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   Introduction 

   When I first learned about Hive I was working as a consultant on two data warehousing projects. One of 
them was in its sixth month of development. We had a team of 12 consultants and we were showing little 
progress. The source database was relational but, for some unknown reason, all the constraints such as 
primary and foreign key references had been turned off. For all intents and purposes, the source was non-
relational and the team was struggling with moving the data into our highly structured data warehouse. We 
struggled with NULL values and building constraints as well as master data management issues and data 
quality. The goal at the end of the project was to have a data warehouse that would reproduce reports they 
already had. 

 The second project was smaller but involved hierarchical relationships. For example, a TV has a brand 
name, a SKU, a product code, and any number of other descriptive features. Some of these features are 
dynamic while others apply to one or more different products or brands. The hierarchy of features would be 
different from one brand to another. Again we were struggling with representing this business requirement 
in a relational data warehouse. 

 The first project represented the difficulty in moving from one schema to another. This problem had to 
be solved before anyone could ask any questions and, even then the questions had to be known ahead of 
time. The second project showed the difficulty in expressing business rules that did not fit into a rigid data 
structure. We found ourselves telling the customer to change their business rules to fit the structure. 

 When I first copied a file into HDFS and created a Hive table on top of the file, I was blown away by 
the simplicity of the solution yet by the far-reaching impact it would have on data analytics. Since that 
first simple beginning, I have seen data projects using Hive go from design to real analytic value built in 
weeks, which would take months with traditional approaches. Hive and the greater Hadoop ecosystem is 
truly a game-changer for data driven companies and for companies who need answers to critical business 
questions. 

 The purpose of this book is the hope that it will provide to you the same “ah-ha” moment I experienced. 
The purpose is to give you the foundation to explore and experience what Hive and Hadoop have to offer 
and to help you begin your journey into the technology that will drive innovation for the next decade or 
more. To survive in the technology field, you must constantly reinvent yourself. Technology is constantly 
travelling forward. Right now there is a train departing; welcome aboard.  



1© Scott Shaw, Andreas François Vermeulen, Ankur Gupta, David Kjerrumgaard 2016 
S. Shaw et al., Practical Hive, DOI 10.1007/978-1-4842-0271-5_1

    CHAPTER 1   

 Setting the Stage for Hive: Hadoop                          

 By now, any technical specialist with even a sliver of curiosity has heard the term Hadoop tossed around 
at the water cooler. The discussion likely ranges from, “Hadoop is a waste-of-time,” to “This is big. This will 
solve all our current problems.” You may also have heard your company director, manager, or even CIO ask 
the team to begin implementing this new Big Data thing and to somehow identify a problem it is meant to 
solve. One of the first responses I usually get from non-technical folks when mentioning Big Data is, “Oh, you 
mean like the NSA”? It is true that with Big Data comes big responsibility, but clearly, a lack of knowledge 
about the uses and benefits of Big Data can breed unnecessary FUD (fear, uncertainty, and doubt). 

 The fact you have this book in your hands shows you are interested in Hadoop. You may also know 
already how Hadoop allows you to store and process large quantities of data. We are guessing that you also 
realize that Hive is a powerful tool that allows familiar access to the data through SQL. As you may glean 
from its title, this book is about Apache Hive and how Hive is essential in gaining access to large data stores. 
With that in mind, it helps to understand why we are here. Why do we need Hive when we already have 
tools like T-SQL, PL/SQL, and any number of other analytical tools capable of retrieving data? Aren’t there 
additional resource costs to adding more tools that demand new skills to an existing environment? The fact 
of the matter is, the nature of what we consider usable data is changing, and changing rapidly. This fast-
paced change is forcing our hand and making us expand our toolsets beyond those we have relied on for the 
past 30 years. Ultimately, as we’ll see in later chapters, we do need to change, but we also need to leverage 
the effort and skills we have already acquired. 

 Synonymous with Hadoop is the term  Big Data . In our opinion, the term Big Data is slowly moving 
toward the fate of other terms like Decision Support System (DSS) or e-commerce. When people mention 
“Big Data” as a solution, they are usually viewing the problem from a marketing perspective, not from a tools 
or capability perspective. I recalled a meeting with a high-level executive who insisted we not use the term 
Big Data at all in our discussions. I agreed with him because I felt such a term dilutes the conversation by 
focusing on generic terminology instead of the truly transformative nature of the technology. But then again, 
the data really is getting big, and we have to start somewhere. 

 My point is that Hadoop, as we’ll see, is a technology originally created to solve specific problems. It 
is evolving, faster than fruit flies in a jar, into a core technology that is changing the way companies think 
about their data—how they make use of and gain important insight into all of it—to solve specific business 
needs and gain a competitive advantage. Existing models and methodologies of handling data are being 
challenged. As it evolves and grows in acceptance, Hadoop is changing from a niche solution to something 
from which every enterprise can extract value. Think of it in the way other, now everyday technologies were 
created from specialized needs, such as those found in the military. Items we take for granted like duct tape 
and GPS were each developed first for specific military needs. Why did this happen? Innovation requires 
at least three ingredients: an immediate need, an identifiable problem, and money. The military is a huge, 

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0271-5_1    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0271-5_1
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complex organization that has the talent, the money, the resources, and the need to invent these everyday 
items. Obviously, products the military invents for its own use are not often the same as those that end up 
in your retail store. The products get modified, generalized, and refined for everyday use. As we dig deeper 
into Hadoop, watch for the same process of these unique and tightly focused inventions evolving to meet the 
broader needs of the enterprise. 

 If Hadoop and Big Data are anything, they are a journey. Few companies come out of the gate 
requesting a 1,000-node cluster and decide over happy hour to run critical processes on the platform. 
Enterprises go through a predictable journey that can take anywhere from months to years. As you read 
through this book, the expectation is that it will help begin your journey and help elucidate particular steps 
in the overall journey. This first chapter is an introduction into why this Hadoop world is different and where 
it all started. This first chapter gives you a foundation for the later discussions. You will understand the 
platform before the individual technology and you will also learn about why the open source model is so 
different and disruptive. 

     An Elephant Is Born 
 In 2003 Google published an inconspicuous paper titled “The Google Filesystem” (   http://static.
googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf     ). Not many 
outside of Silicon Valley paid much attention to its publication or the message it was trying to convey. The 
message it told was directly applicable to a company like Google, whose primary business focused on 
indexing the Internet, which was not a common use case for most companies. The paper described a storage 
framework uniquely designed to handling the current future technological demands Google envisioned for 
its business. In the spirit of TL&DR, here are its most salient points:

•    Failures are the norm  

•   Files are large  

•   Files are changed by appending, not by updating  

•   Closely coupled application and filesystem APIs    

 If you were a planning to become a multi-billion dollar Internet search company, many of these 
assumptions made sense. You would be primarily concerned with handling large files and executing long 
sequential reads and writes at the cost of low latency. You would also be interested in distributing your 
gigantic storage requirements across commodity hardware instead of building a vertical tower of expensive 
resources. Data ingestion was of primary concern and structuring (schematizing) this data on write would 
only delay the process. You also had at your disposal a team of world-class developers to architect the 
scalable, distributed, and highly available solution. 

 One company who took notice was Yahoo. They were experiencing similar scalability problems along 
Internet searching and were using an application called Nutch created by Doug Cutting and Mike Caffarella. 
The whitepaper provided Doug and Mike a framework for solving many problems inherent in the Nutch 
architecture, most importantly scalability and reliability. What needed to be accomplished next was a re-
engineering of the solution based on the whitepaper designs. 

 ■   Note    Keep in mind the original GFS (Google Filesystem) is not the same as what has become Hadoop. GFS 
was a framework while Hadoop become the translation of the framework put into action. GFS within Google 
remained proprietary, i.e., not open source.  

http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf
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 When we think of Hadoop, we usually think of the storage portion that Google encapsulated in the 
GFS whitepaper. In fact, the other half of the equation and, arguably more important, was a paper Google 
published in 2004 titled “MapReduce: Simplified Data Processing on Large Clusters” (   http://static.
googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf     ). The 
MapReduce paper married the storage of data on a large, distributed cluster with the processing of that same 
data in what is called an “embarrassingly parallel” method. 

 ■   Note    We’ll discuss MapReduce (MR) throughout this book. MR plays both a significant role as well as an 
increasingly diminishing role in interactive SQL query processing.  

 Doug Cutting, as well as others at Yahoo, saw the value of GFS and MapReduce for their own use cases 
at Yahoo and so spun off a separate project from Nutch. Doug named the project after the name of his son’s 
stuffed elephant, Hadoop. Despite the cute name, the project was serious business and Yahoo set to scale it 
out to handle the demands of its search engine as well as its advertising. 

 ■   Note    There is an ongoing joke in the Hadoop community that when you leave product naming to 
engineering and not marketing you get names like Hadoop, Pig, Hive, Storm, Zookeeper, and Kafka. I, for one, 
love the nuisance and silliness of what is at heart applications solving complex and real-world problems. As far 
as the fate of Hadoop the elephant, Doug still carries him around to speaking events.  

 Yahoo’s internal Hadoop growth is atypical in size but typical of the pattern of many current 
implementations. In the case of Yahoo, the initial development was able to scale to only a few nodes but after 
a few years they were able to scale to hundreds. As clusters grow and scale and begin ingesting more and 
more corporate data, silos within the organization begin to break down and users begin seeing more value 
in the data. As these silos break down across functional areas, more data moves into the cluster. What begins 
with hopeful purpose soon becomes the heart and soul or, more appropriately, the storage and analytical 
engine of an entire organization. As one author mentions:

   By the time Yahoo spun out Hortonworks into a separate, Hadoop-focused software 
company in 2011, Yahoo’s Hadoop infrastructure consisted of 42,000 nodes and hundreds 
of petabytes of storage (    http://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-
nodes-to-the-future-of-data/      ).     

     Hadoop Mechanics 
 Hadoop is a general term for two components: storage and processing. The storage component is the 
Hadoop Distributed File System (HDFS) and the processing is MapReduce. 

 ■   Note    The environment is changing as this is written. MapReduce has now become only one means of 
processing Hive on HDFS. MR is a traditional batch-orientated processing framework. New processing engines such 
as Tez are geared more toward near real-time query access. With the advent of YARN, HDFS is becoming more and 
more a multitenant environment allowing for many data access patterns such as batch, real-time, and interactive.  

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/
http://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/
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 When we consider normal filesystems we think of operating systems like Windows or Linux. Those 
operating systems are installed on a single computer running essential applications. Now what would 
happen if we took 50 computers and networked them together? We still have 50 different operating systems 
and this doesn’t do us much good if we want to run a single application that uses the compute power and 
resources of all of them. 

 For example, I am typing this on Microsoft Word, which can only be installed and run on a single 
operating system and a single computer. If I want to increase the operational performance of my Word 
application I have no choice but to add CPU and RAM to my computer. The problem is I am limited to the 
amount of RAM and CPU I can add. I would quickly hit a physical limitation for a single device. 

 HDFS, on the other hand, does something unique. You take 50 computers and install an OS on each 
of them. After networking them together you install HDFS on all them and declare one of the computers a 
master node and all the other computers worker nodes. This makes up your HDFS cluster. Now when you 
copy files to a directory, HDFS automatically stores parts of your file on multiple nodes in the cluster. HDFS 
becomes a virtual filesystem on top of the Linux filesystem. HDFS abstracts away the fact you’re storing data 
on multiple nodes in a cluster. Figure  1-1  shows a high level view of how HDFS abstracts multiple systems 
away from the client.  

 Figure  1-1  is simplistic to say the least (we will elaborate on this in the section titled “Hadoop High 
Availability”). The salient point to take away is the ability to grow is now horizontal instead of vertical. 
Instead of adding CPU or RAM to a single device, you simply need to add a device, i.e., a node. Linear 
scalability allows you to quickly expand your capabilities based on your expanding resource needs. The 
perceptive reader will quickly counter that similar advantages are gained through virtualization. Let’s take a 
look at the same figure through virtual goggles. Figure  1-2  shows this virtual architecture.  

  Figure 1-1.    Simplistic view of HDFS       
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 Administrators install virtual management software on a server or, in most cases, a cluster of servers. The 
software pools resources such as CPU and memory so that it looks as if there is a single server with a large 
amount of resources. On top of the virtual OS layer we had guests and divide the available pool of resources 
to each guest. The benefits include maximization of IO resources, dynamic provisioning of resources, and 
high availability at the physical cluster layer. Some problems include a dependency on SAN storage, inability 
to scale horizontally, as well as limitations to vertical scaling and reliance on multiple OS installations. Most 
current data centers follow this pattern and virtualization has been the primary IT trend for the past decade. 

 ■   Note    Figure  1-2  uses the term ESX. We certainly don’t intend to pick on VMWare. We show the 
virtualization architecture only to demonstrate how Hadoop fundamentally changes the data center paradigm 
for unique modern data needs. Private cloud virtualization is a still a viable technology for many use cases and 
should be considered in conjunction with other architectures like appliances or public cloud.  

  Figure 1-2.    Virtualization architecture       

 Other advantages include reduced power consumption and reduced physical server footprint and 
dynamic provisioning. Hadoop has the unenviable task of going against a decade-long trend in virtual 
architecture. Enterprises have for years been moving away from physical architecture and making significant 
headway in diminishing the amount of physical servers they support in their data center. If Hadoop only 
provided the ability to add another physical node when needed to expand a filesystem, we would not be 
writing this book and Hadoop would go the way of Pets.com. There’s much more to the architecture to make 
it transformative to businesses and worth the investment in a physical architecture.  
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     Data Redundancy 
 Data at scale must also be highly available. Hadoop stores data efficiently and cheaply. There are mechanisms built 
into the Hadoop software architecture that allow us to use inexpensive hardware. As stated in the GFS whitepaper, 
the original design assumed nodes would fail. As clusters expand horizontally into the 100s, 1,000s, or even 10s of 
thousands, we are left with no option but to assume at least a few servers in the cluster will fail at any given time. 

 To have a few server failures jeopardize the health and integrity of the entire cluster would defeat any 
other benefits provided by HDFS, not to mention the Hadoop administrator turnover rate due to lack of 
sleep. Google and Yahoo engineers faced the daunting task of reducing cost while increasing uptime. The 
current HA solutions available were not capable of scaling out to their needs without burying the companies 
in hardware, software, and maintenance costs. Something had to change in order to meet their demands. 
Hadoop became the answer but first we need to look at why existing tools were not the solution. 

     Traditional High Availability 
 When we normally think of redundancy, we think in terms of high availability (HA). HA is an architecture 
describing how often you have access to your environment. We normally measure HA in terms of nines. We 
might say our uptime is 99.999, or five nines. Table  1-1  shows the actual downtime expected based on the HA 
percentage (   http://en.wikipedia.org/wiki/High_availability     ).  

 Cost is traditionally a ratio of uptime. More uptime means higher cost. The majority of HA solutions 
center on hardware though a few solutions are also software dependent. Most involve the concept of a set 
of passive systems sitting in wait to be utilized if the primary system fails. Most cluster infrastructures fit this 
model. You may have a primary node and any number of secondary nodes containing replicated application 
binaries as well as the cluster specific software. Once the primary node fails, a secondary node takes over. 

   Table 1-1.    HA Percentage Summary   

 Availability Percent  Downtime Per Year  Downtime Per Month  Downtime Per Week 

 90% (“one nine”)  36.5 days  72 hours  16.8 hours 

 95%  18.25 days  36 hours  8.4 hours 

 97%  10.96 days  21.6 hours  5.04 hours 

 98%  7.30 days  14.4 hours  3.36 hours 

 99% (“two nines”)  3.65 days  7.20 hours  1.68 hours 

 99.5%  1.83 days  3.60 hours  50.4 minutes 

 99.8%  17.52 hours  86.23 minutes  20.16 minutes 

 99.9% (“three nines”)  8.76 hours  43.8 minutes  10.1 minutes 

 99.95%  4.38 hours  21.56 minutes  5.04 minutes 

 99.99% (“four nines”)  52.56 minutes  4.32 minutes  1.01 minutes 

 99.995%  26.28 minutes  2.16 minutes  30.24 seconds 

 99.999% (“five nines”)  5.26 minutes  25.9 seconds  6.05 seconds 

 99.9999% (“six nines”)  31.5 seconds  2.59 seconds  0.605 seconds 

 99.99999% (“seven nines”)  3.15 seconds  0.259 seconds  0.0605 seconds 

http://en.wikipedia.org/wiki/High_availability
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 ■   Note    You can optionally set up an active/active cluster in which both systems are used. Your cost is still 
high since you need to account for, from a resource perspective, the chance of the applications from both 
systems running on one server in the event of a failure.  

 Quick failover minimizes downtime and, if the application running is cluster-aware and can account 
for the drop in session, the end user may never realize the system has failed. Virtualization uses this model. 
The physical hosts are generally a cluster of three or more systems in which one system remains passive in 
order to take over in the event an active system fails. The virtual guests can move across systems without 
the client even realizing the OS has moved to a different server. This model can also help with maintenance 
such as applying updates, patches, or swapping out hardware. Administrators perform maintenance on the 
secondary system and then make the secondary the primary for maintenance on the original system. Private 
clouds use a similar framework and, in most cases, have an idle server in the cluster primarily used for 
replacing a failed cluster node. Figure  1-3  shows a typical cluster configuration.  

 The cost for such a model can be high. Clusters require shared storage architecture, usually served 
by a SAN infrastructure. SANs can store a tremendous amount of data but they are expensive to build and 
maintain. SANs exist separate from the servers so data transmits across network interfaces. Furthermore, 
SANs intermix random IO with sequential IO, which means all IO becomes random. Finally, administrators 
configure most clusters to be active/passive. The passive standby server remains unused until a failure 
event. In this scenario hardware costs double without doubling your available resources. 

 Storage vendors use a number of means to maintain storage HA or storage redundancy. The most 
common is the use of RAID (Redundant Array of Independent Disks) configurations. Table  1-2  shows a quick 
overview of the most common RAID configurations.  

  Figure 1-3.    Two-node cluster configuration with shared storage       

   Table 1-2.    The Most Common RAID Levels   

 RAID Level  Description  Fault Tolerance 

 RAID 0  Stripe array  None 

 RAID 1  Mirror array  One disk 

 RAID 5  Stripe with parity  One disk 

 RAID 1+0  Striped mirrors  Multiple disks from one mirror 
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 RAID is popular due to the fact it provides data protection as well as performance enhancements for 
most workloads. RAID 0 for example supplies no data protection but speeds up write speed due to the 
increased amount of spindles. RAID, like clusters, come at a cost. In the case of mirrored RAID configuration 
you are setting aside a dedicated disk solely for the purpose of data recovery. Systems use the secondary disk 
only to replicate the data on write. This process slows down writes as well as doubling cost without doubling 
your storage capacity. To implement 5 TB of mirrored disk RAID, you would need to purchase 10 TB of 
storage. Most enterprises and hardware vendors do not implement RAID 0 or RAID 1 in server architectures. 

 Storage vendors such as EMC and NetApp configure their SAN environments with RAID 1+0 (RAID 
“ten”). This supplies the high-availability storage requirements as well as the performance capabilities. This 
works well for large SAN environments where arrays may consist of six or more drives and there may be 
dozens of arrays on the SAN. These arrays are carved up into LUNs (logical unit numbers) and presented to 
servers for use. These then become your mount points or your standard Windows drive letters. 

 ■   Note    Bear with me. The discussion around SANs and RAID storage may seem mundane and unimportant 
but understanding traditional storage design will help you understand the Hadoop storage structure. The use 
of SANs and RAID has been the de facto standard for the last 20 years and removing this prejudice is a major 
obstacle when provisioning Hadoop in data centers.  

 So, in essence SANs are large containers holding multiple disk arrays and managed by a central console. 
A company purchases a server, and then the server is provisioned in the data center with minimal storage 
(usually on a small DAS (direct attached storage) disk for the OS and connected via network links to the 
SAN infrastructure. Applications, whether point of sale applications or databases, request data from the 
SAN, which then pulls through the network for processing on the server. SANs become a monolithic storage 
infrastructure handing out data with little to no regard to the overarching IO processing. The added HA, 
licensing, and management components on SANs add significantly to the per-TB cost. 

 A lot of enhancements have been made in SAN technologies, such as faster network interconnects and 
memory cache, but despite all the advances the primary purpose of a SAN was never high performance. The 
cost per TB has dramatically dropped in the last 15 years and will continue to drop, but going out and buying 
a TB thumb drive is much different than purchasing a TB of SAN storage. Again, as with the virtualization 
example, SAN has real-world uses and is the foundation for most large enterprises. The point here is that 
companies need a faster, less expensive means to store and process data at scale while still maintaining 
stringent HA requirements.  

     Hadoop High Availability 
 Hadoop provides an alternative framework to the traditional HA clusters or SAN-based architecture. It does 
this by first assuming failure and then building the mechanisms to account for failure into the source code. 
As a product Hadoop is highly available out of the box. An administrator does not have to install additional 
software or configure additional hardware components to make Hadoop highly available. An administrator 
can configure Hadoop to be more or less available, but high availability is the default. More importantly, 
Hadoop removes the cost to HA ratio. Hadoop is open source and HA is part of the code so, through the 
transitive property, there is no additional cost for implementing Hadoop as an HA solution. 

 So how does Hadoop provide HA at reduced cost? It primarily takes advantage of the fact that storage 
costs per terabyte have significantly dropped in the past 30 years. Much like a RAID configuration, Hadoop 
will duplicate data for the purpose of redundancy, by default three times the original size. This means 10 TB 
of data will equal 30 TB on HDFS. What this means is Hadoop takes a file, let us say a 1 TB web log file, and 
breaks it up into “blocks”. Hadoop distributes these blocks across the cluster. In the case of the 1 TB log file, 
Hadoop will distribute the file using 24576 blocks (8192x3) if the block size is 128 MB. Figure  1-4  shows how 
a single file is broken and stored on a three-node cluster.  

www.allitebooks.com

http://www.allitebooks.org
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 Based on the configuration settings, these blocks can range between 128 MB and 256 MB! 

 ■   Note   These are exceptionally large block sizes for a filesystem. As a reference point, the largest Windows 
block size, i.e. the largest size that can be read from disk into memory, is 4K. This is also the standard for most 
Linux-based OSs.  

 Large block sizes influence much of Hadoop’s architecture. Large blocks sizes are core to how Hadoop is 
deployed, managed, and provisioned. Take into consideration the following factors influenced by large block 
sizes:

•    Large files are more efficiently processed than smaller files  

•   There are fewer memory requirements on the master server (this will be discussed in 
the next section)  

•   Leads to more efficient sequential read and writes  

•   The seek rate is reduced as a percentage of transfer time    

 For the large file processing, let us go back to the 1 TB log file. Since the block size is set at 128 MB we 
get 24576 blocks sent over the network and written to the nodes. If the block size was 4K, the number of 
blocks would jump to 805306368 (268435456 x 3). As we will discuss later, this number of blocks would place 
undue memory pressure on specific portions of the cluster. The larger block size also optimizes the system 
for sequential reads and writes, which works best when considering dedicated drive access. A drive is simply 
a disk with a needle (aperture arm) moving across the surface (platter) to where the data is located. Storage 
makes no guarantee that data blocks will be stored next to each other on the platter so it takes time for the 
aperture arm to move randomly around the platter to get to the data. If the data is stored in large chunks or 
in sequential order, as is the case for most database transaction log files, then reading and writing becomes 
more efficient. The aperture only needs to move from point A to point B and not skip around searching for 
the data. Hadoop takes advantage of this sequential access by storing data as large blocks. When the time is 

  Figure 1-4.    File broken into blocks, which are only portions of the total file       
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spent by the aperture arm looking for data, this is called the seek rate. The two primary disk bottlenecks, and 
standard disks will always be the primary bottleneck, are seek rate and transfer time. The transfer time is the 
time it takes for the data to be moved from the disk into system memory. When compared to transfer time, 
seek rate is much slower. Hadoop reduces seek rate as a percentage of transfer time. 

