using DynamoDB and combined with batch-layer views to any reporting, dashboard
(visualizations), or analytics solutions. Since this is a production implementation, you
can observe usage of security, monitoring, and backups/archival using appropriate AWS
components.

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

299

 Similar architectures can be built using Microsoft components or Hortonworks/
Cloudera components.

 Changes to Implementation for Latest Architectures
 Kappa architecture, Fast Data architecture, and Butterfly architecture are some of the
latest or future state architectures. If you have to implement the system (from my example
in earlier sections) using these architectures, certain changes will be needed. I will not
discuss complete re-implementations but just focus on component-level changes to the
architecture. I will start with Kappa architecture.

 Re-Implementation Using Kappa Architecture
 First thing to note is the possibility of applying Kappa architecture instead of Lambda.
Note that Kappa can only replace Lambda where the expected outputs for the speed
layer and batch layer are the same. If the expected outputs for the speed and batch
algorithms are different, then the batch and speed layers cannot be merged, and Lambda
architecture must be used. In my example from previous sections, the expected outputs
for the speed layer and batch layer are same, and therefore, it is possible to use Kappa
architecture.

 Figure 11-3. Lambda implementation using AWS components

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

300

 As a quick review, Kappa involves use of a stream-processing engine (Spark, Kafka,
and so on) that allows you to retain the full log of the data you might need to reprocess. If
there is a need to do reprocessing, start a second instance of your stream-processing job
that will process from the beginning of the retained data and write the output to a new
destination (for example, a table or file). When the second job completes processing,
switch the application to read from the new output destination. After that, you can stop
the old version of the job and delete the old output destination.

 You can apply Kappa for the example discussed in earlier sections. To start with,
there is only one layer—the streaming layer. File streams can be created for reading data
from master data files, and appropriate DStreams can be created. Spark Streaming can
apply transformations and aggregation functions to these DStreams and hold them in
memory or write out as files (to HDFS). For processing new data, Spark Streaming will
monitor the data directory and process any new files created in that directory. Since
new master data is added as new Hive partitions (for my example), those files can be
copied from the staging location to the Spark data directory. New files will be streamed
as new DStreams and can be joined with DStreams holding historical data, and the same
transformation and aggregation functions can be applied on the resulting DStreams to
have an up-to-date dataset (the same as what you would have with combined batch-layer
views and speed-layer views). The resulting DStream can be served to client applications
as a dataframe or a Hive table as required.

 In case of changes to the transformation functions or discovery of a data or
processing issue, a new Spark Streaming job can be started to apply the transformations
again to a new DStream (created from master data), and when it completes, the new
destination can be used to serve the client applications. Figure 11-4 has the architectural
details.

Queries

Current stream processing job
(joins historical DStream data
with incoming DStream data
and reapplies transformations

+ aggregations)

New stream processing job
(reapplies logged processing
to the DStream and writes

to a new destination)

Client
requests

Output of current
job(Dataframes
corresponding to
the batch views)

Output of new job

Input data
stream

Stream processing engine

Serving layer

New
Master

data

Master
data

 Figure 11-4. Kappa architecture applied for Lambda case study

 Changes for Fast Data Architecture
 You may need to implement Fast Data architecture. Fast Data is defined as data created
(almost) continuously by mobile devices, social media networks, sensors, and so on, and
a data pipeline processes the new data within milliseconds and performs analytics on it.

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

301

For my example, it will mean joining the new data stream captured in real time with the
historical data stream and applying transformation as well as aggregation functions on it.

 The Kappa architecture defined in Figure 11-4 will be mostly valid along with some
changes to it. The part that will change is the processing for new data. Instead of looking
for new files in the data directory, there will be an additional mechanism like Kafka to
capture multiple data streams and combine them before passing on to Spark Streaming to
process as a new DStream for the stream-processing engine. The new DStream will then
be joined with the historical DStream and transformation/aggregation functions applied
to it.

