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            Foreword   

 We are in the midst of one of the biggest transformations of Information Technology 
(IT). Rapidly evolving business requirements have demanded agility in all aspects of IT. 
As more and more paper-based business processes are getting digital, rapid application 
development, staging, and deployment have become the norm. In addition, the data 
exhaust from these digital applications has become enormous and needs to be analyzed 
in real time. Growing volumes of historical data is considered valuable for improving 
business efficiency and identifying future trends and disruptions. Ubiquitous end-user 
connectivity, cost-efficient software and hardware sensors, and democratization of 
content production have led to the deluge of data generated in enterprises. As a result, 
the traditional data infrastructure has to be revamped. Of course, this cannot be done 
overnight. To prepare your IT to meet the new requirements of the business, one has to 
carefully plan re-architecting the data infrastructure so that existing business processes 
remain available during this transition. 

 Hadoop and NoSQL platforms have emerged in the last decade to address the 
business requirements of large web-scale companies. Capabilities of these platforms 
are evolving rapidly, and, as a result, have created a lot of hype in the industry. However, 
none of these platforms is a panacea for all the needs of a modern business. One needs 
to carefully consider various business use cases and determine which platform is most 
suitable for each specific use case. Introducing immature platforms for use cases that 
are not suited for them is the leading cause of failure of data infrastructure projects. Data 
architects of today need to understand a variety of data platforms, their design goals, their 
current and future data protection capabilities, access methods, and performance sweet 
spots, and how they compare in features against traditional data platforms. As a result, 
traditional database administrators and business analysts are overwhelmed by the sheer 
number of new technologies and the rapidly changing data landscape. 

 This book is written with those readers in mind. It cuts through the hype and gives 
a practical way to transition to the modern data architectures. Although it may feel like 
new technologies are emerging every day, the key to evaluating these technologies is to 
align your current and future business use cases and requirements to the design-center 
of these new technologies. This book helps readers understand various aspects of the 
modern data platforms and helps navigate the emerging data architecture. I am confident 
that it will help you avoid the complexity of implementing modern data architecture and 
allow seamless transition for your business.

  —Milind Bhandarkar, PhD 
 Founder and CEO, Ampool, Inc.   
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  Milind Bhandarkar was the founding member of the team at Yahoo! that took Apache 
Hadoop from 20-node prototype to datacenter-scale production system, and has been 
contributing and working with Hadoop since version 0.1.0. He started the Yahoo! Grid 
solutions team focused on training, consulting, and supporting hundreds of new migrants 
to Hadoop. Parallel programming languages and paradigms has been his area of focus 
for over 20 years. He has worked at the Center for Development of Advanced Computing 
(C-DAC), National Center for Supercomputing Applications (NCSA), Center for Simulation 
of Advanced Rockets, Siebel Systems, Pathscale Inc. (acquired by QLogic), Yahoo!, and 
Linkedin. Until 2013, Milind was chief architect at Greenplum Labs, a division of EMC. 
Most recently, he was chief scientist at Pivotal Software. Milind holds his PhD degree in 
computer science from the University of Illinois at Urbana-Champaign.    
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   Introduction 

   I have spent more than 20 years consulting for large corporations, and when I started, 
it was just relational databases. Eventually, the volumes of accumulated historical data 
grew, and it was not possible to manage and analyze this data with good performance. 
So, corporations started thinking about separating the parts (of data) useful for analaysis 
(or generating insights) from the descriptive data. They soon realized that a fundamental 
change was needed in the relational design, and a new paradigm called data warehousing 
was born. Thanks to the work done by Bill Inmon and Ralph Kimball, the world started 
thinking (and designing) in terms of Star schemas and dimensions and facts. ETL (extract, 
transform, load) processes were designed to load the data warehouses. 

 The next step was making sure that large volumes of data could be retrieved 
with good performance. Specialized software was developed, and RDBMS solutions 
(Oracle, Sysbase, SQL Server) added processing for data warehouses. For the next level 
of performance, it was clear that data needed to be preprocessed, and data cubes were 
designed. Since magnetic disk drives were slow, SSDs (solid state devices) were designed, 
and software that cached (or held data in RAM) data for speed of processing and retrieval 
became popular. So, with all these advanced measures for performance, why is Hadoop 
or NoSQL needed? For two reasons. 

 First, it is important to note that all this while, the data being processed either was 
relational data (for RDBMS) or had started as relational data (for data warehouses). This 
was structured data, and the type of analysis (and insights) possible was very specific (to 
the application that generated the data). The rigid structure of a warehouse put severe 
limits on the insights or data explorations that were possible, since you start with a design 
and fit data into it. Also, due to the very high volumes, warehouses couldn’t perform per 
expectations, and a newer technology was needed to effectively manage this data. 

 Second, in recent years, new types of data were introduced: unstructured or 
semi-structured data. Social media became very popular and were a new avenue for 
corporations to communicate directly with people once they realized the power behind 
it. Corporations wanted to know what people thought about their products, services, 
employees, and of course the corporations themselves. Also, with e-commerce forming 
a large part of all the businesses, corporations wanted to make sure they were preferred 
over their competitors—and if that was not the case, they wanted to know why. Finally, 
there was a need to analyze some other types of unstructured data, like sensor data from 
electrical and electronic devices, or data from mobile devices sensors, that was also very 
high volume. All this data was usually hundreds of gigabytes per day. 

 Conventional warehouse technology was incapable of processing or managing this 
data. So, a new technology had to be designed to process it, and with good performance 
(since total volumes were in terabytes). In some cases, as the unstructured data (or 
insights from it) needed to be combined with structured data, the new technology needed 
to support interfacing with data warehouses or RDBMS. 
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 Hadoop offers all these capabilities and in addition allows a schema-on-read 
(meaning you can define metadata while performing analysis) that offers a lot of flexiblity 
for performing exploratory analysis or generating new insights from your data. 

 This gets us to the final question: how do you migrate or integrate your existing 
RDBMS-based applications with Hadoop and analyze structured as well as unstructured 
data in tandem? Well, you have to read rest of the book to know that! 

   Who This Book Is For 
 This book is an excellent resource for IT management planning to migrate or integrate 
their existing RDBMS environment with Big Data technologies or Big Data architects who 
are designing a migration/integration process. This book is also for Hadoop developers 
who want to implement migration/integration process or students who’d like to learn 
about designing Hadoop applications that can successfully process relational data along 
with unstructured data. This book assumes a basic understanding of Hadoop, Kerberos, 
relational databases, Hive, Spark, and an intermediate level understanding of Linux.  

   Downloading the Code 
 The source code for this book is available in ZIP file format in the Downloads section of 
the Apress Web site (   www.apress.com/9781484212882     ).  

   Contacting the Author 
 You can reach Bhushan Lakhe at blakhe@aol.com or bclakhe@gmail.com.   

http://www.apress.com/9781484212882


1© Bhushan Lakhe 2016 
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_1

    CHAPTER 1   

 RDBMS Meets Hadoop: 
Integrating, Re-Architecting, 
and Transitioning                          

 Recently, I was at the Strata + Hadoop World Conference, chatting with a senior executive 
of a major food corporation who used a relational solution for storing all its data. I asked 
him casually if they were thinking about using a Big Data solution, and his response 
was: “We already did and it’s too slow!” I was amazed and checked the facts again. This 
corporation had even availed of the consulting services of a major Hadoop vendor and 
yet was still not able to harness the power of Big Data. 

 I thought about the issue and possible reasons why this might have occurred. To start 
with, a Hadoop vendor can tune his Hadoop installation but can’t guarantee that generic 
tuning will be valid for specific type of data. Second, the food corporation’s database 
administrators and architects probably had no idea how to transform their relational data 
for use with Hadoop. This is not an isolated occurrence, and most of the corporations 
who want to make the transition to using of relational data with Hadoop are in a similar 
situation. The result is a Hadoop cluster that’s slow and inefficient and performs nowhere 
close to the expectations that Big Data hype has generated. 

 Third, all NoSQL databases are not created equal. NoSQL databases vary greatly in 
their handling of data as well as in the models they use internally to manage data. They 
only work well with certain kind of data. So, it’s very important to know the type of your 
data and select a NoSQL solution that matches it. 

 Finally, success in applying NoSQL solutions to relational data depends on 
identifying your objective in using Hadoop/NoSQL and on accommodating your data 
volumes. Hadoop is not a cure-all that can magically speed up all your data processing—
it can only be used for specific type of processing (which I discuss further in this chapter). 
And Hadoop works best for larger volumes of data and is not efficient for lower data 
volumes due to the various overheads associated. 

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1-4842-1287-5_1    ) contains supplementary material, which is available to 
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1848-8_1
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 So, having defined the problem, let’s think about a solution. You are probably 
familiar with the myriad design methodologies and frameworks that are available for 
use with relational data, but do you know of similar resources for Hadoop? Probably not. 
There is a good reason for that—none exists yet. Lambda is being developed as a design 
methodology (Chapter   12    ), but it is not mature yet and not very easy to implement. 

 So, what’s the alternative? Do you need to rely on the expertise of your data architects 
to design this transition, or are there generic steps you can follow? How do you ensure an 
efficient and functionally reliable transition? I answer these questions in this book and 
demonstrate how you can successfully transition your relational data to Hadoop. 

 First, it is important to understand how Hadoop and NoSQL differ from the relational 
design. I briefly discuss that in this chapter and also discuss the benefits as well as 
challenges associated with using Hadoop and NoSQL. 

 It is also important to decide whether your data (and what you want to do with it) is 
suited for use with Hadoop. Therefore, factors such as type of data, data volume, and your 
business needs are important to consider. There are some more factors that you need to 
consider, and the latter part of this chapter discusses them at length. Typically, the four 
“V”s (volume, velocity, variety, and veracity) separate NoSQL data from relational data, 
but that rule of thumb may not always hold true. 

 So, let me start the discussion with conceptual differences between relational 
technology and Hadoop. That’s the next section. 

     Conceptual Differences Between Relational and 
HDFS NoSQL Databases 
 Database design has had a few facelifts since E.F. Codd presented his paper on relational 
design in 1970. 1  Leading relational database systems today (such as Oracle or Microsoft 
SQL Server) may not be following Codd’s vision completely; but definitely use the 
underlying concepts without much of modification. There is a central database server 
that holds the data and provides access to users (as defined by Database Administrator) 
after authentication. There are database objects such as views (for managing granular 
permissions) or triggers (to manipulate data as per data ‘relations’) or indexes for 
performance (while reading or modifying data). 

 The main feature, however, is that relations can be defined for your data. Let me 
explain using a quick example. Think of an insurance company selling various (life, 
disability, home) policies to individual customers. A good identifier to use (for identifying 
a customer uniquely) is customers’ social security number. Since a customer may buy 
multiple policies from the insurance company and those details may be stored in separate 
database tables, there should be a way to relate all that data to the customer it belongs to. 

 Relational technology implements that easily by making the social security 
number as a primary key or primary identifier for the  customer  table and a foreign 
key or referential identifier (an identifier to identify the parent or originator of the 
information) for all the related tables, such as  life_policies  or  home_policies . 
Figure  1-1  summarizes a sample implementation.  

  1     www.seas.upenn.edu/~zives/03f/cis550/codd.pdf      “A Relational Model of Data for Large 
Shared Data Banks” 

http://dx.doi.org/10.1007/978-1-4842-1287-5_12
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
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 As you can see in Figure  1-1 , the policy data is related to customers. This relation 
is established using the social security number. So, all the policy records for a customer 
can be retrieved using their social security number. Any modifications to the customer 
identifier (social security number) are propagated to maintain data integrity. 

 Next, let me discuss Hadoop and NoSQL databases that use HDFS for storage. HBase 
is a popular NoSQL database and therefore can be used as an example. Since HDFS is 
a distributed file system, data will be spread across all the data nodes in contrast to a 
central server. Kerberos is used for authentication, but HBase has very limited capability 
for granular authorization as opposed to relational databases. HBase offers indexing 
capabilities, but they are very limited and are no match for the advanced indexing 
techniques offered by RDBMS (relational database management systems). However, the 
main difference is absence of relations. Unlike RDBMSs, HBase data is not related. Data 
for HBase tables is simply held in HDFS files. 

 As you can see in Figure  1-2 , the policy data is not related automatically with a 
customer. Any relating that’s necessary will have to be done programmatically. For example, 
if you need to list all the policies that customer “Isaac Newton” holds, you will need to 
know the tables that hold policies for customers (here, Hbase tables  Life_policies  and 
 Home_policies ). Then you will need to know a common identifier to use (social security 
number) to match the rows that belong to this customer. Any changes to the identifier can’t 
be propagated automatically and will need to be implemented manually.  

  Figure 1-1.    Relational storage of data (logical)       
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 So, for example, if an error in social security number is discovered, then all the files 
containing that information will need to be updated separately (programmatically). 
Unlike RDBMS, HDFS or HBase doesn’t offer any utilities to do that for you. The reason 
is that HBase (or any other HDFS-based NoSQL databases) doesn’t offer any referential 
integrity—simply due to their purpose. HBase is not meant for interactive queries over a 
small dataset; it is best suited for a large batch processing environment (similar to data 
warehousing environments) involving immutable data. Till recently, updates for HBase 
involved loading the changed row in a staging table and doing a left outer join with the 
main data table to overwrite the row (making sure the staging and main data table had 
the same key). 

 With the new version of HBase, updates, deletes, and inserts are now supported, 
but for small datasets these operations will be very slow (compared to RDBMS) because 
they’re executed as Hadoop MapReduce jobs that have high latency and incur substantial 
overheads in job submission and scheduling. 

 Starting with a large block size used by HDFS (default 64 MB) and distributed 
architecture that spreads data over a large number of DataNodes (helping parallel reads 
using MapReduce or Yarn), HBase (and other HDFS based NoSQL databases) are meant 
to perform efficiently for large datasets. Any transformations that need to be applied 
involve reading the whole table and not a single row. Distributed processing on DataNodes 
using MapReduce (or Yarn on recent versions) provides the speed and efficiency for such 
reads. Again, due to the distributed architecture, it is much more efficient to write the 
transformed data to a new “file” (or staging table for HBase). For the same reason, Hadoop 
and NoSQL databases are better equipped to store (and process) large image or video files, 
large blocks of natural language text, or semi-structured as well as sensor data. 

Home_policies

Life_policies

Customer

234-56-2243~Albert~Einstein ~1 oak drive, Palatine, IL 60421~ 8472453333
345-86-1223~Stephen ~Hawking ~100 Maple ct. , Darien , IL ~60561~6304271623
453-65-2244~Thomas ~Edison~55 Pine st. , Naperville , IL 60660~6307246565
294-85-4553~Isaac~New ton~99 Redwood drive, Woodridge, IL 60561~6304275454

45341441 ~01/24/1962 ~N~Y~72~234-56-2243
41441442 ~03/18/1972 ~Y~Y~60~294-85-4553
41671443 ~10/12/1976 ~Y~N~64~453-65-2244
41489744 ~09/06/1968 ~N~N~82~345-86-1223

45341441~1 oak drive, Palatine, IL 60421~500,000~4,000~234 -56-2243
45356442~100 Maple ct. , Darien , IL 60561~750,000~5,000~345-86-1223
45987443~55 Pine st. , Naperville , IL 60660~1,100,000~8,000~45 3-65-2244
45671444 ~99 Redwood drive, Woodridge, IL 60561~300,000~2,000~29 4-85-4553

  Figure 1-2.    NoSQL storage of data       
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 Compare this with a small page size for RDBMS (for example, Microsoft SQL Server 
uses a page size of 8 KB) and absence of an efficient mechanism to distribute the read 
(or update) operations and you will realize why NoSQL databases will always win in 
any scenarios that involve data warehouses and large datasets. The strength of RDBMS, 
though, is where there are small datasets with complex relationships and extensive 
analysis is required on parts of it. Also, where referential integrity is important to be 
implemented over a dataset, NoSQL databases are no match for RDBMS. 

 To summarize, RDBMS is more suited for a large number of data manipulations for 
smaller datasets where ACID (Atomicity, Consistency, Isolation, Durability) compliance 
is necessary; whereas NoSQL databases are more suited for a smaller number of data 
manipulations to large datasets that can work with the “eventual consistency” model. 
Table  1-1  provides a handy comparison between the two technologies (relational and 
NoSQL).

     Table 1-1.    Comparative Features of RDBMS vs. NoSQL   

 Feature  HDFS-based NoSQL  RDBMS 

 1  Large datasets  Efficient and fast  Not efficient 

 2  Small datasets  Not efficient  Efficient and fast 

 3  Searches  Not efficient  Efficient and fast 

 4  Large read operations  Efficient and fast  Not efficient 

 5  Updates  Not efficient  Efficient and fast 

 6  Data relations  Not supported  Supported 

 7  Authentication/Authorization  Kerberos  Built-in 

 8  Data storage  Distributed over 
DataNodes 

 Central Database 
server 

 9  ACID compliant  No  Yes 

 10  Concurrent updates to dataset  Not supported  Supported 

 11  Fault tolerance  Built-in  Not built-in 

 12  Scalability  Easily scalable  Not easily scalable 

 Figure  1-3  shows the physical data storage configurations (for the preceding 
example) including a Hadoop cluster (Hive/NoSQL) and RDBMS (Microsoft SQL Server).   

www.allitebooks.com

http://www.allitebooks.org
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     Relational Design and Hadoop in Conjunction: 
Advantages and Challenges 
 The preceding section talked about how different these two technologies are. So, why 
bother bringing them together? What’s the effort involved, and is it worth that effort? I’ll 
discuss these questions one at a time. 
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  Figure 1-3.    Physical data storage configurations (NoSQL and RDBMS)       
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 I will start with the advantages of combining these two technologies. If you review 
Table  1-1 , you will realize that these technologies complement each other nicely. If a 
large volume of historical data is gathered via RDBMS, you can use NoSQL databases 
to analyze it. That;s because Hadoop is better equipped to read large datasets and 
transform them—the only condition being that transformation is applied to the whole 
dataset (for efficiency). So, how best can you leverage use of Hadoop/NoSQL in your 
environment? Here are a few ideas:

•     Transform data into (valuable) information:  Data, by itself, is 
just numbers (or text). You need to add perspective to your data 
in order for it to be valuable for your business needs. Hadoop can 
assist you by generating a large number of analytics for your data. 
For example, if Hadoop is used for analyzing the data generated 
by auto-sensors, it can consolidate, summarize, and analyze the 
data and provide reports by time-slices (such as hourly, daily, 
weekly, and so on) and provide you vital statistics such as average 
temperature of the engine, average crankshaft RPM, number of 
warnings per hours, and so forth.  

•    Gain insights through mapping multiple data structures to 
a single dataset:  When using RDBMS for your data needs, you 
are aware of the need to specify a data structure before using it. 
Referring to the example in the last section, if SQL Server is used 
to store Customer and policy data, then you need to define a user 
database and Customer as well as policy table structures. You can 
only store data after that. In contrast, Customer data within HDFS 
is simply held as a file, and structure can be attached to it while 
it is read. This concept, known as  schema on read , offers a lot of 
flexibility while reading the data. A good use of this concept might 
be in a case where a fact table holds the sales figures for a product 
and can be read as “Yearly sales” or also can be read as “Buying 
trends by region.”  

•    Use historical data for predictive analysis:  In a lot of cases, there 
is a large amount of historical data to be analyzed and used for 
predicting future trends. Hadoop can be (and is) successfully used 
to churn through the terabytes of data, consolidate it, and use it in 
your predictive models. For example, past garment-buying trends 
in spring and fall for the prior ten years can assist a departmental 
store in stocking the right type of garments; spending habits of 
a customer over the last five years can help them mail the right 
coupons to him.  
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•    Build a robust fault-tolerant system:  Hadoop offers fault 
tolerance and redundancy by default. Each data block is 
replicated thrice as default configuration and can be adjusted 
as per the needs. RDBMS can be configured for real-time 
replication, but any solution used to implement replication needs 
extensive setup and monitoring and also impacts performance 
due to replication overheads. In addition, due to the way updates 
are implemented for Hadoop, there is fault tolerance for human 
mistakes, too, since updated data is mostly written to a new file, 
leaving original data unchanged.  

•    Serve a wide range of workloads : Hadoop can be used to cater 
to a wide range of applications. For example, a social media 
application where eventual consistency is acceptable or low-
latency reads as well as ad-hoc queries where performance 
is paramount. With components (such as Spark) offering in-
memory processing or ACID compliance (Hive 0.14), Hadoop is 
now a more versatile platform compared to any of the RDBMS.  

•    Design a linearly scalable system:  The issue with scaling an 
RDBMS-based system is that it only scales up—and that too not 
easily. There is downtime and risk involved (since the server 
needs to be supplemented with additional hardware resources) 
and though newer versions (of RDBMS) support distributed 
computing model, the necessary configuration is difficult and 
needs complex setup and monitoring. Hadoop, in contrast, scales 
out easily without any downtime, and it is easy and fast to add or 
remove DataNodes for a Hadoop cluster.  

•    Design an extensible system:  A Hadoop cluster is easily 
extensible (features can be added easily without downtime). 
Troubleshooting is easy due to extensive logging using the flexible 
and comprehensive Log4j API and requires minimal maintenance 
or manual intervention. Compare that with RDBMS, which 
requires extensive monitoring and setup for continued normal 
operation.    

 If Hadoop deployment has so many advantages, why doesn’t everyone implement 
it in their environment? The reason (as explained earlier) is that Hadoop is not the best 
solution for all types of data or business needs. Additionally, even if there’s a match, there 
are a number of challenges in introducing Hadoop to your organization, which I discuss 
in the next section. 
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     Type of Data 
 The following are things to consider, depending on the type of data you are dealing with:

•     Workload:  Hadoop is most suited for read-heavy workloads. 
If you have a transactional system (currently using RDBMS), 
then there is extra effort involved in deriving a denormalized 
warehouse-like version of your database and having it ingested 
via an appropriate Hadoop tool (such as Sqoop or Flume) into 
HDFS. Any updates to this data have to be processed as reads 
from source file, applying updates (as appropriate) and writing 
out to a staging file that becomes the new source. Though new 
versions of some NoSQL databases (Hive 0.14) support updates, it 
is more efficient to handle them in this manner.  

•    High Latency:  With most NoSQL databases, there is an increase 
in latency with increasing throughput. If you need low latency 
for your application, you will need to benchmark and adjust your 
hardware resources. This task requires a good understanding 
of Hadoop monitoring and various Hadoop daemons and also 
expertise in configuring a Hadoop cluster.  

•    Data dependencies:  If your relational data is column oriented 
or nested (with multiple levels of nesting), you have more work 
ahead of you. Since there is no join in NoSQL, you will need 
to denormalize your data before you store it within a NoSQL 
database (or HDFS). Also, cascading changes to dependent data 
(similar to foreign key relationships within RDBMS) needs to be 
handled programmatically. There are no tools available within 
NoSQL databases to provide this functionality.  

•    Schema:  Your schema (for data stored within RDBMS) is static 
and if you need to make it semi-dynamic or completely dynamic, 
you need to make appropriate changes in order to adapt it for 
NoSQL usage.     

     Data Volume 
 Hadoop is not suitable for low data volumes due to the overheads it incurs while reading or 
writing files (these tasks translate to MapReduce jobs and incur substantial overheads while 
performing job submission or scheduling). There is a lot of debate about the “magic number” 
you can use as critical volume for moving to Hadoop, but it varies for the type of data you have 
and, of course, for your business needs. From my personal experience, Hadoop should only 
be considered for volumes larger than 5 TB (and with a high growth rate).  
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     Business Need 
 If your business need for moving to Hadoop doesn’t match your existing data, then 
there is work involved—especially if it is the type of data Hadoop/NoSQL are not good 
at processing. For example, if your business need is complex analytics for subsets of 
normalized relational data with frequent updates, then you need to denormalize your data 
and also establish a policy and timeline to apply the updates (once a day, twice a day, and 
so on). There is also additional work involved in separating the fact data from dimensional 
data as the need may be. If, however, you want to use Hadoop for analyzing the browsing 
habits of thousands of your potential customers and determine what percentage of 
that converted to actual sales, then the work involved may be minimal—because you 
probably have all the required data available in separate NoSQL tables—albeit it may be in 
unstructured or semi-structured format (which NoSQL has no problems processing). 

 Of course, there may be more specific challenges for your environment, and I have 
only discussed challenges in moving the data. There may be additional challenges in 
modifying the front-end user interfaces (to work with Hadoop/NoSQL) as well!   

     Deciding to Integrate, Re-Architect, or Transition 
 Once you have decided to introduce Hadoop/NoSQL in your environment, here are 
some of the next questions: how do you make Hadoop work best with your existing 
applications/data? Do you transition some of your applications to Hadoop or simply 
integrate existing applications with Hadoop? A slightly more drastic approach is to 
completely re-architect your application for Hadoop/NoSQL usage. 

 Unfortunately, there is no short answer to these questions, and the decision can 
only be made after careful consideration of a number of relevant factors. The next section 
discusses those factors. 

     Type of Data 
 The type of data you currently have (within your applications) can have an impact in 
multiple ways:

•     Structured/Unstructured data:  If most of your application data is 
structured and there is no possibility of adding any semi-structured 
or unstructured data sources, then the best approach is integration. 
It is best to integrate your existing applications with Hadoop/
NoSQL. You can either think about designing and implementing 
a data lake, or if you only need to analyze a small part of your data, 
then simply have a data-ingestion process to copy data into HDFS 
and use Hive or HBase to process it for analysis and querying. 
Alternatively, if you have a semi-structured or unstructured data 
sources, then depending on their percentage (to structured data), 
you can either transition your application completely to NoSQL or 
re-architect your application partially (or completely) to NoSQL if 
you have a large percentage of semi-structured/unstructured data 
currently (or expected in the immediate future).  
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•    Normalized relational data:  If a large percentage of your data 
is highly normalized relational data, then probably you have a 
complex application with a high amount of data dependency 
involved. Since NoSQL databases are not capable of supporting 
data dependencies and relations, you can’t really think about 
re-architecting or transitioning your application to NoSQL. Your 
best chance is integration, and that too with additional effort. 
You can think of a data lake but need to de-normalize and flatten 
your data (remove hierarchical relationships) and remove all 
the data dependencies. The concept is similar to building a data 
warehouse, but instead of a rigid fact/dimensional structure of a 
dimensional model, you need to simply de-normalize the tables 
and try to create flat structures that (ideally) need no joins or very 
few joins, since Hadoop/NoSQL is not good at processing joins.     

     Type of Application 
 As you have seen earlier, NoSQL is suited for certain types of applications only. Here is 
how it impacts the decision to integrate, transition, or re-architect:

•     Data mart/Analytics:  Hadoop is most suited for single write/
multiple read scenarios, and that’s what occurs in a data mart. Data 
is incrementally loaded and read/processed for analysis multiple 
times after. There are no updates to warehouse data, simply 
increments. That works well with Hadoop’s efficiency for large read 
operations (and also inefficiency with updates). Therefore, for data 
mart applications, it’s best to re-architect and transition to Hadoop/
NoSQL rather than integrate. Again, it may not be possible to move 
a whole enterprise data warehouse (EDW) to Hadoop, but it may 
certainly be possible to re-architect and transition some of the 
data marts to Hadoop (I discuss details of data marts that can be 
transitioned to Hadoop in Chapters   9     and   11    ).  

•    ETL (batch processing) applications:  It is possible to utilize 
Hadoop/NoSQL for ETL processing effectively, since in most 
cases it involves reading source data, applying transformations 
(to the complete dataset), and writing transformed data to the 
target. This again can use Hadoop’s ability for efficient serial 
reads/writes and applying transformations unconditionally and 
uniformly to a large dataset. Therefore, for ETL applications, 
it is best to re-architect and transition to Hadoop rather than 
integrate. The caution here is making sure there are very few 
(or ideally no) data dependencies in the data that is being 
transformed. Given NoSQL’s lack of join capability and inability 
to process relations within normalized data, either the data-
lookup tasks should be maintained within RDBMS, or, if not 
possible, transition to NoSQL should be avoided.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_11
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•    Social media applications:  Currently, use of social media is 
increasing every day, and corporations like to use social media 
applications for everything, starting with product launches to 
post-mortems of product failures. Most social media data is 
unstructured or semi-structured. NoSQL is good at processing 
this data, and you should definitely think about re-architecting 
and transitioning to Hadoop for any such applications.  

•    User behavioral capture:  Many e-commerce websites like to 
capture user clicks and analyze their browsing habits. Due to the 
large volume and unstructured nature of such data, Hadoop/
NoSQL are ideally suited to process it. You should certainly 
re-architect/transition these applications to NoSQL.  

•    Log analysis applications:  Any mid-size or large corporation 
uses a large number of applications, and these applications 
generate a large number of log files. In case of troubleshooting 
or security issues, it is almost impossible to analyze these log 
files. Other important information can be derived from log files, 
like average processing time for batch processing tasks, number 
of failures and their details, user access and resource details 
(accessed by the users), and so on. Hadoop/NoSQL is ideally 
suited to process this large volume of semi-structured data, and 
you should certainly design new applications based in Hadoop/
NoSQL for these purposes or re-architect/transition any existing 
applications to Hadoop. You are certain to see the benefits,     

     Business Objectives 
 Last but not least, business objectives drive and override any decisions made. Here are 
some of the business objectives that can impact the decision to integrate/re-architect/
transition:

•     Provide near-real time analytics:  There may be situations where 
a business needs to have strategic advantage by providing ways 
to analyze its data in near real time for higher management. For 
example, if the Chief Marketing Officer (CMO) has access to 
up-to-date sales of the new product launched by region (or city), 
he can probably address the sales issues better. In these cases, 
designing a data lake can provide quick insights into the sales 
data. Therefore, integrating existing application(s) with Hadoop/
NoSQL is the best strategy here.  
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•    Reduce hardware cost:  Sometimes an application is useful for 
an organization but it needs proprietary or high-cost hardware. 
If there are budgetary constraints or simply organizational policy 
that can’t be overridden, Hadoop can be useful for cost reduction. 
There is of course time/effort/price involved in re-architecting/
transitioning an application to Hadoop; but cost analysis of 
hardware ownership/rental (as well as maintenance) compared 
to one-time re-architect/transition cost and hosting on cheaper 
hardware can help you make the right decision.  

•    Design for scalability and fault-tolerance:  In some situations, 
there may be a need for easy scalability (for example, if a business 
is anticipating high growth in the near future) and fault tolerance 
(if demanded by functional need or a client). If this is a new 
requirement, it may be cost-prohibitive to add these features to 
existing applications, and Hadoop/NoSQL can certainly be a 
viable alternative. A careful cost analysis of additional hardware, 
software, and resources (to support the new requirements) 
compared to one-time re-architect/transition cost and hosting on 
cheaper hardware can help you make the right decision.    

 I have only introduced the preceding criteria briefly here and will discuss it in much 
more detail in later chapters. The next section talks about what each of these techniques 
involves.   

     How to Integrate, Re-Architect, or Transition 
 I discuss these approaches in detail in later chapters. The objective of this section is 
just to introduce the concepts with quick examples. Let me start with the least intrusive 
approach: integration with existing application(s). 

     Integration 
 Think of a scenario where a global corporation has its data dispersed in large 
applications, and it is almost impossible to analyze the data in conjunction while 
maintaining it at the same granularity. If doesn’t offer the flexibility to derive new insights 
from it, what is the use of such data held on expensive hardware and employing resources 
to maintain it? The  data lake  is a new paradigm that can be useful in these scenarios. 
Pentaho CTO James Dixon is credited with coining the term. A data lake is simply the 
accumulation of your application data held in HDFS without any transformations applied 
to it. It typically is characterized by the following:

•     Small cost for big size:  A data lake doesn’t need expensive 
hardware to implement a large Hadoop cluster. Use of commodity 
hardware provides a big cost saving (and implementation at 
fraction of the cost) compared to traditional data warehouses 
(implemented using RDBMS).  
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•    Data fidelity:  While in a data lake, data is guaranteed to be 
preserved in its original form and without any transformations 
applied to it.  

•    Accessibility:  A data lake removes the multiple silos that divide 
the data by application, departments, roles, and so forth and 
make it easily and equally accessible to everyone within an 
organization.  

•    Dynamic schema:  Data stored in a data lake doesn’t need to be 
bound by a predefined rigid schema and can be structured as per 
need, offering flexibility for insightful analysis.    

 Broadly, data lakes can be categorized as follows:

•     Data reservoir:  When data from multiple applications is held 
without silos and organized using data governance as well as 
indexing (or cataloging) for fast retrieval, it constitutes a data 
 reservoir . Data here is organized and ready for analysis, but no 
analysis is defined, although a reservoir may consist of data from 
isolated data marts along with data from unstructured sources.  

•    Exploratory lake:  Organizations with specialized data 
scientists, business analysts, or statisticians can perform custom 
analytical queries to gain new insights from data stored in a data 
lake. Many times this doesn’t even involve IT and is a purely 
exploratory effort followed by visualizations (presented to higher 
management) in order to verify the relevance and utility of the 
analytics performed. Due to the way data is held in a data lake, 
it is possible to perform quick iterations of these analytics to the 
satisfaction of decision makers.  

•    Analytical lake:  Some organizations have an established process 
to feed their analytical models for advanced analysis, such as 
predictive analysis (what may happen) or prescriptive analysis 
(what we should do about it) and use data from a data lake as 
input for those models. A data lake (or its subset) can also act as a 
staging area for a data mart or enterprise data warehouse (EDW).    
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 Data  governance  is an important consideration for implementing data lakes. It is 
important to establish data governance processes for a data lake lest it turn into a data 
“swamp.” For example, the fact that metadata can be maintained separately from underlying 
data also makes it harder to govern—unless uniform metadata standards are followed that 
help users understand data interrelations. Of course, that still doesn’t eliminate the danger 
of individual end users ascribing data attributes to data (from the data lake) that are only 
relevant in their own business context and don’t follow organizational metadata standards 
or governance conventions. The same issue may arise about consistency of semantics 
within the data. Here are some important aspects of data governance:

•     MDM integration:  For a data lake, MDM integration is a 
bidirectional process. Master data for an organization can be 
a good starting point, but metadata in a data lake can grow 
and mature over time with user interaction since individual 
user perspectives and insights can result in new ways to look 
at (and analyze) the same data. This is an important benefit of 
maintaining the metadata and underlying data separately within 
a data lake. Additionally, tagging and linking metadata can help 
organize it further and assist in generating more insights and 
intelligence.  

•    Data quality:  The objective of data quality is to make sure that 
data (within a data lake) is valid, consistent, and reliable. Quality 
of incoming data needs to be accessed using data profiling. 
 Data profiling  is a process that discovers contradictions, 
inconsistencies, and redundancies within your data by analyzing 
its content and structure. Correctional rules need to be set up to 
transform the data. The corrected output needs to be monitored 
over time to ensure that all the defined rules are transforming the 
data correctly and also to modify or add rules as necessary.  

•    Security policy:  It is a common misconception that since data 
within a data lake doesn’t have any silos, the same applies to 
access control, and it is unrestricted as well. Data governance 
needs processes performing authentication, authorization, 
encryption, and monitoring to reduce the risk of unauthorized 
access as well as updates to data.  

•    Encryption:  Due to the distributed nature of Hadoop, there is 
large amount of inter-node data transfer as well as data transfer 
between DataNodes and client. To prevent unauthorized access 
to this data in transit as well as data stored on DataNodes (data 
at rest), encryption is necessary. There are a number of ways 
encryption “at rest” can be implemented for Hadoop, and doing 
so is necessary. As for inter-node communication, it can be 
configured to be encrypted.  
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•    Masking of PII (Personally identifiable information)   and 
other sensitive data:  Encryption can help prevent unauthorized 
access, but even users who are authorized to access data may 
not be permitted to access certain sensitive information such as 
personal information for clients, their healthcare data, and so on. 
Also, federal regulations for certain industries (such as insurance, 
healthcare, financial) prevent such access to all employees. 
Therefore, any such sensitive data needs to be masked and 
protected by additional passwords.    

 If you consider the features (described earlier in this section) and considerations for 
a governed data lake, the design will look something like Figure  1-4 .   
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  Figure 1-4.    Data Lake       

     Re-Architecting Using Lambda Architecture 
 Re-architecting an application for Hadoop/NoSQL environment involves redesigning the data 
and query layers completely for HDFS/NoSQL storage and processing. Typically, Hadoop 
is used for batch processing, which means that for an interactive application that needs 
ad hoc queries executed, re-architecting for Hadoop can pose a problem. Especially if the 
functionality needs low latency for data retrieval, Hadoop/NoSQL won’t be able to deliver it. 

 Nathan Marz has provided an architectural solution to counter this problem known 
as  Lambda architecture . It suggests that you build your Big Data system as a series of 
layers with each layer providing specific functionality and the next layer building upon 
functionality provided by earlier layer (as shown in Figure  1-5 ). This architectural 
solution can be used for re-architecting an application for Hadoop or designing a new 
application meant to be used with Hadoop/NoSQL.  
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 There are three layers. The batch layer is the first layer that computes views used 
for querying. The serving layer is the second layer that indexes the view created in first 
layer and serves them. The speed layer is the third layer that provides real-time querying 
functionality within Lambda architecture. 

   Batch Layer 
 Executing queries on a huge dataset (the highlight of Hadoop-based systems) requires 
a large amount of resources and can be very slow. Sometimes it may even abort due 
to lack of resources. A smart workaround can be to precompute data in advance and 
make it ready for queries. The precomputed data can be indexed to speed up random 
reads (since Hadoop is not very good at them). This concept is not very different from 
the RDBMS materialized views that can be indexed. However, for the Hadoop world it is 
new, and these precomputed views or batch views constitute the batch layer for Lambda 
architecture. 

 When you want to execute a query, you can design and run a function on that batch 
view instead of on the whole dataset. The indexed batch view facilitates a quick retrieval 
of values (you need) since it is indexed and a subset of the data. You can create multiple 
batch views for your dataset covering varied functionalities and suited for varied analytics 
as per your need. In addition, parallelism for data retrieval is always guaranteed due to 
the distributed nature of Hadoop. 

 For example, a clothing web retailer collects data through a Hadoop-based system 
that records all user clicks (including sales transactions). For them, a batch view that 
isolates all the sales transactions by geographical locations may be useful for the sales 
department, and another batch view with user clicks and dates might be useful for data 
scientists to analyze product interest by season or time of year. 

Speed layer (for real time querying)

Serving layer (serving batch views) 

Indexed batch views 

User 
queries

Complete dataset 

Batch layer 

  Figure 1-5.    Layers of Lambda architecture       
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 In some cases, if your dataset is enormous, even the batch views may be huge, and 
you can think about breaking them up further. For example, the clothing web retailer 
has user clicks and sales generating billions of records per month. If you have your batch 
views by quarter, the volumes may still be large for quick processing of queries, and you 
may want to design an additional batch layer with views by month. That will reduce your 
processing time (since you will only process the latest month, as opposed to a quarter) 
but may complicate your retrieval strategy since you will need to determine the correct 
view to query, and multiple views if need be (if durations span across months). 

 Indexing the views is a very important step (after the batch view creation) and 
will need to be performed by someone with good understanding of your data as well 
as functional needs (analytics and frequently executed queries). If your indexes do not 
coincide with your queries, you will experience performance issues. 

 The obvious question one has with this approach is about the time or latency for 
creating such batch views. Because these views are created from the whole dataset, 
clearly they will use of lot of system resources, and even if you compute them nightly, they 
are not going to have all the data collected by your system. Data may get added while (or 
after) these views are computed, and your query results will be outdated by many hours. 
The next layers of Lambda deal with that issue.  

   Serving Layer 
 The serving layer serves the views. The indexed batch views that were created in the batch 
layer need to be “hosted” somewhere they can be accessed without much latency. 

 Therefore, the serving layer needs to be a specialized distributed database that 
can load the batch views and support good performance for random reads as well as 
sequential data retrieval. The serving layer also needs to be capable of swapping a batch 
view with a newer version when it is made available by the batch layer so that user 
queries can return up-to-date results (it needs to support batch updates). 

 But because user queries are not going to update the batch views, the serving layer doesn’t 
need to support random writes, and because random writes cause most of the complexity in 
databases, the serving layer distributed databases can be extremely simple. That simplicity 
gives them robustness, predictability, and ease of configuration (as well as operation). It 
concurs with the philosophy of the Lambda architecture which believes in moving the 
complexity from batch and serving layers to the speed layer, which essentially is discardable. 

 One last point to remember about the serving layer is that no single distributed 
database can be recommended or used. You need to consider the nature of your data 
before deciding on the serving layer, because each distributed (or NoSQL) database has 
its own strengths, and you need to make sure it matches your data.  

   Speed Layer 
 The serving layer updates after the batch layer finishes processing a batch view. This 
means that the only data not included in the updated batch view is the data that was 
added while the update (for batch view) was processing. The purpose of the speed layer is 
to make that data available—and quickly (as the name suggests). 

 The basic functionality of a speed layer is similar to the batch layer, since it also 
produces views based on data it receives. The difference is that the speed layer only 
processes new or recent data that’s not processed by the batch layer, whereas the batch 
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layer uses all the data for computing the views. Another difference is that the batch layer 
updates a view by recomputing (or rebuilding) it, whereas the speed layer performs 
incremental processing on a view and only processes the delta (or difference) by 
comparing it with the last time incremental processing was done. 

 So, for example, if a view in speed layer was processed at 10:45 p.m. and the next 
processing is done at 11:00 p.m., then only the data received between 10:45 and 11 will 
be processed. These processing differences help the speed layer in achieving the smallest 
latencies possible. Because the speed layer views are almost real time (depending on your 
processing latency, you may process every five minutes, resulting in processing or data 
latency of five minutes), you can also term them as real-time views. 

 Therefore, you can see that you have a system that is almost real time and can 
answer any queries correctly, yet it offers all the benefits of a Hadoop-based system. 
Figure  1-6  shows how a query can provide results at almost real time using the 
workflow of Lambda architecture.  

Batch layerSpeed layer

Serving layer

New data collected
between 10:45 p.m.
and 11:00 p.m.  

Data between 
10:45 p.m. and 
11:00 p.m. being 
processedComplete ‘master’

dataset 

Batch views computed
till 10:45 p.m. 

Data till 11:00 
p.m. processed 
and available

Real time view3

Real time view2

Real time view1

Batch view1

Batch view1

Batch view1 Data till 10:45 p.m. 
served

User query at 
11:05 p.m.

Query results include 
data till 11:00 p.m.

  Figure 1-6.    Query processing within Lambda architecture       
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 The last thing to remember (about the Lambda architecture) is that the speed layer 
is disposable. Any new data also triggers processing within the batch layer, and while the 
real-time views are being used (from the speed layer), recomputation of views continues 
within the batch layer. Once those batch views (from the batch layer) are recomputed 
and served by the serving layer, parts of real-time views are not needed (because that 
data is already available through batch views) and can be discarded. So, for the preceding 
example, if the batch views are completely processed by 11:15 p.m., then any query after 
11:15 p.m. will be processed as shown in Figure  1-7 .  

  Figure 1-7.    Disposable speed layer within Lambda architecture       
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 Lambda architecture supports a property called  complexity isolation , which pushes 
processing complexity to layers whose results are temporary. Because the speed layer 
involves much more processing complexity (compared to the batch or serving layers), the 
fact that speed layer results are temporary agrees philosophically with the architecture. 
Also, in case of any data or processing issues, the entire contents of the speed layer can 
easily be discarded and rebuilt quickly. 

 I discuss Lambda architecture in more detail in Chapter   8    , and there is also a case 
study in Chapter   15    .   

     Transition to Hadoop/NoSQL 
  Transition  implies migrating an existing application (possibly using RDBMS for data 
storage and processing) to a Hadoop/NoSQL-based environment. You can leverage the 
re-architecting technique described in the last section, but there’s an additional step 
involved: data migration. Also, you don’t have to use Lambda architecture for your new 
system. You can select a suitable NoSQL database for use (based on your functional need 
and data volumes) and simply have your application front-end interface write to it. Of 
course, you have to make sure your front end can write data in a format acceptable to the 
NoSQL database and can also read data from it. 

 A large number of NoSQL databases are available (about 150 as listed by  nosql-
database.org ), and they vary greatly in functionality and features. This section talks 
about some of the criteria you can use to select the most appropriate NoSQL database for 
your purposes. 

   Type of Data 
 You need to consider the type of data you plan to collect and store within your NoSQL 
database. Unlike RDBMS, NoSQL databases don’t have a uniform way of storing data. 
Actually, they don’t even use the same model for data storage. For example, NoSQL 
databases like MongoDB are document stores or document databases. It is important to 
choose a NoSQL database that matches the type of data you have. 

 Broadly, there are four types of NoSQL databases:

•     Key-value store:  These databases store data as key-value pairs 
with a hash table to index and manage the data. Prominent 
examples include Riak and Amazon DynamoDB.  

•    Document store:  A  document  is a set of key-value pairs. These 
database systems store data as documents within databases 
(collection of documents). Examples: MongoDB and CouchDB.  

•    Column store:  Data is held and processed in storage blocks that 
contain data by columns (or groups of columns called column 
 families ). Examples: HBase and Cassandra.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_8
http://dx.doi.org/10.1007/978-1-4842-1287-5_15
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•    Graph databases:  These databases allow you to store entities 
(nodes) and relationships (edges) between these entities. Nodes 
and edges have properties, and edges also have directional 
significance. A graph lets the data be stored once and then 
interpreted in different ways based on relationships between 
nodes. Examples include Neo4J, OrientDB, and FlockDB.     

   Data Volume 
 You need to consider the data volume because some NoSQL databases (for example, 
MongoDB) use memory-based computations for speed (and therefore do not scale 
horizontally) whereas others do not and therefore can easily scale out. If your data 
volumes are high, it is probably better to use a solution like Cassandra that can scale out 
easily.  

   Data Distribution 
 You need to consider how widely the data needs to be distributed geographically from 
a performance perspective. Some NoSQL databases use master/slave (or “primary/
secondary”) architectures, which can only scale read operations versus peer-to-peer 
architectures that can scale both reads and writes. So, depending on your application 
behavior, you can decide which architecture would match your needs.  

   Migrating the Data 
 After you decide on an appropriate NoSQL solution, you need to design ETL to migrate 
the data from your application(s) to the target database. Sometimes it is necessary to 
build a transition model or a staging database and move the data to it, before migrating 
to its ultimate destination. There may be multiple reasons for this approach such as a 
difference in data models of source and target databases or need for denormalizing or 
transforming the data or simply for performance reasons—the source may have too much 
data that the target probably can’t load in a single iteration or entity. Chapter   7     discusses 
construction of a transitional model. For now, Figure  1-8  summarizes the steps for 
transition to Hadoop/NoSQL.     

http://dx.doi.org/10.1007/978-1-4842-1287-5_7
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     Summary 
 Everyone wants to utilize the power of Big Data in their environment. Unfortunately, 
decision makers often don’t consider all the parameters before concluding that Big Data 
is right for their organization. Sometimes the lack of proper experience on the part of the 
technical staff (that provides technical evaluation) is an issue. 

 Moreover, lack of understanding of NoSQL databases and their nuances is a major 
issue. It doesn’t help that there are no formal frameworks or design methodologies for 
Hadoop implementations. Lambda is just introduced, but it may not be applicable or 
useful in all possible scenarios (besides not being easy to implement). 

 The Hadoop/NoSQL world is ever evolving, innovative, and driven by a lot of smart 
people. It offers useful technologies and clever solutions for a large variety of problems. 
You just need to be cognizant of the implementation issues and carefully consider your 
individual environment and needs before you introduce NoSQL in it—that’s all. 

 In this chapter, I have tried to summarize the pros and cons of Hadoop/NoSQL 
implementations, and hopefully they will guide you in making the right decisions. Later 
chapters elaborate on the concepts introduced here.         
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  Figure 1-8.    Transition to Hadoop/NoSQL       
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    CHAPTER 2   

 Understanding RDBMS 
Design Principles                          

 I always enjoy interviewing the junior members of our database architecture community. 
I asked someone if he had ever used or heard of “SSADM” (structured systems analysis 
and design method). The answer was negative, and honestly, it didn’t surprise me. I 
thought the term was probably before his time, or maybe it never got popular in the US 
(I had used it in earlier part of my career in the UK). But even some of my senior colleagues 
and friends had not heard of SSADM, or even about Accenture’s METHOD/1—which is 
very American. 

 My experience working in Chicago clued me in to the lack of awareness and 
understanding that most corporations have when it comes to database design 
methodologies. The buzzwords  top-down ,  bottom-up , and  conceptual to physical model  
were the extent that most of the corporate database designers (that I knew) indulged in. 
Subsequently, I have also seen the effects of that apathy when it comes to making design 
changes to an application or tracking the origin of some of the changes made. 

 Database design, however, is not all about the methodologies. It’s about the 
implementation of these frameworks. More importantly, it’s about creating the best 
design for automating and accurately representing a business process and collecting/
storing the data that’s the result of executing that business process. Design methods 
should be used as a reference, and any variations needed for effective implementation 
should be made. For example, you may know that none of the leading RDBMS (Oracle 
or Sybase or Microsoft SQL Server) can strictly qualify as “relational” databases because 
they don’t satisfy all the criteria as specified by E.F. Codd in his paper “A Relational Model 
of Data for Large Shared Data Banks.” 

 So, it’s good to follow the frameworks as guidelines. But functional accuracy and 
performance of a system are more important—and a good database designer knows that. 
For almost 50 years now, “relational” databases are the most popular databases, and 
the new NoSQL technology can’t offer some of the design flexibility and ease of use that 
are the highlight of RDBMS. Of course, NoSQL has many advantages too, but it helps to 
understand the strengths of RDBMS through the robustness and descriptiveness of its 
frameworks—the design methodologies. 

 What exactly are these methodologies, and how do they facilitate design? I will start 
with some of the popular design approaches (which can’t be termed  methodology ) and 
then discuss some more extensive and descriptive design methodologies. 

www.allitebooks.com

http://www.allitebooks.org
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 One last thought before I start with the overview of design methodologies. Why 
spend time understanding the older relational technology and design if the ultimate 
aim is to work with the cutting edge distributed NoSQL database technology? Well, in 
my opinion, it will assist you in transitioning your applications better. A lot of technical 
resources don’t get a chance to understand relational design techniques (especially with 
the advent of newer technologies), and the initial chapters provide an overview that 
will provide a quick information refresh, in some cases. In others, they provide concise 
discussion enabling a good understanding of relational design methodologies. 

     Overview of Design Methodologies 
 Design methodologies provide a framework around which you can “build” and 
implement your database designs. You can start with a business requirement, understand 
business processes, and then build process and data flows. That will lead you to a 
conceptual and thereafter a logical data model. Finally, implement the logical model to a 
physical database. Done! 

 Can you sum up database design in four sentences any better? Well, there’s much 
more to designing a database, since it summarizes the data processing of a certain 
functional area of your organization. All the entities (tables) map to results of (execution 
of) a single or multiple business processes, and the process inter-relations are symbolized 
by relations between entities and their attributes (columns). For example, consider an 
inventory management system. The  Customer  tables corresponds to a business process 
that manages (adds, updates, or deletes) customer details.  Sales  table corresponds to the 
sales transactions that customers perform. Subsequently, the relation between  Customer  
and  Sales  tables accurately corresponds to the relation between processes that manage 
customer details and ones that manages sales details. 

 Let me start with a simple design method and then discuss some more complicated ones. 

     Top-down 
 The top-down design method starts (as the name indicates) at the top. The system 
design starts with an overview or list of objectives defining the purpose of the system. 
This is followed by design of first-level subsystems or modules and then the subsequent 
level of modules till you reach the last modular level—the entities themselves. A 
module may have multiple submodules or no modules at all. The details for each of the 
modules are filled in as last steps, after the whole modular structure is decide on. This 
design approach is more suitable for new application development or bigger (modular) 
enhancements to an application. 

 A good example is an insurance company’s requirement of designing a claims 
archival system. The objectives are: moving claims older than two years to slower, 
long-term storage (thereby releasing high-speed storage for more productive purposes), 
modifying reporting and an ad hoc querying system to access archival database for older 
claims, and shrinking the claims database and rebuilding indexes for better performance. 
The next section discusses the various levels (of modules) required to achieve our 
objectives.  
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     Bottom-up 
 The bottom-up design method starts at the bottom level, or at a lowest business process 
level. The individual business processes and thereby entities and their groupings derive 
functionality of a “module” or subsystem level and subsystems (corresponding to 
business processes for a department or division of an organization) combine to form 
a logical model. A conceptual model is derived from the logical model and provides a 
modular view of the system, thereby making it easy to add or modify functionality. 

 Because this design is developed with modular (or subsystem) isolation, there is 
always a risk associated with data mismatch or data duplication between the modules. 
But it is a faster design approach and may save time in some cases. It is more suited for 
scenarios where new functionality is added to an existing application or there is a need to 
reuse code or design fragments for quick development. 

 If you are to implement the claims archival system mentioned earlier using a 
bottom-up design approach, you will start by designing the actual entities that are 
required to hold archived data. I discuss this example in greater detail in the next section.  

     SSADM 
 Structured systems administration and design methodology is a design methodology every 
bit as extensive as its name sounds. It starts with a feasibility study and culminates in a 
physical design accurately depicting the functional need that facilitated the design. The 
methodology discusses specific details for performing each of the design steps that makes the 
implementation easy and successful. SSADM was developed by the Office of Government 
Commerce of British Treasury in early 1980s and follows the waterfall software process model. 

 The main design steps for SSADM are as follows:

•    Feasibility study  

•   Investigation of the current environment  

•   Business system options  

•   Requirements specification  

•   Technical system options  

•   Logical design  

•   Physical design    

 Again, if you want to use SSADM to design a claims archival system, you will need 
to start with a feasibility study that will involve evaluation of available disk space and 
time required for moving the claims data. Investigation of the current environment will 
involve checking the volume of data that needs to be moved. Business and technical 
system options are not relevant in this case, as the functionality of the same system 
(or application) is being extended. Requirements specifications will have details of the 
functionality required—design details for new archival objects and queries to archive 
data, modifications to query/reporting system to use new archival objects as needed, and 
instructions for shrinking/reindexing the claims database. Logical and physical design 
will have the structures for newly designed archival objects.   
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     Exploring Design Methodologies 
 The objective of a design method is to accurately represent the business processes 
and their data storage needs for a business. There are a number of ways to make sure 
that your approach results in a correct model: the data-driven model, process-driven 
model, blended (combination of data- and process-driven), object-oriented, prototyping 
(RAD—rapid application development), and agile. In practice, object-oriented design 
is not used for databases any more (because object-oriented databases are not used), 
and mostly blended models are used, unless the organization is in a hurry and wants 
a prototype ready quickly. A combination of top-down and bottom-up is usualy used, 
rather than one method. 

     Top-down 
 Top-down design approach is about planning and achieving a good understanding of the 
objectives for designing the system. It was conceptualized in the 1970s by Harlan Mills 
and Niklaus Wirth at IBM. Pros and cons to this approach are as follows. First the pros: it 
starts with objectives/overview of the system and thus helps in designing a more cohesive 
system, it develops better interfacing between modules, and design modularity facilitates 
a complete and documented coverage of necessary functionality. Now the cons: the main 
issue with this design approach is the development time needed. Also, until the modules 
have reached the final or entity level, design activities can’t start. 

 A design method usually starts at the requirements phase (because unless a 
database is “required,” you can’t design it). I have seen two extremes for the requirement 
phase. Either the client wants to start with a conceptual model right away and skip the 
requirement gathering and documentation, or the client spends too much time gathering 
requirements to make sure there is no need to refer back to the users of the system being 
designed. You need to make sure high-level requirements are documented, but don’t 
spend too much time on the details because they are bound to change. 

 Of course, it might also help to broadly classify them. For example, some 
requirements can’t be implemented directly, like “system needs to be easily extensible 
without redesigning it.” These are the “not implementable” requirements. The second 
category is the “implementable” ones—“The system needs to automatically include a 
new product in appropriate product catalog.” The last one is ‘conflicting’ requirements 
like “every new product needs to be included in the main catalog” and “seasonal products 
should not be included in the main product catalog.” Finally, if your development phases 
are already planned, it helps to classify requirements by phases as well. For example, “row 
level security is only needed in phase 2.” 

 The next step is using the requirements to document the objectives and build a 
first level of modules or subsystems that will lead toward building a conceptual model 
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(since the top-down approach involves starting with a generic model that covers all the 
high level requirements or objectives). In this case, the objectives are as follows:

    1.    Moving claims older than two years to slower, long-term 
storage (thereby releasing high speed storage for more 
productive purposes)  

    2.    Modifying reporting and ad hoc querying system to access 
archival claims objects for older claims (since now the claims 
data is distributed in two sets of entities)  

    3.    Shrinking claims database and rebuilding indexes (for better 
performance)     

 So, the first level modules will be:

•    Archival system  

•   Modifications to query and reporting system  

•   Database maintenance    

 For modules “modifications to query and reporting system” and “database 
maintenance,” the second level modules will be modified scripts and new scripts for 
database maintenance (shrinking, rebuilding indexes, and so on) respectively. 

 The second level modules for “archival system” will be:

•    Designing new archival objects  

•   Designing queries to archive data    

 The third and lowest level will be designing the actual archival objects and queries 
themselves. For that purpose, it will help to have a conceptual model. But how do you 
build a conceptual model? 

 For a top-down design approach, you can start with a generic model that covers 
all your high level requirements. But how can you choose a generic model that matches 
your requirements? Well, to start with, you can use a conceptual model (available for your 
organization) for a functional area that broadly matches your requirements or objectives. 
If no such model is available, you can review the enterprise conceptual model (covering 
all application areas) and choose a part of it that matches your requirements or 
objectives. 

 Assuming that either of the previously mentioned models is available, you can 
choose appropriate “entity groups” (for matching “subject areas” that cover your 
objectives or business requirements). If you consider the claims archival system example 
from the previous section, you can use the “claims processing” subject area as a generic 
model to start with. Figure  2-1  shows the conceptual model for claims processing.  



CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

32

 As a next step, you can remove the processing from the generic model that does not 
concur with your requirements or objectives. In this case, you simply need to archive 
all the claims data that is more than two years old. So, you need to focus on the group 
of entities that hold claims data. Also, because claims data is related and distributed in 
normalized entities, it is important to make sure that all the related entities are archived 
and all related records are archived. In the conceptual model, you can safely start with all 
the entities starting with  Claim  and evaluate them. 

 Consider  Claim  (claim details),  Claim_resubmission  (resubmitted claims),  Claim_
line_item  (claim lifecycle details), or  Claim_settlement  (settlement details for a claim). 
All these entities are related and hold time-bound claim details. Therefore, they should be 
considered for archival.  Claim_type ,  Claim_property_data ,  Claim_property , and  Claim_
status_type  are static reference values that are not time-bound, but they may change 
in the future, and it is still important to archive them. So, if you decide that and create a 
logical model (the next step per the design methodology), it will look like Figure  2-2 .  
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  Figure 2-1.    Conceptual model for claims processing       
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 The last step for this design methodology is generating a physical model using the 
logical model. Because you want to differentiate between the regular  Claims  entities and 
the ones used for archival, you might want to consider adding a prefix like  arch  for the 
entities used for archival. Case tools such as Erwin can help you forward engineer (or 
transform) your logical model to a physical model depending on the RDBMS of your choice. 

 For example, if Microsoft SQL Server is chosen as the target RDBMS, then SQL 
Server data types will be used. Again, Erwin can generate Transact-SQL scripts to create 
the tables (along with primary and foreign keys for referential integrity) within your SQL 
Server database. That’s the final task for the module “Designing new archival objects.” 
The other module “Designing queries to archive data” will have tasks to write queries for 
moving the data to the newly created archival objects. 

 If you are familiar with software process models, you will notice that the top-down 
design methodology works similarly to the software process model build-and-fix. As with 
the build-and-fix model, you start with business requirements and build the first version 
of a system. By the time your detailed modular design and individual tasks are complete 
along with build, business requirements may change and you need to iteratively modify 
your system to incorporate all the latest requirements as well as changes to previous ones. 
Figure  2-3  shows the process model.   

  Figure 2-2.    Logical model for claims processing       
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     Bottom-up 
 If you review the project plans of projects you have recently worked on (as well as the 
design task details), you will realize that you can’t determine the design approach that was 
used. Even after you have a discussion with the data architect or enterprise architect, it 
will be evident to you that a single design approach was not used. Rather, a mixed design 
approach was employed, most probably a combination of top-down and bottom-up. 

 Big software projects start with specific high level business requirements and 
objectives and proceed with module design, following the top-down approach. However, 
the strategy disintegrates quickly since the module leads want to complete their 
individual tasks within the stipulated time and hence want to reuse existing code and 
sometimes even existing modules. This adds the bottom-up approach to the mix. In some 
cases, the functionality of an operational system is expanded to match the objectives of 
the system being designed. 

 Using the bottom-up design approach, the initial focus is on the lowest modular 
level or individual entities that form the basis of higher level modules. After designing 
these entities, they are grouped to form next level modules. This process is continued till 
a hierarchical or modular system is complete that delivers the necessary functionality. 
This is like knowing broadly what a machine is supposed to do and designing individual 
modules in great detail that provide parts of the required functionality. In the end, you 
hope that the combined functionality provided by the individual modules matches what 
is required as the machine’s functionality—and that the modules interface with each 
other perfectly. 

 A big advantage of this approach is reusability and the time/money it might save. Of 
course, the designer needs to have the necessary experience (or intuition) to decide on 
modular functionality. 

Business
requirements 

Build first (or 
next as 
applicable) 
version 

Operations
mode 

Retirement

Maintenance / Enhancements

Changed business
requirements or 
details added 

Development

  Figure 2-3.    Software process models: build-and-fix model       
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 Let’s talk about how you can implement the claims archival example (discussed 
in the last section) using a bottom-up approach. To start with, you will need to review 
the claims processing conceptual model and decide which entities need to be archived. 
Once you have decided that, you need to design the archival entities. Prefixing them 
with  arch  (to differentiate from regular  claims  entities), you can design entities such as 
 arch_claim_item ,  arch_claim_resubmission ,  arch_claim_settlement , and so on. You 
can validate (start/end validity) to all the reference or metadata entities like  Claim_type  
or  Claim_status_type . 

 Next will be the design of the process required to populate these entities and 
removing the archived records from associated claim tables,  claim_item ,  claim_
resubmission , and  claim_settlement . After that, the new entities can be added to the 
logical model and finally to the conceptual model as grouping  Archival . 

 Now, since any claim-related query or report needs to read from regular as well as 
archived claims data, the reporting system needs to be modified to read from the correct 
objects based on dates the report is requested for. That will be the next module of this 
new system. 

 Finally, because a large amount of data is removed from existing database objects 
and added to the new ones, database maintenance must be performed to ensure that 
database performance is not affected. That will be the last module of the new system. So, 
finally, the claims-processing system can have a new top level module called  Archival . 

 If you review carefully, you will realize that we have designed the same system, but 
by performing the same steps in opposite order. This design method resembles a software 
process model called incremental, shown in Figure  2-4 .  
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  Figure 2-4.    Software process models: incremental model       
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 As you can see from Figure  2-4 , sthis ystem is built incrementally using successive 
builds till you complete all the development (required to provide the necessary 
functionality). You can think of this approach as a sequence of agile scrums, too.  

     SSADM 
 In the 1970s, the initial attempts for establishing design methods or frameworks were 
simply an attempt to automate the manual systems. They just imitated the logical 
business flow and thus didn’t add much value. These semi-formal design methods 
contained redundant and duplicate information, lacked clarity of method (no well-
defined steps), and had a number of inconsistencies. SSADM was the first attempt toward 
formalizing the design strategy. Initiated in 1981, the current version of SSADM is V4.2 
launched in 1995. SSADM uses three main techniques for design:

•     Logical data modeling:  During this LDM stage, the data needs 
of the system (being designed) are identified and documented. 
Next, a model is designed by separating data into entities (specific 
information that a business process generates and needs to be 
recorded) and relationships (the association between entities).  

•    Data flow modeling:  As the names suggests, focuses on data 
movements within a system. More specifically, data flow 
modeling (DFM) depicts the processes or activities that transform 
data while considering all the data stores as well as external 
entities that may be sources or targets of data for the system. 
The direction data move is also important for DFM. DFM is an 
adaptation of prior models by Yourdon and DeMarco.  

•    Entity behavior modeling:  Links the earlier design stages to 
deliver a complete design. LDM separates data in entities. DFM 
documents the processes that transform data within a system. 
EBM links individual entities with the events or processes that 
affect them (and their data) as well as the sequence in which 
these events or processes occur.    

   Feasibility Study 
 Projects or products originate from business objectives and needs. During the initial 
discussion of the idea or objective, little attention is imparted to the practicality or 
feasibility of that objective. Subsequently, when the management asks a product team 
to implement it, they have to determine whether the objective is achievable (especially 
for potentially large projects/products). Several aspects are considered to make this 
determination:

•     Technical —Is the product or project technically viable?  

•    Monitory —Does the organization have the necessary budget 
available to execute the project?  
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•    Compatibility —Will the new product interface easily with existing 
systems within the organization?  

•    Integrity —Will the new product compromise the professional (or 
moral) integrity of the organization in any way?    

 The output from this stage is a feasibility study document. As per SSADM guidelines, 
this document should also contain details of all the options that were considered for a 
feasibility study (including the ones that were rejected and the reason for rejection). 

   Investigation of the Current Environment 

 This involves referring to existing application documentation, exploring the current 
application, and conducting discussions with application users, developers, and 
administrators to develop a good understanding of the system. This helps in the 
following:

•    Understanding business terminology  

•   Understanding frequently used application features and how they 
are used  

•   Developing a data model  

•   Defining the scope of the application    

 The outputs from this stage are requirement details (for the new system or 
application), existing services and user details, logical and physical data models, data 
flow diagram, and a data dictionary (all for the existing system).  

   Business System Options 

 At this stage, the analyst compares the requirements and objectives (for developing the 
new system) with the functionality of the existing system. It may be possible to modify 
the existing system slightly to match the objectives, or it may be necessary to develop a 
completely new system to achieve the objectives and satisfy the requirements. 

 As an output from this stage, the analyst develops and presents a number of possible 
business system options to achieve the necessary objectives.  

   Requirements Specification 

 This is arguably the most important and most complex step. One reason is that the analyst 
needs to have all the details of logical specifications of the proposed system. It is of course 
important to have these specifications error-free, unambiguous, consistent, and concise. 

 Another reason this step is complex is that the analyst needs to build a logical data 
model (at least the entity-relationship diagram) as well as a data flow diagram (DFD) 
to make sure that the logical specifications are accurate, even though they are not the 
expected outputs from this stage. 

 The output from this stage is a comprehensive requirements specification document.  
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   Technical System Options 

 In an earlier stage, the analyst had enough information to propose possible business 
options. Now with the technical requirements ready and available, it is possible for the 
analyst to present a number of technical system options that can be used. These options 
are evaluated, and the best possible option is selected before moving on to the next stage.  

   Logical Design 

 This design stage specifies the logical map of processes pertaining to the proposed 
application and also the entities affected by those processes. Information about the data 
and inter-relationships is included as well. 

 The outputs from this stage are:

•    Data dictionary  

•   Logical data model  

•   Logical process model     

   Physical Design 

 The final stage of SSADM uses the logical design specifications (from the last stage) and 
translates them into physical database structures (for the proposed implementation 
target like Oracle or Microsoft SQL Server). This involves:

•    Attaching database-specific datatypes for columns  

•   Implementing referential integrity constraints using primary 
keys, foreign keys or triggers (discussed in the next section), and 
nullability  

•   Defining indexes and specifying function details (structure as well 
as implementation)  

•   Listing the hardware and software requirements    

 The output from this stage is complete physical design that the implementation team 
(including administrators) can use to build the required system. 

 So, these are the stage details for SSADM. I will discuss an example (and complete 
design) using SSADM as a design method. As with any other design method, there are 
pros and cons to using SSADM.   



CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

39

   Pros and Cons of SSADM 
 SSADM provides the following advantages:

•    Excellent isolation between logical and physical design of the 
system. Benefits are:

•    Freedom to implement logical design using the database of 
your choice.  

•   Isolation of issues between logical and physical designs. 
In fact, if you identify issues with your logical design after 
physical implementation, you can modify the physical 
implementation to resolve the issues.     

•   Clearly defined and well-documented steps that lead to a 
complete design  

•   Involvement of a wide range of resources (analysts, business 
users, administrators, application users, and developers) offers 
a good perspective that reflects in design and also reduces 
possibility of error (in understanding or implementing the 
requirements)    

 Now the cons:

•    The implementation time for SSADM is long, and any changes 
need to be processed through all the stages. For example, 
if requirements change while the physical design is being 
worked on, you need to start with checking feasibility of those 
requirements, check whether they are already implemented in 
existing system, change requirement specifications, and then 
apply changes to logical/physical data models.  

•   There is considerable cost and time involved in training resources 
to use SSADM and implement using it.    

 As a closing thought, I want you to review the waterfall software process model and 
consider the similarities between it and SSADM. Similar to SSADM, the waterfall model 
is comprehensive with a large number of steps. As you can see in Figure  2-5 , changes to 
requirements or specifications involve rework to all the subsequent stages, which can be 
time consuming (although it does help maintain consistency within your system—at any 
stage, requirement specifications match the existing physical system).     
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  Figure 2-5.    Software process models: waterfall model       

     Components of Database Design 
 It’s time to focus on primary constructs used for relational database design. You will 
need to use them at the conceptual and logical design stage. I am sure you have used 
primary keys or foreign keys or triggers for some database development project before, 
but it is still interesting to see where these components fit in the scope of relational 
design. Constructs like supertypes or subtypes are not very frequently used (or at least not 
understood), and constructs like cardinality or self-referencing relationships need to be 
completely understood in order to design well. 

 The most discussed relational concept is  normal forms . It is a highlight of relational 
design but sadly is still not very clear to a lot of designers. I will discuss the three normal 
forms with an example. I will also cover Boyce Code normal form (BCNF) briefly for your 
understanding, even though it’s mostly theoretical and rarely used in practice. 
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 Finally, you need to understand that holding your data in third normal form is not 
always the best option. For reporting or warehousing, you need to denormalize data. I 
discuss that concept with an example too. 

     Normal Forms 
 Normalization is a process that efficiently organizes data by identifying and removing 
any data redundancy, keeping cross-references (within data) intact. The objective is to 
remove data redundancy completely and gain better organization of data. Normalization 
is a multistep process, and depending on how much of this process is applied to the data, 
it is said to be in  first ,  second , or  third  normal forms. 

 There are higher forms of normalization, such as BCNF, fourth normal form, and fifth 
normal form, although they are theoretical and rarely used in real world. 

   First Normal Form 
 The objective of first normal form is to identify and isolate any repeating groups of data to 
separate tables, of course, keeping cross-references to source data intact. A data row may 
have one or more repeating groups, and as a first step you need to identify them. Here’s 
an example. Consider an insurance company that sells health insurance. Customers who 
own valid policies file claims using a toll-free phone number answered by the company’s 
call center. Based on a short conversation, here’s what’s captured typically for a claim: 

   ClaimId, ClaimSubmissionDate, CustomerName, DateOfBirth, 
SocialSecurityNumber, CustomerAddress, ClaimNotes, ClaimType, 
ClaimShortDesc1, PhysicianId1, ClaimShortDesc2, PhysicianId2, 
ClaimShortDesc3, PhysicianId3, NumberOfResubmissions 

    ClaimId  is a system-generated number that increments for each new claim. 
 ClaimType  indicates type of the claim (such as dental, vision, medical, and so forth), 
 ClaimShortDesc  (1–3) have short descriptions of the actual complaints as the claim 
progresses and the complaint is referred to another physician or a specialist.  PhysicianId  
(1–3) are identifiers for the physicians involved in the treatment of the patient. A claim 
may have one or more (up to three) medical conditions and physicians associated with it. 
 NumberOfResubmissions  has a count of how many times this claim has been resubmitted 
for processing. Here is some sample data: 

 13666969 , 6/1/2015 09:30:13, Bobby Simpson, 02/12/1964, 219-44-3211, 1 Oak 
st. Darien IL 60561, Consulted Physician out of network since closest and 
then a specialist, Medical,   Severe stomach pain, 43211, Cramp of abdominal 
muscles, 12456, NULL, NULL,   0  

 13666970 , 6/1/2015 10:00:23, Alan Border, 03/22/1961, 239-32-5674, 21 
Maple st. Naperville IL 60563, Cause of pain still not determined, 
Medical,   Pain in left shoulder, 31341, Left shoulder dislocation, 11232, 
Physiotherapy, 54543,   1  
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 13666971 , 6/1/2015 10:05:11, Steve Waugh, 12/14/1970, 246-56-9867, 32 
Madison ct. Woodridge IL    60517     , Most probably seasonal allergies, Vision,  
 Dry itchy eyes, 73443, Eye infection, 33342, NULL, NULL,   0  

 13666972 , 6/1/2015 11:29:16, Ricky Ponting, 10/03/1965, 223-43-7658, 54 
Argyle st. Westmont IL 60559, Dentist recommended removing tooth; but 
patient not agreeing, Dental,   Severe pain in maxillary first molar, 41414, NULL, 
NULL, NULL, NULL,   1  

 13666973 , 6/1/2015 12:09:18, Bobby Simpson, 02/12/1964, 219-44-3211, 1 Oak 
st. Darien IL 60561, Referred to Ophthalmologist by regular Optometrist, 
Vision,   Double vision, 33562, Change of prescription, 25251, NULL, NULL,   0  

 13666974 , 6/1/2015 14:06:41, Ricky Ponting, 10/03/1965, 223-43-7658, 54 
Argyle st. Westmont IL 60559, Most probably seasonal allergies, Vision,  
 Dry itchy eyes, 63462, NULL, NULL, NULL, NULL,   0  

   A quick review of the data will make you realize that this data has a repeating group 
(marked in bold) and subsequently data duplication. It has some other issues as well 
(which I discuss a little later). The repeating block of data is medical conditions and 
physician details associated with a claim. 

 Also, with this table design, there’s a provision to capture up to three medical 
conditions and associated physicians. But what happens if more than three medical 
conditions are associated with a claim? Since it happens rarely, designers of this system 
asked call center representatives to open a new claim and refer to that new number in the 
notes section of the current claim! That is a bad workaround, and this design issue needs 
to be resolved. 

 To get this table in first normal form, you need to move the medical condition data to 
a separate table. Will that resolve the other issue (of associating more than three medical 
conditions with a claim) too? Let’s see. 

 Now, before we move the repeating data to a new table, you need to make sure you 
can cross-reference it and also that it still relates to the correct claim. First, see if you can 
you identify each row of data uniquely for your  Claims  table. In this case, you can; since 
the  ClaimId  is a system-generated unique number and can be used to identify a row 
uniquely. Such an identifier is known as a  primary key , and the column can be designated 
as such. 

 Next, you need to identify rows uniquely for the new table. Since there are multiple 
medical conditions associated with a single claim, just the  ClaimId  won’t suffice as a 
primary key. You will need to add a sequence number additionally to make the primary 
key unique. Besides, in this case, sequence does have significance (since it stores the 
sequence in which the medical conditions were diagnosed for a claim) and may be useful 
for analysis. 

 So, after moving data to a new table (call it  ClaimMCdata ), the new tables will look 
like Figures  2-6  and  2-7 .   

https://www.google.com/search?rlz=1C1PRFC_enUS598US598&espv=2&biw=1600&bih=760&q=60517&stick=H4sIAAAAAAAAAGOovnz8BQMDAx8HsxKXfq6-gWG8RVJeRua0GZGaTLPSNAoS1uSYxetcE9jyHAA5duj3KwAAAA
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 After the removal of repeating groups from  Claims , you can see that the data is more 
manageable (as shown in Figures  2-6  and  2-7 ). Also, you must have observed that the 
new table  ClaimMCdata  doesn’t need to have multiple columns like  ClaimShortDesc1 , 
 PhysicianId1 , and so on. You can simply add a row per medical condition for a claim, 
without being limited by three medical conditions. So, the design issue for a claim having 
more than three medical conditions is resolved as well. 

 The table  Claims  is now in first normal form, but you do need to think about the next 
normal form—and how to get there.  

13666969

Claims
ClaimId

Claim
Submission
Date
6/1/2015 09:30:13 Bobby Simpson 02/12/1964 219-44-3211 1 Oak st.

Darien IL 60561 
Consulted Physician 
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closest and then a 
specialist 

Medical 0

13666970 6/1/2015 10:00:23 Alan Border 03/22/1961 239-32-5674 21 Maple st.
Naperville IL 
60563 

Cause of pain still
not determined 

Medical 1

13666971 6/1/2015 10:05:11 Steve Waugh 12/14/1970 246-56-9867 32 Madison ct.
Woodridge IL 
60517 

Most probably
seasonal allergies 

Vision 0

13666972 6/1/2015 11:29:16 Ricky Ponting 10/03/1965 223-43-7658 54 Argyle st.
Westmont IL 
60559 

Dentist
recommended 
removing tooth; but 
patient not agreeing 

Dental 1

13666973 6/1/2015 12:09:18 Bobby Simpson 02/12/1964 219-44-3211 1 Oak st.
Darien IL 60561 

Referred to 
Opthalmologist by 
regular Optometrist 

Vision 0

13666974 6/1/2015 14:06:41 Ricky Ponting 10/03/1965 223-43-7658 54 Argyle st.
Westmont IL 
60559 

Most probably
seasonal allergies 

Vision 0
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  Figure 2-6.    Claims data in first normal form       

ClaimMCdata

13666969 1 Severe stomach pain 43211
13666969 2 Cramp of abdominal muscles 12456
13666970 1 Pain in left shoulder 31341
13666970 2 Left shoulder dislocation 11232
13666970 3 Physiotherapy 54543
13666971 1 Dry itchy eyes 73443
13666971 2 Eye infection 33342
13666972 1 Severe pain in maxillary first molar 41414
13666973 1 Double vision 33562
13666973 2 Change of prescription 25251
13666974 1 Dry itchy eyes 63462

ClaimId CMCdataSeqNum ClaimShortDesc PhysicianId

  Figure 2-7.    Medical condition data moved to a separate table       
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   Second Normal Form 
 The formal definition for an entity to be in second normal form is if all of its non-key 
attributes are individually dependent on the group of key attributes only and not 
dependant on a part of that key attribute group. In other words, an entity is in second 
normal form if its non-key attributes are free from any partial-key dependencies or no 
part of the key determines a non-key attribute. 

 So, it is easy to see that entities with a single attribute as key are automatically in 
second normal form (as there are no partial-key dependencies possible). That is also the 
reason a system-generated sequential number (used as an identifier) serves well as a 
primary key. 

 For the entity (or table)  Claims , since the system generated identifier ( ClaimId ) is 
used as a primary key, it is automatically in second normal form. For the other entity 
 ClaimMCdata , the primary key is a combination of  ClaimId  and  CMCdataSeqNum , and it is 
easy to see that there are no partial-key dependencies, and it is in second normal form too.  

   Third Normal Form 
 An entity is in third normal form if and only if no non-key column (or group of columns) 
determines another non-key column (or group of columns), and all the non-key columns 
are determined by (or functionally dependent on) the group of key columns only. In other 
words, both these conditions need to be satisfied:

•    All non-key items dependent only on group of key columns  

•   No non-key columns (or group) dependent on another non-key 
column (or group)    

 Are the entities  Claims  and  ClaimMCdata  in third normal form? For the entity  Claims , 
if you review columns sequentially, you will observe that fourth column  DateOfBirth  
functionally depends on non-key column  SocialSecurityNumber  instead of the key 
column  ClaimId . The columns  CustomerName  and  CustomerAddress  depend on column 
 SocialSecurityNumber  too. Because this violates the requirements for third normal 
form, you need to move these columns to a separate entity. Call it  CustomerDetails . 
Now, if you move all the customer information columns to a separate entity, how will 
you cross-reference it for a claim? You need an identifier for each customer record that 
can be placed within a claim record and reference the customer information located in 
 CustomerDetails . You can use a system-generated sequential number as identifier and 
call it  CustomerId . 

 If you review the  ClaimMCdata  entity, you will realize that it is already in third normal 
form. The non-key attributes  ClaimShortDesc  and  PhysicianId  are dependent on the key 
attributes  ClaimId  and  CMCdataSeqNum  only and no other non-key attributes. 

 So, after moving the customer data columns from the  Claims  entity, Figure  2-8  shows 
how  Claims  and  CustomerDetails  will look.  
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 If you review the entities again (Figure  2-8 ), you will discover that you can apply both 
the conditions for third normal form successfully to entities  Claims ,  ClaimMCdata , and 
 CustomerDetails .   

     Keys in Relational Design 
 Keys have special usage and purpose within relational design. A  key  is an alphanumeric 
pattern or a column value that identifies (or references) a data row uniquely either 
partially or completely. So, a key can be used to identify a data row (primary key), serve as 
alternate or candidate key (columns that can be possibly used as whole or part of primary 
key), be a foreign key (cross-reference), or a surrogate key (system-generated sequential 
or random numbers, transparent to users). 

 Let’s go through each of these using the entity design from the last section. In case 
you are new to IE notation for logical models, the columns above the line (within the 
entity box) are primary key columns. As you can see in Figure  2-9 ,  ClaimId  is the  primary 
key  for entity  Claims , and  CustomerId  is the primary key for entity  CustomerDetails . 
These (as mentioned) are system-generated numbers guaranteed to be unique for that 
column and hence can be used for identifying a data row uniquely. As per the definition 
for a  surrogate key ,  ClaimId  and  CustomerId  are good examples of surrogate keys, which 
are used (or generated) in cases where no  natural key  (combination of columns that can 
uniquely identify a data row) exists.  

  Figure 2-8.    Claims and CustomerDetails data in third normal form       
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 In the case of  ClaimMCdata , since a claim can have multiple medical conditions 
associated with it, I added  CMCdataSeqNum  (sequence number) as part of the primary key 
to make it uniquely identify a data row. 

 The  CustomerDetails  entity has an example of  alternate key  or  candidate key  as 
shown in Figure  2-9 . As you are aware, a system-generated identifier called  CustomerId  
is used as primary key. But it is also possible to use the  SocialSecurityNumber  column 
as a key, since it can uniquely identify a customer. In this case, you don’t need to worry 
about moving the column to a separate table, as there are no attributes only dependent 
on  SocialSecurityNumber . 

 You may recall that before I moved all the customer information to a separate entity 
 CustomerDetails , I placed an identifier called  CustomerId  within a claim record, so that 
you can cross-reference information for the customer who filed it using it.  CustomerId  is 
of course the primary identifier or primary key for entity  CustomerDetails . This key that’s 
used for cross-referencing information from another entity is known as a  foreign key . For 
IE notation, a foreign key column is marked with  FK  within parentheses. Another foreign 
key you can see is  ClaimId  for entity  ClaimMCdata . It references the claim information the 
medical condition information belongs to.  

     Optionality and Cardinality 
 Optionality and cardinality are diagramming conventions for describing relationships. 
For example, consider the following relation between  Claims  and  ClaimMCdata . The 
crow’s foot means many and the absence of it means one. That’s the cardinality of 
a relation. Also, the circle means optional and the bar means mandatory. That’s the 
optionality of a relation. 

 Subsequently, the relation can be read as “a claim may result in none or many 
medical condition records.” It can also be read as “a claim medical condition record will 
always have a corresponding claim record exist for it.” 

  Figure 2-9.    Primary and foreign keys for claims processing       
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 While considering dependencies, a relationship that “identifies” the records in the 
child table or dependent table is an identifying relationship. The child table inherits 
the primary key of the parent and may need to supplement it with an attribute for 
uniqueness. In Figure  2-10 ,  Claims  has an identifying relationship with  ClaimMCdata  and 
as you see,  ClaimMCdata  had to supplement its primary key with a sequence number for 
uniqueness (since a claim record may be inherited by many  ClaimMCdata  records).  

  Figure 2-10.    Optionality and cardinality in Claims processing       

 There are non-identifying relationships too. For example, the relation between 
 Claims  and  CustomerDetails  entities discussed earlier is a non-identifying relation. 
A  CustomerDetails  record is not inherited by a  Claim  record; the foreign key attribute 
 CustomerId  simply acts as a pointer or cross-reference to customer details for the 
customer who filed the claim. The non-identifying nature of the relationship is indicated 
by a dotted line (instead of solid) and by  CustomerId  not being a part of the primary key 
for  Claim . 

 Now, all the relations from the preceding model are of one-to-many or zero-to-may 
cardinality. What happens if there’s a relation that has “many-to-many” cardinality? 
You need to use a mapping table to break that relation into two one-to-many’ relations. 
Consider the following part of claims processing logical model shown in Figure  2-11 . The 
entities  Claim  and  Claim_property  have a many-to-many relationship, since a property 
may be applicable to many claims and a claim may have many properties. To represent 
this relation within a logical model, you need to create a mapping table  Claim_property_
data  and map claims with their respective properties and vice versa.  
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 To summarize, optionality and cardinality bring clarity to the relations and 
help document them better. They also make the logical model more readable and 
understandable.  

     Supertypes and Subtypes 
 Supertypes and subtypes are among the most useful logical constructs for relational 
design. Supertypes correspond to entity classes (a group or type of multiple entities 
usually associated with the same business process or used for providing same business 
functionality) and subtypes represent a different level of entity class too. You can think of 
supertypes and subtypes as supersets and subsets with respect to entities. 

 Supertypes and subtypes are best used at the conceptual modeling stage and 
therefore are well-suited for the top-down design approach. They assist in providing 
concise documentation of business rules as well as exploring alternative data models. 
Because subtypes and supertypes are not directly implemented by any RDBMS, you need 
to break them up in separate entities before the logical or physical data modeling stage. 

 Here’s an example to discuss the concepts of supertype and subtypes. Consider the 
following part of claims processing logical model (again), as shown in Figure  2-12 . To 
recapitulate,  Claim  holds the claim data,  Claim_type  holds all the types for claim ( Auto , 
 Health ,  Home , and so on), and  Claim_property  holds all the possible properties for 
claims.  

  Figure 2-11.    Resolving a many-to-many relationship       
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  Figure 2-12.    Use of mapping entities to assign properties based on claim type       

 As I already explained, the entities  Claim  and  Claim_property  have a many-to-many 
relationship, and  Claim_property_data  is a mapping table that maps claims with their 
respective properties. Similarly,  Claim_property  and  Claim_type  have a many-to-many 
relationship, and  Claim_property_claim_type  is a mapping table that maps claim types 
with their respective properties. 

 The purpose of these four tables ( Claim_property ,  Claim_property_data ,  Claim_
type , and  Claim_property_claim_type ) is to make sure that a specific type of claim 
only has the necessary properties available to it that are governed by the claim type. For 
example, a home insurance policy won’t have VIN as a property, and an auto policy won’t 
have estimated reconstruction cost as a property. 

 Is it possible to redesign this part of the logical model using supertypes and 
subtypes? Yes, if  Claim  is used as a supertype and the various types of claims ( Auto , 
 Health ,  Home ) as subtypes, this part can be redesigned, and the four tables that were 
added (to accommodate the specific properties of a type of claim) can be removed. The 
design will look like Figure  2-13 .  

Claim

Dental Claims Medical Claims

Home ClaimsAutoClaims

ClaimId
CustomerId
ClaimSubmissionDate
ClaimNotes

  Figure 2-13.    Use of supertypes/subtypes to assign properties based on claim type       
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 The expanded logical model will look like Figure  2-14 .  

  Figure 2-14.    Logical model using supertypes/subtypes for claims processing       

 The supertype  Claim  has a number of common or shared attributes ( ClaimId , 
 CustomerId ,  ClaimSubmissionDate ,  ClaimNotes ) that will be inherited by all the subtypes 
( AutoClaims ,  HomeClaims ,  DentalClaims ,  MedicalClaims ), and the subtypes will have 
their own specific attributes. So,  AutoClaims  may have attributes like  InsureeVIN , 
 OtherVehicleVIN ,  IncidentLocation , and  TicketNumber , whereas  MedicalClaims  may 
have attributes like  MedicalCondition ,  Physician , and so on. 

 This is another way to ensure that a specific type of claim will only have valid and 
applicable properties stored for it. There are pros and cons of both designs. The design 
with separate entities for properties and type (with mapping tables) provides more 
flexibility, and any addition or removal of properties doesn’t result in a change to the 
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logical model. But it is harder to understand and maintain. The design with supertypes 
and subtypes is much easier to understand and maintain; but inflexible. Any changes to 
properties of a specific type of claim will result in changes to the entity structure and will 
be difficult to implement. You can choose the approach that suits your environment. 

 There are a few things to be noted about supertypes and subtypes that will help you 
understand these concepts better:

•    Subtypes for a (supertype) should be mutually exclusive 
(non-overlapping) and exhaustive. In the given example, the 
subtypes ( Auto ,  Home ,  Medical  claims) are mutually exclusive. But 
if there’s a functional overlap, it complicates the design and you 
need to find ways to remove the overlap.  

•   Creating partitions is a technique used sometimes to remove 
overlaps, especially since some CASE tools allow multiple 
breakdowns (partitions) into complete, non-overlapping 
subtypes. For example, if the auto and home policies both cover 
third-party liability and have difference in coverages, it will cause 
an overlap and possibly need a resolution through partitions 
(such as auto policies with home coverage, auto policies without 
home coverage, and home coverage without auto coverage).  

•   Subtypes and supertypes can participate in relationships (just like 
entities), but only for a conceptual model (not for logical/physical 
model, since supertypes/subtypes are not supported directly by 
any RDBMS).  

•   Subtypes can be used with several levels of nesting and can form 
a hierarchy.    

 I hope this chapter gave you a good orientation of the critical building blocks of 
relational design. We will be using all these constructs to analyze a real-world business 
scenario and design a logical/physical model to store the outputs from execution of 
relevant business processes.   

     Summary 
 A lot of people might question coverage of relational database design in this era of NoSQL 
databases with cutting edge technology and distributed architecture. I personally feel 
that since most of the database world is still operating within the structure, constraints, 
and regularity of relational databases, there is relevance to this discussion. Unless you 
understand what you are using, you can’t transform it to what you want it to be. Most of 
the existing applications were designed a while back and use relational design features 
extensively. To migrate these applications to a newer technology, you certainly need a 
good understanding of what features were used and what do they do. 



CHAPTER 2 ■ UNDERSTANDING RDBMS DESIGN PRINCIPLES

52

 More importantly, there are no tools available for NoSQL design specifically and 
most of the architects use relational design tools for creating data models that are targeted 
for NoSQL databases. For example, re-architecting RDBMS data involves denormalization 
and aggregation of entities (since NoSQL databases are not very good at processing 
joins). These tasks need to be (and are) performed using relational database modeling 
tools. Also, unless you understand the concepts of denormalization and aggregation, you 
can’t modify your model to fit a NoSQL solution. That’s why it is important to familiarize 
yourself with the relational design concepts covered in Chapters   2     and   3    . As another 
example, it will be difficult to understand column-based storage of Columnar NoSQL 
databases or embedded document structure of Document-oriented NoSQL databases 
unless you understand how normalized data is organized in rows for relational databases. 
That also means you need to understand the concept of normalization. 

 Many of the time-tested and useful concepts of relational design are adopted for 
NoSQL. Knowing and understanding the relational concepts will certainly help you 
draw parallels with the corresponding NoSQL features and make the learning process 
easier and more interesting. I will demonstrate how the relational design changes to a 
more flatter, data duplicated version for implementation into Columnar or Document 
databases in the later chapters (Chapter   6    ). Though the data volumes increase (with 
duplication), you can see how performance enhances for NoSQL solutions. 

 On a different note, one important thing to remember about frameworks or 
methodologies is that they are design guidelines or suggestions. You don’t need to follow 
them verbatim, and it is best to adopt them as well as you can for your environment. I 
have often seen the best designs where architects have used their creativity to supplement 
the formal design steps with something specifically useful for their purpose. 

 This chapter summarized the leading design methods and useful components of 
relational design. I am sure this will assist you in understanding the process of database 
design using the method SSADM, the topic of the next chapter.     

http://dx.doi.org/10.1007/978-1-4842-1287-5_2
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://dx.doi.org/10.1007/978-1-4842-1287-5_6
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    CHAPTER 3   

 Using SSADM for Relational 
Design                          

 I worked for a British computer company in the 1990s, and it was company policy to use 
SSADM (Structured Systems Analysis and Design Method) for any new projects. At the time, 
we were working on a part of the London Underground (also called the  Tube ) automation. 
I went to my manager with the time estimate for a new module that I was designing. The 
estimate was high, and he asked, “What are all these tasks for gathering requirement 
specifications and technical system options?” I said those were SSADM-based tasks. He 
replied: “We can do the documentation later. Right now, get on with the database design 
and front-end development.” A lot of years later, that attitude has not gone away. 

 Now for some obvious questions. What’s the relevance of SSADM for Hadoop 
migration? Can you use SSADM with NoSQL databases? Why does it need to be a part of 
this Hadoop book? Think about this: most of the systems that you may want to interface 
with or migrate to Hadoop may have used a subset of SSADM for their design. Having a 
good understanding of SSADM helps you grasp the source system design better. 

 More importantly, the logical design process remains the same for a system whether 
you implement it using relational technology or a NoSQL solution. Only the physical 
implementation steps differ per your chosen target technology. Besides, SSADM is a 
superset of most of the design techniques used today. So, it will definitely help you to 
understand the extensive design steps specified by SSADM and will ultimately help you 
present your design in an organized manner that’s also self-documenting. 

 Because the logical design process is independent of target technology used for 
implementation, you can use any SSADM-based tools (or in general any relational design 
tools) for system design—even if you plan to use NoSQL to implement your design. That’s 
also the reason why no specific NoSQL design tools are available. 

 Getting back to SSADM (and design methodologies in general), formal design 
methodologies are sometimes intimidating, and the reason is very simple. Architects 
and modelers try to fit in their designs into the specific steps that a design method has 
elaborately described. Instead, a designer should use the method as a framework or 
guideline and supplement the design with specific requirements that are necessary 
in their environment (and also feel free to omit the steps that are redundant). In case 
of SSADM, too, the documentation clearly mentions the need to apply (or omit) steps 
depending on your need. 
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 Moreover, if you think carefully, you will realize that the development process you 
follow (based on your development/design experience) is not very different from SSADM. 
It’s just not formalized or categorized into specific steps or modules (as in the case of 
SSADM). For example, you may not do a “feasibility study” and come with a feasibility 
report, but you will (most probably) make sure that the system (you plan to develop) is 
technically feasible, required by your organization, and that the management is ready to 
spend money for its development. This may also be true about most of the SSADM steps. 

 SSADM is not very popular in the Americas, but the reason I am using it as an example of 
design methodology is because of its extensiveness and exhaustiveness. I feel it will give you 
a good understanding of the (formal) process of software development. What you need to be 
careful about is making sure that you drive the process and not let the process drive you. 

 You already know the steps that SSADM involves and what they do (at a high level). 
In this chapter, I discuss a real-world scenario and use the SSADM framework to design a 
database solution that will efficiently hold the data that the business processes generate 
(for the scenario I am discussing). So, let’s start with the first SSADM module: feasibility study. 

     Feasibility Study 
 Informally, you (or your management) always make sure that the system you plan to 
implement is practically possible. You also make sure your organization is ready to pay 
the bill. SSADM simply formalizes this process and also helps you create documentation 
that may be useful in future to record what the business need for this development was. 

 When you rely on making decisions in an informal manner or when you rely on 
experience of involved resources, it is possible that you may overlook some aspects that 
may impact your decision. SSADM makes sure you don’t. Also, it will be useful to conduct 
a feasibility study, irrespective of your implementation target being a RDBMS-based 
system or a NoSQL-based solution. Therefore, this design stage can be used even for a 
NoSQL-based system. 

 So, how do you apply SSADM to conduct a feasibility study for a real-world business 
scenario? Let me discuss the scenario first. 

 “YourState Insurance” is a leading insurance company that sells health insurance 
to its US-based customers. The company’s dynamic vice president of marketing, being a 
former baseball player, wants to add a “Loss of Play“ policy for active baseball players and 
their clubs. Subsequently, he directs his research department, risk management group, 
and IT architecture group to determine if this new line of business can be profitable. The 
following are the salient features of the new policy he wants YourState insurance to sell:

•    Policy will insure an active player’s contract.  

•   Policy will exclude coverage for any chronic or pre-existing 
conditions a player is known to have.  

•   Policy will consider the player’s age, past injuries, and schedule 
while deciding premium.  

•   Policy will offer coverage within two-year intervals only 
(for long-term contracts) and price will be adjusted after every 
two years.    
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 Using SSADM techniques, the IT architect as well as business users from the 
research department and risk management group have started the feasibility study. 

     Project Initiation Plan 
 To start with, an IT project manager (along with the architect) prepared a project 
initiation document. It contained the following sections:

    1.     Introduction : This section provided the following information:

     a.      Background of the project : History and what exactly 
prompted to research the feasibility of this new “Loss of 
Play” policy  

    b.      Goals : SMART (specific, measurable, achievable, realistic, 
and time-bounded) objectives  

    c.      Project authorization : Formal email from marketing VP, 
mandating this project and confirming its sponsorship      

    2.     Project definition : Defined all aspects of the project such as 
the following:

    a.      Key deliverables : This project will deliver the following 
key deliverables:

•    Business case (benefits and risk of the new policy) and 
business system options  

•   Requirements specifications  

•   Technical system options  

•   Data flow diagram  

•   Logical data model  

•   Logical process model  

•   Physical data model (target database)     

    b.     Constraints : This project has the following constraints:

•    Financial budget for this research is capped at $250,000, 
and this includes employee time  

•   The research for this policy will be limited to the state of 
New York (to start with)  

•   This research will be limited to coverage of contracts of 
$10 million or more (for individual players)     
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    c.     Assumptions : The following assumptions are made:

•    Injury and precondition data for players (to be insured) 
is available  

•   Club schedule (for the player to be insured) for next two 
years is available     

    d.      Exclusions : Any baseball club registered or 
headquartered outside the state of New York is excluded  

    e.     Interfaces : This project will have the following interfaces:

•    “Baseball Loss of Play” graphical user interface (internal)  

•   Claims processing system (internal)     

    f.      External dependencies : Current dependencies are the 
following:

•    Accessibility to player contracts  

•   Accessibility to medical history of the player     

    g.      Tolerance : Project manager is authorized to expenses 
up to $250,000, use of three resources for three months 
starting with commencement of the project.  

    h.      Benefits : The main benefit of this project is a possible 
addition of a new line of business. If found feasible, it 
will provide expansion to the types of policies offered by 
YourState insurance company.  

    i.     Costs : Initial costs for this project are $160,000 

  Area    Cost  

 Project management  $50,000 

 Infrastructure (hardware/software)  $20,000 

 IT resources  $40,000 

 Business resources  $50,000 

       j.    Approach/Process/Execution and milestones:

•     Approach : The approach for analysis will be based on 
design methodology SSADM, and the deliverables will 
closely follow the SSADM modules and corresponding 
deliverables  

•    Milestones : Again, the milestones correspond closely to 
SSADM deliverables and are as follows:

•    Feasibility study report  

•   Requirements specification  

•   Technical system options  
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•   Data and process flow diagrams  

•   GUI specifications  

•   Logical data model  

•   Physical data model  

•   Graphical user interface        

    k.      Contingency plans : In case of any contingencies, a 
packaged solution (that can be customized for our needs) 
will be sought  

    l.    Project organization structure:

•    SRO (senior responsible owner) for the project is vice 
president (marketing)

•    Project manager reports to SRO and is also 
answerable to project board  

•   Project team has following members: 

  Name    Division/Organization  

 Solution architect  IT 

 Senior analyst  Research department 

 Senior analyst  Risk management group 

             m.    Communication and stakeholders:

•     Communication method : The key communications 
channels are:

•    Weekly reports  

•   Weekly meeting     

•    Stakeholders : The stakeholder map in Note A has the 
details     

    n.      Reporting cycle : Following are the details about reporting 
for this project:

•     Project initiation : The project will formally start when 
the SRO and project board have approved this project 
initiation document  
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•   Reporting periods:

•    Project team with project manager—weekly  

•   Project manager with SRO—monthly  

•   SRO with project board—quarterly     

•    Decision points : Key decisions must be taken after each 
of the milestones  

•   Exception reporting will be performed by project 
manager in case agreed tolerances are exceeded  

•   Project issues will be available in the issue log attached 
to Note B  

•   The project will be formally closed by SRO on 
completion of all milestones or after feasibility study 
report (if it is not deemed feasible)  

•   Note A: Stakeholder map 

  Stakeholder    Interest    Information Requirements  

 SRO  Sponsor  Details on how milestones are progressing 

 Business development  Sponsor  Details on how the new policy will benefit 
the business 

 IT  Development  Technical details needed to develop the 
system 

 Claims department  User  How the new system is used 

•      Note B: Issue Log 

  Issue #    Issue title    Description    Logged by    Owner    Action & Progress    Action Date    Status  

                   Requirements and User Catalogue 
 The requirement and user catalogues serve a very important purpose of documenting 
functional requirements for a system and the prospective users (along with their 
roles). These catalogues also provide a quick overview for designers (and users) to 
make sure all the requirements are documented and accurately reflect the required 
functionality. 
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   Requirements Catalogue 
 A requirements catalogue lists all the functional requirements and the non-functional 
requirements that originate from it. The catalogue entries also list out benefits, related 
documents, and related requirements for each of the functional requirements. For the 
current project, here are the entries from the requirements catalogue: 

  Project : Loss of 
Play policy 

 Author BL  Date 6.19.15  Version 1  Page 1 of 3 

  Source : Discussion with VP, Marketing  Priority High  Owner ST  Req ID 01 

  Functional Requirement : 
 A Loss of Play policy needs to be added for active baseball players and their clubs. The 
policy should insure an active player’s contract excluding coverage for any chronic or 
pre-existing conditions a player is known to have. It should also consider the player’s 
age, his past injuries, and his schedule while deciding premium and offer coverage 
within two-year intervals only (for long-term contracts). Premium should be adjusted 
every two years. 

  Benefits  
 This policy will be a new line of business that may result in a substantial amount of 
profit since there are not many such policies available currently. 

  Comments/suggested solutions  
 A team of IT architect and business analysts is performing a feasibility study to 
determine whether this project is viable and beneficial for YourState insurance 
company. 

  Related documents  
 Project initiation plan, interview, and observation notes (gathered by the team 
performing the feasibility study), current and proposed environment descriptions. 

  Related requirements  
 02 

  Resolution  
 Accepted by VP, marketing and project board 
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  Project : Loss 
of Play Policy 

  Author  BL   Date  6.19.15   Version  1   Page  2 

  Source : Discussion with VP, 
marketing 

  Priority  High   Owner  ST   Req ID  02 

  Functional requirement : 
 A web interface needs to be developed for the proposed Loss of Play policy if the 
feasibility study finds the project viable and YourState management decides to add the 
new policy as a new line of business. This interface will need to store the policy data 
within the central Claims database and be a part of the YourState Claims application 
used by the claims department. 
  Business event : Loss of Play web interface added 

  Non-functional requirements  

  Description  
 Claim 
submitted 
through web 
interface 

  Expected 
response  
 Immediately 

  Acceptable 
range  
 Under five 
seconds 

  Comments  
 Claim needs to be stored within the 
database within five seconds and 
confirmation received (to the agent 
inputting it) 

  Benefits  
 The web interface is necessary for the claims department to enter the claim 
information or view/modify claim status. 

  Comments/suggested solutions  
 The development of this interface depends on the outcome of a feasibility study 
(requirement id 01) and if the project proceeds, then a team will develop the necessary 
web interface as per the design specifications (please refer to the project initiation 
plan for details). 

  Related documents  
 Project initiation plan, current and proposed environment descriptions. 

  Related requirements  
 01 

  Resolution  
 Accepted by VP, marketing and project board, but subject to a viable feasibility report. 
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      User Catalogue 
 The user catalogue lists out the possible users with their job titles (for the proposed system) 
and descriptions of their job activities. Following is the user catalogue for this project: 

  User    Activity  

 Claims adjuster  View or modify existing claims 

 IT  System administration and technical support 

 Marketing  View claims 

 Call center representative  Create new claims 

         Current Environment Description 
 This section describes the existing environment in detail and is helpful in providing an 
overview of the existing system. It covers the hardware and software configurations, data 
flow, and logical data model. It is necessary to know what exists before designing a new 
system that is meant to supplement the current system’s functionality. 

   Current System Description 
 Hardware: Windows 2008 R2 (Datacenter edition) server-based physical cluster with 
64 CPUs, 1 TB RAM, and 20 TB SAN storage. Database used is SQL Server 2008 R2 
(Datacenter edition). The Claims database is one of the largest databases with a size of 
10 TB and covers claims for last three years. Earlier claims are archived in the archival 
database. The daily volume of claims is between 2,000 and 3,000 and includes claims filed 
using YourStates’ toll-free phone number as well as the web-based claim filing system. 
Every night, an automated process allocates claims to claims adjusters based on several 
parameters (such as type of claim and the adjusters’ expertise, number of claims an 
adjuster is working on, location, and so on).  

   Current Physical Data Flow Model 
 A data flow model provides functional details of how data flows within the existing 
system. Figure  3-1  shows data flow for the Policy and Claims processing system for 
YourState insurance company.  
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 As you can see, a policy can be bought or a claim can be filed either online or by 
calling the YourState toll-free phone number. Customer, policy, and coverage information 
is accessed and verified before filing a claim. If a customer has the necessary coverage, 
then a claim is filed (record inserted in Claims database).  

   Current Logical Data Model 
 The logical model shows how the key entities within a system are interrelated and also 
provides details of those relationships. The logical data model in Figure  3-2  shows the 
relationships for key entities within the Claims processing system.    

  Figure 3-1.    Data flow for Policy and Claims processing system       
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     Proposed Environment Description 
 This section describes the three important aspects of the proposed new system: event 
flow, data flow, and functional logic that events employ to capture data. I will discuss each 
of these in detail. Let me start with the business activity model that outlines the business 
processes along with the details of the   activities     that make up a   process     and show the 
process/activity interconnections as well as interactions. 

   Business Activity Model 
 A business activity model focuses on critical business processes and models the essential 
activities within these processes. Activities can be further divided into tasks (for clarity). It 
also shows the business events that invoke the business processes and the business rules 
involved in invoking and performing the required activities. 

 In Figure  3-3 , events are represented by circles, activities by rectangles, business 
processes by dotted rectangles, and diamonds represent a decision point. So, the event 
“request for a quote” from a prospective client invokes the business process “policy 
quote” that has underlying activities such as documentation review by risk management 
group and issual of quote, client review (of quote), and in case the client has any queries 
or reservations, the quote is sent back to risk management group for another review and 
modification(s). Client acceptance of the quote invokes the next event “request for issual 
of policy.” That in turn invokes the next business process “policy issual” and culminates 
in issual of a policy and capture of information to appropriate databases within the 
YourState insurance company.  

  Figure 3-2.    Claims processing logical data model       

 

http://www.businessdictionary.com/definition/activity.html
http://www.businessdictionary.com/definition/process.html
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 To summarize, this business activity model captures the complete business 
requirement of issuing a Loss of play policy to prospective clients.  

   Data Specification 
 This section describes the new entities that are required to store data for the proposed 
system. In this case, a few new entities are required to support the new Loss of Play policy, 
and they are as follows:

•     PlayerInjuries : This entity records past baseball injuries for a 
player and is used in conjunction with a player’s medical history to 
determine the premium for Loss of Play policy for a baseball player.  

•    PlayerSchedule : This entity stores the schedule details for 
current and next season for a baseball player.  

•    PlayerChronicConditions : This entity records existing chronic 
health conditions for a baseball player and is used to determine 
the premium for Loss of Play policy for a baseball player.  

•    PlayerContracts : This entity records details of the contract a 
baseball player has with his club (the club that’s requesting policy 
coverage) and is used to determine the premium for Loss of Play 
policy for a baseball player.     

Request
for a 
quote  

Client reviews
the quote 

Rejected

Accepted

Back to RMG
for a modified 
quote 

feedback

Request
for issual 
of Policy 

Corporate Sales group 
prepares contract and 
files a bilaterally signed 
copy 

Policy documentation 
issued to the client and 
appropriate records added 
to related databases 

Risk Management group 
reviews the necessary 
documentation and 
provides a quote 

Business process Policy issual

Business
process 
Policy 
quote 

  Figure 3-3.    Business activity model for Loss of Play policy issual       
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   Function Specification 
 This section specifies the new functions and events required to implement the new 
system. A data flow model shows where these events and functions fit in with respect to 
the whole system. For the proposed Loss of Play policy, the new events are as follows:

•    Request for a Loss of Play policy quote  

•   Request for a Loss of Play policy issual  

•   Request for a Loss of Play policy cancellation  

•   Request for a Loss of Play policy claim    

 The new functions required to support the new policy are as follows:

•     GetPlayerInjuryInfo : Load past injury information for a 
baseball player in entity  PlayerInjuries   

•    GetPlayerChronicCondInfo : Load information about 
a baseball player’s chronic medical conditions in entity 
 PlayerChronicConditions   

•    GetPlayerContractDetails : Load information about a baseball 
player’s contract in entity  PlayerContracts   

•    GetPlayerScheduleInfo : Load information about a baseball 
player’s schedule for current and next season in entity 
 PlayerSchedule   

•    CalculateLossOfPlayPremium : To calculate the premium 
for a contract using the supplied documentation and the 
information collected by functions  GetPlayerInjuryInfo , 
 GetPlayerChronicCondInfo ,  GetPlayerContractDetails , and 
 GetPlayerScheduleInfo   

•    EvalLossOfPlayClaim:  To evaluate a Loss of Play claim filed by a client      

     Problem Definition 
 The  problem  or need for this project is discussed in great detail in the project definition 
sub-section of the project initiation plan. Also, the requirements catalogue defines the 
necessity of the project, thereby discussing the problem at hand. However, to recapitulate, 
here are the requirements in order of priority (highest priority first):

•    Feasibility of a new policy Loss of Play that will insure an active 
baseball player’s contract (excluding coverage for recurrence of 
any chronic or pre-existing conditions a player is known to have)  

•   Consider technical, financial, legal, and organizational feasibility 
and also consider that this policy will offer coverage for a maximum 
of two years only (policy renewable after revaluation of premium)  

•   Feasibility of implementation of this policy (in terms of design 
and development by IT)     
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     Feasibility Study Report 
 A feasibility report is the final outcome or deliverable of the feasibility study module of 
SSADM. It usually has the following sections and subsections; although some of these 
sections might be excluded as per your individual need and applicability:

•    Management or executive summary  

•   Introduction

•    Purpose  

•   Project history  

•   Methodology     

•   General information

•    Current systems and processes

•    Current operations  

•   Physical environment  

•   User organization     

•   System objectives  

•   Issues  

•   Assumptions and constraints  

•   Alternatives  

•   Alternative1

•    Description  

•   Benefits and costs     

•   Alternative2 (and so on for more alternatives)  

•   Comparison of Alternatives  

•   Recommendations and conclusions       

 A careful review of earlier sections will confirm that the information needed in 
introduction section is already provided by corresponding sections within the project 
initiation plan and the information required by the general information is covered by the 
current environment and proposed environment sections discussed earlier. Subsequently, 
let me focus on the sections not covered, starting with the alternatives section:

•     Alternatives : Based on extensive study of the current environment, 
proposed system requirements, and constraints defined by the 
project initiation plan, the following alternatives are feasible:

•     Alternative1 : Develop a new subsystem that will work 
seamlessly with the existing Policy and Claims processing 
system using business and IT resources.  
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•    Alternative2:  Have business analysts and IT architects 
prepare detailed specifications of the proposed system 
and hire a software development company to do the 
development.  

•    Alternative3:  Buy a software application that provides similar 
functionality and have IT resources customize it to match the 
necessary functionality.  

•    Comparison of alternatives:  The first alternative 
(in-house development) may be slow and may lack in 
quality (depending on the resources), but it is the most 
affordable and offers the most control. The second 
(custom development by a software development vendor) 
is fast, may offer better quality, but is expensive and 
also may lack adequate control over development and 
functionality and may require changes (to developed 
system). The third alternative (customized package 
solution) might be the most expensive, but offers 
technical support and ease of change.     

•    Recommendation and conclusion:  After comparing the available 
alternatives, recommendation is to use the first alternative and 
develop the subsystem in-house using IT resources.    

 The other section that’s not covered earlier is the management summary or 
executive summary. Let me discuss that now:

•     Management summary:  Provides a brief summary that describes 
the purpose, methods, issues, and results of the feasibility study.    

 Following is the management summary for this feasibility study:

   The purpose of this feasibility study was to determine if introducing a new 
Loss of Play policy (that will insure an active baseball player’s contract 
excluding coverage for recurrence of any chronic or pre-existing conditions 
a player is known to have) for YourState insurance company is feasible 
(considering technical, financial, legal and organizational feasibility).  

  Method used for conducting this feasibility study was SSADM (and the 
feasibility module). Techniques and deliverables were used as defined by 
SSADM documentation.  

  There were no issues encountered while conducting this study and 
three alternatives were evaluated. The alternative involving in-house 
development of the necessary subsystem and train internal (YourState) 
resources to manage the system was recommended due to its affordability 
as well as best control over development and functionality.    

 This concludes the feasibility study module. Next up: requirements analysis.   
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     Requirements Analysis 
 This module uses the outputs from the feasibility study module and continues the design 
process using SSADM guidelines and techniques. The main focus of this module is to 
perform a detailed analysis of the current environment through available documentation 
and also interviews with users performing varied roles to support the current system. 
This analysis leads to extensive documentation of the current environment and covering 
the details of services provided by the current system, users and their roles (as well as 
activities), logical data model, and physical data flow. As a result of this analysis, it is 
possible to specify the business system options for the proposed system. 

 Subsequently, there are two main stages for this module: investigation of current 
environment and business system options. Please note the independence of this SSADM 
stage from the implementation target (RDBMS or NoSQL). Therefore, this design stage 
can be used even for a NoSQL-based system. 

     Investigation of Current Environment 
 This stage focuses on conducting a thorough analysis of the existing environment and 
documenting the scope or boundaries of the current system (to start with). The next task is 
documenting the functionality or services provided by the current system along with user 
roles and activities. There are a number of outputs or deliverables from this stage that provide 
extensive information as needed and that also help in designing the business system options. 

 As you may recall, some of the deliverables (such as logical data model or physical 
data flow) were already discussed while conducting the feasibility study, though not 
in much depth. I will discuss additional details for those deliverables and also discuss 
the additional ones that I have yet to mention. Let me start with a list of outputs 
(or deliverables) for this stage:

•    Current data flow model  

•   Current logical data model  

•   Requirements catalogue  

•   User catalogue  

•   Logical data store/entity cross reference  

•   Logical view of current services and system scope    

   Current Data Flow Model 
 YourState insurance company has an existing system that processes new policies for new 
or existing customers and also manages them. It also stores claims (that the customers 
file) and the up-to-date status for them. Figure  3-4  shows the data flow model (presented 
earlier in the last module) with more details.  
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 Let me discuss the data flow briefly. A new customer can buy one of the policies 
offered by YourState online (using the website) or call the toll-free number. In either case, 
customer information is captured within the  policy-holder  entity and the policy-related 
information is captured within the  policy  entity. A temporary policy is issued subject 
to verification of the information provided as well as payment information. If all the 
information is verified to be correct and payment processes successfully, then a policy is 
issued and mailed to the customer. 

 A claim can be similarly filed online or by calling YourState’s toll-free number. 
Customer information and claim details are captured (in both cases) and the assigned 
claims adjuster verifies coverage (for policy against which a claim is filed) and then 
assigns a field agent (if necessary) to investigate the claim. If that’s not necessary, then 
documentation is requested from customer as necessary. A claim is settled in accordance 
with the company’s norms and of course following the county, state, and federal laws.  

   Current Logical Data Model 
 Figure  3-5  is the logical data model for the existing Policy and Claims processing system. 
It shows the major entities and their inter-relationships.  

  Figure 3-4.    Detailed data flow for Policy and Claims processing system       
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 As you can see, the entities  Claim  and  Policy  are central to the processing. They 
(of course) store claim and policy details. The entity  Policy_owner  stores information 
about the policy owner(s)—individual or corporate. Policies and claims can be of 
different types, and  Policy_type  and  Claim_type  store the details. Status of claim is 
stored within  Claim_status  and  Claim_line_item  as well as  Claim_settlement  hold 
settlement details for a claim. If a claim is rejected and resubmitted for evaluation, those 
details are stored within entity  Claim_resubmission . This model uses the  crows feet  or 
 information engineering notation  to show the relationships between different entities.  

   Requirements Catalogue 
 This requirement catalogue pertains to the development of the existing Policy and Claims 
processing system and dates back to 2010 when this system was developed. Earlier, 
YourState insurance used a packaged solution which was customized for its needs, but 
didn’t provide all the functionality it needed and also cost them in licensing fees as well 
as delays for getting technical support. 

  Figure 3-5.    Logical data model for Policy and Claims processing system (attribute level)       
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  Project : Policy/Claims 
processing system 

  Author  BL   Date  4.22.10   Version  3.3   Page  1 

  Source : Approved requirement by 
VP, business development 

  Priority  High   Owner  ST   ReqID  01 

  Functional requirement : 
 A comprehensive policy and claims processing system needs to be developed by IT 
for our internal use. This system needs to be able to capture customer and policy 
information and also support filing and processing of a claim throughout its lifecycle. 
Most recent claim status needs to be displayed and updateable easily. Business logic 
(specified in requirements specifications) needs to be applied while issuing policy, 
calculating premium, and also processing claims. 

  Non-functional requirements  

  Description  
 Policy/Claim 
information 
submitted through 
web interface 

  Expected 
response  
 Immediately 

  Acceptable 
range  
 Under 5 
seconds 

  Comments  
 Policy or Claim needs to be 
stored within the database 
within 5 seconds and 
confirmation received (to the 
agent inputting it) 

 Policy/Claim 
retrieved for display 
and update 

 5 seconds  Under 10 
seconds 

 It is imperative that an agent 
has this information available 
as quickly as possible 

  Benefits  
 This system will help manage our policies and claims more effectively (as compared 
to the packaged application in use currently) and will also save $500,000 per year in 
licensing fees for the current software application and additional expenses for support. 
Lastly, it will reduce the delays in bug fixes and technical support. 

  Comments/suggested solutions  
 A team of IT architect and business analysts is performing a feasibility study to 
determine if this project is viable and beneficial for YourState insurance company 

  Related documents  
 Project initiation plan, interview, and observation notes (gathered by the team 
performing feasibility study), current and proposed environment descriptions 

  Resolution  
 Accepted by VP, business development and project board 
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      User Catalogue 
 The user catalogue lists out the users with their job titles (for the existing system) and 
descriptions of their job activities. Following is the user catalogue for this project: 

  User    Activity  

 Claims Adjuster  View or modify existing claims 

 IT  System Administration and technical 
support 

 Marketing  View customer information, policies, and 
claims 

 Call center representative  Create new policies and claims 

 Business development and support  View and modify customer and policy 
information 

   Logical Data Store/Entity Cross-Reference 
 This process involves comparing the LDM with DFM and resolving the inconsistencies. 
Several checks are used for this purpose:

    1.     Matching DFM processes with LDM entities : You need to verify 
that all the entities in your LDM have a corresponding process 
within DFM that modifies them. Following is an example of 
such a match (I have not displayed all such matches, but it will 
be a good exercise to identify the ones that I have left out).  

Please note that the entities like  Policy_type  hold static 
reference data and may have a process like static data 
maintenance (not shown in DFM) associated with them.

  DFM Process    LDM Entities Affected  

      

  Policy ,  Policy_owner  
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    2.      Data stores in logical DFM should have a one-to-one relationship 
with entities in LDM. A data store may have many entities within 
it, but an entity should only exist in a single data store. If there 
any exceptions, they should be justified individually.

   In this case, there is a single data store ( Claims ) and all the 
entities within LDM are a part of it.  

    3.    Ensure that the elementary processes defined in the DFM can 
get the data they require by navigating through the data model. 

 This is a reverse check (compared to # 1), as it makes sure that 
the DFM processes access entities from LDM. For the Policy and 
Claims processing system, all the processes within DFM write to 
 Policy  and  Claim  entities only and therefore pass this check.      

   Logical View of Current Services and System Scope 
 The prime purpose of this step is to convert the current physical DFM into a logical DFM 
by eliminating external physical factors, duplication, and redundancy, using the LDM 
(which by definition is already logical) as a reference for validation. What does this mean? 

 A data flow model has combination of processes—logical and physical. Also, there 
are some data stores that only service the physical implementation of the current system 
and don’t contribute to the logical implementation. For example, there may be a data 
store dedicated to logging performing data and there may be processes populating that 
data. These kinds of processes and data stores need to be eliminated from the data flow 
model (to convert it to a logical DFM). Lastly, processes/data stores that are duplicated 
need to be considered for combination. 

 In case of the Policy and Claims processing system, I have not shown any processes 
catering to physical implementations. Also, as mentioned earlier, there are processes 
for maintaining static reference data, but I have not shown them in the DFM as well. 
Subsequently, the DFM is already a logical DFM, and it is easy to prepare a logical view of 
services provided:

•    Add or modify customers and policies (using YourState web-site 
or toll-free phone number)  

•   File and process claims for customers (using YourState web-site 
or toll-free phone number)    

 As you can see, the scope of this system is also automatically documented (by 
specifying the services provided). 

 To summarize, what is the purpose or benefit of creating this logical view of services? 
Well, a logical view can be useful in providing the thinking or strategy behind the physical 
implementation of a system. So, in case the situation changes and a particular decision 
is questioned, the logical view has a record of the logic behind that decision and makes it 
easy to cross-check.   
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     Business System Options 
 At this stage, having completed the feasibility study, as well as investigation of the existing 
system, and having reviewed the requirements and user catalogue, there are a number of 
possibilities for the required logical system. The functionality within each of the BSOs is 
based on the following implementation strategies:

    1.    Don’t add the Loss of Play policy.  

    2.    Try to buy an off-the-shelf package that provides required 
functionality for adding Loss of Play policy.  

    3.    Develop the necessary system using internal IT resources.  

    4.    Hire expert resources on contract to develop the system.  

    5.    Have a software development company develop the 
application for a predetermined price.     

 None of the BSOs associated with the preceding strategies offered an ideal solution, 
and all of them had pros and cons. Ultimately, after much deliberation, three options 
(options 3, 4, 5) were shortlisted and forwarded to the project board with detailed analysis:

•     Alternative1:  Develop a new subsystem that will work seamlessly 
with the existing Policy and Claims processing system using 
business and IT resources. The call center and policy department 
will need to provide additional training to resources who will 
manage the new policy. IT will develop the sub-system that will 
consist of the additional database entities and a web interface.

•     Benefits and costs:  The main benefits are cost and complete 
control over development/functionality. With in-house 
development, total cost will only be about $200,000.     

•    Alternative2:  Hire expert resources on contract to develop 
a solution that provides necessary functionality and have 
knowledge transfer to IT resources for maintaining and 
supporting it (also training to call center and policy deptartment).

•     Benefits and costs:  The main benefits are time, quality of 
development, and ease of modifications. Although, with 
contract resources, total cost will be little higher (compared 
to  alternative1 ) at $275,000.     

•    Alternative3:  Have business analysts and IT architects prepare 
detailed specifications of the proposed system and hire a custom 
software development company to do the development. The call 
center and policy department will still need to provide additional 
training to resources who will manage the new policy.

•     Benefits and costs:  The main benefits are time and quality 
of development. Although, with custom development, total 
development cost will be higher at about $325,000.     
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•    Comparison of alternatives:  The first alternative (in-house 
development) may be slow and may lack in quality (depending on 
the resources), but is the most affordable and also offers the most 
control. The second (custom development by contract resources) 
is fast and may offer better quality, but is a little expensive and 
also may lack adequate control over development. The third 
alternative (customized package solution) might be the most 
expensive but offers technical support and ease of change.  

•    Project board decision and conclusion:  After comparing the 
available alternatives, the project board decided that the second 
alternative is the best option for YourState insurance and decided 
to develop the subsystem in-house using a combination of IT 
resources and expert contract resources.      

     Requirements Specification 
 This is the most complex module because it involves full logical specifications as a deliverable. 
The requirements specified in the feasibility study module are used as a starting point and 
the business system option from the requirement analysis module is used as a framework 
to develop an accurate, unambiguous, and consistent logical specification document. This 
specification focuses on system functionality rather than implementation. 

 The architect prepares the following deliverables to effectively produce the logical 
specification:

•    Data-flow model (DFM)  

•   Logical data model (LDM)  

•   Function definitions (of all functions required for functioning of 
the system)  

•   Entity life-histories (ELHs) that describe all events through the life 
of an entity  

•   Effect correspondence diagrams (ECDs) that describe how each 
event interacts with all relevant entities    

 Note that this stage is useful and necessary regardless of implementation target 
(RDBMS or NoSQL). Therefore, this design stage can be used even for NoSQL-based 
system. I will discuss content and notations for all these deliverables using the new Loss 
of Play policy as an example, starting with the data flow model. 

     Data Flow Model 
 I discussed the current Policy and Claim processing system in detail in the last section. 
That gives you a good idea about the processing of a claim or creation of a new policy for 
a customer. Subsequently, when a new policy is added to the repertoire of the YourState 
insurance company, the new processing needs to match the existing business processes 
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(since the Loss of Play policy is just a new policy for the same company) and standards, 
since there shouldn’t be a need to design a new process for each new policy added. 
However, there are a few things to remember about the new policy:

•     Additional processing:  A number of requests for information need 
to be generated since the premium relies on it.  

•    No online or phone issual:  The premiums (as well as insured 
amount) involved are relatively large, and there is a need for 
manual verification and signing. Therefore, policy will need to be 
issued after both parties sign the agreement.  

•    No automated claim processing:  Any claims need to be processed 
as per predetermined logic and also subject to thorough manual 
investigation (since the claim amount is expected to be high).    

 So, to summarize, there is a combination of manual processes and automated logic 
for issuing the Loss of Play policy as well as processing claims associated with it. Noting 
that, Figure  3-6  is the data flow model for the Loss of Play policy.  

 You can see that there are two separate streams of processing for buying a policy and 
filing a claim, and they both use a mix of manual and automated processing.  

  Figure 3-6.    Data flow model for “Loss of Play” policy and claim processing       
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     Logical Data Model 
 The logical data model inherits entities used by Policy and Claims processing, but 
that’s expected and works well. There are five new entities:  LossOfPlayProspect , 
 PlayerInjuries ,  PlayerContracts ,  PlayerChronicConditions , and  PlayerSchedule . 
The model in Figure  3-7  shows their inter-relations.  

 The entity  LossOfPlayProspect  is central to the Loss of Play policy processing, 
and you can see that the primary key ( ProspectId ) is propagated as reference (foreign 
key) to other related entities. When a prospective customer (club holding a baseball 
player’s contract) requests a Loss of Play policy, certain data is collected about the 
player (whose contract needs to be insured) and stored within entities  PlayerInjuries , 
 PlayerContracts , and  PlayerChronicConditions . The player’s schedule (for current and 
next season) is also stored within an entity called  PlayerSchedule . All this information 
is used to quote a premium for insuring a player’s contract. Again, the quoted premium 
may be negotiated by the customer and final premium may be different (hence separate 
columns in entity  LossOfPlayProspect ). Also, since all the prospects may not materialize 
as customers, the relationship between entities  Policy  and  LossOfPlayProspect  is 
zero-to-one (on both sides, since every policy may not start as a Loss of Play prospect). 

  Figure 3-7.    Logical data model for Loss of Play policy and claim processing       
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 Lastly, the player contracts are also captured (for review) in entity  PlayerContracts  
and actual contracts are scanned and stored as images.  

     Function Definitions 
 This section defines all the functions that are required for making the new Loss of Play 
policy available to the customers. Some of these functions may be implemented within a 
database, and others may be implemented at the web-interface (used by customers and 
agents). I will mark the functions accordingly. 

   GetPlayerInjuryInfo 
 This function loads past injury information for a baseball player in entity  PlayerInjuries . 
Data comes from two sources: media and player’s medical history. Since it takes time for 
a player’s injury to be reported on his medical history (or sometimes an injury is not even 
recorded if a player is treated privately), data from media is also leveraged to cross-check. 
The gathering of data from media is a mix of automated and manual processing. Raw 
data gathered using keyword searches is reviewed manually, and relevant data is input 
via web-interface in a temporary table. Data received through medical history is also 
input via web interface into the same temporary table. A supervising agent reviews the 
data and then invokes the function  GetPlayerInjuryInfo , which loads the data in entity 
 PlayerInjuries . Input to this function is  ProspectId  and name of the player.  

   GetPlayerChronicCondInfo 
 This function loads information about a baseball player’s chronic medical conditions 
in entity  PlayerChronicConditions . Similar to  GetPlayerInjuryInfo , data from 
multiple sources is input into a temporary table, reviewed, and then loaded to entity 
 PlayerChronicConditions . Input to this function is  ProspectId  and name of the player.  

   GetPlayerContractDetails 
 This function loads information about a baseball player’s contract in entity 
 PlayerContracts . A scanned image is stored within the database along with contract 
details such as start and end dates. Contract data is first loaded to a temporary table 
and upon successful review, loaded to entity  PlayerContracts . Input to this function is 
 ProspectId  and name of the player.  

   GetPlayerScheduleInfo 
 This function loads information about a baseball player’s schedule for current and next 
season in entity  PlayerSchedule . Information about a player’s schedule is requested from 
his club (club holding his contract and requesting coverage for it) and cross-checked with 
published schedule (by media). Schedule is first loaded to a temporary table and, upon 
review, loaded to entity  PlayerChronicConditions . Input to this function is  ProspectId  
and name of the player.  
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   CalculateLossOfPlayPremium 
 This function is used to calculate the premium for a contract using the information 
collected by functions  GetPlayerInjuryInfo ,  GetPlayerChronicCondInfo , 
 GetPlayerContractDetails , and  GetPlayerScheduleInfo  in conjunction with 
(a confidential) algorithm. Upon invocation, the inputs (to this function)  ProspectId  and 
name of the player are used to retrieve necessary information (from appropriate entities) 
and calculations performed to get the magic number (premium for Loss of Play policy).  

   EvalLossOfPlayClaim 
 This function pre-evaluates a Loss of Play claim filed by a client based on certain 
proprietary (for YourState insurance company) logic. Only certain types of claims can be 
pre-evaluated and still need manual intervention to check the outcome. The purpose of 
this function is to filter out trivial or frivolous claims and save time for agents to who are 
assigned to evaluate a claim. Inputs are  ProspectId  and name of the player. 

 There’s a very interesting (and exclusively SSADM-based) concept called  entity-event 
modelling . An entity-event model is a graphic representation of how business events 
affect the entities within an information system. Business events trigger processes, which 
in turn affect entities. An entity-event model consists of a set of:

•    Entity life histories (ELHs)  

•   Effect correspondence diagrams (ECDs)    

 I will start with ECDs and discuss the concept along with notations. I will then 
provide ECDs for the major events for Loss of Play policy.   

     Effect Correspondence Diagrams (ECDs) 
 ECDs describe how each event interacts with all relevant entities or how a particular 
business event affects specific set of entities. An ECD captures a snapshot of the part of 
system state which is updated by an event. Because ECD deals with a single event, it is 
more static than ELH and therefore acts as a bridge between LDM and more dynamic 
modelling of event sequences by ELH. 

 The possible major events for Loss of Play policy are as follows:

•    Request for a Loss of Play policy quote  

•   Request for a Loss of Play policy issual  

•   Request for a Loss of Play policy cancellation  

•   Request for a Loss of Play policy claim    

 I will provide ECDs for these events and discuss notations simultaneously. 
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 The ECD for a policy quote is easy to follow (see Figure  3-8 ). When the 
process (Policy Quote) starts, an identifying instance of  LossOfPlayProspect  is 
created and that is followed by creation of multiple instances of  PlayerInjuries , 
 PlayerChronicConditions ,  PlayerSchedule , and a single instance of  PlayerContracts . 
The star in the upper right corner denotes iterations or multiple instances.  

 When a new policy needs to be issued, it is checked whether the prospect exists 
as a policy owner. If the policy owner doesn’t exist, a single instance of policy owner 
is created, and the  PolicyOwnerId  is updated for the corresponding prospect instance 
(see Figure  3-9 ). Next, a single instance of  Policy  is created.  

 When a policy is cancelled, the status is updated for relevant instance of  Policy  to 
mark it inactive or cancelled (Figure  3-10 ).  

 While filing a claim, a single instance of object  Claim  is created, and multiple 
instances of  Claim_property_data  are created along with appropriate values for the 
properties added. See Figure  3-11 .   

LossOfPlayProspect PlayerInjuriesPlayerChronicConditions

Policy Quote

PlayerContracts

Player Schedule

Set of
PlayerChronicConditions 

Set of
PlayerInjuries 

Set of
PlayerSchedule 

  Figure 3-8.    ECD for event “quote for Loss of Play policy”       

LossOfPlayProspect Policy Policy_owner

Policy Issual

  Figure 3-9.    ECD for event “issual of Loss of Play policy”       

Policy

Policy Cancellation

  Figure 3-10.    ECD for event”cancellation of Loss of Play policy”       
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     Entity Life Histories (ELHs) 
 For an entity, ELH shows the effects caused by various business events sequentially. 
ELHs are drawn using the structured design constructs of sequence, selection, iteration, 
and parallelism. Notation used is almost the same as ECDs with addition of levels. The 
first level is the entity itself, and the second level is the type of events. The third level 
contains individual events that modify the (data for an) entity. The last level contains the 
processing operations that modify the entitiess. Levels two and four may not be necessary 
in some cases and may be eliminated. 

 I will now present and discuss ELHs for more frequently used entities such as 
 Policy ,  Claim , and  LossOfPlayProspect . 

 The lifecycle for the  Policy  entity is very simple. It is either created by an agent 
(resulting from a call from customer via YourState toll-free number) or by a function 
activated through online request for a policy (and after the basic checks are performed). 
The circle on the upper right corner of second level rectangles denotes a selection 
or option. The policy is modified by authorized agents as per the need. A function is 
provided for that purpose on the internal web interface. A policy cancellation is update of 
status to  inactive  or  closed . See Figure  3-12 .  

 The lifecycle of a claim is similar to policy as far as the creation (or filing) is concerned, 
but modification involves adjustment or evaluation of a claim. A claims adjuster does that 
and updates the status (approved or rejected). If approved, the next processes modify 

Claim
Claim_property_data

Set of 
Claim_property_data

Claim filing

  Figure 3-11.    ECD for event “claim filing for Loss of Play policy”       
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needed 
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‘closed’ through 
web interface

  Figure 3-12.    ELH for entity Policy       
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claim settlement–related entities ( claim_line_item ,  claim_settlement ). If rejected and 
resubmitted for review, the status is updated accordingly and details are captured in a claim 
resubmission–related entity ( claim_resubmission ). See Figure  3-13 .  

 Last, for entity  LossOfPlayProspect , an entry is created after the initial meeting 
with an agent and the relevant documents are received. This process is a little different 
(compared to other policies) due to the high amounts (for premium as well as claims) 
involved. If a prospect buys a Loss of Play policy, then  PolicyOwnerId  is updated for that 
prospect. Any other updates to prospect information are accommodated similarly. If a 
prospect doesn’t buy a policy within 6 months, his details are removed. See Figure  3-14 .    