 Storing large blocks may seem inefficient or restrictive on the surface, but Hadoop also has the concept 
of data locality to make the redundancy more useful. As mentioned earlier, Hadoop consists of a master 
node and worker nodes. We refer to the master node as the NameNode (NN) and we refer to the worker 
nodes as DataNodes (DN). The NameNode performs the following functions:

•    Tracks which blocks in the cluster belong to which file  

•   Maintains where in the cluster each block is located  

•   Determines where to place blocks based on node location  

•   Tracks overall health of cluster through block reports    

 The NameNode not only breaks the file into blocks but it tracks where those blocks are placed in the 
cluster. Hadoop knows all the available DataNodes and on which rack the DataNodes are located. Knowing 
what rack nodes are on is called “rack awareness”. Figure  1-5  takes the previous figure and expands it to 
include rack awareness.  

  Figure 1-5.    Writing blocks to HDFS with rack awareness       

 



CHAPTER 1 ■ SETTING THE STAGE FOR HIVE: HADOOP

11

 Here are the steps Hadoop uses to write files:

    1.    A block is written to node 1 in rack 1  

    2.    A copy of the block is written to node 2 in rack 2  

    3.    A copy is written to node 3 in rack 2     

 Even if there were more than two racks, the third block would still be written to the same rack as the 
second block. The order by which the blocks are written maximizes availability while reducing network 
traffic. By writing the second block to rack 2, HDFS immediately allows for the failure of an entire rack 
without affecting file recovery. The final write is to reduce network traffic because IO is much faster between 
nodes within a rack than between nodes in different racks. Files are large in HDFS so Hadoop has a number 
of different mechanisms to reduce network traffic. We will see more of this concept when we talk about 
processing. 

 Keep in mind that neither blocks nor files are stored on the NameNode. Data is only stored on the 
DataNodes. A client contacts the NameNode to determine where to write the blocks or where the blocks 
are located for read, after which the client talks directly to the DataNode. The NameNode stores the block 
information in memory. This is why large block sizes are important. The more blocks to track, the more 
memory the NameNode needs to store the information. 

 Only the NameNode knows where all blocks are located and to which file the blocks belong. If you lose a 
NameNode, you lose your cluster. This used to be a SPOF (single point of failure) factor for Hadoop, but now 
a NameNode can be effectively clustered for HA as you would with any other critical system. When building 
out your NameNode, you want to make sure the system has enough memory to handle the anticipated 
amount of blocks as well as having redundant hardware. DataNodes, on the other hand, do not need the 
additional hardware redundancy due to Hadoop’s built-in redundancy. You will still want your DataNodes to 
have enough storage, memory, and CPU to hold and process the data.   

     Processing with MapReduce 
 Storage is only part of the equation. Data is practically useless if we cannot process or analyze the data. 
Enterprises would be slow to adopt if they felt they were unable to derive insight from their mounds of stored 
data. We also do not want node failures negatively affecting our processing. Again, if we begin a job process 
on the cluster it would be unacceptable to have to restart the entire job five hours into processing simply 
because a single node became unavailable. 

 The first critical point to understand when discussing Hadoop processing is that Hadoop is a Java 
environment. Engineers who wrote Hadoop used the Java programming language. Hadoop processing, 
MapReduce, is also written in Java. In the early days of Hadoop, in order to do anything you had to have 
strong Java development skills. Luckily, for most of us, this is no longer the case. It can still be helpful 
to know and understand Java and how Java works both for writing MapReduce (MR) code as well as 
troubleshooting Hadoop, but as a business analyst or end user, you can now perform complex processing 
and analysis without ever having to touch Java code. As we will discuss further in the next chapter, engineers 
created Hive specifically to abstract away the necessity to write Java code. 

 If the market abstracts away Java and, by association, MapReduce, then why would it be necessary to 
understand how MapReduce processing works? The point is that the way MapReduce originally broke up 
large jobs into parallel executing tasks is still fundamental to distributed processing on a Hadoop cluster. 
Applications such as Hive, as well as an application like Pig, can still execute MapReduce behind the scenes 
(although it’s not recommended) and it is helpful to understand what MapReduce is doing so that we can 
better tune our queries and understand their behavior. With the advent of YARN, MapReduce is just another 
means to access data on Hadoop, but MR is still important and worth discussing. 
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 ■   Note    YARN stands for “Yet Another Resource Negotiator”. YARN was developed by Arun Murthy at 
Hortonworks and is labeled as the “OS for Hadoop”. It takes the resource administration away from the original 
MapReduce framework and allows MapReduce to focus on distributed processing instead of resource and task 
management. Cluster resource management is now generalized under YARN, which opens up other applications 
with different access patterns (interactive, real-time, as well as batch) to run simultaneously on the same 
cluster. YARN was introduced in Hadoop 2.x. Hadoop versions prior to 2.x are labeled as traditional Hadoop. 
Pre-YARN MapReduce is referred to as MRv1, while post-YARN MapReduce is referred as MRv2. YARN is discussed 
further in this chapter, but to dive deeper into YARN, we recommend reading  Apache Hadoop YARN  by Arun 
Murthy, Vinod Vavilapalli, Douglas Eadline, Joseph Niemiec, and Jeff Markham (Addison-Wesley, 2014).  

 As mentioned, Hadoop uses MapReduce specifically for processing data on a distributed network of 
computers. It does this by being what is called “embarrassingly parallel.” This means the initial processing of 
the data occurs on separate nodes in parallel. This differs from traditional processing, which runs processing 
on a single computer or, in the case of database processing, pulls data from disk and stores it in memory for 
processing. 

 The Map phase is the first part of MapReduce parallel processing. Looking back on how Hadoop stores 
data on disk we remember it breaks a single file into multiple blocks. Each block contains a portion of the 
total data. So, if you have a 1 TB file with a list of names, that file will be broken into a large number of blocks 
with each block containing a subset of the names and these subsets stored on various nodes in the cluster. 
Figure  1-6  shows how a file containing names might be dispersed on a three-node cluster.  

  Figure 1-6.    List of company names distributed in blocks on a cluster       
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 Mapping in MapReduce is actually a Java function. It takes input and produces a new output. The 
output is a key/value pair. 

 ■   Note    As you continue your journey into the Hadoop ecosystem, you will come across a lot of examples of 
the key/value pair concept. NoSQL focuses primarily on key/value structures. The reason this is important is 
because the key/value schema works great for distributed processing as well as processing semi-structured 
data not easily schematized into traditional RDBM systems.  

 In our example, a separate  Map()  function runs on each DataNode and processes all the blocks on that 
DataNode associated with the file. It does this independently of all the other blocks located on the other 
DataNodes. For the first node it will take the name James as input and output ( James, 1 ). It will do this for 
each name in the block for each node so you would get the following output: 

   (James,1), (Joan,1), (John,1), (Frank,1), (Peggy,1) 
 (James,1), (Peter,1), (Peter,1),(Arthur,1),(Wendy,1),(Bob,1) 
 (Wendy,1),(Mordecai,1),(Frank,1),(Frank,1),(Susan,1),(Fredrick,1) 

   Keep in mind Hadoop processes each of these  in parallel . There is no need for communication between 
nodes during the Map phase. This is critical when dealing with large data sets because you do not want 
inter-system communication or data transfer occurring between nodes. Introducing dependencies in 
processing can cause issues such as race conditions and deadlocks. By processing in parallel, Hadoop takes 
full advantage of dedicated IO resources in what is called  shared nothing  architecture. 

 Another key factor is the concept of taking the processing to the data. In our scenario, the Map task 
runs on the node where the data resides. The Map phase never pulls the data into a central location for 
processing. Again, this is key to processing large data sets since moving multi-terabytes or even petabytes 
amounts of data over the network would be impracticable. We want processing to occur on the nodes next to 
the data and utilize the full memory, disk, and CPU resources available to that node. 

 Once the Map phase completes, we have an intermediary phase called Shuffle and Sort. This phase 
takes all the key/value pairs from the Map phase and assigns them to a reducer. Each reducer receives all 
data associated with a single key. The Shuffle and Sort phase is the only time data is physically moved within 
the cluster and communication occurs between processes. 

 ■   Caution    As we dig deeper into Hive performance we will want to focus on avoiding the reduce phase. 
This phase can be a bottleneck because it requires moving data over the network as well as communication 
between nodes. Also, the reduce phase cannot run until all mapping has completed.  

 Figure  1-7  shows how the data from the Map phase is moved across nodes by Shuffle and Sort.  
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 The Shuffle and Sort phase is responsible for sorting the data by keys and sending the data to the 
reducer tasks. Each reducer will receive all the data from a single key. For example, this means that one 
reducer will receive all the data from the name James. If there are 2 or 200 people named James, a single 
reduce job will still receive all the data associated with the key James. Notice the name Peter. The name 
occurs twice and each occurrence is on a single block of data. In the case of Peter, the data does not have to 
move to another node but can be mapped and reduced on the same node. 

  Figure 1-7.    Shuffle and Sort phase       
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 ■   Caution    Know your data! If you have a data set with a disproportionate number of values for a single key, 
for example 50% of names in your file are Bob, then a single reducer may get overwhelmed.  

 The final stage is the Reduce phase. Reduce takes each key/value pair as input and produces a count 
aggregation based on the key. Those familiar with SQL can compare the reduce phase with a  GROUP BY  
clause. The reducer will take ( Frank,1,Frank,1,Frank,1 ) and convert it to ( Frank,3 ). Figure  1-8  shows the 
final results.  

 At the end of all our processing, we get a list of names and the total occurrence of each name in the file. 
This may seem trivial, but we can potentially run this MapReduce example on a 10 TB file with 100 or more 
nodes. As we add more nodes to the cluster our performance will improve. Traditional RDBMs just do not 
scale to this level. 

  Figure 1-8.    Reduce phase       
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     Beyond MapReduce 
 Mention has been made throughout this chapter on how MapReduce is not the only means to process data 
on Hadoop. MapReduce is an extraordinarily flexible parallel processing framework but, as scalable and 
flexible as it is, it also has many limitations. MapReduce processes data in batch. It exceeds at taking large 
data sets, processing them in parallel, and then aggregating the results. MapReduce does not work well with 
ad hoc or real-time query patterns. For example, if you want to get all sales for a product from every store in 
the past decade, and this query traverses 10 TB of data and you are willing to wait 10 hours for the results, 
MapReduce would be an excellent choice. But, if you want to get the top two items sold for five stores in 
Missouri and ten stores in Michigan, and you need that data in less than 10 seconds, then MapReduce is 
not a good solution. In reality, most organizations center around an ad hoc or near real-time processing 
business intelligence architecture of which MapReduce does not belong. Even simple SQL transactions 
using a small number of joins or  GROUP BY  clauses can take a long time to compute, especially when 
processing large amounts of data. We take for granted the speeds in which RDBMs process joins,  GROUP BY , 
 ORDER BY , and other computations and lose sight of the fact that the processing speeds are due to the upfront 
cost of constraining and conforming the data to specific schema structures and rules. 

 Hadoop is a  schema-on-read  as opposed to a  schema-on-write  framework. Ingesting data into traditional 
RDBMs involves transforming the data to fit into a relational structure comprising of tables, rows, and 
columns. Other structures also exist such as data types:  int ,  varchar ,  date , as well as relational constraints 
between tables. The ETL (extract, transform, load) process works well, though still painful, when the source 
system is also relational. But what if your data is non-structured, or semi-structured? Log file data does not 
generally lend itself to a table structure. It is possible to transform the data into a relational model but at the 
cost of slowing down the data ingestion rate, as well as breaking the data ingestion process when simple 
domain constructs change, such as the adding columns or changing an integer value to a string. There is 
plenty of literature around the volume, velocity, and variety of modern data so I will not dive deeply into 
those ideas, but keep in mind that Hadoop is a framework conscious of the tradeoff between the traditional 
relational structure and the free-form process of ingesting data into a system that does not initially demand 
structure. Where we lose structure we gain flexibility. This is where Hadoop moves away from a simple 
storage environment and into a flexible and scalable compute environment that breaks down limitations 
between developers and rigid relational data structures. 

 Programmers write MapReduce tasks in Java. MapReduce handles the runtime complexities as well as 
the management and scheduling of jobs on the cluster. MapReduce requires a strong knowledge of Java and 
the MapReduce APIs. As Hadoop moves more mainstream, the product has had to move away from a Java 
development tool and cater more strongly to the areas of the business such as traditional ETL and business 
analytics which have dominated data analysis for the past 30 years. Adoption is key to the success of Hadoop and 
if everyone needs to learn Java to analyze data stored in Hadoop, overall adoption would be slow and difficult. 

 YARN has broadened the scope and flexibility of the Hadoop framework. YARN allows MapReduce to 
become only one method for accessing data stored on the Hadoop storage system. Other applications such 
as machine learning with Mahout and more recently Spark MLib, ad hoc querying with Hive and Tez, data 
flowing processing with Pig, and others can now execute side-by-side with MapReduce without any one 
application consuming all the cluster resources. YARN becomes fundamental to the adoption of Hadoop as 
an enterprise data store. 

 Your interest in this book indicates you may have a fundamental knowledge of the SQL query 
language. SQL is the language of traditional RDBMs and influences how we view and understand data 
access. All traditional relational database systems have a query engine whose purpose is to optimize 
access to structured data. Hadoop and MapReduce have limited knowledge of basic RDBMs constructs 
such as indexes, relational constraints, and statistics. Developers designed SQL query engines to take 
advantage of these assumptions and, if relational structures are not properly designed, do not exist, or are 
poorly implemented, performance significantly degrades. A larger question then becomes, “How do we 
match traditional RDBMs performance on a Hadoop cluster considering Hadoop is not architected like a 
traditional RDBMs”? This is the question being addressed by major Hadoop distributors as well as in the 
open community, and it is the one reason the community is moving away from batch-oriented MapReduce, 
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and toward a more scalable and adaptable framework like YARN to allow for interactive and near real-time 
usage, in addition to batch.  

     YARN and the Modern Data Architecture 
 So far we have discussed architectures around virtualization, SANs, traditional HA configurations, as well 
as disk configurations. These are fundamental concepts around data center design and standardization. 
Hadoop disrupts the notion of virtual servers, SAN storage, and RAID configuration. Vendors, data center 
administrators, as well as security administrators sometimes get nervous when asked to embark on this new 
way of storing and processing data. Let us also not forget the analysts who visualize and access the data for key 
business processes. The activities they perform are the gears moving the enterprise. They bring revenue and 
key insights to the business to drive new revenue channels and provide competitive advantage. Disrupting 
their activity means lost productivity and lost revenue. 

 A disruptive technology such as Hadoop inevitably stirs up backlash and FUD in many camps. Vendors will 
fight, and rightfully so, to maintain their data center footprint and argue for the advantages of their technology 
and the disadvantages of others. Other vendors try to embrace the inevitable implementation while assuming a 
key role in the play. While the storm of feature/function and risk/reward rages in the trenches, CIOs, CTOs, as well 
as business analysts just want the data efficiently and cheap as well as with minimal disruption. 

 The primary job of the Hadoop community and the vendors in the space (we will discuss vendors 
and distributions in more detail in the next chapter) is making minimal disruption a reality. Vendors, 
salespeople, and solution engineers can easily get mired in the feature debate and lose sight of the reason 
why Hadoop was created. Hadoop, at its essence, is a platform or architecture driving modern analytics. 
Industry refers to this as the  Modern Data Architecture . 

 Figure  1-9  shows components of the Modern Data Architecture.  

  Figure 1-9.    Hadoop as part of an existing data architecture solution       
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 The architecture incorporates additional sources into the data flow that were previously untapped due 
to the restrictions of traditional RDBMs. We can now include sources such as clickstream, web and social, 
sensor and machine, logs, and images. As we pull this data into Hadoop as streaming inputs or batch, 
we stage them in HDFS for direct analysis or movement into other systems. This approach optimizes the 
RDBMs, EDW, and MPP resources by offloading resource intensive and time-consuming extract, transform, 
and load operations onto the much more economical Hadoop platform. You essentially move from an ETL 
model to a ELT model. You extract and load everything into Hadoop but only transform the data appropriate 
to your given platform or analytical needs. 

 YARN is the driving force behind this architecture. As previously mentioned, prior to the introduction 
of YARN the only computation engine for Hadoop was MapReduce. MapReduce has many benefits but also 
many restrictions. Traditional Hadoop places MR jobs into a queue and a job cannot run until the previous 
job finished. This was due to the notion of slots and how many of these slots were available for an MR job 
to run. MR jobs were batch operations taking hours or days to finish. MR is great if you use your cluster for 
answering singular Big Data questions, but if you wanted to analyze daily sales at the same time you are 
drilling through a dashboard, you were out of luck. 

 YARN introduces the idea of containers. Containers are a pool of resources such as CPU, storage, and 
memory dedicated to a specific application process. A ResourceManager schedules jobs and arbitrates 
application resources based on assigned policies. These policies may or may not include such things as 
“Marketing gets a maximum of 50% of the cluster memory” or “50% of the cluster memory is assigned to 
marketing and HR and of that HR gets 30%”. These key constraints allow for cluster resource provisioning on 
a user or group basis. 

 ■   Note    The example given in the text would be an example of the Capacity Scheduler. This scheduler allows 
for the granular allocation of resource on a per group or user level. Another example scheduler would be the 
Fair Scheduler, which behaves as a FIFO (first-in-first-out) scheduler or, more simply, an equal opportunity 
scheduler. The default scheduler for YARN is the Capacity Scheduler.  

 DataNodes run an ApplicationMaster whose purpose is to control each container on a per-application 
basis. The ApplicationMaster acts as the messenger for the ResourceManager, more specifically a 
component of the RM called the ApplicationManager, and controls resource allocation locally on each node. 
This allows the YARN framework to scale better than if the ResourceManager were a central manager of all 
node resources and did not have the benefit of local resource negotiators. 

 The ApplicationMaster adds a benefit in that third-party products can write applications that utilize the 
AM design and their application will run in conjunction with other AM applications. As seen in Figure  1-9 , 
the introduction of the YARN framework and the AM daemon allows for multi-use query access such as 
batch, interactive, and real-time processing. We refer to this as multi-tenancy and it is the foundation of 
the Modern Data Architecture and why enterprises can now begin building a data lake to stage their data 
for whichever analytical tool they choose to swim in its waters. Integration is key to companies adopting 
Hadoop and to the implementation of the Modern Data Architecture. The original spirit of Hadoop and of 
YARN drives this integration in that the development of both is open and available for the benefit of all.  

     Hadoop and the Open Source Community 
 We cannot discuss Hadoop, YARN, or Hive without mentioning open source software development as well 
as how open source software fits into enterprise adoption. Open source has always been a key component 
of Hadoop and the Hadoop ecosystem. When we say ecosystem, we are referring to all the applications that 
integrate directly with Hadoop and are part of the Apache Software Foundation (ASF). This includes Hive 
but also includes other features such as Sqoop, Pig, Oozie, Flume, and dozens of others. Each one represents 
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a distinct software development project within ASF. This distinction is important because it can cause 
confusion when determining compatible versions as well which features are available for which product 
versions. Luckily for us all project development for each product is executed in the open and we are able to 
freely follow conversations around feature enhancements as well as bug fixes. Besides the lack of software 
licensing, this is what makes open source software truly “open”. Development is not hidden away due to 
proprietary nondisclosure, in fact anyone can add to the discussion or recommend features that should be 
included in future product releases. 

 A number of large software companies like Microsoft have contributed open source code. Companies 
that have large Hadoop installations have also contributed code back into the product. What incentivizes 
them to make code public? The driver behind open source software development is the idea that by 
contributing code back to the project, the product innovates faster and everyone benefits from the 
innovations of the community. In addition, becoming a committer to an open source project is not a bad 
thing to have on your resume. 

 As you begin your Hive journey, you will be spending a majority of time on the ASF home page for Hive. 
This page can be found at    http://hive.apache.org     . Figure  1-10  shows the home page.  

  Figure 1-10.    ASF home page for Hive       

 

http://hive.apache.org/
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 Key links are the Language Manual and Wiki under Documentation as well as Hive JIRA under 
Development. JIRA is issue-tracking software developed by Altassian and is used by the ASF community 
to track bugs, issues, and general project management cases associated with a product. Look at JIRA as the 
helpdesk for ASF software projects. We will talk more about Hive ASF details in later chapters, but it is first 
important to get a good understanding of the open source process and what it means to projects such as 
Hadoop. 

 The following quote underlines the purpose of ASF:

   “The Apache Software Foundation provides support for the Apache community of open 
source software projects, which provides software products for the public good…The Apache 
projects are characterized by a collaborative, consensus based development process, an 
open and pragmatic software license, and a desire to create high quality software that 
leads the way in its field.”    

 ASF is an organization supporting various software development projects. It does this by providing to 
the community a repository and development methodology, as well as forums and support channels used 
by the community to create applications in the open. It provides for a central location for the community 
of programmers to monitor and regulate software development. The emphasis is on a “collaborative 
consensus,” which means decisions are voted on by individuals who, in turn, were voted on to have 
the ability to control the process. Their position and power within a project is a direct result of their 
contributions and leadership. 

 Each Apache project is independent from one another and each project will have top-level PMCs 
(Project Management Committee) assigned to it and who control the overall project direction. An 
individual can be part of a PMC in multiple projects but it is rare and discouraged. Directly below a PMC is a 
Committer, who has write access to the project. Committers are essentially the project developers and they 
submit code to the project. Here is the list of Hive committers:    http://people.apache.org/committers-by-
project.html#hive     . A Committer can also be a release manager, which is someone who is responsible for 
the logistics behind major releases. At the lowest level is a Contributor. A Contributor is someone who may 
ask a relevant question or make a good suggestion. Contributors have no authority in project direction and 
they are unable to add or make changes to code. 

 This certainly is not to say that contributors are not important. This is a volunteer-based organization, 
although Committers are highly sought after and organizations are more than willing to pay top salaries to 
have them on their payroll. Projects still need contributors who are willing to put in personal time to help 
with everything from documentation and bug reports, to basic evangelism. You do not have to be a seasoned 
developer or live in Silicon Valley to be a contributor. Contributors, as well as Committers, come from all 
walks of life and reside all over the world. Keep in mind that open source development is a community. It 
is a community of dedicated, driven volunteers who enjoy creating world-class software for the benefit of 
everyone and, if a company decides to pay you a high salary because your development skills have been 
proven and accepted by a community of developers in the open source meritocracy, so much the better. Also 
keep in mind that if you are a frequent contributor and you contribute valuable code then you can be voted 
on to become a full-fledged committer. 

 Every decision made on a project is made in the mailing list. Nothing is secret and it can be extremely 
fascinating, albeit time-consuming, to follow these conversations. You can find the Hive mailing lists here: 
   http://hive.apache.org/mailing_lists.html     . Hive has four separate lists: User, Developer, Commits, and 
Security. User is a general list for questions and support and is monitored by developers but is primarily a 
user-to-user forum. I strongly suggest subscribing to this mailing list if you plan to use Hive (which I assume 
you will). Simply click on the    user-subscribe@hive.apache.org      link and send an empty e-mail. You should 
receive e-mail verification of your subscription. 

http://people.apache.org/committers-by-project.html#hive
http://people.apache.org/committers-by-project.html#hive
http://hive.apache.org/mailing_lists.html
http://user-subscribe@hive.apache.org
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 ■   Caution    Subscribing to e-mail lists is helpful and informative but can generate a lot of “noise”. The Hive 
community is vibrant and active and you will be able to see a lot of support and use case activity in the listings 
that you will not find anywhere else on the Internet. You can always unsubscribe if you find the information 
unhelpful or overwhelming. Another option to get help on Hive is the Hortonworks Community Connection or 
HCC. You find it by going to    http://community.hortonworks.com     .  

 The developer, commits, and security lists may be too esoteric for those who care more about Hive as 
an analytic platform than Hive as a development project. For the purpose of understanding concepts in 
this book and using Hive on a day-to-day basis, there is no need to subscribe to those lists, although feel 
free if you want to see the inner workings. You also have access to the e-mail archives you can view without 
subscribing. It is easy to get deep in the weeds when following projects, especially when discussions move to 
bug fixes or code development. 

 The Apache Software Foundation provides governing policies around code development. These policies 
are democratic in nature, though a bit stricter in the majority wins type of democracy (think Congressional 
policy). Committers and the community vote code commits as well as package releases and procedural 
policies. In many cases only PMC members have binding votes. Votes, like development decisions, are 
performed online via public forums. If you agree with the commit you type a +1, you do not agree you type 
a -1, which essentially acts as a veto. Besides the standard -1, 0-, +1 votes, the following list shows fraction 
votes and their meaning.