 Changes for Butterfly Architecture
 The Butterfly architecture is discussed at length in Chapter 9 along with a real-world
example. It offers a huge performance advantage due to the nexus of hardware with
software (software effectively driving the hardware resources). If you were to use Butterfly
architecture for implementing the example discussed in this chapter, you would need to
follow these steps:

• Ingest the input data stream using events (insert) from Kafka
broker

• Parse the event to determine which speed-layer views the data
belongs to

• Update respective speed-layer view

• Keep track of total number of updates

• When 1% of the records are new (for a speed-layer view), launch
the batch computation, update batch views, and reset update
counters

 Summary
 In this chapter, I have tried to address all the aspects of a Hadoop-based implementation
using Lambda architecture. Note that this is a generic implementation to give you
some idea about the steps involved in implementing Lambda for your environment.
Also, observe that my approach discusses data from a relational database instead of
a clickstream-based web application. There are several reasons for this approach.
The major reason is that most of the production systems are based on relational data.
The new social media–based or sensor-driven or mobile device–based data is still not
mainstream. It is mostly used as supplementary or auxiliary data. Also, most of the
clickstream applications have semi-structured (or unstructured) data that varies greatly,
and therefore a single example may not be very representative.

 This chapter (and this book) is more about migrating, integrating, or transitioning
your relational technology–based systems to Hadoop. Therefore, I have used RDBMS
data an example of source data that you will be working with. In reality, that will mostly
be the case. So, where and how can you use Hadoop? You can use Hadoop for moving,

http://dx.doi.org/10.1007/978-1-4842-1287-5_9

CHAPTER 11 ■ CASE STUDY: IMPLEMENTING LAMBDA ARCHITECTURE

302

transforming, aggregating, and getting the data ready for analytics. What kind of
analytics? That totally depends on your specific use case.

 There are applications of Hadoop ranging from discovering historical trends
in buying trends for retail goods to accurately predicting birth conditions based on
biological pre-birth data. A hospital in Australia uses Hadoop to analyze a large amount
of pre-birth data to predict what possible conditions a child may have and to have the
resources ready to counter them. Insurance and credit card companies use Hadoop for
establishing predictive models for possible fraud. Hadoop is used for traffic analysis and
prediction of optimal routes. The possibilities are endless.

 But remember that Hadoop is just a powerful tool, and optimal use of it depends on
the skill level (and creativity) of the user or designer. New technologies, architectures,
and applications are added on a daily basis. It’s truly an emerging technology right
now. Hopefully, I have provided some useful information and direction to your thought
process to make use of this technology.

 When you implement a migration or integration for your environment, you will
need to use additional tools or technologies. Some of the legacy systems won’t allow
you to extract the data easily. Fortunately, there are enough forums and user groups to
help out. It rarely happens that you ask a question and no one answers it. The spirit of
collaboration and sharing knowledge is one of the biggest strengths of Hadoop and any
open source solutions that are built around it. I wish you good luck in implementing
Hadoop-based systems and hope you can interface your existing systems successfully
with them!

303© Bhushan Lakhe 2016
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5

 A
 Analytical tools , 103
 Apache Kylin

 fault tolerance , 5, 8, 11, 106, 110, 112,
114, 118, 210, 230, 244, 262, 267

 MOLAP cube , 109
 OLAP engine , 109

 B
 Batch layer design , 211, 284–285
 Best practices

 atomic aggregation , 147
 dimensionality reduction , 147
 schema fl uidity , 146

 Business activity model , 63–64, 90
 Business system options , 29, 37, 55, 68,

74–75
 Butterfl y architecture , 235–26, 240–243,

246–247, 299, 301

 C
 CASE tools , 33, 51, 87, 90–96, 99
 Columnar databases , 123–124, 138–139, 191

 Cassandra , 21–22, 106, 108, 139, 210
 Concurrency and Security

for NoSQL , 130, 138

 D
 Database administration , 90, 97
 Database design , 2, 27–28, 40–41, 85–86,

90–91, 282–283
 Dataframes , 106, 233, 241, 246, 296

 Data lake
 analytical lakes

 complex event processing , 186–187
 event stream processing , 184–186
 real-time analytics , 184

 data reservoirs
 authentication , 160
 authorization , 160–161
 data cleansing , 164–165
 data profi ling , 165–167
 data quality services , 163–167
 governance engine , 159–160
 masking , 159, 161
 repositories , 159
 services , 159

 encryption , 162–163
 exploratory lakes

 clustering , 179–181
 correlation , 177–179
 exploratory analysis , 169
 hierarchical clustering , 179–180
 K-means clustering , 180
 R plots , 172–174
 visualizations , 169