Claim

SettleFile Resubmit

File a claim 
as per 
online 
request 

File a claim
as per 
request by 
phone

Claims adjuster 
investigates and 
settles or rejects a 
claim and updates 
status

Claim status 
updated when a 
customer resubmits 
a rejected claim for 
review

  Figure 3-13.    ELH for entity Claim       
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Prospect after a 
predetermined 
period

  Figure 3-14.    ELH for entity LossOfPlayProspect       

 

 



CHAPTER 3 ■ USING SSADM FOR RELATIONAL DESIGN

83

     Logical System Specification 
 This module is about assembling, linking all the design deliverables and preparing for 
a physical implementation. However, before a final listing is prepared, technical system 
options (for implementation) are explored, and a choice is made by the project board 
regarding the option to be used. I will briefly discuss the possible technical system 
options for the new Loss of Play policy discussed in this chapter and then discuss the 
deliverables for the logical design stage. Almost all the deliverables are already discussed 
earlier in this chapter, so I will focus on the ones that are not. 

 Again, note that even this stage is independent of implementation target (RDBMS or 
NoSQL). Only the possible technical options are discussed here. Target technology can 
still be chosen depending on your need. Therefore, this design stage can be used even for 
NoSQL-based systema. 

     Technical Systems Options 
 The Loss of Play policy discussed in this chapter extends the type of policies offered by 
the YourState insurance company and since it already offers a large number of policies, it 
has an existing information system to sell and support these policies via a web interface 
(as well as a toll-free phone number). Therefore, the following technical systems options 
were presented to the project board:

•     Option 1:  Design a separate web interface and database for the 
new policy. Use separate database and web servers.  

•    Option 2:  Use the existing web interface and add functionality 
to sell and manage the new policy. Also, add the new database 
objects (as needed) to the existing database (used by all other 
policies). Last, scale out the existing database and web servers to 
handle additional data and user traffic.  

•    Option 3:  Design a separate web interface to sell and manage the 
new policy, but share the existing database for policy and claim 
processing. Last, scale out the existing database and web servers 
to handle additional data and user traffic.    

 The project board evaluated these three options and chose the third option. 
Subsequently, it was decided to use the existing database, but develop a new web 
interface for processing the Loss of Play policies and claims. One of the reasons was a 
mix of manual and automated processing that would be hard to handle for the existing 
interface (since all the processing for existing policies is automated). 

 Next, reviewing the hardware (Windows 2008 R2 Datacenter edition, server-based 
physical cluster with 64 CPUs, 1 TB RAM, and 20 TB SAN storage), it was decided to add 
100 GB RAM and 2 TB of storage. The operating system and database (SQL Server 2008 R2 
Datacenter edition) was determined to be capable of handling the additional connections.  
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     Logical Design 
 This is a very important stage where all the design deliverables are consolidated, 
cross-checked, and linked to facilitate a successful physical implementation of the 
system. Any design gaps are identified and resolved. Explanations and notes (that will 
help implementation) are added. As per SSADM guidelines, the following deliverables 
are expected as output (from this stage):

•    The logical process model

•    Update processing model (ECD)  

•   Enquiry processing model (EAP)  

•   The dialogues  

•   Function definitions     

•   The menu and command structures  

•   The requirements catalogue  

•   The data catalogue  

•   The system LDM    

   Update Processing Model 
 Typically, the update processing model brings together the operations that constitute 
the update function (for an information system). The model is then presented in form of 
a structure chart accompanied by descriptions of operations that constitute it. Function 
definitions and ECDs are used to construct these models since they provide information about 
events and how an event affects the entities within LDM. I discuss functions and ECDs earlier 
in this section, and it will be good exercise to segregate update functions, prepare ECDs for 
them, and then construct an update processing model using these ECDs as a starting point. 
Please remember that the update processing models are at event level, not function level.  

   Enquiry Processing Model 
 An enquiry processing model differs from the UPM as there are no events (to define 
processing around them) and the enquiry constitutes a single function. So, EPMs are at 
function level. Enquiry access path or EAP (which shows how an enquiry interacts with 
the logical database) is used as a basis to construct the EPMs. Figure  3-15  shows an EAP 
for the Loss of Play policy search.  
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 You may have already observed that the notation for EAP is exactly same as for ELH 
or ECD. A star in the upper right corner for iteration or multiple instances and a circle 
in upper right corner for optional relationship (either-or relationship). The beginning 
of search processing is indicated by the inclined downward arrow.  ClaimId  (for which 
details are sought) is input, and a search is made in the  Claim  entity. If a match is found, 
the claim record is retrieved along with corresponding line item records. Multiple line 
items may exist for a  Claim  (as indicated) and for each of them, status is checked to 
determine whether that line item is settled or resubmitted for review (in case it was 
rejected). Accordingly, the details are output to be displayed. 

 The EAPs for search functions can be developed for other entities as required. 
 As far as the GUI (graphical user interface) is concerned, dialogues, menu and 

command structures are beyond the scope of this discussion (as the focus here is use of 
SSADM for database design) and the GUI deliverables are pertaining to front-end web-
interface. The only other deliverable left to discuss is data catalogue or data dictionary. 
Let me discuss it briefly.  

   Data Catalogue 
  Data catalogue  is the data dictionary most of us are familiar with. The following format is 
recommended for the logical data dictionary. Note that the attribute types and sizes do 
not refer to a particular physical database implementation and therefore may change as 
per the database system used as a target for physical implementation. Figure  3-16  uses 
the  LossOfPlayProspect  entity as the only example (I’m not including the whole data 
dictionary for brevity and relevance to the discussion), as it will ably demonstrate the 
concept and provide necessary understanding.     

ClaimId

Claim Set of

Claim_line_item

Claim_line_item

Operations List

1. Get input ClaimId

2. Retrieve Claim record, on error 
fail with error message

3. Get all the Claim_line_items 
associated with the Claim

4. Check if the claim_line_item is 
settled or resubmitted for 
review

5. If settled, get details of 
settlement

6. If resubmitted for review, get 
details of resubmission

7. Output details of settled line 
items

8. Output details of resubmitted 
line items

Claim_settlement Claim_resubmission

1 2
3 4 8 7

5 6

  Figure 3-15.    EAP for claim status enquiry       
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     Physical Design 
 The final module of SSADM provides guidelines for physical implementation of 
the logical design completed using techniques discussed in the earlier modules. 
Essentially, SSADM being a design methodology, can’t get into the finer details of the 
implementations, but it does provide high level guidance and attempts to make the 
implementation as efficient as possible. There are two aspects of the implementation:

•    Physical data design  

•   Physical process specification    

 Since the focus of this chapter is database design, I will focus on the physical data 
design. An important thing to note is that a physical implementation always relies on 
the expertise of the implementer (for the platform or software used for implementation). 
The following steps are followed:

•    Transformation from logical data model (LDM) to physical 
data model  

•   Initial space estimation and provision for growth  

•   Optimization of physical design and regular maintenance    

 At this stage, the details of physical implementation will change depending on the 
target technology you choose for your implementation (RDBMS or NoSQL). 

     Logical to Physical Transformation 
 This transformation involves substituting appropriate data types for the logical attributes, 
implementing the referential integrity constraints, and adding relevant supporting 
objects to the physical database to support the relationships specified within a logical 
data model. 

  Figure 3-16.    Data dictionary entry for entity LossOfPlayProspect       
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 A number of case tools (for example, ERwin) can be used to implement this 
transformation. Of course, you need to choose your target database system and then 
make sure that the case tool you plan to use supports it. The process of transforming a 
logical model to physical is known as  forward engineering , and a case tool can accept a 
logical model as input and “forward engineer” it to a physical model. Output is provided 
as scripts (using the target RDBMS query language), that can be executed on the target 
server to create the necessary database objects within the database of your choice. This 
includes database tables, indexes, keys (primary/foreign), and triggers (if necessary). 
Logical data types are translated into physical data types and implemented by the 
RDBMS. After completion of this process, the physical database structure is ready for use.  

     Space Estimation Growth Provisioning 
 A physical data structure (resulting from the last step) will occupy space, and you need 
to estimate your initial storage needs. For the Loss of Play policy, it was decided to add 2 
TB of storage to account for the additional space needed to store policy and claim data, 
as well as scanned documentation (required to determine the premium) and player 
contracts. That is a good start, but what happens next year? Or the year after? 

 You need to know the growth rate for the additional data created by the new policy. 
For example, if you determine that the growth rate is 15%, then 15% space will be required 
additionally each year. So, each year 300 GB (15% of 2 TB) will be required to support the 
growth. You have to make sure that this additional disk space is added annually.  

     Optimizing Physical Design 
 Optimizing your physical design depends largely on the target RDBMS of your choice 
because optimization is specific to the architecture of your database system. However, a 
part of the optimization is SQL-specific and that tuning can be applicable to any database 
system supporting SQL. Broadly, optimization or tuning can be performed at the 
following levels:

•     Server level : This tuning involves adjusting the server 
configuration parameters to support the type of expected 
processing. For example, for an OLAP or warehousing 
environment, a large amount of data is read (and not updated). So 
server can support reads without any locks (with the most lenient 
isolation level) that will provide speed for read access.  

•    Database level : This involves tuning the database settings. Using 
the same example of a warehousing environment, since there are 
no update transactions expected, transaction logs can be small 
and without any mechanism for recovery.  
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•    Application level : This tunes the application database and 
involves adding appropriate indexes or statistics and making 
sure all the frequently executed queries use indexed scans (for 
performance). Also, target database system–specific tuning is 
performed. For example, if SQL Server is the target database, 
frequently used queries should use a clustered index (since that is 
the order data is stored physically in) for performance.    

 Important thing to note about the tuning is that it’s not a one type setup. You need to 
review it periodically and adjust as necessary. Your system may be operating optimally right 
now, but that doesn’t guarantee that it will continue to be optimal after six months, when 
2 TB of data is added or 1 TB is updated. Therefore, you need to review all your settings 
periodically and adjust them. Also, indexes or statistics need to be rebuilt frequently for 
guaranteeing sustained performance levels. That constitutes database maintenance and 
preferably needs to be automated or scheduled by your database administrator.   

     Summary 
 In this chapter, I have discussed SSADM and all the possible deliverables following the 
SSADM design methodology. SSADM is quite old, and there are no attempts to modify 
it for use with the latest database design techniques. However, that doesn’t mean it’s 
not relevant anymore. In fact, it represents one of the most extensive and logical design 
methods for relational database design, which is a major reason I used it as an example. 
It’s just that some of the techniques can be replaced with more efficient ones that were 
not available at the time SSADM was designed. 

 If you have a quick look at the design methods used today, you will realize that they 
represent subsets of SSADM. None of them is so thorough in design tasks or covers all the 
deliverables SSADM did a lot of years back. 

 That leads to the second thing to note about SSADM. I have discussed all the 
deliverables, but obviously they may not be necessary for your environment. You need to 
make a conscious decision about what deliverables are relevant and only present those as 
part of your design. 

 Also, since some of the techniques that SSADM describes are now replaced by better 
and more efficient ones, you should feel free to combine them with SSADM guidelines. 
After all, even the SSADM documentation clearly says that the techniques described are 
guidelines and not rules required to be followed verbatim. 

 If you are still questioning why you just read a long chapter discussing SSADM and 
its deliverables, it will be useful for any migrations that you plan from RDBMS to NoSQL 
databases. This chapter is meant to help you understand the design documentation (and 
the logical/physical design) for a relational application effectively and ultimately help you 
perform a successful migration. Also, as I have discussed at every SSADM design stage, 
SSADM design techniques are independent of implementation target (RDBMS or NoSQL) 
and therefore are useful for design of any systems that you plan to implement.     



89© Bhushan Lakhe 2016 
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_4

    CHAPTER 4   

 RDBMS Design and 
Implementation Tools                          

 It was 2001 and since the dot-com bubble was completely deflated, budgets were tight. 
I was redesigning a claims-reimbursement system for a major insurance company in 
downtown Chicago and needed a good CASE tool. I mentioned that to my manager, 
and the blank look prompted me to explain what it does. “Well, can’t you use Word?” I 
explained that I couldn’t do what was needed using a word processor. The next question 
was whether there was any open source or “free” software available. It was surprising to 
see that a corporation ready to spend millions for consulting was not willing to spend a 
few thousand dollars for a necessary database tool. 

 I have frequently seen a general level of apathy and lack of understanding for many 
specialized database tools. Also, with the advent of technology and new techniques and 
tools crowding the market on a daily basis, it is hard for the new database professionals 
to understand or gain expertise with database tools used for design, monitoring, or 
diagraming (flow-charting). I feel it will be helpful to understand the types of tools 
available for RDBMS implementation and their features. 

 The popular RDBMS implementation tools range from design to administration and 
monitoring. Any RDBMS implementation starts with design. There are two types of tools 
used for design. The first is a CASE tool that assists with conceptual and logical design 
as well as transformation to a physical database structure. The second is a diagraming or 
flow-charting tool that assists with drawing the different types of models associated with 
database design. I discuss both if these tools in this chapter. 

 There is another set of applications sometimes used by developers to transition 
RDBMS data to an object-oriented model. These frameworks are referred to as object 
relational mapping (ORM) frameworks. They are useful if you plan to represent your 
relational database as an ODBMS (object-oriented database). Hibernate and Spring 
are popular frameworks that can be used for this purpose. They offer features like high 
performance, scalability, reliability, extensibility, and idiomatic persistence (ability to 
develop persistent classes that follow object-oriented idioms including inheritance, 
polymorphism, association, and composition) that assist in a successful, fast, and easy 
ORM transition that reduces your development time. 
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 Getting back to RDBMS, after a database is designed and implemented as a physical 
structure (for a target RDBMS), it needs to be managed and maintained on a daily basis. 
New databases may need to be created, allocated space (for databases) may need to be 
expanded, or users may need to be added or provided access to new objects. Database 
administration tools help to perform all these tasks easily and quickly. 

 Finally, a database (and the database server) needs to be monitored for 
performance, unauthorized access, and any kind of failures that may result in service 
interruption. In many cases, the tools used for database administration also provide 
monitoring functionality, but some cases do warrant use of specialized monitoring tools 
that provide a wider range of features and flexibility. 

     Database Design Tools 
 Chapter   3     discusses the database design process using SSADM as a method. As you may 
note, a large number of models and deliverables are produced as part of the design process. 
These models/deliverables are related, and it is necessary to show the relationship clearly. 
It is cumbersome and time-consuming to draw these models separately and show the 
existing relationships. CASE tools help with this process by assisting in building the initial 
(logical/conceptual) model, using it to generate a model for the next stage, and continuing 
the process till the last stage (physical data structure) is reached. 

 The diagraming or flow-charting tools don’t provide this kind of extensive 
functionality but do have extensive libraries of predesigned templates that help in 
creating a flow-chart or diagram very quickly. From personal experience, diagraming 
tools are more useful for models like data flow diagrams or business activity models. 

     CASE tools 
 CASE tools are tools that assist in implementing the processes associated with computer-
aided software engineering (CASE). They’re used for designing and implementing 
software applications. Several factors influenced the development of CASE tools, such 
as CAD (computer-aided design) or “active data dictionary.” Database designers noticed 
the ease that CAD packages provided for  drafting  (the manual process of drawing various 
views of machine component designs to scale) with their prebuilt templates, library 
of shapes, and features needed. More useful features like ease of modifications and 
propagating the designs to CNC machines for actual part manufacturing impressed these 
database designers too. 

 Another major influence was the   data dictionary     of a   database    . Designers 
experimented by extending the range of   metadata     held in a dictionary to include 
application attributes and substituting at runtime. This “active dictionary” led to 
  model-driven engineering    , but didn’t have a graphical representation of any of the 
metadata. Once the graphical representation was added (inspired by CAD), it led to the 
development of earliest CASE tools. 

 So, how do the CASE tools help the database design process? By helping with graphical 
representation of the design stages and also with propagation of the designed models to later 
stage, right till culmination of the design process leading to a physical database structure. 
Because CASE tools assist with specific tasks in the software development lifecycle (SDLC), 

http://dx.doi.org/10.1007/978-1-4842-1287-5_3
https://en.wikipedia.org/wiki/Data_dictionary#Data dictionary
https://en.wikipedia.org/wiki/Database#Database
https://en.wikipedia.org/wiki/Metadata#Metadata
https://en.wikipedia.org/wiki/Model-driven_engineering#Model-driven engineering
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they are useful in implementing database design methodologies. As you may have noticed in 
Chapter   3    , I used the CASE tool Erwin to design various deliverables associated with design 
method SSADM; such as the logical design model (LDM) or physical data model (PDM). To 
summarize, CASE tools can assist the design process in following ways:

•    Building design layers for your application design  

•   Categorizing your design using subject areas  

•   Controlling physical display level of your models  

•   Forward or reverse engineering as needed  

•   Helping in creating reusable components for your design  

•   Propagating a change easily and quickly through the design stages    

   Building and Using Design Layers 
 A set of data models used for a particular purpose in the application development process 
constitute a design layer. Within this layer hierarchy, the first layer is often a logical data model 
that summarizes the business requirements (for an application). The second design layer 
transforms these business requirements and creates corresponding database implementation 
rules for a physical data model (note, a generic physical model may be created using 
generic ODBC as the target database). The third and final design layer represents physical 
implementations of the same data model for different target server platforms. 

 If the logical data model from the first layer is an enterprise data model, then it can 
be further divided into logical models corresponding to separate applications for an 
organization. Figure  4-1  summarizes these layers.  

1st design layer
Enterprise-wide logical data model

Logical data model

Generic Physical data model  

Database specific Physical data model 
(Oracle, SQL Server, Sybase)

Logical data model

Generic Physical data model

Database specific Physical data model 
(Oracle, SQL Server, Sybase)

Policy and Claim processing Human resources 3 rd design layer

2 nd

design 
layer

  Figure 4-1.    Design layers for relational OLTP application       
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 The most important thing to remember about the design layer is that you must 
be able to link the models in different design layers and synchronize changes made 
in different layers (that is, make and propagate changes to other layers). A successful 
hierarchy is characterized by well-linked models (from different design layers) using 
a common model source and the ability to apply transforms across the design layer 
(keeping linked models in sync). 

 CASE tools like Erwin, ER/Studio, or Enterprise Architect provide all the features 
necessary to define a logical model and apply transformations to derive the generic or 
specific physical models from it. That way, the link is maintained through the design 
layer, and any modifications can be applied to the logical data model and the related 
physical models quickly regenerated.  

   Categorizing Design Using Subject Areas 
 Many times, when you start reviewing a large data model, it is intimidating and not very 
informative or intuitive. The reason is that it presents you with a large number of related 
entities without telling you what functionality they (or their subsets) provide. All you 
know is that the model belongs to a system that provides some functionality (such as 
accounting, human resource management, policy and claims management, and so on). 

 Subject areas group the entities by the subsets of functionality they provide for an 
information system. By classifying the entities in this manner, subject areas provide a quick 
subclassification of functionality and make database models easier to understand and read. 

 Consider the logical model for Policy and Claims processing from earlier chapters. 
You have seen how it looks without subject areas (Figure   3-7    ). With subject areas defined, 
you can see the difference in Figure  4-2 .  

  Figure 4-2.    Subject areas for a Policy and Claim processing application       

 

http://dx.doi.org/10.1007/978-1-4842-1287-5_3#Fig7
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 As you can see, it is much easier to get the context of the entities now, and you can 
probably guess what their purpose is. For example, for the Loss of Play policy subject area, 
it is easy to see that the entity  LossOfPlayProspect  is central to that policy processing, 
and the other entities simply provide information about the player (whose contract the 
prospect is trying to insure). Similar information can be derived quickly and easily from 
the other subject areas as well. 

 When subject areas are implemented using CASE tools, they can be displayed singly 
or as part of the main subject area. Even if you don’t define specific subject areas, a main 
subject area is defined by default, and all entities are a part of it. When you add an entity 
to a specific subject area, it still remains a part of the main subject area, and any changes 
made to it in one subject area are automatically implemented in all the other subject 
areas (that the entity is a part of).  

   Display Level of a Model 
 CASE tools offer various display levels for the data models, such as the following:

•    Entity (just the entities and relationships between them)  

•   Attribute (entities and attributes)  

•   Primary key (primary keys for all entities)  

•   Keys (primary and foreign keys for all entities)  

•   Definition (entity definitions and relations)  

•   Icon (entity and icons)    

 These display levels are useful in controlling the visualization depending on your 
need. For example, if you only want to display the entity relationships, then entity display 
level will suffice, or if you want to show the primary and foreign key relationships, the 
keys display level will be relevant (Figure  4-2  uses the keys display level). By displaying 
only the necessary level of detail, display levels make it easier to focus on the relevant 
details.  

   Forward and Reverse Engineering 
 Forward engineering involves creating physical table structures within a schema/
database for target RDBMS. You can use the design layer concept and create a generic 
physical model as an intermediate step if necessary. Many CASE tools can read data 
models prepared using diagramming tools and then forward engineer them as well. 

 How does a CASE tool implement this feature? Well, as a final step, a CASE tool provides 
data definition language (DDL) scripts using query language (that the target RDBMS 
supports). But before that, there are multiple options that you can select for your target 
scripts. The options deal with choosing the database objects and properties that you want 
to import, specifying whether you want to infer primary keys or relationships from indexes, 
setting case conversion options, generating index scripts (for implementing primary key, 
foreign key, and alternate key relationships), implementing referential integrity through 
triggers, and so forth, and can be selected easily through point-and-click menus. 
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 Reverse engineering, as you might expect, is the reverse of forward engineering. 
A physical database (with objects) is a starting point. The process reads metadata for 
all the objects, determines the relationships, and creates a physical data model. Taking 
advantage of an existing database speeds the design of a new data model and the 
subsequent delivery of new systems. A logical data model can then be easily generated 
(using the physical model). DDL scripts (for database objects that need to be reverse 
engineered) can also be used if connecting to a database (and reading metadata) is not 
possible. Figure  4-3  summarizes the process.  

Physical Data Model

CREATE TABLE Claim (c1 int, 
INDEX ix_1 NONCLUSTERED (c1)) 
CREATE TABLE Policy (c1 int INDEX 
ix_1 NONCLUSTERED (c1)) 
CREATE TABLE LossOfPlayProspect 
(c1 int, c2 int INDEX ix_1 
NONCLUSTERED) 
CREATE TABLE Claim_type (c1 int, 
c2 int, INDEX ix_1 NONCLUSTERED
(c1,c2))
…………………………………

Database DB1

Reverse engineering function 
within a CASE tool

DDL script

Database connection

OR

  Figure 4-3.    Reverse engineering process       

 It is important to make sure that referential integrity constraints are defined for the 
database (or scripted within DDL scripts) before trying to reverse engineer it. Otherwise, 
all you are going to see are the entity boxes. Of course, some relationships may still be 
missing from the model, but you will need to add them manually (for example, recursive 
relationships or supertype/subtype relationships).  

   Creating Reusable Components 
 One of the strengths of the CASE tools is the ability to create a range of components 
that can be easily reused. For example, domains. A  domain  is a model object that can 
be used to allocate attribute or column properties. Use of domains makes your model 
consistent because you can reuse them multiple times. Domains also make it easy to 
capture specific settings for your environment for quick reuse within your data models. 
For example, if you need to use a status attribute with a specific set of values only, you can 
create a domain and use it as needed. 
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 Domains also help in reducing development and maintenance time. Any changes to 
a domain result in changing all the associated attributes or columns. CASE tools provide 
a library or dictionary that holds physical and logical domains that you create. Generally, 
some of the domain properties include:

•    Domain name and column name  

•   Column datatype, default value, and valid value(s)  

•   Domain comment or note and column comment or name  

•   User-defined properties    

 CASE tools make it easy to reuse the entity objects and even subject areas between 
different models. So, you can think about them as reusable components too. Many CASE 
tools generate a data dictionary using entity and attribute definitions input for a model. 
Those definitions can also be reused (along with entities) between models and will 
reduce the laborious task of entering these definitions multiple times.  

   Propagating a Change Easily and Quickly 
 CASE tool features such as forward and reverse engineering, physical/logical views of a 
model, and quick generation of a generic physical model help in propagating any design 
modifications quickly to the physical data structures. This is especially important if the 
change is made to a key entity that is referenced by multiple entities. As you can imagine, 
attempts to cascade such a change manually would take time and possibility introduce 
error. 

 For example, an insurance company uses a  ClaimId  that goes up to 99,999,999. They 
introduce a new policy that is really popular, and now they hit the 100 million+ mark. So, 
 ClaimId  needs to increase in size.  ClaimId  is referenced by a large number of tables, and 
a change in size needs to be reflected in all those tables. CASE tools can help you quickly 
generate scripts that can implement this change easily and without any errors.   

     Diagramming Tools 
 The focus of a diagramming tool is to provide a large library of shapes, icons and 
templates that will facilitate quick drawing of a model. You can draw any model (or flow 
chart) that’s part of the SSADM deliverables (or otherwise necessary). CASE tools don’t 
provide flow-charting or free-form drawing functionality. For example, if you need to 
draw a data flow diagram, then you will need to use a diagramming tool, not a CASE tool. 

 Finally, diagramming tools let you insert pictures, CAD drawings, charts, clip art, or 
data graphics in your model. This feature can be useful where your model refers to a lot of 
external sources or subsystems. 
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 The common templates/shape libraries provided by diagramming tools are as follows:

•    Data flow diagram shapes  

•   EPC (event process) diagram shapes  

•   Work flow objects  

•   Cross-functional flowchart shapes  

•   BPMN basic shapes  

•   Gane-Sarson shapes  

•   Engineering (electrical/mechanical/process) shapes  

•   ER diagrams  

•   UML diagram shapes    

 Popular diagramming tools include Visio, Draw.IO, Gliffy, eDraw, Dynamic 
Draw, and others; the templates, shapes, or features they offer may differ slightly, but 
conceptually they are very similar. 

 So, the diagramming tools offer much more flexibility and speed for drawing a large 
variety of models, but as far as data modelling is concerned, they can’t match the features 
provided by CASE tools. In general, diagramming tools can’t:

•    Reverse engineer  

•   Forward engineer  

•   Link models  

•   Propagate changes (from one model to another)  

•   Categorize using subject areas    

 CASE tools and diagramming tools have their own strengths, and your exact need 
would decide which of them suits best for your environment. Both offer a variety of 
modeling functions that you can leverage.   

     Administration and Monitoring Applications 
 The purpose of these tools is to assist in managing the physical database structures. 
Managing a database system typically involves tasks such as creating and managing 
databases and objects, users and roles, space usage, and backup schedules, and doing 
database maintenance (such as re-indexing, recreating statistics, and doing other tasks). 

 Monitoring a database involves setting up automated tasks for monitoring resource 
usage by processes, database connections, and individual users, and setting up alerts 
when certain threshold values are reached. In some cases, monitoring simply captures 
metrics of interest and stores them for a certain time period (one month, one year, and so 
on) for access to historical usage and, of course, auditing. 
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     Database Administration or Management Applications 
 Most of the relational databases have similar structures (for obvious reasons), and that 
makes the task of designing a common graphical user interface for them easy. A few 
companies have successfully designed interfaces that work with all the leading RDBMS. 
Most of the database administration interfaces have the following capabilities:

•    Modify database server as well as database and schema related 
configuration  

•   Add/modify/delete database objects such as tables, views, 
triggers, and stored procedures  

•   Add/modify/delete logins/users/roles and manage permissions 
for users/roles  

•   Manage disk space allocation and shrink databases to release 
allocated (but unused) space  

•   Perform database maintenance (re-indexing or building indexes) 
including backups  

•   Schedule and manage database-related tasks/jobs and document 
their results/status  

•   Manage locking/blocking/deadlocks for database server and 
record all the actions (for example, killed or deadlocked sessions)  

•   Configure SMTP or any other protocol for use by database servers 
to send alerts to configured email addresses or phone numbers  

•   Monitor replication and mirrored environments for data integrity  

•   Set up and configure access, security, and encryption 
functionality    

 All the leading RDBMS have their own database administration interfaces, but the 
problem occurs when you need to manage different RDBMS using a common interface. 
That’s where an interface developed by a third party or a neutral vendor is useful. 
Companies such as Redgate or Embarcadero (DBArtisan) have developed popular tools, 
and companies like EMS have also developed free multi-database tools.  
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     Monitoring Applications 
 Monitoring tools support a large range of functionality including monitoring 
performance, locking/blocking activity, database connections and security breaches, 
resource usage, and job outputs. They are expected to generate alerts when any 
(previously set up) thresholds are exceeded and also provide troubleshooting or 
debugging capabilities in case of any functional or performance issues. These tools 
establish a performance baseline, isolate performance problems, identify bottlenecks, 
and also provide query statistics. Here is a detailed (but generic) task list:

•    Monitor inefficient or expensive (using more system resources) 
SQL queries and stored procedures that may cause excessive 
locking, blocks, or deadlocks, especially focusing on frequently 
executed queries. Configure thresholds for resource usage (on 
individual servers) for greater flexibility, making it easy to see the 
most expensive queries (for example, by sorting in descending 
order of resource usage).  

•   Support troubleshooting of problematic queries with query plan 
(sequential task listing of a query execution as planned by the 
query optimizer of a database server) diagnostic capabilities. 
View summarized performance statistics for databases and users 
along with individual query details such as execution plans. For 
example, a query may be failing due to insufficient memory, 
excessive number of users trying to connect to a database 
concurrently, or index fragmentation, and a detailed query plan 
may be the only way to know it.  

•   Avoid false alarms by setting alert thresholds based on historical 
statistical analysis of your server performance data. Continuous 
monitoring can capture and store data over a time period, making 
it easy to create historical data.  

•   Perform heuristic analysis of occurred events or behavior and 
derive a percentage of likelihood that an event could happen in 
the near future. For example, system peak usage during 9:00 a.m. 
to 10:00 a.m. on Monday mornings for the time entry application 
causes network performance issues, resulting in blocks on 
database server.  

•   Monitor operating system metrics for a more comprehensive 
and accurate diagnosis of performance or security issues. For 
example, termination of a database transaction may correspond 
with memory fault for a server, and it may not be possible to 
correlate these events unless the OS event log is monitored.  

•   Support setup and capture of traces (sequential listing of 
commands sent for execution to the database server, along with 
runtime parameter substitution) to files for further analysis.  
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•   Maintain historical data of worst-performing SQL queries.  

•   Assist in establishing a precise link between resource contention 
and response time.    

 Most of the leading RDBMS vendors have their own monitoring and debugging 
tools (for example, Microsoft SQL Server has Profiler), but there are excellent third-party 
tools available that offer a large number of additional features and ease of use. Here 
are some of the leading third-party monitoring tools available currently: LogicMonitor, 
MyOra, Foglight, SolarWinds, Redgate SQL Monitor, Idera SQL Diagnostic Manager, and 
SQLSentry.   

     Summary 
 Some may question the inclusion of this small chapter. Don’t we all know about CASE 
tools and diagramming tools? Haven’t we used them enough? Probably we have—but 
maybe not all of these tools, or all of the features within these tools. Again, remember that 
the real focus is migration of RDBMS-based data to NoSQL environments. 

 Some of the deliverables you need to use for the data transfer may be output from 
the tools discussed. Understanding how these tools work will also help you understand 
those deliverables better. 

 Conversely, a few aspects of the (RDBMS to NoSQL) data transfer may require the 
use of advanced tools, and this chapter serves as a quick reference. It will make your 
task (of rapidly identifying a tool to match your requirement) much easier. I have also 
provided listings of the leading vendors and software packages for each of the tools, 
which should serve as a handy reference too. And I discussed forward and reverse 
engineering. 

 Finally, CASE tools or DBA (database administrator)/monitoring applications 
are rarely discussed in a vendor-neutral manner, and therefore I have covered generic 
features at a conceptual level to provide a better understanding. Surprisingly, you will 
notice that all the leading vendors provide these features (more or less), although the 
terminology they use may differ.     



    PART II 

   Hadoop: A Review of 
the Hadoop Ecosystem, 
NoSQL Design Principles 
and Best Practices 
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    CHAPTER 5   

 The Hadoop Ecosystem                          

 Couple of years back, I was taking a train home one evening and catching up on my round 
up of new Hadoop tools. A co-passenger was having a covert look at my laptop, and after 
a while his curiosity was just piqued too much to let it go. “What area do you work in?” he 
enquired. I said I was an architect and focused on Big Data as well as warehousing. “Big 
Data!” he exclaimed. “Sounds like black magic to me.” That was the common sentiment a 
few years back and has not changed much since. 

 It is often confusing and overwhelming when you start using the Hadoop ecosystem, 
and it takes time to know and understand each of the important (and popular) 
components. This chapter is designed to speed up that process with brief and concise 
information about important components and vendor applications that you can choose 
for your deployment. 

 The Hadoop ecosystem is the newest addition to the ever-emerging arena of 
data-processing technologies, and is here to stay. Just like UNIX of the 80s and 90s, it is 
in transition, and new products are created almost daily. It is extremely difficult to keep 
abreast of the new products, but is probably worth your time to have a brief look at the 
new products in various categories related to Hadoop and NoSQL. The products may 
change in near future, but this chapter aims to give you a good understanding of the 
front-runners and the features they offer. 

 The categories I have considered (for Hadoop products) are generic, such as 
query tools, analytical tools, search tools, messaging systems, databases, and so on. 
The included tools, however, offer specific functionality. I have also tried to focus on 
open source products (with a few priced, commercial exceptions), since they are easily 
accessible for experimentation and innovation. Big Data, as you know, is all about 
innovation. I have also included products in incubation (at Apache) and some that are 
not written about very much but which are useful. 

 I discuss the query tool Shark (Spark SQL now). You can think of Shark as Hive with 
Spark engine (instead of MapReduce). Kylin is contributed by eBay and is an excellent 
analytical tool. It helps you build cubes for data stored within HDFS. Since there are no 
new tools for messaging, I will briefly discuss Kafka and discuss Solr/Elastic search (as 
search tools) for the same reason. In-memory processing is still largely dominated by 
Spark, but Apache Flink is a new player in that area. Flink is a large-scale data-processing 
engine that offers in-memory data streaming and therefore extremely fast processing for 
data-intensive as well as iterative jobs. 



CHAPTER 5 ■ THE HADOOP ECOSYSTEM

104

     Query Tools 
 A  query  tool is an interface that allows you to select or filter your data based on certain 
specific criteria, providing a subset of your data. It is important to create such specific 
subsets in the NoSQL world, because NoSQL database systems (and Hadoop) work 
with datasets as opposed to databases and tables. It is also important to understand 
the concept of datasets and how they differ from data stored in conventional relational 
databases. Another important thing to remember about the query tools: they don’t 
have their own data storage. Some query tools (such as Hive) store the metadata in a 
repository, but not the data that’s being processed by them. 

 Before now, the choice for such query tools was very limited, especially for ones 
supporting SQL interface. And MapReduce performance was a limitation. Now the 
next-generation products like Stinger, Impala, Presto, and Shark (Spark SQL) don’t use 
MapReduce and claim low latency. Some of these tools use their own distributed engine 
for query processing (and execution), and Spark SQL uses the Spark engine. In-memory 
processing is a key benefit for Spark, but other in-memory solutions are also emerging. 
NoSQL solutions like VoltDB and SploutSQL can add performance to your Hadoop 
data. A popular query tool like Hive is getting a performance facelift through distributed 
frameworks like Spark or Apache Tez (developed by Hortonworks) to reduce latency and 
help with performance. What are the benefits of this approach and how does that help 
you? I discuss the details shortly and will start my discussion with Spark SQL. 

     Spark SQL 
 Three years back, Spark SQL started as Shark at UC Berkeley and was developed as a 
faster SQL alternative to the moderately performing Hive. Shark effectively challenged 
the doubts about inefficiency of query processing on general data-processing engines. 
It was the first time that an interactive SQL tool was built on top of a generic processing 
engine (Spark) and performed so well. The availability of a SQL engine on top of a 
generic processing engine offers additional benefits, such as consolidation of data access 
methods like batch processing, streaming, and machine learning. 

 Recently, Shark development was ended and folded into the Spark SQL project. Also, 
Hive on Spark (  HIVE-7292    ) was introduced. Spark SQL will now provide all of Shark’s 
features (as well as some additional ones) for existing Shark users. Therefore, Spark 
SQL will provide both an upgrade path from Shark 0.9 server and also new features like 
integration with Spark programs. 

 Although Spark SQL has a lot of benefits (compared to Hive), many organizations 
currently use Hive extensively. The Hive community proposed a   new initiative     that would 
add Spark as an alternative execution engine (instead of MapReduce) to Hive. This will 
make transition to Spark easier for them. This initiative is known as “Hive on Spark,” or 
HIVE-7292. 

 Figure  5-1  summarizes the architectural differences between Hive, HIVE-7292, and 
Spark SQL.  

https://issues.apache.org/jira/browse/HIVE-7292
https://issues.apache.org/jira/browse/HIVE-7292
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 A few years back, when the Shark project started, Hive (using MapReduce) was the 
only SQL interface available for Hadoop. Hive compiled SQL into MapReduce jobs and 
supported a variety of formats. Performance issues necessitated supplementing Hive 
with proprietary enterprise data warehouses (EDWs) that required rigid and lengthy ETL 
pipelines. The vast difference in performance questioned the query-processing capability 
on general data-processing engines itself and speculated whether specialized runtime 
engines (such as EDWs) were necessary for performance. 

 Shark effectively demonstrated that the performance deficiencies (which made 
Hive slow) were inherent to the Hive architecture and could be overcome by using Spark 
as a processing engine (instead of MapReduce). Also, this solution can scale as well 
as MapReduce. A powerful SQL query engine working with a general data-processing 
engine can help support various types of data access such as batch processing, streaming, 
or machine learning, and enables application of advanced models (to the data) easier. 

 To start with, Shark achieved performance improvement (over Hive) by using 
Spark as a physical engine for execution (as opposed to MapReduce) while still using 
the Hive code base. The Shark development team realized that the Hive code base was 
a significant overhead since it was hard to maintain and optimize. Also, performance 
optimizations and sophisticated analytics were almost impossible to achieve using 
this code base that was designed for MapReduce. Subsequently, it was decided to end 
development for Shark and repurpose the resources to develop a new component for 
Spark—Spark SQL. 

SQL interface

SPARK engine

Data stored in HDFS

Hive

HIVE -7292Spark SQL

SPARK engine

Hive interface

MapReduce engine

Hive interface

  Figure 5-1.    Architectural differences between Spark SQL, Hive, and HIVE-7292       
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 Of course, the knowledge and understanding gained through Shark usage (by users) 
was actively applied by the development team while designing Spark SQL and thus has 
resulted in a more powerful SQL interface that also maintains compatibility with Shark/
Hive. Also, Spark SQL supports all existing Hive data formats, user-defined functions 
(UDFs), and the Hive metastore. Lastly, with features that will be introduced in the 
next version of Spark (1.1.0), Spark SQL will be faster (compared to Shark) by almost an 
order of magnitude. Thus, it will be an excellent resource to manipulate structured or 
semi-structured data and will support data ingestion from varied formats and sources 
(such as JSON, Parquet, Hive, or any other EDWs) as well as advanced analytics using 
sophisticated programming APIs. The long-term goal for Spark SQL is to provide an 
interface that supports both SQL and advanced analytics (machine learning, statistics, 
and so on). 

 To summarize, here are some of the key features of Spark SQL (latest version):

•     In-memory data processing:  Spark SQL provides the option to 
explicitly load data in memory for speeding up query processing. 
Also, it uses an efficient, compressed, column-oriented format for 
holding data in memory, helping to fit larger datasets.  

•    Fault tolerance:  Spark SQL is well suited for short- as well as long-
running queries. It can recover from mid-query faults as it uses 
the Spark engine for processing.  

•    Data sources API:  Provides a single interface for loading and 
storing data. Provides prepackaged sources with the Apache 
Spark distribution as well as provision for integrating external 
(custom) data sources. Examples of built-in or prepackaged 
sources are JSON, JDBC, Parquet, Hive, MySQL, PostgreSQL, 
HDFS, and AWS S3. External sources (currently available) include 
CSV,   Apache Avro    , HBase, Cassandra, Elasticsearch, and Amazon 
Redshift.  

•    Dataframes:  A  dataframe  is a distributed dataset organized into 
named columns. Logically, it is similar to a table in a relational 
database or a Dataframe in R/Python. Dataframes can be sourced 
from structured data files, Hive tables, external databases, or 
existing resilient distributed dataset (RDDs), an immutable 
distributed collection of records that can be stored in memory or 
on disk.  

•    Catalyst (rule and cost-based optimizer):  Dataframes expose more 
application semantics to the core Spark engine, and therefore 
Spark can use Catalyst to optimize the queries.  

•    Python API (PySpark):  Python is widely used with Big Data, but 
Python programs don’t perform as well as the JVMs due to the 
more dynamic nature of the language. Using the new DataFrame 
API, Python programs can now perform as well as JVMs as the 
Catalyst optimizer compiles DataFrame operations into JVM 
bytecode.  

http://spark-packages.org/package/databricks/spark-avro
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•    Statistical and mathematical functions:  Spark SQL supports 
a wide range of functions such as random data generation, 
summary and descriptive statistics, sample covariance and 
correlation, cross-tabulation (a.k.a. contingency table), and 
mathematical functions like  cos ,  sin ,  floor ,  ceil .    

 Figure  5-2  shows the Spark ecosystem and where Spark SQL fits into it.   
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  Figure 5-2.    Spark ecosystem       

     Presto 
 Presto is a distributed SQL query engine developed by Facebook and open sourced for 
use by the Apache community. It is optimized for interactive queries (including complex 
analytic queries). You can use standard ANSI SQL syntax including aggregations, joins, 
and window functions. 

 Presto does not use MapReduce as underlying execution model. For example, Hive 
converts queries into a series of MapReduce tasks that execute singly in a predetermined 
order. Each task reads data from disk and writes intermediate output back to disk. In 
comparison, the Presto engine uses a custom query and execution engine that supports 
SQL semantics. Since all the processing is in memory and pipelined across the network 
between stages, unnecessary I/O (as well as associated latency) is avoided. This pipelined 
execution model runs stages in parallel and passes on data from one stage to the next as 
soon as it is available. This helps in reducing latency for many types of queries. 

 Figure  5-3  shows the system architecture for Presto. The client initiates a query and 
sends SQL to the Presto coordinator process. The coordinator parses, analyzes, and plans 
execution for the input query. The scheduler is responsible for coordinating the execution 
pipeline, assigning work to nodes based on their network proximity (the ones closest to 
the data would be used) and monitoring progress.  
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 The scheduler is also responsible for spawning worker threads (as required). 
These worker threads access storage (using the appropriate storage driver) and retrieve 
data. The client then pulls the consolidated and processed data from the output stage, 
which in turn pulls data from underlying intermediate stages. As discussed earlier, all 
this processing occurs in memory and therefore provides speed to the entire query 
processing.   

     Analytic Tools 
 Analytic tools are the ones that scan most (or all) of the data and perform processing 
that derives information or knowledge from it. Broadly, these tools can be classified in 
two categories. The first category is tools performing aggregations (these aggregations 
being very similar to what data-warehousing queries perform). Some of these tools 
support SQL; others do not. I will discuss an interesting product (Apache Kylin) in this 
subcategory. 

 My second category comprises tools providing the capability to perform custom 
algorithmic processing, including predictive and prescriptive analytics. Traditionally, 
these were performed using HBase or Cassandra with HDFS storage. Spark is the latest 
entry in this space, with better performance, but other interesting tools provide this 
functionality too. 

 Some NoSQL databases do not provide aggregation support (for example, 
Cassandra, HBase). Precomputing aggregates while ingesting data and storing them 
(for later use) is an alternative. 

 Finally, there are products that don’t fit into one category or the other. For example, 
Druid (NoSQL analytic engine for aggregation) can also ingest data in real time like 
Storm. Druid stores the aggregates in memory (across the cluster) for faster access. 
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  Figure 5-3.    Presto architecture       
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     Apache Kylin 
 Apache Kylin is an open source distributed analytics tool developed by eBay. Kylin 
provides a SQL interface along with the capability to perform multidimensional analysis 
(OLAP) on Hadoop and supporting very large datasets. To add performance to these 
capabilities, Kylin prebuilds MOLAP cubes. In addition, it has distributed architecture 
that can benefit from MapReduce (or any other framework for processing distributed 
data) and also provides high concurrency. In addition to the SQL interface, Kylin also 
works well with other BI tools like Spotfire, Tableau, or MicroStrategy. 

 Following are the key features of Kylin:

•     Scalable and fast OLAP engine:  Kylin reduces query latency even 
for very large datasets. This is attributed to the architecture that 
prebuilds cubes along with calculations.  

•    ANSI SQL support and interactive querying:  Since we have all 
used SQL for such a long time, Kylin’s support for most ANSI 
SQL query functions is a useful feature and speeds up the 
development process. Interactive queries offer flexibility and 
speed (through prebuilt cubes).  

•    MOLAP cube:  Using file storage and prebuilding calculations 
provide speed to a MOLAP or multidimensional cube. Besides, 
the traditional weakness of MOLAP (limits on data inclusion 
within a cube) doesn’t exist for Kylin. For example, users can 
easily prebuild a cube in Kylin for more than 10+ billion raw data 
records.  

•    BI tool integration:  Integration with BI tools is very important 
for performing advanced analytics and reporting. Kylin can 
be interfaced with business intelligence tools such as Tableau, 
Spotfire, Microstrategy, and many other third-party applications.  

•    Open source ODBC driver:  Kylin’s ODBC driver is developed for 
accessing data sources as required and thoroughly tested with the 
Report-writing application Tableau. The driver is open sourced to 
the Apache community so that it is easy to customize it for your 
specific use.  

•    Easy and effective management:  The following features provide 
ease of use and management:

•    Job management and monitoring  

•   Compression and encoding for reducing storage needs  

•   Incremental data refresh for cubes (this allows you to process 
changed data only, reducing processing time)  

•   Web interface for managing, building, monitoring, and 
querying cubes     
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•    Performance enhancement:  The following features provide 
additional performance enhancement:

•    Kyline leverages the use of the HBase coprocessor for query 
performance. For simple additive or aggregating operations 
(such as sum, count, or like), pushing the computation to 
the region or master server (where it can work on the data 
directly without network traffic overhead) can provide a 
substantial improvement in performance.  

•   Kylin uses the “HyperLogLog” algorithm for determining 
distinct counts within a query. This algorithm approximates 
the number of distinct elements in a dataset, reducing 
memory consumption significantly and allowing use of very 
large datasets.     

•    Flexible and granular security:  Kylin allows you to set up ACLs 
(access control lists) at the granular level of a cube or a project 
and also provides support for LDAP integration. This helps in 
integrating with corporate security easily.  

•    Fault tolerance:  Kylin supports fault tolerance at the system as 
well as data levels:

•     Data fault tolerance:  Cubes in Kylin can be partitioned into 
segments, and the advantage is that you can refresh (or 
rebuild) an individual segment without impacting the whole 
cube. So, you can have a strategy to build segments daily, 
weekly, or monthly as needed. Any data errors detected 
or changes needed can be applied to the segment of least 
granularity and thus provide effective fault tolerance without 
the need to rebuild the whole cube. Data changes that 
can’t be accommodated by the least level of granularity will 
need rebuild at a higher level (for example, any data issues 
discovered after a week will need the weekly segments to 
be rebuilt). So, you need to balance the data error tolerance 
and query performance. Higher granularity for segments 
will provide a higher tolerance to data errors/changes, 
but will also cause more scans to execute for each query. 
Importantly, a cube is still available for use when some of its 
segments are being rebuilt.  

•    System fault tolerance:  Kylin inherits the system redundancy 
and fault tolerance that HDFS and HBase provide. 
Additionally, you can safely retry any failed build steps 
without any adverse effects. This ensures integrity and 
correctness of the final version of the build, regardless of any 
number of intermediate failures or retries.       
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   Kylin Architecture 
 I discussed Spark SQL and Presto in the last few sections. A number of SQL-on-Hadoop 
tools are available. So why use Kylin? Because most of these tools need to scan the dataset 
partially or fully to answer your query. Not only that, any joins (within your query) may 
trigger data transfer across the nodes, and depending on network traffic latency, the 
response you receive might not be what you would like. 

 In contrast, Kylin precomputes aggregations for all dimensions and stores the 
resultant values in a cube. The process followed for building cube(s) is extensive and 
considers all possible combinations of dimensions, thus ensuring coverage for a larger 
number of queries. Also, Kylin generates pre-join HiveQL (based on metadata) for joining 
fact tables with dimension tables. The pre-joins and pre-aggregation results are stored in 
HBase. So, most of the queries are served by the MOLAP (multidimensional OLAP) cubes 
and are substantially fast. Queries that can’t use a cube are routed to a Hive table that 
holds the metadata and thus execute as ROLAP (relational OLAP using star or snowflake 
schema). In essence, Kylin provides HOLAP (hybrid OLAP) architecture. 

 The next releases of Kylin are planned with Spark SQL replacing Hive (for additional 
speed and in-memory processing), Lambda architecture (for providing near real-time 
results), in-memory analytics (for performance), and capacity management. Also, there 
are plans to use the Spark engine. 

 The flow-chart in Figure  5-4  summarizes the cube build process within Kylin.  
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  Figure 5-4.    Kylin cube build process       

 Finally, let me summarize this discussion with a comprehensive Kylin architecture 
diagram. Figure  5-5  shows the main components of the Kylin engine: REST server, query 
engine, metadata manager, and job engine.  
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 The REST server interfaces with client queries and passes them on to the query 
engine. If the query results can be computed using the cube data, then the results are 
returned almost instantly, but if they can’t be computed (from the cube data), then the 
slower route is used, which involves using the Hive schema. You can add extensions or 
interfaces to Kylin core engine as needed.    

     In-Memory Processing Tools 
 For the last couple of years, memory-based processing has been dominated by Spark and 
Storm. Although both are extremely versatile and useful products, Apache Flink has some 
features that offer a definite advantage over these tested and proven products. 
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  Figure 5-5.    Kylin architecture       
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     Flink 
 Flink is a large-scale data-processing engine that offers in-memory data streaming and 
therefore extremely fast processing for data-intensive as well as iterative jobs. How does 
Flink differ from Spark? Well, Spark is primarily a batch-processing framework that can 
closely simulate stream processing. Flink is primarily a stream-processing framework that 
can also perform batch processing. Spark is not a pure stream-processing engine but in fact 
performs fast-batch operations on small parts of incoming data or does “micro-batching.” 
This may not be an issue for most applications, but for financial or real-time systems (where 
low latency is required), every millisecond is critical, and even a small performance issue 
can lead to severe monetary consequences. 

 You can also think of Flink as a replacement for Hadoop MapReduce that works in 
batch and streaming modes and uses directed graphs (instead of mapping and reducer 
jobs), thereby leveraging in-memory processing for a much better performance. 

 Flink has an excellent optimization engine. The Flink optimizer analyzes input code 
(to the cluster) and decides on the best pipeline (as it deems fit) for executing that code 
for a specific setup (which may be differ as per cluster hardware and number of nodes). 
For performance, iterative processing is performed on the same nodes (instead of the 
cluster running each iteration independently). Using optimizer hints, it is also possible to 
perform delta iterations only on parts of your dataset that may have changed. 

 Flink can work with YARN and also can run existing MapReduce jobs directly on its 
execution engine, providing an easy upgrade for organizations already using MapReduce. 
Finally, Flink works with on Apache Tez (only for batch processing), giving up some 
performance for scalability. 

 As for managing memory, Flink implements its own memory management inside 
the JVM (of DataFlow engine), thereby helping applications to scale easily and be less 
affected by JVM’s garbage collection overhead. This also (nearly) eliminates the memory 
usage abnormalities (or spikes) often seen on Spark clusters. It is possible to dump a 
JSON representation of the pipelines Flink has constructed for your job (through a 
built-in HTML viewer), making debugging easy. 

 Fault tolerance is an important consideration for streaming applications, and Flink’s 
fault tolerance mechanism is based on Chandy-Lamport distributed snapshots. This 
algorithm enables a process in a distributed system to determine the global state of the 
system during a computation and can be used for checkpointing. The mechanism uses 
small amount of system resources (thereby maintaining high throughput rates) and still 
provides a guaranteed level of consistency. 

 A lot of organizations (using Hadoop) are opting for a real-time streaming 
architecture (as opposed to the existing batch architecture). Static HDFS files are being 
supplemented with event streams, and batch workloads are being replaced with stream 
processors to deliver lower latency applications. The main reason for this transition is 
that the datasets and use cases that make up most of the workloads for Hadoop clusters 
are event-based (for example, event or audit logs). Another reason is that now stream 
processing technology is developed enough to handle more complex requirements. 
Finally, there are applications (like processing sensor data) that need continuous queries 
and can only be supported by a streaming architecture. 
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 Usually, stream architecture consists of the following modules:

•    Gathering and consolidating event streams  

•   Collecting, holding the streams centrally, and distributing them  

•   Analyzing the streams and creating derived streams    

 The first step is performed using applications like Flume or Sqoop, but it depends 
largely on the data sources. Input events may consist of data coming from (relational/
NoSQL) databases, machine-generated logs, or from sensors. This data needs to be 
cleaned and consolidated. 

 Applications like Kafka can be used for performing the second step. Kafka can collect 
event streams and log as well as buffer them. Kafka also offers fault tolerance (which is 
necessary in this case) while holding and distributing the streams. 

 The final step involves performing analytics on the streams. It may involve creating 
counters, aggregating them, consolidating streams, or creating derived data streams for 
further use. Apache Flink can be (and is) used to implement this step. 

   Flink Architecture 
 Remember that Flink is only a framework for distributed data analysis. At the core, Flink 
has a streaming iterative data flow engine. Flink uses two major APIs (the DataSet API for 
processing batch data and the DataStream API for processing event streams) on top of the 
core engine to provide the versatile functionality of processing dissimilar data with equal 
ease. The growing popularity of Flink has resulted in the development of domain-specific 
libraries and APIs built on top of these two major APIs. 

 Currently, the following libraries are available: Machine Learning library, a graph 
analysis library (Gelly), and a SQL-like API (Table). In addition, there are other projects 
that work on top of Flink, such as Google Cloud Dataflow and Apache MRQL. Finally, 
the Flink core engine can work with a variety of data-processing frameworks such as 
YARN/Apache Tez, can work as a standalone Flink cluster, or can be embedded in other 
applications. Figure  5-6  summarizes the architecture.     
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     Search and Messaging Tools 
 Search tools provide capability to index and search (primarily) for text data. So, they 
are applicable for certain types of data only. These search tools (for Hadoop) are not as 
flexible or extensive as the search utilities for relational databases, for obvious reasons, 
but they do have a place. Since a lot of NoSQL databases lack necessary secondary 
indexing capabilities, these products are sometimes used to augment them. Solr and 
Elastic Search for Hadoop are popular products in this category, and both use Lucene as 
the underlying indexing engine. 

 Messaging systems deliver messages in source-destination and publish- subscribe 
mode. Typically these systems work on top of real-time stream processors like Flink 
or Spark Streaming. Kafka is a popular messaging system (briefly discussed in the last 
section) that additionally allows you to have random access to your messages.  
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on-top projects 

Data processing frameworks (YARN, Tez, Flink 
clusters)

Flink Dataflow engine

Libraries (Hadoop M/R, 
Gelly, Table, FlinkML)
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For batch
processing  

For event 
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  Figure 5-6.    Flink architecture       
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     Summary 
 If you have worked with Hadoop for the past five years, you have probably noticed that 
the Hadoop world is in a state of constant transition, and applications get added (or 
vanish) almost daily. It is almost impossible to keep track of all the new projects, and 
therefore it is a difficult task to select perfectly synchronized components for your Big 
Data needs. By the time you have finalized, new components emerge that better suit your 
needs! 

 In this chapter, I have tried to provide a holistic view of the product categories and 
new products available as of today, and hopefully this will provide a good overview and 
a starting point for you. However, you still need to do your research and due diligence 
while choosing components that must satisfy your business requirements. Remember, if a 
new component (just introduced in the marketplace) matches your needs better but will 
impact your project deadlines by a month, it should be acceptable if it gives you an edge 
over the competition or improves your process efficiency by a large percentage. 

 You also need to understand that choosing any of these components involves 
complex engineering tradeoffs and you need to choose the option involving least amount 
of tradeoffs (and most benefits). Your prime objective should serve as a good starting 
point (for choosing main components), and you should try and build a system around it. 

 This chapter also serves as a transition to the Big Data world from relational 
technology. The later chapters discuss the design concepts for implementing Big Data 
solutions, and therefore the Hadoop product categories this chapter has discussed will be 
helpful in understanding them.     
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    CHAPTER 6   

 Re-Architecting for NoSQL: 
Design Principles, Models 
and Best Practices                          

 I was recently at a Gartner seminar about  data monetization , delivered by Doug Laney. 
Doug talked about an interesting concept of assigning monetary value to the data 
your organization has gathered historically. He also talked about the concepts of  data 
bartering  and paying taxes using information instead of money (which apparently he 
mentioned to a couple of IRS officials and enjoyed their reactions). Doug aptly terms the 
economics of data as  infonomics . Creation of a new discipline to monetize data efficiently, 
I feel, highlights the growing importance of data (and information) in today’s world. 

 Now think of the underlying issue with infonomics—how do you organize, 
consolidate, analyze, and present large volumes of data? Since the concept involves 
utilizing all the data your organization has gathered over the years, data volumes will be 
large. Also, like anything else that needs to sold, the end product needs to be useful and 
presentable. A Big Data solution can be utilized successfully to organize and analyze large 
volumes of data. Of course, you need to re-architect your data for NoSQL usage, since 
relational data can’t be used as-is with NoSQL databases. Certain transformations need 
to be applied, which I discuss in this chapter. 

 There are a lot of features of relational databases that you simply assume are 
available for any database system. For example, defining fine-grained security 
(or authorization) or referential integrity constraints or statistics. Also, things like 
concurrent updates or data type validations are handled automatically by the RDBMS. 
For NoSQL databases, only some of these features are available, but only with add-ons 
(and lots of extra work to install/configure/integrate with other components) or custom 
development involving time and money. For example, you have to transform your data 
to preserve data integrity (without availability of referential integrity) or deliver better 
performance without availability of advanced level of indexing or statistics. RDBMS 
provides all these features to you in one (relatively) easy-to-use package. 
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 Absence of referential integrity prompts denormalization of data. That reminds us of 
data warehouses, and although the transformation techniques are similar, NoSQL takes 
it a step further by eliminating any joins altogether. As you may recall, for star schemas, a 
fact table needs to be joined with appropriate dimension tables for effective (and flexible) 
filtering of data. With NoSQL databases, even those joins are not advisable. So, joins need 
to be eliminated completely. 

 Another important thing to remember is that many of the data integrity, validation, 
or concurrency features were not necessary for a lot of applications, and that actually 
facilitated development of NoSQL databases—they trade these features for better 
performance and scalability. 

 Some thought also needs to be given to non-datacentric factors such as security 
(authentication/authorization) or concurrency, since these features are provided by 
default within a RDBMS, whereas they are not available easily for NoSQL solutions. 

 As a concluding thought, you must remember the functional difference in RDBMS 
database design and NoSQL database design. RDBMS database design is a reflection 
of the business functionality and processes, whereas NoSQL design essentially reflects 
data access pattern and facilitation of performance for it (data within NoSQL database is 
denormalized to facilitate quick retrieval and processing). 

     Design Principles for Re-Architecting Relational 
Applications to NoSQL Environments 
 NoSQL databases primarily focus on the data usage patterns and rearrange data to 
facilitate performance. With the HDFS storage (in some cases), scalability and fault 
tolerance are available by default. Because I am discussing transition, I am assuming that 
there is an existing RDBMS-based system that provides necessary business functionality. 

 Therefore, as a first step, you need to review the existing data and the processing 
that needs to be transitioned to NoSQL. As you are well aware, there are several types of 
NoSQL databases (key-value stores, columnar databases, document databases, and graph 
databases). Based on your data characteristics and processing requirements, you must 
decide what type of NoSQL database suits your needs best. 

 As a next step, data within the (selected) NoSQL database will need to be 
denormalized, aggregated, and presented to facilitate analysis and ad hoc queries. I 
discuss each of these aspects of transition in detail. Finally, I discuss the implementation 
of non-datacentric features like security or concurrency for NoSQL solutions. 

     Selecting an Appropriate NoSQL Database 
 To start with, I am assuming that you have spent some time considering whether you 
really need to use NoSQL in your environment and made your decision using the various 
factors discussed in Chapter   1    . Note that Hadoop and NoSQL operate on datasets as 
opposed to databases and tables in a relational environment. So you can think of a 
NoSQL  database  as a  collection of datasets . This section discusses the major types of 
NoSQL databases and their potential applications. 

http://dx.doi.org/10.1007/978-1-4842-1287-5_1
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   Key-Value Stores 
 These databases consist of a global collection of key-value pairs. What does a key-value 
pair mean in this context? Let’s assume that a dataset with global sales details is accessed 
frequently for a marketing analytics system, and because there may be millions of sales 
records for popular products, retrieval takes time. It will help if this dataset is cached. So, 
a  key  can be defined that has this dataset as value, and then a quick data retrieval can be 
ensured by referring to the key. 

 A common problem is multiple keys pointing to the same dataset. If you can make sure 
that all the  values  (datasets) in your key store have unique keys, then you can successfully 
use it like a hash table. Key-value stores are mostly used as cache stores or key-based data. 
Remember, you will have issues if you try to query the same data using multiple keys. 

 Scaling out with key-value stores is easy and can be achieved by hashing the keys. 
Some key-value stores automatically do that for you. In general, key-value stores work 
well for applications performing lots of small reads/writes or continuous streaming 
because of good performance gains due to in-memory processing. Some popular key-
value stores are Memcache, Redis, Aerospike, and Riak. 

 What kind of applications can you utilize the key-value stores for? Consider this scenario. 
When you browse a retail website, a random cookie value is associated with a large chunk of 
serialized data on the server, often created for every visitor. These cookies then hang around for 
weeks, taking up valuable database space. A key-value store can be used to create a key entry 
for a visitor with a 24-hour (or as required) expiry, thereby releasing the space automatically. 

 Also, consider a simple capped log implementation. You can append items to a  log  
key (mapped to a file that captures log records) and retain only the last few items. You can 
use this to keep track of the system state without scanning through the ever-increasing 
amounts of logging information. 

 To summarize, key-value stores can be utilized for data that consists of:

•    A large number of small read/write operations  

•   Operations on multiple data structures  

•   Fluid data types or requires a flexible number of columns    

 Finally, how can you use a key-value store for your application? Here is an example 
using the key-value store Memcached. A typical Memcached installation has one or more 
servers that cache the data ( value ) along with a unique  key  as requested by any of the 
clients. The key can then be used to retrieve that data quickly in the future. The cached 
data has expiry duration specified and is removed from cache once that duration is 
reached. If multiple servers are available, more data can be cached (because memory for 
all the servers gets added for usage). 

 Because Memcached calls and programming languages will change based on the 
API used, I will use pseudocode to demonstrate the concept. For this example, assume 
that the server IP is 63.1.4.52 and the port used is 2200. Then, the sequence of commands 
will be similar to the following: 

    # pseudocode to define new cache and server 

   memcacheclt = new Memcache 
 memcacheclt:add_server('63.1.4.52:2200') 
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    Memcached can be used for reducing load on SQL databases by caching the 
frequently accessed data. Of course, it doesn’t offer a centralized query cache (as offered 
by RDBMS) or use any middleware to implement caching and hence doesn’t have a big 
problem when a cache is invalidated (possibly due to data change). 

    # Define data cache (value) and key for data within Sales table 

   sql = "SELECT * FROM Sales WHERE Product_id = ?" 
 key = 'SQL:' . Product_id . ':' . md5sum(sql) 

    If you are not familiar with  md5sum , it is a program that calculates and verifies 128-bit 
  MD5       hashes     for files as well as strings. The MD5 hash (or   checksum    ) serves as a compact 
digital fingerprint of a string or a file. Although an unlimited number of files (or strings) 
can have any given MD5 hash, it is really unlikely that any two non-identical files (or 
strings) will have the same MD5 hash. This helps in ensuring uniqueness of keys. Note 
that the underlying MD5 algorithm is   no longer considered secure     (although it doesn’t 
need to be, especially for SQL strings), but because any change to a string (or file) will 
cause its MD5 hash to change,  md5sum  can be used to verify the integrity of files or strings. 

    # To start with, check if the key-value pair is defined 
 if (defined result = memcacheclt:get(key)) { 
         return result 
 } else { 

           # execute sql to create key-value pair 
         handler = run_sql(sql, Product_id) 

           # Since you get back a handler or pointer object (after 
         # executing SQL), you need to convert it to an array for caching 
         final_array = handler:convert_to_an_array 

           # Cache it for ten minutes 
         memcacheclt:set(key, final_array, 10 * 60) 
         return final_array 
} 

    When you cache sales rows for this product, you will see the same data for up to ten 
minutes. Which means it will take up to ten minutes to see any data changes that you 
make (unless you actively invalidate the cache by making a change to the data). Typically, 
you can use key-value databases for web applications and hold user profiles/preferences, 
session details, and shopping carts.  

https://en.wikipedia.org/wiki/MD5#MD5
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic hash function
https://en.wikipedia.org/wiki/Checksum#Checksum
https://en.wikipedia.org/wiki/MD5#Security#MD5
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   Document Databases 
 A document-oriented database stores and manages data stored as documents. A 
 document  can be a grouping of structured or   semi-structured data    . Document-oriented 
databases can be thought of as a subclass of the   key-value store    s, since the way data 
is stored and retrieved is similar, but the way data is processed is different. For a key-
value store, the data is inherently opaque to the database; it is just value for a key. In 
comparison, a document-oriented system reads the internal structure of the data (or 
document) to extract   metadata     and uses it for further processing and optimization. 
Document-oriented databases extract type information from the data itself and group 
related information together for ease of use. For example,   XML databases     (a specific 
subclass) are optimized for extracting metadata from   XML     documents. Also, document 
databases are typically optimized for complex random text searches (for example, 
elasticsearch) as well. 

 With document-oriented databases, you get the flexibility of having every instance 
of data be different from others, and this lends valuable support for optional values as 
well as updates. That’s why they are so popular with   web applications    —which change 
frequently, may have semi-structured data, and also need to be deployed quickly. Next, 
let me discuss what a document is, using an example. Consider the following text: 

   Blue striped shirt 
 226453 
 20 
 12345 
 IL (US) 

   Although it may be clear to you that this document contains the details for a clothing 
item, it is not clear as to what the other individual fields represent. If this information 
is stored in a key-value store, the semantic content (that this inventory item for a web 
retailer represents) may be lost and the database will have no way to optimize or index 
this data effectively. It may be possible to employ additional logic to separate the string 
into fields and assign fields to columns within a table, but it will not be a simple task. 
Without metadata, parsing free form data like this can be complex. Now consider the 
same document marked up in pseudo-XML: 

    <Item> 
    <ItemName>Blue striped shirt</ItemName> 
    <ItemType>Male Shirt</ItemType> 
    <ItemSize>Large</ItemType> 
    <ItemNumber>226453</ ItemNumber> 
    <Quantity>20</Quantity> 
    <WarehouseNum>12345</WarehouseNum> 
    <State>IL</State> 
    <Country>US</Country> 
  </Item> 

https://en.wikipedia.org/wiki/Semi-structured_model#Semi-structured model
https://en.wikipedia.org/wiki/Key-value_store#Key-value store
https://en.wikipedia.org/wiki/Metadata#Metadata
https://en.wikipedia.org/wiki/XML_database#XML database
https://en.wikipedia.org/wiki/XML#XML
https://en.wikipedia.org/wiki/Web_application#Web application
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   So now, the document includes both data as well as metadata and that explains each 
of the fields. This way, it is possible to query the data like “find all the <Item>s located 
in <state> of ‘IL’” or design index on the state field for performance. You can combine 
search conditions just like any other database, but the major difference is embedding of 
metadata within the document itself, and that eliminates the need for predefining the 
database fields. It also offers the flexibility of adding or removing certain fields, and thus 
every document in the database can have a different format. One <Item> may have <Size> 
while the other may have <Style> instead. That doesn’t invalidate the earlier query of 
looking for items located in Illinois for this data. 