•    +0: I don't feel strongly about it, but I'm okay with this.  

•   -0: I won't get in the way, but I'd rather we didn't do this.  

•   -0.5: I don't like this idea, but I can't find any rational justification for my feelings.  

•   ++1: Wow! I like this! Let's  do  it!  

•   -0.9: I  really  don't like this, but I'm not going to stand in the way if everyone else 
wants to go ahead with it  

•   +0.9: This is a cool idea and I like it, but I don't have time/the skills necessary to 
help out.    

 A vote of -1 kills the process until the veto is resubmitted as an approval or withdrawn. The individual 
casting the veto must also submit a technical design document explaining the reason for the veto. This helps 
cut down the chance of people abusing the veto policy. The veto option provides the process with a strong 
system of checks and balances whereby a single person has the ability to have their dissents and arguments 
fully addressed in an open forum. Only once all parties agree does the PMC change or release the code. 

 These rules differ depending on whether or not the vote is on code change, procedural policy, or 
a new release. We will not go into detail as to these difference, just know that the process is based on a 
democratic foundation designed to produce the best software possible. The process allows everyone the 
chance to contribute opinions and ideas to the project while building consensus and agreement to the 
project direction and functionality. An individual’s status in a project is based on meritocracy. Peers elect 
a committer or PMC based on their contributions and demonstrated knowledge around the product. The 
open source community is truly a community of the best and brightest whose primary purpose is to develop 
better software for everyone.  

http://community.hortonworks.com
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     Where Are We Now 
 I will not deny the Hadoop landscape is changing faster than any single book can follow. Release cycles 
are measured in months and not years. Patches and updates are measured in weeks, not months. The 
open source community innovates faster than anything we have ever witnessed before. Adoption drives 
innovation. As large companies, maybe like yours, take on the challenge and opportunity of Hadoop and 
all it has to offer, they find defects or must have items. These same companies, actually the hard working 
developers and engineers in those companies, maybe like you, have the opportunity to drive the innovation 
by committing code, submitting JIRAs, or offering suggestions through your Hadoop vendor to smooth out 
edges and further drive innovation and adoption. The open source community is vibrant, innovative, driven, 
and committed to providing high quality, but mostly ingenious, software solutions solving complex modern 
data problems. 

 A small but critical component of this ecosystem is Hive. Hive is critical because it is the entry point 
into an exceedingly complex data storage environment. Hive is the link between the traditional and the new. 
Hive is the nod by the Hadoop development community that 40 years of RDBM design and access is of value 
and useful and worth the effort in order to drive adoption. 

 ■   Note    I focus on 40 years because E.F. Codd first published his paper “A Relational Model of Data for Large 
Shared Data Banks” in June of 1970. Oddly, but probably not coincidentally, that whitepaper was published out 
of San Jose, which is the same area as the original Google GFS paper that influenced Hadoop development at 
Yahoo, located near the same area.  

 Hive is Hadoop access for the masses. Hadoop for the masses is no more negative or less pragmatic than 
the advent of the Ford Model T or the microwave. I personally hope the trend continues and I think it will. 
Hadoop for all its scalability and redundancy is nothing without adoption by the users who actually perform 
analysis and insight in an organization. Data is nothing if it is not useful, easily accessible, or provides 
immediate ROI. SQL is the natural language for data and the obvious choice for general Hadoop analysis. 
SQL provides ease of use, common understanding, and flexibility. Hive, though not 100% mapped to ANSI 
SQL, takes core parts of traditional SQL and allows business analysts to quickly adapt to and function on the 
Hadoop environment. 

 Other SQL on Hadoop engines exist such as Impala, HAWQ, and Spark SQL. Each has its benefits and 
drawbacks, areas of strength and areas of weakness. All of them, including Hive, understand the value of 
providing interactive SQL capabilities on Hadoop along with the performance we expect from traditional 
business intelligence infrastructures. Hive stands out with its widespread adoption and diverse development 
community represented by some of the largest IT organizations in the world. Hive is not going away and, 
as we will see in more detail in the coming chapters, continues to grow in features and capabilities with the 
singular purpose of empowering business user to unlock insight stored in Hadoop.       
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    CHAPTER 2   

 Introducing Hive                          

 As much as the Hadoop ecosystem evolves and provides exceptional means to access new types of data and 
structures, we cannot deny the influence and purpose of traditional relational systems. Relational systems 
and especially the data access methods employed by these systems have served as a valuable tool for over 
30 years. The SQL query language brought data access to the masses by abstracting away concepts such 
as data location and instead allowed developers to focus on how the data will be presented. SQL excels 
as a declarative language in which you clearly specify what you want to do in simple English language 
syntax. You  SELECT ,  JOIN ,  SUM , data  FROM  a source  WHERE  the value equals, or does not equal, something. 
The developer does not have to worry about where the data resides on disk, and the structure of the data is 
already predefined in a relational format consisting of tables with rows and columns. 

 The attraction of SQL to the Hadoop world was not in its ability to consume data schematized as rows 
and columns or its efficient use of indexes and statistics but instead, SQL’s popularity as a data query tool. 
Simply put—a lot of people who accessed data knew how to write SQL statements. Keep in mind that early 
Hadoop adoption involved HDFS as the storage system and MapReduce as the compute framework. Java 
is the language of MapReduce so early in the Hadoop adoption, if you needed to perform computation and 
access data in Hadoop, you had to write Java code, specifically MapReduce programs. Large companies like 
Facebook came to realize that you could not hire enough Java developers to write the amount of MapReduce 
code needed to take full advantage of the quantity of data stored in HDFS. In order to increase adoption 
and ease of use, developers needed to abstract away MapReduce complexity in favor of a more demotic 
programming language. 

 The answer was SQL (Structured Query Language). MapReduce, originally, would stay as the compute 
language but would be relegated to behind-the-scenes functionality. Hive or, more precisely, HiveQL 
became a language a business analyst could adopt because the syntax looked similar to SQL, yet it could 
take advantage of the embarrassingly parallel processing power of MapReduce. Interactive SQL on Hadoop 
became the concept behind Hive and the language itself is called HiveQL. 

 ■   Note    I have not been able to find any history behind why Hive was decided as the name of the project. 
The original whitepaper (   http://www.vldb.org/pvldb/2/vldb09-938.pdf     ) has no mention of the reasoning 
behind the name. In addition, Facebook adopted Hive as an abstraction layer for MapReduce which, at the time, 
was the only compute option for HDFS. Other engines have since been introduced that are more interactive than 
MR, but SQL is still the most widely used abstraction layer.  

http://www.vldb.org/pvldb/2/vldb09-938.pdf
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 Facebook acknowledged limitations in the initial design of HiveQL. Originally, Hive was an abstraction 
layer and not a panacea for the inherent limitations of MapReduce as a batch-orientated compute 
architecture. What we will see in subsequent chapters is the evolution of Hive and HiveQL as a framework 
capable of running on more traditional, i.e. familiar, interactive query engines. The recent evolution of 
Hive has moved it away from simply an abstraction layer running on top of batch-centric MapReduce to 
a framework capable of utilizing the full functionality of what we have come to expect from an interactive 
query engine. As we will see in later chapters, Hive has developed from a simple SQL veneer over 
MapReduce to a fully functional interactive framework running on a performant query engine as well as 
cost-based optimizers and file level statistics. 

 The chapter provides a quick overview of Hadoop distributions with the primary intent to standardize 
on a specific offering we will use in the book. It is easy to get bogged down in the various offerings and it 
would distract from the main topic of Hive if we were to continually show each example running in each 
distribution. Just be aware that besides any discussion around the Tez engine, most of the code provided can 
be executed in any distribution. In addition, the architecture of Hive and of clusters in general is universal 
and applicable across the board. Though briefly covered in this chapter, the topics of Hive architecture are 
discussed in more detail in Chapter   3    . 

     Hadoop Distributions 
 Before diving into Hive’s architecture, we first need to address the proverbial “elephant” in the room 
around Hadoop in general. Hive’s open source roots, as well as Hadoop and other ASF projects, poses 
some complexity when considering your install and configuration options. There are a number of different 
approaches and we cannot cover all of them in this book. Well, we could but then the book would not be 
much fun and we would take that much longer to actually begin using Hive. 

 We can break down Hive deployment options into two basic categories: roll-your-own or use a 
distribution. The roll-your-own option is a term used to mean downloading your own binaries and installing 
all the components yourself. The open source nature of the products allows you to download the full 
products as you see fit without any regard to a traditional user license. This means you will not need to pay 
a fee or even give away any personal information and, most importantly, a salesperson will not call you. 
The tradeoff to this approach is the complexity and the need for increased administration skills, especially 
around Linux and general Linux software build procedures. But also, and most importantly, having to deal 
with the interoperability between the release of Hive you download and other applications. 

 ■   Caution   If you are not familiar with the world of open source, you will quickly realize that as much as the 
open source community excels in passion and innovation it just as much lacks in standard documentation. The 
quality of documentation can vary wildly from one project to another. In some projects, key concepts and steps 
are omitted due to the misconception of the audience’s technical level and background. Overall though I think 
open source documentation has gotten much better and some projects have better documentation than even 
proprietary offerings.  

 If you are a business end user wanting to try out the product or run tutorials, I do not recommend 
this approach. You will spend far too much time mucking around with Linux administration problems. 
Plus, documentation is limited at best and sometimes completely non-existent. Versioning can also be 
intimidating. Project development is in isolation from one product to another so the most recent version of 
each project is not necessarily compatible with one another. As of this writing, Table  2-1  shows the versions 
for the various ASF projects used in the three most recognized Hadoop distributors: Cloudera, MapR, and 
Hortonworks.  

http://dx.doi.org/10.1007/978-1-4842-0271-5_3
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 ASF projects are not required to perform QA compatibility between versions; this is the job of the 
Hadoop distributors. The three primary vendors are Hortonworks, MapR, and Cloudera. Each vendor 
supplies an easy startup “sandbox” platform you can use to get up and running quickly with Hadoop and the 
ecosystem. 

    Table 2-1.    Apache Project Versions   

 Project Name  Cloudera CDH 5.7  MapR 5.1  Hortonworks 2.4  Current Release 

 Accumulo  N/A  N/A  1.7.0  1.7.1 

 Atlas  N/A  N/A  0.5.0  0.5.0 

 Ambari  N/A  N/A  2.2.2  2.2.2 

 Calcite  N/A  N/A  1.2.0  1.7.0 

 Crunch  0.11.0  N/A  N/A  0.14.0 

 DataFu  1.1.0  N/A  1.3.0  1.3.0 

 Falcon  N/A  N/A  0.6.1  0.6.1 

 Flume  1.6.0  1.6.0  1.5.2  1.6.0 

 Hadoop  2.6.0  2.7.0  2.7.1  2.7.2 

 Hbase  1.2  1.1  1.1.2  1.2.1 

 Hive  1.1.0  1.2.1  1.2.1  2.0.1 

 Impala  2.5.0  2.2.0  N/A  2.5.0 

 Knox  N/A  N/A  0.9.0  0.9.0 

 Mahout  0.9.0  0.11.0  0.9.0  0.12.1 

 Oozie  4.0.0  4.2.0  4.2.0  4.2.0 

 Phoenix  4.3.0  N/A  4.4.0  4.7.0 

 Pig  0.12.0  0.15.0  0.15.0  0.16.0 

 Ranger  N/A  N/A  0.5.0  0.6.0 

 Sentry  1.5.1  N/A  N/A  1.6.0 

 Slider  N/A  N/A  0.80.0  0.90.2 

 Solr  5.2.1  4.10.3  5.2.1  6.0.1 

 Spark  1.6.0  1.6.1  1.6.0  1.6.1 

 Sqoop  1.4.6  1.4.6  1.4.6  1.4.6 

 Storm  N/A  0.9.4  0.10.0  1.0.1 

 Tez  N/A  N/A  0.7.0  0.8.3 

 Zookeeper  3.4.5  3.4.5  3.4.6  3.4.8 
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 ■   Notes    Table  2-1  is not an exhaustive listing of all features available in each distribution. I have highlighted 
only the features that exist on ASF as either top-level or incubator projects and are considered standard 
features in one or the other distribution. Projects listed as N/A does not mean the distribution does not have 
that functionality. It primarily means the functionality is handled by a non-ASF solution. Projects are constantly 
being added and updated. My guess is in the time it takes this book to be published and reach your hands, the 
versions will have already changed.  

 Each distribution will add functionality dependent on how well the community adopts the new feature 
and where Cloudera and MapR choose to provide proprietary solutions. Spark, for example, when it first was 
released, came standard in CDH, but Hortonworks provided it as a technical preview, until recently. Spark 
is not a standard offering across all distributions. MapR uses a proprietary version of Apache Hadoop called 
MapFS. Both Cloudera and MapR include Hive and but tend to focus on their own creations, called Impala 
and Drill respectively. 

 Distributions are a work in progress and always evolving. They are organic and grow as technology 
features mature and wane. They focus on ease of setup and integration as well as operations, governance, 
and security. In the end, distributions provide a solid technical standard and come with world-class 
engineering support to help you along your Hadoop journey.  

     Cluster Architecture 
 Before we jump specifically into Hive, we first need to quickly address cluster design and set some 
performance expectations as well as general practices as you build and grow your Hadoop cluster. This is a 
Hive book and not a Hadoop architecture book, so we will take a high-level view of how to design a cluster. 
We will also review some key terminology used in Hadoop clusters. This will hopefully help you better 
navigate and understand the platform Hive depends on to operate. 

 Because data volumes always increase and there are always use cases in the pipeline, your cluster will 
grow. It may grow slowly over a period of months, or it may grow rapidly as your company brings on new use 
cases and lines of business (LOB) become excited about the possibility of new analytics and insight. Setting 
things correctly from the onset will help prepare you for unexpected growth. Luckily, Hadoop was designed 
to grow, i.e., to scale easily to meet your needs. 

 Architecting your cluster involves determining on which nodes to place which components. Where 
you install services is critical because it affects both cluster availability as well as cluster performance. 
Generally, administrators divide cluster servers into three categories: master, edge, and worker. A master 
server contains any component considered absolutely critical to the health of the cluster and usually involve 
components where high availability is a requirement. A worker server contains any cluster service that is 
easily replaced or can incur downtime without fear of data loss. Following are examples of services you will 
want to provision on master node(s) in a typical cluster.

•    NameNode  

•   JobTracker  

•   ResourceManager  

•   Secondary NameNode  

•   HBase Master, HiveServer2  

•   Oozie Server  
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•   Zookeeper  

•   Storm Server  

•   WebHCat Server    

 Hadoop vendors tend to segregate clusters into three sizes: small, medium, and large. How many nodes 
constitute a small, medium, or large is mostly a heuristic exercise. Some say if you can manage a 50-node 
cluster then you can manage a 1,000-node cluster. Generally speaking, a small cluster will tend to be less 
than 32 nodes, a medium cluster is between 32 and 150 nodes, and a large cluster is anything over 150. 
Another common design template is whether your cluster will fit on a single rack or multiple racks. A small 
cluster fits on a single rack while medium to large clusters will span multiple racks. 

 Again, these are generalizations and your mileage may vary but it is likely that if you have more than 32 
nodes or multiple racks in your cluster, you are dealing with many more Hadoop components and interfaces 
than in a smaller cluster and, in addition, your company has decided that Hadoop will be a core platform 
in your organization and with critical functionality. These additional components will require additional 
resources as well as more focus on disaster recovery, high availability, and security across the stack. You 
will also have to pay close attention to network configurations. These include the speed of your top-of-rack 
switches as well as the bandwidth between inner-rack nodes. 

 Small clusters will have more components running on a single server than larger clusters. As your 
cluster grows, you will want to think about segregating master components and providing dedicated 
nodes to them. Small clusters are ideal for proof-of-concepts, pilots, or development environment. Think 
about using a cloud service for these types of clusters since they can be extremely affordable and quickly 
implemented. Cloud providers such as Google, Microsoft’s Azure, and Amazon’s AWS all have quick and 
easy methods for standing up small and large clusters. You can choose to run your cluster with minimum 
administration as a PaaS (Platform as a Service) or, if you want more control, as a IaaS (Infrastructure as a 
Service). 

 A hardware discussion is out of scope for this book and, in any case, any mention of hardware 
specifications would only be quickly outdated. Hadoop has matured enough and garnered enough interest 
in data centers that all the hardware vendors provide reference architectures for Hadoop clusters. Many of 
the hardware and chip vendors have chosen to partner with each of the vendors. 

 ■   Note    Hadoop doesn’t require major vendor hardware. Feel free to go to the janitor closest or your local 
resale shop and grab the cheapest boxes you can find, although getting permission to install these in your data 
center may be a bit more difficult. Keep in mind that as much Hadoop touts its resiliency, master servers are 
still SPOF (single point of failure) and need to be accounted for appropriately.  

 The Hive client is installed on all worker nodes. When interacting with Hive, you will most likely access 
it through a web portal such as Ambari or Hue. These servers tend to be installed on edge nodes. Edge nodes 
have fewer resources with no master server components. Keep in mind that they may contain metadata 
repositories that should be backed up like any other relational database system. You can think of edge nodes 
as management servers or even web servers. An edge node may contain the operational software such as 
Ambari, MCS, or Cloudera Manager as well as client components such as Pig or Hive. They may also be used 
for firewall purposes such as is the case for Apache Knox. The point being is edge nodes tend to be smaller 
servers whose main purpose is to act as a client gateway into the larger Hadoop infrastructure. You may 
still want to provision edge nodes with a fair amount of storage due to the amount of potential application 
logging that can occur. 
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 Another way to look at edge nodes are as management servers that contain non-distributed 
components. For example, Ambari runs as a single instance and is not distributed across multiple nodes. 
The NameNode has the same feature. Because these components are vital to the cluster but not distributed, 
a management node will need to be designed with fault tolerance in mind. Management servers also tend 
to be much more RAM sensitive than storage. You do not normally need much storage for a management 
server. Figure  2-1  shows a simple diagram of a client, a management node, and worker nodes and the 
components traditionally stored on each.  

  Figure 2-1.    Cluster setup       
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 The lines in Figure  2-1  indicate ways in which a client can interact with the cluster. You may access 
the management tools directly on the management node through a RESTful API or web browser. The other 
method would involve transferring data to HDFS by contacting the NameNode for file and block information 
and then working directly with the DataNodes. Again, there are many factors that would make your overall 
cluster design much more complicated and increase the amount of servers you may deploy. For example, you 
may want a dedicated HiveServer2 instance or a server used as a Knox security gateway. You may even have a 
federated cluster with multiple NameNodes or an additional NameNode for high-availability failover. These are 
all good discussions to have between your internal operations and security teams and your distribution vendor. 

 The point being is that Hive is only one small component of a larger Hadoop ecosystem. No one 
builds out a Hadoop cluster just to run Hive. Clusters are built for innumerable reasons from ETL offload to 
ingesting and persisting streaming sensor data. Clusters will most likely include applications like Solr, which 
is used for text searching, or HBase, which is used for more transaction-like processing. Cluster design and 
tuning deserves a book on its own but know that Hadoop cluster is a versatile platform environment meant 
to change the way your organization manages, stores, and analyzes all your data.  

     Hive Installation 
 Despite all the features and functionalities packed into a Hadoop distribution, our focus is on Hive. As of 
the writing of this book, Hive 2.0.1 is the latest Apache version. Although the latest Apache version is 2.0.1 
we will work exclusively with version 1.2.1 of Hive throughout subsequent chapters because it is the latest 
version tested and offered in a distribution. If you happen to already be using CDH 5.7, which uses Hive 1.1 
with patches, most of the functionality should still work. Functionality involving the Tez engine will not be 
available because Cloudera does not support Tez as a SQL engine. 

 Throughout this book we will focus on the Apache version of Hive found in the Hortonworks 
distribution. The reason for this approach is because the open source version of Hive is the de facto gold 
standard version. Any addition or subtraction from the core bits does not fully represent what the open 
source community meant Hive to be or, more specifically, contains proprietary additions and/or omissions 
unique to a given distribution. Hortonworks is the distribution most closely aligned to the Apache version. 
Cloudera provides Hive in their distribution but their SQL-on-Hadoop solution is primarily focused on 
Impala. MapR standardizes on Apache Drill based on Google’s Dremel. It is beyond the scope of this book 
to go into a feature comparison between the products. Just know you have many choices but not all the 
solutions are necessarily mutually exclusive. For our purposes, we will stick to Hive and to the Apache 
version to ensure all the features and options discussed in this book perform as expected. 

 There are a number of ways to “enter” Hadoop. Few readers of this book will have access to a multi-
node cluster. If you are one of these people, you may want to skip ahead to the next chapter, or you can 
follow along and install your own personal environment. There is certainly something to be gained in going 
through even a basic setup and install process. For the rest of you, we assume you will perform at least one of 
these options:

•    Install Hadoop and Hive using Apache code from Apache.org.  

•   Install Hadoop and Hive using the documentation instructions on a vendor’s site 
such as Hortonworks, Cloudera, or MapR.  

•   Install Hadoop and Hive using the virtual sandbox from MapR, Cloudera, or 
Hortonworks.  

•   Install Hadoop in a cloud offering such as Google, Azure, or AWS.    
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 Out of these four options, I strongly recommend the third or the fourth options. The sandbox will be the 
option we will focus on in this book. I do not want to de-emphasize the ease of using a Cloud offering. Each 
cloud provider has distributions in their marketplace, which makes setting up a cluster a trivial exercise. 
Most cloud providers also have automated sandbox installs. If you happen to have an account with a cloud 
provider, we strongly recommend using that environment throughout this book. If you do decide to install 
Hive manually outside a distribution, the overall install is trivial compared to installing the full Hadoop 
application, although Hive still requires a cluster for any data processing. You have the choice to install Hive 
either through a GZIP file or through a project builder such as Maven that builds Hive from the source code. 
The apache.org Hive web site has all the steps to build your Hive environment at    https://cwiki.apache.
org/confluence/display/Hive/GettingStarted     . 

 ■   Note    We will bring this up again because we know certain readers will feel something is lacking in the 
text, but this is a Hive book and not a “how to install Hadoop” book. Most books currently on the market have a 
section on how to install Hadoop from source but, in many cases, those instructions are incomplete or out-of-
date once the book is published. This book focuses on the easiest method to get started so that you can quickly 
get your Hive environment up and running.  

 Installing a distribution’s virtual environment will work fine for the purposes of this book. You will not 
need a fully functional and highly available cluster to run through the exercises presented here. We will not 
be overly concerned with performance. You will want to have enough storage and processing in order to run 
the VM and store the necessary data sets. The typical virtual Hadoop sandbox environment has the following 
out-of-the-box requirements:

•    Virtual machine application: VMWare or VirtualBox  

•   Minimum 8 GB of RAM  

•   At least 1 GB of storage  

•   Minimum 2 vCPU    

 As always, more is better but we are trying to test functionality, not performance. In the real world, you 
would not want to try to crunch TB or PB of data in Hive on a single node cluster. You may need to think 
about increasing available RAM if you choose to play with other features such as Hbase, which require more 
processing. We have tried to make the data sets used in this book large enough to be interesting but still 
small enough to work practically on an average workstation. You have the ability to customize more data set 
sizes so, if you choose, feel free to work with larger data sets for testing and additional insight. You may stress 
your workstation compute resources, but you will not stress Hive and Hadoop. 