 Data specifi cation , 64
 Data warehouse

 snowfl ake schema , 152, 154
 star schema , 153–154

 Denormalization , 52, 118, 132–138, 141, 146
 Design methodologies

 bottom-up , 27, 29, 34–35
 SSADM , 27, 29, 36, 91
 top-down , 28, 30–33

 Diagramming tools , 93, 95–96
 Document databases , 121–122, 138, 143–144

 MongoDB , 21, 143–144

 Index

■ INDEX

304

 E
 Eff ect correspondence

diagrams (ECD) , 75, 79–81
 Enquiry processing model (EPM) , 84–85
 Entity life histories (ELH) , 75, 79, 81–82

 F
 Fact-based model , 211–215, 283
 Fast Data architecture , 299–301
 Feasibility study , 29, 36–38, 54–55
 Feasibility study report , 66–67
 File formats

 column-based
 ORCFile , 271–273
 Parquet , 273
 RCFile , 272

 row-based
 Avro , 270–271
 sequence fi les , 269
 text , 268–269

 Flume
 agent , 190–191, 198, 200
 interceptors , 203
 sink , 201
 source , 201

 Forward and reverse engineering , 93–94
 Fraudulence , 284
 Function

 defi nitions , 65, 75, 78, 84
 specifi cation , 65

 Future architectures
 Ampool

 batch-model , 249–250
 data-aware , 245
 memory-centric , 243
 object-store , 244
 streaming analytics , 246, 248–249

 Butterfl y architecture
 dataframes , 241
 datasets , 240
 event streams , 241

 G
 Graph databases

 LinkedIn’s architecture , 125
 Neo4j , 22, 126

 H
 Hardware , 254–255, 280–281

 confi guration , 253–254
 HDFS , 2–6, 132, 162, 191, 199, 201,

219–221, 230, 237, 239, 240, 246,
258–259, 263, 272, 282, 285–287,
297–298, 300

 confi guration , 254–255, 258–260

 I
 Indexing

 bitmap , 274–275
 compact , 274

 In-memory data processing , 106
 Flink , 113–115

 J
 JVM , 106, 113, 199, 260–261

 confi guration , 261–262

 K
 Kappa architecture , 195, 236–237,

239–240
 Keys in relational design , 45–46
 Key-value stores , 21

 Memcached , 119

 L
 Lambda

 batch layer , 17–18
 batch layer views , 18
 fact-based model , 211–214

■ INDEX

305

 fault-tolerance , 13
 immutable schema , 213
 master data , 211
 serving layer

 Splout SQL , 225–228
 Dnode , 225–228
 QNode , 225–226
 Tablespaces , 226–228, 290–291

 speed layer
 DataFrames , 230
 Spark SQL , 104–107

 Lambda architecture
 batch layer , 17–18
 serving layer , 18
 speed layer , 18–21

 Logical data
 model , 77–78
 store , 72–73

 M
 MapReduce confi guration , 262
 Monitoring , 96, 98–99

 N
 Normal forms

 fi rst normal form , 41–43
 second normal form , 44
 third normal form , 44–45

 NoSQL , 21, 86, 88, 117–147, 210, 218,
234–235, 275–276, 297–298

 O
 Operating system

confi guration , 255–257
 Optionality and

Cardinality , 46–48

 P
 Physical data fl ow model , 61–62
 Presto , 107–108
 Project initiation plan , 55–58

 Q
 Query tools , 104

 R
 RDBMS , 1–22, 27–51, 89–99, 117–118, 120,

123–124, 130–132, 137, 139,
143–144, 190–191, 196, 210–211,
218, 238, 274, 276, 301

 Reference architecture , 298–299
 Requirements

 analysis , 68–69
 specifi cation , 37, 75–76
 user catalogue , 68

 Reusable components , 94–95

 S
 Search and messaging tools , 115
 Serving layer design , 18, 224–225

 Splout SQL , 225–228
 Speed layer design , 229–234

 Spark SQL , 225–229
 Sqoop , 189–204

 connectors , 195–196
 Storage structures , 296–297
 Streaming data

 Samza , 193–195
 Spark , 191–192
 Storm , 192–193

 Subject areas , 92–93, 152
 Subtypes and supertypes , 48–51

 T, U, V, W, X
 Transition model , 132–135
 Type of data

 column store , 21
 document store , 21
 graph database , 22
 key-value store , 21