 The embedded metadata also allows the document format to be changed without 
affecting the existing documents. Let’s say that a new <ItemPicture> field is added to the 
new documents. It won’t affect any existing documents—they simply won’t have a picture 
associated with them. Also, in general, any queries based on fields that are not a part of a 
document won’t retrieve them. 

 Popular formats for documents include XML, YAML, JSON, and BSON. Some 
documents don’t contain clearly defined metadata (for example, PDFs), and the database 
managing them may provide ways to map data using indexing or may include predefined 
formats based on XML such as MathML, JATS, or DocBook. In some cases, schema 
languages like DTD, XSD, or Relax NG are used to map documents to a more usable 
format. JSON is about the most popular format (used mostly for interactive web-based 
applications) by a number of document-oriented databases. 

 Documents can be stored using a unique key for reference and retrieved using it. 
A key can be a string, a   URI    , or a path. It helps to create an index on the key field for 
speeding up document retrieval. More indexes can be created to speed up frequent 
searches. Most of the popular document-oriented databases provide tools to extract 
and index almost all the metadata as well as the data content for documents that they 
manage. Queries are further supported by availability of a query language, making it easy 
for the users. 

 Document-oriented databases can be used for data that consists of the following:

•    A wide variety of data types and may have a number of access 
patterns  

•   A need to build CRUD (create, read, update, delete) apps  

•   Data types like JSON, HTTP, REST, JavaScript, and used with 
web-based applications  

•   Processing that involves a lot of small (and possibly volatile) 
continuous reads and writes  

•   Fluid data types or requires a flexible number of columns (due to 
optional data)  

•   Large media (BLOB types) or semi-structured    

 Applications suited for document databases are event logging, e-commerce 
applications, and content management applications. Popular document-oriented 
database systems are MongoDB, CouchDB, and OrientDB.  

https://en.wikipedia.org/wiki/URI#URI
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   Columnar Databases 
 A  columnar  database organizes its data in columns instead of rows. This re-orients the 
focus of   data     and helps in writing/reading data from hard disk storage more efficiently, 
thereby speeding up the queries performed on a dataset. A  data column  consists of 
name and value (and sometimes a timestamp). Each row can have a different number of 
columns. A row key can be used for queries, or secondary indexes (created on column 
values) can be used too. 

 For a columnar database, column values are physically grouped together as opposed 
to rows. Because the   data     is stored in record order, 5th entry for column 1 and the 5th 
entry for column 2 are part of the same record. This enables individual data elements 
(such as the following product details) to be accessed in columns as a group, instead of an 
individual row-by-row access. 

 Here is an example of a product table: 

   ID      ProductName     Category      Quantity       Price 
 1       Green Tea bags  Tea           100            3.99 
 2       Black Tea bags  Tea           100            2.99 
 3       GingerTea bags  Tea           100            4.99 

   For a row-oriented database, the data would be stored like:  1,Green Tea bags,
Tea,100,3.99;2,Black Tea bags,Tea,100,2.99;3,Ginger Tea bags,Tea,100, 4.99;  

 For a column-oriented database, the data will be stored as:  1,2,3; Green Tea 
bags,Black Tea bags,Ginger Tea bags;Tea,Tea,Tea;100,100,100;3.99, 2.99,4.99;  

 But why organize the data in columns? One reason is the compression it provides for 
storage. As a result, columnar operations (such as MIN, MAX, SUM, COUNT, and AVG) 
can be performed very speedily. Also, because a columnar database is self-indexing, 
it can store data more efficiently (disk space–wise) compared to a relational database 
management system (  RDBMS    ). Also, data compression offered by columnar databases is 
a big advantage. The benefits of these features can be seen for a large data volume, where 
data access performance is of essence. Otherwise, for smaller volumes, databases offering 
  in-memory analytics     can easily make the relative benefits of row-oriented versus column 
oriented databases somewhat irrelevant, due their speed—although data compression 
offered by columnar databases can still be useful, since memory is expensive and 
compression can help you fit in datasets using smaller RAM. 

 What kind of applications can make use of columnar databases? As stated earlier, 
large data volume is required to see the difference in performance. In addition, columnar 
databases are well suited for large amount of data   aggregated     in a few columns. Columnar 
databases do not support ACID transactions and are more useful where “eventual 
consistency” can be tolerated. 

 Another thing to remember about columnar databases is that they perform as 
well for applications where writes are more frequent as they do for queries. Also, these 
databases perform well where applications need to access only a few columns (of large 
numbers of rows) at once. Columnar databases can speed up your analytical queries by 
helping you focus on the necessary columns without reading through thousands of rows. 

 Finally, columnar databases can also be used for time-dependent columns (or for data 
that has expiry), since it is possible to set up automatic column expiry after a specific date. 

http://searchdatamanagement.techtarget.com/definition/data
http://searchdatamanagement.techtarget.com/definition/data
http://searchsqlserver.techtarget.com/definition/relational-database-management-system
http://searchbusinessanalytics.techtarget.com/definition/in-memory-analytics
http://whatis.techtarget.com/definition/aggregate
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 Though the concept of a column store has earlier been implemented as part of 
relational databases, RDBMS doesn’t provide the flexibility of columns differing across 
column family rows, which is permitted by NoSQL columnar databases (you can have 
varying number of columns for each row). 

 As is widely known, columnar databases are derived from Google’s Big Table. 
Popular distributed scale-out columnar databases include HBase and Cassandra. 

 To summarize, you can use distributed scale-out columnar databases if your data:

•    Needs high availability and redundancy  

•   Needs to span multiple data centers in different geographical 
locations and you need a distributed and partition-tolerant 
option capable of handling long latencies  

•   Has continuous data streams that don’t need any consistency 
guarantees  

•   Has fluid data types and dynamic fields  

•   Has a potential for truly large volumes of data, such as hundreds 
of terabytes, and need aggregations on a few columns    

 Typically, the following kinds of applications can benefit from this kind of Big Data 
processing capability:

•    Data analytics (user behavior, network traffic, log files)  

•   Bioinformatics (genetic and proteomic data)  

•   Stock market analysis (trade data)  

•   Web-scale applications (search engines)  

•   Social network services     

   Graph Databases 
 Graph databases have their origin in the graph theory proposed by the Swiss 
mathematician Leonard Paul Euler. Main components of graph databases are  nodes  and 
 edges  (or  relationships ). Both nodes and relationships can have properties associated with 
them. In addition, nodes can also be labeled with zero or more labels. Nodes represent 
entities that you might want to monitor (or query), and relationships are relations that 
exist between the nodes. Properties (or attributes) provide information about the nodes 
or the relationships. 

 For example, if “Practical Hadoop Security” were one of the nodes, one might have it 
tied to properties such as “book,” “security reference material,” or “220 pages,” depending 
on which aspects of “Practical Hadoop Security” are relevant to a particular database. 
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 Graph databases are often faster (compared with   relational databases    ) for complex 
queries on large datasets, since they do not require expensive   join     operations. As they are 
not dependent on a static schema, they perform better for frequently changing data as 
well as evolving schemas. However, they can’t perform as well (as relational databases) 
for static schemas with large numbers of data elements. Graph databases, of course, work 
best for graph-like queries (such as computing the shortest path between two nodes or a 
graph’s diameter computation). 

 For scenarios with complex inter-related relationships (for example, queries 
involving multiple highways connecting cities, proteins interacting with other proteins, 
and employees working with other employees) between various nodes (or entities) graph 
databases work best. That’s why graph databases are well-suited for the following types of 
problem domains:

•    Network and IT infrastructure management  

•   Identity and access management  

•   Business process management  

•   Product and service recommendations  

•   Social networking    

 An important thing to remember about graph databases is that they don’t work well 
for processing large volumes of data and therefore for applications involving large-scale 
graphs (such as social networks), columnar (or other suitable) databases are frequently 
used for storage and retrieval, while graph operations work as a top processing layer that 
contributes performance (for example, Titan graph database). 

 I’ll use LinkedIn’s architecture as an example. LinkedIn uses a combination of 
Oracle, Voldemort, Espresso, Pinot, and XML for data storage. Databases are partitioned 
horizontally and vertically (for performance). Due to partitioning, it is not possible to 
implement referential integrity or cross-domain JOINs. Also, an eventual consistency 
model is used and therefore data is not guaranteed to be consistent. Voldemort and 
Pinot are key-value stores. Espresso is LinkedIn’s online, distributed, fault-tolerant 
NoSQL database and is used by over 30 LinkedIn applications, including member profile, 
InMail (the member-to-member messaging system), parts of the home page, mobile 
applications, and so on. Oracle is used sparingly due to its cost. 

 Voldemort is a simple key lookup system and is used for quickly looking up small 
pieces of data (such as for a user profile, data like  jobs you might be interested in ,  people 
you may know , and so forth). Pinot is used for larger key-value lookups like historical 
data ( give me all the Big Data jobs from January to March ) and is scalable for storing large 
amounts of data. 

 The Cloud is a server that caches the entire LinkedIn network graph in memory 
(LinkedIn has developed a proprietary graph database for this purpose, which sits at the 
center of nearly every operation). Each instance of Cloud supports 22 million nodes and 
120 million edges and needs 12 GB RAM. There were 40 Cloud instances in production by 
2008 (I’m not sure how many instances there are now). The Cloud instances are updated 
in real time with updated data and are persisted to disk on shutdown. Having everything 
in RAM is a limitation, but because partitioning graphs is hard, there are no other options. 

https://en.wikipedia.org/wiki/Relational_databases#Relational databases
https://en.wikipedia.org/wiki/Join_(SQL)#Join (SQL)
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 Though the Cloud caches the entire LinkedIn network, each user needs to see 
information relevant to him only and since computing these individual user views is 
expensive, LinkedIn does it only when a user connects and keeps it cached. This cached 
network view is not updated during the session, unless the user himself adds/removes a 
link (also, it’s not updated if any of the user’s contacts make changes). 

 For searches, a customized version of the Lucene search engine is used, and because 
cached data is searched, the results are returned really quickly. Kafka and Databus are 
used for data replication, and Zoie (real-time search and indexing engine that uses 
Lucene), Bobo (faceted search library for Lucene,  facets  being attributes of users such as 
industry, previous companies, patents, and so on), and SenseiDB (real-time, faceted, key-
value and full-text search engine) for online searches. 

 Figure  6-1  shows the LinkedIn architecture as of 2012. There may have been changes 
to it since, but consider it as an example of using a graph database for analysis with other 
NoSQL databases used for storage.  
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  Figure 6-1.    LinkedIn architecture       

 Popular graph databases are Neo4j, AllegroGraph, and InfoGrid. I will demonstrate 
the major concepts for graph databases through a quick example using the Neo4j 
database. 

 Graph data modeling is a process in which a user represents a specific domain 
through a connected graph of nodes and relationships. This graph is then used to 
answer questions in the form of Cypher (Neo4j query language) queries. Let me start by 
describing the domain (for my example) first. 
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   Domain Description 

 Consider the following description of the connection between two people, James and 
Scott. They work for the same company. Both James and Scott have bought a set of 
candle-holders from Amazon.com. 

 We can use this statement to identify components nodes, labels, and relationships 
and build our model.  

   Nodes 

 Node is a primary component and can have attributes (properties), relationships (with 
other nodes), and labels. Typically, nodes are entities with a unique conceptual identity. 
In this case, the following nodes need to be defined:

•    James  

•   Scott  

•   Set of candle-holders     

   Labels 

 Next, let’s decide if you need to assign any labels to your nodes. A  label  is used for 
grouping nodes into sets and is optional. If defined, database queries can use labels 
instead of individual nodes, making it easier to write compact and more efficient queries. 
For this example, let’s define two labels:

•    Person (applied to nodes James and Scott)  

•   Object (applied to node Candle-holder set)     

   Relationships 

 The following interactions can be identified between these nodes:

•    James is a colleague of Scott  

•   Scott is a colleague of James  

•   James bought a set of candle-holders  

•   Scott bought a set of candle-holders    

 Next, I’ll connect the nodes together to demonstrate their interactions and complete 
the graph data model. Nodes labeled  Person  can be connected by the  colleague of  
relationship. Nodes labeled  Object  can be connected with nodes labeled as  Person  using 
 has bought  relationship, as shown in Figure  6-2 .   
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   Creating Attributes 

 Nodes, by themselves, don’t provide any useful information and can’t answer the 
questions that may be asked. The attributes depend on information that may be required 
for the nodes. For example:

•    When did James and Scott become colleagues?  

•   What’s the price for the set of candle-holders?  

•   From where did James and Scott buy the set of candle-holders?  

•   How old is James?    

 Addition of the following attributes help answer those questions (note that the 
attributes are added as key-value pairs) as shown in Figure  6-3 .  

ScottJames

Set of Candle-holders

has bought 
has bought 

Colleague of

Colleague of

  Figure 6-2.    Graph data model for Neo4j-based example       
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 Let’s add the attribute data to the database using Neo4j query language Cypher: 

    // Create Entities or Nodes 
 CREATE (James:Person { name: "James", age: 37 }) 
 CREATE (Scott:Person { name: "Scott", age: 53 }) 
 CREATE (sch:Object { Object_name: "Set of candle-holders", price: "$50" }) 

   // Create relations 
 CREATE (Scott)-[:COLLEAGUE_OF { since: 1072339200 }]->(James) 
 CREATE (James)-[:HAS_BOUGHT { on: 1418976000 }]->(sch) 
 CREATE (Scott)-[:HAS_BOUGHT { on: 1420272000 }]->(sch) 

    Note that the dates used (1072339200, 1418976000, and 1420272000) are epoch times 
( epoch time  is seconds elapsed since January 1st, 1970, not counting leap seconds). So, if 
you convert  12/25/03 08:00  to epoch time, you will get 1072339200 as a result. 

 Finally, here’s a sample query that answers “What’s the price of a set of candle-holders?” 

   MATCH (sch:Object { object_name: "Set of candle-holders" }) 
 RETURN sch.price as price 

   To summarize, graph databases can be used when the data:

•    Has complex relations as in social network data  

•   Needs to dynamically build relations between entities that may 
have dynamic or changing properties  
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  Figure 6-3.    Graph data model for Neo4j-based example (with attributes)       
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•   May need complex or nested joins for the queries involved  

•   Belongs to location services or recommendation engines    

 This completes my discussion about selecting an appropriate NoSQL database 
solution based on your data and processing needs. Next, I discuss the changes you need 
to make to your data for re-architecting your application for NoSQL usage.    

     Concurrency and Security for NoSQL 
 The concepts of concurrency and security work a little differently for NoSQL 
environments (compared to RDBMS). Mechanisms to implement concurrency (like 
locking or transaction isolation levels) don’t exist for most of the NoSQL databases. 
Security needs to be implemented using third-party solutions and is not integrated with 
databases. So, these features that are available by default for RDBMS need to be simulated 
for some NoSQL environments. This is one of the tradeoffs for better performance offered 
by NoSQL. I’ll now discuss these concepts in detail. 

   Concurrency 
 When a user is updating data from a table within a RDBMS database, other users can’t 
modify the same data, since it is locked (via  exclusive write lock ). Before locking data for 
an update, RDBMS waits to gain exclusive control of the dataset while users are reading 
the data with a  shared read lock . Once there are no shared locks, the dataset is locked 
using an  exclusive write lock . Concurrency is handled effectively using the database 
locking. RDBMS supports ACID (atomicity, consistency, isolation, and durability) 
transactions, that provide reliability of data. 

 NoSQL databases don’t support ACID compliance for transactions but do have 
alternate strategies.  Optimistic concurrency control  (OCC) is one of them. OCC assumes 
that multiple transactions may complete without mutual interference. Therefore, 
transactions are allowed to use data resources without acquiring locks on them. However, 
every transaction verifies that the data used (read or written) by it is not modified by any 
other transaction. If conflicting modifications exist, the committing transaction rolls 
back. OCC can only be used in environments with low data contention, since otherwise 
the overhead of restarting transactions will negate the performance advantage and high 
throughput gained by avoiding locking. 

 Typically, since most NoSQL databases operate on the philosophy of “single write, 
multiple reads” (especially open source). They are not expecting concurrent updates 
and therefore are not designed to support them. By default, most of the distributed data 
systems support  eventual consistency . Any system that has multiple nodes processing 
read requests can’t contact other nodes (to verify the data that’s provided) while 
processing a read request, if it has to deliver good performance (since verification will 
involve additional time). Therefore, the data provided may or may not be the latest; the 
best you can hope for is for nodes to synchronize and be eventually consistent. This 
concept is also known as BASE (basically available). 
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 Now, if your application needs some level of concurrency control (maybe not as 
rigid as ACID compliance), what do you do? Here are some additional ways you can 
implement concurrency in your NoSQL environments:

•    You can use ZooKeeper. The way Zookeeper works is by 
facilitating distributed locking using a quorum.  

•   You can use one of the well-tested algorithms for distributed 
consensus—for example, Paxos along with MVCC (multiversion 
concurrency control).  

•   As you have seen, locking in ACID-compliant database 
environments can cause readers (SELECTs) and writers 
(UPDATEs) to wait for each other (to complete). This situation 
is resolved by using MVCC. A  version  is a snapshot of data at a 
point-in-time. While querying a table, the readers get access 
to the current version of the data, and updates may happen 
simultaneously (in parallel). Therefore, the same query at a later 
point in time may use a newer version and yield different results.  

•   You can use the CAP model, which states that any networked 
shared-data system can only have two of three desirable 
properties: consistency (C), which means you get a single up-to-
date copy of your data; high availability (A) of data (for updates); 
and tolerance to network partitions (P).  

•   Although designers still need to choose between consistency 
and availability when partitions are present, with the advent 
of contemporary networking systems, there is lot of flexibility 
possible for handling partitions and also recovering from them. 
Therefore, a modified CAP goal can be to maximize combinations 
of consistency and availability required for a specific application. 
Of course, this needs to be accompanied by plans for continuity 
during a partition and also for recovery later, thus overcoming 
perceived limitations for CAP.     

   Security 
 Security is another RDBMS feature that you never even think of as a feature. In the open 
source NoSQL world, there is no extensive integrated security implementation. There is 
no built-in authentication or authorization. There is no built-in encryption or masking 
either. All these features need to be implemented through separate applications or API, 
and you need to make sure that the applications or APIs are well integrated. Some of the 
NoSQL solutions available commercially (for example, MongoDB by 10Gen or Cassandra 
by Datastax) are including authentication, masking, and encryption features with their 
products, but they still lack effective means for authorization or granular security. 
Besides, all the commercial NoSQL products don’t offer these features. 
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 Getting back to open source products, Kerberos is widely used for authentication 
with a large number of open source NoSQL solutions. Kerberos is developed by MIT, is an 
open source application easily available, and works with a wide number of Linux flavors 
as well as HDFS. It also works well with Apache applications like HBase, Hive, Pig, and 
others. Most of the major Hadoop vendor distributions work with Kerberos, and that’s 
why some of them are now including Kerberos with their distributions. Because Kerberos 
has been available for a long time, there is extensive documentation about installation, 
configuration, and possible issues as well as solutions. 

 Authorization can be performed using HDFS ACLs or using Apache Sentry (if you 
are using Hive). Also, there are components like Apache Knox or Apache Ranger available 
now to offer a comprehensive security solution. You can use Ranger (or Knox) to create 
access policies (for users or groups) for various Apache components like HDFS, Hive, 
or Hbase, which provide granular (table-level) permissions. Knox also offers LDAP 
integration, making it easy to integrate security for Hadoop with your corporate security. 
Finally, most Hadoop vendors (and some NoSQL databases) provide their own custom 
tools for authorization. 

 Data encryption is available in transit as well as  at rest  (when data is stored on a 
physical disk drive), using encryption and compression APIs developed by the Apache 
foundation. Also, there are open source encrypted file systems like eCryptfs that can 
be used successfully with Hadoop and NoSQL solutions. In addition, most of the major 
Hadoop vendors provide interfaces with third-party encryption tools. 

 Finally, there are excellent open source monitoring tools like Ganglia and Nagios 
available to monitor system resources and unauthorized access to NoSQL databases. 

 In conclusion, the combined strategy of implementing tools for authentication, 
authorization, encryption, and monitoring results in a robust security option for NoSQL 
databases. Open source databases mostly use open source tools, whereas NoSQL 
databases available commercially (paid) use their own custom tools to implement the 
combined security strategy.    

     Designing the Transition Model 
 The last section discussed criteria for selecting an appropriate NoSQL database. As a 
next step, the data (located within RDBMS) needs to be transformed for NoSQL usage. 
This involves denormalization and also, in some cases, conversion to star schema 
before denormalization. In either case, it needs to be ensured that there are no joins, no 
relations, and few tables as a final result. 

 Also, note that the process for data migration will depend on which NoSQL technology 
you choose. For example, the process for transitioning RDBMS data into a columnar 
database (such as Hbase or Cassandra) will differ from the one for key-value stores like Riak 
or to document stores like MongoDB. I discuss these processes in detail next. 

     Denormalization of Relational (OLTP) Data 
 Consider a scenario where OLTP (online transaction processing) relational data needs to 
be moved to NoSQL environment for better performance. Based on data and application, 
it is decided that the target NoSQL environment will be Cassandra (a columnar database). 
Figure  6-4  shows the logical data model for the relational database that holds the data. 
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  Figure 6-4.    Logical data model for Claims processing system (relational design)       

 This is the same claims processing application discussed in detail in Chapter   3    . Figure  6-4  
shows it again for easy and quick reference. For brevity, I will only transform it partially.  

 Because NoSQL databases focus on queries and more frequently used datasets, 
imagine a scenario where the YourState insurance company (using this Claims processing 
system) encountered a big issue due to increased percentage of fraudulent claims often 
filed by unauthorized people and decided to implement a new procedure for filing 
claims. This procedure involved some additional processing and slowed the claim filing 
process, resulting in complaints by genuine policy holders with legitimate claim requests. 

 The CIO for YourState insurance asked his chief architect to come up with a solution, 
who decided to leverage the power of Big Data and NoSQL. He analyzed the situation 
(and reason for slow performance) as follows:

•    Policy-holder verification involves joining  policy_owner  
(3 million policy holders) and their policies (about 4 million rows)  

•   Checking claims for a policy holder involves a join with  claim  
(about 20 million claims for last 2 years)  

•   Getting claim details involves joins with other claim related tables 
and further slows down the information retrieval    

 

http://dx.doi.org/10.1007/978-1-4842-1287-5_3
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 The CIO thanked the chief architect and asked him to suggest a remediation plan. 
Following was the remediation plan suggested by the chief architect:

•    Denormalize and combine  Policy_owner ,  Policy_type , and 
 Policy  tables to a temporary table  

•   Denormalize and combine  Claim  table with appropriate claim-
related tables (such as  Claim_property ,  Claim_type ,  Claim_
line_item , and so on) as needed to eliminate as many joins as 
possible and output to a temporary table  

•   Export data from temporary tables to columnar and document 
databases and test performance    

 As a first step,  Policy ,  Policy_type , and  Policy_owner  tables were denormalized as 
shown in Figure  6-5 .  

  Figure 6-5.    Denormalization of policy data       

 The objective here is to reduce the number of joins, since at a high volume, there is 
a big performance impact on policy (and owner) information retrieval. Also, small tables 
like  Policy_type  can easily be combined to reduce the impact. 

 Also, please note that secondary indexes will need to be added for column 
 PolicyOwnerSSNFEIN ,  PolicyOwnerName , and  PolicyOwnerPhoneNumber , since most of the 
customers calling in (for filing claims or other claim-related services) will use one of these 
identifiers for locating their information. I will discuss addition of secondary indexes 
while implementing the final model. 

 As a next step, I’ll denormalize claim-related data to eliminate joins and provide 
speed for retrieval as shown in Figure  6-6 .  
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 For claim data, the denormalization is a little different (compared to policy). Also, as 
you can see, I have kept three tables in the final count. The reason is expected processing. 
For claims, the primary purpose of data access by customers is to get claim details or 
claim status or file a new claim. In most of those situations, claim property information or 
claim resubmission information is not needed (except when a customer calls to resubmit 
a claim or needs status on resubmission), because the percentage of resubmitted claims 
is only 12% for YourState, and claim properties are rarely needed for customer enquiries. 

 Therefore, I decided to keep those entities ( claim_resubmission  and  claim ) 
separate from the  claim_line_item  entity, which holds details of a claim and up-to-date 
status. In this case, combining all the entities will simply increase record length (thereby 
increasing access time), and because the property or resubmission columns are not 
accessed frequently, will not provide a good value. 

 Also, in this case, secondary indexes will be required for columns  PolicyId , 
 ClaimSubmissionDate ,  ClaimStatus  (for tables  Claim  and  Claim_line_item ), 
and for columns  ClaimResubmissionDate  and  ReviewerEmployeeId  (for table 
 ClaimResubmission ). 

 Note that I have only demonstrated the concept of denormalization for this 
application and the total effort (or denormalization required) may be more extensive, if 
you need to migrate your data to a NoSQL environment. Also, this application was OLTP, 
and the technique for OLAP-based data (or star schemas) is a little different.  

  Figure 6-6.    Denormalization of claim data       
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     Denormalization of Relational (OLAP) Data 
 In the case of OLAP applications, since most of the denormalization is already performed 
(while designing a star schema), you simply need to eliminate the joins (between fact 
table and dimensions) by adding the dimensional data to the fact table for queries you 
are most interested in. You may also want to do it only for narrow dimensions with a 
larger number of records. The reason is if the dimension is wide, then it will make the 
record length really large. Also, you may want to remove facts that you are not interested 
in (to reduce the record length). I’ll discuss this approach with a quick example. 

 Figure  6-7  is a star schema for a generic sales analysis system.  Sales_facts  is a 
fact table, and you can see dimensions such as  Customer ,  Location ,  Date ,  Product , and 
 Sales_Reps .  

  Figure 6-7.    Sales analysis star schema example       
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 The fact table  Sales_facts  only has two facts—total sales and number of items sold. 
This company has had a great year sales-wise, and the sales fact table has 100 million 
records. There are 500,000 customers who contributed to these sales along with 1,000 sales 
representatives, 300 locations, and 700,000 products. The sales volume poses an issue 
for analysis that focuses on products bought location-wise by certain type of customers, 
since the resulting join (100 million × 500,000 × 300) is huge. Every time there is an analytic 
query involving these dimensions, it takes a long time to get the results back. 

 Therefore, it was decided to check whether a NoSQL solution could perform better 
(as compared to a RDBMS-based ROLAP solution). The data architect denormalized the 
schema (for the type of specific analysis needed) and designed a denormalized version of 
the schema, as shown in Figure  6-8 .  

  Figure 6-8.    Sales analysis star schema—denormalized       
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 The first step is combining the relevant part of dimension tables with the fact data 
(to avoid joins). Based on the performance need, it can be easily concluded that columns 
from dimensions  Customer ,  Location , and  Product  need to be added to the fact table. So, 
you can remove the dimension  Sales_Reps  from the dataset, since it is not relevant to this 
requirement. Next, you can evaluate the columns in the considered dimensions and since 
the columns  ProductId ,  ProductSerialNum ,  LocationId  (from  Product  dimension), 
 CustomerId ,  LocationId , and  CustomerSince  (from  Customer  dimension) are not 
relevant to this dataset, they can be removed as well. 

 The  Date  dimension is not combined for two reasons. First, it is small and only has 
730 rows (for two years). Second, only a few queries might use it, since the analytical 
focus of this dataset is not time. 

 Last, there are only two measures or facts, and since both are relevant to the 
dataset, none needs to be removed. Secondary indexes will be needed for boosting 
performance and can be created for columns  CustomerName ,  ProductName ,  IndustryType , 
 CustomerType ,  State ,  City , and so on. 

 To conclude, the final denormalized models (for OLTP as well as OLAP) constitute 
the transitional models for NoSQL targeted re-architecture. The reason I term them as 
 transitional  is because they will change as per the target NoSQL solution that’s planned to 
be used. 

 The next section discusses a target implementation of these transitional models 
using columnar databases and document databases as targets.   

     Implementing the Final Model 
 I started with design principles for re-architecting relational applications to NoSQL 
environments. First, I discussed how to select NoSQL technology (key-value, columnar, 
document, graph) based on type of your data and target application. Then I discussed 
implementation of concurrency and security for NoSQL environments. After that, I went 
over designing transition models for your relational data. As a last step, I will talk about 
implementing these transition models to target the NoSQL database of your choice. 
Broadly, there are four steps involved in the re-architecture process:

    1.    Evaluate and choose the type of NoSQL technology that 
best fits your data/application needs. Try using the chosen 
technology for a small project and verify features/ease of use.  

    2.    Denormalize relational data and represent resulting model 
using NoSQL technology of your choice (document, key-
value, column, or graph as appropriate).  

    3.    Design/develop ETL (extract, transform, load) logic to migrate 
your data from relational database to NoSQL environment 
using tool(s) of your choice.  

    4.    Redesign your application queries to read data from your 
NoSQL database .     

 I’ll discuss implementation of a final model using a columnar NoSQL database as a 
target and a transition model as an input. 
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     Columnar Database as a NoSQL Target 
 I have discussed the concept of columnar databases in the section “Selecting a NoSQL 
Database” earlier in this chapter. In this section, I will use Cassandra (a popular columnar 
database) as an implementation target for the transitional model designed in the last 
section. Some changes are needed to the model for use with Cassandra. Also, you have to 
make sure that the data is in format that Cassandra can read. 

 For example, JSON (JavaScript Object Notation) is a format that Cassandra can 
understand and hence will work as a notation for specifying schema. An important thing to 
note about schema is that Cassandra won’t enforce a schema for input data (like RDBMS). If 
you need schema compliance, your application layer needs to handle schema enforcement. 

 Getting back to the JSON format, it can be used as a standard for exchanging 
information about specific entities between separate programs (like web browsers that 
can interpret JavaScript and web applications that can process the JSON format). Though 
JSON can be used to represent primitive data types like integers, it is more frequently 
used to represent complex data including key-value pairs or specifically named attributes 
(for example,  name=Bhushan ,  state=IL ) or arrays (for example,  12456 ,  636262 ,  863636 ), or 
even arrays of attributes ( {name=Bhushan, state=IL},{name=Anish, state=IL} ). 

 Getting back to Cassandra, two types of JSON data structures can be imported directly 
into Cassandra. Here’s the first structure: keystore->columnfamily->rowkey->column. 

   { 
   "keystore": 
     { 
     "columnfamily": 
       { 
       "rowkey": 
         { 
           "column name": "column value" 
         }}} 

   Sometimes multiple columns need to be grouped, and therefore another layer needs 
to be added to accommodate multiple columns. This layer, called supercolumn, is the 
second type of JSON structure for Cassandra: 

    keystore->columnfamily->rowkey->supercolumn->column 

   { 
   "keystore": 
     { 
     "columnfamily": 
       { 
       "rowkey": 
         { 
         "supercolumn": 
           { 
           "column name1": "column value", 
           "column name2": "column value" 
           }}}}} 
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    For the Claims processing data model (that we built the transition model for), let me 
demonstrate how the  Policy  data can be structured in a keystore called  Implementation_
Database :

       

    { 
   "Implementation_Database": 
     { 
     "Policy": 
       { 
       "PolicyId": 
         { 
         "GeneralInfo": 
           { 
           "PolicyStartDate": "column value", 
           "PolicyNotes": "column value", 
           "PolicyEndDate": "column value", 
           "PolicyStatus": "column value" 
           } 
         "OwnerInfo": 
           { 
           "PolicyOwnerSSNFEIN": "column value", 
           "PolicyOwnerName": "column value", 
           "PolicyOwnerAddress": "column value", 
           "PolicyOwnerType": "column value", 
           "PolicyOwnerPhoneNumber": "column value" 
          }}}}} 
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    Note that I have created two supercolumns:  GeneralInfo  and  OwnerInfo . These 
are to classify the policy information as it exists naturally within the Claims processing 
database (that is, without denormalization). You can similarly represent all the 
denormalized tables using JSON and then think about migrating data. 

 Though supercolumns allow column groupings and make the schema more readable 
(by allowing subgroups of columns), you should note the following about the supercolumns:

•    Subcolumns of a super column (for example,  PolicyOwnerSSNFEIN , 
 PolicyOwnerName , and so on for supercolumn  OwnerInfo ) are not 
indexed. Therefore, reading a subcolumn will de-serialize the rest 
of them and cause adverse performance impact.  

•   Secondary indexing doesn’t work for subcolumns. Since a 
subcolumn is not indexed separately, when a supercolumn is 
loaded in memory, all of its subcolumns are loaded as well.    

 Similar functionality (to a supercolumn) can be achieved using a  composite  column. 
It’s a regular column with subcolumns encoded in it. All the benefits of regular columns 
such as sorting and range scans are available for composite columns. 

 For the  Policy  table (or column family for Cassandra), you can represent the 
structure without using supercolumn, as follows: 

   { 
   "Implementation_Database": 
     { 
     "Policy": 
       { 
       "PolicyId": 
         { 
           "PolicyStartDate": "column value", 
           "PolicyNotes": "column value", 
           "PolicyEndDate": "column value", 
           "PolicyStatus": "column value",          
           "PolicyOwnerSSNFEIN": "column value", 
           "PolicyOwnerName": "column value", 
           "PolicyOwnerAddress": "column value", 
           "PolicyOwnerType": "column value", 
           "PolicyOwnerPhoneNumber": "column value"         
         }}}} 

   A sample record would look like this: 

        { 
       "9876543210": 
         {"PolicyStartDate": "2015-06-10","PolicyNotes": "Credit 
needs to be checked","PolicyEndDate": "2016-06-10","PolicyStatus": 
"Active","PolicyOwnerSSNFEIN": "234-56-7890","PolicyOwnerName": "Joe 
Shmoe","PolicyOwnerAddress": "1 Oak st., Lisle, IL 60532","PolicyOwnerType": 
"Individual","PolicyOwnerPhoneNumber": "6309861230"}} 
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   To get back to the implementation of transition model, you can represent the 
denormalized claim related entities ( Claim ,  Claim_resubmission ,  Claim_line_item ) 
using the JSON notation (as an exercise). 

 The next task is migrating relational data to Cassandra. You need to design ETL 
for that purpose. This can be achieved by developing scripts using a scripting language 
of your choice—Java, Python, .net, and Ruby are some of the options. You can also use 
relational database–specific languages like Transact-SQL (or PL/SQL). Flat files following 
the JSON format (that matches your table or Cassandra column family structure) can be 
generated and loaded into the target table (column family). 

 As a working example, the following Transact-SQL code generates a JSON-
formatted data file for  Policy  table (assumed to be) in a MS SQL Server database. 
The code is generic, and you can substitute any SQL Server table name (and primary 
key column name) and execute it in a database to generate a JSON data file. The 
only assumption is that first column is primary key; but you can easily modify it for a 
composite key: 

    -- declare variables 
 declare @i smallint, @rowkey varchar(500), @ccount smallint, @final_str 
varchar(2000) 
 declare @cname varchar(500), @rec_str varchar(1000), @dyn_str nvarchar(500) 
 declare @res nvarchar(100), @parm nvarchar(200) 

   -- initialize them 
 SET @Parm = N'@res nvarchar(500) OUTPUT'; 
 set @i = 2 
 select @cname = ' ' 
 select @rec_str = '' 

   -- take a count of number of columns table has 
 select @ccount=count(*) from information_schema.COLUMNS where TABLE_NAME = 
'Policy' 

   -- generate string for rowkey 
 select rowkey='{"' + convert(varchar(10),PolicyId) + '":{' from policy 

   -- generate string for rest of the columns 
 While @i <= @ccount 
 BEGIN 

   -- select each column in order 
 select @cname=COLUMN_NAME from information_schema.COLUMNS where TABLE_NAME = 
'Policy' and ORDINAL_POSITION = @i 

   -- generate string to execute and get column value 
 select @dyn_str = 'select @res=' + @cname + ' from Policy' 
 EXEC sp_executesql @dyn_str, @parm, @res=@res OUTPUT; 

   set @i = @i+1 
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   -- concatenate the column name and value 
 select @rec_str = @rec_str + '"' + @cname + '": "' + convert(varchar(100),@
res) + '",' 

   END 

   -- Output JSON for the data record after removing the trailing comma and 
adding curly brackets 

   select substring(@rec_str,1,(LEN(@rec_str)-1)) + '}}' 

    You can generate data files similarly for all other relational tables and load the 
resulting JSON files in appropriate Cassandra column families. If you review the task list 
at the beginning of this section, you will realize that tasks 1–3 are now complete and you 
are ready for the final task: redesign of queries accessing your new data source. Cassandra 
offers a rich query language called CQL that can help you write complex queries for your 
application, and you can refer to the command reference at    https://cassandra.apache.
org/doc/cql3/CQL.html#CassandraQueryLanguageCQLv3.2.0     . 

 Next, I discuss the same implementation using a document-oriented database as a 
target and use MongoDB as an example (of a document-oriented database).  

     Document Database as a NoSQL Target 
 I discuss document databases in a previous section while discussing how to select 
a NoSQL technology based on your data and application needs. That was more of a 
generic introduction. In this section, you will know more about document databases 
(and MongoDB specifically) and how to implement a transition model (from relational 
database) using them. 

 Let me start with the terminology differences between relational and MongoDB. 
A database in MongoDB has  collections  similar to tables within RDBMS database. A 
 collection  holds data as  documents , which are equivalent of data rows. Just as a a data 
row stores data within its set of columns, a document stores data within fields and uses 
a JSON-like structure (called BSON) for storage. Here’s how the Policy record (from the 
example in the previous section) will be stored in MongoDB: 

   { 
 "_id": ObjectId("5244bb32d8124270060001b4"), 
  "PolicyStartDate": "2015-06-10","PolicyNotes": "Credit needs 
to be checked","PolicyEndDate": "2016-06-10","PolicyStatus": 
"Active","PolicyOwnerSSNFEIN": "234-56-7890","PolicyOwnerName": "Joe 
Shmoe","PolicyOwnerAddress": "1 Oak st., Lisle, IL 60532","PolicyOwnerType": 
"Individual","PolicyOwnerPhoneNumber": "6309861230"} 

   If you compare the storage format with Cassandra, you will notice that the only difference 
is the first  "_id"  field added by MongoDB that replaces the  PolicyId  key column in the 
relational  Policy  table. Each document in a MongoDB collection has this unique auto-
generated 12-byte  _id  field, which serves as a primary key or rowkey for a document. Table  6-1  
summarizes the term and concept differences between MongoDB and relational databases.  

https://cassandra.apache.org/doc/cql3/CQL.html#CassandraQueryLanguageCQLv3.2.0
https://cassandra.apache.org/doc/cql3/CQL.html#CassandraQueryLanguageCQLv3.2.0
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 For MongoDB, one interesting difference (compared to RDBMS) to note is that 
different documents within a collection can have different schemas or structures. 
Therefore, it is possible for one document to have nine fields and the other document to 
have ten fields. Fields can easily be added, removed, or modified without impacting read 
or write access to the data. Data types of the fields may differ for instances as well. So, a 
field can hold integer type data for one instance and may hold an array for the next. 

 Considering these architecture concepts, I’ll move on to target model implementation 
for MongoDB. Document databases (unlike columnar ones) don’t have columns, 
supercolumns, or composite columns for storage. The format is simple with a first  _id  field 
added as row key and rest of the fields following as key-value pairs separated by comma and 
bound by curly brackets. Subsequently, you can represent the denormalized  Policy  table 
(from earlier sections) within MongoDB, as shown in Figure  6-9 .  

 I have already shown how the corresponding document will look like. You can 
represent the denormalized claim related entities ( Claim ,  Claim_resubmission ,  Claim_
line_item ) using the BSON notation (as an exercise). 

 The next task is migrating relational data to MongoDB, and you need to design ETL 
for that purpose. This can be achieved by developing scripts using a scripting language 
of your choice (for example, Java, Python, .net, or Ruby), but you can also modify and 
reuse the Transact-SQL script developed in the last section for loading data within the 
Cassandra column family structure. 

  Figure 6-9.    Policy table represented as MongoDB collection       

   Table 6-1.    Term and Concept Differences Between MongoDB and Relational Databases   

 Relational Term  MongoDB Term 

 Table  Collection 

 Row  Document 

 Column  Field 

 Relationships  Linked or embedded documents 
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 As a working example, the following Transact-SQL code generates a BSON-formatted 
data file for  Policy  table (assumed to be) in a MS SQL Server database. The code is 
generic and you can substitute any SQL Server table name (and primary key column 
name) and execute it in a database to generate a BSON data file. The only assumption is 
that first column ( PolicyId ) is primary key: 

    -- declare variables 
 declare @i smallint, @rowkey varchar(500), @ccount smallint, @final_str 
varchar(2000) 
 declare @cname varchar(500), @rec_str varchar(1000), @dyn_str nvarchar(500) 
 declare @res nvarchar(100), @parm nvarchar(200) 

   -- initialize them 
 SET @Parm = N'@res nvarchar(500) OUTPUT'; 
 set @i = 2 
 select @cname = ' ' 
 select @rec_str = '' 

   -- take a count of number of columns table has 
 select @ccount=count(*) from information_schema.COLUMNS where TABLE_NAME = 
'Policy' 

   -- Since MongoDB will generate string for '_id' column or rowkey 
 select rowkey='{'   

   -- generate string for rest of the columns 
 While @i <= @ccount 
 BEGIN 

   -- select each column in order 
 select @cname=COLUMN_NAME from information_schema.COLUMNS where TABLE_NAME = 
'Policy' and ORDINAL_POSITION = @i 

   -- generate string to execute and get column value 
 select @dyn_str = 'select @res=' + @cname + ' from Policy' 

   EXEC sp_executesql @dyn_str, @parm, @res=@res OUTPUT; 

   set @i = @i+1 

   -- concatenate the column name and value 
 select @rec_str = @rec_str + '"' + @cname + '": "' + convert(varchar(100),@
res) + '",' 

   END 
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   -- Output BSON for the data record after removing the trailing comma and 
adding curly bracket 

   select substring(@rec_str,1,(LEN(@rec_str)-1)) + '}' 

    You can generate data files similarly for all other relational tables and load the 
resulting BSON files in appropriate MongoDB collections. Reviewing the task list at the 
beginning of this section will make you realize that tasks 1–3 are now complete, and 
you are ready for the final task—redesign of queries accessing your new data source. 
MongoDB offers a query language that can help you write complex queries for your 
application and you can refer to the command reference at    https://docs.mongodb.org/
manual/reference/command/     . 

 Please note that the MongoDB query language syntax is quite different from SQL 
syntax. Here’s a quick comparison of these syntaxes through a query: 

   SELECT PolicyStartDate, PolicyEndDate FROM Policy where PolicyOwnerName 
='Joe Shmoe' AND PolicyStatus = 'Active' 

   MongoDB: 

   db.posts.find({user_
name:"mark",PolicyStatus:"Active"},{PolicyStartDate:1,PolicyEndDate:1}) 

         Best Practices for NoSQL Re-Architecture 
 Relational modeling often starts with business requirements and capturing of data for 
business processes. In contrast, NoSQL data modeling is driven by application-specific access 
patterns or frequently executed queries that need to be supported. That’s why NoSQL data 
modeling requires a better understanding of data structures and business-related processing 
than relational database modeling does. Here are some of the best practices that need to be 
followed at the design stage (while re-architecting relational data to NoSQL):

•     Denormalization:  Denormalization is duplication of same 
data into multiple documents (or tables) for simplifying query 
processing or to fit the user data into a specific target data model. 
Denormalization helps in reducing the joins and therefore 
processing complexity for a query processor in distributed 
systems (which NoSQL environments often are).  

•    Schema fluidity:  Allows for designing entities with complex internal 
structures (nesting) and changing the entity structures as needed. 
This helps in minimization of one-to-many relationships (through 
nested entities) and thereby reduction in joins. This can also help in 
modeling of heterogeneous business entities using one collection of 
documents or one table. Caution should be exerted for update flows 
(for these entities), since embedding along with denormalization can 
impact updates adversely in terms of performance and consistency.  

https://docs.mongodb.org/manual/reference/command/
https://docs.mongodb.org/manual/reference/command/
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•    Application joins:  Joins are rarely supported by NoSQL databases 
and therefore are often eliminated at the design stage with 
denormalization and aggregates (embedding nested entities). 
However, for many-to-many relationships, linked entities are 
used (instead of embedded entities) and require joins. Also, when 
entity internals (for nested entities) are frequently modified, it 
is better to use linked entities rather than embedding them and 
then join the records at query time (as opposed to updating an 
embedded value).  

•    Atomic aggregation:  As discussed in previous sections, NoSQL 
solutions don’t provide ACID compliance for transactions, but 
support eventual consistency or in some cases application-
managed MVCC. The aggregates technique for NoSQL data 
modelling can provide some of the ACID properties  

  For relational databases, since normalized data is located in 
multiple entities, it requires multi-place updates. For NoSQL, 
by using aggregates, denormalized data is held as a single 
business entity (or one document, row, or key-value pair) and 
can be updated atomically. This doesn’t provide a complete 
transactional solution, but if the target NoSQL database 
provides certain guaranties of atomicity (or locks), then 
atomicity can be implemented up to a degree.  

•    Dimensionality reduction:  This is a technique that allows 
mapping of multidimensional data to a non-multidimensional 
model. Dimensionality reduction involves converting data of high 
dimensionality into data of lower dimensionality, so that each 
of the lower dimensions conveys much more information. Also, 
dimensions that can be derived from other dimensions can be 
eliminated. The final version of mapped non-multidimensional 
data is more compact and provides all the information contained 
in the initial multidimensional model.    

 As a final thought, denormalization is easier to perform for the relational data 
(as demonstrated in earlier section) as compared to NoSQL data, and therefore it is 
beneficial to denormalize the model before implementing it for a NoSQL target. 

 As a best practice, careful evaluation of an appropriate NoSQL solution needs to 
be conducted based in your data as well as application processing needs and the prior 
section “Selecting an Appropriate NoSQL Database” discusses the process in detail. 

 After the schema design stage is complete and schema is represented using the 
selected NoSQL solution, operational tuning also needs to be performed for the target 
NoSQL database. For example, secondary indexes need to be added for performance 
enhancement. Any additional performance tuning (specific to the target database) needs 
to be performed as well. 

 Last, there are best practices specific to NoSQL solutions (that are well documented 
by their vendors) that should be followed after implementing the general best practices 
described in this section.  
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     Summary 
 NoSQL is a new player in the enterprise database area, and there are few people who have 
actual hands-on experience in redesigning or re-architecting relational applications to get 
optimal performance using the new platform and tools. The situation is also complicated 
by the fact that there are few tools available that allow designing for NoSQL databases. 
For example, you are familiar with Erwin or ER/Studio or Enterprise Architect. Can any 
of these tools assist you in designing your NoSQL solution or prepare a logical/physical 
model? The answer is no. Also, think about a scenario where your organization is using 
multiple NoSQL databases and needs a common interface to manage them. Is such an 
interface available? The answer is no. 

 What happens in the real world is that NoSQL design is done using relational 
design tools. Of course, there’s nothing wrong with implementing denormalization or 
aggregation using relational database modeling tools. It works. Unfortunately, the same 
concept can’t be used for managing NoSQL databases, and you are limited to using 
multiple interfaces if your organization employs them for various applications. 

 In this chapter, I have tried to provide a detailed overview of different types of 
NoSQL technologies and applications they can be used for. I have also discussed the 
generic criteria you need to consider while selecting a NoSQL technology that suits your 
organizational needs the best. This of course needs to be matched by a lot of reserch and 
consolidation effort in order to make the right decision. The whole process may seem a 
bit complicated, but that’s how all technology transitions are. I have provided examples to 
help understand the concepts and hopefully they do help. 

 The re-architecture process for your environment may have extra steps (or fewer 
ones), but understanding the concepts (and steps) behind this redesign process will 
certainly help you transition successfully. Finally, it will help you to review the section 
“Deciding to Integrate, Re-Architect, or Transition” from Chapter   1     before you decide that 
re-architecting is the best solution for you.     

http://dx.doi.org/10.1007/978-1-4842-1287-5_1
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    CHAPTER 7   

 Data Lake Integration 
Design Principles                          

 I was talking with a friend at Gartner and he said that (as per the current stats), most 
of the data lake implementations are failures. I asked what  most  meant and he replied, 
“Over 95 percent.” I was surprised and didn’t believe him. I also joked that probably 
Gartner should publish a paper on causes of failures for data lake implementations, 
classify them, and provide percentages for each of the causes. More seriously, a lot of data 
lake implementations do fail or are abandoned for various reasons. In the Chicago area, 
I know of at least two huge corporations that abandoned such an effort and went back to 
their proprietary data warehouse platforms. 

 What is a data lake and what’s the purpose of it? What are the benefits that it offers? 
Do the benefits justify the investment? Most importantly, what are some of the big pitfalls 
while implementing a data lake? In this chapter, I discuss some of the factors that you 
need to consider to make your data lake implementation a success. 

 A  data lake  is simply a massive but easily accessible and scalable data repository 
for storing uncategorized pools of data “as is.” James Dixon, CTO of Pentaho, is credited 
with introducing the term  data lake  to promote a new way of organizing the Big Data 
that comes in from the wide range of connected devices such as sensors, smart devices, 
web applications, and all other devices connected to the Internet. Due to the volume and 
nature of data (unstructured or semi-structured), it would be impossible to process it using 
traditional business intelligence techniques (such as a data warehouses) and analyze it using 
traditional data-analysis techniques. A data lake holds the raw input data (that it receives) 
without any transformations and that enables the users to transform and process it in 
multiple ways in the future. Because the data is held in a single repository without any silos, 
it is easier to access, combine, and analyze. In addition, the raw data doesn’t have schema 
attached to it. Schema or metadata is maintained separately and can be applied as needed. 

 So, with all the schema and accessibility restrictions removed, you can access and 
process any data within your corporate data lake, right? Wrong! A data lake does have 
security implemented just like any other application and also has mechanisms for data 
cleansing, profiling, metadata management, and governance. The data persisted to a data 
lake may be immediately or potentially of interest to an organization and therefore data-
cleansing steps are implemented before storing it. Systems and processes are put in place 
to follow the defined principles of quality which may include de-duplication, merging/
purging, harmonizing, parsing, standardizing, and more. 

© Bhushan Lakhe 2016 
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_7
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 The flexibility of accessing data without silos and analyzing it without having to place 
it into a rigid data warehouse structure is the real strength of a data lake. It is natural to 
compare a data lake with an established way of storing large amount of historical data—a 
data warehouse. I discuss how a data lake differs conceptually and structurally from a 
data warehouse in the next section. 

     Data Lake vs. Data Warehouse 
 Until a few years back, there was only a single option for storing, organizing, and 
analyzing large volumes of historical data: a data warehouse. The only sub-option was 
whether you endorsed the all-encompassing enterprise wide data warehouse (EDW) 
approach suggested by Bill Inmon or preferred the shorter, focused version of a data mart, 
proposed by Ralph Kimball. As you may know, conventional data warehouses are set-
oriented. Set-oriented data processing is a strong point of SQL based relational databases. 
Also, data within warehouses is intrinsically strongly typed. 

 Now there is an additional option for holding (and analyzing) large volume of data: 
a data lake. The real question is, can a data lake replace a data warehouse or a data 
mart? Or can it only supplement? There is no clear answer to this question, and it largely 
depends on your objective (behind building a lake or a warehouse), type of data, and 
probable users. I cover the features, pros, and cons of both these approaches in detail. 

     Data Warehouse 
 In 1988, Barry Devlin and Paul Murphy from IBM published a paper called “An architecture 
for a business and information system” that introduced concept of a data warehouse. 
Bill Inmon published “Building the Data Warehouse” in 1992 that discussed design 
and implementation of an enterprise wide data warehouse, and in 1996, Ralph Kimball 
introduced dimensional modeling and data marts in his book  The Data Warehouse Toolkit . 

 So, data warehouses have been around for more than 25 years and are an established 
methodology for data consolidation, organization, and processing. There have been 
a number of modifications and enhancements for designing and implementing 
warehouses. Also, there are a large number of tools available for implementing 
warehouses. There are advanced structures such as cubes that can help enhance 
performance for retrieval of analyzed and summarized data, by performing the necessary 
calculations and aggregations in advance. 

 A data warehouse reorganizes transactional data by “subject areas” or functional 
divisions as opposed to storage in “normalized” data tables. Consolidating the measures 
or “facts” required from a functional area, data is then organized in fact tables (that 
contain all the facts or measures) and dimension tables that provide information about 
the facts. The resulting schema is called a star schema, with a fact table at the center 
surrounded by supporting dimensions. Sometimes, if the dimensional data has hierarchy, 
the multiple levels of dimensional data are maintained resulting in a snowflake schema 
instead of a star schema. A transactional database (for an application) may result in 
multiple functional or subject areas and also may contain multiple fact tables depending 
on the measures users are interested in. Figure  7-1  shows a simple star schema, and 
Figure  7-2  shows a possible snowflake version of it.   
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  Figure 7-1.    Example of a star schema       

 



CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES 

154

 So, as you can observe for this simple sales management system, the fact table  Sales  
holds the measures of interest (here,  TotalSales  and  NumItems ) at the lowest possible 
granularity (such as daily sales, weekly sales, or monthly sales) and dimension tables 
provide details of the measures and also can be used as attributes to filter out data as 
required. For example, total sales for February, total sales for a product or a customer for 
February, and so on. 

 The snowflake version of the schema has a couple of additional tables that specify 
additional relationships of the dimensional tables. It is of course possible to denormalize 
those dimension tables and get all the data within a single table, but that would reduce the 
readability of the schema, and it would be harder to understand the way data is organized 
for those dimensions. Besides, the dimensional tables are fairly small (compared to fact 
tables) and therefore the joins to retrieve data from them wouldn’t be costly. 

 Structures such as cubes perform aggregations in advance and store them at 
various granularities (aggregates by time or by geographical region or demographics). 
That way, any queries that need specific aggregated data can retrieve that data almost 
instantaneously. Even if the data is not pre-aggregated, the star schema reduces joins and 
helps perform the aggregations fairly quickly. Data warehouse implementations by major 

  Figure 7-2.    Example of a snowflake schema       
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vendors have a wide range of tools (such as indexing, caching, and so forth) to facilitate 
retrieval and aggregations at lightning speed. These of course are the benefits of storing 
your data in a warehouse. 

 A big limitation of data warehouses is that they store data from various sources in a 
specific static structure—fact table(s) and supporting dimensions. The defined measures 
and dimensions drive the type of analysis that is possible on that data. This severely 
restricts the possible insights that can be gained from your data and restricts the scope 
(of possible output from your warehouse) to canned reports, pre-defined dashboards 
(with limited user interaction), and at the most parameterized reporting capability. If the 
users need any additional insights, they need to build ad hoc queries (again limited by 
measures from the fact table) that may not perform well (especially for large datasets). 

 For example, consider the already mentioned sales management system and assume 
that you want to correlate sales of specific items with seasons or type of business your 
customer has or size of your customer’s company. Because dimensions with any of the 
required information don’t exist, it’s not possible to establish any of those correlations. 
Moreover, a warehouse doesn’t exactly facilitate the process of correlating data or 
discovering patterns in your data. 

 Combining data from multiple warehouses (mapping to various applications) 
would involve huge joins between multiple fact tables and may not be practical. Also, 
since warehouses don’t have distributed architecture, the data retrieval may be further 
impeded by lack of parallelism and speed of disk drives used by the involved warehouses. 
Finally, the stringent structure of a warehouse may not be able to accommodate 
unstructured or semi-structured data, unless the data is severely transformed to fit into it. 

 Here are the pros of a warehouse:

•    Data is organized in static structures that facilitate speedy 
retrieval of data for predefined processing.  

•   Data retrieval can be further facilitated by vendor BI (business 
intelligence) features such as cubes, indexing, or caching mechanisms.  

•   It’s possible to perform complex aggregations or calculations in 
advance and store the results for fast response.    

 And now the cons:

•    A data warehouse stores data in a specific static structure that 
drives the type of possible analysis. This severely restricts the 
possible insights that can be gained from your data.  

•   Combining data from multiple warehouses (mapping to various 
applications) would be almost impossible due to:

•    Huge joins between multiple fact tables  

•   Lack of distributed architecture (and subsequently parallelism)  

•   Heavy dependence on the speed of disk drives used (due to 
lack of other supporting mechanisms like parallelism)     

•   The static structure of a warehouse may not be able to 
accommodate unstructured or semi-structured data unless the 
data is severely transformed to fit into it.     
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     Data Lake 
 A data lake can remedy the issues discussed in the preceding section. I will review the 
architectural differences that a data lake has (compared to a data warehouse). 

 Conceptually, data from the various applications (that a corporation has) is ingested 
into a lake without any transformations applied to it and is stored “as-is.” However, 
practically, such data is not very useful and therefore some data cleansing (such as 
removing duplicates or blanks, conforming to date formats, and so on) is applied to this 
data along with metadata generation and cataloguing. HDFS is a popular destination for 
this data due to the low hardware cost, redundancy, and distributed architecture that 
allows parallelism for data access (read or write) and also allows expansion “on-the-
fly” or without making your system unavailable to users. Additionally, HDFS supports 
MapReduce or YARN for distributed processing, further enhancing the performance. 

 In order to provide flexibility for your queries, a data lake maintains the metadata 
separately. So you are not limited by static structures while querying your data or 
extracting your own insights. This is sometimes called  schema on read , since a schema 
can be specified for your data while reading it (as opposed to first defining the static 
schema and then inserting data into it). 

 Because data is not accumulated in huge fact tables, joins may not be as expensive 
or slow for data held within a lake. Besides, there are no silos created by individual 
applications, and data access is only limited by a user’s role within an organization (and 
authorization to access certain data). 

 Finally, an HDFS-based data lake can easily accommodate unstructured or semi-
structured data held in JSON, Parquet, ORC, or any other file formats. For HDFS, it doesn’t 
make any difference what format is used for storing data. Data blocks are distributed over 
available DataNodes and replicated for redundancy. So, combining unstructured or semi-
structured data with structured data is quite possible, although transforming and linking 
such data may need complex transformations and extensive programming effort. 

 If a data lake offers all these advantages over a data warehouse, why aren’t all 
warehouses migrated to lakes? Well, data lakes can’t be used for every data consolidation 
and analysis scenario. Extensive programming is required to simulate simple features that 
are available by default within warehouses. While working with relational databases or 
vendor-supported database and warehouse systems, you don’t need to write programs 
or functions for every small feature that you need. For example, databases have triggers 
for referential integrity. Also, you can just define primary or foreign keys and be sure that 
your data is clean and well referenced. If you need to simulate these features or referential 
integrity within your data lake, you will need complex logic (supplemented by extensive 
programming) for any data modifications. 

 Lastly, HDFS doesn’t perform well for small volumes or a large number of small 
files. So, if your data volume is smaller than a couple of terabytes and/or contains a large 
number of small data files, then overhead of distributed processing (for MapReduce or 
YARN) impacts performance badly, and the result is poorly performing system. In such 
cases, it is not recommended to use HDFS or a HDFS based data lake. 

 To summarize, here are the pros of data lake:

•    Not restricted by a static schema. Can use a “schema on read.”  

•   Data is not accumulated in huge fact tables; joins may not be as 
expensive or slow for data held within a lake.  



CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES 

157

•   A data lake can easily accommodate unstructured or semi-
structured data held in JSON, Parquet, ORC, or any other file 
formats.  

•   HDFS-based data lake offers advantages such as low hardware 
cost, redundancy, and distributed architecture that allows 
parallelism for data access (read or write).  

•   Additional space can be allocated to a data lake on-the-fly or 
without making system unavailable to the users. Also, HDFS 
supports MapReduce or YARN for distributed processing, further 
enhancing the performance.    

 And now for the cons:

•    Data lakes don’t perform well for volumes less than a couple of 
terabytes or for a large number of small data files. This is due to 
the inherent architectural issues of HDFS for small data volumes 
or large number of small files.  

•   No way to implement referential integrity or data inter-
relationships within a data lake.  

•   Most of the features available within relational databases or data 
warehouses need to be implemented programmatically.  

•   Advanced structures such as cubes or caching mechanisms are 
not available for performance enhancement.    

 To summarize, you need to use a data lake or a data warehouse based on your 
objective (type of analysis you need), data volume, and type of data (structured/semi-
structured/unstructured).   

     Concept of a Data Lake 
 The world around us is changing constantly and so are the data sources. Around six to eight 
years back, the only sources of data were user input for applications (that a company used) 
or data/logs generated programmatically. All these sources generated structured data that 
followed specific rules, and data management was simple. A data warehouse was the only 
option for consolidating, managing, and analyzing large amount of structured data. 

 Today, that’s not true anymore. The extensive use of social media, professional 
networks, and other web applications generate massive amounts of semi-structured 
and unstructured data that’s very beneficial to analyze. Also, sensors for a large variety 
of machines generate huge quantities of data that must be analyzed. Conventional data 
warehouses are not capable of performing this task. Subsequently, you need to look for 
new options or platforms that can assist in processing this data—and fast. 

 Data lakes are categorized based on their intended purpose:

    1.     Data reservoirs : Reservoirs are simply a governed 
accumulation of data in HDFS that’s cleansed and subjected 
to profiling rules.  
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    2.     Exploratory lakes : Exploratory lakes are a collection of 
application data ingested in HDFS with nominal cleansing 
and with transformations or formating applied or merging 
(from multiple sources) done as needed.  

    3.     Analytical lakes : Analytical lakes ingest data within HDFS and 
feed it to their analytical models for advanced analysis such as 
predictive analysis or prescriptive analysis. This data (or a part 
of it) can also act as a staging area for a data mart or enterprise 
data warehouse (EDW).     

 Let me now discuss each of these types in detail, with examples. 

     Data Reservoirs 
 Many times, the data gathered by an organization does not need to be used immediately. 
It may simply be held for future usage. A good example is log data from various 
applications or auditing. That doesn’t need to be used immediately, but if and when 
there is a performance problem or a security breach, you need those log files. Depending 
on the number of applications your organization has or criticality of those applications, 
you may have a large number of files that possibly need to be sorted, correlated, and 
processed for information. HDFS offers a good storage platform for this type of data. Note 
that there is no need to attach a schema to this data. Depending on the need, a subset can 
be extracted quickly for troubleshooting. 

 Also, there are situations where large amount of historical data is accumulated over 
time in a data lake but no analysis is defined, since it is not currently needed. All these 
situations result in a data reservoir, which is really a governed data lake with security, data 
cleansing, and data profiling defined, but without any analytics. Another common role for 
a data reservoir may be to act as a data distribution  broker  (between different systems that 
it interfaces with). Because the latest values from original data sources are continuously 
entering the data reservoir, a selected subset of those values can be distributed to other 
systems. These subsets of values can also be accessed (as required) through real-time 
interfaces, providing the latest set of data as needed. 

 Data from multiple applications is held within a data reservoir without silos and 
is available to users depending on their role within an organization. In addition, data 
governance as well as indexing (or cataloging for fast retrieval) is performed on the data. 
Data here is organized and ready for analysis, but no analysis is defined. A reservoir 
may consist of data from isolated data marts (data pre-analyzed in the data mart), but 
no analysis may have been defined on that data in the reservoir. A data reservoir may 
contain data from unstructured or semi-structured sources that is indexed or tagged as 
applicable. 

 After it is established that data from a particular data source is required to be a part 
of the data reservoir, it is ingested into the data reservoir. The ingestion process usually 
includes an initial copy of data into one or more of the data reservoir repositories, 
followed by defining a process of performing incremental updates (to the data) as it 
changes in the original sources. 
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 Finally, even though the data reservoir appears to be a collection of data sources, it 
really needs to have a complex set of components for actively governing, protecting, and 
managing the data. The internals of the data reservoir consist of a number of subsystems, 
covered in the following subsections. 

   Data Reservoir Repositories 
 Data repositories are at the core of a data reservoir. Data within these repositories is 
shared and used by all the users within an organization who functionally need to have 
access to it. Each of these repositories corresponds to an application or functionality 
within an organization. Data within these repositories is maintained and refreshed 
per the organizational policy. For example, if the functional need for an application 
may necessitate maintaining data for the last five years for analysis, the corresponding 
data reservoir repository needs to be configured to hold data for the last five years and 
overwrite any older data. 

 Each of the repositories may have different archival and refresh rules, depending 
on the application it corresponds to. The administrator for a data reservoir needs to 
understand and configure the repositories as required. Each repository either offers 
unique information or provides a unique perspective for a dataset. If a new application 
is added (for an organization), it may result in a new data repository being added to your 
reservoir, and removal of an application may similarly prompt removal of a repository 
from your data reservoir. Since some of the applications may have data duplication, that 
may carry over to the repositories and subsequently, the same kind of data may be shared 
by multiple repositories.  

   Data Reservoir Services 
 Data reservoir services manage the data stored within various repositories. This involves 
refreshing the data (within repositories) as per business rules, keeping shared data (within 
multiple repositories) synchronized, providing feeds of transformed data as required, 
removing obsolete data as necessary, and providing an interface to the user community to 
access data within a repository. An index or a catalog is used to help users locate the data 
they need as well as verify that it is exactly what they need for their analysis. 

 Another important function performed by these services is access control. These 
services control and provide user access for the data reservoir repositories based on 
preconfigured roles. Sometimes authentication and any granular permissions that are 
required authorization, as well as masking (of personally identifiable information, or PII), 
are managed by specialized governance services (covered in the next section).  

   Governance Engine 
 Sometimes the governance tasks are performed by specialist middleware. These 
tasks include access control, auditing, monitoring, data cleansing and profiling, data 
transformations, and workflow management. There are separate services performing 
these tasks, and are all part of the middleware. Some organizations prefer to use separate 
solutions to perform these tasks. 



CHAPTER 7 ■ DATA LAKE INTEGRATION DESIGN PRINCIPLES 

160

 Security requirements can originate from various sources. The following are the 
types of key security threats you need to guard against:

•    Deliberate (theft, denial of service, corruption, or removal of 
information)  

•   Accidental  

•   Failures    

 In addition, legal, statutory, regulatory, and contractual requirements (as well as 
business requirements and objectives) drive your security configuration. Authentication 
is the first step in establishing effective security. 

   Authentication 

 Kerberos is one of the most popular options used with Hadoop for authentication. 
Developed by MIT, Kerberos has been around since the 1980s. The current version was 
designed in 1993 and is freely available as an open source download. Kerberos is most 
commonly used for securing Hadoop clusters and providing secure user authentication. 
Kerberos offers a single sign-on approach. A client needs to provide a password only once 
per session and then can transparently access all the authorized services. Kerberos also is 
compatible with many widely used systems, such as Microsoft’s Active Directory. 

 A client requests access to a Kerberos-enabled service using Kerberos client 
libraries. The Kerberos client contacts the Kerberos Distribution Center (KDC—the 
central Kerberos server that hosts the credential database) and requests access. If the 
provided credentials (login/password) are valid, KDC provides requested access. KDC 
uses an internal database for storing credentials, along with two main components, 
the authentication server and ticket granting server. (Check out Chapter   4     in my book 
 Practical Hadoop Security  (Apress, 2014). See    www.apress.com/9781430265443     . 

 Most Hadoop vendors provide Kerberos with their Hadoop distributions, along with 
detailed instructions for configuring it. You can also refer to the Kerberos installation 
guide at    http://web.mit.edu/kerberos/krb5-1.6/krb5-1.6/doc/krb5-install.html      
for installation and configuration.  

   Authorization 

 The users and groups set up through Kerberos can help you manage permissions at the 
file level for Hadoop. However, if you need more granular permissions or need to create 
roles that group permissions (for ease of use and quickly assigning a set of permissions 
for group of files), you need to use tools for authorization control. 

 Popular open source tools include HDFS ACLs and Apache Sentry. Of course, most 
Hadoop vendors provide their own tools for authorization. For example, Hortonworks 
provides its versions of Apache Ranger and Apache Knox (both developed by 
Hortonworks and committed to Apache foundation). Cloudera provides its version of 
Apache Sentry (developed by Cloudera and committed to Apache foundation). 

http://dx.doi.org/10.1007/978-1-4842-1287-5_4
http://www.apress.com/9781430265443
http://web.mit.edu/kerberos/krb5-1.6/krb5-1.6/doc/krb5-install.html
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 As per the HDFS permission model, for any file access request, HDFS enforces 
permissions for the most specific user class applicable. For example, if the requester is 
a file owner, then owner class permissions are checked. If the requester is a member of 
group owning the file, then group class permissions are checked. If the requester is not 
a file owner or member of the file-owner’s group, then “others” class permissions are 
checked. This permission model works well for most situations, but not all. 