 A distribution download can be as much as 8.5 GB. As mentioned, the primary distribution used in 
this book will be the Hortonworks sandbox. The Hortonworks sandbox does not require software licenses. 
No software licensing allows for a much better testing and development experience for anyone just starting 
out with the technology because you are not restricted to only using the product within a given time period 
or you do not have access to all the tools. The authors of this book do not intend to dissuade you from 
downloading and working with the other distributions in order to get a good feeling for both the similarities 
as well as the differences. Each distribution will have Hive but Hortonworks is a major backer of the Hive 
initiative and invests most heavily in Hive development.  

https://cwiki.apache.org/confluence/display/Hive/GettingStarted
https://cwiki.apache.org/confluence/display/Hive/GettingStarted
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 Hive is a client application using HDFS for its backend storage. Included in Hive are other server and 
functional components such as HiveServer2 and HCatalog. The details around these and other structures will 
be discussed in Chapter   3    , “Hive Architecture”. For now, just know that installing Hive is essentially installing 
a client application on your Hadoop cluster. You will need to designate nodes for the Hive client as well as the 
Hive metastore (HCatalog) and HiveServer. Each one will run as a separate service. Figure  2-2  shows what 
the services look like through the Ambari 2.2.2 console. When running the Hortonworks sandbox you can 
connect to Ambari via your local loopback address or by the  sandbox.hortonworks.com  DNS address plus 
the Ambari port number. Type the following in a browser, preferably in Firefox or Chrome:    http://sandbox.
hortonworks.com:8080     .  

  Figure 2-2.    Hive services in Ambari       

 Note that five Hive-related services are running: Hive Metastore, HiveServer2, MySQL Server, WebHCat 
Server, and Hive Client. All of these services are necessary for Hive to operate and each one will be discussed 
in more detail in later chapters. 

 Each service in the summary is installed on a single node. The sandbox runs Hadoop in what is referred 
to as  pseudo-distributed mode . This essentially fools the Hadoop system into thinking it is running on a 
cluster when, in fact, it is running on only a single node. Hadoop replication is set to one (default is 3 on a 
multi-node cluster), which means for our installment we are not concerned with fault-tolerance or high 
availability. This works fine for the purposes of our demonstrations and examples. 

 Whether you choose Ambari, MCS, or CM, each of these products provide a means to manage the Hive 
services as well as alter and view configuration settings. Within each you can stop and start services, view 
running queries and jobs, and check the resource health of the nodes. Each is an operational application 
used not only to manage Hive but also any other service component running on the cluster. Since you are 
mostly likely the sole owner of your personal Hadoop installation running on your desktop, you will need to 
be familiar with administrating the environment. You will mostly be using the operation tools to alter Hive’s 
running configuration files. As a developer or business analyst at your business though, you will not have 
much reason to work with these tools. It is still advantageous to be familiar with what options they provide to 
maintain the health of your environment and get the most out of the product.  

     Finding Your Way Around 
 Now that you have a green light, or green icon, on all your Hive services, you are ready to use Hive as an 
SQL-on-Hadoop tool. Ambari views provide an easy means for executing Hive queries through a graphical 
user interface. You can use another third-party application like SQuirrl SQL (see    http://squirrel-sql.
sourceforge.net/     ) that connects to your Hive metastore. In our exercises we will be using HiveQL through 
the command-line (CLI) as well as the Ambari Hive view environment. These are development tools that 
allow you to execute SQL queries against Hive tables as well as import custom UDFs or SerDes. They are 
not analytic tools! There is a broad range of analytics that can connect to Hive through ODBC or JDBC 
connections. Some of the more popular ones will be discussed in a later chapter. 
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 ■   Note    For now do not worry about terms like SerDe or UDF. Some of you already familiar with SQL will 
understand a bit about what a user defined function (UDF) is used for and they are not that much different in 
Hive. SerDe is a different concept that we will talk about and use in later chapters.  

 As mentioned, there are two primary ways of interfacing with Hive: command-line and Ambari views. 
Figure  2-3  shows the Ambari Hive view in Ambari 2.2.2.  

  Figure 2-3.    Ambari view       

 The interface should be intuitive to anyone familiar with SQL query tools. The main parts include the 
ribbon, a database explorer, query editor, and various configuration and management options. You will type 
HiveQL statements into the query editor and then press the Execute button to run the queries. You will use the 
toolbar to view saved queries as well as see a history of executed queries. Keep in mind that Hive has hundreds 
of configuration settings. You have the option of changing environment settings at runtime or managing the 
configurations through the Hive service in Ambari. Some of these settings will be addressed in later chapters. 
The Ambari Hive view is designed for an end user and not an administrator. Typically a business analyst or SQL 
developer will use the Hive view for executing and testing queries against their data sets. 

 The database explorer window functions similarly to the  USE  command in SQL. You will be able to 
select any database you have access to and each database contains its own list of tables. If no database is 
specified, then Hive uses a database called  default . To see what tables are in the database, you can either 
select the database or execute a  show tables  query in the query editor. 

 If you have installed a sandbox you should see two tables, called  sample_07  and  sample_08 . While 
attached to the default database, execute the following query in the query editor. After typing your query, 
press the Execute button. 

   SELECT * FROM sample_07; 

 



CHAPTER 2 ■ INTRODUCING HIVE

33

   Hive SQL is called HiveQL. When you are executing from the Hive view query editor, the semicolon at 
the end of the statement is optional. As we will see later when executing HiveQL from the command-line, 
Hive requires the semicolon at the end of each statement. HiveQL also does not recognize upper and 
lowercase characters. For the purposes of readability, we will show all HiveQL-specific commands in 
uppercase. Figure  2-4  shows the query output.  

  Figure 2-4.    Results from the sample_07 query       
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 As you create tables and databases in Hive, they will appear in HCatalog. HCatalog provides a means 
for other applications besides Hive to access these tables, preventing you from having to recreate a table on 
a per-application basis. A HCat table, as well as any Hive table you create, can be accessed via an ODBC or 
JDBC connection as well as through specific HCat loaders. The details around HCat and connecting to Hive 
tables will be discussed in later chapters. Just know for now that HCat tables and Hive tables are essentially 
one in the same and Hive is the means to create schemas for data files stored in Hadoop. 

 The magic of Hive is not in how it differs from traditional SQL but in how it is similar. Based on the 
query syntax as well as the results, you would not have a clue you may be running the command against a 
raw data file broken into blocks across 100s of nodes in a distributed architecture. Additionally, you may be 
querying across terabytes of data with response times similar to what you would see with gigabytes of data 
on a traditional relational system. 

 Of course, Hive out-of-the-box will not be as performant as an RDBMs. It is equivalent of running a 
query with no indexes. There are a number a performance best practices you will want to be familiar with, 
such as using ORC files, Hive indexes, and table partitions. These will be discussed in the chapter on Hive 
performance. Remember too that Hive is an analytic tool and will not replace your existing OLTP processes. 
This goes as much for the processing expectations as well as the similarities with the ANSI SQL and HiveQL. 
For example, you can expect to see windowing functions but you will not see triggers. As scalable as Hive is, 
it does not mean you can start using Hive as an e-commerce cart application, at least not yet.  

     Hive CLI 
 Besides the graphical interface option, Hive provides a command-line interface for managing and running 
scripts, data-definition commands, and data-manipulation commands. The command line provides 
flexibility and low overhead for interacting with Hive. 

 Hive CLI is great for quick-and-dirty SQL work or easy scripting. This section will not go into deep detail 
about Hive CLI but it will show you have to get started. To connect to Hive CLI, you will need to  ssh  into the 
sandbox using the following command: 

   ssh root@sandbox.hortonworks.com -p 2222 

   At the command prompt type your password. This will start a  ssh  session on the sandbox and you will 
be logged in as the root user. At the command line, type  hive . After some initial configurations displays, your 
command prompt should now show as  >hive . Here are the step-by-step commands to log into the sandbox 
and start HiveCL. 

    HW10882:~ sshaw$ ssh root@sandbox.hortonworks.com -p 2222 
 root@sandbox.hortonworks.com's password: 
 Last login: Sun Jun 12 17:14:05 2016 from 10.0.2.15 
 [root@sandbox ~]# hive 
 WARNING: Use "yarn jar" to launch YARN applications. 

   Logging initialized using configuration in file:/etc/hive/2.4.0.0-169/0/hive-log4j.
properties 
 hive> 

    You can execute all your normal HiveQL commands from the prompt. The one difference is that you will 
be required to end all your statements with a semicolon. Pressing Enter will start a new line if a semicolon 
is not present. If you happen to press Enter without a semicolon, you can go ahead and type a semicolon on 
the new line and Hive will execute the statements on the previous lines. 
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 Let’s start by typing  show tables;  on the command line and pressing Enter. The following code 
demonstrates the  show tables  command as well as a  select  from the  sample_07  table. Notice we put a 
 LIMIT  command on the query. This acts just like SQL and restricts the amount of rows to the value set by the 
 LIMIT  command. 

   hive> show tables; 
 OK 
 sample_07 
 sample_08 
 Time taken: 7.651 seconds, Fetched: 2 row(s) 
 hive> SELECT * FROM sample_07 LIMIT 10; 
 OK 
 00-0000  All Occupations                      134354250       40690 
 11-0000  Management occupations               6003930         96150 
 11-1011  Chief executives                     299160          151370 
 11-1021  General and operations managers      1655410         103780 
 11-1031  Legislators                          61110           33880 
 11-2011  Advertising and promotions managers  36300           91100 
 11-2021  Marketing managers                   165240          113400 
 11-2022  Sales managers                       322170          106790 
 11-2031  Public relations managers            47210           97170 
 11-3011  Administrative services managers     239360          76370 
 Time taken: 3.163 seconds, Fetched: 10 row(s) 
 hive> 

   Like SQL, Hive has a number of ways to see metadata about objects. There are a few ways to see the 
table details. Try executing one or all of the following commands: 

   DESCRIBE sample_07; 
 DESCRIBE EXTENDED sample_07; 
 DESCRIBE FORMATTED sample_07; 

   To leave the HiveCL prompt, you simply type  exit  with a semicolon. This will exit you back to the shell 
command line. This quick exercise hopefully helped to show that you will have plenty of options in Hive to 
view and manipulate data, which should be familiar to anyone familiar with SQL. Facebook created Hive to 
abstract Java MapReduce from business analysts and make Hadoop accessible to those familiar with SQL 
and who are most responsible for viewing the data and extracting valuable analytical insights. Since the 
time Hive was created, it has grown significantly in its performance capabilities as well as its breadth of SQL 
syntax. Hundreds of companies use Hive today as their primary schema on Hadoop for all their analytics. 

 This chapter was designed to provide you with a high-level overview of what you can expect to see and 
accomplish in Hive. The purpose is to give you the entry point into the Hive environment. In later chapters, 
we will dig deeper and explore the full functionality of Hive. On the surface Hive looks simple. It allows you 
to quickly begin executing standard SQL syntax against raw structured and semi-structured data, but Hive 
is much more than that. Hive is highly adaptable and can read numerous file types as well as generate new 
storage files for near real-time query performance. Many of your existing analytic tools can access the Hive 
tables you create as if they were accessing a traditional relational database. Users have no idea that the tables 
they are querying are actually CSV, JSON, XML, or any number of different file types. 

 Hive is the de facto standard and most widely used SQL-on-Hadoop tool. Hive exists completely in 
open source and is being continually developed and improved on by Committers across a diverse range of 
companies. As you begin your journey with Hive, you will find it to be an amazing tool for its simplicity as 
well as for the complex analytic operations it can achieve.     



37© Scott Shaw, Andreas François Vermeulen, Ankur Gupta, David Kjerrumgaard 2016 
S. Shaw et al., Practical Hive, DOI 10.1007/978-1-4842-0271-5_3

    CHAPTER 3   

 Hive Architecture                          

 This chapter digs deeper into the core Hive components and architecture and will set the stage for even 
deeper discussions in later chapters. Here you will see what makes Hive tick, and what value its architecture 
provides over traditional relational systems. Make no mistake about it, Hive is complicated but its complexity 
is surmountable and will be familiar to those who make a living accessing data. Keep in mind too that, like 
any software development project, Hive is constantly changing and changing fast. Competition in the SQL-
on-Hadoop space is driving community innovation at a phenomenal rate. This chapter helps you navigate 
the core of Hive and aids you in the ride. 

     Hive Components 
 Hive is not a standalone tool and relies on various components for storing and querying data. Within the Hadoop 
ecosystem, Hive is considered a client data access tool. Data access requires a compute, storage, management, as 
well as a security framework. Figure  3-1  shows a high-level diagram of these various components.  

  Figure 3-1.    Hive components       
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 As mentioned previously, Facebook developed Hive to abstract away the complexities of writing 
MapReduce, aka Java. This approach overcame serious Hadoop adoption and access barriers, but although 
Hive smelled like SQL and tasted like SQL, it still was not SQL, especially in regards to processing speed. 
Under-the-hood Hive queries still ran as MapReduce jobs. MapReduce is batch processing while SQL is an 
interactive processing language. 

 ■   Note   What is considered batch, interactive, and real-time is somewhat up for debate. The standard 
definition for interactive is anything that can run in around two seconds. Batch tends to run much longer 
while real-time is much quicker. The best explanation I’ve heard is to consider interactive “human time” and 
real-time “machine time”—think sensor data streaming. Ultimately each person and company will need to 
determine SLAs.  

 Early on, this mix of what should be an interactive SQL query experience turned into a “wait a day 
until it completes” experience, which frustrated traditional business intelligence professionals. The fact 
that the query would potentially run against petabytes of data was little consolation to end users who just 
wanted interactive data analytics. You can horizontally scale your cluster for additional compute resources 
and speed up processing, but that would not be a long-term approach and strategy for increasing Hadoop 
adoption. 

 Other Hadoop distributors saw the greater need for interactive querying and began developing their 
own implementations. These include Cloudera’s Impala, Pivotal’s HAWQ (now Apache HAWQ and also 
Hortonworks HDB powered by Apache HAWQ), MapR’s Drill, Google’s BigQuery, IBM’s Big SQL, Actian’s 
Vortex, and Jethro SQL, to name a few. Even now the field continues to grow as other processing engines 
like SparkSQL design their own unique version of SQL on Hadoop. The original Hive on MapReduce open 
sourced by Facebook required a much needed reengineering to provide similar, competitive functionality to 
the proprietary offers. This prompted the Stinger and the Stinger.next initiative. As of Hive 1.2.1 you have a 
choice to run Hive as batch using MapReduce, or as interactive using Tez, or leverage in-memory processing 
using Spark. Tez is the default execution engine. We will look a bit closer at Tez later in this chapter as well as 
in subsequent chapters.  

     HCatalog 
 A key component you will need to be familiar with and one we will discuss frequently in this book is 
HCatalog. When we refer to the concept of schema-on-read versus schema-on-write, HCatalog is what 
facilitates the schema-on-read. Although usually talked about as a component separate from Hive, HCatalog 
and Hive are inseparable. When you create a Hive table you create a structure in HCatalog. HCatalog 
facilitates sharing schemas across various Hadoop components. HCatalog provides a number of key 
benefits:

•    Provides a common schema environment for multiple tools  

•   Allows for connectors to tools to read data from and write data to Hive’s warehouse  

•   Lets users share data across tools  

•   Creates a relational structure to Hadoop data  

•   Abstracts away the how and where of data storage  

•   Hides schema and storage changes from users    
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 By having HCatalog as the schema metalayer for your tools means when you create a Hive table or 
use Pig, you do not have to be concerned about where the data is stored or the data format it is stored in. 
Additionally, you only need to create the table definition once and you can access it using both Pig and Hive. 

 When you issue a  CREATE TABLE  statement (this should look familiar to anyone working with relational 
databases) in Hive, such as: 

   CREATE TABLE customers ( 
         customerid      int, 
         firstname       string, 
         lastname        string 
 ) 
 STORED AS orcfile; 

   This statement creates a table definition in the Hive Metastore. For now, do not be concerned with the 
 STORED AS  clause. This will be discussed in a later chapter. The definition could also contain partitioning 
information to help with performance, free text comments describing the table, or a directive on whether or 
not the table is external or internal to Hive. The raw data in HDFS forming the content of the table remains 
unchanged, but HCatalog applies a structured metalayer defining the data format and data storage. The 
HCatalog definition resides outside of HDFS. Figure  3-2  shows the database options for the Hive Metastore.  

  Figure 3-2.    Hive Metastore options       

 The Hive database options are MySQL (default), PostgreSQL, and Oracle. Many organizations will 
choose a database such as Oracle for the Hive repository because the Oracle environment may already 
provide for security, backup and recovery, and high availability. Local metastore repository will be fine for 
development environments. For production environments, you will want your Hive Metastore to be secure 
and protected from failure since it will contain all your table definitions. Keep in mind the files for Hive are 
stored on HDFS, but the metadata defining the schema for these files exists in a relational database outside 
of HDFS—either on another server or somewhere on the local Linux filesystem. If you choose Oracle, you 
will need your Oracle DBA to provide the Oracle JDBC driver as well as access to whatever account you 
choose in the Hive Metastore settings. Refer here to documentation about installing Hive to a non-default 
database:    http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.1.0/bk_ambari_reference_guide/
content/_using_non-default_databases_-_hive.html     . 

 

http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.1.0/bk_ambari_reference_guide/content/_using_non-default_databases_-_hive.html
http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.1.0/bk_ambari_reference_guide/content/_using_non-default_databases_-_hive.html
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 ■   Note    Do not be too concerned about the size of the HCatalog database. Some of the largest Hive 
implementations only use a couple of terabytes. These are extreme cases where the size of data managed 
under Hive is in the 100s of petabytes. In most situations, allocating a few gigabytes of space should be plenty.  

 HCatalog is essentially an abstraction layer between data access tools such as Hive or Pig and the 
underlying files. In addition, HCatalog provides for an easy separation between those more familiar with 
the operational aspects of the infrastructure and those more familiar with the LOB (line of business) and the 
corporate data. Table  3-1  illustrates this process.  

   Table 3-1.    Roles That HCatalog Helps to Facilitate   

 User  Job Function  Activity and Tools 

        

 User A is responsible for general cluster 
administrations. He will move data into 
HDFS, maintain security, and make sure 
data is available. 

 Any number of streaming or file copy 
features. These features may have manual 
and automated file ingress capabilities. 

        

 User B is responsible for cleansing the data 
and\or creating Hive tables in HCatalog. She 
is knowledgeable of file formats and general 
Hive optimization techniques. 

 She will use Hive to create HCatalog tables. 
She may also use Pig as an ETL tool to 
cleanse and modify the data and move it 
into HCatalog. 

        

 User C sees the tables in Hive or in another 
third-party analytic application and uses 
them to analyze the data to gain business 
insight. 

 Any number of third-party tools can be used 
to access HCatalog tables. HCatalog accepts 
ODBC as well as JDBC connections. 

 The end user has little concern with how the data is stored, where it is stored, or even how it is 
specifically schematized. All User C cares about is whether the data is available to the analytic tools at their 
disposal and whether the data is correct. User A is your traditional operations professional and User B is a 
traditional ETL\SQL developer. Our guess is, as a reader of this book, you fall into the User B or User C camp, 
although there is still value if you happen to be in charge of operating the cluster and moving data into the 
system. Much of the dirty work behind Hive is wrangling data from multiple files coming from various data 
sources and interpreting these into a loose structure or schema. Later chapters will discuss many of these 
options and you will find that much of the data wrangling has been done for you.  
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     Hiveserver2 
 As beneficial as Hive was at providing a SQL abstraction layer for running MapReduce, there were still some 
major limitations. One limitation was the ability for clients to connect to the metastore using standard ODBC 
and JDBC connections. This is something we take for granted in traditional relational database systems. The 
open source community addressed this limitation by creating the Hive server. Hive server allowed clients 
to access the metastore using ODBC connections. With Hive server, clients can connect to HCatalog with 
business intelligence applications like Excel or productivity applications like Toad or SQuirreL. 

 There were still limitations with Hive server. Primarily, the limitations included user concurrency 
restrictions as well as security integration with LDAP. Each of these components were solved with the 
implementation of Hiveserver2. The HiveServer2 architecture is based on a Thrift Service and any number 
of sessions comprised of a driver, compiler, and executor. The metastore is also a key component of 
HiveServer2. Figure  3-3  shows a high-level diagram of the HiveServer2 basic architecture.  

  Figure 3-3.    HiveServer2 architecture       

 Hiveserver2 supports Kerberos, custom authentication, as well as pass-through LDAP authentication. 
All connection components—JDBC, ODBC, and Beeline—have the ability to use any one of these 
authentication methods. In addition, HiveServer2 can function in either HTTP mode or TCP (Binary) mode. 
HTTP mode is useful if you need HiveServer2 to act as a proxy or utilize load balancing. You can access 
the configurations settings for HiveServer2 in Ambari under the Hive service and Advanced configuration 
options. Figure  3-4  shows some of these settings. To switch from TCP mode to HTTP mode, you alter the 
 hive.server2.transport.mode  setting from  binary  to  http .  
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 When connecting to Hive via ODBC, you need to download the appropriate ODBC driver. Many 
companies and distributions provide their own ODBC connection drivers. Some may be more performant 
than others. For general purposes, for example when connecting Microsoft’s PowerBI to Hive tables, 
downloading and configuring a Hadoop distributor’s ODBC is sufficient. Hortonworks provides various 
drivers in their add-on section at    http://hortonworks.com/downloads/#data-platform     . Cloudera also 
offers both ODBC and JDBC drivers on their download site at    http://www.cloudera.com/downloads.
html     . Once they are downloaded, you can configure the driver through normal ODBC connection wizards. 
Figure  3-5  shows an example configuration for using the ODBC driver for Windows.  

  Figure 3-4.    HiveServer2 settings       

  Figure 3-5.    Sample ODBC connection for Windows       

 Hiveserver2, introduced in Hive .11 through HIVE-2935 (   https://issues.apache.org/jira/browse/
HIVE-2935     ), represented a big step in facilitating application access into Hive. It provided for greater 
concurrency, security, and remote access. As you explore and continue to use the full features of Hive, 
HiveServer2 will be an integral part of your access to data.  

 

 

http://hortonworks.com/downloads/#data-platform
http://www.cloudera.com/downloads.html
http://www.cloudera.com/downloads.html
https://issues.apache.org/jira/browse/HIVE-2935)
https://issues.apache.org/jira/browse/HIVE-2935)
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     Client Tools 
 Throughout this book we will access Hive primarily in one of two ways. The first is through the command-
line interface (CLI). This is probably the quickest and most flexible way to access Hive. It allows for cutting 
and pasting code easily, executing HQL files, as well as a less error prone experience, which sometimes 
manifests itself in the more graphical tools. As mentioned previously, HiveServer2 allows for both ODBC and 
JDBC connections so almost any SQL tool has the capability of connecting to Hive. If you are more familiar 
with a tool such as Toad or SQuirreL, feel free to use those. 

 We will focus on using the Hortonworks sandbox. As of this writing, the latest available sandbox is 
HDP 2.4. After downloading and starting the VM and setting the root password, you can simply log into 
the environment using any SSH compatible shell. Windows users sometimes use Putty to connect. This 
is especially helpful if you have a large amount of nodes in your cluster and need to list them on within a 
Putty connection. For our purposes, we will only be connecting to the sandbox that runs on a single node. 
Connecting via SSH is easily done by starting a CLI window and typing the following code 

   ssh root@hortonworks.sandbox.com -p 2222 

   Once connected, you can enter the Hive CLI by typing  hive  on the command line. You should now 
notice a  hive>  prompt. Navigating within the CLI is straight-forward, especially if you are used to other 
database systems. Keep in mind that Hive was developed based on MySQL so syntax and data types between 
the two are quite similar. At the prompt, type: 

   show databases; 

   Now type: 

   show tables; 

   Be sure to end all commands with a semicolon. To see a table’s column definition, type: 

   describe <table name> 

   For example, to see the columns for the  sample_07  table, type:

  describe sample_07; 

   Executing  hiveql  commands is similar to executing any SQL command. To run a simple  SELECT  
statement, type: 

   SELECT * FROM sample_07 LIMIT 10; 

   You will be introduced to more functional commands in subsequent chapters. 
 Another useful way to issue commands via the command line is through a browser shell. By opening 

any browser and typing  sandbox.hortonworks.com:4200 , you can access the command line through a 
browser. Some developers find the browser simpler than opening up another command window. Copying 
and pasting can be done but it will always prompt you to select a paste from the browser dialog box. We find 
it useful when demonstrating the Hive CL due to the browser zoom capabilities. Either way, as you work with 
the Hive CL, you will begin to develop your own personal preferences. 
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 As demonstrated in an earlier chapter, another primary means to accessing Hive is through Ambari 
views. Ambari itself is a pluggable framework allowing for developers to create views, which can be installed 
and executed through the Ambari interface. Views are powerful tools for collaboration and for adding 
functionality to the Ambari environment. Third-party vendors can create Ambari views for managing their 
unique application as well as businesses creating their own custom views for internal consumption. View 
development is outside the scope of this book, but if you want to know more, you can get more information 
at    https://cwiki.apache.org/confluence/display/AMBARI/Views     . 