 Y, Z
 YARN confi guration , 260

	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: RDBMS Meets Hadoop: Integrating, Re-Architecting, and Transitioning
	Conceptual Differences Between Relational and HDFS NoSQL Databases
	Relational Design and Hadoop in Conjunction: Advantages and Challenges
	Type of Data
	Data Volume
	Business Need

	Deciding to Integrate, Re-Architect, or Transition
	Type of Data
	Type of Application
	Business Objectives

	How to Integrate, Re-Architect, or Transition
	Integration
	Re-Architecting Using Lambda Architecture
	Batch Layer
	Serving Layer
	Speed Layer

	Transition to Hadoop/NoSQL
	Type of Data
	Data Volume
	Data Distribution
	Migrating the Data

	Summary

	Part I: Relational Database Management Systems: A Review of Design Principles, Models and Best Practices
	Chapter 2: Understanding RDBMS Design Principles
	Overview of Design Methodologies
	Top-down
	Bottom-up
	SSADM

	Exploring Design Methodologies
	Top-down
	Bottom-up
	SSADM
	Feasibility Study
	Investigation of the Current Environment
	Business System Options
	Requirements Specification
	Technical System Options
	Logical Design
	Physical Design

	Pros and Cons of SSADM

	Components of Database Design
	Normal Forms
	First Normal Form
	Second Normal Form
	Third Normal Form

	Keys in Relational Design
	Optionality and Cardinality
	Supertypes and Subtypes

	Summary

	Chapter 3: Using SSADM for Relational Design
	Feasibility Study
	Project Initiation Plan
	Requirements and User Catalogue
	Requirements Catalogue
	User Catalogue

	Current Environment Description
	Current System Description
	Current Physical Data Flow Model
	Current Logical Data Model

	Proposed Environment Description
	Business Activity Model
	Data Specification
	Function Specification

	Problem Definition
	Feasibility Study Report

	Requirements Analysis
	Investigation of Current Environment
	Current Data Flow Model
	Current Logical Data Model
	Requirements Catalogue
	User Catalogue
	Logical Data Store/Entity Cross-Reference
	Logical View of Current Services and System Scope

	Business System Options

	Requirements Specification
	Data Flow Model
	Logical Data Model
	Function Definitions
	GetPlayerInjuryInfo
	GetPlayerChronicCondInfo
	GetPlayerContractDetails
	GetPlayerScheduleInfo
	CalculateLossOfPlayPremium
	EvalLossOfPlayClaim

	Effect Correspondence Diagrams (ECDs)
	Entity Life Histories (ELHs)

	Logical System Specification
	Technical Systems Options
	Logical Design
	Update Processing Model
	Enquiry Processing Model
	Data Catalogue

	Physical Design
	Logical to Physical Transformation
	Space Estimation Growth Provisioning
	Optimizing Physical Design

	Summary

	Chapter 4: RDBMS Design and Implementation Tools
	Database Design Tools
	CASE tools
	Building and Using Design Layers
	Categorizing Design Using Subject Areas
	Display Level of a Model
	Forward and Reverse Engineering
	Creating Reusable Components
	Propagating a Change Easily and Quickly

	Diagramming Tools

	Administration and Monitoring Applications
	Database Administration or Management Applications
	Monitoring Applications

	Summary

	Part II: Hadoop: A Review of the Hadoop Ecosystem, NoSQL Design Principles and Best Practices
	Chapter 5: The Hadoop Ecosystem
	Query Tools
	Spark SQL
	Presto

	Analytic Tools
	Apache Kylin
	Kylin Architecture

	In-Memory Processing Tools
	Flink
	Flink Architecture

	Search and Messaging Tools
	Summary

	Chapter 6: Re-Architecting for NoSQL: Design Principles, Models and Best Practices
	Design Principles for Re-Architecting Relational Applications to NoSQL Environments
	Selecting an Appropriate NoSQL Database
	Key-Value Stores
	Document Databases
	Columnar Databases
	Graph Databases
	Domain Description
	Nodes
	Labels
	Relationships
	Creating Attributes