 For instance, if the sales team, the manager of the IT department, and the finance 
controller are responsible for managing the sale prices for a sales management system 
and need write permission to the  Purchase_price  file, the existing groups (for access 
control) would not be sufficient to implement these security requirements, because all 
these personnel belong to different departments (and possibly HDFS groups). You could 
create a new owner group called  Price_modifiers , but keeping the group’s membership 
up-to-date could be problematic as personnel changes, resulting in wrong or inadequate 
permissions due to manual errors or oversights. 

 Used for restricting access to data, ACLs provide a very good alternative in such 
situations where your permission needs are complex and specific. Because HDFS 
uses the same (POSIX-based) permission model as Linux, HDFS ACLs are modeled 
after POSIX ACLs that have been used by UNIX and Linux for a long time. ACLs are 
available in Apache Hadoop 2.4.0 as well as all the other major vendor distributions. 
You can use the HDFS ACLs to define file permissions for specific users or groups in 
addition to the file’s owner and group. ACL usage for a file does result in additional 
memory usage for NameNode, however, so your best practice is to reserve ACLs for 
exceptional circumstances and use individual and group ownerships for regular security 
implementation. 

 Refer to Chapter   5     in my book  Practical Hadoop Security  (Apress, 2014). See 
   www.apress.com/9781430265443      for details on how HDFS ACLs work and for detailed 
examples for setup and use.  

   PII Masking 

 In addition to authentication and authorization, PII masking is mandated by compliance 
regulations for financial, insurance, medical, and a few other industries. Given the 
volume and complexity of the data, it is best not to attempt masking manually. If data 
within your organization is governed by any federal regulations, you may want to choose 
a solution from the large number of priced solutions available that can discover and mask 
sensitive PII data for your dataset. If your data reservoir contains any PII data, it is a good 
idea to evaluate a solution that meets the needs of your environment and deploy it as one 
of the services for data governance. 

 The way these masking solutions work is that they encrypt or scramble the sensitive 
data, and only authorized users (who have the decrypting or unscrambling key) can view 
it. There are options to maintain these keys at the session level or transaction level as 
need be. The client interfaces can also use a certificate for decrypting—to avoid entering 
a key every time there’s a need to access the encrypted data.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_5
http://www.apress.com/9781430265443
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   Encryption 

 Encryption of sensitive data and restricting access to it are important functions of data 
security services. Data masking supplements encryption, but it doesn’t eliminate the 
need for it. If data needs to be encrypted, there are two types of encryption that need to 
be considered:

•     Encryption at rest : Involves encrypting data that’s stored on a disk 
drive (or multiple disk drives)  

•    Encryption in transit : Involves encrypting data in transit (that 
is, while data is communicated between a server and a client or 
between different components of a system)    

   Encryption at Rest 
 A data reservoir is implemented using a HDFS cluster. For a HDFS cluster, data  at rest  
is the data distributed to all the DataNodes. If your data is sensitive, or if encryption is 
necessary for compliance with legal regulations like the insurance industry’s HIPAA or 
the financial industry’s SOX, you need to use this type of encryption. 

 Although no Hadoop distribution currently provides encryption at rest, major 
vendors such as Cloudera and Hortonworks offer solutions developed by third-party 
vendors. For example, Cloudera uses zNcrypt (earlier from Gazzang but now acquired by 
Cloudera) to provide encryption at rest for files and data blocks. Amazon Web Services 
(AWS) offers encryption at rest with its Elastic MapReduce web service and S3 storage. All 
these solutions are proprietary or limit you to a particular distribution of Hadoop. 

 For an open source solution to encrypt Hadoop data at rest, you can use the 
functionality provided by Project Rhino. In 2013, Intel started an open source project to 
improve the security capabilities of Hadoop and the Hadoop ecosystem by contributing 
code to Apache. This code is not yet implemented in the Apache Foundation’s Hadoop 
distribution, but it contains functionality that includes distributed key management and 
the capability to do encryption at rest. 

 Specifically, the Intel distribution used cryptography codecs to implement 
encryption and offered file-level encryption that could be used with Hive or HBase. It 
used symmetric as well as asymmetric keys in conjunction with Java keystores. You can 
refer to the following JIRA articles for Apache foundation:

    Hadoop HDFS/HDFS-6134 (Transparent data at rest 
encryption) : Because of privacy and security regulations 
for many industries, sensitive data at rest must be in 
encrypted form. For example, the healthcare industry 
(HIPAA regulations), the card payment industry (PCI DSS 
regulations), and the US government (FISMA regulations).  

  This JIRA aims to provide a mechanism to encrypt HDFS 
data at rest that can be used transparently by any application 
accessing HDFS via the Hadoop Filesystem Java API, Hadoop 
libhdfs C library, or the WebHDFS REST API. The resulting 
implementation should be able to be used in compliance with 
different regulation requirements.  
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   Hadoop Common/HADOOP-10150 (Hadoop cryptographic 
file system) : There is an increasing need for securing 
data when Hadoop customers use various upper layer 
applications, such as MapReduce, Hive, Pig, HBase, and so on.  

  HADOOP CFS (HADOOP Cryptographic File System) is used 
to secure data, based on the HADOOP “FilterFileSystem” 
decorating DFS or other file systems, and transparent to upper 
layer applications. It’s configurable, scalable, and fast.     

   Encryption in Transit 
 It is very important to secure inter-process communication for Hadoop. Just using an 
authentication mechanism (like Kerberos) is not enough. You also have to secure all the 
means of communication Hadoop uses to transfer data between its daemons as well as 
communication between clients and the Hadoop cluster. You can achieve this by having 
the right communication protocols encrypted. 

 Inter-node communication in Hadoop uses the remote procedure call (RPC), 
TCP/IP, and HTTP protocols. Specifically, RPC is used for communication between 
NameNode, JobTracker, DataNodes, and Hadoop clients. Also, the actual reading and 
writing of file data between clients and DataNodes uses the TCP/IP protocol, which is not 
secured by default, leaving the communication open to attacks. Lastly, the HTTP protocol 
is used for communication by web consoles, for communication between NameNode/
Secondary NameNode, and also for MapReduce shuffle data transfers. This HTTP 
communication is also open to attacks unless secured. 

 To encrypt TCP/IP communication, for example, an SASL wrapper is required on top 
of the Hadoop data transfer protocol to ensure secured data transfer between the Hadoop 
client and DataNode. The current version of Hadoop allows network encryption (in 
conjunction with Kerberos) by setting explicit values in configuration files  core-site.xml  
and  hdfs-site.xml . To secure inter-process communications between Hadoop daemons, 
which use the RPC protocol, you need to use the SASL framework. 

 See Chapter   4     in my book  Practical Hadoop Security  (Apress, 2014) and 
   www.apress.com/9781430265443      for more on how encryption in transit can be configured 
for your Hadoop cluster.   

   Data Quality Services 

 Data cleansing and profiling are the major components of Data Quality services. 
Typically, the data cleansing process starts by performing statistical analysis on tables, 
rows, and columns. Next step is categorizing and evaluating data against business rules. 
Last step is validating data against patterns such as phone numbers, zip codes, or credit 
card number formats. 

 Data profiling results show where data quality is lacking, requiring data cleansing 
services (for resolving the inconsistencies). I discuss both these components in detail. 

http://dx.doi.org/10.1007/978-1-4842-1287-5_4
http://www.apress.com/9781430265443
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   Data Cleansing 
 Typically, data cleansing is performed in four stages:

•     Mapping stage:  A data source (to be cleansed) is mapped to 
appropriate reference domain(s) from a repository (also called 
knowledge base).  

•    Automated cleansing stage:  Changes (based on the knowledge 
base) are proposed for the data to be cleansed. Sometimes some 
of these changes are made without manual interaction.  

•    Interactive cleansing stage:  Data stewards can review the proposed 
data changes and accept or reject them.  

•    Export stage:  Lets you export the cleansed data with changes applied.    

 Those stages work well for single domains, but what happens for a source  composite  
domain (a domain consisting of two or more single domains) that maps to a data field 
that consists of multiple related terms? The multiple fields (for example, last name, first 
name, and so on) can be mapped to individual domains in the composite domain that’s 
used as a reference for data cleansing. Another approach is to have logic built in to the 
mapping service that will resolve the multiple fields and map them serially with the 
composite domain used as reference. 

   Matching 

 As part of the mapping process, you need to create matching rules as part of your 
matching policy. You can create a matching policy with the following:

•    Create a mapping process that identifies the data source and map 
(single or composite) domains to columns  

•   Create a matching policy process that contains one or more 
matching rules and test each of matching rules separately  

•   Create a matching results process that runs all the matching rules 
together and, if satisfied, adds the policy to the knowledge base    

 For the individual matching rules, you can specify whether you need a 100% match 
with the reference value or if a partial match will qualify as well. You can have multiple 
matching rules as part of a matching policy, but not multiple policies. Also, you can tweak 
individual matching rules and add or remove them based on input data. 

 For example, an organization decided to merge duplicate records for all their 
customers when it discovered that its customers used different formats while specifying 
their names (while buying from its retail website), and that resulted in the multiple 
customer IDs assigned to the same customer. Here are the rules they set up for merging:

    1.     Detect if name order is switched : Detect whether name orders 
are switched for first and last names (such as matching “John 
Dave” to “Dave John” for attributes first and last name.  

    2.     Match names and initials : Match initials with names (match 
“M” with “Mark”) for attributes first name and middle names.  
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    3.     Match partial names : Match substrings for names (match 
“Mitch” to “Mitchell” or “Beth” to “Elizabeth”) for attributes 
first name and middle names.  

    4.     Match using phonetics : Match using Soundex or Double 
Metaphone algorithm (match “Smith” to “Smyth” or “Jon” to 
“John”) for attributes first, middle, and last names.  

    5.     Match compound names : Match compound names (match 
“De Villiers” to “Devilliers” or “VanDamme” to “Van 
Damme”) for attributes last names.  

    6.     Detect missing hyphen : Detect whether hyphens are missing 
for attribute last name (match “Hillary Rodham Clinton” to 
“Hillary Rodham-Clinton”).       

   Data Profiling 
  Data profiling  is a process of analyzing data for a data source and displaying the statistics. 
Profiling can be used to measure data quality and has two major goals: to facilitate the 
data quality processes for supporting your choices and to assess how effective those 
processes are. To summarize, data profiling performs the following types of tasks:

•     Creation of statistical profile : Involves generating statistics 
(such as counts, percentage of data) for blank field values, null 
values, duplicates, unique data values, most and least frequently 
occurring data values, and so on.  

•    Textual analysis : Involves developing profiles for text fields, which 
include minimum/maximum/average length, repetitiveness of 
data values  

•    Numeric analysis : Involves analysis of numeric fields and 
calculation of arithmetic means, ranges, quartile distributions 
(usually first and third quartile), standard deviation, and 
variances  

•    Pattern-based analysis : Involves assessment of data for 
conformance with commonly used patterns such as email 
addresses, credit card numbers, postal codes, or specialized 
patterns like SKU or serial numbers    

 Data profiling provides the following benefits:

•    Helps identify data quality issues and provides insight into the 
quality of source data  

•   Assesses the effectiveness of data quality processing, data 
cleansing, and matching  

•   Can generate notifications for significant statistics or events 
that may require action; usually, condition that occurred and 
recommended action (for remedying that condition) are notified    
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 To summarize, the discussed services are necessary to add and maintain quality 
for your data. Figure  7-3  shows a graphical view of a proposed data reservoir with all the 
necessary services.  

 Here’s the sequence of operations generally performed on data ingested within a 
data reservoir:

•    Data load or ingestion (required)  

•   Data cleansing and profiling (required)  

•   Indexing or cataloguing (required) 

•  The description of the data source may include details like:

•    Name of the data source (short and long description)  

•   Data type stored within the data source and details of its 
classification  

•   Data structure (for structured data) and possible data 
column information for semi-structured or unstructured 
data sources  

•   Data location (in terms of its physical location and also the 
electronic address)    
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  Figure 7-3.    Data reservoir with all necessary services       
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•  This description of a data source can help someone looking for 
data to discover and assess the appropriate data sources.  

•   Relationship discovery (optional) can help to create a better 
understanding of the data  

•   Tagging (optional) can help add attributes to your data and 
retrieve quickly based on them  

•   Data governance (including security configuration)       

   Factors for a Successful Implementation 
•     A well-defined objective and design  

•   An extensive and well-defined governance process (including 
security)  

•   Well-designed data repositories      

     Exploratory Lakes 
 Exploratory lakes can be built using a similar process to that of building a data reservoir, 
with the main difference being lack of services for data management as well as data 
governance. Also, the shared data repositories may need to transform or be reformatted 
as a result of the data exploration activities, and data from multiple sources may need to 
be combined. Exploratory lakes may have some basic data cleansing done (for example, 
duplicate or blank removal), but data profiling, stringent access control, or metadata 
extraction (or assignment) is not performed for exploratory lakes. The reason is that 
exploration activities focus on patterns within your data and gaining insights rather than 
getting your data perfect for consumption by warehouses or for visualizations. That’s why 
you can’t use your data reservoir for exploratory activities and vice versa. 

 Typically, organizations that employ specialized data scientists, business analysts, or 
statisticians may have them perform custom analytical queries to gain new insights from 
data stored in a data lake. These exploratory efforts may not involve IT and may be followed 
by visualizations (presented to higher management) in order to verify the relevance and 
utility of the analytics performed. Due to the way data is held in a data lake, it is possible to 
perform quick iterations of these analytics to the satisfaction of decision makers. 

 Generically, data exploration is a process of experimenting with and visualizing 
your data to discover and understand the patterns and trends in that data. It may involve 
reformatting your data or applying transformations or may also need you to combine 
values from multiple data sources. That’s why it’s better to make a copy of your data 
(only the parts you are exploring, since the total data in your lake may run into multiple 
terabytes) while performing exploratory analytics and not modify your real data—
unless you (and your management) are sure that you will be implementing the changes 
permanently. 
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 A preferable method is to copy all the required repositories (required ones only!) to a 
development or work area, perform data transformations for your explorations on those 
repositories, and once you are sure what explorations are being implemented, apply 
transformations (corresponding to those explorations only) to the data repositories in 
your data lake. 

 Sometimes data exploration may result in new analytics models, business rules, 
or possibly derived repositories. The deployment of these changes may also result in 
changes to the systems that interface with any of these repositories. So, you need to make 
sure that the changes you make to your exploratory data lake are implemented for all the 
related systems. 

   Data Validation for Exploratory Analysis 
 It is always a good idea to make sure that the data you are analyzing is valid. Here are 
some steps you can perform prior to exploratory data analysis:

    1.     Decide on questions of interest : Questions help in focusing 
on knowledge or insights that you may seek from your data. 
They also provide direction to the limitless possibilities your 
explorations may head toward. You have to (of course) start 
with the most important question:  Do I have all the relevant 
data to answer these questions?  In particular, a pointed 
question can help eliminate variables (or data) that are not 
immediately relevant and may serve as a  dimension-reduction 
tool  (a tool to reduce redundant information). 

   For example, if your dataset is health insurance claim data, 
then the question  What’s the percentage of claims filed by 
unmarried males?  eliminates all the insured population that’s 
not unmarried and male.  

    2.     Load necessary data : You need to load all the necessary 
repositories in a work area and review the data. You may 
need to perform data cleansing and profiling on that data 
and transform/combine it as need indicates. Sometimes, if 
your dataset is too large, you may want to copy a data sample 
(or multiple samples) from it to save space and valuable 
resources for analysis.  

    3.     Determine data structure : Next, you need to determine the 
structure of your data. That is, identify the data types for data 
fields (or columns) and also determine what information they 
hold, within the data rows for each of the repositories that you 
need to analyze. Unless you know what information each of 
the data fields holds, you can’t possibly perform any analysis. 
You may need to use the data catalog as well as metadata for 
this purpose (as a starting point). As with any exploratory 
analysis, you may modify or add metadata at the end of your 
data explorations. 
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   For example, the data row “Bhushan Lakhe~1 Oak 
st.~Chicago~ IL~60605” in one of the repositories may not 
mean anything unless accompanied by structure information 
that tells you that “~” is a field delimiter (or separator) and the 
fields are  name ,  address line1 ,  city ,  state , and  zip  (in that 
order).  

    4.     Perform basic inspection and statistical review : You might 
want to start by making sure that your dataset looks complete 
and if time-bound, contains the timestamps corresponding to 
start and end date ranges. Next, you may want to check basic 
statistics for any numerical fields such as mean, variance, 
range, 1st and 3rd quartile values, or nulls. For large datasets, 
these steps will be performed on the sample data set that you 
have chosen.  

    5.     Validate with at least one external data source : You need to 
make sure that the data you are analyzing is not corrupted 
or incomplete or having any data type mismatch issues. A 
good way to start is with record count. You then compare the 
record count with the source system (where data was ingested 
from). To eliminate data type mismatch possibilities, visual 
inspection is a good start. As a next step, you may want to 
compute descriptive statistics such as mean or variances and 
compare with the source system.     

 Once the data you are trying to analyze is validated, you can start your exploratory 
analysis.  

   Exploratory Analysis Through Visualizations 
 When you are exploring your data, using visualizations (such as plots) can quickly 
provide key information about your data, such as basic properties (such as minimum, 
maximum, or median), or help you find patterns in your data (values reduce with elapsed 
time, data values follow a distribution such as Poisson or chi-square, and so forth). This 
is important in the initial stages of data analysis, since it gives you a quick start and a 
definite direction to follow for your data explorations. Ultimately, as you progress with 
your analysis, visualizations can be helpful in determining possible modeling strategies. 
Also, post-analysis, graphics can be used to cross-check an analysis if your results are 
unexpected. Finally, visualization is a powerful tool to communicate your results or 
findings to others (especially non-technical or management stakeholders). 

 Exploratory graphs serve the purpose of quickly checking your data with the 
objective of developing a good personal understanding of the data and deciding on 
immediate goals for analyzing it. That’s why finer details like axis labels, legends, or 
descriptive text are not necessary for exploratory graphs. However, multiple colors or plot 
symbol sizes are necessary to use for conveying various dimensions of information. 
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 R is a programming language popularly used for statistical computing and graphics 
and is currently supported by the R Foundation for Statistical Computing at 
   www.r-project.org     . The R language is also used for developing statistical software 
and performing data analysis. Major relational and NoSQL databases have now provided 
support and interfaces with R. Microsoft is the latest to support R processing and 
visualizations for MS SQL Server 2014. 

 Written by Ross Ihaka and Robert Gentleman (at the University of Auckland, New 
Zealand), R is enhanced and supported currently by the R Development Core Team. 
R is a GNU project and is freely available under the GNU General Public License. Also, 
precompiled binary versions are available for various operating systems. R uses a 
command-line interface, but R Studio provides a graphical front end and is very popular. 

 R provides simple and easy-to-use command-line functions for accessing data 
stored in a relational or NoSQL database. The functions  read.table()  and  read.csv()  
can be used for reading tabular data in an R dataframe (in-memory data matrix or table). 
Note that  read.table()  should be used for files with any character as delimiter, whereas 
 read.csv()  is meant to be used for comma-separated (CSV) files only (with comma as 
a delimiter). The function  readLines()  can be used for reading lines of a text file and 
processing them. So, for example, the following command line will load data from a file 
 Mydata.dat  that has first line as headers and  ~  as a delimiter into a dataframe called  MyDf  
( >  is R’s command line prompt): 

    > MyDf <- read.table("Mydata.dat", header=T, sep="~"); 

   For large datasets, you can limit the rows using the  nrows  option. For example, this 
command will only load the first 100 lines from file  Mydata.dat : 

   > MyDf <- read.table("Mydata.dat", header=T, sep="~", nrows = 100); 

   R also provides an easy way to access data from any database that supports ODBC 
connection through a package called RODBC. You can install and use it as follows: 

   > install.packages("RODBC") 
 > library(RODBC) 

   So, if you have your data stored in a Microsoft SQL Server database  MyDB , and one of 
the tables is  MyTable , then you can load it in a dataframe  MySQLDf  as follows. Note that 
when you are connecting to the database, you need to open a connection to the database 
using the command  odbcConnect() , and after you have completed your database 
operations, you need to close the connection using the command  odbcClose() . In the 
following,  MyODBDC  is the name of the ODBC user data source: 

   > DBHandle <- odbcConnect("MyODBC") 
 > MySQLDf <- sqlFetch(DBHandle, "MyTable") 
 > odbcClose(DBHandle) 

http://www.r-project.org/
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   Sometimes, you may have a huge data table and want to load only the top 100 rows 
or use a query to load data in a dataframe. The following command loads the top 100 
rows from table  MyTable  in a dataframe: 

   > MySQLDf <- sqlQuery(DBHandle, 'select top 100 * from MyTable') 

   If you have multiple databases on your server and don’t want to create ODBC 
connections for each of them, you can use a construct like the following: 

   > DBHandle <- odbcDriverConnect('driver={SQL Server}; server=MySQLhost; 
database=MyDB; trusted_connection=true') 

   This quick tutorial of R is by no means exhaustive and is only meant to give you some 
idea as to how your data can be loaded in a dataframe in R. Refer to the R manual or a 
good R book (such as  R Programming for Data Science  by Roger Peng (Lean Publishing, 
2016) for more. Check out    https://leanpub.com/rprogramming      if you want to gain a 
better understanding of R. I will use R for demonstrating statistical computations as well 
as graphic visualizations. 

 Here are some ways of summarizing one-dimensional data effectively:

•     Five-number summary:  You can use this summary to quickly get 
the distribution for your data and it consists of the minimum, 25th 
percentile, median, 75th percentile, and maximum for the input 
data set. The R function  fivenum()  can be used on the command 
line as follows ( >  is R’s command line prompt, and any text after  #  
is considered a comment: 

   > x <- c(1,3,5,7,9,2,4,5) # input dataset 
 > fivenum(x) # compute five number summary 
 [1] 1.0 2.5 4.5 6.0 9.0 

   So, for this dataset (which is monthly profit for a company 
in millions of dollars for the last eight months in the state of 
Illinois), 1.0 is minimum, 2.5 is the 25th percentile, 4.5 is the 
median, 6.0 is the 75th percentile, and 9.0 is the maximum.  

•    Boxplots:  Boxplots are mostly used when you need to 
visualize distribution of a single variable and provide a visual 
representation for the five-number summary along with 
additional information (such as outliers).  Outliers  are values that 
are more than 1.5 IQRs (IQR is the difference in values of the 25th 
and 75th percentile) above or below the 25th or 75th percentile. 
So, for this example, any values less than –2.75 or greater than 
11.25 will be outliers. Outliers (when valid values) signify unusual 
data values that may have a specific reason for occurrence and 
need to be investigated separately. Outliers also impact the five-
number summary unfavorably (due to the presence of values 
outside the normal value range for a variable). 

https://leanpub.com/rprogramming
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  Getting back to boxplots, they can be drawn in R using the 
 boxplot()  function (see Figure  7-4 ):  

   > boxplot(x) # draw a boxplot of dataset x 

     Bar plot:  You can use bar plots (see Figure  7-5 ) for visualizing 
your data when it is grouped and you want to quickly compare 
data across the groupings. Considering the example (showing 
profit for a company for the last two months) again, you can use a 
bar plot to compare profits by week. So, each of the weekly profit 
entries can be thought of as a “group.” You can, of course, create 
groupings as sums, counts, or any other aggregate functions and 
use the resulting dataset as input for  barplot  function. A barplot 
can be drawn in R using the  barplot()  function:  

   >barplot(x, main="Weekly Profits in US Million Dollars", xlab="Week 
(starting least recent)", ylim=c(0,10), ylab="Profits (US Million 
dollars)",names.arg = c(1,2,3,4,5,6,7,8)) 

  Figure 7-4.    Boxplot for a dataset       
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    Since the height of the bar is proportional to the data value of a 
grouping (in this case, weekly profits), it is easy to compare the 
values (visually) across groups.  

•    Histograms:  You can use histograms where you need to show 
the complete distribution of the data, as opposed to the five data 
points shown by the boxplots. Histograms help you check the 
pattern(s) within your data for any symmetry, multi-modality, 
or conformance to any of the standard distributions (such as 
normal or chi-square). The  hist()  function within R can draw a 
histogram for your dataset (see Figure  7-6 ).  

   > hist(x, breaks=8, xlim=c(1,10), main="Histogram for weekly profits", 
xlab="Weekly profits (Million US dollars", col = "grey") 

  Figure 7-5.    Barplot for a dataset       

  Figure 7-6.    Histogram for a dataset       
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   You can review the histogram quickly and easily understand 
the following:

•    The range of data values is between 1 and 9  

•   The frequency of data values 1–2 and 4–5 is 2  

•   The rest of the values have a frequency of 1       

 The  Plot  command and its variations ( boxplot() ,  hist() ,  barplot() ) are 
good for basic plotting, but if you need complex plotting (for example, combining or 
superimposing charts or advanced graphics) then you need to use the  ggplot2  library 
within R. It is available as a package and can be installed simply by typing  install.
packages("ggplot2")  at the R command prompt. For more information, about  ggplot , 
see    http://ggplot2.org     . 

 Once you have installed the library  ggplot2 , you can load it using the command 
 library(ggplot2)  at the R command prompt. The command  qplot()  can be then used 
to create complex plots. For example, the histogram from the last example can be created 
as the following, using  qplot()  as shown in Figure  7-7 :  

   > qplot(x, geom="histogram", xlab="Profit (Million US dollars)", 
ylab="Frequency",bins=20) 

   As you can see, the graphics are nicer and have a more professional look. I use 
 ggplot2  more extensively in the next section. 

 So, to summarize, the preceding plots are popular visualizations for one-dimensional 
data or a dataset for a single variable. If your dataset (for a single variable) is really large 
with millions of rows, you can sample your dataset and use the same plotting techniques. 
Note that R uses a lot of memory, and you need to calculate the memory usage proactively 
(before you analyze a dataset in R). Failure to do so may result in a crash. 

  Figure 7-7.    Histogram using the ggplot2 library       

 

http://ggplot2.org/
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 While you are exploring and analyzing your data, you will need to investigate data in 
two dimensions and beyond. There are a number of additional techniques used for that 
purpose (I discuss them next):

•     Multiple or overlayed plots : You can draw (or overlay) multiple 
boxplots or histograms within the same plot, and this can help 
you identify the relationship between two variables more easily 
(especially when the variables belong to the same category). For 
example, the weekly profits (from the dataset used earlier) for the 
last two months are for state of Illinois. The profits (for the same 
period) for the state of Indiana are as follows: (0, 1, 1, 2, 5, 1, 2, 8). 
If the profits for Illinois are called  IlliProf  and profits for Indiana 
are called  IndiProf , you can overlay the boxplots (using  qplot()  
command from  ggplot2  library) as follows (the result is shown in 
Figure  7-8 ):  

   > qplot(ind, values, data=stack(data.frame(IlliProf,IndiProf)), 
geom="boxplot") + theme(axis.text=element_text(size=16,face="bold"),axis.
title=element_text(size=12)) 

    You can, of course, overlay more boxplots (corresponding to 
additional variables) by adding them to the  data.frame  function. 
The  theme()  function is used to override the properties of the 
default theme (for example, text size for axis labels). Refer to 
   http://docs.ggplot2.org/current/theme.html      for details of 
the theme function.  

  Figure 7-8.    Multiple boxplots for comparing variables       

 

http://docs.ggplot2.org/current/theme.html
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•    Scatterplots:  Typically, you can use scatterplots for visualizing 
two (or more) continuous or quantitative variables. Continuous 
variables can be measured using a scale and have a numerical 
value. In general, a continuous variable is measured, not counted. 
For example,  Length  (measured in inches or centimeters),  Height , 
 Weight ,  Temperature ,  Time ,  Distance . In some cases, variables 
may need to be transformed (such as computing log or square 
root) for effective visualization. You can visually compare the 
profit values for the states of Illinois and Indiana through a 
scatterplot, as shown in Figure  7-9 . I have used different shapes 
for datasets  dat1  and  dat2 .  

  To start with, I created dataframes from state-wise weekly profit 
datasets for the states of Illinois and Indiana ( dat1 ,  dat2 ): 

   >dat1 <- data.frame(c(1,2,3,4,5,6,7,8),IlliProf) 
 >dat2 <- data.frame(c(1,2,3,4,5,6,7,8),IndiProf) 

    Next, I unified the column names for these datasets to facilitate 
use of the  rbind  command (which combines dataframes by rows) 
and combined the dataframes: 

   > colnames(dat1) <- c("WeekNumber", "Profit") 
 > colnames(dat2) <- c("WeekNumber", "Profit") 
 > dat <- rbind(dat1, dat2) 

   Finally, I created labels for use by shape aesthetics and used  ggplot  
to create the overlayed scatterplot using the combined dataframe 
created in the last step (the result is shown in Figure  7-9 ): 

  Figure 7-9.    Overlayed scatterplots for comparing variables       
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   > dat$dataset <- factor(c(rep("dat1", dim(dat1)[1]), rep("dat2", dim(dat2)[1]))) 
 > ggplot(dat, aes(x=WeekNumber, y=Profit, shape=dataset)) + geom_
point(size=5) + theme(axis.text=element_text(size=14,face="bold"), axis.
title=element_text(size=14), legend.text=element_text(size=14), legend.
title=element_text(size=14)) 

   Note the different shapes of the two datasets (circle and triangle) 
that make it easy to differentiate and compare the values. Colors 
or sizes can also be used for the same purpose. Also, note the 
use of  theme()  function to change the axis text/title and legend 
text/title. You can adjust the text sizes for various components 
of a plot using this function or join the data points via a line for 
facilitating understanding of any correlations.     

   Correlation 
  Correlation  results from a relationship or dependence of one variable on another and 
can also be determined statistically for two datasets. R offers a function called  cor()  for 
this purpose. A  correlation coefficient  describes the amount by which two data variables 
vary together. You just need to use the two numeric variables you want to examine as 
the arguments to the  cor()  function. For example, if you want to check how the weekly 
profits for state of Illinois correlate with the ones for state of Indiana, you can use the 
following R command: 

   > cor(IlliProf, IndiProf, method="spearman") 
 [1] 0.7656655 

   The closer the value to 1, the stronger the correlation. For the  cor()  function, the 
method parameter refers to the type of correlation coefficient to be computed, and 
the possible values are  "pearson"  (default),  "kendall" , or  "spearman"  (named after 
the British statisticians who created those coefficients). Also, a negative correlation is 
possible between two variables when they vary in opposite directions. Finally, as a more 
practical application, you can calculate the correlation among multiple variables at once, 
just as you can plot the relations among multiple variables. 

 So, for example, if you have a dataframe that has sales details for a cosmetics retailer, 
and the retailer’s management needs to know which geographical locations are selling 
a particular item more (so that they can introduce more items from that category in that 
store), they can create multiple attributes for each of their locations (such as location 
within a mall or strip mall, located near a major clothing retailer, located in area with 
certain demographic, and so on) and check which attribute is most closely related with 
the sale of an item. That can give them a good idea about what category of items may 
be sold at a location depending on the value of its attributes. If you assume that the 
dataframe is called  dfSales , then the following R command can be used for determining 
the correlation (assuming there are five attribute values represented numerically) 
between various attributes and sales: 

   >with(dfSales, cor(Attr1, Attr2, Attr3, Attr4, Attr5, Sales)) 
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   For huge data frames, you can use subsets based on the values of any of the columns 
or date. So, for the preceding dataframe, if there are millions of records for each location, 
and if  attr2  holds the zip, you can save the subset as a new dataframe and analyze the 
sales for zip code 60561 as follows: 

   >dfSales60561 <- subset(dfSales, Attr == 60561) 
 >with(dfSales, cor(Attr1, Attr2, Attr3, Attr4, Attr5, Sales)) 

   If you need to analyze sales for zip 60561 after January 1, 2016, and before February 
1, 2016, you can use the following command and use the resulting subset with the  with()  
command: 

   >dfSales60561Jan16 <- subset(dfSales60561, date >= as.Date("2016-01-01") & 
date < as.Date("2016-02-01")) 

   Lastly, you can visually determine whether a correlation exists between two variables 
by inspecting the pattern of data values. A similar or same pattern indicates a possible 
correlation. I have used the  cor()  function to determine whether there is a possible 
correlation between weekly profits for the states of Illinois and Indiana. Let me overlay 
these datasets using a line plot on the same plot (as shown in Figure  7-10 ):  

   > ggplot(dat, aes(x=WeekNumber, y=Profit, linetype=dataset))+geom_
line(size=1) + theme(axis.text=element_text(size=14,face="bold"),axis.
title=element_text(size=14), legend.text=element_text(size=14),legend.
title=element_text(size=14)) 

  Figure 7-10.    Determining correlation visually using an overlayed line plot       
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   As you may observe, the command used to generate this overlayed line plot is almost 
same as the one used to generate the overlayed scatterplot, with two differences:

•    Within  aes() , line type is used to differentiate (instead of shape) 
between datasets ( linetype=dataset  instead of  shape=dataset ).  

•   The function  geom_line()  is used instead of  geom_point() .    

 As far as the visual inspection is concerned, you can conclude that the data patterns 
are similar, but not very similar. So, a correlation might exist, but not a very strong 
correlation (and that is supported by the result from  cor()  function being 0.7).  

   Clustering 
 The last technique used for exploratory analysis is  clustering , or  cluster analysis , a popular 
technique for visualizing multidimensional data. Clustering easy to use and can serve 
as a really quick way to understand a multidimensional dataset. Clustering involves 
organizing data values (that are close) together and classifying them as distinct groups. I 
will discuss two types of clustering:

•    Hierarchical clustering  

•   K-means clustering    

   Hierarchical Clustering 

  Hierarchical  clustering aims to organize your data into a hierarchy. There are two approaches 
to achieve this objective:  agglomerative  or “bottom up” and  divisive  or “top down.” 

 The  agglomerative  approach starts by assuming individual data points as  clusters , 
and then you start gathering them together into small clusters, which are grouped as part 
of bigger clusters. Bigger clusters are grouped together recursively until you have one big, 
massive cluster. To summarize, here are the steps followed:

    1.    Locate the two closest data points in your dataset  

    2.    Group them together and call them a cluster  

    3.    Use your cluster, find a new data point, and repeat     

 The divisive approach is exactly the opposite. You start with all your data points as 
part of one big cluster, and the cluster is split recursively as you move down to form a 
hierarchy (of smaller clusters). 

 Both these methodologies need you to measure the distance between two points 
and also require you to have an approach for merging two data points to create a new 
 cluster . Therefore, it is important to use a distance metric that works best for your data—
otherwise, your clusters won’t be valid and you won’t get any useful information from 
them. The following are commonly used distance metrics:

•     Euclidean distance:  This is the “straight-line” distance between 
two points.  
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•    Manhattan distance:  Between two points, this is the sum of the 
absolute differences of their Cartesian coordinates. It is also 
known as  city block distance , since you need to think how many 
“city blocks” do you need to travel to get from point A to point B 
(on a grid or lattice of city blocks).    

 When you are merging clusters, how should you measure the distance from a data 
point to a merged cluster of points or between two merged clusters? One approach 
(called  complete ) is to use maximun distance between the two groups—that is, find two 
points within these groups that are furthest apart and use that as the distance between 
the groups. Another approach is  average merging , which computes the average of the 
coordinate values in each group and uses that as the distance between the two clusters. 
 Complete merging  is the default method used by the  hclust( ) function in R. For details 
of the  hclust()  function in R see    https://stat.ethz.ch/R-manual/R-devel/library/
stats/html/hclust.html     . 

 There’s not necessarily a correct merging approach that will work for any given 
application, so you need to choose a merging approach that works best for your data. 
Usually a lot of experimentation and exploration is needed to extract meaningful patterns 
and clusters from your data.  

   K-means Clustering 

 The K-means clustering approach has the objective of finding the  centroids  
(or  multidimensional center point ) of a fixed number of clusters within your 
multidimensional data. As with hierarchical clustering, this algorithm is also iterative. 
The level of difficulty is high because you need to locate the  centroids  in a high-
dimensional space, and that’s why you need an algorithm that’s capable of making these 
computations. 

 K-means clustering uses a partitioning approach, and data is partitioned into a 
number of groups at each iteration of this algorithm. This algorithm requires you to pre-
specify the number of estimated clusters. Even though you may not know in advance, you 
should guess and run the algorithm. You can, of course, change the number of clusters 
and run the algorithm again to see if anything changes. Following are the steps:

    1.    Specify the number of clusters (>= 2)  

    2.    Specify a random set of points as the centroids of these clusters  

    3.    Assign data points to their closest centroid (and thereby a cluster)  

    4.    Calculate centroid positions again and iterate     

 This approach also requires a defined  distance metric  (in addition to the fixed 
number of clusters and initial guess for cluster centroids), and the same distance metrics 
(as used for hierarchical clustering) can be used. Unfortunately, there’s no defined 
method for determining the initial centroid configuration, and many algorithms simply 
select data points randomly (from your dataset) as the initial centroids. The K-means 
algorithm produces a final estimate of cluster centroids (their coordinates).   

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
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   Factors for a Successful Implementation 
•     A well-defined objective for data exploration and a detailed plan  

•   Availability of qualified data scientists to design data exploration 
as per objective  

•   Availability of expert data visalization professionals to quickly 
create visualization for data insights developed by data scientists    

 To summarize, I have discussed popular techniques for data exploration (and 
analysis) for data held in a lake. The next section covers techniques for using your data 
lake as an analytical lake:   

     Analytical Lakes 
 Some organizations have a stable and established process to use data held in a lake. 
Instead of just holding the data (in a lake) or performing exploratory analysis to disccover 
new insights from their data, they use the data (from their lake) to feed their analytical 
models for advanced analysis, such as predictive analysis (what may happen) or 
prescriptive analysis (what should we do about it). A data lake (or a part of it) can also act 
as a staging area for a data mart or EDW. 

 In addition, real-time processing (and analytics) can also be performed within an 
analytical lake environment. In fact, real-time processing is gaining increasing popularity 
for newly designed architecures. Good examples are application of learning algorithms 
for decision making or providing fast insights. Credit card companies use real-time 
analytics to detect unusual card activity (for example, card used in China for a US-based 
customer). 

 An insurance company in South Africa used learning algorithms and predictive 
models with their claim data for detecting fraudulent claims and came up with startling 
insights, like claims filed between 10:00 p.m. and 5:00 a.m. were largely fraudulent. Most 
of the genuine ones were filed between 9:00 a.m. and 11:00 a.m.! 

 This section briefly discusses all these techniques. 

   Using Data for Analytical Models 
 Predictive models are used more frequently (as compared to prescriptive models), so I 
will discusss usage of data (from a lake) with predictive models. The main objective of a 
 predictive  model (sometimes also called  machine learning  or  pattern recognition ) is to 
generate the most accurate estimates of quantities or events associated with the input data. 

 R uses two main conventions for specifying models:

•    Formula interface  

•   Non-formula (or “matrix”) interface    
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 The formula interface uses syntax like this:  outcome ~ var1 + var2 + ....  where 
 var1 ,  var2 , (and so on) are explicitly listed predictors for the outcome. Consider the 
following formula that would predict the grading of a diamond using four characteristics: 

   modelFunction(grading ~ CtWeight + Cut + Color + Clarity, data = DiamondGrading) 

   The formula interface has pros and cons. For example, transformations can be 
specified inline. But unfortunately, R does not efficiently store the formula information, 
and thus datasets containing a large number of predictors may unnecessarily slow the 
computations. 

 The non–formula interface uses a matrix or dataframe to specify the predictors for 
the model, and the outcome is assigned to a vector object. For example: 

   modelFunction(a = GradePredictors, b = grading) 

   Predictive modeling in R usually follows a similar workflow:

•    Create model using the basic function:  fit <- 
abc(trainingData, outcome)   

•   Cross-check the model properties using visualizations (print, 
plot) or commands (summary) or any other methods  

•   Use the predict method to predict outcomes for new data sets: 
 predict(fit, newData) .    

 Since the various modeling packages are developed in isolation (with each other), 
there are inconsistencies in the way these models are specified or predictions are made. 
For example, many models use a single method for model specification (such as formula 
or matrix only). 

   Model Building Steps 

 Common steps used for building a model are:

•    Estimation of model parameters (predictors, outcomes, and so forth)  

•   Determination of tuning parameters values (that can’t be 
calculated directly from the data) for validation  

•   Determining the performance of the final model (that will 
generalize to any new data)    

 How can you use your data to find an optimal model? Usually data is split into 
 training  and  test  data sets:

•     Training data set:  Used to estimate model parameters and also to 
pick the values of the parameter(s) that determine complexity for 
the model.  

•    Test or validation data set:  Can be used to validate the model 
efficacy. Of course, you should not use this data for training.    
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 Be careful while determining the split between your training and testing data. If you 
use too much data for training, that will prevent you from getting a good assessment of 
predictive performance. You may end up with a model that fits the training data very well 
but does not generalize (know as  overfitting ). On the other hand, if you use too much data 
for testing, there won’t be enough data to get a good assessment of model parameters. 
Even though the best (statistical) course of action would be to use all the available data 
for model building and use statistical methods to get good estimates of error, many 
users of these models prefer to have an unused (by training) dataset for validating and 
evaluating performance. 

 There are a few different ways to do the split (between training and testing data), 
such as the following:

•    Simple random sampling (R function  sample()  can be used to 
create a random data sample)  

•   Stratified sampling (based on the outcome)  

•   Using date or methods that focus on the distribution of the 
predictors    

 Once you have a set of predictions (using a model), various metrics can be used to 
evaluate performance:

•    For regression models, R2 is very popular.  

•   The root mean square error is a common metric for 
understanding the performance.  

•   Spearman’s correlation can be used for models that are used to 
rank samples ( cor(, method = "spearman") ).    

 You have to make sure to use separate datasets for training the model and testing for 
valid estimates (using your model).   

   Using Data as a Staging Area for EDW or Data Mart 
 This refers to the possible use of your data lake as an operational data store (ODS). Since 
your data lake consists of data from various online transation processing (OLTP) as well 
as online analytical processing (OLAP) applications, it may be possible to build an ODS 
by cleaning, transforming, and holding the data in temporary or transitional structures 
that map to your EDW or any of your existing data marts. This, of course can only use 
structured data from your lake. Designing ODS is a complex topic and beyond the scope 
of this chapter (and the book). Check out Chapter   3     of Bill Inmon’s book  Building the 
Data Warehouse  (Wiley, 2008) for futher details. Here’s a link to the book:    http://www.
wiley.com/WileyCDA/WileyTitle/productCd-0764599445.html .      

http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764599445.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764599445.html
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   Real-Time Processing and Analytics 
 Real-time processing for data in a data lake can conceptually have processing similar to 
Lambda architecture. The differences:

•    There will only be two layers: batch and real-time (instead of 
batch, presentation, and speed).  

•   The batch layer will move all the data for an application (for 
which real-time processing is needed) to lake one-time only—no 
need to redo this processing.  

•   Real-time data update will be performed using data streaming 
through Spark streaming, Amazon Kinesis, or a similar solution.    

 I discuss batch processing in great detail in Chapter   9    . I will discuss data streaming 
briefly in the next section. 

   Event Stream Processing 

 Originally, ESP started as custom data flow–centric processing to detect specific 
conditions and act on them (for example, fraud for financial systems) and is a technology 
to enable detection, consumption, and processing of high-volume, high-speed events in 
near real-time to support analysis. 

 Typically, ESP is comprised of:

•    Application server that captures and processes high-speed events 
(transactions) based on specific logic  

•   Development environment for processing/transforming OLTP 
data  

•   Components including engine, GUI development tools, 
connectors (to get data feeds from various sources), visualization 
interface, and data storage structures  

•   Usually separate languages for coding (or development) and 
querying    

 ESP is used to support real-time, on-the-fly analytics to identify time-critical 
business situations using:

•    High-speed querying of data in event streams and applying 
mathematical algorithms  

•   Application of complex logic to data streams    

 Figure  7-11  shows an example of ESP for a hospital management system that should 
help clarify the ESP concepts.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
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 The main components of an event stream processor are: data transfer engine 
(responsible for capturing event data from a source using connectors or interfaces 
developed using lower level languages like Java or C++), memory structure (for holding 
event data in memory and passing on to execution engine for further processing), and 
execution engine (that executes logic for transforming event data). Figure  7-12  shows 
where these components fit in the architecture.  

A Hospital Management
system records details of 
incoming patients: 

• Each incoming
patient entry is an 
“event” 

• A patient entry
contains a set of 
predefined 
attributes   

The ESP engine processes each event in real
time 

• Each event is processed using 
predefined rules (e.g. patients over 
70 to be assigned to senior doctors 
only) 

• Rules can be defined using multiple 
methods, viz. SQL, XML, Java, C++  

• Some events may not be processed 
or rejected (e.g. walk-in patient 
entries need not be stored) 

Dashboard may be used
to display aggregated 
summaries that can be 
drilled through (for 
details)   

  Figure 7-11.    Example of ESP       
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(DBMS, 
Dashboards, 
Message Bus 

etc.) 

Includes “connectors” that handle 
capturing or receiving data from 
Event producers 

Memory structure where event
details are delivered and available for 
Execution engine to manipulate and 
process 

Executes the logic or rules defined to
manipulate the event’s data and 
generates the resulting event detail 

Database that retains event details
for future analysis 

Event Stream Processor

  Figure 7-12.    ESP internals       
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 Following are the types of event processing that’s commonly performed:

•     Aggregation : Aggregate values within a time window or quantity 
of events (sum, average, and so forth)  

•    Pattern detect : Identify combination of events over a period of 
time (minutes/hour/day)  

•    Filtering : Remove events matching specific values or categories/
types  

•    Calculations : Numerical processing (using SQL-like query 
language or Java)  

•    Thresholds : Define a minimum or maximum acceptable attribute 
value for an event  

•    Transform/Convert : Apply data transformation processing, 
convert data types, data values, and so on  

•    Derive : Estimate or deduce data values using statistical or 
predictive models    

   Complex Event Processing 
 Event  cloud  or  complex event processing  involves processing a series of related events 
together to identify patterns and correlations. For example, as seen in Figure  7-13 , my 
BMW displays a warning message to brake slow if the temperature is below 32 degrees, 
the air pressure in tires is low, and it’s snowing.  

Temperature sensor
registers 30 degrees 

Tire pressure sensor
registers low air 

pressure 

Windshield sensor
registers snow 

Complex
event 

processor 
Car dashboard

  Figure 7-13.    Example of complex event processing       
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 Apache Foundation offers excellent open source options for ESP, such as Samza, Spark, 
Storm, and Flafka (Flume + Kafka). Here are the leading ESP (priced) product vendors:

•     DataTorrent : RTS  

•    Informatica : RulePoint  

•    IBM : InfoSphere Streams, Operational Decision Manager  

•    Microsoft : Stream Insight  

•    SAP/SAS : Event Stream Processor  

•    Tibco : BusinessEvents, Streambase    

 There are a lot of real-world applications of ESP. Here are a few common ones:

•    Managing traffic on streets, or traffic control  

•   Processing brain neuron signals using a Hadoop computing cluster  

•   Fraud detection and prevention using correlations, causation, 
and predictive modeling for insurance companies  

•   Advertisement-targeting platforms are using Hadoop to capture 
and analyze click stream, transaction, video, and social media data  

•   Managing content, posts, images, and videos on social media 
platforms  

•   Financial agencies are using Big Data Hadoop to reduce 
risk, analyze fraud patterns, identify rogue traders, more 
precisely target their marketing campaigns based on customer 
segmentation, and improve customer satisfaction  

•   Processing unstructured data like sensor output from medical 
devices, doctor’s notes, lab results, imaging reports, medical 
correspondence, and clinical data         

     Factors for a Successful Implementation 
•     A detailed plan for one of the following objectives:

•    Design for interfacing with existing EDW  

•   Designing predictive, regression, propensity, or presecriptive 
models and feeding data to these models  

•   Ingesting real-time streaming data and processing it for 
analytics     

•   Availabiity of qualified analytics professionals to design analytic 
models or descriptive analyrics as needed  

•   Availability of qualified ETL professionals for developing 
interfaces for data ingestion and transformations as needed     
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     Summary 
 Over the last few years,  data lake  has turned into a buzzword that management (who 
decides to invest in a lake) and implementors (architects, developers, users) too often 
implement before thinking it through. That’s why most implementations fail. Data lakes 
are not about using economic storage through Hadoop clusters for archival and are 
not even about the data storage without silos or distributed processing. Data lakes are 
about turning your data into information, knowledge, and wisdom. If you can generate 
one useful insight per application from your lake, then I would consider your data lake 
implementation a huge success. 

 Data lakes provide you the freedom to explore your data without any unwanted 
consequences, and without the inhibitions of a static schema or a rigid data structure. 
You also have the freedom of saving any new schema insights as new metadata. So you 
are only limited by your creativity. These are all the pros, or good parts. 

 The cons or bad parts deal with all the non-lake activities that you need to perform, 
such as defining security, governance, data cleansing/profiling, and master data 
management, because a data lake doesn’t mean that anyone from your organization 
can access any data as they like. Structured and non-structured data need to be 
processed separately. Besides, applications that use the same data with dissimilar units 
of measurement (maybe due to country-wise differences regarding usage or non-usage 
of the metric system) are still going to cause you issues if you need to analyze their data 
together—unless you spend time harmonizing the units. Real-time streaming or stream 
analytics are still going to be difficult to configure and use. 

 To summarize, data lakes are not going to provide answers or insights for all your 
applicational needs. They are just the beginning of a new paradigm in data processing, 
not the end. A tool is only as good as the use you make of it. The real data insights have 
to come from you—data lakes just offer a medium for you to visualize them and then 
present them to rest of the world.     
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    CHAPTER 8   

 Implementing SQOOP and 
Flume-based Data Transfers                          

 About five years back, when the Apache Hadoop ecosystem was ready for its data 
processing challenges, it introduced its own tools for data ingestion, including Sqoop 
and Flume. These tools were initially unfamiliar, as was rest of the Hadoop ecosystem. 
I was assisting an IBM client (a big health insurance company) with its data warehousing 
needs, and its RDBMS-based solution was not performing well. The company also had a 
lot of historical data on mainframes, and the big volume of that data (about 10 TB) was an 
issue. Though Hadoop was new, I convinced the client of the need for a ten-node Hadoop 
pilot and used Sqoop to pull the data into HDFS (Hadoop Distributed File System). 
We had tried with 2 TB only, but the response time was about 1/50th of the mainframe 
response time, even with old hardware and slow disks. This encouraged us (as well as the 
client) and finally we deployed the solution for production usage. 

 A large number of organizations are offloading the extract-transform-load (ETF) jobs 
to Hadoop. There are a number of reasons for this. Optimal usage of processing resources 
(because ETL processing is offloaded to a commodity-hardware–based Hadoop cluster), 
optimal usage of disk space (again, Hadoop cluster uses budget-friendly disk drives) for 
transitional storage, performance (due to distributed processing), and redundancy (data 
blocks are replicated on a Hadoop cluster) are the major ones. 

 Now, as the Hadoop ecosystem has matured, more tools are available for data 
transfer. Also, Hadoop started as a batch-processing solution, but currently with the 
advent of tools like Spark, Storm, Apex, and Kafka for streaming, Hadoop is also being 
used as a real-time analytic solution. Subsequently, tools for ingestion of events or 
streaming data are added to the Hadoop ecosystem. 

 One important consideration is the type of source data you have (structured, 
semi-structured, unstructured, or a mix) and what your objective is (for transforming it). 
Your ETL tools need to have connectivity to source as well as target systems. Another 
consideration is use of graphical tools for data pipelining (or defining stages of 
transformations from source to target) that reduce the development time or command-line 
tools as well as lower level programming language–based tools that offer greater flexibility. 
Of course, code development will take a longer time with such usage, but if you have 
complex transformation needs, then there is no easy option. 
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 Finally, most of the Hadoop distribution vendors have added their own proprietary 
tools for data ingestion. For example, Microsoft provides Azure Data Factory for ingesting 
data into in its HD Insight platform (a Windows-based adaptation of the Hortonworks 
Hadoop distribution). Though most of these tools provide a graphical interface, 
substantial development time is involved in creating jobs for data ingestion. 

 So, how do you decide what’s the best tool for your environment? Let me discuss 
some parameters to consider. 

     Deciding on an ETL Tool 
 If you decide to integrate your RDBMS-based application with Hadoop, then you are 
planning to use Hadoop as your enterprise data hub. Once the data is in HDFS, then you 
perform aggregation and analytics (asynchronously as batch or streaming as a real-time 
system). Therefore, you will need to design ETL for moving data in and out of Hadoop. 
Sqoop and Flume are popular tools for this purpose and can be used to populate HDFS 
and refresh it periodically as batch processing. If you need to ingest data in real time, then 
you need to use a tool such as Kafka, Flink, or Spark Streaming for ingesting streaming 
data (and storing it using an appropriate target). This section discusses how. 

     Sqoop vs. Flume 
 Let me start with Flume. It’s really a framework for collecting and integrating data within 
Hadoop. Flume uses processes called  agents  to collect and store the data. These agents 
can read data from a variety of sources, like web servers, application servers, system logs, 
or even mobile devices and write output to HDFS. For high volumes of data, you can 
configure multiple Flume agents and implement horizontal scaling. 

 Sqoop is more of a connectivity tool or utility for moving data between structured 
data stores (such as relational databases and data warehouses) and Hadoop. Sqoop is 
designed for an efficient transfer of bulk data and supports all the leading relational 
databases like Oracle, Microsoft SQL Server, DB2, and others. Also, since Sqoop is based 
on a  connector architecture,  it supports the use of third-party plugins or connectors 
to provide connectivity to new external systems. Sqoop provides performance by 
transferring data in parallel. 

 So, the typical use cases for Flume are log consolidation (for example, consolidating 
audit logs from all the NameNodes for an organization), or capturing and filtering tweets, 
or capturing clickstream data for customer product searches (for a web retailer). Because 
Flume architecture is event-driven, it finds use in scenarios where you have certain events 
to capture (and store) either on a continuous basis or within a predefined time window. 

 Sqoop usage focuses on moving large volumes of data between RDBMS (or a 
data warehouse) and Hadoop. Sqoop doesn’t deal with event streams. It’s more about 
a predefined transfer of data using connectors capable of reading data from specific 
sources and writing it to specific targets. Hadoop is not always the target. Sometimes, data 
processed by Hadoop needs to be transferred back to an RDBMS or a data warehouse. 

 To summarize, Sqoop is used for ad hoc or scheduled data transfer between 
structured sources and HDFS. Table  8-1  summarizes the differences between these tools.   
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     Processing Streaming Data 
 Chapter   7     discusses event stream processing concepts. This section compares the open 
source Apache tools available for processing streaming data. At the forefront is Spark 
Streaming. The other options are Samza, Storm, and Flafka (Flume + Kafka). There are, 
of course, solutions from all the major vendors, such as RTS from DataTorrent, RulePoint 
from Informatica, InfoSphere Streams from IBM, and Stream Insight from Microsoft. I will 
not be discussing these solutions. I’ll start with Spark. 

   Spark and Spark Streaming 
 Spark is a popular distributed computing engine that provides a variety of tools such 
as Spark SQL (query tool), Spark Streaming (event stream processing), MLib (machine 
learning), GraphX (graphics libraries), and Spark R (R functions for analytics). Spark 
Streaming is an extension of core Spark API that enables scalable, high-throughput, 
fault-tolerant stream processing of live data streams. Data can be ingested (into Spark) 
from sources like Kafka, Flume, Twitter, and Amazon Kinesis and can be processed using 
complex algorithms expressed with high-level functions like map (transform), reduce 
(aggregate), and join (combine data streams). Processed data can be pushed out to HDFS, 
databases, or live dashboards, or you can also apply Spark’s machine learning or 
graph-processing algorithms on data streams. 

   Table 8-1.    Feature Comparison for Sqoop and Flume   

 Sqoop  Flume 

 Sqoop is mostly used for data transfer 
from (and to) structured data sources 
such as RDBMS. 

 Flume is used for moving bulk streaming 
data into HDFS. 

 Sqoop has a connector-based architecture. 
A  connector  is code that is capable of 
connecting to the respective data source 
and fetching the data to be written to HDFS, 
or vice versa. 

 Flume has an agent-based architecture. 
An  agent  is code or program that fetches 
streaming data from the source. 

 HDFS is a either source or destination for 
data using Sqoop. 

 Flume writes data to various channels, 
and HDFS may be one of the channels 
(or destinations). 

 Data loads for Sqoop are not event driven.  Flume can have data loads that are event 
driven. 

 Typical use cases for Sqoop involve data 
transfer from (or to) RDBMS, like Oracle, 
SQL Server, MySQL, or document databases 
like MongoDB, CouchDB, or warehouses 
like Teradata, or columnar databases like 
HBase or Cassandra. 

 Typical use cases for Flume are load of 
streaming data such as tweets generated 
on Twitter, clickstream data from web 
applications, or log files from a web server. 

http://dx.doi.org/10.1007/978-1-4842-1287-5_7
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 Spark uses the concept of resilient distributed datasets (RDDs). These are collections 
of objects spread across a cluster and persistent in memory. They are built quickly through 
parallel transformations and are resilient (as the name suggests), which means they are 
rebuilt automatically on failure. Transformations such as filtering, union, join, and group 
by, or actions such as sum, count, for each, and more can be performed on RDDs. 

 Spark Streaming doesn’t process streams one at a time, but divides them in small 
batches of time intervals before processing them. This process is called  micro-batching . 
The Spark abstraction for a continuous stream of data is DStream (for discretized stream), 
which is really a micro-batch or sequence of RDDs (as shown in Figure  8-1 ). Spark 
Streaming offers support for merging historical data with streaming data.  

Input data stream
from sources like 
Kafka, Flume, 
Twitter or Amazon 
Kinesis  

Spark
Streaming RDD1 RDD2 RDD3

Spark
Engine 

Micro-batched 
input DStream

RDD1 RDD2 RDD3

Micro-batched output DStream (transformed)

  Figure 8-1.    Spark Streaming processing       

 You can write Spark Streaming programs using Scala, Java, or Python by referencing 
appropriate DStreams and applying functions to them. You can use functions like  map  
(process each element of DStream through a function),  union  (return a new DStream that 
contains the union of the elements in the source DStream and other Dstream),  count  
(return a count of elements in each RDD of the source Dstream),  reduce  (return a new 
DStream by aggregating the elements in each RDD of the source Dstream), and so on. 

 DStreams can also be used as input for MLib, Spark SQL, or GraphX (for further 
processing and analysis). Every input DStream (except file stream) is associated with a 
receiver (Scala doc, Java doc) object, which receives the data from a source and stores it 
in Spark’s memory for processing. You can receive multiple streams of data in parallel in 
your streaming application by creating multiple input Dstreams, associated with multiple 
receivers.  

   Storm 
 Using Storm, you can design a directed graph of real-time computation (called a  topology ) 
and execute it on a Hadoop cluster where the master node will distribute the code 
among worker nodes to execute it. Storm defines spouts, or data streams comprised 
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of immutable sets of key-value pairs called tuples. A  tuple  or a data row (a collection 
of elements in ordered sequence) is a basic unit of abstraction for Storm), and  bolts  
(processes that transform input streams using functions, filters, aggregations, and 
joins) transform those streams. Bolts can (optionally) pass data to other bolts down the 
processing pipeline. 

 Since Storm processes a single event at a time (as opposed to micro-batching), it 
has really low latency and can be used for real-time analytics, ML, budgeting, and more. 
However, it has no concept of look back aggregations. Also, using Storm, it is not easy to 
combine batch processing with streaming data. 

 For stream processing, tuples are either randomly distributed across all the tasks 
running a bolt, or specific fields from all the tuples are grouped and routed to the same 
task. Tasks are threads executed by worker processes or JVMs, as shown in Figure  8-2 .  

Input data streams 
from sources like 
Kafka, Flume, 
Twitter or Amazon 
Kinesis 

Spout1

Bolt1

Spout2 Bolt2

Bolt3

Bolt4

Bolt5

Thread1

Thread2

JVM

Transformed
data streams 

Bolt2

  Figure 8-2.    Storm streaming       

 Trident is a high-level abstraction processing library that works with the core storm 
API and is often used to add functionality and reliability. This library offers a range of 
functions for joins, aggregations, grouping, and more. More importantly, it enables Storm 
to use the “exactly once” delivery pattern (which means that a data packet is delivered 
only once without any loss or duplicates) and adds reliability to its delivery.  

   Samza 
 Originally developed at LinkedIn, Samza is a distributed stream processing framework. 
A data  stream  is divided in a number of  partitions  (ordered sequence of messages). A 
job processes stream(s) and is divided in a number of tasks. Each task processes data 
from partitions from the input stream(s) and processes messages within a partition 
sequentially. Figure  8-3  shows job processing within Samza.  
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 For Samza, processing (and coordination) is performed by the Samza API, but 
the execution and streaming layers are pluggable. So, you can select solutions that are 
appropriate for your environment. By default, YARN is used as execution layer, and Kafka 
is used as the streaming layer. 

 Having reviewed these stream processing solutions briefly, where do you use any of 
these solutions? Figure  8-4  has a detailed comparison. You can review the features that 
are of interest to you and decide on the solution appropriate for your environment.  

Input data streams 
from sources like 
Kafka, Flume, Twitter 
or Amazon Kinesis  

Transformed
data streams 

Partition 0

Partition 2 Partition 1

Stream1

Stream2

Task2

Partition 1 

Partition 0

Task1

Samza job

A partition is ordered sequence of messages

Pa
rti

tio
n 0

Partition 1

  Figure 8-3.    Samza job processing       
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  Figure 8-4.    Feature comparison between Spark, Storm, and Samza       

 For example, if you have a retail banking environment and you are using a stream 
processing solution for fraud detection, a sub-second response is important for you, 
and Storm or Samza would be better options for you. If, however, you are interested in 
implementing Kappa architecture for your data lake, then you would be using Spark 
Streaming or Samza. If you have data scientists who are well versed in R, then Spark 
Streaming would be of interest.    

     Using SQOOP for Data Transfer 
 Sqoop is a data-transfer tool based on  connector architecture.  What this means is that 
it supports third-party plugins or  connectors  that provide connectivity to relational or 
NoSQL database systems. Being a part of the Hadoop ecosystem, it has  read  and  write  
capabilities to HDFS. 

 Even though most of the current database management systems (DBMS) support 
SQL as a query language, there are differences between various DBMS with respect to 
SQL dialect (to some extent). These differences pose challenges for data transfer across 
the systems. Sqoop  connectors  help overcome these challenges effectively and make the 
data transfer (between database systems) easy and fast. 
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 The range of Sqoop’s connectors includes popular RDBMS such as MySQL, 
PostgreSQL, Oracle, SQL Server, and DB2. Sqoop also provides a generic JDBC connector 
that can be used to connect to any database that supports Java’s JDBC protocol. Lastly, 
Sqoop’s optimized MySQL and PostgreSQL connectors (which use database-specific APIs) 
perform bulk transfers efficiently. Figure  8-5  shows the details of Sqoop architecture.  

Hadoop Ecosystem 
(HDFS, Hive, HBase) 

SQL Server
connector 

SQL Server

Sqoop

Oracle

Oracle
connector

MongoDB
connector

MongoDB

Import / Export

  Figure 8-5.    Sqoop architecture       

 If you need to use Sqoop for data import/export, download, install, and configure 
it (see    http://mirrors.ibiblio.org/apache/sqoop/1.4.6/     ). More details are at 
   https://sqoop.apache.org/docs/1.99.1/Installation.html     . Note that the download 
links refer to Sqoop version 1.4.6—use the latest version). After that, you can download 
and install connectors for the data sources you want to use. 

 For example, if you want to import data from MySQL to HDFS, you will need to 
download the MySQL connector first (   http://ftp.ntu.edu.tw/MySQL/Downloads/
Connector-J/     ), unzip the archive  mysql-connector-java-5.1.36.tar.gz  to extract the jar 
file, and finally move  mysql-connector-java-5.1.36-bin.jar  to the  /usr/lib/sqoop/lib  
directory (again, the links refer to the existing version and might change for a later version). 
The following commands can be used for the purpose ( #  is the Linux command prompt): 

   # tar -zxf mysql-connector-java-5.1.36.tar.gz 
 # cd mysql-connector-java-5.1.36 
 # mv mysql-connector-java-5.1.36-bin.jar /usr/lib/sqoop/lib 

   After that, you can use the connector for import/export. For example, the next command 
imports a table called  MyTbl  from MySQL database server to the HDFS directory  MyData : 

   $ sqoop import \ 
 --connect jdbc:mysql://localhost/userdb \ 
 --username root \ 
 --table MyTbl \ 
 --m 1 \ 
 --target-dir /MyData 

 

http://mirrors.ibiblio.org/apache/sqoop/1.4.6/
https://sqoop.apache.org/docs/1.99.1/Installation.html
http://ftp.ntu.edu.tw/MySQL/Downloads/Connector-J/
http://ftp.ntu.edu.tw/MySQL/Downloads/Connector-J/
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   Now, the preceding command will get the data for the whole table from MySQL. But 
what if you only need data for the last day? Or the last week? Sqoop offers incremental 
load of data using values for any of the columns within the data table. So, if the table 
 MyTbl  has a date column with timestamp or last modified date ( modified_date ), you can 
use that to get data for the last day as follows (assuming you are doing the incremental 
load on 2/29/16 and want to load the data for 2/28/16): 

   $ sqoop import 
 --connect jdbc:mysql://localhost/userdb \ 
 --username Myusr \ 
 --password Mypwd \ 
 --table MyTbl \ 
 --m 1 \ 
 --target-dir /MyData/incremental_table 
 --check-column modified_date 
 --incremental lastmodified 
 --last-value 2016-01-27 

   However, note that the preceding command will fetch all the rows for table  MyTbl  
that were added (or modified) starting 2/28/16 00:01. So, if your application allows for 
updates or modifications to the existing records, this command will get the updated rows 
for you as well. What if you just need the newly added rows? 

 Sqoop provides another mode for incremental load, called  append  (instead of 
 lastmodified ), that will only get you the newly appended records (for a table). You 
can’t use a timestamp or last modified date for this mode (for obvious reasons). You will 
need to use an ID column that has increasing values, and you need to know the largest 
value loaded by the last incremental load. For example, if  MyTbl  has a  MyId  column that 
holds the self-incrementing ID, and you determine that the last incremental load loaded 
maximum ID value of 9834, then the following command will fetch all the records that 
were added after that load: 

   $ sqoop import 
 --connect jdbc:mysql://localhost/userdb \ 
 --username Myusr \ 
 --password Mypwd \ 
 --table MyTbl \ 
 --m 1 \ 
 --target-dir /MyData/incremental_table 
 --check-column modified_date 
 --incremental append 
 --last-value 9834 

   To summarize, Sqoop supports two types of incremental imports,  append  and 
 lastmodified , and can be used in conjunction with the  --incremental  argument to 
specify the incremental import you need to perform. You can use  append  mode if you are 
importing rows for a table where new rows are added with increasing row ID values. Then 
you can specify the row ID column with the  --check-column  option and import rows 
where the check column has a value greater than the one specified with  --last-value . 
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 Alternatively, you can use the  lastmodified  mode if your table doesn’t have a row ID 
column with increasing value but contains a last-modified column. In that case, you can use 
the last-modified column with  --check-column  option and import rows where the check 
column has a value greater than the timestamp (or date) specified with  --last-value . 

 For production usage, you will need to create a script that first determines the 
 --last-value  for the previous incremental load and then substitutes that value within 
your Sqoop command to fetch the records you need. You can then schedule this script as 
a job for incremental load. 

 See the Sqoop user manual for command-line options you can use with Sqoop: 
   https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_incremental_imports     . 