 Hive has its own Ambari View provided out of the box in HDP 2.4. To get to the views you click on what 
is referred to as the tic-tac-toe box and select the Hive View. Figure  3-6  shows where the view is located. You 
will find it in the upper-right corner of the Ambari web page.  

  Figure 3-6.    Ambari Hive view       

 The Hive view consists of three main sections: Tool Header, Database Explorer, and Query Editor. The 
Tool Header is where you can access saved queries, query history, user defined functions, as well as upload a 
table. The Database Explorer is where you can specify which database you want to use for query execution 
and a list of all the tables within each database. Clicking on a database will expand the contents of the 
database and clicking on a table will expand to show the columns and data types of the table. This 
functionality is similar to the show database, show tables, and describe tables commands used in the Hive 
CLI. Another feature is when clicking on the      icon, the view will automatically execute a  SELECT *  
statement from the table with a limit of 10. This is a quick way to see sample content. 

 The Query Editor provides quite a bit of functionality to explore. Besides being the place where you 
create and execute your Hive queries, you can also use it to customize configuration settings on a per query 
basis, perform data visualization and data profiling, view visual explain plans and Tez DAG execution and, 
finally, review logs and error messages. Other functionality includes creating multiple worksheets, saving 
queries, and killing job executions. Figure  3-7  shows the Hive view screen.  

 

https://cwiki.apache.org/confluence/display/AMBARI/Views
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 The Hive view, as well as all Ambari views, are client-side processes connecting to your Hadoop cluster. 
As best practice, Ambari runs on an edge node, aka a client node, and connects to your core Hadoop cluster 
running HDFS. You have the option to set up individual servers running specific views. For example, in one 
case you may have an Ambari server running the operational dashboard view and another server running 
the Hive view. This would be useful when you have a large number of operational users as well as a large 
number of business users. Another option is to have a single Ambari server and give access to views to 
specific users or groups. To do this, you click on the user button and select Manager Ambari. Figure  3-8  
shows the Manage Ambari drop-down option.  

  Figure 3-7.    Hive view screen       

  Figure 3-8.    Accessing view configuration       

 From here, you click on the Views on the left side of the screen and then select Hive View. Figure  3-9  
shows how to select the Hive View configuration screen.  
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 It is on the configuration screen where you have the ability to grant permissions to the view to users or 
groups. These users and groups can be local, LDAP, or Active Directory, depending on your configuration. 
When you set the permissions, a user will log into Ambari and only see the views to which they have access. 
All other views will be hidden from them. Figure  3-10  shows the Hive view configuration screen.  

  Figure 3-9.    Hive view configuration       

  Figure 3-10.    Hive view configuration screen       

 Hive provides a number of ways to access your data. HiveServer2 provides remote access with security 
and ODBC and JDBC connections, the CLI provides agile development and control, and the Hive Ambari 
view provides an easy GUI interface with additional operational functionality. Together, they provide you 
with the flexibility and the scalability to view and analyze your data.  

     Execution Engine: Tez 
 When Hadoop was conceived, there was only one execution engine from processing data. That engine was 
MapReduce (MR) and it was a batch operation. It meant that MR had a unique ability to crunch massive 
amounts of data but processing that data was a monumental task, which not only took up most of your 
cluster resources, but was also not expected to finish quickly. MR is Java so to access data on Hadoop 
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you had to know Java, specifically how to write Java MR code. As we know, Facebook solved this problem 
by creating for Hive a SQL abstraction layer for writing MR Java code. This was a huge step in providing 
access to Hadoop but did nothing for the inherent problems with MR being a batch operation. Users wrote 
similar SQL code on Hadoop but did not experience anything near the performance they were used to with 
traditional relational system. 

 Some early Hadoop distributors solved this problem by creating data access architectures, which 
accessed data within Hadoop, but processed the data outside of Hadoop. Some of these early SQL-in-
Hadoop solutions were based on popular MPP architectures, which utilized parallel processing to gather 
and execute the data. The goal of many of these operations is to execute in-memory processing for fastest 
results. Any SQL execution engine tries to execute as much as possible in-memory and avoid costly disk 
IO operations. The two earlier adopters of this approach include Apache Impala and Apache Hawq. Each 
follows the same basic pattern of executing SQL commands in parallel across the cluster for maximum 
distributed processing. 

 These early SQL-in-Hadoop solutions solved many limitations present with Hive on MapReduce, most 
importantly performance and ANSI SQL compliance. The problem with early solutions was that they failed 
to execute on larger data sets. In-memory solutions are performant until the data sets become larger than 
what can fit into memory. This is because once memory capacity is full, the data needs to spill to disk and 
you begin hitting IO bottlenecks. The other problem was that they were not Hive or open source. The early 
SQL solutions were proprietary and included additional costs. Most had only limited connection capabilities 
to existing Hive metastores. Early Hadoop adopters had been using Hive for years and, instead of looking for 
a new SQL environment, they would prefer to make Hive better. 

 The open source community decided to fill the gap by what was marketed as the  Stinger Initiative . The 
initiative aimed to provide interactive SQL-in-Hadoop natively in Hive. In order to accomplish this a new 
engine was required. This new engine was named Tez. 

 ■   Note    Tez is the Urdu word for swift. Keep in mind, as mentioned, that the open source community is 
owned and operated by software engineers—not by marketing people—so expect creative naming.  

 Tez became the new paradigm for Hive execution. MapReduce is still supported for Hive execution but 
Tez is now the default engine when running Hive jobs in Hadoop. 

 Tez provides a number of advantages over traditional MapReduce. First and foremost, Tez avoids disk IO 
by avoiding expensive shuffle and shorts while leveraging more efficient map side joins. Tez also utilizes a cost-
based optimizer, which helps produce faster execution plans. Combine this with the ORC file format geared 
toward SQL performance and you have a query engine performing up to 100x faster than native MapReduce. 
Figure  3-11  shows how Tez is the default engine and the cost-based optimizer is enabled by default.  

  Figure 3-11.    Tez and the cost-based optimizer       
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 Tez and performance tuning will be discussed in detail in Chapter   10    , but for now understand that few 
SQL jobs still utilize MapReduce as the execution engine. There are a number of performance steps you can 
take to wring the most out of each query. These include but are not limited to using ORC file format and 
partitioning. Also keep in mind that the current Hive implementation is not an in-memory only process like 
other data access tools. This is by design since an exclusive in-memory architecture would limit the size of 
the data sets to only what will fit in memory. Hive is the workhorse of SQL-in-Hadoop and is proven to scale 
into the petabytes of data. 

 This chapter focused on some key architecture points in Hive. Throughout the book you will become 
familiar with these various components and learn how each provides unique value. Hive development is 
ongoing and fast-paced. We focused on Tez, but Hive can also run on Spark. Again, there are limitations as 
well as market positioning, all which make the ultimate choice a difficult one. Our advice is to perform your 
own due diligence. Our focus is on Tez since Tez is an execution engine specifically built from the ground 
up to work with Hive and provide for interactive SQL latency. The open source community is continuing to 
work on ever faster and faster data access. The open source Hive architecture provides a flexible foundation 
for continual develop and innovation to drive SQL analytics that scale well into the future.     

http://dx.doi.org/10.1007/978-1-4842-0271-5_10
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    CHAPTER 4   

 Hive Tables DDL                          

 By now, you know that Hive was created as a means to query the unstructured world of Hadoop without 
writing complex MapReduce programs. It gives users the ability to write simple queries using the 
expressiveness of SQL, the language that so many are already familiar with. Hive query language (HiveQL 
or HQL) is based on ANSI standard SQL, and hence is very easy to understand for anyone familiar with SQL. 
A user can log in to the Hive command-line interface and start querying the data on HDFS. 

 Hive provides standard SQL functionality, including many SQL analytical features found in ANSI 2003 
and 2011. With each release the Apache community is adding more and more features to HiveQL, bringing it 
closer to the ANSI SQL. Supporting standard SQL Syntax also extends Hive's usability such that it can easily 
integrate with existing BI tools such as QlikView, Microstrategy, Microsoft Excel, Power BI, and the like. This 
integration is done using Hive’s ODBC/JDBC driver. 

 In this chapter we focus on the DDL commands available in HiveQL. We first introduce the concept of 
a Hive database and data model. We then highlight the different data types that it supports. Most of these 
data types are quite similar to the world of relational databases, but we also discuss the ones that Hive has 
inherited directly from programming languages like Java. 

 Hive has a few different types of tables that allow you to access the structured, semi-structured, and 
unstructured data effectively. We discuss the concepts including but not limited to creating, altering, 
dropping tables, columns, partitions, and buckets in this chapter. 

     Schema-on-Read 
 The versatility and power of Hadoop lies in its ability to store and process any kind of unstructured, semi-
structured, or structured data. Hive allows the users to create a metadata layer on top of this data and access 
it using a SQL interface. As much as it is familiar to the end user for its interface, it is different in terms of 
how it handles the underlying data. Hive does not take control of how data is persisted to disk or its lifecycle. 
Users can first store any kind of data in HDFS, in its inherent format, and then define metadata to read it 
independently of the data. Hive makes it easier to manage and process data with a variety of tools with this 
flexibility. However, since the underlying data can be any format, Hive lets you provide some additional 
information in the metadata, to explain exactly the nature in which the data stored is formatted. You will 
notice that in most of the Hive  CREATE  statements, you provide additional information such as how the 
underlying data is structured, how the records are defined, and how the fields are separated. Similarly, when 
you drop external tables in Hive, it will only remove the table's metadata, and not the original data or the 
HDFS file that contained the data. In most cases you are able to manage the underlying data files directly. 
The point I am making here is that the user should remember that Hive is not a database; it is a human 
friendly, familiar interface to query the underlying data files that are stored on HDFS.  
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     Hive Data Model 
 Data models provide a way to organize the data elements and relate them to one another. Hive's data 
model is quite similar to various relational databases. It consists of a schema of tables, columns, rows, and 
partitions. These objects are logical units that are defined in the metadata layer called the Hive Metastore. In 
addition to the common data segments, Hive introduces an additional structure called buckets. The actual 
data files and directories do not have any information about the data model. The logical units consist of 
various data types that relate the actual data in the files to columns in the schema. The Hive schema makes 
the Hadoop data look as if it has familiar rows and columns, whether the underlying data is stored that 
way or not. This makes the data accessible from common applications that understand SQL languages via 
ODBC/JDBC. 

 The metadata repository of Hive also known as Hive Metastore consists of namespaces, object 
definitions, and the details of underlying data. As of today a Hive Metastore is created in an RDBMS, as it is 
quite critical to have fast access to this information. 

     Schemas/Databases 
 The concept of databases in Hive is slightly different from what you are probably already familiar with from 
the RDBMS world. A Hive schema or database is essentially a namespace that holds metadata information 
for a set of tables. A schema and a database are synonyms in terms of Hive. At the filesystem level, it is a 
directory under which all internal tables that belong to that namespace are stored. Hive also has a concept of 
external tables in which the files might exist in other locations in HDFS. 

 All the data managed by Hive gets stored under a top-level directory defined using the  hive.
metastore.warehouse.dir  parameter in the  hive-site.xml  file. The default value of this parameter in the 
Hortonworks sandbox installation is  /apps/hive/warehouse . The administrator can change this parameter 
to another location on HDFS. When you install Hive for the first time, it creates a default database called 
 default , which itself does not have its own directory. All the internal tables that you create in the default 
database are stored under the top-level directory called  hive.metastore.warehouse.dir  in their respective 
subdirectories. However, all external tables the data exist in other directories in HDFS and the relative 
locations for these directories are stored in the Hive Metastore.  

     Why Use Multiple Schemas/Databases 
 Prior to the addition of the concept of databases in Hive, all user objects were created in a single namespace. 
Creating multiple schemas allows users to create objects in different namespaces. Hence it allows for logical 
grouping of various objects. You can also assign different properties to different database. As an example, 
you can set different owners for different databases. You can also set different warehouse directories for 
different databases. From the security perspective, you can grant permissions on all objects in a namespace 
to a role/user.  

     Creating Databases 
 You can create a database in Hive using the  CREATE DATABASE  command. A simple example of this command is 

   CREATE DATABASE shopping; 

   This command will create a new namespace called  Shopping  in the Hive Metastore. In this example 
since we have not specified a location for this database on HDFS, it will create a directory called  SHOPPING.
db  under the default top-level directory defined in  hive.metastore.warehouse.dir . 
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 The complete syntax of the  CREATE DATABASE  command is 

   CREATE (DATABASE | SCHEMA) [ IF NOT EXISTS ] database_name 
 [ COMMENT database_comment ] 
 [ LOCATION hdfs_path ] 
 [ WITH DBPROPERTIES (property_name = property_value,...) ] ; 

   Here is an example using the complete syntax 

   CREATE DATABASE  IF NOT EXISTS  shopping 
 COMMENT 'stores all shopping basket data' 
 LOCATION '/user/retail/hive/SHOPPING.db' 
 WITH DBPROPERTIES ('purpose' = 'testing') ; 

   This command will create a new namespace called  shopping  and a directory called  /user/retail/
hive/shopping.db . Using the  WITH DBPROPERTIES  clause, you can assign any custom properties to a 
database. You can view these properties using the  DESCRIBE DATABASE EXTENDED  command as follows: 

   hive> DESCRIBE DATABASE EXTENDED shopping; 
 OK 
 shopping stores all shopping basket data 
         hdfs://sandbox.hortonworks.com:8020/user/retail/hive/SHOPPING.db root USER 
         {purpose=testing} 
 Time taken: 0.295 seconds, Fetched: 1 row(s) 

 ■     Note    The key point to note in the  CREATE  database syntax is that the command allows you to specify a 
location to store the data for the database in a particular location. Hive allows database directories to be created 
in other locations that are not under the top-level directory specified for the database.   

     Altering Databases 
 Once you have created a database, you can modify its metadata properties ( DBPROPERTIES ) or  OWNER  using 
the  ALTER DATABASE  command as follows: 

   ALTER DATABASE shopping 
 SET DBPROPERTIES ('department' = 'SALES'); 

        Dropping Databases 
 You can drop a Hive database using the  DROP DATABASE  command. 

   DROP DATABASE database_name [RESTRICT|CASCADE]; 

   For example: 

   DROP DATABASE shopping CASCADE; 
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   The use of  CASCADE  in this command is optional and allows you to drop a database with existing tables. 
This command will drop all internal and external tables that belong to the  shopping  database. 

 The default behavior of the  DROP DATABASE  command is  RESTRICT , which means if there are any tables 
in the database, the command will fail.  

     List Databases 
 You can view the list of all databases in the Metastore using 

   SHOW DATABASES [ LIKE 'identifier_with_wildcards' ]; 

   For example,  SHOW DATABASES LIKE 'S*'  will list the  shopping  database.   

     Data Types in Hive 
 The data types in Hive can be categorized as primitive and complex data types. These data types are 
implemented in Java. Before we go into the details of complex data types, lets look at the supported primitive 
data types. 

     Primitive Data Types 
 Just like relational databases, each column value in Hive has a data type, which has constraints and a valid 
range of values. The behavior of these data types is similar to the underlying data types in Java in which they 
are implemented. The various types of primitive data types in Hive are as follows:

•    Numeric types—Store positive and negative exact and floating-point numbers  

•   Date/time types—Store temporal values  

•   Character data types—Store alphanumeric data in strings  

•   Boolean—True or false  

•   Binary—Variable length array of binary data    

 A complete list of primitive data types is very well documented on the Apache web site. You can visit the 
following link if you require details of any type of primitive data types in Hive:    https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+Types     .  

     Choosing Data Types 
 Hive has a large variety of primitive data types, hence it is crucial that you use the right data type while 
creating tables. The data types vary in the sense that some of them more restrictive as they have a fixed 
length, for example,  VARCHAR . Historically, while dealing with relational databases, it is more common to 
use data types with defined length to ensure data integrity. In case of Hadoop, you will often be dealing 
with various types of data and sometimes you won’t know much about the data that will be pushed into 
the system, hence this restrictive data type approach may not always work. If the data type is too restrictive, 
Hive will truncate the data to the limit of the defined column width without any warnings. Therefore, it is 
recommended that you don’t choose very restrictive data types while creating tables in Hive. 

 For example, creating a table with  STRING  column provides much more flexibility than creating it with 
 VARCHAR(25) .  

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
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     Complex Data Types 
 Apart from the primitive data types discussed, Hive also contains few data types that are usually not found 
in relational databases. These consist of more than one element of primitive data types and are internally 
implemented using native serializers and deserializers. They allow you to store the data in collection 
format without having to break it into further individual fields, as you would do in a normalized schema 
in a relational database. But since Hadoop allows you store any kind of data into its filesystem and read it 
using schema-on-read, the traditional rules of normalization don't always apply to the underlying data. The 
complex data types, or collections as they are generally called, are quite useful to map real-world data to a 
schema layer. 

 Hive has the following four complex data types:

•    Arrays  

•   Maps  

•   Structs  

•   Unions    

   Arrays 
 An array in Hive is an ordered collection of data elements of a similar data type. These elements are 
represented by sequential subscript values starting from 0. You can access these elements using their 
corresponding subscript in square brackets. Unlike the arrays in programming languages like Java, you do 
not define a maximum number of elements in a Hive array. 

 For example, you can declare an  ITEMS  array to hold string values as follows: 

   ITEMS ARRAY<"Bread" , "Butter" , "Organic Eggs"> 

   Since this collection of strings has a defined order or sequence, these strings can be accessed via a zero-
based index. 

   ITEMS[0] returns "Bread" 
 ITEMS[2] return "Organic Eggs" 

      Maps 
 A map is an unordered collection of key-value pairs in Hive. The keys in a map are one of the primitive data 
types discussed previously. The values, however, can be of any data types that Hive supports, including 
complex data types. Unlike the arrays where you can access the elements using subscript, the elements of a 
 Map  data type are accessed using the keys. 

 For example, you can declare a  Basket  collection containing items and their quantities as follows: 

   Basket MAP<'string','int'> 
 Basket MAP<"Eggs",'12'> 

   You can print a value of quantity by specifying its corresponding  Item  in the  Map  function. 

   Basket("Eggs") returns 12. 



CHAPTER 4 ■ HIVE TABLES DDL

54

      Structs 
 Hive structs are similar to structures in some programming languages, such as C. A struct is an object that 
contains various fields that can be of any data type. 

 For example, you can declare a customer's address record using the following  STRUCT  definition: 

    address STRUCT<houseno:STRING, street:STRING, city:STRING, zipcode:INT, state:STRING, 
country:STRING> 

   address <"17","MAIN ST", "SEATTLE", 98104, "WA","USA"> 

    You can access the field of a  STRUCT  using dot notation. In the previous example, the ZIP codes of 
various addresses can be accessed using  address.zipcode .  

   Unions 
 A union provides a way to store elements of different data types in different rows of the same field. This is 
quite useful when the underlying data of a field is not homogenous. 

 For example, if the customer’s contact details are present in the data file but they consist of a single or 
multiple phone numbers or single or multiple e-mail addresses, you can declare a  contact  variable to store 
such information as follows. 

   contact UNIONTYPE <int, array<int>, string, array<string>> 

          Tables 
 Now that you are already familiar with various data types in the world of Hive, let's look at how these can be 
used to read data. A Hive data model contains a logical row/column view of data referred to as a  table . Just 
like with relational databases, a Hive table consists of a definition on a two dimensional view of the data. 
However, the data exists independently of the table. The data in a Hive table exists in an HDFS directory 
and the definition of the table is stored in a relational database store called HCatalog. There are some key 
differences between the tables in Hive and relational databases:

•    The data in a Hive table is loosely coupled with its definition. In relational databases, 
dropping a table removes its definition and the underlying data from the storage. 
However, in Hive, if you define a table as an external table, the table definition will be 
dropped independently of dropping the underlying data.  

•   A single data set in Hive can have multiple table definitions.  

•   The underlying data in a Hive table can be stored in a variety of formats. We will 
discuss some of these file formats in Chapter   7    , “Querying Semi-Structured Data”.    

 The separation of actual data from the schema is one of the key value propositions of Hadoop over 
relational systems. Hadoop allows you to load data even before any schema exists. Once the schema is 
created, you can modify the schema and determine how it maps to the underlying data in a matter of 
seconds. Performing such an operation in a relational database requires changes to every row of the table 
and is not as simple. The Hive schema is just a metadata map, which makes it easy for humans and apps that 
understand standard SQL to view the underlying data. 

http://dx.doi.org/10.1007/978-1-4842-0271-5_7
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     Creating Tables 
 You can create tables in Hive using the CREATE TABLE statement. Hive's version of CREATE TABLE is quite 
similar to standard SQL. However it provides various options to add to the versatility of managing various 
types found in the world of big data. Remember that not all data that we access and manage using Hive 
is stored natively as rows and columns. It's the configuration specified during the creation of a table that 
defines how hive will interpret the underlying data, stored as HDFS data files. Hive has many built-in data 
format interpreters, or  SerDes  as they are called in Hive's language. Hive also allows you to define your own 
serializer-deserializers and just plug them into a  CREATE TABLE  statement to enable Hive to understand the 
format of your data. SerDes are discussed in more detail in Chapter   7    . For now, let's look at a simple  CREATE 
TABLE  statement. 

   CREATE EXTERNAL TABLE customers ( 
 fname           STRING, 
 lname           STRING, 
 address          STRUCT <HOUSENO:STRING, STREET:STRING, CITY:STRING, ZIPCODE:INT, 

STATE:STRING, COUNTRY:STRING>, 
 active          BOOLEAN, 
 created         DATE 
 LOCATION '/user/demo/customers'); 

   This  CREATE TABLE  example uses some of the data types discussed earlier. Unless you changed the 
active database before running this command, it will create a  customers  table in the default database. You 
can also create a table directly in a database by prefixing the table name with “the database name”. Here is an 
example of this: 

   CREATE EXTERNAL TABLE retail.customers ( 
 fname           STRING, 
 lname           STRING, 
 address         STRUCT <HOUSENO:STRING, STREET:STRING, CITY:STRING, ZIPCODE:INT, 
                 STATE:STRING, COUNTRY:STRING>, 
 active          BOOLEAN, 
 created         DATE) 
 COMMENT "customer master record table" 
 LOCATION '/user/demo/customers/'; 

        Listing Tables 
 You can list the existing tables using the  SHOW TABLES  command. Let's see the current list of tables in the 
 RETAIL  database. 

   hive> SHOW TABLES IN retail; 
 OK 
 customers 
 Time taken: 0.465 seconds, Fetched: 1 row(s) 

   If you have many tables in a database, you can search for specific tables using wildcards.  

http://dx.doi.org/10.1007/978-1-4842-0271-5_7
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     Internal/External Tables 
 Hive tables can be created as internal or external. The type of Hive table determines how the data is loaded, 
stored, and controlled by Hive. 

   External Tables 
 External tables are created using  EXTERNAL  keywords in the  CREATE TABLE  statement. This is the 
recommended table type for all production deployments of Hadoop. This is because in most cases the 
underlying data will be used for multiple use cases. Even if its not, it should not be dropped when the table 
definition is dropped. So in case of external tables, Hive does not drop the data from the filesystem as it does 
not have control over it. You use external tables in the following cases:

•    When you want to drop the table definitions without worrying about deleting the 
underlying data.  

•   When the data stored in filesystem others than HDFS. For example, you can use  s3  in 
case of Amazon or WASB in case of Microsoft Azure to store data and access that data 
from multiple clusters.  

•   You want to use a custom location to store the table data.  

•   You are not creating a table based on another table ( CREATE TABLE AS SELECT ).  

•   Data will be accessed by multiple processing engines. For example, you want to read 
the table using Hive but also want to use it in a Spark program.  

•   You want to create multiple tables’ definitions over the same data set. It is important 
that if you have multiple table definitions, dropping one of them should not delete 
the underlying data.      