	Concurrency and Security for NoSQL
	Concurrency
	Security

	Designing the Transition Model
	Denormalization of Relational (OLTP) Data
	Denormalization of Relational (OLAP) Data

	Implementing the Final Model
	Columnar Database as a NoSQL Target
	Document Database as a NoSQL Target

	Best Practices for NoSQL Re-Architecture
	Summary

	Part III: Integrating Relational Database Management Systems with the Hadoop Distributed File System
	Chapter 7: Data Lake Integration Design Principles
	Data Lake vs. Data Warehouse
	Data Warehouse
	Data Lake

	Concept of a Data Lake
	Data Reservoirs
	Data Reservoir Repositories
	Data Reservoir Services
	Governance Engine
	Authentication
	Authorization
	PII Masking
	Encryption
	Encryption at Rest
	Encryption in Transit

	Data Quality Services
	Data Cleansing
	Matching
	Data Profiling

	Factors for a Successful Implementation

	Exploratory Lakes
	Data Validation for Exploratory Analysis
	Exploratory Analysis Through Visualizations
	Correlation
	Clustering
	Hierarchical Clustering
	K-means Clustering

	Factors for a Successful Implementation

	Analytical Lakes
	Using Data for Analytical Models
	Model Building Steps

	Using Data as a Staging Area for EDW or Data Mart
	Real-Time Processing and Analytics
	Event Stream Processing
	Complex Event Processing

	Factors for a Successful Implementation
	Summary

	Chapter 8: Implementing SQOOP and Flume-based Data Transfers
	Deciding on an ETL Tool
	Sqoop vs. Flume
	Processing Streaming Data
	Spark and Spark Streaming
	Storm
	Samza

	Using SQOOP for Data Transfer
	Using Flume for Data Transfer
	Flume Architecture
	Understanding and Using Flume Components
	Source
	Sink

	Implementing Log Consolidation Using Flume

	Summary

	Part IV: Transitioning from Relational to NoSQL Design Models
	Chapter 9: Lambda Architecture for Real-time Hadoop Applications
	Defining and Using the Lambda Layers
	Batch Layer
	Designing Your Master Data
	Fact-Based Model
	Applying a Fact-based Model to Relational Applications

	Building Batch Views
	Designing Batch Views for Your Fact-based Model
	Implementing Batch Views

	Serving Layer
	ElephantDB
	Splout SQL

	Speed Layer

	Pros and Cons of Using Lambda
	Benefits of Lambda
	Issues with Lambda
	The Kappa Architecture

	Future Architectures1
	A Bit of History
	Butterfly Architecture
	Storage for Butterfly Architecture
	Ampool
	Example Use Case: Ad Tech Data Pipeline
	The Data
	User Profiles
	Advertisements
	Content Metadata
	Ad Serving Logs

	Computations
	Ingestion and Streaming Analytics
	Batch Model Building
	Interactive and Ad Hoc SQL Queries

	Summary

	Chapter 10: Implementing and Optimizing the Transition
	Hardware Configuration
	Cluster Configuration

	Operating System Configuration
	Hadoop Configuration
	HDFS Configuration
	JVM/YARN/MapReduce Configuration
	Generic JVM Guidelines
	Generic YARN/MapReduce Guidelines
	Optimizing MapReduce Applications
	Optimizing YARN Execution

	Choosing an Optimal File Format
	Row-based Formats
	Text Files
	Sequence Files
	Avro

	Column-based Formats
	RCFile
	ORCFile
	Parquet

	Indexing Considerations for Performance
	Compact indexes
	Bitmap Indexes

	Choosing a NoSQL Solution and Optimizing Your Data Model
	Summary

	Part V: Case Study for Designing and Implementing a Hadoop-based Solution
	Chapter 11: Case Study: Implementing Lambda Architecture
	The Business Problem and Solution
	Solution Design
	Hardware
	Software
	Database Design
	Considering a Fact-based Model
	Data Conditions for Fraudulence
	Batch Layer Design

	Implementing Batch Layer
	Implementing the Serving Layer
	Implementing the Speed Layer
	Storage Structures (for Master Data and Views)
	Other Performance Considerations
	Reference Architectures
	Changes to Implementation for Latest Architectures
	Re-Implementation Using Kappa Architecture
	Changes for Fast Data Architecture
	Changes for Butterfly Architecture

	Summary

	Index