 Finally, I will mention an additional way to load data incrementally. You can leverage 
the  query  parameter and use a SQL  select  statement to limit the import to new or 
changed records only as follows: 

   $ sqoop import 
 --connect jdbc:mysql://localhost/userdb \ 
 --username Myusr \ 
 --password Mypwd \ 
 --table MyTbl \ 
 --m 1 \ 
 --target-dir /MyData/incremental_table 
 --query 'select * from MyTbl where modified_date > 2016-01-27' 

   You can structure the query to match your incremental load needs or the structure 
of your source data table. The advantage with using the query option is that you can 
have better control over the data that needs to be imported, and you can specify multiple 
conditions to filter your data more effectively.  

     Using Flume for Data Transfer 
 The strengths of Flume (as a data-transfer mechanism) are in the capabilities of processing 
streaming data and consolidating data from multiple sources. That’s the reason Flume is 
used for event and audit log consolidations. Also, Flume works well with Log4j-based 
logging that’s very popular for Hadoop installations. Browsing through various Hadoop 
logs while troubleshooting a job or investigating a security breach can be difficult and 
may introduce a manual error. Defining a Flume agent (with related configuration) may 
initially take time, but you only need to do it once. Subsequent modifications to the agent 
are easier and quicker, and most importantly, the process of consolidating logs (for an 
issue) becomes easier and faster. 

 In some cases, the volume of log data may be massive, and a well-defined Flume 
agent can filter necessary data without any manual intervention. Flume is reliable, 
scalable, and easy to customize. Flume also supports dynamic configuration and 
contextual routing. 

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_incremental_imports
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     Flume Architecture 
 Flume architecture revolves around generation of an  event  (atomic data unit transported 
by Flume) by a  client  and its processing by an  agent . Here are definitions of key terms:

    Client:  An entity that produces events and makes them 
available to one or more Agents for processing.  

   Event:  Atomic unit of data transported by Flume from its point 
of origin (source) to its final destination (sink). Event is a byte 
array with (or without) header(s).  

   Source(s):  Event data receptor(s). Sources receive the data 
generated by an event (or from a channel) and output it to one 
or many channels. For example, Syslog can be used as a source.  

   Channel:  Temporary data pipe. A channel is a temporary 
holding area for an event after it is received from a source and 
being output to a sink. Memory (RAM) or a file can be used as 
a channel.  

   Sink:  Data destination. A sink is used as destination for event 
data. One of the most popular sinks is HDFS, that is, logs or 
other events are stored within HDFS as files.  

   Interceptor:  Inspects, transforms, or filters events as needed. 
For example, a  timestamp  interceptor adds a timestamp 
header for an event, or a  regex_filter  interceptor filters out 
events per the specified regular expression.  

   Channel selector:  Process of writing an event to one or more 
configured channels based on a header. An event can be 
 replicated  (written to all the channels) or  multiplexed  (directed 
to different channels based on a header such as port). For 
example, and event received on port 12345 goes to channel1, 
if received on port 54321 goes to channel2, and so on.  

   Sink processor:  Process of writing to a sink (from defined 
sink group) based on load balancing or failover strategy 
(as chosen).  

   Agent:  A process or a Java Virtual Machine (JVM) that runs the 
dataflow to transport events from a source to a sink, utilizing 
other components like interceptors (for filtering events) or 
channels (for temporary storage). Flume deploys as one or 
more agents as required.    

 Figure  8-6  shows how these Flume components fit in the overall architecture. The 
next section discusses each of the these Flume components briefly.   



CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

200

     Understanding and Using Flume Components 
 The last section reviewed definitions for the major Flume components. We also saw 
where each of those components fit in the overall Flume architecture. Now it’s time to 
discuss two of the most important components in detail. 

   Source 
 A  source  is a flume component that receives event data from a client and places it on one 
or more channels (remember, a source needs at least one channel to function). Popular 
sources include Syslog, Netcat, Exec, and others. 

 The Exec source runs a command outside Flume and turns the output into a Flume 
event. To use the Exec source, I will define a source  s1  and set all its relevant properties in 
the Flume agent configuration file (called  flume.conf  and located in  /etc/flume/conf ). 
I’ll start with the  type  property and set it to  exec : 

   s_agent.sources=s1 
 s_agent.sources.s1.type=exec 

   All sources in Flume are required to specify the list of channels to write events to 
using the channels (plural) property. We will use a single channel here: 

   s_agent.sources.s1.channels=c1 
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based on load 
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  Figure 8-6.    Flume architecture with major components       
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   The only other required parameter is the  command  property, which tells Flume 
what command to pass to the operating system. For instance, we can use the following 
command that prints newly added lines from HDFS audit log: 

   s_agent.sources.s1.command= tail -f hdfs-audit.log 

   Note that the  –f  (or follow) option of Linux  tail  command appends data, as the 
file grows. By default, the input file (here  hdfs-audit.log ) is checked for growth every 
second, but you can change that time interval if you want. There are other properties you 
can define for  Exec  source, and you can refer to properties for different Flume sources at: 
   https://flume.apache.org/FlumeUserGuide.html#flume-sources     . 

 To conclude, this is how we can configure a single source  s1  for an agent named 
 s_agent . The source, an exec source, will extract relevant rows for a job from the HDFS 
audit log file  hdfs-audit.log . All events will be written to the  c1  channel.  

   Sink 
 A  sink  is a flume component that removes events from a channel and transmits them to 
their next destination (which might be a source). This transfer is transactional, that is, 
agents use transactional exchange to guarantee delivery across destinations—data is not 
removed from a channel unless the data transfer to next destination is successful. Sinks 
require exactly one channel to function. Here are the different types of sinks:

•    Terminal sinks that deposit events to their final destination (for 
example, HDFS, HBase)  

•   Auto-consuming sinks (such as Null sink)  

•   IPC sink for agent-to-agent communication (for example, 
Avro, Thrift)    

 If your requirements can’t be met by any of these sinks, you can write a custom sink 
for your purposes by extending the  org.apache.flume.sink.Abstractsink  class. 

 HDFS is a popular sink used with Flume. An HDFS sink can be used to open a file in 
HDFS, write streaming data into it, and close it after the data stream has ended or stopped. 
To use the HDFS sink, you need to set the  type  parameter on your named sink to  hdfs : 

   s_agent.sinks.sink1.type=hdfs 

   This defines a HDFS sink named  sink1  for the agent named  s_agent . There are some 
additional required parameters you need to specify, starting with a path in HDFS where 
you want to write the data: 

   s_agent.sinks.sink1.hdfs.path=/usr/flume/mydata 

https://flume.apache.org/FlumeUserGuide.html#flume-sources


CHAPTER 8 ■ IMPLEMENTING SQOOP AND FLUME-BASED DATA TRANSFERS

202

   I have used an absolute path without a server name, but you can use an absolute 
path with a server name ( hdfs://namenode/usr/flume/mydata ) or a relative path 
( mydata ) as you may need. The last mandatory parameter (channel) for the HDFS sink 
(or any sink) specifies the name of the channel that it will be reading from: 

   s_agent.sinks.sink1.channel=ch1 

   This tells the  sink1  sink to read events from the  ch1  channel. For a complete 
listing of sink properties, please refer to    https://flume.apache.org/FlumeUserGuide.
html#flume-sinks     .   

     Implementing Log Consolidation Using Flume 
 Earlier in this section, I discussed Flume architecture and also discussed sources and 
sinks briefly. That will help you understand how Flume can be used for data transfer. 
To enhance that understanding and illustrate how you can perform aggregation and 
consolidation using Flume, I will now talk about a brief working example. Since Flume is 
used extensively for consolidating audit and other Hadoop component logs, I will use that 
as an example. 

 My objective for this example is to set up agents on each of my source servers and 
set up an agent on my target server (within my Hadoop cluster) used for collecting or 
consolidating logs. Subsequently, I will demonstrate setup of a source server (since 
that setup can be replicated for as many sources as you need) and the target server, 
each of which with its own configuration file. I have installed Flume on all my source 
servers and my Hadoop cluster. Here’s the source agent configuration file with key 
entries specified: 

    ## SOURCE AGENT ## 
 ## configuration file location:  /etc/flume/conf/flume-src.conf 
 ## START Agent: /etc/flume/bin/flume-ng agent -c conf -f conf/flume-src.conf 
-n s_agent 

   ## exec-source 
 s_agent.sources = MyServer 
 s_agent.sources.apache_server.type = exec 
 s_agent.sources.apache_server.command = tail -f /etc/httpd/logs/access_log 
 s_agent.sources.apache_server.batchSize = 1 
 s_agent.sources.apache_server.channels = memoryChannel 
 s_agent.sources.apache_server.interceptors = itime 

   ## timestamp-interceptor 
 s_agent.sources.apache_server.interceptors.itime.type = timestamp 

   ## memory-channel 
 s_agent.channels = memoryChannel 
 s_agent.channels.memoryChannel.type = memory 
 s_agent.channels.memoryChannel.capacity = 100 

https://flume.apache.org/FlumeUserGuide.html#flume-sinks
https://flume.apache.org/FlumeUserGuide.html#flume-sinks
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   ## Send to Flume Collector 
 ## avro-sink 
 s_agent.sinks = avro_sink 
 s_agent.sinks.avro_sink.type = avro 
 s_agent.sinks.avro_sink.channel = memoryChannel 
 s_agent.sinks.avro_sink.hostname = 10.243.169.122 
 s_agent.sinks.avro_sink.port = 4545 

    As you can observe from this configuration, the source server is called  MyServer . 
The command used for data capture is the Linux  tail  command. Log entries are held 
in memory (channel  memoryChannel ) instead of a file. Interceptors are used for filtering, 
and here, the interceptor  itime  uses timestamp to determine which entries are new. The 
source agent then sends the log entries to a corresponding Flume agent for collection 
(located on my Hadoop cluster—the IP address corresponds to my network’s external IP 
address). The target server has a corresponding configuration file set up as the following: 

    ## TARGET AGENT ## 
 ## configuration file location:  /etc/flume/conf/flume-col.conf 
 ## START Agent: flume-ng agent -c conf -f /etc/flume/conf/flume-col.conf -n target 

   ## avro-source 
 target.sources = AvroIn 
 target.sources.AvroIn.type = avro 
 target.sources.AvroIn.bind = 0.0.0.0 
 target.sources.AvroIn.port = 4545 
 target.sources.AvroIn.channels = mc1 

   ## Channels ## 
 ## Source writes to a channel for one sink 
 target.channels = mc1 

   ## memory-channel 
 target.channels.mc1.type = memory 
 target.channels.mc1.capacity = 500 

   ## Sinks ## 
 target.sinks = LogConsolidator 

   ## Write to HDFS 
 ## hdfs-sink 
 target.sinks.LogConsolidator.type = hdfs 
 target.sinks.LogConsolidator.channel = mc1 
 target.sinks.LogConsolidator.hdfs.path = /user/flume/MyData/%{log_type}/%y%m%d 
 target.sinks.LogConsolidator.hdfs.fileType = DataStream 
 target.sinks.LogConsolidator.hdfs.writeFormat = Text 
 target.sinks.LogConsolidator.hdfs.rollSize = 0 
 target.sinks.LogConsolidator.hdfs.rollCount = 10000 
 target.sinks.LogConsolidator.hdfs.rollInterval = 600 
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    Note that Apache AVRO is the file format that’s being used for transmitting the 
data, and Flume is listening on port 4545 (since the source agent is sending data to 
port 4545). The sink collector channel  mc1  writes file entries to HDFS. The maximum 
number of events (log entries in this case) Flume will store in this channel (log entry 
persistence) is 500. What this means is that if the target server crashes and more than 500 
log transactions are queued, only 500 transactions will be saved—unless you can clear the 
channel (by writing the transactions to HDFS). This limit can be increased (by changing 
the value for parameter  target.channels.mc1.capacity ), if you have enough memory or 
disk space available. 

 As a last step, I need to start Flume agents on source servers as well as my target 
Hadoop cluster. On source servers: 

   $ /etc/flume/bin/flume-ng agent -c conf -f conf/flume-src.conf -n s_agent 

   And on my target Hadoop cluster: 

   $ /etc/flume/bin/flume-ng agent -c conf -f /etc/flume/conf/flume-col.conf -n 
target 

   You can add more sources and install Flume agents to send the files to your target 
cluster. Flume doesn’t perform any transformations, but you can use Linux shell utilities 
or programming languages like Python or Scala to apply transformations to source data 
as you need.   

     Summary 
 The Hadoop world and the Big Data arena are in a very dynamic period, and new Apache 
components (as well as priced solutions) are added almost weekly. Many of these 
solutions focus on analytics. Some talk about real-time analytics, others provide textual 
and sentiment analysis. There are analytics solutions that even analyze social media data 
in other languages (like Chinese or German or Spanish). Then there are data-discovery 
solutions that categorize and mask sensitive data or create metadata for your data. There 
are, however, no additions to the Apache repertoire for ETL processing. There are a few 
priced solutions available, but they don’t add enough value to spend money and time 
(for retraining your resources). 

 Streaming analytics is gaining a lot of popularity, and Kafka, Storm, Spark, and 
Samza are used extensively. That’s the reason I have discussed them briefly, but there 
is still a huge dependence on Sqoop and Flume for ETL. The newer versions of these 
components are adding useful features, and it would be good to see them performing 
some real transformations in addition to data import or export. Meanwhile, due to the 
maturity of these components, large amounts of prebuilt solutions are available, and new 
plug-in connectors for Sqoop are added regularly. 

 It will help you to do some web research for your ETL requirements, if you plan to 
use Flume, Sqoop, or even Kafka, Spark, and Storm. 
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 Of course, you need to be careful and not get carried away by the Spark-mania since 
Spark is developed using Scala and there are a lot of issues that users are discovering with 
time. Also, to put things in perspective, Scala has 0.5% market saturation (about as much 
as Lisp), compared to 21.5% for Java. In fact, with the introduction of native functional 
programming constructs for Java (with release 1.8), there are no advantages for using 
Scala. Add a huge number of transitive dependencies that Spark (and Scala) introduce 
(compared to other alternatives), and it’s not an attractive proposition anymore. Since 
developers need to master all these dependencies to gain a good working understanding 
of Spark, there are very few true experts available in the market. Spark Python is also a 
popular option now (since it’s as fast as Scala), and more data scientists are comfortable 
using it. 

 So, what are the alternatives? Apache Ignite, Apache Drill, Apache Kylin, Apache 
Geode, and Apache Beam are all good alternatives. If you are interested in processing 
streming data, you should review these components.     
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    CHAPTER 9   

 Lambda Architecture 
for Real-time Hadoop 
Applications                          

 Some time back, I was at IBM Global Services interviewing candidates for a DBA position. 
I asked candidates about the paramount task they would perform as a DBA at a client 
site. I expected production backups as an answer, and only one out of six candidates 
answered correctly. A simple task and yet overlooked by most. Curiously, absence of a 
well-defined process for backing up data is what ultimately led Nathan Marz to one of the 
most talked about architectures for Big Data. By his own admission (in his book  Big Data: 
Principles and Best Practices of Scalable Realtime Data Systems  (Manning, 2015), Nathan 
overlooked backing up data before performing routine maintenance work and, since the 
maintenance involved deleting data, set the project back several weeks by accidentally 
deleting some important data. That experience apparently shaped his views about how 
a system should be architected. It made him realize that the new architecture should not 
only be tolerant to machine failure, but to human mistakes as well. 

 The Lambda architecture (which Nathan designed) focuses on immutable data 
and batch computations, as opposed to incremental computation. The basic premise of 
Lambda is that incremental computations and updates add complexity to processing and 
thereby impact performance. The architecture can be simplified and made more efficient 
by avoiding (or at least reducing) incremental updates. Data immutability is provided 
by building a batch layer (without modifying the master dataset) that caters to user 
queries and data needs. There is also a serving layer to bring additional efficiency to data 
distribution. 

 The final layer (speed layer) is the only one that performs incremental computations 
to get the latest modifications to the data after the batch layer was computed. This way, 
the volume of data that’s involved in incremental computation is low and the overall 
performance impact minimal. Query responses are computed using a combined data set 
(a union of data from the batch layer and the speed layer). 
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 You can see that this architecture simplifies a number of tasks. Adding new features 
is easy because it may involve adding processing (queries) or at the most new views 
(enhancement to the batch layer). Recovery from human mistakes is easily possible 
because you can rebuild views from batch layer or speed layer as required. Performance 
optimization can be achieved easily as well, by tuning the batch layer or indexing views 
as necessary. Finally, this architecture is generic enough to be applied to any data-
processing environment. 

 This is just a brief introduction to Lambda, but you can see how useful this 
architecture can be for designing real-time or near real-time systems using NoSQL 
databases. Add the well-known benefits of Hadoop (fault tolerance, distributed 
computing, low cost, performance, scalability) to this solution, and you can use this 
architecture to design an efficient, cost-effective, and high-performance real-time system. 

 The Lambda architecture has the following objectives:

•    Processing should leave (base) data unchanged and build an 
access layer (tuned for user queries) enabling easy recovery from 
human errors.  

•   Processing should be performed asynchronously, ahead of time 
(of data access) and in a batch mode,  

•   Incremental computations should be reduced to a minimum (or if 
possible eliminated).    

 Now let’s discuss the layers of Lambda architecture in detail and also how you can 
build a good real-time system using it. 

     Defining and Using the Lambda Layers 
 In the previous section, I discussed the origin and philosophy behind Lambda 
architecture. I also briefly mentioned the layers or components of Lambda and their 
purpose. In this section, I discuss these in detail and also explain how they can be 
implemented for real-world scenarios. 

 These layers are logical, or at a conceptual level. When implementing them, the 
NoSQL databases you need to use are physical and have their own shortcomings—if used 
in isolation. It is good to understand their strengths (and weaknesses) while using them for 
your implementation. For example, a columnar database like Cassandra can offer a high 
throughput but offers a very limited data model (compared to RDBMS). So, there is work 
involved in adapting your relational schema to it. I discuss this transition in Chapter   8    , and 
as you have seen, you need to complete several tasks for a successful transition. 

 Another thing to note is the mutability of datasets associated with any NoSQL 
databases when used in isolation. However, when these NoSQL databases are used as a 
part of Lambda architecture, the total solution easily overcomes mutability and is human 
fault tolerant. Let’s see how that happens. I’ll start with the first layer—the batch layer. 

http://dx.doi.org/10.1007/978-1-4842-1287-5_8
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     Batch Layer 
 Latency is a common issue encountered while dealing with huge datasets. Distributed 
processing mechanisms like MapReduce or YARN may try to minimize it, but considering 
the use of these huge datasets for analytics and the complex processing involved, the 
total time used for the processing is not acceptable most of the time. As a result, either the 
processing needs to be divided in smaller units (which may not be possible every time) 
or possible user queries are limited in their scope. Lambda architecture tries to remedy 
this situation by performing precomputations on the data (termed  master data ), based 
on anticipated queries. The technique involves building views (and indexing them) that 
may possibly support most of the user queries or read access to data. Since these views 
are computed from large datasets, they take time to build and therefore this operation 
is performed asynchronously or in  batch mode . These preemptive views form the  batch 
layer  or first layer of Lambda architecture. 

 I will discuss how these views are built using the master data, but first I’ll talk about 
designing and creating the master data set (that you need to use for your batch layer). 

   Designing Your Master Data 
 Considering all possible scenarios, either you may need to re-architect (or migrate) 
an existing RDBMS-based application to NoSQL (in case near real-time queries are 
required) or you may be designing a brand new NoSQL-based system with a need 
for near real-time queries. Steps to follow are similar and start with the logical model 
discussed in Chapters   2     and   3    . 

 It may seem odd to construct a logical data model for NoSQL implementation, but as 
explained in Chapter   3    , there are several compelling reasons for it. Absence of modeling 
tools and techniques for NoSQL modeling is a major reason. Another reason is that the 
procedure for analyzing a business process and establishing a model for capturing data 
(generated by it) remains almost the same. What changes is the final representation of the 
model and the way you store it. Nathan Marz proposes a “fact-based” model for holding 
the master dataset. 

   Fact-Based Model 

 To start with, let’s define  data  as information that can’t be derived from any other 
information. For the fact-based model, data is deconstructed in fundamental units called 
 facts . Fact data is  immutable  or not updatable. So, any updates to data result in addition 
of a new data row (or unit) that’s differentiated using a timestamp. This is to ensure that 
information (or history, in conventional terms) is not lost. Data immutability has two 
important advantages:

•     Human-fault tolerance : With a mutable data model, any faulty 
or undesired data modifications can overwrite good data 
permanently and can’t be recovered. With an immutable model, 
bad data can simply be deleted without any adverse effects.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_2
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
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•    Simplicity : Mutable data models need the data to be indexed for 
speedy retrieval and updates. With an immutable data model, 
indexing is not needed since you simply append new data to your 
master dataset. This simplifies storing master data.    

 So, how are “facts” generated from data and how are they made immutable? Let me 
discuss this concept using an example.  DataScourerNinjas.com  has a very interesting 
business model. It procures and tracks information about thousands of corporations 
and sells it to companies developing software. The information is useful for software 
manufacturers in targeting these corporations for specific software that they develop. 
Figure  9-1  gives a peek into the type of data DataScourerNinjas gathers:  

Corporation
Business 
category

Business 
details

IT 
strength

Customer 
support 
strength

Yearly 
revenue

Profit 
last 
year

Payroll 
software 
or vendor

Helpdesk 
software 
or vendor

Toyota motors Automobile Sedans, SUVs, 
Minivans

5000 2000 $70 Billion $3 Billion ADP Zendesk

Accenture Consulting Management 
and Technical 
consulting

3000 500 $32 Billion $3 Billion Custom Salesforce

General Electric Energy Electrical 
distribution, 
Electric motors

10,000 2000 $148 Billion $15 Billion ADP SAP – CRM

  Figure 9-1.    Potential corporate software sales targets (mutable information)       

 Consider a situation where a data issue is detected with one of the entries,  Profit 
last year , (for all corporations) and all entries for another corporation. The data is not 
reliable and needs to be collected again (partially or completely). Or, consider a scenario 
where the values need to be recorded for a corporation for last six months (since that’s 
when it “qualified” for DataScourerNinjas to track information for it). Following are the 
issues with this data in these situations:

•    It’s not possible to know that data is collected in parts at different 
times.  

•   It’s not possible to know what the past or historical values were 
(since part of data is overwritten).    

 This is an example of mutable schema. When data changes, it overwrites the existing 
data. Also, since parts of data might be more dynamic (changing often) than others, 
ideally it should be possible to maintain history of all the parts of data separately. This is 
not possible with mutable schema. So, how can the preceding design issues be resolved? 
Lambda has a possible solution: fact-based schema. How can the preceding mutable 
schema be represented as an immutable fact-based schema? Look at Figure  9-2 .  
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 The idea really is very simple. First, separate the “facts” that can change 
independently (of each other) and then track them (separately). Consider the example 
just given. For a corporation, strength of customer support can increase temporarily if 
there is an issue that draws a lot of customer reaction. But that may not impact the payroll 
software that they use or the strength of their IT. So, it’s important to separate these facts 
and maintain a separate history. How do you achieve immutability? Every time there is 
a change in value, a new row is added along with the timestamp (corresponding to the 
date/time when the value change occurred). The values may change at different times, 
but there is a way to know when each of these changes occurred. 

 You may observe that the column  Corporation  is included in all the datasets. The 
reason is that it is used an identifier to uniquely identify the data (across the facts). In this 
case, it identifies the corporation the data refers to. However, it is not a unique identifier, 
since the new records that are added will only have the timestamp different. So, the 
unique identifier will be  Corporation   and   Timestamp.  Let’s look at how this model can 
be used to support facts about the information tracking system I am using as an example 
(Figure  9-3 ).  

Toyota motors 5000 3500 8/1/2015 09:30:13

Accenture 3000 2900 9/2 /2015 10:00:23

General Electric 10,000 6000 9/13/2015 10:05:11

Toyota motors

Corporation

CorpBusDetails

CorpHelpDeskDetails

CorpFinDetails

CorpPayrollDetails

CorpITDetails

CorpCustSupDetails

Business
category

Business
details Timestamp

Automobile Sedans, SUVs, 
Minivans

8/1/2015 
09:30:13

Accenture Consulting Management 
and Technical 
consulting

9/2 /2015 
10:00:23

General Electric Energy Electrical 
distribution, 
Electric motors

9/13/2015 
10:05:11

Toyota motors 2000 1500 8/1/2015 09:30:13

Accenture 1000 600 9/2 /2015 10:00:23

General Electric 2000 1700 9/13/2015 10:05:11Toyota motors Zendesk 8/1/2015 09:30:13

Accenture Salesforce 9/2 /2015 10:00:23

General Electric SAP – CRM 9/13/2015 10:05:11

Toyota motors $4 Billion $70 Billion 1/1/2015 0:00:01

Accenture $3 Billion $32 Billion 1/1 /2015 00:00: 01

General Electric $15 Billion $148 Billion 1/1/2015 00:00:01
Toyota motors $3 Billion $50 Billion 1/1/2014 00:00:01

Accenture $2 Billion $22 Billion 1/1 /2014 00:00: 01

General Electric $10 Billion $138 Billion 1/1/2014 00:00:01

Toyota motors ADP 8/1/2015 09:30:13

Accenture Custom 9/2/2015 10:00:23
General Electric ADP 9/13/2015 10:05:11

Corporation

Corporation

Corporation

Corporation

Corporation

Helpdesk software
or vendor

Cust Support
strength

Males Timestamp

Timestamp

Timestamp

Timestamp

Yearly
revenue

Profit last
year

IT strength CollegeGrads Timestamp

Payroll software
or vendor

0

  Figure 9-2.    Fact-based immutable schema       
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 Consider this fact:  Accenture uses Salesforce as help desk software   as of 9/2/2015 
10:00:23.  It is eternally true and is immutable—since a new fact will be added with a 
corresponding timestamp (in the future), leaving this fact untouched (or unmodified). 

 Unlike a relational database, where you need to worry about the underlying 
relations, interconnectivity of data, and update performance, you can keep on adding 
millions of facts—all time stamped for effective batch processing without worrying about 
any updates. Also, because there is no incremental processing involved, you don’t need to 
worry about performance. In the next section, I discuss how this fact-based model is used 
for batch processing.  

   Applying a Fact-based Model to Relational Applications 

 Although Lambda defines  fact  as a fundamental unit of data, in the case of real-world 
systems with structured data, a fact can be an atomic unit of data constituted by a specific 
group of columns and can be identified using a unique identifier (primary key), since 
the non-key columns are only dependent on the key columns for identification. So, in 
relational terms, a  fact  can be a table in the third normal form. (I am sure Nathan didn’t 
have this interpretation in his mind while designing Lambda, but it’s surely interesting to 
see how it can be applied to relational systems, albeit with some modifications.) 

 Consider a simplistic sales management system. A retailer sells a number of products 
and registers the sales in a table, shown in Figure  9-4 . The sales data is denormalized and 
“facts” (product, customer, and location metadata in this case) are mutable. Why is this 
data mutable? Well, think of a situation where customer JCPenney decides to move to 
another location or the retailer decides to stock the item  Men’s Striped Cotton shirt  
at a different warehouse. First, it will be difficult (and slow) to update all the rows with 
appropriate metadata. Second, information or history will be lost after the updates, since 
there is no way to specify the date/time of modification.  

General Electric has IT strength of 10,000
(as of 9/13/2015 10:05:11)

Accenture uses Salesforce as Helpdesk software
(as of 9/2/2015 10:00:23)

Toyota Motors uses ADP as a Payroll vendor
(as of 8/1/2015 09:30:13)

Toyota Motors has Customer support strength of 2000
(as of 8/1/2015 09:30:13)

Information 
Tracking system

Facts are atomic and therefore 
can’t be divided any further into 
meaningful components

Facts are time stamped to 
facilitate immutability and are 
eternally true

  Figure 9-3.    Facts represented by immutable tracking system schema       
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SalesID SalesDate TotalSales Product Ptype PLocation PPrice Customer
Name

Customer
Address

Customer
Type

102525525 8/1/2015 09:30:13 $3,450 Men’s Striped 
Cotton shirt 
(large)

Men’s 
cotton 
garment

1234 Lemont road 
Darien IL 60561

$23 JCPenney 1 Oak St. 
Darien IL 60561

Corporate

126262666 9/2 /2015 10:00:23 $7,740 Men’s Denim 
shorts 
(Medium)

Men’s 
denim 
garment

1649 Halstead St.
Chicago, IL 60604

$18 Kohls 21 Maple St. 
Naperville IL 
60563

Corporate

137737373 9/13/2015 
10:05:11

$9,966 Women’s 
solid cotton 
skirt (black)

Women’s 
cotton 
garment

1234 Lemont road 
Darien IL 60561

$33 Kohls 21 Maple St. 
Naperville IL 
60563

Corporate

146366467 10/1 6/2015 
11:29:16

$3,120 Gray Woolen 
scarf

Women’s 
woolen 
accessory

1234 Lemont road 
Darien IL 60561

$10 Old Navy 54 Argyle St. 
Westmont IL 
60559

Corporate

136669735 10/1 3/2015 
12:09:18

$9,656 Women’s 
woolen skirt 
(polka dots)

Women’s 
woolen 
garment

1649 Halstead St.
Chicago, IL 60604

$34 Old Navy 54 Argyle St. 
Westmont IL 
60559

Corporate

136566656 10/20/2015 
14:06:41

$2,160 Men’s gloves 
(Black 
leather)

Men’s 
leather 
accessory

1649 Halstead St.
Chicago, IL 60604

$20 JCPenney 1 Oak St. 
Darien IL 60561

Corporate

  Figure 9-4.    Denormalized mutable sales schema       

 Can this data be represented using a fact-based model (especially considering the 
modified definition of a fact)? 

 Follow these steps to convert this schema to an  immutable  fact-based schema:

•    Extract atomic logical groupings  

•   Add timestamp to each grouping    

 As you can observe in Figure  9-5 , I have added identifiers for each of the tables, and 
the sales table doesn’t contain any metadata any more. Metadata is moved to separate 
tables, but to make it immutable, you need to add a timestamp column. Then each row 
will reflect the values as of a specific date/time, and information will not be lost. The 
immutable data will now look as shown in Figure  9-5 .  
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 Another issue to consider is uniqueness of data. Because it’s possible to generate 
a new row for any changes to a data row, the unique identifiers (ID columns such 
as  CustomerID ,  LocationID , and others that I defined) will not be unique unless 
supplemented by a timestamp. Lambda recommends adding a timestamp column for 
every fact, and for our example, a fact is identified by each of the data tables. Complete 
change history is available with this approach as well, since we assume that a new row 
will be added if any of the column values change. 

 Immutability of this schema also makes it  eternally true . In fact, any data row 
provides the version of truth for the contained information as of the date/time of the 
associated timestamp. I’ll now demonstrate how this model can be used to support facts 
about the sales management system that I am using as an example. 

 Figure  9-6  shows examples of facts about the sales management system and also 
demonstrates two important properties of facts:  atomicity  and  eternal truth .  

Sales Location

Product

1 Men’s Striped 
Cotton shirt (large)

Men’s cotton 
garment

1 $23 8/1/2015 09:30:13

2 Men’s Denim 
shorts (Medium)

Men’s denim 
garment

2 $18 9/2 /2015 10:00:23

3 Women’s solid 
cotton skirt (black)

Women’s cotton 
garment

1 $33 9/13/2015 10:05:11

4 Gray Woolen scarf Women’s woolen 
accessory

1 $10 10/1 6/2015 11:29:16

5 Women’s woolen 
skirt (polka dots)

Women’s woolen 
garment

2 $34 10/1 3/2015 12:09:18

6 Men’s gloves 
(Black leather)

Men’s leather 
accessory

2 $20 10/20/2015 14:06:41

Customer

1 JCPenney Corporate 1 Oak St. Darien IL 60561 8/1/2015 09:30:13

2 Kohls Corporate 21 Maple St.  Naperville IL 60563 9/2 /2015 10:00:23

3 Old Navy Corporate 54 Argyle St. Westmont IL 60559 10/1 3/2015 12:09:18

1 1234 Lemont 
road

Darien IL 60561 8/1/2015 
09:30:13

2 1649 
Halstead St.

Chicago IL 60604 9/2 /2015 
10:00:23

102525525 8/1/2015 09:30:13 $3,450 1 1

126262666 9/2 /2015 10:00:23 $7,740 2 2

137737373 9/13/2015 10:05:11 $9,966 3 2

146366467 10/1 6/2015 11:29:16 $3,120 4 3

13666973 5 10/1 3/2015 12:09:18 $9,656 5 3

136566656 10/20/2015 14:06:41 $2,160 6 1

SalesID SalesDate
Total
Sales

Product
ID

Customer
ID Location

ID

Location
ID

Unit
Price

Product
ID

Customer
ID

CName CType
CStreet
Address

CCity CState CZip

PName PCategory

Street
Address

City State Zip
LTime
stamp

PTimestamp

CTimestamp

  Figure 9-5.    Immutable version of sales schema       
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 Facts are  atomic  because it’s not possible to divide them further into meaningful 
components. For example, the fact that JC Penney is a customer (since it bought items) 
can’t be divided further, since parts of that fact won’t be meaningful in the context of sales 
management system (or even otherwise). An important consequence of being atomic 
is non-redundancy of information across distinct facts. The timestamp provides a time 
context since a fact becomes true (or starts existing) at a particular time and then remains 
 true eternally  after that. Both these properties make the fact-based model a simple and 
expressive one for your dataset. 

 Last, an important point to note about this example of a sales management system 
is that it uses a complex fact as opposed to a columnar fact suggested by Lambda 
architecture. A  columnar  fact (adding a timestamp to maintain the change history of 
a column) may be suitable in the context of a system with few data components, but it 
would be impossible to implement for complex relational applications, and my focus 
is implementation of Lambda architecture to re-architect relational systems or design 
complex systems with a large number of data components. 

 If you are familiar with data warehouse systems, you may also draw similarities with 
type 2 dimensions that maintain history for an attribute or column. To summarize, the 
fact-based schema offers the following benefits:

•     Time-specific queries : Data can be queried for any time-specific 
historical values that are supported by your dataset. For example, 
if you need to know total sales for Kohl’s between September 1, 
2015, to October 30, 2015, or products available as of September 
15, 2015, then it is easily possible and supported.  

•    Human-fault tolerance : This is achieved by simply removing or 
deleting erroneous facts. Valid facts are unaffected.  

Sales management 
system

JCPenney is a new customer
(as of 8/1/2015 09:30:13)

Customer Old Navy bought 312 Gray Woolen scarfs
(as of 10/16/2015 11:29:16)

Product Men’s Striped Cotton shirt (large) available
at location 1234 Lemont road, Darien, IL 60561

(as of 8/1/2015 09:30:13)  

Location 1649 Halstead St, Chicago, IL 60604 available
(as of 9/2/2015 10:00:23)

Facts are atomic and therefore 
can’t be divided any further into 
meaningful components Facts are time stamped to 

facilitate immutability and are 
eternally true

  Figure 9-6.    Facts represented by immutable sales schema       
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•    Advantages of normalized and denormalized forms : This key 
advantage is because of the structure of the Lambda architecture. 
The fact-based model is normalized and used for data storage. 
Data updates are handled by inserting new rows with the latest 
timestamp. As you know, queries don’t perform well for a 
normalized model. Therefore, data storage and query-processing 
layers are separated, and queries are supported by denormalized 
views, built as a part of the batch layer. So, you keep your data in 
normalized and denormalized forms and can receive the benefits 
of both.    

 Having designed your schema, you can use techniques discussed in Chapter   8     to 
adapt it for NoSQL solution appropriate for your environment and use it for data storage. 
The fact-based model is a conceptual or logical model and can be implemented using an 
appropriate NoSQL solution. In the next section, I discuss building denormalized batch 
views for query processing.   

   Building Batch Views 
 The purpose for building batch views is to facilitate performance for user access (such 
as queries, reporting, and so on). Any user interaction with a huge dataset (mostly the 
case where NoSQL is used) needs a large amount of resources, can still not perform well 
(slow), and may even fail due to lack of resources. If joins and aggregations are performed 
in advance and stored as data objects, any queries that use these data objects (instead of a 
master dataset) might perform better. The precomputed data can be indexed to speed up 
reads and random seeks (which Hadoop and NoSQL are not very good at). This concept 
is very similar to the RDBMS  materialized views  that can be indexed. These precomputed 
views or  batch views  constitute the batch layer for Lambda architecture. 

   Designing Batch Views for Your Fact-based Model 

 While designing a batch view, you need to focus on your prime objective: any queries that 
need to be executed against your master dataset should now execute through a function 
on the (newly designed) batch view instead of the whole dataset. That way, the indexed 
batch view can facilitate a quick retrieval of values you need. You can create multiple 
batch views for your dataset to cover all the functionality required by your application. 
Although, the more batch views you create, the longer it will take to rebuild your batch 
layer. So, you have to maintain a balance (between number of views and available 
processing time) and decide on an optimal number of views to match your processing 
power, priorities (in terms of query frequencies), and processing time for rebuild. 

 One important point to note is that parallelism for data retrieval and processing is 
always guaranteed if you use a Hadoop-based NoSQL solution (due to the distributed 
nature of Hadoop). There are, of course, other benefits of using HDFS for storing your 
master dataset as well as the batch views. 

http://dx.doi.org/10.1007/978-1-4842-1287-5_8
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 I’m going to look at how batch views can be built for applications we designed fact-
based models for (in the previous section): the information tracking system and the sales 
management system. The information tracking system is designed by DataScourerNinjas 
and used by their potential customers, who are software companies that design and sell 
software offering specific functionality (payroll, customer relationship management, and 
so on). 

 From their experience, most of the software companies look for potential customers 
who have been profitable for last five years and have a large customer support staff (at 
least average of 1,000) for last five years. Some of the companies look for short-term 
profitability of the last three years but insist on dealing with companies that have IT 
full of college graduates (at least 60%) for the last three years. Also, since these software 
products are specific to an industry, it is important to focus on companies in a specific 
business category. Considering these factors, they designed the following batch views:

•    Companies profitable for last five years (included columns: 
 Corporation ,  Profit last year )  

•   Companies that have an average customer support staff of 1,000 
(or more) for the last five years  

•   Companies that have IT with at least 60% of college graduates (on 
average) for the last three years    

 One more thing to consider while designing batch views is their size. In some cases, 
if your dataset is really huge, the batch views will be huge as well and you may need to 
think about breaking them up further. For example, consider the information tracking 
system under discussion. Assume that there is a huge boom that results in thousands of 
new companies, and DataScourerNinjas is successful in getting data for them. If you have 
your batch views by month, the volumes may still be large for quick processing of queries, 
and you may want to redesign your batch layer with views by a week or even a day. That 
will increase your (total) processing time (since you will only process weekly or daily, 
as opposed to a month), but will help with performance and also reduce size (as well as 
processing) for your speed layer.  

   Implementing Batch Views 

 A few things to consider about the batch view designed in the last section. This view can 
easily be implemented using HDFS for storage, and any of the available NoSQL solutions 
such as HBase, Cassandra, or MongoDB. Alternatively, you can leave the data in HDFS 
and use Hive for metadata management and MySQL for holding the metadata. Nathan 
suggests that you write your own functions and abstractions using Java or any other 
language of your choice, because using packaged NoSQL solutions adds complexity and 
can affect performance. 

 I will use Hive for demonstrating the concept (of designing and building batch 
views), for several reasons. Writing code for MapReduce has its own limitations, keeping 
in mind the various distributed engines that are available on a regular basis (at least in 
the recent past). Besides, I don’t expect everyone using this book to be adept at Java or 
C# programming. And this chapter is more about understanding the concept of Lambda 
architecture rather than writing code that you can use in a production environment. 
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 Also, for appending vertical or time-based data, Nathan has developed a Java-based 
application called Pail. You can think of Pail as a container for HDFS. The Thrift (the 
interface that Nathan uses for serialization) schema creates Java objects. These Thrift 
Java objects are serialized and deserialized by implementing the PailStructure interface 
and also useful in implementing vertical partitioning. These are advanced topics that use 
Java programming—therefore, I have preferred a more generic approach (that may be 
easier to understand to a wider audience) involving using Hive partitions (daily, weekly, 
or monthly as your application may warrant) to append new data. I have used Hive 
partitions to demonstrate the concept of how new data can be managed for your master 
dataset and processed in the batch views that are created. 

 You can assume that a memory-based database solution is used (such as VoltDB, 
Apache Geode, or Ampool) by the web interface to hold the data for a day and then 
is transferred nightly to HDFS. So, I will create the four Hive tables that will hold the 
master data for this system. This is a first step required for implementing the batch views 
discussed earlier. I have also used a timestamp for partitioning the tables. 

 If you need to perform transactions or need ACID support, you need to perform 
some configuration changes for Hive before you create the new tables. As you may be 
aware, CRUD (create, read, update, delete) operations are supported in Hive from 0.14 
onwards. To enable support for CRUD operations, make sure your  hive-site.xml  file has 
the following parameters configured: 

   hive.support.concurrency – true 
 hive.enforce.bucketing – true 
 hive.exec.dynamic.partition.mode – nonstrict 
 hive.txn.manager –org.apache.hadoop.hive.ql.lockmgr.DbTxnManager 
 hive.compactor.initiator.on – true 
 hive.compactor.worker.threads – 1 

   Restart Hive after implementing these configuration changes. Additionally, a 
ZooKeeper instance must be up and running when using ZooKeeper Hive lock manager. 
Refer to the following links for additional setup details: 

   http://zookeeper.apache.org/doc/r3.1.2/recipes.html#sc_recipes_Locks 
 https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTrans
actions-LockManager 

   Remember, transactions are supported on objects stored using the ORC file format 
only. Lastly, you will need to enable support for ACID properties while creating a table 
and specify bucketing or key columns (which, by the way, can’t be updated). So, your 
 create table  statements will need to have the following construct: 

   clustered by <key column(s)> into <number of buckets> stored as orc 
TBLPROPERTIES ('transactional'='true') 
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   I am not using transactional support for my example, and therefore, here’s the code 
to create these Hive tables: 

    CREATE TABLE CorpBusDetails( 
 Corporation STRING,      
 BusCategory STRING,      
 BusDetails STRING 
 )         
 PARTITIONED BY (AsOf TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

   CREATE TABLE CorpCustSupDetails( 
 Corporation STRING,      
 CustSuppStrength INT, 
 Males INT) 
 PARTITIONED BY (AsOf TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

   CREATE TABLE CorpITDetails( 
 Corporation STRING,      
 ITStrength INT, 
 ColGrads INT) 
 PARTITIONED BY (AsOf TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

   CREATE TABLE CorpFinDetails( 
 Corporation STRING, 
 YrlyRevenue BIGINT,      
 ProfLastYear BIGINT) 
 PARTITIONED BY (AsOf TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

    Note that these tables are stored as files within HDFS, and Hive just holds the 
metadata in order to manage data modifications (and manipulation via queries) more 
effectively. So, how will new data be added on a daily basis? Using dynamic partitions. 
You will need to enable dynamic partitioning for your Hive installation and adjust a few 
configuration parameters. Read the details at    https://cwiki.apache.org/confluence/
display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts     . 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts
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 Any new data can be appended by creating a staging table (pointing at the file 
holding new data) and adding the new partition to a table, as follows: 

    CREATE EXTERNAL TABLE CorpBusDetails_stg( 
 Corporation STRING,      
 BusCategory STRING,      
 BusDetails STRING, 
 AsOf TIMESTAMP    
 ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;" 
 LOCATION "/TrackingInfo/CorpBusDetails/staging"; 

   FROM CorpBusDetails_stg INSERT OVERWRITE TABLE CorpBusDetails PARTITION 
(AsOf) SELECT Corporation,BusCategory,BusDetails,AsOf; 

    You will notice that the staging table has an additional column and points to 
a staging directory (holding the new data) for table  CorpBusDetails . The same 
principle can be applied for adding new data to tables  CorpCustSupDetails  and 
 CorpProfitDetails . Also, the process of copying new data file to the appropriate staging 
directory, creating staging table, and adding the new partition to base table can be 
automated and scheduled. 

 The next step is creating the batch views. I will first create a table called 
 BatchProcHist  to maintain history of batch views created: 

   CREATE TABLE BatchProcHist( 
 ViewName STRING, 
 CreatedAt timestamp) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

   Next, I will create the first view:  Companies profitable for last 5 years . The easiest 
way to determine this is to add the profits for last five years and make sure it’s a positive 
integer. Here’s how you can quickly calculate that using a temporary table: 

    Create table Profitemp1 as Select ProfLastYear, AsOf, Corporation from 
CorpProfitDetails where year(AsOf) <= year(from_unixtime(unix_timestamp())) 
and year(AsOf) >= (year(from_unixtime(unix_timestamp())) – 5) 

   Create table ProfLFiveView as select Corporation, sum(ProfLastYear) as 
ProfLastFive from Profitemp1 group by Corporation having sum(ProfLastYear) > 0 

   INSERT INTO TABLE BatchProcHist 
   VALUES ('ProfLFiveView', from_unixtime(unix_timestamp()); 

    As you must have observed, I also wrote a history record to table  BatchProcHist  after 
I created the first batch view. 
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 The second view involves calculating an average ( Companies that have average 
customer support staff equal to or more than 1,000 for the last five years ). Because you will 
need to calculate the up-to-date average for the speed layer, you will need to store the 
count of records used for calculating that average as well: 

    Create table CustSuptemp1 as Select CustSuppStrength, AsOf, Corporation from 
CorpCustSupDetails where year(AsOf) <= year(from_unixtime(unix_timestamp())) 
and year(AsOf) >= (year(from_unixtime(unix_timestamp())) – 5) 

   Create table AveCS1000View as select Corporation, sum(CustSuppStrength) 
as TotalCustSup, count(CustSuppStrength) as CountCustSup, 
(sum(CustSuppStrength) / count(CustSuppStrength)) as AveLastFive from 
CustSuptemp1 group by Corporation having (AveLastFive >= 1000) 

   INSERT INTO TABLE BatchProcHist 
   VALUES ('AveCS1000View', from_unixtime(unix_timestamp()); 

 The temporary tables ( Profitemp1 ,  Profitemp2 , and  CustSuptemp1 ) can be dropped 
at this point. They will be created the next time these batch views are rebuilt. 

    You can build the last batch view (as an exercise), and additional views can be built 
similarly as per functionality that’s required to be supported. As a last step, secondary 
indexes need to be created to facilitate speedy retrieval, but that’s done in the serving 
layer. Just as an example, for the first batch view designed, the following secondary 
indexes will help performance:

•     Corporation   

•    ProfLastFive ,  Corporation     

 Remember that creating secondary indexes involves processing time and disk space. 
So, you need to be careful while designing these indexes and optimize their usage. Also, 
because indexing the views is a very important step (from performance, disk space, 
and processing time perspectives), it will need to be performed by someone with a 
good understanding of your data as well as functional needs (analytics and frequently 
executed queries). If your indexes do not coincide with your queries, you will experience 
performance issues and also waste valuable system resources (and time) building them. 

 One important point to note about the batch views is the size and changeability of 
your dataset. If your dataset is enormous or really dynamic, the resulting batch views may 
be huge or may be missing a lot of new data, and you may have to perform processing 
in smaller batches. For example, consider the tracking system example. Assume there 
is a sudden boom in the market and a lot of new companies are getting added to the 
repertoire of DataScourerNinjas on a weekly basis. If you rebuild your batch views every 
month, a lot of new data may have been added in that period that’s not a part of the 
batch views (it will be available through speed layer for your queries, but may reduce the 
efficiency and speed of the speed layer due to larger volume of records). Therefore, you 
may want to rebuild batch views every week instead of every month. This will also keep 
your speed layer small and better managed. 
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 For enormous datasets, you may want to split batch views by week (instead of 
month) too, since that will reduce your processing resources and time per view (since 
you will only process a week as opposed to a month), but may complicate your retrieval 
strategy (since you will need to determine the correct view to query and multiple views if 
the duration spans across weeks). 

 Last, the obvious question you may have with this approach is about the time or 
latency for creating such batch views. Since these views are created from the whole 
master dataset, clearly they will use a large amount of system resources, and still the 
computing may not complete within the available maintenance window. Even if it does, 
they may not have all the data collected by your system, since data might get added while 
(or after) these views are computed, and your query results might be outdated by many 
hours. How can Lambda provide near real-time results? The answer lies in the next layers 
of Lambda and the way they overcome the data latency issue.    

     Serving Layer 
 The serving layer “serves” the batch views or provides fast access with minimum latency. 
Therefore, the serving layer needs to be a specialized distributed database that can host 
the batch views and support good performance for random as well as sequential data 
access. The serving layer also needs to be capable of quickly swapping a batch view with a 
newer version when it is rebuilt by the batch layer, so that user queries can return up-to-
date results. So, it needs to support batch updates. 

 The important thing to remember here is that the serving layer swaps the new batch 
view  rebuilt  by the batch layer—not processed incrementally. Lambda architecture 
doesn’t perform any incremental processing in the batch or serving layer. There are 
several issues with incremental processing. Any incremental processing involves updates, 
inserts, and deletes. All these operations involve random writes, since a database needs 
to manage space. For example, if a key column gets updated, the record needs to move to 
a different page and will involve removal of record from a page and insertion on another 
page. The first operation will leave unused space on a page and the second will need 
the database server to look for unused space. Wherever enough space is available, the 
record will be inserted (of course following some kind of insertion algorithm) randomly. 
Similarly when records are deleted, space is available on a page that can be used. 

 So, incremental processing creates pockets of unused space and therefore a a need 
for online compaction to effectively manage space. This processing consumes valuable 
system resources that can otherwise be used for other purposes. Another complexity 
added by incremental processing is the need to write atomically and also synchronize 
reads and writes so that half-written values are never read. This of course needs to be 
implemented through  isolation levels  and ACID transactions and adds a lot of complexity 
to processing. 

 Therefore, if incremental processing is not expected, your database server won’t 
suffer from the operational burden of managing  online compaction  or ACID compliance. 
To summarize, the following features are expected from the serving layer:

•    Ability to host batch views, optimizing latency and throughput  

•   No need to support random writes but ability to replace batch 
views as batch updates  
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•   Error tolerance (since views can be quickly redeployed from the 
batch layer)  

•   Robustness, predictability, and ease of configuration (as well as 
operation)  

•   Indexing capability for fast retrieval    

 One last point to remember about the serving layer is that there is no single 
distributed database that can be recommended or used. You need to consider the nature 
of your data before deciding on the serving layer, since each distributed (or NoSQL) 
database has its own strengths and you need to make sure that it matches your data. 

   ElephantDB 
 Nathan proposes use of ElephantDB; a database that serves or deploys key-value data 
from Hadoop for fast and efficient access. ElephantDB has two major components:

•    Library used by MapReduce jobs for creating an indexed key-
value dataset, stored on a distributed file system  

•   Daemon or background process that can provide a read-only, 
random access subset of a deployed dataset    

 A cluster of servers that serves a full dataset is called a  ring . ElephantDB server 
doesn’t support random writes and uses a Thrift interface, making it possible for most of 
the languages to easily read from it. 

 ElephantDB is not very easy to interface with Hive, and using it requires advanced 
programming knowledge. Besides, there are limitations using indexing in ElephantDB, 
and it doesn’t provide a SQL interface for querying. Subsequently, I will use SploutSQL 
as serving layer since SploutSQL doesn’t need any programming to deploy or server Hive 
objects and also provides SQL as query language, making querying easier and eliminating 
time in learning a new query language.  

   Splout SQL 
 Splout SQL is a read-only database and that simplifies its architecture. Here are the 
salient features (of its architecture):

•    Splout can be installed on a set of commodity hardware machines 
to form a cluster. Every machine (or node) runs a DNode service 
and optionally a QNode service (there must be at least one QNode 
service for a cluster).  

•   QNodes interface with users via REST API and serve user queries 
or receive deploy requests.  

•   QNodes communicate with appropriate DNode(s) for serving a 
query, and the DNode(s) respond back with necessary data set.  
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•   Splout leverages a Hadoop cluster for indexing (as well as 
balancing using pre-sampling) the data, and resultant files are 
retrieved by the DNodes as part of a data deploy request. You can 
sort your data before insertion for contiguity and to minimizing 
disk seeks.  

•   Data is partitioned (as per your need) and distributed across 
nodes. Also, queries are restricted to a single partition and 
therefore are fast.  

•   Generation and deployment of data can be simultaneous and 
don’t impact each other.  

•   High availability and scalability is inherited through the use of 
Hadoop.  

•   Data is deployed as a  Tablespace , which is a group of tables with a 
common partitioning schema.  

•   For easier management, Tablespaces are versioned, and multiple 
Tablespaces can be deployed simultaneously.  

•   Splout can import data directly from Hive, cascading, or Pig.  

•   QNodes and DNodes are implemented as Java services.  

•   Splout uses Pangool for low-level Java Hadoop development and 
generates SQLite files used by DNodes for serving data.    

 Figure  9-7  summarizes the Splout processing and interfaces.  

Source data from 
Hive, Cascading or Pig 

Splout Hadoop cluster 
using Pangool Hadoop API

Client 
connection

QNODE QNODE QNODE

DNODE DNODE DNODE DNODE

Client connections with Query, 
Deploy or Rollback requests

QNode layer for 
interfacing with clients 
using REST API

DNode layer for interfacing 
with Splout Hadoop cluster 
and retrieving data

Number of QNodes can 
be configured as per 
user traffic

Number of DNodes can 
be configured as per 
data volume

  Figure 9-7.    Splout SQL processing and interfaces       
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 To use Splout SQL, you will need to install it. See the instructions at 
   http://sploutsql.com/gettingstarted.html     . You need to configure Splout after 
installation and specify location of jar files as well as your Hadoop installation. After 
that, you can start the QNode and DNode services on Splout cluster nodes. If you are 
importing data from Hive (as in the example I have used), add Hive  conf/  and  lib/  
folders to the  HADOOP_CLASSPATH  environment variable: 

   export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/conf:$HIVE_HOME/lib/* 

   Next, generate tablespaces and tables. For the information tracking information 
system in my example, I have created a batch view (as a Hive table). I’ll discuss steps to 
serve or deploy it using Splout SQL. First, for creating or generating a tablespace, you 
need to use the generate tool. This tool uses a JSON tablespace descriptor as I show next. 
You need to specify the input type and the Hive database and table names. Note that you 
don’t need to specify input paths, since you have already specified directory for Hive 
installation, and therefore Splout can locate the appropriate Hive metastore and retrieve 
the necessary Hive tables from the appropriate database. The tablespace descriptor file 
can be created in the Splout SQL installation directory: 

   { 
         "name": "AveCS1000Space", 
         "nPartitions": 1, 
         "partitionedTables": [{ 
                 "name": "AveCS1000View", 
                 "partitionFields": "Corporation", 
                 "tableInputs": [{ 
                         "inputType": "HIVE", 
                         "hiveTableName": "AveCS1000View", 
                         "hiveDbName": "TrackInfo" 
                 }] 
         }] 
 } 

   The information is provided in the file  AveCS1000Space.json . The tablespace will be 
called  AveCS1000Space  and currently has only a single table  AveCS1000View  defined—that 
was created earlier in the last section. The database name is  TrackInfo  and I have chosen 
to create one partition for my data. I have used the name  Corporation  as a partitioning 
column, since this column will be a part of almost all the queries. 

 It is very important to partition the tablespace correctly becauseit is used for 
balancing data before indexing and deploying it. Usually, a frequently used key 
column for tables within a tablespace is used as a partitioning key. All the tables within 
a tablespace need to use columns of same type as partitioning key. For example, if 
tablespace A contains tables  Tbl1  and  Tbl2 , and if  Tbl11  is partitioned by a pair of (string, 
int) columns,  Tbl2  should also be partitioned by a pair of ( string ,  int ) columns. 

 Note that when a table is partitioned by a single or multiple columns, Splout 
concatenates the value of those columns to form a single string. Therefore, partitioning is 
a function of a row, and it is also possible to partition using arbitrary functions (such as a 
JavaScript function that takes the last five characters of a field). 

http://sploutsql.com/gettingstarted.html
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 Getting back to the deployment, the following command can be executed from 
command line to generate the tablespace  AveCS1000Space  (from the Splout SQL 
installation directory): 

   hadoop jar splout-*-hadoop.jar generate -tf file:///`pwd`/ AveCS1000Space.
json -o out-TrackingInfo_splout_example 

   For performance, you may need to add indexes to your tablespace, and Splout allows 
you to add indexes easily. You just need to modify the command used to generate the 
tablespace. For example, the following index will help performance: 

   TotalCustSup, Corporation 

   The following command will add the second index while generating the tablespace 
 AveCS1000Space:  

    hadoop jar splout-hadoop-*-hadoop.jar simple-generate –it HIVE –hdb 
TrackInfo –htn AveCS1000View -o out-TrackingInfo_splout_example -pby 
Corporation -p 1 -idx "TotalCustSup" -t AveCS1000View -tb AveCS1000Space  

   I have not included the column  Corporation  since it is a partitioning column and 
is already indexed. The  -idx  option just adds more columns to the index. Also, note 
that I am using a different generator ( simple-generate ) instead of the one used earlier 
( generate ), and therefore the command line options are different. There is no  json  
configuration file and therefore, all the configuration (such as Hive database, table name, 
partitioning column, and so forth) has to be specified with the command. 

 A major disadvantage of using  simple-generate  instead of  generate  is that you can 
only have a single table in your tablespace, but that’s usually the case. For the tracking 
information system example, you will need to generate four separate tablespaces for four 
batch views (or Hive/Splout tables)—if you need to supplement the indexes. If not, then 
you can simply create a single tablespace with all four tables in it (using the  generate  
generator instead of  simple-generate ). 

 After the tablespace is generated successfully, deploy it as follows: 

   hadoop jar splout-hadoop-*-hadoop.jar deploy -q http://localhost:4412 -root 
out-TrackingInfo_splout_example -ts AveCS1000Space 

   Note that  localhost  is the host QNode (to which the client is connected) is running 
on, and  localhost  will be automatically substituted by the first valid private IP address at 
runtime (as specified in the configuration file). 

 Once a tablespace is deployed, you can use it in any of your queries. For example, 
if you need to populate a web app using information for Toyota Motors, you can use the 
REST API, as follows: 

   http://localhost:4412/api/query/ AveCS1000Space?sql=SELECT * FROM 
AveCS1000View;&key='Toyota Motors' 
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   I have demonstrated how Splout SQL can be used successfully to serve your batch 
views for use by your applications. Next, I talk about how you can access data that’s not 
yet processed by the batch layer and include it in your query results.   

     Speed Layer 
 You have seen that the latency of the batch layer makes it difficult to have up-to-date or 
near real-time data accessible for your queries. The purpose of the speed layer is to make 
that data available without any delays. In terms of functionality, a speed layer is very 
similar to the batch layer (since it also produces views based on master data too). The 
difference is that the speed layer only processes new or recent data (not yet processed by 
the batch layer), whereas the batch layer uses all the data for computing the views. 

 Another difference is that the batch layer updates a view by recomputing (or 
rebuilding) it, whereas the speed layer performs incremental processing on a view 
and only processes the delta (or new) transactions that were performed after the 
last time incremental processing was done. So, if your incoming data transactions 
are timestamped, and you extract them from your master dataset, then depending 
on whether a record was modified or added, you can modify your speed layer view 
accordingly. 

 Considering the differences in speed layer processing (compared to batch layer), 
you will realize that the architecture for the speed layer will differ depending on whether 
the speed layer (or near real-time) views are updated synchronously or asynchronously. 
What I mean by a synchronous update is applying any updates to master data directly to 
the speed layer views. Since a cluster will always have a fixed or predetermined capacity 
(for handling updates or any other dat-intensive operations), it can get overloaded with 
requests during peak usages. This can affect performance and functionality (if some 
requests are denied due to resource unavailability). In contrast, asynchronous update 
requests are placed in a queue with the actual updates occurring at a later time. The delay 
in applying asynchronous updates would depend on a lot of factors, such as volume of 
updates, processing resources required (and available), functional need for near real-
time data, and so on, but it does offer an effective way to accommodate larger number of 
requests and is not affected by peak usage spikes. 

 Asynchronous updates provide many benefits, such as processing multiple messages 
from the queue and increasing throughput and handling varying load by buffering 
additional requests (till the load reduces and processing resources are available). You 
don’t have these benefits with synchronous updates because there is no mechanism 
available to control the update volume and thus it can easily overload and crash your 
database system or lead to dropped requests, timeouts, and other errors that may disrupt 
your application. 

 The decision to use synchronous and asynchronous updates can also be based on 
the type of processing that your application performs. For example, synchronous updates 
can be used for transactional systems with user interaction that requires coordination 
with the user interface and completion of request needs to be guaranteed. Asynchronous 
updates can be more useful for analytics applications or applications that focus more on 
complex computations and aggregations rather than interactive user input. Looking at 
the benefits of asynchronous processing, I would suggest using it unless you have a very 
specific need for incorporating data at real-time in your speed layer views. 
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 To summarize, you will need the following features supported while implementing 
the speed layer:

•    Random reads and writes  

•   Support for wide range of data types including date/time  

•   Ability to perform scheduled or ad hoc updates  

•   Ability to support joins and any incremental update tasks (update, 
insert) with acceptable level of performance  

•   Support Indexing and provide SQL query interface for 
performance and ease of use  

•   Ability to interface with the Hadoop ecosystem with ease  

•   Provide scalability and fault tolerance  

•   Ability to provide in-memory processing for performance    

 After careful evaluation of choices, I short-listed Spark SQL and VoltDB. However, 
I quickly realized that VoltDB can’t read from Hive (or HDFS) and hence discarded 
it. Although, while comparing these two choices, I realized that Spark SQL had its 
own shortcomings and even though they are not very relevant for the example I am 
demonstrating, they might be significant in some cases. They are:

•    Transactional support is not offered by Spark SQL.  

•   Spark SQL DataFrames do not support indexes. Indexing is 
helpful for random Read/write performance.  

•   Spark SQL does not include storage natively, so you would need 
to use an external data store for storage.    

 I discuss Spark SQL in detail in Chapter   5     under “Query Tools” and the subsection 
“Spark SQL.” That will help you understand the Spark architecture and where Spark SQL 
fits into it. For now, let me demonstrate usage of Spark SQL as the speed layer. I have 
demonstrated how to build batch and serving layers for tracking information system. Now 
I will build a speed layer. 

 The Lambda architecture defines the speed layer to be composed of records that are 
yet to be processed by the batch layer. So, as a first step, you need to determine what those 
records are. You might recall that a history record was inserted in table  BatchProcHist  
after a batch view was built. So, the most recent record for a batch view can give us the 
date/time of most recent build and therefore help determine what the unprocessed 
records are. Because Hive doesn’t support query results to be assigned to variables, I will 
write the most recent record for the first batch view to a table: 

   Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from 
BatchProcHist group by ViewName having ViewName = 'ProfLFiveView'; 

http://dx.doi.org/10.1007/978-1-4842-1287-5_5
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   But what happens if the speed layer has processed any new records from the master 
dataset since this batch view was built? Well, you need to check that and only consider 
the unprocessed records for updating the view (now a Spark data frame registered as a 
table). I’ll call the speed layer view  ProfLFiveView_S . Just like the batch views, speed 
layer views also write to the audit table  BatchProcHist . So, I will write the most recent 
record for the first speed layer view to the same table (where I captured most recent 
record for the first batch view): 

   Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'ProfLFiveView_S'; 

   Now I just need to determine which of these records is the most recent and use that 
as a basis to process the records for the first speed layer view: 

   Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable; 

   Finally, get the unprocessed records from the master data set and create the speed 
layer view. Also, add the timestamp and write a record to the audit history table: 

    Create table Profitemp1_S as Select a.ProfLastYear, a.AsOf, a.Corporation 
from CorpProfitDetails a, MaxTbl1 b where a.AsOf > b.MaxDate; 

   Create table ProfLFiveView_S as select Corporation, sum(ProfLastYear) as 
ProfLastFive from Profitemp1 group by Corporation 

   INSERT INTO TABLE BatchProcHist 
   VALUES ('ProfLFiveView_S', from_unixtime(unix_timestamp()); 

    Temporary tables  MaxTable ,  Profitemp1_S , and  MaxTbl1  can be dropped at this 
point. Also, note that I didn’t use the condition  having sum(ProfLastYear) > 0  while 
creating the view  ProfLFiveView_S . The reason is that this sum is only for the new 
records of corporations that are profitable for last five years. To get the up-to-date 
sum, add it to the sum from the batch layer, and the updated profit will be determined 
automatically (taking into account the total profit or loss for the new records as indicated 
by a positive or negative number). 

 Let me assume that speed layer views are built every week. So, what happens when 
you need to update your speed layer views to accommodate new data and remove data 
that is already a part of the batch layer views (if batch layer views are rebuilt meanwhile)? 
There are two possible approaches:

•    Rebuild the speed layer view considering the unprocessed records 
only (just like we built for the first time).  

•   Don’t drop the temporary table  Profitemp1_S  after the first 
round of processing and delete expired (already part of rebuilt 
batch view) records from it and add the new records. Then 
just perform the aggregation and rebuild the speed layer view 
 ProfLFiveView_S .    
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 Remember, in order to perform a delete operation, you will need to change Hive 
configuration for CRUD support and add transactional support for table  Profitemp1_S  
(discussed in the section for batch layer views). 

 I would consider the size of the speed layer view to decide between these options. 
If the view is not really huge and can be rebuilt quickly, I choose the rebuild option. 
However, if the view is huge and will take substantial processing and time to rebuild, I 
enable transactional support and simply add the new records and remove the processed 
(by batch layer) records from temporary table  Profitemp1 . The same logic (as discussed 
earlier in this section) can be used to retrieve the most recent processing date/times for 
batch and speed layer views and thereafter retrieve the unprocessed records from the 
master data set as needed. After the records in table  Profitemp1  are adjusted (expired 
records deleted and unprocessed records added), aggregation can be performed to build 
the updated view. 

 One more critical point to consider is the dependence of speed layer processing on 
batch layer processing. At a minimum, you need to expire or remove speed layer records 
that are processed by the batch layer. You can of course rebuild or add any new records 
also (to your speed layer view). 

 Next, I’ll discuss building a speed layer view for the second batch view. As you may 
remember, it involves calculating an average ( Companies that have average customer 
support staff equal to or more than 1,000 for last five years ). I’ll talk about how updated 
averages can be calculated for the corresponding speed layer view. 

 As a first step, let’s get the most recent processing times (for batch and speed layer) 
for the view  AveCS1000View : 

    Create table MaxTable as select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'AveCS1000View'; 

   Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'AveCS1000View _S'; 

    Now I just need to determine which of these records is most recent and use that as a 
basis to process the records for the first speed layer view: 

   Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable; 

   Finally, get the unprocessed records from the master data set and create the speed 
layer view. Also, add the timestamp and write a record to the audit history table: 

    Create table CustSuptemp1_S as Select a.CustSuppStrength, a.AsOf, 
a.Corporation from CorpCustSupDetails a, MaxTbl1 b where a.AsOf > b.MaxDate; 

   Create table CustSuptemp2_S as select Corporation, sum(CustSuppStrength) as 
TotalCustSup, count(CustSuppStrength) as CountCustSup from CustSuptemp1_S 
group by Corporation; 
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   Create table AveCS1000View_S as select a.Corporation, (a.TotalCustSup + 
b.TotalCustSup) as TotalCustSup, (a.CountCustSup + b.CountCustSup) as 
CountCustSup, ((a.TotalCustSup + b.TotalCustSup) / (a.CountCustSup + 
b.CountCustSup)) as AveLastFive from CustSuptemp2_S a, AveCS1000View b where 
a.Corporation = b.Corporation and (AveLastFive >= 1000) 

   INSERT INTO TABLE BatchProcHist 
   VALUES ('AveCS1000View_S', from_unixtime(unix_timestamp()); 

    Note that I had to use an additional temporary table so that I could add as well as 
count the  CustSuppStrength  numbers for the unprocessed records and the ones from the 
corresponding batch view—since this view calculates averages. 