     Internal or Managed Tables 
 An internal table in Hive refers to a table whose data is managed by Hive. This means when you delete an 
internal table Hive will also delete its underlying data. These tables are not used very often in Hadoop as 
in most environments, the data in the filesystem needs to remain even after the table is dropped. Since the 
data and the metadata in Hive are not tied together, this allows for the underlying data to be used with other 
tools/processing paradigms. You use internal tables in the following cases:

•    When the data stored is temporary.  

•   When the only way the data is accessed is through Hive and you want Hive to 
completely manage the lifecycle of the table and the data.    

 ■   Note    Remember that you can always modify/delete the underlying data directly on HDFS even when 
the tables are internal/managed. This is because Hive does not have full control over the underlying data. The 
differentiation between internal and external table data control is based on how the data is deleted through 
Hive, such as when you drop the table.   
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     External/Internal Table Example 
 We will now walk through a basic example to demonstrate some of the differences between external and 
internal tables. 

 Load a file to HDFS and verify it. 

   hadoop fs -put /tmp/states.txt /user/demo/states/ 
 hadoop fs -ls /user/demo/states 
 Found 1 items 
 -rw-r--r--   3 demo hdfs         58 2016-07-02 21:02 /user/demo/states/states.txt 

   Now, let’s first create an internal table to access the data in the  states.txt  file. 

   hive> CREATE TABLE states_internal (state string) LOCATION '/user/demo/states'; 
 OK 
 Time taken: 8.918 seconds 

   Hive will only output the time taken to process this command. We can see the table definition as follows: 

    hive> DESCRIBE FORMATTED states_internal; 
 OK 
 # col_name              data_type              comment 

   state                   string 

   # Detailed Table Information 
 Database:               default 
 Owner:                  demo 
 CreateTime:             Sat Jul 02 21:05:14 UTC 2016 
 LastAccessTime:         UNKNOWN 
 Protect Mode:           None 
 Retention:              0 
 Location:                hdfs://sandbox.hortonworks.com:8020/user/demo/states  
 Table Type:              MANAGED_TABLE  
 Table Parameters: 
         COLUMN_STATS_ACCURATE   false 
         numFiles                1 
         numRows                 -1 
         rawDataSize             -1 
         totalSize               58 
         transient_lastDdlTime   1467493514 

   # Storage Information 
 SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe 
 InputFormat:            org.apache.hadoop.mapred.TextInputFormat 
 OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat 
 Compressed:             No 
 Num Buckets:            -1 
 Bucket Columns:         [] 
 Sort Columns:           [] 
 Storage Desc Params: 
         serialization.format    1 
 Time taken: 0.559 seconds, Fetched: 31 row(s) 
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    You can see from this output that it’s a  MANAGED_TABLE  and also its location. 
 We can query the data from this table as follows: 

   hive> SELECT * FROM states_internal; 
 OK 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 
 Time taken: 1.834 seconds, Fetched: 6 row(s) 

   You can also create an internal table without specifying any location. In such a case, Hive will store its 
data under the default Hive directory. 

 Now, let’s add another file to the  /user/demo/states  directory. 

    hadoop fs -put /tmp/morestates.txt /user/demo/states/ 

   We will now query the data in  states_internal  table again.  

   hive> SELECT * FROM states_internal; 
 OK 
 new mexico 
 hawaii 
 oregon 
 south dakota 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 
 Time taken: 7.32 seconds, Fetched: 10 row(s) 

    As you can see from this output, we can now query the data from both files under the  /user/demo/
states  directory. This is because when we created the table we specified the directory as the location. 

 Now let’s create an external table on the same data. 

   hive> CREATE EXTERNAL TABLE states_external (state string) LOCATION '/user/demo/states'; 
 OK 
 Time taken: 2.57 seconds 

   Let’s take a look at its schema. 

    hive> DESCRIBE FORMATTED states_external; 
 OK 
 # col_name              data_type               comment 

   state                   string 
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   # Detailed Table Information 
 Database:               default 
 Owner:                  hdfs 
 CreateTime:             Sat Jul 02 21:19:31 UTC 2016 
 LastAccessTime:         UNKNOWN 
 Protect Mode:           None 
 Retention:              0 
 Location:                hdfs://sandbox.hortonworks.com:8020/user/demo/states  
 Table Type:              EXTERNAL_TABLE  
 Table Parameters: 
         EXTERNAL                TRUE 
         transient_lastDdlTime   1467494371 

   # Storage Information 
 SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe 
 InputFormat:            org.apache.hadoop.mapred.TextInputFormat 
 OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat 
 Compressed:             No 
 Num Buckets:            -1 
 Bucket Columns:         [] 
 Sort Columns:           [] 
 Storage Desc Params: 
         serialization.format    1 
 Time taken: 0.469 seconds, Fetched: 27 row(s) 

    We can query the data in this table as follows: 

   hive> SELECT * FROM states_external; 
 OK 
 new mexico 
 hawaii 
 oregon 
 south dakota 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 
 Time taken: 7.363 seconds, Fetched: 10 row(s) 

   Now, we have two tables on the same data set. This way you can create multiple tables over the 
same data. 

 Let’s create another external table on the same data set. 

   hive> CREATE EXTERNAL TABLE states_external2 (state string) LOCATION '/user/demo/states'; 
 OK 
 Time taken: 2.548 seconds 

   We can now query the same data using any of the three tables that we created in this example. 
 Now let’s see what happens when we drop the tables. We will drop the second external table. 
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   hive> DROP TABLE states_external2; 
 OK 
 Time taken: 0.656 seconds 

   Let’s see if we can still query the data using the other two tables. 

    hive> SELECT * FROM states_internal; 
 OK 
 new mexico 
 hawaii 
 oregon 
 south dakota 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 
 Time taken: 0.546 seconds, Fetched: 10 row(s) 

   hive> SELECT * FROM states_external; 
 OK 
 new mexico 
 hawaii 
 oregon 
 south dakota 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 
 Time taken: 0.557 seconds, Fetched: 10 row(s) 

    As you can see, dropping an external table doesn’t affect the underlying data. We will now drop the 
internal table. 

   hive> DROP TABLE states_internal; 
 OK 
 Time taken: 0.571 seconds 

   Let’s try to query the data using the external table. 

   hive> SELECT * FROM states_external; 
 OK 
 Time taken: 0.545 seconds 

   Since Hive controls the  INTERNAL  table and the underlying data, when we dropped the  states_
internal  table, Hive also deleted the underlying data. This is why when we tried to query the data from 
 states_external , there is no output.  
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     Table Properties 
 You can also specify some table-level properties while creating a table or by altering a table using the 
 TBLPROPERTIES  clause. Hive has some predefined essential properties for tables, which you can define some 
table level configuration that Hive uses to manage the table. However, you can also define some custom 
properties using a key-value format to store some table-level metadata or additional information about the 
table. 

 Here are some of the important table-level properties in Hive.

•     last_modified_user   

•    last_modified_time   

•    immutable   

•    orc.compress   

•    skip.header.line.count     

 The first two properties in this list are managed and populated by Hive automatically. As their names 
suggest, these are used by Hive to store the last modified user and time information in the metastore. 

 When the  immutable  property is set to  TRUE , no new rows can be inserted in a table if it already contains 
some data. If you try to insert data into an immutable table, you get the following error: 

   hive> INSERT INTO test1 VALUES ('bacon'); 
 FAILED: SemanticException [Error 10256]: Inserting into a non-empty immutable table is not 
allowed test1 

   The  orc.compress  property is used to specify the compression algorithm used for ORC-based storage. 
We will discuss the ORC files further in this chapter in the section entitled “ORC File Format”. 

 The  skip.header.line.count  property is one of the most important properties for an external table in 
Hive. In most production environments, this property is used quite frequently. When dealing with the real-
life data, you will often find that the header row in data files is a perpetual headache. Using this property, you 
can skip a header row from the underlying data files. 

 Let’s see how we can use this property using an example. 

 We will first copy a file to HDFS. 

   hadoop fs -put /tmp/states3.txt /user/demo/states3 

   Let’s also list the data from this file. 

   hadoop fs -cat /user/demo/states3/states3.txt 
 STATE_NAME 
 ---------- 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 

   As you can see from this output, the data file contains two header rows. We will now create an  EXTERNAL  
table with the  skip.header.line.count  property to read the data from this file without the headers. 
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   hive> CREATE EXTERNAL TABLE states3 (states string) LOCATION '/user/demo/states3' 
TBLPROPERTIES("skip.header.line.count"="2"); 
 OK 
 Time taken: 9.0 seconds 

   Let’s query the data from this table. 

   hive> SELECT * FROM states3; 
 OK 
 california 
 ohio 
 north dakota 
 new york 
 colorado 
 new jersey 
 Time taken: 0.553 seconds, Fetched: 6 row(s) 

   Without this property, Hive interprets the first two header rows as regular strings and will show them in 
the output of the  SELECT  command.  

     Generating a Create Table Command for Existing Tables 
 You can also generate the  CREATE TABLE  statement for a given table using  SHOW CREATE TABLE  as follows: 

   hive> SHOW CREATE TABLE states3; 
 OK 
 CREATE EXTERNAL TABLE `states3`( 
   `states` string) 
 ROW FORMAT SERDE 
   'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' 
 STORED AS INPUTFORMAT 
   'org.apache.hadoop.mapred.TextInputFormat' 
 OUTPUTFORMAT 
   'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' 
 LOCATION 
   'hdfs://sandbox.hortonworks.com:8020/user/demo/states3' 
 TBLPROPERTIES ( 
   'COLUMN_STATS_ACCURATE'='false', 
   'numFiles'='1', 
   'numRows'='-1', 
   'rawDataSize'='-1', 
   'skip.header.line.count'='2', 
   'totalSize'='80', 
   'transient_lastDdlTime'='1467497215') 
 Time taken: 0.37 seconds, Fetched: 18 row(s) 

        Partitioning and Bucketing 
 Hive tables can be broken in further logical chunks for ease of management and improving performance. 
There are few ways you can further abstract data in Hive. See Figure  4-1 .  
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   Partitioning 
 Partitioning is often used in the relational database world to enhance performance and for better 
management of the data. The concept of partitioning in Hive is no different. 

 Partitioned tables in Hive have one or more partition keys based on which the data is broken into logical 
chunks and stored in separate directories. Each partition key adds a level of directory structure to the table 
storage. Let's look at an example of a customer transaction table with some partitioning keys. 

   CREATE EXTERNAL TABLE retail.transactions ( 
 transdate       DATE, 
 transid         INT, 
 custid          INT, 
 fname           STRING, 
 lname           STRING, 
 item            STRING, 
 qty             INT, 
 price           FLOAT 
 ) 
 PARTITIONED BY  (store STRING); 

   The table in this example is partitioned on a string column called  STORE  that will contain the name of 
the store. Notice that actual column used in partitioning does not exist in the  CREATE TABLE  structure. This 
is different from most relational databases, where you have to specify the partition column or partition key 
in the actual  CREATE TABLE  structure as one of the columns of the table. If your data already contains the 
partition key in the format, it probably doesn't make sense to remove it. You can give it a different name and 
hide it with a view. 

 When you query a partitioned table, the value of the partition shows up as the value for the column for 
all rows in that partition. For example,  SELECT * FROM retail.transactions  returns the values for the store 
column, even though that data isn't stored in the data files. 

 Creating a partitioned table requires that you create the directory structure for the underlying partitions 
beforehand. In case of internal tables, the partition directories are automatically created when you insert 
data into a new partition using the  INSERT  command. 

  Figure 4-1.    Hive data model representation       
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    INSERT INTO transactions_int PARTITION (store="new york") values ("01/25/2016",101,"A109","M
ATTHEW","SMITH","SHOES",1,112.9); 
 Query ID = hdfs_20160702224145_28638e82-a6cc-4f9f-9c91-86d4a4fadd39 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1467479265950_0010) 

   -------------------------------------------------------------------------------- 
         VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------------- 
 Map 1 ..........   SUCCEEDED      1          1        0        0       0       0 
 -------------------------------------------------------------------------------- 
 VERTICES: 01/01  [==========================>>] 100%  ELAPSED TIME: 4.28 s 
 -------------------------------------------------------------------------------- 
 Loading data to table default.transactions_int partition (store=new york) 
 Partition default.transactions_int{store=new york} stats: [numFiles=1, numRows=1, 
totalSize=38, rawDataSize=37] 
 OK 
 Time taken: 11.081 seconds 

   hive> SHOW PARTITIONS transactions_int; 
 OK 
 store=new york 

 ■      Caution    If you try to include the partition key column in the actual table definition, you will get  "FAILED: 
Error in semantic analysis: Column repeated in partitioning columns" .    

     Partitioning Considerations 
 Hive partitioning can improve the performance of a very specific subset of queries by pruning the partitions 
that are not required to retrieve the results of the query. This is called partition elimination. Partitioning is also 
one ways to enable the users to organize the data on HDFS in a more segmented manner that may improve 
maintainability. If your data is broken into subdirectories, you can either point partitions to the subdirectories 
or enable recursive partitions to allow a single table access all the subdirectories. If you have subdirectories 
without one of those options, you will see errors or empty data sets from queries of the Hive tables. 

 Just as with relational database, if used incorrectly, partitioning can lead to degradation of performance. 
The key thing with Hive partitioning is not to overpartition. Partitions increase the overhead in both data 
loading and data retrieval. If you create a very large number of partitions with small chunk of data in each 
partition, you are more likely to have small files. Large number of small files is generally much slower in 
Hadoop than fewer, larger files. Some of the best practices to consider when partitioning tables in Hive are as 
follows:

•    Pick a column for partition key with low to medium Number of Distinct Values 
(NDVs).  

•   Avoid partitions that are less than 1 GB (bigger is better).  

•   Tune Hiveserver2 and Hive Metastore memory for large number of partitions.  
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•   When you use multiple columns for partition key, it will create a nested tree of 
subdirectories for each combination of partition key columns. You should avoid 
deep nesting as it can cause too many partitions and hence create very small files.  

•   When insert data using Hive streaming, if multiple sessions write data to same 
partitions, it can lead to locking.  

•   You can modify the schema of a partitioned table; however, once the structure is 
changed, you cannot modify the data in existing partitions  

•   If you are inserting data to multiple partitions in parallel, you should set  hive.
optimize.sort.dynamic.partition  only to  True .     

     Efficiently Partitioning on Date Columns 
 Date types are usually one of the most common candidates for a partition key. There are many use cases 
where you might want to partition the data with the date. One common example is if you are loading various 
log files in HDFS and want to query them using Hive, then you might want to organize the data per day. 
When creating partitions by date, it is almost always more effective to partition by a single string of  YYYY-
MM-DD  rather than use a multi-depth partition with the year, months, and days all as their own values. The 
advantage to using the single-string approach is that it allows for more SQL operators to be utilized, such as 
 LIKE ,  IN , and  BETWEEN , which cannot be as easily used if you use nested partitions. 

 Let’s say we have a table A, partitioned by a  DateStamp  string as  YYYY-MM-DD . We can run various queries 
on this table using different SQL operators, as follows: 

    Query to select specific Dates 
 SELECT * FROM Table A WHERE DateStamp IN ('2015-01-01', '2015-02-03', '2016-01-01'); 

   Querying all dates in a Year 
 SELECT * FROM TableA WHERE DateStamp LIKE '2015-%'; 

   Querying all dates in a particular month of a year 
 SELECT * FROM TableA WHERE DateStamp LIKE '2015-02-%'; 

   Querying All Days that start/end with a 5 
 SELECT * FROM TableA WHERE DateStamp LIKE '%-%-%5'; 

   Querying All Days Between 2015-01-01 and 2015-03-01 
 SELECT * FROM TableA WHERE DateStamp BETWEEN '2015-01-01' AND '2015-03-01'; 

      Bucketing 
 Bucketing in Hive is another way to cut data into smaller segments. So far we have seen how partitioning can 
help organize and access the data efficiently. However, efficient partitioning requires the use of a partition 
key, which will not lead to a large number of very small partitions. So if you have many different values for 
the partition key and not many rows for each value of partition key, partitioning may not be the best choice. 

 Bucketing is more suitable for such cases. Bucketing lets you define the maximum number of buckets 
for a bucketed column of the table. A partition is a directory in Hive, where the partition key value gets stored 
in the actual partition directory name and partition key is a virtual column in the table. However, in case 
of bucketing, each bucket is a file that holds the actual data that is broken on the basis of a hash algorithm. 
Bucketing does not add a virtual column to the table. 
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 Like partitioning, bucketing has its own advantages, the primary one being performance improvement 
with various queries. We will look into some of these benefits in next section. If the key used for bucketing 
is not skewed, you will have a uniform distribution of data. This can be used for performing efficient data 
sampling. 

 Here is an example of creating a table with bucketing. Here we are creating a  CUSTOMERS  table with the 
 CREATED  column as a bucketed column; it’s broken into 11 buckets. 

   hive> CREATE EXTERNAL TABLE customers ( 
     > custid        INT, 
     > fname        STRING, 
     > lname        STRING, 
     > city        STRING, 
     > state        STRING 
     > ) 
     > CLUSTERED BY (custid) INTO 11 BUCKETS 
     > LOCATION '/user/demo/customers'; 
 OK 
 Time taken: 1.22 seconds 

   Now when you insert data into this table, Hive will use  custid  in a Hash function to distribute the data 
into 11 buckets. For some data types, it means that the rows containing the same value of  custid  will reside 
in same bucket. 

 ■   Caution    Set  hive.enforcing.bucketing= TRUE . Without this parameter you need to define the same 
number of mappers as the number of buckets for a table.    

     Bucketing Considerations 
 Bucketing is a great feature for efficient sampling and improving performance of some queries; however, it 
has its own caveats. Skewness is one of the most common problems encountered in real-world data and this 
can have a major impact in bucketing if it’s not handled properly. Choosing the right key for bucketing is also 
very important. 

 Following are some of the best practices that you should follow when using bucketing in Hive:

•    Choose a bucket key with high number of distinct values. This reduces the chances 
of skewness.  

•   Use a prime number for number of buckets.  

•   If the data in the bucket key is skewed, create separate buckets for skewed values. 
This can be done using list bucketing.  

•   Bucketing is most useful for fact tables, which are often joined together.  

•   The bucket count of the tables that need to be joined must either be the same or a 
factor of the number of buckets of the other table.  

•   Choose the number of buckets carefully. Only one CPU core writes to a single bucket 
so a large cluster can be severely underutilized if the number of buckets is small.  

•   The number of buckets cannot be changed once the table is created.  
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•   Carefully choose the column for bucketing, as skewness can be introduced by the 
hash function. String hashing is more prone to this as usually a small subset of 
characters is used. For example, if the three values in the bucket key contain  ABC789 , 
 ABC567 , and  ABC123 , but the hashing algorithm only uses first three characters ( ABC ) 
for calculating the candidate bucket, all three may end up in same bucket.  

•   You should aim to get the bucket file sizes of at least 1 GB.  

•   Enforce bucketing by setting  hive.enforce.bucketing=true .  

•   Map-side joins are faster on bucketed tables than non-bucketed tables. In a map-
side join, a mapper processing a bucket of the left table knows that the matching 
rows in the right table will be in its corresponding bucket, so it only retrieves that 
bucket, which is a small fraction of all the data stored in the right side table.  

•   Bucketing also allows you to sort the data in each bucket by one or more columns. 
This converts map-side joins into sort-merge joins, which are even faster.    

   Temporary Tables 
 As of Hive 0.14, Hive also support temporary tables. Temporary tables hold the data for the life of a session. 
This is quite convenient for some applications that need to store intermediate data for the life of the processing 
and then delete it automatically at the end. Unlike internal tables, temporary tables store their data in the 
user’s scratch directory. By default, the scratch directory is  /tmp/hive-username . Different users can create a 
temporary table with the same name in the same namespace as it is created in their private scratch area. 

 Here is an example that creates a temporary table and views its properties using the  DESCRIBE EXTENDED  
command. 

    hive> CREATE TEMPORARY TABLE states (state STRING); 
 OK 
 Time taken: 2.378 seconds 
 hive> DESCRIBE EXTENDED states; 
 OK 
 state                   string 

   Detailed Table Information     Table(tableName:states, dbName:default, owner:hdfs, 
createTime:1467549942, lastAccessTime:0, retention:0, sd:StorageDescriptor(cols:[Field
Schema(name:state, type:string, comment:null)], location:hdfs://sandbox.hortonworks.
com:8020/tmp/hive/hdfs/bf1e3648-d165-47f7-b27e-1e1f488f29f7/_tmp_space.db/d494a62e-
c1a5-4609-a9f6-4a26e656eebb, inputFormat:org.apache.hadoop.mapred.TextInputFormat, 
outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat, compressed:false, 
numBuckets:-1, serdeInfo:SerDeInfo(name:null, serializationLib:org.apache.hadoop.hive.
serde2.lazy.LazySimpleSerDe, parameters:{serialization.format=1}), bucketCols:[], 
sortCols:[], parameters:{}, skewedInfo:SkewedInfo(skewedColNames:[], skewedColValues:[], 
skewedColValueLocationMaps:{}), storedAsSubDirectories:false), partitionKeys:[], 
parameters:{}, viewOriginalText:null, viewExpandedText:null, tableType:MANAGED_TABLE, pri
vileges:PrincipalPrivilegeSet(userPrivileges:{hdfs=[PrivilegeGrantInfo(privilege:INSERT, 
createTime:-1, grantor:hdfs, grantorType:USER, grantOption:true), PrivilegeGrantInfo(privile
ge:SELECT, createTime:-1, grantor:hdfs, grantorType:USER, grantOption:true), PrivilegeGrant
Info(privilege:UPDATE, createTime:-1, grantor:hdfs, grantorType:USER, grantOption:true), 
PrivilegeGrantInfo(privilege:DELETE, createTime:-1, grantor:hdfs, grantorType:USER, 
grantOption:true)]}, groupPrivileges:null, rolePrivileges:null),  temporary:true ) 
 Time taken: 0.176 seconds, Fetched: 3 row(s) 
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          Altering Tables 
 You can modify the existing table structures using the A LTER TABLE  command. This command is quite 
similar to the standard  SQL ALTER TABLE  command and has few different functions in Hive. All options in 
 ALTER TABLE  enable you to modify the structures of the tables but they do not modify the data. 

 Let's look at a few options in  ALTER TABLE . 

   Renaming Tables 
 You can rename a table using  ALTER TABLE RENAME  command. As an example, we will rename our  states  
table to  states_old  and then view its properties. 

    hive> CREATE EXTERNAL TABLE states (state STRING) LOCATION '/user/demo/states'; 
 OK 
 Time taken: 1.057 seconds 
 hive> ALTER TABLE states RENAME TO states_old; 
 OK 
 Time taken: 1.211 seconds 
 hive> DESCRIBE FORMATTED states_old; 
 OK 
 # col_name              data_type              comment 

   state                   string 

   # Detailed Table Information 
 Database:               default 
 Owner:                  hdfs 
 CreateTime:             Sun Jul 03 13:03:15 UTC 2016 
 LastAccessTime:         UNKNOWN 
 Protect Mode:           None 
 Retention:              0 
 Location:               hdfs://sandbox.hortonworks.com:8020/user/demo/states 
 Table Type:             EXTERNAL_TABLE 
 Table Parameters: 
         COLUMN_STATS_ACCURATE   false 
         EXTERNAL                TRUE 
         last_modified_by        hdfs 
         last_modified_time      1467551010 
         numFiles                5 
         numRows                 -1 
         rawDataSize             -1 
         totalSize               213 
         transient_lastDdlTime   1467551010 
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   # Storage Information 
 SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe 
 InputFormat:            org.apache.hadoop.mapred.TextInputFormat 
 OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat 
 Compressed:             No 
 Num Buckets:            -1 
 Bucket Columns:         [] 
 Sort Columns:           [] 
 Storage Desc Params: 
         serialization.format   1 
 Time taken: 0.575 seconds, Fetched: 34 row(s) 

       Modifying a Table’s Storage Properties 
 You can modify the storage properties of a table using the  ALTER TABLE  command in Hive. However, the 
better recommended approach is to extract the  CREATE TABLE  statement (or pull it out of version control 
if its stored), drop the table, modify the  CREATE TABLE  with new storage attributes, and recreate it. In most 
production environments, table definitions are maintained in version control and doing things this way also 
maintains a record of the change performed.   