 Having discussed all this logic for developing the speed layer, let me turn to the 
Spark interface and implementation of speed layer using Spark. As you may know, Spark 
uses dataframes and RDDs (resilient distributed datasets) as in-memory constructs that 
you can leverage for queries and performance. Spark also allows you to execute queries 
against Hive databases using the  SQLContext . Both these concepts are useful for the 
speed layer implementation. You can use Scala, Python, or R within a Spark shell. 

 As a first step, you need to construct a  HiveContext , which inherits from  SQLContext  
and enables you to find tables in the Hive MetaStore and also supports queries using 
HiveQL. You do not have an existing Hive deployment for creating a  HiveContext . If you 
don’t have a  hive-site.xml  specifying Hive configuration and directories, the context 
automatically creates  metastore_db  and warehouse in the current directory. Here, I am 
using Scala, and  sc  is an existing SparkContext: 

    val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc) 

   val sqlContext.sql("Create table MaxTable as select ViewName, max(CreatedAt) 
from BatchProcHist group by ViewName having ViewName = 'AveCS1000View'") 

   val sqlContext.sql("Insert into MaxTable select ViewName, max(CreatedAt) 
from BatchProcHist group by ViewName having ViewName = 'AveCS1000View _S'") 

    You can similarly execute all the HiveQL commands necessary to create the speed 
layer view  AveCS1000View_S . For the last step (when the view is created), instead of 
creating the view, you can simply execute the  select  statement and read the result in a 
dataframe, as follows: 

   val resultsDF = sqlContext.sql("select a.Corporation, (a.TotalCustSup + 
b.TotalCustSup) as TotalCustSup, (a.CountCustSup + b.CountCustSup) as 
CountCustSup, ((a.TotalCustSup + b.TotalCustSup) / (a.CountCustSup + 
b.CountCustSup)) as AveLastFive from CustSuptemp2_S a, AveCS1000View b where 
a.Corporation = b.Corporation and (AveLastFive >= 1000)") 

   You can register the resultant dataframe as a temporary table and then execute any 
queries against it: 

   val resultsDF.registerTempTable("AveCS1000View _S") 
 val results = sqlContext.sql("SELECT Corporation FROM AveCS1000View _S") 
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   You will need to use a query tool that can read from Hive and Spark to combine 
results from batch layer and speed layer views. There are enough choices, and of course 
you can also use Spark SQL as a query tool too. 

 There are a few things you need to note about Hive and Spark SQL integration. Because 
of the large number of dependencies that Hive has, it is not included in the default Spark 
assembly. You can enable Hive support by using the  -Phive  and  -Phive-thriftserver  
flags to Spark’s build. This will build a new assembly jar that includes Hive. Make sure 
this Hive assembly jar is present on all the data nodes, as they will need access to the Hive 
serialization and deserialization libraries (SerDes) for accessing data stored in Hive. 

 Also, Hive configuration is supplied by copying your  hive-site.xml  file in the 
 $HADOOP_HOME/conf  directory. Please note if you are using a YARN cluster ( yarn-
cluster  mode), the datanucleus jars should be in the  lib_managed/jars  directory, and 
 hive-site.xml  under the  $HADOOP_HOME/conf  directory for the driver and all executors 
launched by the YARN cluster. The easiest way to achieve this is by adding them through 
the  --jars  option and  --file  option of the  spark-submit  command. 

 It is often said that the biggest issue with Lambda is maintaining two separate sets of 
code for batch and speed layers. By using Spark SQL and Hive, I think there’s no need to 
maintain two sets of code—one is enough. That definitely simplifies the implementation.   

     Pros and Cons of Using Lambda 
 The Lambda architecture defines how batch and stream processing can work together 
to deliver a complete solution while using a NoSQL solution. Lambda architecture 
enables you to run ad hoc queries against all your data efficiently and in near real time. 
The idea is to precompute the results as a set of views and query the views instead of 
the master dataset. This architecture offers a number of benefits over the traditional 
NoSQL architectures (or the lack of) and redefines the role of NoSQL and Hadoop for 
data processing. However, there are issues with Lambda too. It can’t solve all your data-
processing problems. I discuss pros and cons of Lambda in this section, starting with the 
pros. 

     Benefits of Lambda 
 One of the most discussed benefits is data immutability. Also, how storage and query 
layers can have different storage structures. Another popular feature is Lambda’s 
reprocessing abilities. Let me discuss all these features briefly:

•    Lambda architecture emphasizes data immutability. Input data 
is retained without any changes to it. Processed and transformed 
data is written out separately, but it’s always possible to access 
to input data received in its original form. This also saves data 
from corruption due to human errors or hardware faults and adds 
resilience to the architecture.  

•   Data is transformed in a series of modular stages, and that helps 
in debugging (each stage independently) as well as making the 
workflows tractable.  
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•   It is easily possible to reprocess your data (processing input 
data again to re-derive output). Why is this needed? It is always 
possible that there are code changes within your application (due 
to change of functionality or discovery of an issue or a bug). If the 
modified code is used to derive output data from an input stream, 
you will need to reprocess your input using the new code. If you 
recall, a batch layer is rebuilt every time new data is processed. So, 
reprocessing of data is supported as well as performed by default.  

•   Lambda makes it possible to store your master dataset 
normalized, while offering the flexibility to denormalize your 
real-time and batch views as needed. This can help your queries 
perform better for NoSQL data, since NoSQL databases typically 
don’t perform well for joins or sub-queries. The data separation 
also allows you to fine-tune each data layer as needed.  

•   The master dataset (being an immutable data store) can be used 
as a reliable source for analytics. Since it has a complete record 
or history of all the application data, it is possible to analyze any 
subsets of data or look for patterns within it.  

•   Lambda facilitates the use of near real-time data within your 
queries.     

     Issues with Lambda 
 Lambda has many useful features, but can it be used in all situations and for all kinds of 
data? Are there any inherent weaknesses or flaws that need to be addressed while using 
it? I’ll talk about answers to these questions and more:

•    Lambda (and Nathan) makes an assumption that real-time 
processing is less accurate, less powerful, and unnecessarily more 
complex compared to batch processing. That’s not necessarily 
true. For example, many leading stream-processing systems 
(Storm, Spark, Amazon Kinesis) can provide a semantic guarantee 
as strong as any batch system.  

•   The claim that the Lambda architecture “beats the CAP 
theorem” is not true. Lambda is essentially an architecture for 
asynchronous processing. Therefore, the computed results are 
not immediately consistent with the incoming data.  

•   A big problem with Lambda architecture is that you need to 
maintain code (that needs to produce the same result) in two 
separate distributed systems (for batch and speed layers). Since 
you need to engineer your code specifically for the framework 
it runs on, the resulting operational complexity of systems 
implementing the Lambda architecture is huge.  
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  One proposed approach for resolving this issue is to have a 
language or framework that abstracts over both the real-time and 
batch framework. That way, your code can be used for stream 
processing or MapReduce as needed. Kappa architecture and 
Butterfly architecture (by Milind Bhandarkar) are targeted at 
overcoming this issue. Both these architectures are discussed in 
this chapter.  

•   The operational burden of managing and tuning two operational 
systems (for batch and speed layers) is very high. Also, any time 
you plan to add new features, you can only consider features that 
can be supported by the intersection of the two systems. This may 
also prevent you from using popular Hadoop components and 
tools such as Hive, Pig, Crunch, Cascading, Oozie, and others.    

 Lambda has its pros and cons and is not suitable for all kinds of data or business 
objectives. There is already an alternative to Lambda called Kappa, which I cover in the 
next section.  

     The Kappa Architecture 
 In summer 2014, Jay Kreps coined the term Kappa architecture in an article for O’Reilly 
Radar. Jay was just commenting on Lambda architecture and issues with it. So, what is 
Kappa and how is it different from Lambda? 

 The concept is very simple. Use a stream-processing engine (Spark, Kafka, and 
so on) that allows you to retain the full log of the data you might need to reprocess. If 
there is a need to do reprocessing, start a second instance of your stream processing job 
that will process from the beginning of the retained data and write the output to a new 
destination (such as a table or file). When the second job completes processing, switch 
the application to read from the new output destination. After that, you can stop the old 
version of the job and delete the old output destination. Figure  9-8  illustrates the Kappa 
architecture.  

queries

Current stream 
processing job

New stream 
processing job

Client 
requests

Output of current job

Output of new job

Input data 
stream

Stream processing engine

Serving layer

  Figure 9-8.    Kappa architecture       
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 One of the reasons Kappa architecture was designed was to avoid maintaining 
two separate code bases for the batch and speed layers. Also, if batch and speed layers 
are replaced by a streaming layer (processed by a stream-processing engine), then a 
single stream-processing engine needs to handle real-time data processing as well as 
continuous data reprocessing (as data needs to be reprocessed when there are code 
changes). 

 Therefore, Kappa architecture has two layers: stream processing and serving. The 
stream-processing layer is responsible for executing the stream-processing jobs. Usually, 
a single stream-processing job takes care of real-time data processing. If there are 
code changes (to the stream-processing job) and data needs to be reprocessed, then a 
modified stream-processing job is executed additionally to complete that task. Serving 
layer is used to query the results. 

 Various open source technologies like Apache Kafka, HBase, HDFS, Spark, Drill, 
Storm, or Samza can be used to implement Kappa. For example, data can be ingested 
using a  publish-subscribe  messaging system like Apache Kafka. HDFS can be used 
for persistent storage. Any low-latency systems (such as Apache Storm, Samza, or 
Spark Streaming) can be used to implement the stream-processing layer in the Kappa 
architecture. 

 Now, it is possible to use Apache Spark to develop the batch and speed layers in 
the Lambda architecture (for a single code base). The serving layer can be implemented 
using Splout queries using Apache Drill. How do you choose one architecture over 
the other? Well, that depends on characteristics of the application that needs to be 
implemented. 

 For example, when the algorithms that need to be applied to the real-time data and 
to the historical data are identical, it is a good case to use Kappa architecture. But if the 
expected outputs for the real-time and batch algorithms are different, then the batch and 
real-time layers cannot be merged, and Lambda architecture must be used. Are there 
any situations where this happens? Consider a scenario where your batch layer needs 
to process a billion records and compute daily and weekly averages. Here, generation 
of the batch model will need so much time and resources that you will need to use 
approximation models for computing real-time views. So, you can’t merge processing for 
your batch and real-time layers, and therefore you can’t use Kappa—Lambda would be 
your only possible model. 

 I have highlighted several benefits of Kappa architecture, but you need to understand 
that it can’t be used in every situation. It can’t solve all your Big Data processing 
problems. There are of course other alternatives, such Zeta architecture or Iot-a, 
proposed by Michael Hausenblas. A number of architectural alternatives are available 
now, and you should evaluate your environment and make a prudent decision based on 
your data, processing needs, business objectives, and hardware resources available.   
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     Future Architectures 1  
 As we witness the current transformation in data architecture, where RDBMS is being 
supplemented by large scale non-relational stores, such as HDFS, MongoDB, Cassandra, 
and HBase, a more fundamental shift is on its way, which would require larger changes 
to modern data architectures. Although the current shift was mandated by business 
requirements for the connected world, the next wave will be dictated by operational cost 
optimization, transformative changes in the underlying infrastructure technology, and 
newer use-cases such as the Internet of Things (IoT), Deep Learning, and Conversational 
User Interfaces (CUI). 

 In order to hazard a guess about what the future of data architecture holds, let us take 
a brief tour of how we arrived at the current data architecture. 

     A Bit of History 
 Prior to the popularity of relational databases, multiple data models were being used 
and among those, hierarchical and navigational data systems were used extensively 
on mainframe-based systems. Because the number of clients for these data systems 
was limited, they remained monolithic, and more often than not, were offered by the 
mainframe manufacturer and bundled with hardware. 

 As the relational model was proposed (more than 40 years ago) and deemed suitable 
for a majority of data applications, it became very popular for prevalent use-cases in 
banking, insurance, and the financial services industry. Relational database systems 
became the default back-end data systems (as a store of record) in a variety of verticals. 
The advent of client-server systems (where multiple clients would access the data stored 
and served by the same server) created importance for up-front data modelling, SQL, 
formal data manipulation semantics (ACID) led to query concurrency improvements, 
rule-based and cost-based query optimization, and standard access methods (ODBC 
and JDBC), and resulted in a plethora of visual tools for building database-backed 
applications and data visualizations. 

 Clients’ access to these operational databases was a mix of CRUD primitives 
on either single or very few records. To provide consistency across multiple CRUD 
operations, a notion of transactions was introduced (where either all the operations were 
carried out atomically or none at all). Thus, these data systems were known as OLTP 
(on-line transactional processing) systems, and their performance was measured in 
transactions-per-second. 

 Most business intelligence (BI) and reporting workloads used very different 
access patterns. These queries were mostly read-only queries on a large amount of 
historical data. Although the operational data systems were initially used to handle 
both transactional and analytical workloads, they could not fulfill the low-latency 
transactions and high-throughput analytics simultaneously. Thus, to serve this new class 
of applications, data systems specialized in OLAP (on-line analytical processing) were 
devised. 

   1  This section was kindly contributed by Milind Bhandarkar, PhD, founder of Ampool, Inc. Milind’s 
brief bio is included with the foreward he wrote  
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 Because these OLAP systems had to handle large amounts of historical data, often 
they were built as MPP (massively parallel processing) systems on a shared-nothing 
distributed architecture. This created two silos of structured data in organizations—one 
for structured transactions and another for structured analytics. Even though both 
these systems were designed with relational data models in mind, often one would 
need to integrate multiple transactional data stores across multiple departments to 
provide the full historical data in the analytical data system. Thus, a notion of periodic 
ETL (extract-transform-load) was born, which would capture data changes across 
multiple transactional data stores, map their relationships, and structure them into fact/
dimension tables with a star schema or snowflake schema. The analytical query engines 
and the storage for these analytical data were quite different from their transactional 
counterparts, since the analytical data once stored would almost never have to change (as 
it was a historical record of business transactions). 

 In the world of structured operational and analytical data stores, semi-
structured data (such as server logs) and unstructured data (such as natural language 
communication in customer interactions) were either discarded or kept in an archival 
store for compliance reasons. Centralized file systems became a popular choice of data 
stores for semi-structured and unstructured historical datasets with specialized access 
layers (such as keyword search). 

 Apache Hadoop aimed to solve the semi-structured and unstructured data analytics 
workloads problem by providing HDFS on commodity hardware and collocating it with a 
batch-oriented flexible distributed data-processing paradigm called MapReduce. As the 
Hadoop ecosystem expanded, it was to tackle more and more data-processing workloads. 
Thus, there were scripting languages such as Pig, SQL-like query languages such as Hive, 
and a NoSQL store, HBase, that used HDFS for persistent storage. 

 Eventually, the compute resource management capability was separated from the 
batch-oriented programming model and allowed a proliferation of data-processing 
frameworks to run on top of data stored in HDFS. These included traditional MPP data 
warehouses (such as Apache HAWQ), streaming analytics systems (such as Apache 
Apex), and transactional SQL engines (such as Apache Trafodion). This gave rise to 
the notion of a data lake, where all the raw data across the enterprise and external data 
sources would be loaded and made available for flexible analytics, using best-of-breed 
data-processing engines on the same granular data. 

 Although Apache Hadoop and associated projects have rapidly evolved to promise a 
unified analytics platform, the key core component of Hadoop, the HDFS, has never been 
designed with interactive, streaming, and transactional workloads in mind and thus has 
become a hindrance in achieving that goal. As a result, multiple architectures, such as 
the Lambda and Kappa architectures, were proposed (to unify multiple data-processing 
workloads). Unfortunately, they remain quite difficult to implement. 

 For the Lambda architecture, the speed, serving, and batch layers need three 
different implementations of data-processing frameworks for the same functionality 
(depending on the speed and scale needed), and it is the responsibility of the 
implementer to transport data across these three layers—a non-trivial task. In addition, 
one cannot guarantee data consistency across the three layers without introducing yet 
another distributed transaction engine (between the data applications and the Lambda 
architecture). 
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 The Kappa architecture, introduced by the creators of Apache Kafka, relies on a 
distributed log as the primary source of data. A  distributed log  provides decoupling 
between data producers and data consumers. It allows different batch analytics engines 
and streaming analytics engines to consume data from the same data bus, thus solving 
the data consistency problem introduced in the Lambda architecture. But the difficulty 
of implementing data processing in the speed, serving, and batch layers in three different 
engines remains. 

 The primary difficulty in implementing the speed, serving, and batch layers in 
the same unified architecture is due to the deficiencies of the distributed file system in 
the Hadoop ecosystem. If we were to provide a replacement for HDFS (or if we could 
augment the HDFS with a storage component that can serve the speed and serving layers 
while keeping data consistent with HDFS for batch processing), one could truly provide 
a unified data processing platform. This observation leads to the Butterfly architecture, 
described next.  

     Butterfly Architecture 
 The main intention of the Butterfly architecture is to unify data-processing tasks for batch, 
serving, and speed layers in a single platform. To implement the Butterfly architecture, 
we need to treat data with new, more general abstractions that are different from 
current abstractions (such as files, directories, or tables and indexes). In the Butterfly 
architecture, we organize data as a collection of three types of abstractions:

•     Datasets : This is the most flexible abstraction, a partitioned 
collection of arbitrary records. No structure is imposed on 
records. In other words, interpreting what is in the records is left 
to the processing framework with the aid of a system catalog. 
This is equivalent to schema-on-read data, which is the only kind 
of data managed by current Hadoop/NoSQL data systems. The 
system catalog stores information about each dataset (as well as 
relationships among multiple datasets). Each dataset is given a 
unique identifier, and the catalog is a logical set of RDF triplets 
denoted by (Relation, Object1, Object2). For example, to indicate 
that dataset with ID 4596 is named  SearchLog , the catalog has an 
entry ( NameOf, 4596, "SearchLog" ). As another example, to 
indicate the location of dataset 4596 to be in HDFS, an entry 
( Location, 4596, "hdfs://namenode:port/user/data/
something" ) exists in the system catalog. Note that this is a logical 
representation of the system metadata about datasets and may be 
represented physically as a set of fixed-width tables, for reasons 
of efficiency. These datasets could be stored on multiple storage 
systems, and even multiple partitions from a single dataset may 
be stored across multiple storage back ends. In addition, when a 
dataset is stored as a stream of bytes in files or transferred across 
network, the serialization and deserialization formats are user-
defined or operator-defined.  
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•    Dataframes : Dataframes are structured datasets. They are 
partitioned with a user-specified partitioning key contained 
in the individual records. The dataframes could be mutable 
or immutable.  Immutable  dataframes may not be modified in 
any way (once they are created), while individual records of a 
mutable dataframe could be inserted, updated, or deleted. They 
are typically created by multiple computation frameworks by 
processing datasets. Dataframes are very similar to structured 
tables in relational database management systems (with 
predefined schema). Immutable dataframes are suitable for 
analytical workloads, whereas mutable dataframes are used for 
transactional CRUD workloads.  

•    Event streams : Event streams are unbounded dataframes. At least 
one of the fields in these records (events) is mostly monotonically 
increasing. Usually, this field is a timestamp or a sequence 
number. Optionally, streams may have a window size specified as 
either a number of records (in case of monotonically increasing 
field its sequence number), or time duration (in case the 
monotonically decreasing field its timestamp). Within a window, 
there could be some out-of-order arrival of events. However, 
across windows, the sequence number or timestamp is strictly 
monotonically increasing.    

 The main differentiating characteristic of the Butterfly architecture is the flexibility 
in computational paradigm on top of each of the preceding data abstractions. Thus, a 
multitude of computational engines, such as MPP SQL-engines (Apache Impala, Apache 
Drill, or Apache HAWQ), MapReduce, Apache Spark, Apache Flink, Apache Hive, or 
Apache Tez can process datasets, dataframes, and event streams. 

 These computation steps can be strung together to form  data pipelines , which are 
orchestrated by an external scheduler. A resource manager (associated with pluggable 
resource schedulers that are data aware) is a must for implementing the Butterfly 
architecture. Both Apache YARN and Apache Mesos, along with orchestration framework 
(such as Kubernetes or hybrid resource management framework such as Apache 
Myriad (incubating)), have emerged in the last few years to fulfill this role. The Butterfly 
architecture and associated data flows are illustrated in Figure  9-9 .  
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   Storage for Butterfly Architecture 
 In order to efficiently implement the Butterfly architecture, one needs a fast storage 
engine for data exchange across the data pipelines as well as streaming ingestion and 
analytics. Optimized implementations for immutable and mutable dataframes are 
needed for allowing fast batch-oriented queries and fast transactions, which allow 
coexistence of multiple workloads in a single system. Traditional disk-based storage 
systems make this unification extremely difficult. However, the emergence of NVMe-
connected Flash, NVDIMMS (non-volatile dynamic memory modules), and a new class 
of persistent memory (SCM, or storage class memory) provides a perfect storage medium 
in which high-throughput scan-oriented workloads and low-latency random access 
workloads can coexist. Table  9-1  characterizes the current and projected performance of 
various storage layers, along with their approximate associated cost.

     Table 9-1.    Types of Storage and Their Costs   

 Storage Type  Approx. Cost 
per GB 

 I/O OPS/Sec  Throughput  Cost per GB for 
Billion IOPS 

 Cost per 
GB for GB/s 
Throughput 

  DRAM   $6  20 Million  50 GB/s  $300  $0.12 

  SCM   $2 (projected)  10 Million  10 GB/s  $200  $0.20 

  NAND Flash   $0.50  1 Million  1 GB/s  $500  $0.50 

  HDD   $0.03  100  100 MB/s  $30,000  $0.30 

    Figure   9-9. Butterfly architecture        
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 As you can see from Table  9-1 , current generation of DDR4 DRAM is the most cost-
efficient for throughput-oriented workloads, and the emerging Storage Class Memory 
(SCM) is the most cost-effective for random access workloads. Of course, cost is not the 
only consideration for building systems—storage density as well as power consumption 
are two other factors to consider. Since the new SCM promises to have much higher 
densities and much lower power consumption than DRAM, they have the potential of 
becoming the primary storage layer for a fast unified data platform. 

 Most existing databases and data-storage systems have been designed with the 
performance characteristics and storage densities of HDDs. Thus, they tend to avoid 
random access at all costs, and in order to avoid long latencies, they tend to parallelize 
their random access workloads either by spreading data across multiple hard disk drives 
in a disk array or by fetching all the data in expensive server-side DRAM while running 
sequential access workloads on data stored on hard disk drives. Thus, they introduce a lot 
of complexity to keep the data consistent and available across workloads (in case of disk 
failures). Also, hard disk drives (having mechanical parts) are much more prone to failure 
than solid state devices such as Flash, SCM, and DRAM. 

 For fully implementing the Butterfly architecture, one needs to cost-efficiently utilize 
the various classes of solid state memory. Ampool is building a novel storage technology 
for implementing the Butterfly architecture.  

   Ampool 
 Ampool’s core product is a memory-centric, distributed, data-aware object storage 
optimized for both transactional and analytical workloads. These features of Ampool 
product are discussed in the following section:

    Memory-centric : Although DRAM costs have rapidly 
declined over the years, they are still very high compared 
to other storage media (such as SSD and hard disk drives). 
Fortunately, not all the data that needs to be analyzed in 
the enterprise needs the kind of performance that DRAM 
provides. Also, as the data becomes older, it is accessed less 
and less frequently. Thus colder data can be stored on hard 
disk drives, warm data can be stored on SSDs, and only data 
that is most frequently accessed (and needs fastest access) 
can be stored in DRAM. Manually moving data across these 
storage tiers is cumbersome and prone to error. Ampool 
implements smart tiering that monitors the usage of data and 
automatically moves the data across tiers, as it is accessed 
infrequently.  
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   Distributed : Although the DRAM and storage density has 
increased dramatically over the years, adding more and more 
DRAM and storage to a single system (scaling up) does not 
scale the overall system performance proportionally with 
the cost. Thus, even memory-centric storage systems need 
to be clustered and distributed for linear scalability, fault 
tolerance, and disaster recovery. Ampool storage is designed 
as a distributed system from the ground up. Data is replicated 
across address spaces of various machines in the cluster (in 
order to be highly available). In addition, the changes in data 
are propagated via a scalable message bus across a wide area 
network (for disaster recovery).  

   Object store : Historically, the most common types of storage 
systems were categorized into a block store or file system. 
Each has its own advantages. A  block store  can be shared 
across different operating systems and has much lower 
overhead of accessing a random piece of data. However, 
network round-trips to fetch individual blocks are often 
insufficient for today’s large-scale data workloads. In addition, 
since the basic unit of read and write is a 4 KB block, small 
updates (as well as small reads) result in a lot of unnecessary 
data traffic over the network or on the local disks. Filesystems 
are the most commonly used abstraction for storage and are 
available in various flavors across multiple operating systems.  

  In addition, several scalable distributed filesystems are 
available from multiple vendors. However, implementing 
filesystem semantics (which involves maintenance 
and navigation of a hierarchical name space structure), 
maintaining consistency and atomicity across filesystem 
operations, and providing random reads and writes in place 
in files, imposes a lot of overhead for the filesystem servers 
(as well as clients). Typically, the filesystem read/write access 
has 50–100 microsecond latency. When the filesystem was 
implemented on top of slow rotating disks (which had a 10 
millisecond latency), the filesystem latency was negligible 
compared to the underlying storage media latency. However, 
with the new fast random access storage (such as SSDs and 
NVRAM), which have only a few microseconds latency, the 
filesystem abstraction has overwhelmingly high overheads.  
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  Figure 9-10.    Ampool architecture       

  In the last decade, because of the emergence of public clouds 
and their hostage storage solutions, a third kind of storage 
abstraction—object store—has become popular. Object 
stores have a flat hierarchy. To access an object, one only 
needs a bucket ID and an object ID (rather than navigating 
a hierarchical name space). In addition, object stores have 
rich metadata associated with each object and bucket, so that 
operations such as filters and content searches can be pushed 
down to the storage layer, reducing network bandwidth 
requirement and load on CPU. Object stores are ideal for 
the new classes of storage media because of the low CPU 
overhead, simpler semantics, and scalability—especially with 
a large number of data stored as objects.  

   Data-aware : Most of the existing object stores do not interpret 
the contents of the objects natively. Therefore, their utility is 
limited, and indeed, the most common use of object stores 
is as blob stores to store and retrieve multimedia (such 
as images or video). If one were to implement analytical 
workloads on data stored in an object store, it needs fetching 
the entire object (which may be megabytes or gigabytes in 
size) to the CPU, imposing a schema on it, deserializing it, 
and then performing the necessary analytical computations 
on it. The Ampool object store stores extensive metadata 
about objects (such as schema, versions, partitioning key, 
and various statistics about the contents of the objects), 
such that common operations like projections, filtering, and 
aggregates can be pushed down to the object store. This helps 
in speeding up most analytical computations and avoids 
network bottlenecks prevalent in other distributed storage 
systems. A block diagram for the current version of Ampool is 
shown in Figure  9-10 .     
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 In addition to the core memory-centric object store, Ampool includes several 
optimized connectors that allow existing computational engines to efficiently store and 
retrieve data from the Ampool object store. Although the number of connectors is rapidly 
increasing with every version of Ampool, the current connectors provided out of the 
box include Apache Spark, Apache Hive, Apache Trafodion (in collaboration with Esgyn 
Corporation), Apache Apex (in collaboration with Datatorrent, Inc.), and CDAP (Cask 
Data Application Platform, in collaboration with Cask Data, Inc.). Although the Ampool 
system is in itself a fully distributed storage system able to maintain large volumes of 
operational persistent data, it provides several persistent storage connectors to load and 
store data. Connectors available include Hadoop Distributed File System (HDFS), Apache 
Hive, and Apache HBase. Ampool can be deployed as a separate system with Hadoop 
components or with an existing running Hadoop cluster (either with Apache Ambari 
or Cloudera Manager) and can be monitored and managed with provided tools or by 
connecting the JMX metrics produced by Ampool to any JMX-compatible monitoring 
system. 

 By providing fast analytical storage for (both immutable and mutable) dataframes, 
datasets, and for extensions for event streams, Ampool provides the missing piece for 
implementing the Butterfly architecture and allows unification of various transactional 
and analytical workloads.  

   Example Use Case: Ad Tech Data Pipeline 
 Acme.io is a very popular content aggregation company that has a web-based portal 
and also a mobile app with tens of millions of users, who frequently visit using multiple 
devices several times a day to get hyper-personalized content. Acme has several 
advertising customers who pay to display their advertisements on all devices. Acme is 
one of many “Web 3.0” companies and has a deep understanding of its users’ precise 
interests as well as exact demographic data—based on which, it personalizes the content. 
It has an ever-growing taxonomy of its users’ interests, and advertisers can target users by 
demographics as well as their precise interests. Here is Acme’s business in numbers:

•    100 million registered users with 50 million daily unique users  

•   100,000 advertisements across 10,000 advertising campaigns  

•   10 million pieces of content (news, photos, audio, video)  

•   50,000 keywords in 50 topics and 500 subtopics as user interests    

 Acme has several hundred machines serving advertisements. Using a unique 
matching algorithm that fetches a user’s interests, it finds the best match within a few 
milliseconds and serves the ad within appropriate content. 

 Acme has a lot of data scientists and Hadoop expertise. It operates a large Hadoop 
cluster for providing personalized recommendations of content to its users. However, 
the batch-oriented nature of Hadoop has so far prevented the company from using that 
Hadoop infrastructure for real-time ad serving, streaming analytics on advertisement 
logs, and providing real-time feedback on campaign performance to its customers. 
Also, for its business and marketing analysts, who want to perform ad hoc queries on 
the advertising data to target larger pool of customers, Acme has set up a separate data 
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repository apart from both the real-time analytics and batch analytics systems. As a result, 
the operating expenses of its data infrastructure has more than tripled. Worse, Acme 
incurs a huge overhead just trying to keep the data in sync across these three platforms. 
Since the same data is kept in multiple places, there is lag and discrepancies in the data, 
repetitive tasks for data cleansing, and ensuring data quality and maintaining data 
governance. This wastes more than 80% of valuable time of Acme data scientists and Big 
Data infrastructure specialists. 

 Acme architects and technologists decided to replace the entire data infrastructure 
with modern Flash and memory-based architecture and had a deep-dive with Acme data 
pipeline developers. They realized that they will have to rewrite the last five years’ worth of 
data-analysis work with the new, unfamiliar, and immature technologies. Retraining the 
data practitioners alone would take several years. Instead, they decided to do incremental, 
piecemeal upgrades to the data infrastructure, moving towards the Butterfly architecture 
from their current Lambda architecture, using Ampool memory-centric storage. 

   The Data 

 Exactly four large data sets are used in Acme’s data analysis pipeline: user profiles, 
advertisements, content metadata, and ad serving logs. 

   User Profiles 
 User profiles contain details about every registered user. The schema for user profile is as 
follows:

•    UserID: UUID  

•   Age: 0..255  

•   Sex: M/F/Unknown  

•   Location: Lat-Long  

•   Registration timestamp: TS  

•   Interests: Comma-separated list of (topic:subtopic:keyword)     

   Advertisements 
 This dataset contains all the details about all the advertisements available for displaying 
within content. The schema for this data set is as follows:

•    AdID: UUID  

•   CampaignID: UUID  

•   CustomerID: UUID  

•   AdType: {banner, modal, search, video}  

•   AdPlatform: {web, mobile}  



CHAPTER 9 ■ LAMBDA ARCHITECTURE FOR REAL-TIME HADOOP APPLICATIONS

248

•   Keywords: comma-separated list of (topic:subtopic:keyword)  

•   PPC: $ per click  

•   PPM: $ per 1000 display  

•   PPB: $ per conversion     

   Content Metadata 
 The content dataset contains all the metadata about the content. The schema for the 
content dataset is as follows:

•    ContentID: UUID  

•   ContentType: {news, video, audio, photo}  

•   Keywords: Comma separated list of (topic:subtopic:keyword)     

   Ad Serving Logs 
 This dataset is streamed continuously from the ad servers. Each entry in this log has the 
following fields, of which some may be null:

•    TimeStamp: TS  

•   IPAddress: IPv4/IPv6  

•   UserID: UUID  

•   AdID: UUID  

•   ContentID: UUID  

•   AdType: {banner, modal, search, video}  

•   AdPlatform: {web, mobile}  

•   EventType: {View, Click, Conversion}      

   Computations 

 Following computational steps are performed on the data in Acme’s advertisement 
analytics data pipelines. 

   Ingestion and Streaming Analytics 
 Ad servers produce ad click, view, and conversion events to Kafka brokers. Kafka 
consumers are embedded in the Apache Apex (DataTorrent) streaming analytics 
platform. For every event consumed, the following computations are done:

    1.    Parsing the event record  

    2.    Extracting timestamp, ad ID, event type, and ad type  
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    3.    Looking up campaign ID from ad ID  

    4.    Windowed aggregation of event types for each ad ID and 
campaign ID  

    5.    Storing these aggregates in Ampool  

    6.    Visualizing these aggregations in a streaming visualization 
dashboard of DataTorrent for a campaign ID and all ads in 
that campaign  

    7.    The output of the streaming analytics is as follows:

     a.     (Ad-ID, Time-Window, Number-Of-Views, Number-Of-
Clicks, Number-Of-Conversions, Total-PPV, Total, PPC, 
Total PPConversion)  

     b.     (Campaign-ID, Time Window, Number-Of-Views, 
Number-Of-Clicks, Number-Of-Conversions, Total-PPV, 
Total, PPC, Total PPConversion)         

 Second streaming ingestion pipeline keeps the user table, ad table, and content table 
updated. While the ads are being displayed, clicked, and converted, new users are being 
registered, and existing users’ information is being updated. New campaigns are created, 
existing campaigns are modified, new ads are created, and existing ads are updated. 
These inserts and updates are being done simultaneously, rather than periodically. In 
the second pipeline, we use Kafka consumers to get insert and update records and apply 
these inserts and updates to respective tables in Ampool in real time. The steps in this 
pipeline are as follows:

    1.    Ingest a {user, campaign, ad} {update, insert} event from Kafka 
broker.  

    2.    Parse the event to determine which table is to be updated.  

    3.    Update the respective table.  

    4.    Keep track of total number of updates.  

    5.    When 1% of the records are either new or updated, launch the 
batch computation and reset update counters.      

   Batch Model Building 
 In this batch-oriented computation, we build ad targeting models. The inputs for this 
pipeline are the user table, ad table, and content table. And output of this pipeline are two 
new tables:

    1.    (User-ID, Ad-Id1, weight1, Ad-Id2, weight 2, Ad-Id3, weight3)  

    2.    (Content-ID, Ad-Id1, weight1, Ad-Id2, weight2, Ad-Id3, 
weight3)     
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 These tables represent the top three most relevant ads for every user and for all 
content. These tables are then used for the ad serving systems, such that when a user 
visits particular content, the best match among these ads is chosen, based on one lookup 
each in the user table and content table. 

 Relevance of an ad for a user of a content is determined by cosine similarity in the 
list of keywords, and topics and subtopics. This batch model building pipeline, built using 
CDAP, has the following steps:

    1.    A MapReduce job to extract the relevant fields from user 
table and ad table, and join based on topics, subtopics, and 
keywords.  

    2.    A Spark job to filter the top three matching keywords and 
compute the weights of ads for those keywords using cosine 
similarity.  

    3.    Repeat the preceding steps for the content table and ad table.      

   Interactive and Ad Hoc SQL Queries 
 The interactive and ad hoc queries are performed on varying windows of the aggregates 
for campaigns and ads using Apache Trafodion (EsgynDB). Here are some examples of 
the queries:

    1.    What was the {per-minute, hourly, daily} conversion rate for 
an ad? For a campaign?  

    2.    How many ads were clicked on as a percentage of viewed, per 
hour for a campaign?  

    3.    How much money does a campaign owe to Acme.io for the 
whole day?  

    4.    What are the most clicked ads and campaigns per hour?  

    5.    How many male users does Acme have aged 0–21, 21–40?     

 The results of these queries can be displayed on the screen (interactively) and for the 
queries resulting in time-windowed data, visualized using a tool such as Tableau.      

     Summary 
 A few years back, when Nathan Marz first introduced Lambda architecture, there was a 
rush of excitement through the Big Data community because at the time there were no 
options for real-time processing of streaming data using Hadoop. The role of Hadoop and 
NoSQL was relegated to ETL or at the most batch processing. The introduction of Lambda 
changed that. For the first time, it was demonstrated that Hadoop had a possible use for 
real-time processing. 
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 However, as the excitement wore off, problems with this architecture were soon 
noticed. Lambda is a good starting point, but you need to adapt it for your individual 
environment. Use of Lambda is also restrictive (in most cases) for choice of components 
of the Hadoop ecosystem you plan to use. Nathan has demonstrated his concepts by 
developing Java code for every small task related to Lambda, but that’s not practical. If 
you plan to build your data lake (that’s where I see the most use for Lambda) using the 
various production systems in your environment, developing fact-based model(s) for 
those systems will be a difficult and time-consuming task. I have already demonstrated 
the process using a real-world example. That should give you a good idea about the effort 
involved. 

 So, where can you use Lambda? And is there a real use for it? You can follow the 
“web-click” examples in Nathan’s book and probably develop similar Java code to 
implement systems to gather and analyze social media data or data for your e-commerce 
systems or maybe IoT-related systems. But can you use Lambda to interface with 
relational systems? And more importantly, can you develop fact-based models for 
such interfaces? There is no absolute affirmative or negative answer to this question. It 
depends on the complexity of your source system and also your objective—what do you 
want to do with the data once it is in Hadoop? 

 Finally, is Lambda going to survive the onslaught of bleeding-edge, stream-
processing engines like Spark that also remove the major hurdle of managing two 
distributed systems for providing batch and real-time functionality? I feel that only time 
will tell.      
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    CHAPTER 10   

 Implementing and 
Optimizing the Transition                          

 Recently, I have seen a number of organizations reversing their decision about using Big 
Data. These organizations represent diverse industries and therefore may not withstand 
the logic of Hadoop not being suitable for a particular industry. In most of these cases 
(apparently), performance and lack of usability were the main issues for deciding against 
using Big Data technologies. Granted that open source software does not have extensive 
and easy-to-understand documentation or means to troubleshoot, but these days, there 
are enough vendors selling supported Hadoop distributions and software with easy-to-
use browser interfaces for performing all kinds of tasks starting with data ingestion to the 
end result: analytics. 

 So, why the hesitance and reluctance to invest money in Hadoop? Why has Hadoop 
not replaced a large number of data warehouses? Why is Hadoop still not a main 
application platform for big corporations? There is no short answer to any of these 
questions. I want to focus on the perceived lack of  huge  performance gain—a major factor 
for wanting to choose Hadoop to replace the older technologies. I will talk about how you 
can extract optimal performance from your Hadoop cluster using performance tuning at 
the hardware, operating system, Hadoop configuration, and data stages. 

 You’ve probably heard that Hadoop clusters can be built using commodity hardware, 
but that’s not really true for production environments. I will discuss some typical 
hardware configurations for production and development environments. I will cover why 
you need to start with the operating system for performance tuning. I will also discuss the 
major configuration parameters that impact performance and explain how and why need 
to be tuned. 

 After you have your operating system tuned, you need to work on Hadoop 
configuration parameters and change them to gain optimal performance for your specific 
environment. And as you know, Hadoop holds data as files, so the storage format for 
these files is very important. There are reasons why a particular format needs to be used 
for storage, and I talk about the factors you need to consider while deciding a storage 
format. Also, considering the high data volumes, data compression is essential. I discuss 
the types of compression codecs and pros/cons. Finally, I cover special indexing and 
caching techniques that will help with performance. 
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 Of course, as a first step for getting optimal performance from your Hadoop cluster, 
you need to run baseline stress tests and identify the problem areas or areas where 
performance is not as expected. I will start with Hadoop hardware configurations for 
production/development environments. 

     Hardware Configuration 
 You can’t assume that a Hadoop cluster can be constructed using old, discarded, 
commodity hardware. You need to use servers with multiple CPUs (containing multiple 
cores) and with enough RAM. Your production cluster needs to have more powerful 
hardware than your development environment, and of course your NameNode 
(master node) needs to be more powerful than the DataNodes (worker nodes for either 
environment). This is just a quick summary. 

     Cluster Configuration 
 The HDFS master node (NameNode) needs to have more memory than the worker 
nodes. Also, the storage for the master node should be RAID, and because it’s a SPOF 
(single point of failure), it needs to be replicated for failover scenarios. A NameNode 
needs to be configured based on the amount of data (as well as number of files you 
plan for the cluster to hold). And you need to consider growth projections and data 
compression while configuring. 

 Here’s how you can calculate the cluster size for production usage. Let me start with 
spacing for a node and total number of nodes. Since operating system and other essential 
applications on a node need some space (roughly 25% of total space) and data blocks are 
replicated based on a replication factor (default 3): 

    HDFS space per node = (Raw disk space per node – 25% non-DFS local storage)/
(Replication Factor) 

   Number of Worker nodes = Total HDFS space/HDFS space per node   

    Consider the following for startup (individual) worker node configuration:

•    Latest generation processor(s) with 12 to 16 cores (total)  

•   4–8 GB memory per core  

•   1–3 TB SATA disks per core  

•   1GbE NIC    

 For a NameNode:

•    4–6 cores (total)  

•   Start with memory as follows: (3 GB + 1 GB for every 100 TB of raw 
disk space or 1 million file objects)  

•   Needs to be replicated (for failover)  
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•   RAID-1 storage  

•   NameNode should run on a 64-bit OS to avoid 3 GB limit on JVM 
heap size    

 If you are using YARN, you can use 2 GB RAM and 1 core CPU as a starter 
configuration for the YARN master node, the Resource Manager (as a rule of thumb). But 
you might want to boost up the hardware for a really busy Resource Manager (a lot of 
scheduled jobs). Of course, you need to do workload profiling and review the resource 
usage at peak-time workloads. If there is maximum usage for a resource, adjust the 
resource allocation accordingly. 

 The size of your development environment depends on your application usage. If 
you are using a vendor product, then you might use your development environment only 
for version upgrades or customizations (to the vendor product). In that case, you can 
probably halve the hardware resources per node and may also want to reduce by half the 
number of worker nodes for your development environment. 

 However, if your application is home-grown (or developed within your corporation), 
then you might want to allocate 70–80% of hardware resources per worker node (as 
compared with production) and also use a count of 70–80% worker nodes (as compared 
with production), because you might have to process a larger number of enhancements 
(to the application) and may need to test out performance for them too. For a really 
dynamic development environment, you may need to match development resources 
(with production) and may need larger space to facilitate holding multiple versions of 
data (for testing). 

 Note that these are only guidelines for a generic cluster. You should consult 
your vendor (for Hadoop distribution) documentation or seek expert advice for your 
individual configuration needs.   

     Operating System Configuration 
 It is important to consult OS documentation before you start with performance tuning 
for your Hadoop cluster. Remember, HDFS is simply a file system (albeit distributed, fault 
tolerant, and with a lot of good features) that runs within the purview of the OS for your 
individual (master or worker) nodes. Some of the adjustments for your OS are intuitive, 
whereas others need a good understanding of it. Because RHEL (Red Hat Enterprise 
Linux) or CentOS are popular Linux flavors used for Hadoop clusters, I will assume the 
OS is one of them. I’ll start with the intuitive adjustments:

•     Turn off the Power Savings option : You need this BIOS setting to 
optimize performance for applications (instead of just switching 
off during idle time). Change this to  PerfOptimized  in your BIOS 
settings.  

•    Turn off caching on disk controller : Hadoop doesn’t use it.  

•    Mount disk volumes using the option NOATIME : By default, the OS 
records the last accessed (read or write) date for a file. This option 
turns off that behavior and thereby speeds up access (since it is 
not used by Hadoop).    
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 There are a number of advantages in using the ext4 filesystem (instead of ext3), such 
as multi-block and delayed allocation. Therefore, you should consider using it. And now, 
some not-so-intuitive settings:

•     Disable transparent Huge page compaction : When enabled, this 
feature tells the Linux kernel to allocate 2 MB pages to a Linux 
process (whenever possible). But since the compaction part 
seems to cause a problem with Hadoop jobs and results in high 
CPU usage, it needs to be disabled. For RHEL, you can use the 
following command: 

   echo never > sys/kernel/mm/redhat_transparent_hugepages/defrag 

   In order to make that change permanent, add the following 
script in your  /etc/rc.local  file: 

   if test -f /sys/kernel/mm/redhat_transparent_hugepage/defrag; 
then echo never > /sys/kernel/mm/redhat_transparent_hugepage/
defrag ;fi 

•       Reduce FS reserve blocks space : There is 5% space reserved for 
special operations (such as file delete by root when the filesystem 
is full), but Hadoop doesn’t need this space, so it can be removed. 
Use the following command: 

   tune2fs -m 0 /dev/sdXY 

•       Increase open file handles and files : By default, the number of 
open file count is 1024 for each user, which might result in errors 
like  java.io.FileNotFoundException: (Too many open files) . 
Therefore, the  number of open file  limit needs to be set. For Linux, 
there are three limits: soft limit (can be set by a user), hard limit 
(only set by root or superuser), and system-wide limit (set by 
root in configuration file for the server). Choose a high value 
(like 4032) as your soft limit (that a user can set up to), a higher 
value (say, 32832) as the hard limit (that root can set up to), and 
a really high value (for example, 6544018) for system-wide file 
descriptors, since that’s the total file descriptors possible for the 
whole system. Use the following commands: 

   ulimit –S 4096 
 ulimit –H 32832 
 sysctl –w fs.file-max=6544018 
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•       Memory swapping : In Hadoop, swapping (swapping in-
memory data with filesystem) reduces job performance. So, 
keep maximum data in-memory and configure your OS to do a 
memory swap only if it is OOM (OutOfMemory). To achieve that, 
set the value for parameter  vm.swappiness kernel  to  0 . Use the 
following command: 

   sysctl -w vm.swappiness=0 

   Note that the  sysctl  command will set the values for your 
session. To persist this value, add the following line to 
configuration file  /etc/sysctl.conf : 

   vm.swappiness=0 

     For the file descriptor value (above) to persist, add the 
following line to configuration file  /etc/sysctl.conf : 

   fs.file-max=6544018 

      Hadoop being a distributed file system, there is a lot of inter-node communication 
using the network. Subsequently, the network performance is important, so the 
network packet size is important too. Maximum transmission unit (MTU) indicates 
the packet size that can be sent using the TCP/IP protocol. The default size for MTU is 
1500; you can increase it to 9000. A value of MTU that’s greater than its default value is 
called  jumbo frames . You can change the value of MTU by adding the following line in 
configuration file  /etc/sysconfig/network-scripts/ifcfg-eth0  (or whatever your eth 
device name is): 

   MTU=9000 

   You must restart the network service for this change to take effect. Also, before 
modifying this value, make sure that all the nodes in your cluster (including switches) 
support jumbo frames. If not, don’t make this change. 

 The next section discusses the Hadoop configuration parameters that are important 
to consider from a performance perspective.  

     Hadoop Configuration 
 Hadoop configuration can be broadly grouped into three categories: HDFS, JVM, and 
YARN (including MapReduce as a container). I discuss all these categories along with 
tunable parameters in each of them. 
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     HDFS Configuration 
 HDFS holds your data and therefore is a key consideration for data access. You have to 
make sure that the data writes and reads are performed with optimal performance. 
I shared some configuration details for NameNode and DataNodes earlier, but note the 
details of some fast drives that you can use. 

 Also, you should perform some generic tasks like time synchronization, version 
control, and cluster balancing. It is important to synchronize time on all your cluster 
nodes. Failing to do so may result in errors, and it may even be difficult to know what 
the real time of those errors was. It is similarly important to use version control for 
configuration. You don’t want to be in a situation where some nodes are at a particular 
version and others are at another. HDFS provides a utility (Balancer) to redistribute 
data in a uniform manner on your DataNodes. That helps in distributing processing 
(uniformly) as well and should be used after cluster expansion. 

 Getting back to configuration, you can consider key parameters such as block size or 
buffer size. Here’s a complete list:

•     Drive type : Even though RAID arrays are not required for 
DataNode storage (since HDFS replicates the data blocks as per 
specified replication factor), it will help to have fast SATA drives 
to hold your data. SSD (solid state drive) storage is ideal, but 
because it is expensive, you can use SSHD (solid state hybrid 
drive) storage that offers 7,200 RPM or SATA III drives offering 
10,000 RPM.  

•    Multiple disk mount points for your DataNodes and NameNode : 
For DataNodes, the comma-separated list of mount-points 
(or directories) will spread the data across them and thereby 
provide optimal access performance. For NameNode, multiple 
directories (or mount-points) provide metadata redundancy. 
HDFS makes sure that data blocks for your files are replicated 
across DataNodes for redundancy. The relevant properties in 
 hdfs-site.xml :    

   dfs.datanode.data.dir 
 dfs.namenode.name.dir   

•      DFS block size : This is a very important consideration. Review 
your expected file sizes and their usage. For example, if your data 
files are large but a large number of user queries retrieve small 
datasets (500 MB–5 GB), then you might want to start with a block 
size of 64 MB or 128 MB since you write once and read multiple 
times. You can override block size while writing new files and 
have different block sizes for files as per their expected use. The 
relevant property in  hdfs-site.xml :    

   dfs.block.size 
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•      Local filesystem buffer : This is the buffer size (controlled by 
property  io.file.buffer.size ) used by HDFS for its I/O 
operations. It should be increased to 64 KB or 128 KB for 
performance gains. Also, depending on how much RAM you 
have available, you can set  io.sort.factor  (number of maps 
to merge while sorting a file) to 20 or 25 (the default is 10). Note 
that the value for  io.sort.mb  (the amount of memory used by a 
mappers to collect map output) should be 10 *  io.sort.factor . 
So, 10 mapper task instances with  io.sort.mb = 200  means your 
total RAM allocation for sorting is 2 GB. The relevant properties in 
 core-site.xml :    

   io.file.buffer.size 

 And  mapred-site.xml:  

 io.sort.factor 
 io.sort.mb 

•      Short-circuit reads : As a general rule, when a client requests 
a data block (for a file) from HDFS, the client contacts the 
appropriate DataNode and the data is sent to the client using a 
TCP connection. If the data block being requested resides on the 
same node as the client, then it is more efficient (for the client) to 
bypass the network and read the block data directly from the disk 
(termed a short-circuit read). Short-circuit reads can be enabled 
by setting the property  dfs.client.read.shortcircuit  to  true . 
The relevant properties in  hdfs-site.xml :    

   dfs.client.read.shortcircuit 

   You also need to set additional properties for this purpose. For 
details, see    https://hadoop.apache.org/docs/r2.4.1/hadoop-
project-dist/hadoop-hdfs/ShortCircuitLocalReads.html     .

•     NameNode/DataNode concurrency : For large clusters, it is 
imperative to have more threads for maximum concurrency. The 
parameter  dfs.namenode.handler.count  controls the number of 
server threads for the NameNode and should be increased from 
the default value of 10 to 50 or 100 (depending on the size of the 
cluster and available memory). The parameter  dfs.datanode.
handler.count  similarly indicates the number of threads 
handling block requests for a DataNode. If you have multiple 
physical disks (for each of your DataNodes), you can increase the 
throughput by increasing this number from default value of 3 to 5 
or more. The relevant properties in  hdfs-site.xml :    

   dfs.namenode.handler.count 
 dfs.datanode.handler.count 

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html
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•      DataNode Failed volumes tolerated : This property is set to  0  by 
default. If a data volume fails, DataNode will shut down. Setting it 
to a higher value (2 or 3) will prevent the DataNode from shutting 
down when a single data volume fails. The relevant properties in 
 hdfs-site.xml :    

   dfs.datanode.failed.volumes.tolerated 

   The preceding list is not exhaustive. See the Apache documentation for a complete list 
of parameters defined in the files  core-site.xml ,  hdfs-site.xml , and  mapred-site.xml  
(or YARN configuration files if you are using yarn). 

 Also please visit    www.odpi.org      for complete details of the new ODPi standard that’s 
being developed for standardization of core Hadoop components and certification of 
Hadoop distributions. Development of this standard will provide version control and 
harmony to the core Hadoop components and simplify their usage. 

 ODPi is a nonprofit organization that’s developing a common reference specification 
called ODPi Core. Because Apache Hadoop, its components, and its distributions are 
evolving very quickly and diversely, it has resulted in slowing the Big Data ecosystem. 
The concept of a standard ODPi core will save on cost and reduce complexity and 
thereby accelerate the development of Big Data solutions by providing specifications for a 
common runtime and also assist in creating reference implementations and test suites. 

   JVM/YARN/MapReduce Configuration 
 All the Hadoop daemons are JVMs and therefore it is important to understand how 
you can get optimal performance for a JVM. There are some general guidelines and 
then means to facilitate troubleshooting, since there may be certain reasons or specific 
concerns for your environment that may drive certain configuration parameter values, 
and these values may not follow the generic guidelines.  

   Generic JVM Guidelines 
 Note that the following guidelines are generic and that your specific environment may 
have specific requirements that may not benefit from them.

•     Use 64-bit JVM for all daemons with compressed OOPS enabled : It 
is important to use 64-bit JVMs for 64-bit environments because 
that enables you to use maximum possible hardware resources 
(memory). 

 Using compressed OOPs (ordinary object pointers) is a technique 
for reducing the size of Java objects in 64-bit environments. A 
big benefit is that you can fit a bigger JVM using same amount 
of memory. A big drawback of this technique is that address 
uncompressing needs to be done before accessing memory 
referenced by compressed OOPs. This affects performance and 
uses valuable CPU resources. Starting from Java 6 update 18, 
Oracle (by default) enables the option  UseCompressedOops  in JVM 
based on maximum Java heap size.  

http://www.odpi.org/
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•    Optimal Java heap size : When a JVM starts executing, it gets some 
memory from the OS and uses this memory for all its needs. Part 
of this memory is called Java  heap memory . It’s a good idea to 
set the minimum (or starting) and maximum heap size to the 
same value (that is, set Xmx == Xms). Don’t use Java defaults for 
parameters such as  NewSize  or  MaxNewSize.  For JVMs larger than 
4 GB, you can use the ratio 1/8 to 1/6 (size of new JVM to old JVM) 
for  MaxNewSize .  

•    Using low-latency GC collector : Garbage collection (GC) is re-
use of heap space belonging to deleted objects or completed 
processes. You should use the concurrent algorithm or collector 
using option  UseConcMarkSweepGC . That’s because you need to 
keep the GC pauses shorter (even though that uses more CPU 
time for GC) in case of a JVM for Hadoop daemons, which have 
more dynamic memory usage. Note that the concurrent collector 
needs more RAM allocated to the JVM (than the serial or parallel 
collectors for GC). 

 The option  ParallelGCThreads=<N>  sets the number of the 
GC worker threads. You should set the value of  N  to be same 
as the number of logical processors (up to 8). For more logical 
processors, set  N  to be approximately 5/8 of the number of logical 
processors (except for larger SPARC systems where  N  can be 
approximately 5/16 of the number of logical processors). 

 Use a high number of GC threads for NameNode and JobTracker 
(ResourceManager for YARN), since you need the GC process 
without any latency for more effective memory utilization.  

•    JVM configuration options for debugging :

•     -verbose:gc -Xloggc:<file> : This option logs garbage 
collection event information to a file. In addition to the 
information  -verbose:gc  gives, each reported event is 
preceded by the time (in seconds) since the first garbage-
collection event.  

•    -XX:+PrintGCDetails:  This option activates the “detailed” 
GC logging mode, which differs depending on the GC 
algorithm used. Here’s a sample:  [GC [PSYoungGen: 
246648K->243136K(375296K), 0,0935090 secs] . This entry 
refers to a young generation GC instance, which reduced the 
occupied heap memory from 246648K to 243136K and took 
0.0935090 seconds.  

•    -XX:ErrorFile=<file>:  The filename is used to specify a 
location for the fatal error log file (in case of fatal errors for JVM).  
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•    -XX:+HeapDumpOnOutOfMemoryError:  This command-
line option tells the JVM to generate a heap dump when it 
can’t allocate heap memory to a request. Since there is no 
overhead for using this option, it can be used for production 
systems (where it takes a long time to know that JVM is out of 
memory). The heap dump is in HPROF binary format, so it 
can be analyzed using any tools that can import this format 
(such as jhat). By default, the heap dump is created in a file 
called  java_pid<JVM pid>.hprof , in the working directory 
of JVM.        

   Generic YARN/MapReduce Guidelines 
 MapReduce was the framework (for distributed processing of a job) Hadoop started with, 
but this was replaced by YARN (sometimes referred as  MapReduce 2 ) in later versions. 
Many organizations still use MapReduce for various reasons. Therefore, I I’ll give some 
tips for optimizing MapReduce configuration. 

   Optimizing MapReduce Applications 

 MapReduce is a programming model used for processing large datasets using a parallel, 
distributed algorithm on Hadoop clusters. A MapReduce program consists of a  Map  
method that performs filtering and sorting (such as sorting sales by product names) and 
a  Reduce  method that performs a summarization or aggregation (for example, counting 
sales by products). The MapReduce framework distributes processing on various nodes 
of a cluster, runs tasks in parallel, manages all communication/data transfers between the 
various parts of the system, and provides redundancy and fault tolerance. 

 Here are some notes on optimizing the use of MapReduce:

•     Speculative execution:  All the nodes of your cluster may not be 
operating at the same speed—maybe one of the nodes is slower. 
To account for difference in machine capabilities, Hadoop 
schedules redundant copies of the same task across several 
nodes that do not have other work to perform, a process known 
as  speculative execution . When a task completes, it notifies the 
JobTracker, and the copy of a task that finishes first becomes the 
definitive copy. Other copies that are executing speculatively are 
abandoned, and the reducers receive their inputs from mapper 
completing successfully first. 

  Speculative execution is enabled by default. If you have identical 
nodes, you can save valuable resources by disabling this behavior. 
You can disable speculative execution for the mappers and 
reducers by setting the  mapreduce.map.tasks.speculative.
execution  and  mapreduce.reduce.tasks.speculative.
execution  options to  false .  
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•    Combiner functions : A  combiner  is a function that can be used 
for decreasing the amount of data be processed by reducers. 
A combiner needs to match the input/output key and value 
types of your mapper and can be used for a single mapper. By 
decreasing the data passed in to a reducer, a combiner also helps 
reduce I/O and network traffic, thereby improving performance.  

•    Data compression : You can use an appropriate codec for 
compressing data to reduce I/O and network traffic, thereby 
improving performance. Various codecs such as LZO, Snappy, 
and others can be used for compression depending on the format 
for your data (discussed later in this chapter).  

•    Distributed cache : Enables you to cache files frequently used by 
your applications. Once you cache a file for your job, Hadoop will 
make it available on all DataNodes (in HDFS, not in memory) 
where your map/reduce tasks are executing. So, you can access 
the cache file as local file for your job(s). This saves on valuable 
I/O and improves performance. See    http://hadoop.apache.
org/docs/r2.6.3/api/org/apache/hadoop/filecache/
DistributedCache.html      for more details. 

 If you use Hive, you can develop a UDF (user-defined function) 
using Java and use this functionality. The command  ADD FILE 
<filename>  in Hive adds a distributed cache file that’s distributed 
to every node.  

•    Granularity for MapReduce tasks : You can adjust the number 
of mappers depending on the data processed by your jobs and 
hardware resources available for execution. So, for example, if the 
average mapper running time is shorter than a minute, you can 
increase the  mapred.min.split.size , so that fewer mappers are 
allocated and mapper initialization overhead is reduced. You can 
adjust the following parameters:

•     Mapreduce.map.minsplitsize   

•    Mapreduce.map.maxsplitsize   

•   Number of reducers     

•    mapreduce.task.io.sort.factor:  For any of your jobs where a 
map task is running, each time the memory buffer reaches the 
spill threshold, a new spill file is generated. So, after the map 
task completes writing, there may be several spill files, and 
these spill files are merged into a single and sorted output file. 
This configuration property controls the maximum number of 
streams (files) to merge at once. The default value is 10, but it can 
be adjusted depending on your data volume along with the spill 
threshold (80% by default).  

http://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/filecache/DistributedCache.html
http://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/filecache/DistributedCache.html
http://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/filecache/DistributedCache.html
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•    mapreduce.task.io.sort.mb : When map task is executing, it 
writes to a circular in-memory buffer and the size of this buffer 
is defined by the  io.sort.mb  property. When this circular in-
memory buffer is filled (spill threshold is reached), output is 
spilled to disk (in parallel using a separate thread). If the spilling 
thread is slow to write and the buffer is 100% full, then the map 
execution is stalled, so it’s important to tune this property for 
optimal MapReduce performance. The default value is 100 
MB and should be adjusted for your environment based on 
performance and spill files generated.  

•    mapreduce.map.memory.mb/mapreduce.reduce.memory.
mb : These are the hard limits enforced by Hadoop for each 
mapper or reducer task and define the maximum memory 
that can be assigned to mapper or reducer’s container. The 
default value is 1 GB, but you should set these values for your 
environment as needed.  

•    mapreduce.map.java.opts/mapreduce.reduce.java.opts : This 
is the maximum heap size of the JVM (–Xmx) for the mapper 
or reducer task and should always be lower than the value for 
property  mapreduce.[map|reduce].memory.mb . Typically, this 
value should be 80% of the value for property  mapreduce.map.
memory.mb/mapreduce.reduce.memory.mb .  

•    mapreduce.reduce.shuffle.parallelcopies : As your job is 
executing, various mappers are executing on nodes (for your 
cluster), and their map output files are located locally (on the 
node that’s executing the map task). These map tasks may 
complete at different times, and therefore the reduce task starts 
copying these outputs as soon as they complete. The number of 
copier threads that the reducer task can use to fetch map outputs 
in parallel, are defined by the property  mapreduce.reduce.
shuffle.parallelcopies . The default value is 5 and should 
be adjusted as per your data volumes and average number of 
mappers.     

   Optimizing YARN Execution 

 YARN (yet another resource negotiator) is the latest resource management framework 
for Apache Hadoop. This is essentially MapReduce version 2 with many new features like 
dynamic memory assignment (for mappers and reducers). Major components of YARN 
are as follows:

•     ResourceManager : The master daemon process that 
communicates with the client (requestor), tracks resource 
availability on the cluster, and coordinates work by allocating 
tasks to NodeManagers.  
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•    NodeManager : This is a worker daemon process that launches 
and manages processes executing on worker nodes.  

•    ApplicationMaster : Manages a task (or a process) spawned 
by NodeManager within a  container , as requested by 
ResourceManager.  

•    Container : Represents a request to hold resources (CPU/RAM) on 
a worker node. For example, MapReduce is an application that 
runs within YARN, and ApplicationMaster will spawn mappers 
and reducers to run within a container (and request additional 
containers to ResourceManager as needed).    

 As shown in Figure  10-1 , when a client process requests resources to 
ResourceManager, it locates a node with available resources and requests those resources 
to the NodeManager (on that node). NodeManager, in turn, spawns a container, and 
ApplicationMaster is invoked with it. ApplicationMaster manages the resources for 
the application (the client process) and requests additional resources (if needed) to 
ResourceManager.  

 Figure  10-1  shows details of the YARN architecture. 
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  Figure 10-1.    YARN architecture       

 Note the following:

•    The total memory per node for a Hadoop cluster is determined by 
property  yarn.nodemanager.resource.memory-mb .  

•   Maximum memory that ResourceManager can allocate to the 
ApplicationMaster container is determined by property  yarn.
scheduler.maximum-allocation-mb . The default minimum 
allocation is 1 GB but can be changed using property  yarn.
scheduler.minimum-allocation-mb .  
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•   ApplicationMaster can only request resources from 
ResourceManager in increments of value for property  yarn.
scheduler.minimum-allocation-mb  and can’t exceed value for 
property  yarn.scheduler.maximum-allocation-mb .  

•   In case of MapReduce (as application), ApplicationMaster will 
rounds off values for  mapreduce.map.memory.mb  and  mapreduce.
reduce.memory.mb  to multiples of value for  yarn.scheduler.
minimum-allocation-mb .    

 So, to summarize, here are some YARN properties that you can tune:

•     yarn.scheduler.minimum-allocation-mb : Minimum size of 
container that YARN will allow for running a job (default 1 GB).  

•    yarn.scheduler.maximum-allocation-mb : Largest size of 
container that YARN will allow for running a job (default 8192m).  

•    yarn.nodemanager.resource.memory-mb : Total amount of 
memory for containers on a worker node. This value should be: 
(total memory) – (memory allocation for OS, Hadoop daemons, 
and any other services).  

•    yarn.nodemanager.vmem-pmem-ratio : Defines ratio of virtual 
memory to available physical memory. The default of 2.1 means 
virtual memory will be double the size of physical memory.  

•    yarn.app.mapreduce.am.resource.mb : Memory allocated to 
ApplicationMaster.  

•    yarn.app.mapreduce.am.command-opts : Heap size allocated to 
ApplicationMaster (default (1 GB).  

•    yarn.nodemanager.resource.cpu-vcores : Number of cores that 
a node manager can allocate to containers. This value should be: 
(total number of cores on the node) – (cores allocated to Hadoop 
daemons and any other daemons).    

 This completes my discussion about YARN-related tuning and important parameters 
to consider. Next, I look at how to optimize your data model for usage with NoSQL 
solutions and also how to select a NoSQL solution for your environment.    

     Choosing an Optimal File Format 
 It is important to understand that the file format you choose to store your data can 
directly affect the performance of queries against that data. There are a number of 
parameters you need to consider while choosing the right format. The type of queries 
you plan to execute is of course the most important one. The next one is the amount of 
compression you need. And you need to make sure that the NoSQL solution you plan 
to use supports the storage format. Fortunately, most NoSQL solutions make it easy to 
convert data between formats. 
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 File format affects query performance because it determines how quickly the dataset 
can be read by the system in response to a specific query. The speed of data retrieval 
is the biggest determinant of query performance. Now, the main (and most time-
consuming) task for data retrieval is moving data from disk to memory and vice versa 
(unless you are using in-memory database). For example, if your dataset is 1 TB and you 
use 7200 RPM drives with hardware interface SATA 6 GB/s, since your disk read rate is 
close to 160 MB/s, it will take you about two hours to process a terabyte of data. For bigger 
datasets, similar performance will be unacceptable. 

 How can you improve your read performance? There are three ways. First, you 
can parallelize your read and write operations by leveraging distributed storage and 
computation technology. That will help you split up and distribute your data (and 
queries) across multiple nodes. HDFS offers distributed storage (with fault tolerance) 
and processing frameworks like MapReduce, YARN (or Spark) help you take  processing 
to data  or process data locally on each of the worker nodes. This constitutes distributing 
processing optimally on all the nodes (for a cluster) to complete a task (or a job) with 
optimal performance. 

 Secondly, you can reduce the total volume of data (that the query engine processes) 
by storing your data in a file format that efficiently uses compression. File formats 
support different compression algorithms and apply those algorithms to the data in 
many different ways. Note that the tradeoff between compression algorithms is between 
speed and the compression ratio. A higher compression ratio will take more time (and 
also consume more CPU resources) for the compression or decompression to occur. Of 
course, your file will be much smaller, and you will save on disk space. 

 How much compression can you achieve using the compression schemes for various 
file formats? Well, that depends on the combination of file format and compression 
scheme. For example, for a text (CSV) file of about 1 GB, Snappy or GZIP can compress 
the file to about 500 MB (if stored as a SequenceFile) or to about 300 MB (if stored using 
ORCFile or Parquet format). Table  10-1  specifies the compression schemes valid for 
various row-oriented and column-oriented file formats.  

   Table 10-1.    File Formats and Compression Scheme Support   

 Compression Scheme 
 File Format  Snappy  GZIP  ZLIB  BZIP2  None 

 TextFile  X 

 SequenceFile  X  X  X 

 ORCFile  X  X 

 RCFile  X  X  X 

 Parquet  X  X 
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 The third way you can improve your read performance is by using stored statistics 
for aggregates. This is only supported by formats like Parquet and ORC and they can fetch 
aggregated statistics (for example, aggregations based on min/max values and null count) 
as pre-computed data. Also, Parquet and ORCfile formats optimize for read performance 
at the expense of write performance (because of the Hadoop philosophy of  write once 
read multiple times ). 