     ORC File Format 
 The ORC file format is designed to reduce the amount of data read from the disk. Many of the new 
performance optimizations in Hive only work with ORC files, hence for most use cases, it is recommended 
that the raw data be converted into ORC files. This format is explained in detail in Chapter   9    , “Performance 
Tuning: Hive”. In this section, we discuss the steps that we can follow to convert a text file-based external 
table into an ORC file. 

 Let’s convert our  states  table into the ORC format and view its properties. 

    hive> CREATE TABLE states_orc STORED AS ORC TBLPROPERTIES("ORC.COMPRESS"="SNAPPY") AS SELECT * 
FROM states; 
 Query ID = hdfs_20160703133105_d38ec632-7250-42ac-bb58-23e2ed2028ec 
 Total jobs = 1 
 Launching Job 1 out of 1 
 Tez session was closed. Reopening... 
 Session re-established. 

   Status: Running (Executing on YARN cluster with App id application_1467537169806_0004) 

   -------------------------------------------------------------------------------- 
         VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------------- 
 Map 1 ..........   SUCCEEDED      1          1        0        0       0       0 
 -------------------------------------------------------------------------------- 
 VERTICES: 01/01  [==========================>>] 100%  ELAPSED TIME: 4.90 s 
 -------------------------------------------------------------------------------- 
 Moving data to: hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/states_orc 
 Table default.states_orc stats: [numFiles=1, numRows=22, totalSize=364, rawDataSize=2024] 
 OK 

http://dx.doi.org/10.1007/978-1-4842-0271-5_9
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 Time taken: 14.461 seconds 
 hive> DESCRIBE EXTENDED states_orc; 
 OK 
 state                   string 

   Detailed Table Information    Table(tableName:states_orc, dbName:default, owner:hdfs, 
createTime:1467552677, lastAccessTime:0, retention:0, sd:StorageDescriptor(cols:[Fiel
dSchema(name:state, type:string, comment:null)], location:hdfs://sandbox.hortonworks.
com:8020/apps/hive/warehouse/states_orc,  inputFormat:org.apache.hadoop.hive.ql.io.
orc.OrcInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat , 
compressed:false, numBuckets:-1, serdeInfo:SerDeInfo(name:null, serializationLib:org.
apache.hadoop.hive.ql.io.orc.OrcSerde, parameters:{serialization.format=1}), bucketCols:[], 
sortCols:[], parameters:{}, skewedInfo:SkewedInfo(skewedColNames:[], skewedColValues:[], 
skewedColValueLocationMaps:{}), storedAsSubDirectories:false), partitionKeys:[], 
parameters:{numFiles=1,  ORC.COMPRESS=SNAPPY , transient_lastDdlTime=1467552677, COLUMN_
STATS_ACCURATE=true, totalSize=364, numRows=22, rawDataSize=2024}, viewOriginalText:null, 
viewExpandedText:null, tableType:MANAGED_TABLE) 
 Time taken: 0.574 seconds, Fetched: 3 row(s) 

      Merging a Table's Files 
 Dealing with small files is a constant challenge in Hadoop, as they consume lot of NameNode entries for 
metadata. It is always recommended to stitch small files together into bigger ones. If you have a table in the 
ORC file format with many small files, you can merge them to make optimum use of HDFS metadata space 
in the NameNode. Do this using the  ALTER TABLE  command. The HDFS NameNode process maintains the 
metadata of all files in HDFS. 

 For Hive tables stored as RCFile or ORCFile, this can be done as follows: 

   ALTER TABLE states CONCATENATE; 

   This command will merge multiple data files into larger files. 
 The best way to avoid small files is to merge them into files many times the size of the cluster's chunk 

size, generally many gigabytes or larger, before they land in Hadoop. There are many ways to stitch them 
together after they land in Hadoop, but since Hadoop doesn't perform well with many smaller files, those 
stitching processes can themselves be slow.   

     Altering Table Partitions 
 So far we have seen a few options of the  ALTER TABLE  command to modify a few table properties. You can 
also use this command to modify table partitions with some additional options. 

   Add Partition 
 You can add new partitions to existing tables using the  ALTER TABLE ADD PARTITION  command. As new data 
is loaded into HDFS into subdirectories of an existing external partitioned table, you would need to run this 
command to plug in the new partitions. This command allows you add one or more partitions based on the 
same existing partition key to an existing table. 

 Let’s take a look at an example to add a new partition to an existing table. We will first create a directory 
for the external table and two partitions on HDFS. 
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   hadoop fs -mkdir /user/demo/ids 
 hadoop fs -mkdir /user/demo/ids/2016-05-31 
 hadoop fs -mkdir /user/demo/ids/2016-05-30 

   Now, we will copy the data to these directories. 

   hadoop fs -put /tmp/2016-05-31.txt /user/demo/ids/2016-05-31/ 
 hadoop fs -put /tmp/2016-05-30.txt /user/demo/ids/2016-05-30/ 

   Let’s now create the external table and add partitions to it. 

    hive> CREATE EXTERNAL TABLE ids (a INT) PARTITIONED BY (datestamp STRING) LOCATION '/user/
demo/ids'; 
 OK 
 Time taken: 1.009 seconds 

   Let’s add the partitions to the table now. 

   ALTER TABLE ids ADD PARTITION (datestamp='2016-05-30') location '/user/demo/ids/2016-05-30'; 
 hive> SELECT * FROM ids; 
 OK 
 11      2016-05-30 
 12      2016-05-30 
 13      2016-05-30 
 14      2016-05-30 
 15      2016-05-30 
 16      2016-05-30 
 Time taken: 1.011 seconds, Fetched: 6 row(s) 

   Similarly, we can add the other partition to this table. 

   hive> ALTER TABLE ids ADD PARTITION (datestamp='2016-05-31') location '/user/demo/ids/2016-
05-31'; 
 OK 
 Time taken: 0.438 seconds 
 hive> SELECT * FROM ids; 
 OK 
 11      2016-05-30 
 12      2016-05-30 
 13      2016-05-30 
 14      2016-05-30 
 15      2016-05-30 
 16      2016-05-30 
 1       2016-05-31 
 2       2016-05-31 
 3       2016-05-31 
 4       2016-05-31 
 5       2016-05-31 
 6       2016-05-31 
 Time taken: 0.649 seconds, Fetched: 12 row(s) 



CHAPTER 4 ■ HIVE TABLES DDL

72

   For an internal table, you can add the new partitions using the  MSCK REPAIR TABLE  command. 
 Let’s look at an example of this. We will first create an internal partitioned table called  ids_internal . 

   hive> CREATE TABLE ids_internal (a INT) PARTITIONED BY (datestamp STRING); 
 OK 
 Time taken: 2.422 seconds 

   Now let’s add a couple of rows in two different partitions. 

    hive> INSERT INTO ids_internal PARTITION (datestamp='2016-05-30') values (1); 
 Query ID = hdfs_20160703164138_82dfaa1f-e746-4c68-b694-0bb639af2961 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1467537169806_0011) 

   -------------------------------------------------------------------------------- 
         VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------------- 
 Map 1 ..........   SUCCEEDED      1          1        0        0       0       0 
 -------------------------------------------------------------------------------- 
 VERTICES: 01/01  [==========================>>] 100%  ELAPSED TIME: 4.70 s 
 -------------------------------------------------------------------------------- 
 Loading data to table default.ids_internal partition (datestamp=2016-05-30) 
 Partition default.ids_internal{datestamp=2016-05-30} stats: [numFiles=1, numRows=1, 
totalSize=2, rawDataSize=1] 
 OK 
 Time taken: 11.108 seconds 
 hive> INSERT INTO ids_internal PARTITION (datestamp='2016-05-31') values (11); 
 Query ID = hdfs_20160703164158_8a2cb0c5-60ef-4212-832b-6cc933d31adf 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1467537169806_0011) 

   -------------------------------------------------------------------------------- 
         VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------------- 
 Map 1 ..........   SUCCEEDED      1          1        0        0       0       0 
 -------------------------------------------------------------------------------- 
 VERTICES: 01/01  [==========================>>] 100%  ELAPSED TIME: 0.20 s 
 -------------------------------------------------------------------------------- 
 Loading data to table default.ids_internal partition (datestamp=2016-05-31) 
 Partition default.ids_internal{datestamp=2016-05-31} stats: [numFiles=1, numRows=1, 
totalSize=3, rawDataSize=2] 
 OK 
 Time taken: 5.683 seconds 
 hive> SHOW PARTITIONS ids_internal; 
 OK 
 datestamp=2016-05-30 
 datestamp=2016-05-31 
 Time taken: 3.684 seconds, Fetched: 2 row(s) 
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    We will now create a new subdirectory under this table’s directory and add a file to it. 

   hadoop fs -mkdir /apps/hive/warehouse/ids_internal/datestamp=2016-05-21 
 hadoop fs -put /tmp/2016-05-21.txt /apps/hive/warehouse/ids_internal/datestamp=2016-05-21 

   We can now run the  MSCK REPAIR TABLE  command to add this new partition to the table: 

   hive> MSCK REPAIR TABLE ids_internal; 
 OK 
 Partitions not in metastore:    ids_internal:datestamp=2016-05-21 
 Repair: Added partition to metastore ids_internal:datestamp=2016-05-21 
 Time taken: 1.821 seconds, Fetched: 2 row(s) 
 hive> SHOW PARTITIONS ids_internal; 
 OK 
  datestamp=2016-05-21  
  datestamp=2016-05-30  
  datestamp=2016-05-31  
 Time taken: 5.869 seconds, Fetched:  3 row(s)  

   The  MSCK repair  command checked the subdirectories under  /apps/hive/warehouse/ids_internal  
for the  ids_internal  table and, because it found a new subdirectory called  datestamp=2016-05-21 , it added 
it as a new partition to the  ids_internal  table. This is particularly useful when you have added many new 
partition directories and want to update their table definitions all at once. Note that this is valid only with 
internal tables.  

   Rename Partition 
 You can even rename a table’s partition using the  ALTER TABLE  command. Let’s rename the partition that we 
created in the previous example. 

    hive> ALTER TABLE ids PARTITION (datestamp='2016-05-31') RENAME to PARTITION 
(datestamp='31-05-2016'); 
 OK 
 Time taken: 1.155 seconds 
 hive> SHOW PARTITIONS ids; 
 OK 
 datestamp=2016-05-30 
 datestamp=31-05-2016 
 Time taken: 0.679 seconds, Fetched: 2 row(s) 

   The ALTER TABLE command in this case, is just updated the partition name in the Hive 
Metastore. 

    This command can be used only to modify the external table partitions. You will get the following error 
if you try to rename the partitions of internal tables. 

   FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Unable 
to rename partition. table new location hdfs://sandbox.hortonworks.com:8020/apps/hive/
warehouse/retail.db/transactions/store=oakdrive is on a different file system than the old 
location hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/retail.db/transactions/
store=oakwood. This operation is not supported 
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         Modifying Columns 
 You can modify various columns using the  ALTER TABLE  command. Let's look at a few options. 

   Adding Columns 
 As the data in the Big Data world grows, one of the key requirements of a schema-on-read architecture is 
perhaps the ability to modify the schema or table metadata. This flexibility allows users to define various 
types of metadata on the table and modify it without worrying about modifying the underlying data (only for 
external tables). You can  ALTER  a table to add new columns to it using the  ALTER TABLE  command. 

   hive> ALTER TABLE RETAIL.TRANSACTIONS ADD COLUMNS (loyalty_card boolean); 
 OK 
 Time taken: 0.278 seconds 

   The new columns are added to the end of current columns but before the partition columns. The 
value of the partition column comes from the partition definition and is not stored in the data file itself or 
mentioned in the column list in  CREATE TABLE . Therefore, the partition column is always at the end of the 
column list when you do  SELECT * , although in reality it isn't embedded in the data itself. 

 You can also replace an entire list of columns in a table using the  ALTER TABLE REPLACE COLUMNS  
command. However, it’s better to drop and recreate the table in such a case, because you can then store the 
new definitions in source control.   

     Dropping Tables/Partitions 

   Drop Tables 
 You can drop tables in Hive using the  DROP TABLE  command. When you run  DROP TABLE , the metadata of the 
table is always deleted. However, Hive only deletes the table data for managed tables. If you have enabled the 
HDFS trash feature, the data files for the table are moved to the  /user/$USER/.trash  folder. You can enable 
this feature by setting the  fs.trash.interval  parameter in  /etc/hadoop/conf/core-site.xml . 

   DROP TABLE <TABLE_NAME>; 

   If you want to drop it from the trash as well, you can include the  PURGE  keyword as follows: 

   DROP TABLE <TABLE_NAME> PURGE; 

      Dropping Partitions 
 You can also drop a partition in Hive using the  ALTER TABLE DROP PARTITION  command. The command 
deletes the partition metadata from the Hive Metastore. Just like the  DROP TABLE  command, Hive deletes the 
actual partition data only if the table is a managed table. Here is an example of dropping a partition. 

   hive> ALTER TABLE transactions DROP PARTITION (store='oakdrive'); 
 Dropped the partition store=oakdrive 
 OK 
 Time taken: 1.105 seconds 
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   In this example, the data still exists in HDFS (assuming you used an external table) but queries against 
the transactions table no longer read from that partition. Therefore, no rows in the result set will have 
 store=oakdrive  because that partition no longer exists in the table.   

     Protecting Tables/Partitions 
 You can prevent users from dropping tables in Hive by using the  ALTER TABLE ENABLE NO_DROP  command. 
In a production environment, users typically do not have the privileges to drop the tables. However, this 
is particularly useful in an environment where the user requires such privileges but you want to protect a 
particular table from being dropped. 

 Here is an example of how to alter a table in Hive to prevent it from being deleted: 

   hive> ALTER TABLE transactions ENABLE NO_DROP; 
 OK 
 Time taken: 0.239 seconds 
 hive> DROP TABLE transactions; 
 FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Table 
transactions is protected from being dropped 

   You can even prevent a table data from being queried by offlining it. This does not prevent another table 
from accessing the same underlying data. 

   hive> ALTER TABLE transactions ENABLE OFFLINE; 
 OK 
 Time taken: 0.285 seconds 
 hive> SELECT * FROM TRANSACTIONS; 
 FAILED: SemanticException [Error 10113]: Query against an offline table or partition Table 
TRANSACTIONS 

   You can run these two commands at the partition level by specifying the partition name as follows. 

   ALTER TABLE <TABLE_NAME> PARTITION <PARTITION_SPEC> ENABLE OFFLINE; 

        Other Create Table Command Options 

   Create Table as Select (CTAS) 
 You can also create an internal table using the result set and schema of the output of a query using the 
 CREATE TABLE AS SELECT  command. 

   hive> CREATE TABLE retail.transactions_top100 AS SELECT * FROM retail.transactions WHERE 
custid<101; 

   You can use this feature to extract a subset of a table and store it in another format in a new table. Here 
is another example that specifies a new format for the target table. 

   hive> CREATE TABLE retail.transactions _top100 STORED AS ORCFILE 
     > AS 
     > SELECT * FROM retail.transactions WHERE custid<101; 

   Hive has some restrictions on the format of the target table in the  CTAS  command. The new target table 
cannot be an external, partitioned, or bucketed table.  
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   Create Table Like 
 If you want to copy the schema of an existing table without copying its data, you can use the  CREATE TABLE 
LIKE  command. 

   hive> CREATE TABLE transactions_test LIKE transactions; 
 OK 
 Time taken: 0.291 seconds         
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    CHAPTER 5   

 Data Manipulation Language (DML)                          

 The Hive data manipulation language is the base for all data processing in the Hive ecosystem. 

 The objectives of this chapter are to:

•    Understand the fundamental building blocks of the Hive DML  

•   Understand the impact of key optional setting  

•   Combine the fundamental building blocks to achieve data processing    

  To achieve the maximum learning experience, you should complete the chapter’s examples in the order they 
are presented, as later examples use previous data structures. This is a much more structured chapter than the 
others in this book to efficiently explain the syntax of each DML topic.  

     Loading Data into Tables 
 Processing data into information requires data to be present. The Hive environment will accept any data that 
can be structured in a delimited format. 

 Data is loaded into the platform using the following DML process. 

 To load data into the platform you need two components:

•    Data to load from (a source)  

•   A table to load the data into (a target)    

  There is no transformation while loading data into tables, as Hive only performs a move/copy of the data ready 
for system to use.  
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     Loading Data Using Files Stored on the Hadoop Distributed File 
System 
 Hive supports uploading files from the Hadoop Distributed File System (HDFS). This is the most 
fundamental method of moving data into the Hive ecosystem. 

 The Hive syntax is as follows: 

   LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename 

   Here is the syntax explained: 

  LOAD DATA   Keywords for loading data in Hive. 

  LOCAL   If included, enables the users to load data from their local files. 
 If omitted, the files are loaded from the path set in the Hadoop configuration 
variable  fs.default.name . 

  INPATH 'filepath'   If  LOCAL  is used: 
  file:///user/hive/example  
 If  LOCAL  is omitted: 
  hdfs://namenode:9000/user/hive/example  

  OVERWRITE   If included, enables the users to load data into an already populated table and 
replace the previous data. 
 If omitted, enables the users to load data into an already populated table and 
append the new data to previous data. 

  INTO TABLE tablename   The  tablename  is the name of a table that exists in Hive. 
 Use  CREATE TABLE  tablename. 

     Using Hive to Upload a Data File 
 The following Hive commands enable you to upload a data file called  Person001.csv  into a table called 
 census.person . 

 The data sets can be downloaded from    www.apress.com/9781484202722     . 

 For the purposes of this chapter, you need to use: 

   $HIVE_HOME/bin/hive 

   This example uses the example script called  Script_PersonTable.txt . 

 The Hive script to use is: 

    ## Create a new database 
 CREATE DATABASE census; 

   ## Use the new database 
 USE census; 

http://www.apress.com/9781484202722
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   ## Create a new table 
 CREATE TABLE person ( 
   persid         int, 
   lastname       string, 
   firstname      string 
 ) 
 ROW FORMAT  DELIMITED  FIELDS TERMINATED BY ','; 

   ## Load data into the new table from csv file 
 LOAD DATA LOCAL INPATH 'file:///root/hive/example/person001' OVERWRITE INTO TABLE person; 

   ## Check if the data is in table 
 SELECT persid, lastname, firstname 
 FROM person; 

    The following will show if you use the script on the Hive command line: 

    hive> CREATE DATABASE census; 
 OK 
 Time taken: 1.486 seconds 

   hive> USE census; 
 OK 
 Time taken: 0.66 seconds 

   hive> CREATE TABLE person ( 
     >   persid         int, 
     >   lastname       string, 
     >   firstname      string 
     >) 
     >ROW FORMAT  DELIMITED  FIELDS TERMINATED BY ','; 
 OK 
 Time taken: 3.28 seconds 

   hive> LOAD DATA LOCAL INPATH 'file:///root/hive/example/person001' OVERWRITE INTO TABLE 
person; 
 Loading data to census.person 
 Table census.person stats: (numFiles=1, numRows=0, totalSize=1265, rawDataSize=0) 
 OK 
 Time taken: 4.393 seconds 

    Test if all the data is loaded; the results should be 80 records (we show the first 10 records): 

   hive> SELECT persid, lastname, firstname FROM person; 
 OK 
 2       SMITH           AARON 
 3       SMITH           ABDUL 
 4       SMITH           ABE 
 5       SMITH           ABEL 
 6       SMITH           ABRAHAM 
 7       SMITH           ABRAM 

www.allitebooks.com

http://www.allitebooks.org
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 8       SMITH           ADALBERTO 
 9       SMITH           ADAM 
 10      SMITH           ADAN 
 11      JOHNSON         AARON 
 .. 
 .. 
 Time taken: 4.241 seconds, Fetched: 80 record(s) 

         Loading Data Using Queries 
 Hive supports loading data queried from existing tables into the Hive ecosystem. 

 The Hive syntax is as follows: 

   INSERT [OVERWRITE] 
 TABLE tablename1 [IF NOT EXISTS] 
 SELECT select_fields FROM from_statement; 

   Here is the syntax explained: 

  INSERT   Keywords for loading data into a Hive table. 

  OVERWRITE   If included, enables the users to load data into an already populated table and replace 
the previous data. 
 If omitted, enables the users to load data into an already populated table and append 
the new data to previous data. 

  TABLE tablename   The  tablename  is the name of a table that exists in Hive. 
 Use  CREATE TABLE  tablename. 

  IF NOT EXISTS   If the  IF NOT EXISTS  is included in the command, the Hive command will create a 
table in the current database. 
 If omitted, it will fail if the table does not exist. 

  SELECT  
  select_fields  

  FROM  
  from_statement  

 This can be any  SELECT  command against the Hive ecosystem. 

     Using an Existing Table to Create a New Table 
 This exercise enables you to upload a data query from a table called  census.person  into a table called 
 census.personhub . 

 The example uses the example script  Script_PersonHub.txt . 

 The complete script is: 

    ## Use existing database 
 USE census; 
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   ## Create new table 
 CREATE TABLE personhub ( 
   persid         int 

   ); 

   ## Insert data into table, overwriting existing data in table 
 INSERT OVERWRITE 
 TABLE personhub 
 SELECT DISTINCT personId FROM Person; 

   ## Check if data in table 
 SELECT 
   persid 
 FROM 
   personhub; 

    The following will show if you use the script on the Hive command line: 

    hive> USE census; 
 OK 
 Time taken: 0.664 seconds 

   hive> CREATE TABLE personhub ( persid int ); 
 OK 
 Time taken: 3.098 seconds 

   hive> INSERT OVERWRITE TABLE personhub SELECT DISTINCT personId FROM Person; ); 
 Query ID = root_201606081616_9defdc9d-5d2d-46aa-87e1-a7e7247b2362 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1441527339718_004 
 -------------------------------------------------------------------------- 
 VERTICES         STATUS  TOTAL COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------- 
 MAP 1 ........ SUCCEEDED   1       1         0        0        0       0 
 Reducer 2 .... SUCCEEDED   1       1         0        0        0       0 
 -------------------------------------------------------------------------- 
 VERTICES: 02/02 [======================>>] 100% ELAPSED TIME: 31.84 s 
 -------------------------------------------------------------------------- 
 Loading data to table census.personhub 
 Table census.personhub stats: [numFiles=1, numRows=80, totalSize=232, rawDataSize=152] 
 OK 
 Time taken: 39.003 seconds 
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    The results should be 80 records (we show the first five): 

   hive> SELECT persid FROM personhub; 
 OK 
 2 
 3 
 4 
 5 
 6 
 .. 
 .. ( Only shown 5 record - 75 records removed ...) 
 Time taken: 2.7.64 seconds, Fetched: 80 record(s) 

   Now we upload the data again to test the removal of the  OVERWRITE  parameter. 

    USE census; 

   INSERT OVERWRITE TABLE personhub SELECT DISTINCT persid FROM Person; 

    Test if all the data is loaded without removing the previous data: 

   SELECT persid FROM personhub; 

   The results should be 160 records (only five are shown): 

    hive> USE census; 
 OK 
 Time taken: 0.662 seconds 

   hive> INSERT OVERWRITE TABLE personhub SELECT DISTINCT personId + 1000 FROM Person; ); 
 Query ID = root_201606081622_8defde9d-5d2d-46aa-87e1-a9e7247b2362 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1441527339718_005 
 -------------------------------------------------------------------------- 
 VERTICES        STATUS   TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------- 
 MAP 1 ........ SUCCEEDED   1        1         0        0       0       0 
 Reducer 2 .... SUCCEEDED   1        1         0        0       0       0 
 -------------------------------------------------------------------------- 
 VERTICES: 02/02 [======================>>] 100% ELAPSED TIME: 31.84 s 
 -------------------------------------------------------------------------- 
 Loading data to table census.personhub 
 Table census.personhub stats: [numFiles=1, numRows=80, totalSize=232, rawDataSize=152] 
 OK 
 Time taken: 41.411 seconds 
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   hive> SELECT persid FROM personhub; 
 OK 
 2 
 3 
 4 
 1002 
 1003 
 .. 
 .. 
 Time taken: 2.7.64 seconds, Fetched: 160 record(s) 

          Writing Data into the File System from Queries 
 Hive supports loading data queried back into the Hadoop Distributed File System. 