 Finally, organizational schemes impact performance for various types of queries. 
For example, queries that return a large number of columns (for a subset of rows) are 
faster when data is stored in row-oriented formats. From experience, queries returning 
more than 60% of columns benefit from row-oriented format. Alternatively, queries that 
summarize or aggregate a few columns across all rows within a table (or a subset of it) 
perform better, if data is stored in a column-oriented format. So, if you expect most of your 
queries to be of the form  select * from MyTable;  you should use a row-oriented format. 

 But if your queries are of the form  select sum(MyColumn)from MyTable  (that is, you 
are performing aggregations or generating summary statistics for only a few columns 
within your dataset), then you should probably use a column-oriented format. Next, I 
discuss a few row and column formats and their properties. 

   Row-based Formats 
 The most popular row-based storage formats within the Hadoop ecosystem are text files, 
sequence files, and Avro. I am sure you have worked with text files before. CSV files are 
easy to work with and supported by nearly all the tools within (and outside) the Hadoop 
ecosystem. Sequence files have also been used extensively within the Hadoop ecosystem. 
Avro files have a very small footprint and therefore provide much better performance 
(as compared with sequence files and text files). But Avro is not supported by many 
applications (compared with the other two row-based file formats). 

   Text Files 

 The simplest and most commonly used file format is text files. Most of the database 
systems or applications support exporting data to text formats like CSV or tab-delimited 
files. Usually, these text files contain ASCII or UTF characters with individual  fields  
(or column values) separated by a special character called  delimiter  (such as comma, 
semicolon, ampersand, or tab), with new lines separating records. 

 Advantages of using text files are as follows:

•    They are readable and very easy to work with.  

•   Large number of tools are available for manipulating them.  

•   Most applications and database systems can ingest (as well as 
output) text files.    

 Though text files are easy to work with, they don’t provide optimal performance. Text 
files store all feld values (including numbers or Boolean values) as strings. So, if you need 
to store an integer value of 500, a text file will convert this value to a string equivalent 
(three characters “500”) and then write it to your file. 
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 There are a couple of issues with storing all data as strings:

•    Numbers and Booleans need more space if stored as strings (for 
example, 50,000,000 as a string needs 8 bytes, but as an integer 
needs 4 bytes; the Boolean value “False” stored as a string needs 
5 bytes, but as a Boolean needs only 1 byte). This increased 
space usage adds up and results in large files that take longer for 
retrieval (to memory) and impact query performance adversely.  

•   Converting strings to appropriate data types adds an extra task 
for your queries. This is especially important for Hadoop, where 
most of the tools in the Hadoop ecosystem follow the philosophy 
 schema on read  or resolve data types on read. So, every time you 
execute a query, this data-type conversion must be performed 
(unless all your data is really strings or text) and will slow down 
your queries as well as consume additional system resources.     

   Sequence Files 

 Sequences files are a popular file format for use with Hadoop ecosystem (after text files). 
Sequence files use a binary format that holds data as records consisting of key-value 
pairs. Here’s how a sequence file is structured: 

   <File header><key1,(Doe,John,387-45-9876,1990-02-14,Chicago,IL)><sync marker> 

   So, a sequence file consists of a file header followed by records (represented as key-
value pairs). The file header holds metadata about the file and data. A sync marker is used 
as record terminator. Hive (as well as Impala) uses a simplified version of sequence files 
that ignores the key portion of the record and encodes each row as a string with special 
character  '\01'  used as row delimiter. 

 For example, if you want to compress data for your Hive table that uses a sequence 
file using compression scheme Snappy, set the following at the Hive command prompt: 

   > set hive.exec.compress.output=true; 
 > set mapred.output.compression.type=BLOCK; 
 > set mapred.output.compress.codec=org.apache.hadoop.io.compress.
SnappyCodec; 

   The primary advantage of using sequence files is that all components within the 
Hadoop ecosystem support reads and writes to sequence files. Unfortunately, the way 
Hive and Impala use sequence files reduces many of this format’s benefits and results 
in files that are similar in size to text files (and subsequently have the same issues as text 
files). 

 Hive and Impala (by default) store data in sequence files as strings. This means they 
use up as much space as text files, with numbers, Booleans, and other data types taking 
up more space than they need to. Also, the sync markers within the file add to the file size 
as well.  
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   Avro 

 Avro is the most advanced row-based format currently available and differs from the text 
or sequence file formats as follows:

•    Avro includes or embeds the schema of the data (corresponding 
to a table) within the file. This eliminates the need for redefining 
schema every time you share an Avro file between applications.  

•   Avro encodes fields based on their data type (as opposed to 
storing all fields as text). This reduces the (uncompressed) file size 
and also makes it possible to compress a file more effcectively. 
Subsequently, network transfer time and file-processing time (for 
data type conversions) is substantially reduced, providing your 
queries much better performance.  

•   Avro eases schema changes (and thereby schema evolution). 
Using Avro, it’s much easier to add columns without re-writing 
the underlying data to match a new schema. If you need to add 
a new column to your data, you can implement it by including 
the additional field (in the end) and supplying a default value for 
old records. For older records missing this value, Hive will simply 
substitute the missing value by using the default value.    

 Here’s how an Avro file is structured: 

   <File metadata><sync marker><data block(object count,object size,data)>
<sync marker> 

   The file consists of a file header (consisting file schema serialized as a JSON string 
and compression codec information) followed by one or more data blocks. Each data 
block consists of a number of records and metadata (such as record count, record size, 
and others) and the actual data, which can be compressed using any of the supported 
codecs. The following code creates a Hive table ( Employee_avro ) using the Avro file 
format: 

   > CREATE TABLE Employee_avro 
 (lastname STRING COMMENT 'Employee last name', 
 firstname STRING COMMENT 'Employee first name', 
 dept_code SMALLINT COMMENT 'Department code', 
 dob TIMESTAMP COMMENT 'Date of Birth', 
 zip STRING COMMENT 'ZIP CODE', 
 employee_since TIMESTAMP COMMENT 'Date of first visit') 
 ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe' 
 STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.
AvroContainerInputFormat' 
 OUTPUTFORMAT 
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat' 
 TBLPROPERTIES ('avro.schema.literal'='{ 
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 "name": "employee_summary", 
 "type": "record", 
 "fields": [ 
 {"name":"lastname", "type":"string"}, 
 {"name":"firstname", "type":"string"}, 
 {"name":"dept_code", "type":"int"}, 
 {"name":"dob", "type":"string"}, 
 {"name": "zip", "type": "string}, 
 {"name": "employee_since", "type": "string"}, 
 ]}'); 

   The part that starts with  "name":   "employee_summary"  is the JSON schema definition 
and included in the file header (as part of file metadata). Compression codec can be 
specified exactly the same way as specified for sequence files. 

 Avro has some drawbacks as well:

•    Using the Avro format can be more complicated than using any of 
the text formats and may involve longer development time  

•   Very few applications (outside of the Hadoop ecosystem) support 
this format or read it  

•   For Avro, you need to define your schema in advance, before you 
actually write it to a file, which isn't possible in some cases    

 To summarize, Avro is a great option for queries that use all or most of the columns 
and is therefore useful for data warehouses; especially the ones with wide fact tables 
consisting of hundreds of columns.   

   Column-based Formats 
 Columnar storage formats are more suited (and optimized) for analytic use cases because 
you need to aggregate or summarize a small subset of columns. Consider the  Employee  
table from the last section and assume that there’s an additional column called  Salary  
that holds an employee’s salary. With a columnar file format, it will be much faster to 
retrieve a list of employees with salaries more than double the average salary because a 
columnar format holds data in columns, which makes it easy (and fast) to aggregate. 

 The most popular columnar (or column-based) formats within the Hadoop 
ecosystem are RCFile, Parquet, and ORCFile. Each has its own strengths and weakness, 
and I discuss those in this section. Note that columnar storage formats aren’t just used 
with the Hadoop ecosystem but also used by high performance analytic databases like 
Greenplum or Vertica. 

 So, to summarize, use a columnar format if:

•    You frequently need to perform aggregation operations 
(for example,  count ,  avg ,  min ,  max ) as part of your queries  

•   Most of your queries select only a small subset of columns and 
also use a small number of columns as filters (in  where  clause)    
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 Lastly, be sure that the preceding conditions apply for your environment (before 
choosing a columnar format), because if that’s not the case, then data stored in columnar 
format and needing to retrieve the whole record will need to perform  row reconstruction  
(the process of taking all the columns that belong to a single row and composing them 
back together). This involves a lot of work (non-contiguous data reads) for the system 
since each row is not stored contiguously and will impact performance really badly. 

   RCFile 

 The Row Columnar (RC) file format (introduced in 2011) is one of the most popular 
columnar formats used within the Hadoop ecosystem. It offers space efficiency and 
thereby speeds queries because they have to retrieve less data. Data within RCFile is 
structured as follows: 

   <Row group1(<Metadata header><column1(values)><column2(values)> 
<column3(values)><Sync marker>)>,<Row group2(...)>,<Row group3(...)> 

   So, RCFile partitions data horizontally as well as vertically. First, data is partitioned 
into multiple row groups and then within every row group the data is organized by 
column. Also, the RCFile format ensures that all columns of a row are on a single node 
(they fit within a single HDFS block) to reduce the cost of row reconstruction (if needed). 
Finally, data in each row group is compressed by column (the compression codec can be 
specified exactly the same way as specified for sequence or Avro files). 

 As a major benefit (since RCFile was the first columnar format), almost all the tools 
within Hadoop ecosystem support RCFile. Also, a lot of tools outside Hadoop ecosystem 
support it, so it needs to be considered if you plan to use tools other than Hive or Impala 
for running analytic queries across your data. 

 However, compared to Parquet and ORCFiles, RCFile lacks a lot of advanced 
features. For example, ORCFiles and Parquet allow you to store more complex data types, 
have means for Hive to limit the data it loads into memory, and can encrypt data into 
smaller files.  

   ORCFile 

 The ORC file format was introduced as successor to the RCFile format and adds a number 
of features to it. For example, it uses complex data encoding schemes to further reduce 
data size. It also stores metadata to make it easier for skipping rows that don’t fit common 
query criteria and stores basic statistics on columns. This results in significantly faster 
queries and highly compressed data. Data within ORCFiles is structured as follows: 

   <Index Data><Row group1(...)><Stripe footer>,<Index Data><Row group2(...)>
<Stripe footer>………<File footer><Postscript> 
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   The structure of a data row group is identical to RCFile, but there’s an index data 
block preceeding each row group, followed by a stripe footer. At the end of a data file, 
there’s a file footer and a postscript marker. These additional blocks provide the advanced 
functionality for ORCFile. The compression codec is specified as a table property. 

 ORCFile is one of the most advanced columnar file formats available. It uses complex 
functionality to reduce file space, making it easier for queries to identify critical parts 
of a file and avoid file scans. A major problem is the lack of support for this format. For 
example, Impala doesn’t currently support ORCFiles. So, use of ORCFile format may limit 
the set of tools you can use with your data.  

   Parquet 

 The Parquet format was designed by engineers at Cloudera and Twitter. It is based on 
 the record shredding and assembly algorithm  described in the Dremel paper (Dremel is a 
scalable, interactive ad hoc query system for analysis of read-only nested data designed 
by Google). 

 Parquet providess very efficient compression and encoding schemes and uses three 
types of metadata: file metadata, column (chunk) metadata, and page header metadata. 
At the highest level, file metadata contains information about schema, number of rows, 
list of row groups, and list of keys/values. At the next level, rowgroup metadata contains 
list of column chunks for a row group, total byte size and number of rows. Column chunk 
metadata has the file path (for the chunk), file offsets, and column metadata (for columns 
that are part of that chunk). Column chunks may contain a number of pages, and page 
header metadata has the details (such as (un)compressed page size, Data page header(s), 
index page header(s), and so on. Data and index page headers have the details of values 
and encoding details. A Parquet structured file structure for M row groups and N columns 
would look like the following: 

   <FileMetaData><Row group1MetaData(<Column1MetaData(PageMetaData)>……… 
<ColumnNMetaData(PageMetaData)>)………<Row group2MetData(...)>……<Row 
groupMMetData(...)><File footer> 

   To summarize, Parquet implements a complex data materialization engine 
incorporating advanced encoding techniques that achieves a balance between 
compression and speed. Also, Parquet decides the right encoding format for each of your 
data columns. You can choose the compression scheme for your Parquet file as following 
(for Hive): 

   > set parquet.compress=SNAPPY 

   Fortunately, Parquet is supported more widely (compared to ORCFile) and is 
certainly a recommended columnar format.    
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     Indexing Considerations for Performance 
 Indexing is a very important consideration for query performance, and although Hadoop 
doesn’t offer advanced levels of indexing (compared to RDBMS), there are some general 
guidelines that you can follow. First, the indexing guidelines such as optimal use of 
indexes (too many indexes will impact insert performance, or indexes should match 
frequent query patterns, and so on) are valid. Also, for Hive, index partitioning should 
match table partitioning (in terms of partitioning columns used). You can refer to Hive 
indexing documentation at    https://cwiki.apache.org/confluence/display/Hive/
IndexDev      for a comprehensive explanation of Hive indexing. 

 In this section, I focus on the two major types of indexes popularly used with Hadoop 
and their optimal usage: compact indexes and bitmap indexes. 

   Compact indexes 
 In general, a  compact index  can be used for columns that contain a lot of distinct or 
unique values (such as employee ID). You should use a compact index for columns that 
contain numeric values. Internally, a compact index is stored (for example, in Hive) as 
a sorted table with all the column(s) (to be indexed) values and the blocks where they 
are stored. Because the index is also a table, you need to store it using an optimal format 
(ORC, Parquet, Avro) matching your table format and compress it (if needed). If your 
table is partitioned, then the index is also partitioned, although you may change the 
partition structure for an index as needed. Make sure the index can be used for compact 
binary search by setting the property  IDXPROPERTIES 'hive.index.compact.binary.
search'='true' . 

 After you create the index, you need to refresh or update it (if data in your source 
table changes) as follows: 

   > ALTER INDEX <Index name> ON <Table name> REBUILD; 

   You can auto-update an index, but due to the high volume of data used with Hadoop, 
it is a better idea to schedule the index updates manually for times when the system is not 
in use.  

   Bitmap Indexes 
 A  bitmap index  is suitable for columns that have only a few distinct values (such as 
gender or logical (yes/no) or categories or types). For these columns, the ratio of the 
number of distinct values to the number of rows in the table is small. This ratio is known 
as the  degree of cardinality . 

 Fully indexing a large table with traditional indexing can use a lot of disk space, and 
bitmap indexes only use a fraction of the size of the indexed data in the table. The reason 
is that an index provides a pointer to a data row (for a table) that contains a given key 
value and thus contains a list of row IDs for each key value (corresponding to the rows 
with that value). 

https://cwiki.apache.org/confluence/display/Hive/IndexDev
https://cwiki.apache.org/confluence/display/Hive/IndexDev
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 However, for a bitmap index, a bitmap for each key value is used instead of a list 
of row IDs. Each bit in the bitmap corresponds to a row ID. If the bit is set, then the 
data row (with the corresponding rowed) contains the key value. A mapping function 
is used to convert the bit position to an actual row ID. Also, bitmap indexes compress 
the bitmaps. So, for a small number of distinct key values, bitmap indexes offer better 
compression. Since bitmaps from multiple bitmap indexes can be easily combined, you 
should use single-column bitmap indexes. Similar to a compact index, you need to sort 
the data in the column to be indexed for an effective bitmap index—otherwise, all the 
blocks containing values in the bitmap index would be read. Therefore you should set 
the property  hive.enforce.sorting  to  true  and describe in the  create table  statement 
which columns should be sorted. 

 Because a bitmap index (in Hive) is simply another table, you need to specify an 
effective storage format and compression (if the index is large). 

 Other index types are used for ORCFile and Parquest formats, such as  storage index  
(a min/max index that lets you skip data blocks if a value is not contained in it and is 
suitable for numeric values and queries using the  < ,  > ,  =  operators), and  aggregate index  
(similar to a table with predefined aggregations, like  count,sum,average  for a specific 
column, grouped by the same column). 

 To conclude, you need to know and evaluate your data for effective indexing and also 
develop mechanisms to update your indexes periodically based on data changes (to the 
source table).    

     Choosing a NoSQL Solution and Optimizing Your 
Data Model 
 The importance of selecting the correct NoSQL solution for your environment (and 
your data) is often overlooked. For example, if your data is mostly unstructured and 
your volume is small (about 2–5 TB), a columnar database won't be a suitable solution. 
First, you need to know about the major types of NoSQL databases, their characteristics, 
strengths/weaknesses, and how they perform for the type of processing you need (based 
on your business need). Your decision will have a huge impact on performance and 
supported functionality for your environment. 

 For details on the types of NoSQL databases, their features, and criteria for choosing 
the correct NoSQL database for your environment (based on your data), see Chapter   6     
section “Selecting an Appropriate NoSQL Database”. 

 An important point to note about NoSQL: it has really turned into (and will become 
more of) LimitedSQL, as the original NoSQL key-value, MapReduce-based databases are 
being replaced by the next-generation databases offering (simpler) SQL-based interfaces 
useful for analytics. Also, the performance and functional capabilities of these databases 
with LimitedSQL are improving constantly. 

http://dx.doi.org/10.1007/978-1-4842-1287-5_6
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 Getting back to NoSQL, after selecting an appropriate NoSQL solution, the next task 
is getting your data ready for migration to NoSQL. In most cases, OLTP or OLAP systems 
are migrated to NoSQL. Subsequently, you need to transform your data to work optimally 
with a NoSQL database. For example, data held in a relational OLTP environment has 
referential integrity defined and therefore you need to perform joins to retrieve the 
required data. Relational databases typically perform well for join operations and have 
features to enhance performance such as indexing, defining statistics, caching of data and 
query plans, and so on. If you move the relational data to NoSQL environment, most of the 
RDBMS features are not available. Also, NoSQL databases don’t perform well for joins. 

 So, you have to redesign your data model and eliminate joins. You may have to 
denormalize your data for that purpose and may also need to combine some data tables to 
form larger tables. Different techniques need to be used for transforming your relational 
(OLTP) or Star schema (OLAP) design for NoSQL usage. See Chapter   6     for more.  

     Summary 
 Performance tuning is a vast topic in itself and is specialized enough to warrant its own 
book, considering the various subtopics involved. This chapter doesn’t claim to be 
exhaustive in that respect. The purpose is to attract your attention to the different ways 
you can tune your NoSQL environment. For example, the list of MapReduce or HDFS 
parameters is not exhaustive. Refer to Apache documentation for a complete list of 
parameters and tune any other parameters that are more relevant to your environment. 
Or, if you consider indexing, carefully review your query needs and add the appropriate 
type of indexes that I may not have covered. 

 Also, consider the hardware aspect. A huge corporation like Teradata focuses largely 
on designing hardware for managing petabytes of data. A couple of years back, Intel came 
up with its hardware-based solution for facilitating encryption and decryption without 
sacrificing performance. You may not want (or have the resources) to go that far. The 
section on hardware optimization is meant to provide generic guidelines and also facilitate 
your thought process to optimize the hardware you plan to use for your implementation. 
You will have specific needs for your environment, but at least you have a good starting 
point. It is, of course, not possible to consider all types of scenarios for optimization. 

 There are different approaches adopted by organizations for performance tuning. 
Some organizations just start with generic guidelines and then think about performance 
tuning when they have specific problems. That way, they can focus on the problem 
area and save on valuable resources (time and money). The issue with that approach 
is that the immediate problem is fixed quickly, but does that guarantee there will be no 
additional issues in that area? Or some other area? Of course not. That’s why you need to 
start with good planning. Perform stress testing, consider the data growth (and increased 
usage along with it), and also consider  boundary conditions  (minimum and maximum 
possible values). Boundary conditions may be applicable to your hardware resources, 
NoSQL solution, your network capacity, or even your technical support resources. 

 Having a good understanding of growth coupled with boundary conditions will enable 
you to plan effectively for any performance issues for the near future. As you know, with the 
dynamism of technology (especially in the NoSQL world), no system is guaranteed to have 
a very long life, but you can at least avoid issues in the immediate future if you are proactive 
and anticipate issues instead of responding to them as they appear.     

http://dx.doi.org/10.1007/978-1-4842-1287-5_6
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    CHAPTER 11   

 Case Study: Implementing 
Lambda Architecture                          

 Lambda architecture was one of first definitive ideas in Big Data architecture and, like 
any new architecture, has its followers and detractors. How do you decide which side 
you are on? I have a simple answer: it depends on the architecture’s applicability to 
your environment. Lambda is definitely not suited for all Big Data use cases. Maybe one 
of the newer architectures like Kappa or Fast Data architecture is more suited for your 
environment. Maybe you don’t even need to have an architecture-based approach and 
can simply start with a data reservoir and design analytics as required. Every environment 
is unique in some ways and needs special design considerations, but the trick is to start 
with a generic approach—and the most appropriate one. 

 Why look for a new architectural approach towards data? Well, current RDBMS or 
NoSQL-based systems are not resilient. Because most data systems support create, read, 
update, and delete (CRUD) operations, there is a possibility of data corruption due to 
update and delete operations. For example, it is possible to delete a large number of rows 
when you actually intend to delete a single row. A software bug or hardware failure can 
also corrupt data. The immutability of master data within Lambda architecture provides 
an effective resolution to this issue. 

 Also, with current database systems, you always need to make a trade-off in your 
design, because you can either optimize for data storage (normalized design in third 
normal form) or query processing (denormalized design—usually first or second normal 
form). Lambda resolves this conundrum by separating your master data (stored using 
third normal form) from your query layer (stored as denormalized views). 

 So, how does an immutable data store capture changes to data? By dividing data in a 
number of “facts” and capturing changes to these facts in the time space. So, any changes 
to a fact are stored as a new fact record with a timestamp (to indicate when the change 
occurred). Consider an employee record. Address for an employee is a fact. Any time the 
employee moves, a new fact record can be added, along with a timestamp indicating when 
she moved. This preserves the employee’s residential history (similar to type 2 dimension 
in data warehousing)—but more importantly, it preserves all the facts associated with an 
employee (in terms of his addresses). You can, of course, use the facts any way you need to. 

 Finally, how do the Lambda layers facilitate near–real-time data delivery? I discuss 
that using a real-world case study. I also briefly discuss the Kappa and Fast Data design 
changes for the same use case. I’ll start by describing the business problem. 
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     The Business Problem and Solution 
 Yourtown Insurance is an auto insurance company that recently has had to deal with a large 
number of fraudulent claims. Subsequently, it added stringent guidelines and a lot of extra 
processing for their claims. This resulted in tripling the processing time, and customers with 
genuine claims, being unhappy, moved their business to other insurance companies. 

 Yourtown Insurance hired experts in business processing (as well as software 
performance) who analyzed the past claims (using statistical models) and created 
a predictive model to determine whether a claim was possibly fraudulent. If a claim 
was determined to be possibly fraudulent, then it was directed to a special queue that 
performed additional processing and initiated an investigation if necessary. The rest of 
the claims (ones determined not to be fraudulent) were processed quickly, as they had 
been before additional processing was added. 

 This strategy reduced the processing time for (genuine) claims and still was able 
to identify (with about 80% accuracy) fraudulent claims. The consultants assured the IT 
department that with time, the predictive model they built would become more accurate 
and provide a larger percentage of accuracy. The model was built using a lot of factors for 
determining fraudulent claims, such as: number of claims filed by the customer during last 
year, filing time of the claim, weather conditions when claim was filed, age of the customer, 
customer’s driving history, and more. As a result of the model evaluation, it was determined 
that certain values for the above factors indicated fraudulence (or the lack of it). 

 So, the claim parameters needed to be checked in real-time against aggregated (or 
calculated) customer data. Because the claim data volume was very large (30 TB with 1% 
monthly growth), it was decided to use Hadoop for data processing, and since there was a need 
for real-time processing, Lambda architecture was chosen. Based on the volume, it was agreed 
that the batch layer should be rebuilt every weekend and that the speed layer should hold data 
for the past six days. Fraudulence would be decided based on historical data (available through 
the batch layer) and the most recent data (available through the speed layer). 

 This chapter discusses the design and implementation of this solution using 
appropriate hardware, software, and programs that need to be developed.  

     Solution Design 
 I start with the hardware that’s necessary for building the Hadoop cluster, because 
performance starts with appropriate hardware. Then I discuss the software components 
necessary and any customizations (as required). 

     Hardware 
 The data size for this system is 30 TB with 1% monthly growth. For the next four years, 
that’s a total growth of about 50%, or 15 TB. Because the batch layer denormalizes data, 
you can assume that you will need roughly about 30% additional storage, taking the total 
space requirement to 60 TB. Now, if you want your system to be available while the batch 
layer is being rebuilt, then you will need to  double  your space (because you will need to 
build the new views before removing the old ones). For this example, you can assume that 
the system will be unavailable while the batch layer is being rebuilt. So, your final space 
requirement is 60 TB. 
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 Chapter   10     discusses how to calculate the cluster size (for production usage). Here 
I will start with worker node configuration and total number of nodes. OS and other 
essential applications on a node need some space (roughly 2% of total space in this case, 
since 2% of 2 TB is 40 GB—quite enough for operating system and software. Though 
I have provided general guidelines and percentage of storage to reserve for operating 
system and software, you also need to consider disk drive size and approximately how 
much you need), and data blocks are replicated based on a replication factor (default 3). 
Consider: 

   HDFS space per node = (Raw disk space per node – 2% non-DFS local storage)/
(Replication Factor) 

   Start with the following for startup (individual) worker node configuration:

•    Latest generation processor(s) with 12 cores (total)  

•   4 GB memory per core  

•   2 TB SATA disks per core  

•   1GbE NIC    

   HDFS space per node = (2 TB – 2% non-DFS local storage)/3 

   HDFS space per node is 653 GB: 

   Number of Worker nodes = Total HDFS space/HDFS space per node 

   Number of worker nodes = 60 TB/653 GB = 92 . 
 For a NameNode:

•    6 cores (total)  

•   4 GB RAM (3 GB + 1 GB for every 100 TB of raw disk space)  

•   Needs to be replicated (for failover)  

•   RAID-1 storage  

•   NameNode should run on a 64-bit OS to avoid 3 GB limit on JVM 
heap size    

 For YARN, you can use 4 GB RAM and a 4-core CPU as a starter configuration 
for Resource Manager. If there is maximum usage for a resource, adjust the resource 
allocation accordingly. To summarize, you need a 95-node cluster with 92 DataNodes, 
NameNode (two nodes in failover configuration), and a node for YARN Resource 
Manager. 

 You can calculate the size of your development environment based on guidelines 
provided in Chapter   10    . For good performance, SSHD (solid state hybrid drive) storage 
that offers 7,200 RPM or SATA III drives offering 10,000 RPM can be used on DataNodes. 
Finally, network proximity or being a part of the same subnet will help reduce the 
intermodal network traffic and provide good performance.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_10
http://dx.doi.org/10.1007/978-1-4842-1287-5_10
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     Software 
 A browser-based application allows Yourtown’s customers to enter claims. The claim data 
is stored using VoltDB and pushed to HDFS/Hive every hour. Batch layer views are built 
using this data. So, HDFS/Hive for the batch layer. For the serving layer, I will use a read-
only database called Splout SQL. See Chapter   9     for more on Splout SQL. For the speed 
layer, I will use Spark (along with Spark SQL).  

     Database Design 
 The claim system has a large number of tables with a lot of columns to capture all the 
details. However, most of that data is not needed for fraud detection. Also, I don’t want to 
oversimplify the predictive modeling process that uses a large number of parameters for 
deriving the predictions. So, I will demonstrate the concept of fraud detection using some 
parameters, but note that it’s a complex process and needs much more information than I 
have room to provide here. 

 You might remember the logical model used as an example in Chapter   3     (Figure   3-5    ). 
Since the model is fairly generic, I’ll reproduce it here as an example. 

 For our purposes, we can use the following tables (master data stored in HDFS) for 
building batch views on:      

•     Claim   

•    Claim_status_type   

•    Policy   

•    Policy_owner   

•    Claim_line_item   

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_3
http://dx.doi.org/10.1007/978-1-4842-1287-5_3#Fig5
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•    Claim_status   

•    Claim_type   

•    Policy_type     

 Also, we can assume that the  Policy_owner  entity has additional columns 
 PolicyOwnerDOB  and  PolicyStartDate , and the  Claim  entity has an additional column 
 ClaimWeatherCond  (to hold weather condition at time of filing a claim). An additional 
entity,  PO_Drv_Hist , holds the policy owner’s driving history details and has the attributes 
shown in Figure  11-1 .  

PolicyOwnerId (FK)

ViolationNum

ViolationSeverity

ViolationDate

ViolationDetails

  Figure 11-1.    The PO_Drv_Hist entity       

 There is a  one-to-many  relation between  PolicyOwner  and  PO_Drv_Hist  entities (as 
you can see from the design). A policy owner may have one or more violations. If there are 
no violations, then there won’t be a record for a  PolicyOwner  in the  PO_Drv_Hist  entity. 
As you see, the master data is in a normalized form, but Lambda architecture allows you 
to hold your master data normalized. You can, however, denormalize your data for the 
batch (and subsequent) layers. 

   Considering a Fact-based Model 
 Let’s consider applying a fact-based model to this data. As mentioned in Chapter   9     ,  a 
data model in third normal form that has timestamps (for preserving history) within 
appropriate data tables can constitute a fact-based model. 

 In this case, the data model being considered is already in third normal form. The 
dynamic tables that will have records added frequently ( Claim ,  Claim_resubmission , 
 Claim_settelement ,  Claim_status ) already have a column to capture date/time. For 
 Policy , I have added the column  PolicyStartDate  to hold the date when a policy is 
added. The static tables holding application metadata ( Claim_type ,  Claim_status_type , 
and so on) don’t have a timestamp column (and for a fact-based model, they should). 
But you can assume (for this example) that the static data is not changing and therefore 
you can denormalize the data (utilizing existing static data) and use it for your batch layer 
views. In other words, the master data can be viewed as a fact-based model.  

 

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
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   Data Conditions for Fraudulence 
 Discussing the data conditions for determining fraudulence will help you design the 
batch layer views (since you can then determine what data you need for your views):

    1.    If a customer has filed more than 5 claims during last 12 
months, there is a possibility of fraud (for his next claim).  

    2.    Claim filing time after 10 p.m. indicates possibility of 
fraudulence.  

    3.    Weather conditions such as snow, rain, storm, avalanche, 
tornado indicate possibility of fraudulence.  

    4.    Teenage drivers with at least 2 severity 1 violations in the last 
12 months may file fraudulent claims.  

    5.    Drivers with at least 3 severity 1 violations in the last 12 
months may file fraudulent claims.     

 The insurance company (based on its predictive model) determined that claims 
satisfying condition (1) along with two more of the other conditions needed to placed in 
 additional evaluation/investigation  queue. Also, claims satisfying conditions 2, 3, and 
either 4 or 5 also needed to be placed in the  additional evaluation/investigation  queue. 

 All the other claims were processed rapidly without any additional constraints, since 
they were considered genuine.  

   Batch Layer Design 
 First, we denormalize the data. I will start with the  Claim  entity, and as you can see, I have 
included columns from entities  Claim_line_item ,  Claim_status ,  Claim_status_type , 
and  Claim_type . Also, I have only included columns that I need. This will be used for 
batch views related to claims. 

 As a next step, I will denormalize the  Policy  entity and include columns from 
entities  Policy_owner  and  Policy_type . This will be used for policy-related batch views. 
Note that I have added a  LastModified  attribute to both views (since they don’t have 
attributes for time variance). The denormalized entities are shown in Figure  11-2 .  
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 I will start with claim-related batch views:

    1.    The first step for this batch view will count the number 
of claims for a policy for the last 12 months and have a 
temporary table with counts greater than 5. As a second step, 
this temporary table will be joined with the denormalized 
 Policy  entity to get the policy owner details, constituting the 
batch view.  

    2.    The second batch view will filter claims by weather conditions 
such as snow, rain, storm, avalanche, or tornado. 

 Next, the policy-related batch views:  

    3.    The third batch view will list teenage drivers with at least 2 
severity 1 violations in the last 12 months. As a first step, a 
temporary table will be populated with drivers with 2 or more 
severity 1 violations in the last 12 months using the  PO_Drv_
Hist  entity. Then the entries will be filtered using DOB (date 
of birth) from the denormalized  Policy  entity for drivers with 
ages less than or equal to 19.  

    4.    The fourth batch view will use the temporary table created for 
the third batch view and filter the entries for drivers with age 
greater than 19 years.     

 As a next step, you need to derive these views from the master data held in HDFS. 
Please note that these  views  are really Hive tables. I will describe the processing in the 
next section.   

  Figure 11-2.    Denormalized Claim and Policy entities         

ClaimId 

PolicyId (FK)

ClaimSubmissionDate

ClaimSeqId

ClaimAmount

ClaimType

ClaimStatus

ClaimWeatherCond

LastModified

PolicyOwnerId

PolicyOwnerSSNFEIN

PolicyOwnerType

PolicyType

PolicyId

PolicyEndDate

LastModified

PolicyStartDate

PolicyOwnerDOB
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     Implementing Batch Layer 
 As explained in Chapter   9    , for several reasons, I will use HDFS for holding the master data 
and the batch-layer views (Hive tables). Hive is really used for metadata management, 
and you may use MySQL for holding the metadata. 

 Also, for appending vertical or time-based data, I will use Hive partitions (daily, weekly, 
or monthly as your application may warrant) to append new data. I have used Hive partitions 
to demonstrate the concept of how new data can be managed for your master dataset and 
processed in the batch views that are created. I have used timestamp  LastModified  for 
partitioning the tables. Here are the Hive tables that constitute master data: 

   CREATE TABLE ClaimsMaster( 
 ClaimId INT, 
 ClaimSeqId INT, 
 PolicyId INT, 
 ClaimSubmissionDate TIMESTAMP, 
 ClaimType STRING, 
 ClaimAmount INT, 
 ClaimSTATUS STRING, 
 ClaimWeatherCond STRING 
 )       
 PARTITIONED BY (LastModified TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 
 CREATE TABLE PolicyMaster( 
 PolicyId INT, 
 PolicyOwnerId INT, 
 PolicyOwnerDOB DATE, 
 PolicyOwnerSSNFEIN STRING, 
 PolicyOwnerType STRING, 
 PolicyType STRING, 
 PolicyStartDate TIMESTAMP 
 PolicyEndDate TIMESTAMP)         
 PARTITIONED BY (LastModified TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 
 CREATE TABLE PO_Drv_Hist( 
 PolicyOwnerId INT, 
 ViolationNum SMALLINT, 
 ViolationSeverity TINYINT, 
 ViolationDate TIMESTAMP, 
 ViolationDetails STRING) 
 PARTITIONED BY (LastModified TIMESTAMP) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
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   Next step is adding new data to these tables holding master data. As you know, 
these tables are stored as files within HDFS, and Hive holds the metadata to manage data 
modifications more effectively. New data can be added on a daily basis (or any other 
necessary frequency) using dynamic partitions. You can create a staging table (pointing at 
the file holding new data) and add the new partition to a table as follows: 

    CREATE EXTERNAL TABLE ClaimsMaster_stg( 
 ClaimId INT, 
 ClaimSeqId INT, 
 PolicyId INT, 
 ClaimSubmissionDate TIMESTAMP, 
 ClaimType STRING, 
 ClaimAmount INT, 
 ClaimSTATUS STRING, 
 ClaimWeatherCond STRING, 
 LastModified TIMESTAMP 
 ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;" 
 LOCATION "/InsuranceExample/ClaimsMaster/staging"; 

   FROM ClaimsMaster_stg INSERT OVERWRITE TABLE ClaimsMaster PARTITION 
(LastModified) SELECT ClaimId, ClaimSeqId, PolicyId, 
 ClaimSubmissionDate, ClaimType, ClaimAmount, ClaimSTATUS, ClaimWeatherCond, 
LastModified; 

    Note that the staging table has an additional column, pointing to a staging directory 
(holding the new data) for table  ClaimsMaster . The same principle can be applied for 
adding new data to tables  PolicyMaster  and  PO_Drv_Hist . Also, the process of copying 
new data file to the appropriate staging directory, creating staging table and adding the 
new partition to base table, can be automated and scheduled. 

 Now I create the batch views. I will first create a table  BatchProcHist  to maintain a 
history of batch views created: 

   CREATE TABLE BatchProcHist( 
 ViewName STRING, 
 CreatedAt timestamp) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY "\;"; 

   I will create the first view now in order to list policy owners with more than 5 claims 
in the last 12 months. As a first step, I will get a list of policies with more than 5 claims (in 
last 12 months) and write to a temporary table: 

   Create table ClaimDeftemp1 as Select PolicyId, count(ClaimId) as 
Claimcount from ClaimsMaster where datediff(current_date, add_months
(to_date(ClaimSubmissionDate),12)) <= 0 
 group by PolicyId having count(ClaimId) > 5 

   Note that I have only considered the date part of  ClaimsubmissionDate  and 
compared with current date after adding a year to it. 
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 For the next step, I will join this temporary table with the denormalized  Policy  entity 
to get the policy owner details, constituting the batch view: 

   Create table ClaimDefView as Select P.PolicyOwnerID, P.PolicyId, 
C.Claimcount from PolicyMaster P, ClaimDeftemp1 C where P.PolicyId = 
C.PolicyId; 

   Last, writing to the history table: 

   INSERT INTO TABLE BatchProcHist 
   VALUES ('ClaimDefView', from_unixtime(unix_timestamp()); 

   The second batch view filters claims by weather conditions such as snow, rain, 
storm, avalanche, or tornado: 

   CREATE table ClaimWeatherView as Select distinct ClaimId, 
 ClaimWeatherCond from ClaimsMaster where ClaimWeatherCond in 
('Snow','Rain','Storm','Avalanche','Tornado'); 

   Writing to the history table: 

   INSERT INTO TABLE BatchProcHist 
 VALUES ('ClaimWeatherView', from_unixtime(unix_timestamp()); 

   The objective of the third batch view is to list teenage drivers with at least 2 severity 
1 violations in last 12 months. First, I populate a temporary table (listing drivers with 2 or 
more severity 1 violations in the last 12 months): 

   Create table TeenageVioltemp1 as Select PolicyOwnerId, 
count(ViolationSeverity) as TotalViolations 
 from PO_Drv_Hist where (datediff(current_date, add_months(to_
date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1) 
 group by PolicyOwnerId 
 having count(ViolationSeverity) > 2 

   Next, the entries (from temporary table) will be filtered using  DOB  (date of birth) from 
the denormalized  Policy  entity for drivers aged 19 and under: 

   Create table TeenageViolView as Select T.PolicyOwnerId, T.TotalViolations 
from TeenageVioltemp1 T, PolicyMaster P  where T.PolicyOwnerId = 
P.PolicyOwnerId and 
 (datediff(current_date,add_months(P.PolicyOwnerDOB,228)) <= 0) 

   Writing to history table: 

   INSERT INTO TABLE BatchProcHist 
 VALUES ('TeenageViolView', from_unixtime(unix_timestamp()); 
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   I have used the  add_months  function to add 228 months, or 19 years, to the date of 
birth (for drivers) and checked the difference (to determine if a driver is a teenager). 

 The fourth batch view lists adult drivers with three or more violations. So, I will 
create a new temporary table (similar to the third batch view) and filter the entries for 
drivers with age greater than 19 years: 

   Create table Violtemp1 as Select PolicyOwnerId, count(ViolationSeverity) as 
TotalViolations 
 from PO_Drv_Hist where (datediff(current_date, add_months
(to_date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1) 
 group by PolicyOwnerId 
 having count(ViolationSeverity) > 3 

   Filtering for adult drivers: 

   Create table AdultViolView as Select T.PolicyOwnerId, T.TotalViolations from 
Violtemp1 T, PolicyMaster P  where T.PolicyOwnerId = P.PolicyOwnerId and 
 (datediff(add_months(P.PolicyOwnerDOB,228),current_date) < 0) 

   Writing to history table: 

   INSERT INTO TABLE BatchProcHist 
 VALUES ('AdultViolView ', from_unixtime(unix_timestamp()); 

   Important: Don’t forget to remove the temporary tables you created—otherwise, 
your scripts will abort with an error. 

 So, having created the batch views, the next step is presenting or serving them.  

     Implementing the Serving Layer 
 I discuss the functionality and characteristics of serving layer in Chapter   9    . Basically, it 
“serves” the batch views or provides fast access with minimum latency. That’s why the 
serving layer needs to be a specialized distributed database that can:

•    Host the batch views and support good performance for random 
as well as sequential data access (reads only)  

•   Be capable of quickly swapping a batch view with a newer 
version when it is rebuilt by the batch layer (that is, support batch 
updates)  

•   Error-tolerance (since views can be quickly redeployed from the 
batch layer)  

•   Indexing capability for fast retrieval    

 Splout SQL was a solution in Chapter   9    —I will use that again. See Chapter   9     for 
architectural and operational details of Splout SQL. Splout SQL can be used to deploy 
batch-layer views as tables within tablespace(s). A  tablespace  is used for grouping tables 

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_9
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that have the same key column. The advantage is that you can partition multiple tables 
using the same partitioning key. For Splout SQL, partitioning is important, because 
it is used for balancing data before indexing and deploying it. Note that when a table 
is partitioned by a single or multiple columns, Splout concatenates the value of those 
columns to form a single string. Therefore, partitioning is a function of a row, and it is 
also possible to partition using arbitrary functions (for example, a JavaScript function that 
uses only the first eight characters of a column). 

 For my example, observe that batch views 1, 3, and 4 use  PolicyOwnerId  as a key 
column. So, you can design a tablespace with these three batch views (or Hive tables). 
The other tablespace can hold the second batch view that uses  ClaimId  as a key column. 
So, as a next step, you need to generate tablespaces and tables. 

 For creating or generating a tablespace, you need to use the “generate” tool. This tool 
uses a JSON tablespace descriptor, as shown in the following code. You need to specify 
the input type and the Hive database and table names. The tablespace descriptor file can 
be created in the Splout SQL installation directory: 

   { 
         "name": "PolicyTblspace", 
         "nPartitions": 12, 
         "partitionedTables": [{ 
                 "name": "ClaimDefView", 
                 "partitionFields": "PolicyOwnerId", 
                     "tableInputs": [{ 
                         "inputType": "HIVE", 
                         "hiveTableName": "ClaimDefView", 
                         "hiveDbName": "MyHiveDB" 
                 }] 
         }, 
         { 
                 "name": "TeenageViolView", 
                 "partitionFields": "PolicyOwnerId", 
                 "tableInputs": [{ 
                         "inputType": "HIVE", 
                         "hiveTableName": "TeenageViolView", 
                         "hiveDbName": "MyHiveDB" 
                 }] 
         }, 
         { 
                 "name": "AdultViolView", 
                 "partitionFields": "PolicyOwnerId", 
                 "tableInputs": [{ 
                         "inputType": "HIVE", 
                         "hiveTableName": "AdultViolView", 
                         "hiveDbName": "MyHiveDB" 
                 }] 
         }] 
 } 
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   Let me quickly review the information provided in this file ( PolicyTblspace.json ). 
The tablespace will be called  PolicyTblspace  and currently has three tables (or batch 
views) defined,  ClaimDefView ,  TeenageViolView , and  AdultViolView , that were created 
in the last section. The database name is  MyHiveDB  (you need to use the database name 
where you have created the Hive tables), and I have created 12 partitions for my data. I 
have used  PolicyOwnerId  as a partitioning column since this column will be a part of 
almost all the queries. 

 To deploy this tablespace, the following command can be executed from the 
(Linux) command line to generate the tablespace  PolicyTblspace  (from the Splout 
SQL installation directory): 

   hadoop jar splout-*-hadoop.jar generate -tf file:///`pwd`/ PolicyTblspace.
json -o out-MyHiveDB_splout_example 

   For performance, you may need to add indexes to your tablespace, and Splout allows 
you to add indexes easily. The catch is that you have to use a different generator called 
 simple-generate  instead of the  generate  tablespace generator that was used to generate 
the  PolicyTblspace  tablespace. The limitation of using the  simple-generate  generator 
is that your tablespace can only have a single table. Since the other tablespace for my 
example only has one table (or batch view), I will demonstrate the  simple-generate  
usage for that tablespace. The following command will create an additional index while 
generating the tablespace  ClaimTblspace : 

   hadoop jar splout-hadoop-*-hadoop.jar simple-generate –it HIVE –hdb MyHiveDB 
–htn ClaimWeatherView -o out-MyHiveDB_splout_example -pby ClaimId -p 1 -idx 
"ClaimWeatherCond" -t ClaimWeatherView -tb ClaimTblspace 

   Note that I have not included the column  ClaimId  since it is a partitioning 
column and is already indexed. The  -idx  option just adds more columns (in this case, 
 ClaimWetaherCond ) to the index. Also note that there is no  json  configuration file, and 
therefore, all the configuration (such as Hive database, table name, partitioning column, 
and so on) is specified with the command. 

 After the tablespaces are generated successfully, you need to deploy them as follows: 

    hadoop jar splout-hadoop-*-hadoop.jar deploy -q http://localhost:4412 -root 
out-MyHiveDB1_splout_example -ts PolicyTblspace 

   hadoop jar splout-hadoop-*-hadoop.jar deploy -q http://localhost:4412 -root 
out-MyHiveDB2_splout_example -ts ClaimTblspace 

     localhost  is the host QNode (to which the client is connected) is running on, and 
 localhost  will be automatically substituted by the first valid private IP address at runtime 
(as specified in the configuration file). 
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 Once a tablespace is deployed, you can use it in any of your queries. For example, 
if you need to check whether a specific claim ( ClaimId=14124736)  was filed during 
inclement weather conditions, you can use the REST API, as follows: 

   http://localhost:4412/api/query/ClaimTblspace?sql=SELECT * FROM 
ClaimWeatherView;&key=14124736 

   You can use Splout SQL (or any other database solution of your liking) to deploy the 
batch-layer views as demonstrated in this section. Next, I will discuss how you can access 
data that’s not yet processed by the batch layer and include it in your query results.  

     Implementing the Speed Layer 
 To recapitulate, the purpose of the speed layer is to make data unprocessed by batch-
layer views available without any delays. Another difference (between speed-layer and 
batch-layer views) is that the batch layer updates a view by recomputing (or rebuilding) it, 
whereas the speed layer performs incremental processing on a view and only processes 
the delta (or new) transactions that were performed after the last time incremental 
processing was done. So, if your incoming data transactions are timestamped, and 
you extract them from your master dataset, then depending on whether a record was 
modified or added, you can modify your speed-layer view accordingly. 

 The next thing you need to consider is whether you need to update the speed layer 
synchronously (applying any updates to master data directly to the speed-layer views) 
or asynchronously (queuing requests and actual updates occurring at a later time). For 
this example, asynchronous updates will more useful because analytics applications 
focus more on complex computations and aggregations rather than interactive user 
input. Also, considering the high data volume, it would he beneficial to have more control 
on the updates (for example, handling varying load by allocating additional requests 
temporarily. 

 I will use Spark to implement the speed layer. More specifically, I will use the Spark 
processing engine and Spark SQL. 

 Since the Lambda architecture defines the speed layer to be composed of records 
that are yet to be processed by the batch layer, you need to determine what those records 
are. You may recall that a history record was inserted in table  BatchProcHist  after each of 
the batch views was built. So, the most recent record for a batch view can give us the date/
time of most recent build and therefore help determine what the unprocessed records 
are. I will write the most recent record for the first batch view to a table (since Hive 
doesn’t support query results to be assigned to variables): 

   Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from 
BatchProcHist group by ViewName having ViewName = 'ClaimDefView'; 
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   That gives you the most recent date/time when the batch layer view was built. 
However, since speed layer views are processed more often, you also need to determine 
the date/time of records last processed by the speed layer (since you only need to 
consider the unprocessed records) for updating the  view  (here, a Spark dataframe 
registered as a table). I’ll call the speed layer view  ClaimDefView_S . Because speed-layer 
views also write to the audit table  BatchProcHist , I will write the most recent record for 
the first speed-layer view to the same table (where I captured most recent record for the 
first batch view): 

   Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'ClaimDefView_S'; 

   Now, I just need to determine which of these records is most recent (just in case the 
batch layer was rebuilt after the last speed-layer build) and use that as a basis to process 
the records for the first speed layer view: 

   Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable; 

   Finally, get the unprocessed records from the master data set and create the speed-
layer view. Also, add the timestamp and write a record to the audit history table: 

    Create table ClaimDeftemp11 as Select PolicyId, ClaimId from ClaimsMaster a, 
MaxTbl1 b where where a.LastModified > b.MaxDate; 

   Create table ClaimDeftemp12 as Select PolicyId, count(ClaimId) as 
Claimcount from ClaimDeftemp11 where datediff(current_date, add_months
(to_date(ClaimSubmissionDate),12)) <= 0 
 group by PolicyId having count(ClaimId) > 5 

    As a final step, I will join this temporary table with the denormalized  Policy  entity to 
get the policy owner details constituting the batch view and write a record to the history 
table: 

    Create table ClaimDefView_S as Select P.PolicyOwnerID, P.PolicyId, 
C.Claimcount from PolicyMaster P, ClaimDeftemp12 C where P.PolicyId = 
C.PolicyId; 

   INSERT INTO TABLE BatchProcHist 
   VALUES ('ClaimDefView_S', from_unixtime(unix_timestamp()); 
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    Drop the temporary tables now (since we may recreate some of them for the next 
speed-layer views): 

   Drop Table MaxTable; 
 Drop Table MaxTbl1; 
 Drop Table ClaimDeftemp11; 
 Drop Table ClaimDeftemp12; 

   Other speed-layer views can be similarly created as follows: 

    --View 2; 
 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from 
BatchProcHist group by ViewName having ViewName = 'ClaimWeatherView'; 

   Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'ClaimWeatherView_S'; 

   Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable; 
 CREATE table ClaimWeatherView_S as Select distinct a.ClaimId, 
a.ClaimWeatherCond from ClaimsMaster a, MaxTbl1 b where a.LastModified > 
b.MaxDate and a.ClaimWeatherCond in ('Snow','Rain','Storm','Avalanche',
'Tornado'); 

   INSERT INTO TABLE BatchProcHist 
 VALUES ('ClaimWeatherView_S', from_unixtime(unix_timestamp()); 
 Drop Table MaxTable; 
 Drop Table MaxTbl1; 
 --View 3; 
 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from 
BatchProcHist group by ViewName having ViewName = 'TeenageViolView'; 

   Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'TeenageViolView_S'; 

   Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable; 

   Create table TeenageVioltemp11 as Select a.PolicyOwnerId, 
a.ViolationSeverity from PO_Drv_Hist a, MaxTbl1 b where a.LastModified > 
b.MaxDate; 

   Create table TeenageVioltemp12 as Select PolicyOwnerId, 
count(ViolationSeverity) as TotalViolations 
 from TeenageVioltemp11 where (datediff(current_date, add_months
(to_date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1) 
 group by PolicyOwnerId 
 having count(ViolationSeverity) > 2 
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   Create table TeenageViolView_S as Select T.PolicyOwnerId, T.TotalViolations 
from TeenageVioltemp12 T, PolicyMaster P  where T.PolicyOwnerId = 
P.PolicyOwnerId and 
 (datediff(current_date,add_months(P.PolicyOwnerDOB,228)) <= 0) 

   INSERT INTO TABLE BatchProcHist 
 VALUES ('TeenageViolView_S', from_unixtime(unix_timestamp()); 

   Drop Table MaxTable; 
 Drop Table MaxTbl1; 
 Drop Table TeenageVioltemp11; 
 Drop Table TeenageVioltemp12; 

   --View 4; 
 Create table MaxTable as select ViewName, max(CreatedAt) as MaxDate from 
BatchProcHist group by ViewName having ViewName = 'AdultViolView'; 

   Insert into MaxTable select ViewName, max(CreatedAt) from BatchProcHist 
group by ViewName having ViewName = 'AdultViolView_S'; 

   Create table MaxTbl1 as select max(MaxDate) as MaxDate from MaxTable; 

   Create table Violtemp11 as Select a.PolicyOwnerId, a.ViolationSeverity from 
PO_Drv_Hist a, MaxTbl1 b where a.LastModified > b.MaxDate; 

   Create table Violtemp12 as Select PolicyOwnerId, count(ViolationSeverity) as 
TotalViolations 
 from Violtemp11 where (datediff(current_date, add_months
(to_date(ViolationDate),12)) <= 0) and (ViolationSeverity = 1) 
 group by PolicyOwnerId 
 having count(ViolationSeverity) > 3 

   Create table AdultViolView_S as Select T.PolicyOwnerId, T.TotalViolations 
from Violtemp12 T, PolicyMaster P  where T.PolicyOwnerId = P.PolicyOwnerId 
and 
 (datediff(add_months(P.PolicyOwnerDOB,228),current_date) < 0) 

   INSERT INTO TABLE BatchProcHist 
 VALUES ('AdultViolView_S', from_unixtime(unix_timestamp()); 

   Drop Table MaxTable; 
 Drop Table MaxTbl1; 
 Drop Table Violtemp11; 
 Drop Table Violtemp12; 
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    Chapter   9     discusses all the operational details about interfacing Spark with Hadoop. 
Here, I will briefly discuss using Spark SQL for getting data from Hive (into DataFrames) 
and also executing DML (Data Manipulation Language—update, insert, or delete 
commands) statements against Hive tables from Spark. 

 As you may know, Spark uses dataframes and RDDs (resilient distributed datasets) 
as in-memory constructs that you can leverage for queries and performance. Spark also 
allows you to execute queries against Hive databases using the  sqlContext . To start with, 
you need to construct a  HiveContext , which inherits from  SQLContext  and enables you to 
find tables in the Hive MetaStore and also supports queries using HiveQL. Here, I am using 
Scala, and  sc  is an existing  SparkContext  (you can use Python or R within a Spark shell): 

    val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc) 

   val sqlContext.sql("Create table MaxTable as select ViewName, max(CreatedAt) 
from BatchProcHist group by ViewName having ViewName = 'ClaimDefView'") 

   val sqlContext.sql("Insert into MaxTable select ViewName, max(CreatedAt) 
from BatchProcHist group by ViewName having ViewName = 'ClaimDefView_S'") 

    You can similarly execute all the HiveQL commands necessary to create the speed-
layer view  ClaimDefView_S . For the last step (when the view is created), instead of 
creating the view, you can simply execute the  select  statement and read the result in a 
dataframe, as follows: 

   val resultsDF = sqlContext.sql("Select P.PolicyOwnerID, P.PolicyId, 
C.Claimcount from PolicyMaster P, ClaimDeftemp12 C where P.PolicyId = 
C.PolicyId;") 

   You can register the resultant dataframe as a temporary table and then execute any 
queries against it: 

   val resultsDF.registerTempTable("ClaimDefView_S") 
 val results = sqlContext.sql("SELECT PolicyOwnerId FROM ClaimDefView_S") 

   You will need to use a query tool that can read from Hive and Spark to combine 
results from batch-layer and speed-layer views. There are enough choices, and of course 
you can also use Spark SQL as a query tool too.  

     Storage Structures (for Master Data and Views) 
 Chapter   10     discusses how to select an optimal file format. In this section I will apply the 
concepts discussed in Chapter   9    . So, let me briefly consider the parameters to choose the 
right format:

•    The type of queries (you plan to execute) is first and the most 
important one. As you have seen from the batch views, the 
queries for building master data involve choosing a small subset 
of columns (from a larger set) with few filters. Also, there are 
multiple aggregations required to build the batch-layer views.  

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_10
http://dx.doi.org/10.1007/978-1-4842-1287-5_9
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•   The amount of compression you need. With a dataset sized at 30 
TB (and 1% monthly growth), compression is a necessity.  

•   Ensure your NoSQL solution supports the storage format you plan 
to use.    

 Now, you may recall from Chapter   9     that a columnar format offers good compression 
and is more suited for data needing aggregation operations (such as  count ,  avg ,  min ,  max ). 
Also, columnar format provides good performance for use cases that involve selecting a small 
subset of columns and also use a small number of columns as filters (in the  where  clause). 

 Subsequently, you will benefit from using columnar format for storing data. The 
next decision is which columnar format you should choose. The popular formats include 
RCFile, ORCFile, and Parquet. 

 The RCFile format is the first columnar format to be introduced and is supported 
most widely within the Hadoop ecosystem (almost all the Hadoop tools support it) as 
well as by tools outside Hadoop. Compared to Parquet and ORCFiles, RCFile lacks a lot 
of advanced features such as support for storing more complex data types or providing 
encryption. However, for the current example, there are no complex data types that need 
to be supported, and there is no need for encryption. So, RCFile format can be used. 

 If you see performance issues, switch to Parquet, which offers better compression 
and achieves a balance between compression and speed. Also, Parquet is supported 
widely by Hadoop as well as external (to the Hadoop ecosystem) tools. 

 You should use an advanced distributed-processing framework like YARN (or Spark) 
to help you speed up processing of this data and provide optimal performance (since the 
data volume is fairly high).  

     Other Performance Considerations 
 I have not considered the tuning of OS configuration for this example because of the 
availability of a large number of options for OSes. Since the configurations will change 
(based on what OS or framework you choose), I don’t think it’s possible to provide finer 
details. You can, however, refer to the HDFS and YARN tuning guidelines from Chapter 
  10     as a starting point (if you plan to use YARN). And if you use Spark, there are specific 
guidelines for tuning JVMs, in addition to the generic guidelines from Chapter   10    . 

 Because Spark may hold large amounts of data in memory, it relies on Java’s 
memory management and garbage collection (GC). So, understanding and tuning Java’s 
GC options (and parameters) can help you get the best performance for your Spark 
applications. A common issue with GC is that garbage collection takes a long time and 
thereby affects performance for a program, sometimes even crashing. 

 Java applications can use one of two strategies for garbage collection:

•     Concurrent Mark Sweep (CMS) garbage collection:  This strategy 
aims at lower latency and therefore does not do compaction 
(to save time). It’s more suited for real-time applications.  

•    ParallelOld garbage collection:  This strategy targets higher 
throughput and therefore performs whole-heap compaction, 
which results in a big performance hit. This is more suited for 
asynchronous or batch processing (for programs performing 
aggregations, analysis, and so on).    

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
http://dx.doi.org/10.1007/978-1-4842-1287-5_10
http://dx.doi.org/10.1007/978-1-4842-1287-5_10
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 JVM version 1.6 has introduced a third option for garbage collection called Garbage-
First GC (G1 GC). The G1 collector aims to achieve both high throughput and low latency 
and is therefore a good option to use. 

 To start with, note how Spark uses JVM. Spark’s executors divide JVM heap space in 
two parts. The first part is used to hold data persistently cached into memory. The second 
part is used as JVM heap space (for allocating memory for RDDs during transformations). 

 You can adjust the ratio (of these parts) using the  spark.storage.memoryFraction  
parameter. This lets Spark control the total size of the cached RDD (less than (RDD heap 
space volume *  spark.storage.memoryFraction )). You need to consider memory usage 
by both the parts for any meaningful GC analysis. 

 If you observe that GC is taking more time, you should first check on usage of 
memory space by your Spark applications. If your application uses less memory space for 
RDDs, it will leave more heap space for program execution and thereby will increase GC 
efficiency. If needed, you can improve performance by cleaning up cached RDDs that are 
no longer used. 

 It is preferable to use the new G1 collector, as it better handles growing heap sizes 
that usually occur for Spark applications. It is of course not possible to provide a generic 
strategy for GC tuning. You need to understand logging (by Spark) and use it for tuning in 
conjunction with other parameters for memory management. 

 Indexing is another area I have not considered, since indexing in your environment 
will depend on the types of queries and their frequencies. Finally, I have used a generic 
solution for storage (HDFS with Hive) for two reasons. First, Lambda has multiple 
layers, and compatibility of multiple components needs to be ensured through usage of 
components with widespread support. Second, the actual NoSQL solution you use will 
depend on your specific type of data and also on what you want to do with it (in terms of 
processing). So, me using a specific NoSQL solution may be useful only to a few people. 
I have listed these areas (that I have not considered) more as a reminder for you to 
consider for your specific environment.  

     Reference Architectures 
 In this chapter, I have discussed all aspects of designing and implementing a Hadoop-
based solution for a business requirement using the Lambda architecture. I started with 
hardware, software, and then discussed design as per Lambda framework. Finally, I 
discussed the steps for implementation. Of course, a production implementation has 
many additional components, such as network, monitoring, alerts, and more, to make 
the implementation a success. So, it will be helpful for you to review some complete 
architectures to get an idea of what’s involved for production implementation of a 
Hadoop-based system. The components (of course) change depending on the vendor (for 
example, Microsoft, AWS, Hortonworks, Cloudera, and so on). For example, Figure  11-3  
shows a Lambda implementation using AWS components. You can see the use of 
Kinesis to get streaming data and use of a Spark cluster (implemented using EC2s) to 
process that data. The batch layer is implemented using EMRs that form a Hadoop 
cluster with a MasterNode and four DataNodes. The speed-layer views can be delivered 
using DynamoDB and combined with batch-layer views to any reporting, dashboard 
(visualizations), or analytics solutions. Since this is a production implementation, you 
can observe usage of security, monitoring, and backups/archival using appropriate AWS 
components.  
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 Similar architectures can be built using Microsoft components or Hortonworks/
Cloudera components.  

     Changes to Implementation for Latest Architectures 
 Kappa architecture, Fast Data architecture, and Butterfly architecture are some of the 
latest or  future state  architectures. If you have to implement the system (from my example 
in earlier sections) using these architectures, certain changes will be needed. I will not 
discuss complete re-implementations but just focus on component-level changes to the 
architecture. I will start with Kappa architecture. 

   Re-Implementation Using Kappa Architecture 
 First thing to note is the possibility of applying Kappa architecture instead of Lambda. 
Note that Kappa can only replace Lambda where the expected outputs for the speed 
layer and batch layer are the same. If the expected outputs for the speed and batch 
algorithms are different, then the batch and speed layers cannot be merged, and Lambda 
architecture must be used. In my example from previous sections, the expected outputs 
for the speed layer and batch layer are same, and therefore, it is possible to use Kappa 
architecture. 

  Figure 11-3.    Lambda implementation using AWS components       
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 As a quick review, Kappa involves use of a stream-processing engine (Spark, Kafka, 
and so on) that allows you to retain the full log of the data you might need to reprocess. If 
there is a need to do reprocessing, start a second instance of your stream-processing job 
that will process from the beginning of the retained data and write the output to a new 
destination (for example, a table or file). When the second job completes processing, 
switch the application to read from the new output destination. After that, you can stop 
the old version of the job and delete the old output destination. 

 You can apply Kappa for the example discussed in earlier sections. To start with, 
there is only one layer—the streaming layer. File streams can be created for reading data 
from master data files, and appropriate DStreams can be created. Spark Streaming can 
apply transformations and aggregation functions to these DStreams and hold them in 
memory or write out as files (to HDFS). For processing new data, Spark Streaming will 
monitor the data directory and process any new files created in that directory. Since 
new master data is added as new Hive partitions (for my example), those files can be 
copied from the staging location to the Spark data directory. New files will be streamed 
as new DStreams and can be joined with DStreams holding historical data, and the same 
transformation and aggregation functions can be applied on the resulting DStreams to 
have an up-to-date dataset (the same as what you would have with combined batch-layer 
views and speed-layer views). The resulting DStream can be served to client applications 
as a dataframe or a Hive table as required. 

 In case of changes to the transformation functions or discovery of a data or 
processing issue, a new Spark Streaming job can be started to apply the transformations 
again to a new DStream (created from master data), and when it completes, the new 
destination can be used to serve the client applications. Figure  11-4  has the architectural 
details.   

Queries

Current stream processing job
(joins historical DStream data 
with incoming DStream  data 
and reapplies transformations 

+ aggregations) 

New stream processing job
(reapplies logged processing 
to the DStream and writes 
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Output of current 
job(Dataframes 
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the batch views)

Output of new job

Input data 
stream

Stream processing engine

Serving layer

New 
Master 

data 

Master 
data 

  Figure 11-4.    Kappa architecture applied for Lambda case study       

   Changes for Fast Data Architecture 
 You may need to implement Fast Data architecture.  Fast Data  is defined as data created 
(almost) continuously by mobile devices, social media networks, sensors, and so on, and 
a data pipeline processes the new data within milliseconds and performs analytics on it. 
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For my example, it will mean joining the new data stream captured in real time with the 
historical data stream and applying transformation as well as aggregation functions on it. 

 The Kappa architecture defined in Figure  11-4  will be mostly valid along with some 
changes to it. The part that will change is the processing for new data. Instead of looking 
for new files in the data directory, there will be an additional mechanism like Kafka to 
capture multiple data streams and combine them before passing on to Spark Streaming to 
process as a new DStream for the stream-processing engine. The new DStream will then 
be joined with the historical DStream and transformation/aggregation functions applied 
to it.  

   Changes for Butterfly Architecture 
 The Butterfly architecture is discussed at length in Chapter   9     along with a real-world 
example. It offers a huge performance advantage due to the nexus of hardware with 
software (software effectively driving the hardware resources). If you were to use Butterfly 
architecture for implementing the example discussed in this chapter, you would need to 
follow these steps:

•    Ingest the input data stream using events (insert) from Kafka 
broker  

•   Parse the event to determine which speed-layer views the data 
belongs to  

•   Update respective speed-layer view  

•   Keep track of total number of updates  

•   When 1% of the records are new (for a speed-layer view), launch 
the batch computation, update batch views, and reset update 
counters       

     Summary 
 In this chapter, I have tried to address all the aspects of a Hadoop-based implementation 
using Lambda architecture. Note that this is a generic implementation to give you 
some idea about the steps involved in implementing Lambda for your environment. 
Also, observe that my approach discusses data from a relational database instead of 
a clickstream-based web application. There are several reasons for this approach. 
The major reason is that most of the production systems are based on relational data. 
The new social media–based or sensor-driven or mobile device–based data is still not 
mainstream. It is mostly used as supplementary or auxiliary data. Also, most of the 
clickstream applications have semi-structured (or unstructured) data that varies greatly, 
and therefore a single example may not be very representative. 

 This chapter (and this book) is more about migrating, integrating, or transitioning 
your relational technology–based systems to Hadoop. Therefore, I have used RDBMS 
data an example of source data that you will be working with. In reality, that will mostly 
be the case. So, where and how can you use Hadoop? You can use Hadoop for moving, 

http://dx.doi.org/10.1007/978-1-4842-1287-5_9
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transforming, aggregating, and getting the data ready for analytics. What kind of 
analytics? That totally depends on your specific use case. 

 There are applications of Hadoop ranging from discovering historical trends 
in buying trends for retail goods to accurately predicting birth conditions based on 
biological pre-birth data. A hospital in Australia uses Hadoop to analyze a large amount 
of pre-birth data to predict what possible conditions a child may have and to have the 
resources ready to counter them. Insurance and credit card companies use Hadoop for 
establishing predictive models for possible fraud. Hadoop is used for traffic analysis and 
prediction of optimal routes. The possibilities are endless. 

 But remember that Hadoop is just a powerful tool, and optimal use of it depends on 
the skill level (and creativity) of the user or designer. New technologies, architectures, 
and applications are added on a daily basis. It’s truly an emerging technology right 
now. Hopefully, I have provided some useful information and direction to your thought 
process to make use of this technology. 

 When you implement a migration or integration for your environment, you will 
need to use additional tools or technologies. Some of the legacy systems won’t allow 
you to extract the data easily. Fortunately, there are enough forums and user groups to 
help out. It rarely happens that you ask a question and no one answers it. The spirit of 
collaboration and sharing knowledge is one of the biggest strengths of Hadoop and any 
open source solutions that are built around it. I wish you good luck in implementing 
Hadoop-based systems and hope you can interface your existing systems successfully 
with them!     
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