 The Hive syntax is as follows: 

   INSERT [OVERWRITE] 
 DIRECTORY directoryname 
 SELECT select_fields FROM from_statement; 

   Here is the syntax explained: 

  INSERT   Keywords for loading data into a Hive directory. 

  OVERWRITE   If included, enables the users to load data into an already populated 
directory and replace the previous data. 
 If omitted, enables the users to load data into an already populated 
directory and append the new data to previous data. 

  DIRECTORY directoryname   The  directoryname  is the name of a directory that exists in the Hadoop 
Distributed File System. 
 Use  hadoop fs -mkdir directoryname  to create a directory. 

  SELECT  
  select_fields  
  FROM  
  from_statement  

 This can be any  SELECT  command against the Hive ecosystem. 

     Using an Existing Table to Create an Output Directory 
 This exercise enables you to upload a data query from a table called  person  into an output directory. 

 The example use the example script  Script_PersonDirectory.txt : 

 The complete script is: 

    hadoop fs -mkdir 'exampleoutput' 
 hive 

   USE census; 
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   INSERT OVERWRITE DIRECTORY 'exampleoutput' 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' 
 SELECT persid, firstname, lastname 
 FROM person; 

   exit; 

    Test if all the data is loaded: 

   hadoop fs -cat 'exampleoutput/000000_0' 

   The following shows if you use the script on the Hive command line: 

    hive> INSERT OVERWRITE DIRECTORY 'exampleoutput' 
     > ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' 
     > SELECT persid, firstname, lastname FROM person; 

   Query ID = root_201606081622_8dedde9d-9d2d-46ab-89e1-a9e7249b2362 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1441527339718_012 
 -------------------------------------------------------------------------- 
 VERTICES       STATUS    TOTAL COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------- 
 MAP 1 ........ SUCCEEDED   1       1         0        0        0       0 
 -------------------------------------------------------------------------- 
 VERTICES: 01/01 [======================>>] 100% ELAPSED TIME: 22.05 s 
 -------------------------------------------------------------------------- 
 Loading data to table census.personhub 
 Table census.personhub stats: [numFiles=1, numRows=80, totalSize=232, rawDataSize=152] 
 OK 
 Time taken: 66.685 seconds 

   hive> exit; 

   > hadoop fs -cat 'exampleoutput/000000_0' 

   2       SMITH           AARON 
 3       SMITH           ABDUL 
 4       SMITH           ABE 
 5       SMITH           ABEL 
 6       SMITH           ABRAHAM 
 7       SMITH           ABRAM 
 8       SMITH           ADALBERTO 
 9       SMITH           ADAM 
 10      SMITH           ADAN 
 11      JOHNSON         AARON 
 .. 
 .. 
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          Inserting Values Directly into Tables 
 Hive supports loading data directly into tables using a series of static values. 

 The Hive syntax is as follows: 

   INSERT 
 INTO TABLE tablename 
 VALUES 
 (row_values1), 
 (row_values2); 

   Here is the syntax explained: 

  INSERT   Keywords for loading data into a Hive directory. 

  TABLE tablename   The  tablename  is the name of a table that exists in Hive. 
 Use  CREATE TABLE  tablename. 

  VALUES (row_values1), (row_values2)   The  row_values1  and  row_values2  values are individual 
records of same format other than the table's records. 

     Adding Extra Records to an Existing Table 
 This exercise enables you to upload a record directly into a table called  personhub . 

 The example uses the example script  Script_PersonValues.txt . 

 The complete script is: 

    USE census; 

   INSERT 
 INTO TABLE personhub 
 VALUES 
 (0); 

    Test if all the data is loaded: 

    USE census; 

   SELECT persid 
 FROM personhub 
 WHERE persid = 0; 

    The following shows if you use the script on the Hive command line: 

    hive> USE census; 
 OK 
 Time taken: 0.662 seconds 
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   hive> INSERT INTO TABLE personhub VALUES (0); 
 Query ID = root_201606081622_8defde5d-5d2d-46aa-89e1-a9e7247b2362 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1441527339718_015 
 -------------------------------------------------------------------------- 
 VERTICES       STATUS    TOTAL COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------- 
 MAP 1 ........ SUCCEEDED     1      1        0         0       0       0 
 -------------------------------------------------------------------------- 
 VERTICES: 02/02 [======================>>] 100% ELAPSED TIME: 51.05 s 
 -------------------------------------------------------------------------- 
 Loading data to table census.personhub 
 Table census.personhub stats: [numFiles=1, numRows=80, totalSize=232, rawDataSize=152] 
 OK 
 Time taken: 41.411 seconds 

    The results should be a single record: 

   hive> SELECT persid FROM personhub WHERE persid = 0; 
 OK 
 0 
 Time taken: 5.493 seconds, Fetched: 1 record(s) 

         Updating Data Directly in Tables 
 Hive supports updating data directly into tables. 

 The Hive syntax is as follows: 

   UPDATE tablename 
 SET column = value 
 [WHERE expression]; 

   Here is the syntax explained: 

  UPDATE   Keywords for updating values in a table. 

  tablename   The  tablename  is the name of a table that exists in Hive. 
 Use  CREATE TABLE  tablename. 

  SET column = value   The  SET  command updates the column with a value. 

  [WHERE expression]    WHERE  can be used to pick specific column values for a change query. 
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     Updating Records in an Existing Table 
 This exercise enables you to update data directly in a table called  person20 . 

 The example uses the script  Script_PersonUpdate.txt . 

 The complete script is: 

    USE census; 

   CREATE TABLE census.person20 ( 
   persid         int, 
   lastname       string, 
   firstname      string 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true'); 

   INSERT INTO TABLE person20 VALUES (0,'A','B'),(2,'X','Y'); 

    Test if the data is updated: 

   SELECT * 
 FROM 
   census.person20; 

   The results should be two records. 

   OK 
 0       A       B 
 2       X       Y 

   Now perform the update: 

    USE census; 

   UPDATE 
   census.person20 
 SET lastname = 'SS' 
 WHERE 
  persid = 0; 

   SELECT * 
 FROM 
   census.person20; 

    The results should two records. 

   OK 
 0       SS       B 
 2       X       Y 
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         Deleting Data Directly in Tables 
 Hive supports deleting data directly in tables. 

 The Hive syntax is as follows: 

   DELETE tablename 
 [WHERE expression]; 

   Here is the syntax explained: 

  DELETE   Keywords for deleting values in a table. 

  tablename   The  tablename  is the name of a table that exists in Hive. Use  CREATE TABLE  
tablename. 

  [WHERE expression]    WHERE  can be used to pick specific column values to delete the query. 

     Updating Records in an Existing Table 
 This exercise enables you to update records directly in a table called  person30 . 

 The example uses the script  Script_PersonDelete.txt . 

 The complete script is: 

    USE census; 

   CREATE TABLE census.person30 ( 
   persid         int, 
   lastname       string, 
   firstname      string 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true'); 

   INSERT INTO TABLE census.person30 
 VALUES (0,'A','B'),(2,'X','Y'); 

   SELECT * 
 FROM census.person30; 

    The results should be two records. 

   OK 
 0       A       B 
 2       X       Y 
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   To delete a record: 

    USE census; 

   DELETE FROM census.person30 
 WHERE persid = 0; 

   SELECT * 
 FROM census.person30; 

    The results should be one record. 

   OK 
 0       A       B 
 2       X       Y 

         Creating a Table with the Same Structure 
 Hive supports creating a new table from an existing table's structure. 

 The Hive syntax is as follows: 

   CREATE 
 TABLE blank_tablename 
 LIKE tablename; 

   Here is the syntax explained: 

  CREATE TABLE   Keywords for creating a table. 

  Blank_tablename   The  tablename  is the name of a table that’s created. 

  LIKE   Keyword to ensure the same structure is used. 

  tablename   The  tablename  is the name of a table that exists in Hive. Use  CREATE TABLE 
tablename . 

     Using an Existing Table to Create a New Table with the Same Structure 
 This exercise enables you to create a table called  personhub2  using the structure of a table called  personhub . 

 The example uses the script  Script_PersonLike.txt . 

 The complete script is: 

    USE census; 

   CREATE TABLE person40 LIKE person; 

   SELECT * FROM person40; 
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    Test if the data is updated: 

   INSERT INTO TABLE person40 VALUES (0,'Bob','Burger'),(1,'Charlie','Clown'); 
 SELECT * FROM person40; 

   The results should be two records. 

   OK 
 0       A       B 
 2       X       Y 

          Joins 
     Using Equality Joins to Combine Tables 
 Hive supports equality joins between tables to enable you to combine data from two tables. 

 The Hive syntax is as follows: 

   SELECT table_fields 
 FROM table_one 
 JOIN table_two 
 ON (table_one.key_one = table_two.key_one 
 AND table_one.key_two = table_two.key_two); 

   Here is the syntax explained: 

  SELECT table_fields   Keywords to select of a range of fields from both 
tables. 

  FROM table_one  
  JOIN table_two  

 Lists the two tables that are joined to retrieve the 
 table_fields . 

  ON (table_one.key_one = table_two.key_one  
  AND table_one.key_two = table_two.key_two)  

 Lists the equality rules to join the two tables. 

     Joining Tables in Hive 
 This exercise enables you to create a join between two tables called  census.personname  and  census.
address . 

 The example uses the script  Script_EqualJoin.txt . 

 The complete script is: 

    USE census; 
 CREATE TABLE census.personname ( 
   persid         int, 
   firstname      string, 
   lastname       string 
 ) 
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 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true'); 

   INSERT INTO TABLE census.personname 
 VALUES 
 (0,'Albert','Ape'), 
 (1,'Bob','Burger'), 
 (2,'Charlie','Clown'), 
 (3,'Danny','Drywer'); 

   CREATE TABLE census.address ( 
   persid         int, 
   postname      string 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true'); 
 INSERT INTO TABLE census.address 
 VALUES 
 (1,'KA13'), 
 (2,'KA9'), 
 (10,'SW1'); 

    You now have two tables called  census.personname  and  census.address . 
 Now you perform the join: 

   SELECT personname.firstname, 
   personname.lastname, 
   address.postname 
 FROM 
   census.personname 
 JOIN 
   census.address 
 ON (personname.persid = address.persid); 

   The results of the join are as follows: 

   OK 
 Bob       Burger       KA13 
 Charlie   Clown        KA9 

         Using Outer Joins 
 Hive supports equality joins between tables using  LEFT ,  RIGHT , and  FULL OUTER  joins, where keys 
have no match. 
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 The Hive syntax is as follows: 

   SELECT table_fields 
 FROM table_one 
 [LEFT, RIGHT, FULL OUTER] JOIN table_two 
 ON (table_one.key_one = table_two.key_one 
 AND table_one.key_two = table_two.key_two); 

   Here is the syntax explained: 

  SELECT table_fields   Keywords to select a range of fields from both tables. 

  FROM table_one  
  LEFT JOIN table_two  

 Lists the two tables that are joined to retrieve the  table_fields . 
 The  LEFT  join will result in including fields values from  table_one  
that match the  where  statement and fields values from  table_two  
that match and don’t match the  where  statement. 

  FROM table_one  
  RIGHT JOIN table_two  

 Lists the two tables that are joined to retrieve the  table_fields . 
 The  RIGHT  join will result in including fields values from  table_
one  that match the  where  statement and fields values from  table_
two  that match and don’t match the  where  statement. 

  FROM table_one  
  FULL OUTER JOIN table_two  

 Lists the two tables that are joined to retrieve the  table_fields . 
 The  FULL OUTER  join will result in including fields values from 
 table_two  that match and don’t match the  where  statement 
and fields values from  table_two  that don’t match the  where  
statement. 

  ON (table_one.key_one = table_
two.key_one  
  AND table_one.key_two = table_
two.key_two)  

 Lists the equality rules to join the two tables. 

     Joining Tables in Hive Using Left Join 
 Hive supports equality joins between tables to enable you to combine data from two tables. 

 The example uses the script  Script_OuterJoin.txt . 

 The complete script is: 

    USE census; 

   SELECT personname.firstname, 
   personname.lastname, 
   address.postname 
 FROM 
   census.personname 
 LEFT JOIN 
   census.address 
 ON (personname.persid = address.persid); 
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    The results should be four records. 

   OK 
 Albert    Ape           NULL 
 Bob       Burger        KA13 
 Charlie   Clown         KA9 
 Danny     Drywer        NULL 

      Joining Tables in Hive Using Right Join 
 Let's do a right join: 

   SELECT personname.firstname, 
   personname.lastname, 
   address.postname 
 FROM 
   census.personname 
 RIGHT JOIN 
   census.address 
 ON (personname.persid = address.persid); 

   The results should be three records. 
 Here are the results of the right join: 

   OK 
 Bob       Burger        KA13 
 Charlie   Clown         KA9 
 NULL      NULL          SW1 

      Joining Tables in Hive Using a Full Outer Join 
 Now for an outer join: 

   SELECT personname.firstname, 
   personname.lastname, 
   address.postname 
 FROM 
   census.personname 
 FULL OUTER JOIN 
   census.address 
 ON (personname.persid = address.persid); 

   The results should be five records. 

   OK 
 Albert          Ape            NULL 
 Bob             Burger         KA13 
 Charlie         Clown          KA9 
 Danny           Drywer         NULL 
 NULL            NULL           SW1 
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         Using Left Semi-Joins 
 Hive supports nested joins between tables. Consider a nested join like the following: 

   SELECT a.key, a.value 
 FROM a 
 WHERE a.key in 
  (SELECT b.key 
   FROM B); 

   This query will not work in Hive due to the distributed processing. 
 Hive can handle the query and uses a  SEMI JOIN  command. 
 The Hive syntax is as follows: 

   SELECT table_fields 
 FROM table_one 
 LEFT SEMI JOIN table_two 
 ON (table_one.key_one = table_two.key_one); 

   Here is the syntax explained: 

  SELECT table_fields   Keywords to select a range of fields from both tables. 

  FROM table_one LEFT SEMI JOIN table_two   Lists the two tables that are semi-joined to retrieve the 
 table_fields . 

  ON (table_one.key_one = table_two.key_
one);  

 Lists the equality rules to join the two tables. 

     Performing a Semi-Join 
 Hive supports semi-joins between tables to enable you to combine data from two tables. 

 The example uses the script  Script_SemiJoin.txt . 

 The complete script is: 

    USE census; 

   SELECT 
   personname.firstname, 
   personname.lastname 
 FROM 
   census.personname 
 LEFT SEMI JOIN 
   census.address 
 ON (personname.persid = address.persid); 

    The results should be two records. 

   OK 
 Bob       Burger        KA13 
 Charlie   Clown         KA9 
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         Using Join with Single MapReduce 
 Hive supports join using single MapReduce between multiple tables if the common key is used in a chain of 
joins. 

 The Hive syntax is as follows: 

   SELECT table_one.key_one, table_two.key_one, table_three.key_one 
 FROM table_one JOIN table_two 
 ON (table_one.key_one = table_two.key_one) 
 JOIN table_three 
 ON (table_three.key_one = table_two.key_one); 

   Here is the syntax explained: 

  SELECT table_one.key_one, table_two.key_
one, table_three.key_one  

 Keywords to select a range of fields from all tables. 

  FROM table_one JOIN table_two   Lists the first and second tables that are joined to 
retrieve the  table_fields . 

  ON (table_one.key_one = table_two.key_one)   Lists the equality rules to join the first and second 
tables. 

  JOIN table_three   Lists the third table that is joined to retrieve the 
 table_fields . 

  ON (table_three.key_one = table_two.key_
one)  

 Lists the equality rules to join the third table. 

     Joining Three Tables in One MapReduce 
 This exercise enables you to join three tables in one MapReduce. 

 The example uses the script  Script_MultiJoin.txt . 

 The complete script is: 

    USE census; 

   CREATE TABLE census.account ( 
   persid       int, 
   bamount      int 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true'); 
 INSERT INTO TABLE census.account 
 VALUES 
 (1,12), 
 (2,9); 
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   SELECT 
   personname.firstname, 
   personname.lastname, 
   address.postname, 
   account.bamount 
 FROM 
   census.personname 
 JOIN 
   census.address 
 ON (personname.persid = address.persid) 
 JOIN 
   census.account 
 ON (personname.persid = account.persid); 

    The results should be two records. 

   OK 
 Bob       Burger        KA13    12 
 Charlie   Clown         KA9     9 

         Using Largest Table Last 
 Hive performs joins by buffering the first tables of the join and then mapping the last table against them. 

 It’s good practice to always list the biggest table last because this speeds up the processing. 
 The Hive syntax one is as follows: 

   SELECT table_one.key_one, table_two.key_one, table_three.key_one 
 FROM table_one JOIN table_two 
 ON (table_one.key_one = table_two.key_one) 
 JOIN table_three 
 ON (table_three.key_one = table_two.key_one); 

   Here is syntax one explained: 

  table_one and table_two   Buffered in memory. 

  table_three   Mapped directly from disk. 

   The Hive syntax two is as follows: 

   SELECT table_one.key_one, table_two.key_one, table_three.key_one 
 FROM table_one JOIN table_three 
 ON (table_one.key_one = table_three.key_one) 
 JOIN table_two 
 ON (table_two.key_one = table_three.key_one); 
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   Here is syntax two explained: 

  table_one and   table_three   Buffered in memory. 

  table_two   Mapped directly from disk. 

        Transactions 
 Hive supports ACID-compliant transactions. This enables the support of transactions that are confirmed to 
completion by ensuring data integrity in the Hive database. 

  This is not a default setting for most Hive installations, as it will have a performance impact due to the extra 
processing required to ensure ACID compliance.   

     What Is ACID and Why Use It? 
 ACID stands for four traits of database transactions:

•    Atomicity—An operation either succeeds completely or fails; operations do not leave 
incomplete data in the system.  

•   Consistency —Once an operation completes, the results of that operation are visible 
to every subsequent operation.  

•   Isolation—Operations completed by one user do not cause unexpected side effects 
for other users.  

•   Durability—Once an operation is complete, it will be preserved even if the machine 
or system experiences a failure.    

 These behaviors are mandatory to ensure transaction functionality. 
 If your operations are ACID compliant, the system will ensure your processing is protected against any 

failures.  

     Hive Configuration 
 Hive supports transactions by setting the correct parameters. 

 To enable transactions, the following configurations need to be set. These configuration parameters 
must be set appropriately to turn on transaction support in Hive:

•     hive.support.concurrency – true   

•    hive.enforce.bucketing – true   

•    hive.exec.dynamic.partition.mode – nonstrict   

•    hive.txn.manager – org.apache.hadoop.hive.ql.lockmgr.DbTxnManager   
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•    hive.compactor.initiator.on – true  on one instance of the Thrift metastore 
service  

•    hive.compactor.worker.threads – 10  for an instance of the Thrift metastore 
service    

 Use this specific table format: 

   CREATE TABLE table_one ( 
   keyField            int, 
   valueFieldOne       string, 
   valueFieldTwo       string 
 ) 
 CLUSTERED BY (keyField) INTO x BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true');        
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    CHAPTER 6   

 Loading Data into Hive                          

 Let’s say you have built a data lake in your organization and one of the lines of business has requested for 
a new use case to be implemented, for example, a 360 view of the customer. When you consider the details 
of the use case, you find that analytics needs to occur on all the customer data residing in the existing 
operational systems, data warehouse, and on all new data getting generated from social media, customer 
service, and call centers, to get a complete picture of the customer. Hadoop, being a general-purpose, 
large-scale distributed processing platform, is quite suitable for this. 

 However, before you can run any kind of analytics in this data lake, the first task is to load the data. 
Historically, it was a common pattern to extract data from operational systems and load it in a data warehouse 
in batch form. But for this particular use case, you will need to load structured data from relational database, 
tweets from Twitter, feeds from Facebook, and audio call records from the call center system. 

 Previously, there wasn’t a single tool in the Hadoop ecosystem that was suitable to load data from all systems 
and in all formats. Instead, the community wrote a variety of tools that work best with some systems and were 
suitable for loading data in specific formats. As you can imagine, loading data using various tools in different 
formats from various systems can soon become a complex problem. The complexity of loading data can further 
be impacted by a few other factors. The frequency in which the data is loaded from a source system might also 
have an impact on the best tool. By way of interest, Apache Nifi, a part of the Hortonworks Data Flow Platform, has 
become an example of such a comprehensive tool, for all types of data loading and ingestion scenarios. 

 Regardless of the type of the source, the structure of the data, and the tools used to load it, all data in 
a Hadoop-based platform gets stored in HDFS. Since Hive is a SQL layer on Hadoop, all data needs to be 
loaded into HDFS before it becomes available for querying through Hive. 

 In this chapter we look at the common tools that can be used to load various types of data into HDFS. 
Some of the tools require the manual addition of Hive Metadata, whereas other tools automatically update 
Hive Metastore to make the newly added data available for analysis through Hive. 

     Design Considerations Before Loading Data 
 Before you start to populate any data in Hadoop, here are some key aspects that you should consider:

•    It is imperative to design the filesystem layout of HDFS to store various types of data. 
This will ensure easier management, discovery, and access control of the data to 
various users.  

•   If you are loading structured data from a relational database, you will need to decide 
whether to create a similar schema in Hive or a different data model.  

•   The format in which the data is stored in HDFS (such as ORCfile, RCfile, AVRO, 
Parquet, and so on) can impact the performance of the queries run through Hive. 
Most of the recent performance optimizations in Hive only work with ORCFile; we 
will see more details of this in Chapter   9    , “Performance Tuning: Hive”.  

http://dx.doi.org/10.1007/978-1-4842-0271-5_9
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•   Depending on the volume and access pattern of the data, you should also decide 
the most suitable compression algorithm—for example, Snappy, Zlib, LZO, etc.—to 
apply when the data is copied to HDFS.  

•   It is recommended not to store a large number of very tiny files in HDFS. This leads 
to an inefficient namespace usage of NameNode. Hence, it is important that you 
decide the appropriate file size and configuration for all files in HDFS.  

•   The loading patterns of the data can be a one-time batch, frequent batches, or real-
time ingestion. The choice of tools used to load the data can be driven by the loading 
patterns.     

     Loading Data into HDFS 
 This section describes techniques and tools for moving data into Hadoop. There are a variety of ways to get 
data into Hadoop, from simple Hadoop shell commands to more sophisticated processes. We discuss these 
processes and also look at few examples. These methods assume that you have privileges on the HDFS 
directory into which you are copying the files. 

     Ambari Files View 
 Ambari Files View is one of the views shipped with Ambari. The view provides a web user interface for 
browsing HDFS, creating/removing directories, downloading/uploading files, and so on. The cluster must 
have HDFS and WebHDFS deployed in order to use the Ambari Files View. 

 You can upload a file to HDFS using Ambari Files View as follows:

    1.    Log in to Ambari.  

    2.    Open the Ambari Files View by hovering the mouse over the Your Views menu 
to the left of the login username, in order to view a drop-down list of all available 
view instances (as shown in Figure  6-1 ).   

  Figure 6-1.    List of Ambari views       

    3.    Click on Files View to browse the HDFS filesystem (as shown in Figure  6-2 ). The 
actual name of the Files View instance might be different in your cluster.   
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    4.    Select the HDFS directory where you would like to upload the file.  

    5.    Click on Upload and Browse to open the File Browse window (as shown in 
Figure  6-3 ).   

  Figure 6-2.    Ambari Files view       

  Figure 6-3.    Browse local files       
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    6.    Select the file that you want to upload and click on Upload.  

    7.    The uploaded file should now be visible in the list of files listed in the current 
directory (as shown in Figure  6-4 ).       

  Figure 6-4.    File uploaded using Ambari Files View       

     Hadoop Command Line 
 Hadoop has a built-in  hadoop  command line that you can use to move files from the local filesystem to 
HDFS. This command-line tool is quite handy when you don’t have access to Ambari but have access 
through the shell. This command-line script has many commands that can be used to perform other 
operations on HDFS. However, in this section, we will only discuss the options to upload files to HDFS. 
All the other commands are beyond the scope of this book. 

 Here is the syntax to copy files in HDFS: 

   hadoop fs –put source_path hdfs_path 

   Let’s look at an example to copy another CSV file to the HDFS  /tmp  directory: 

   [hdfs@sandbox tmp]$ hadoop fs -put /tmp/2014-01-28.csv /tmp/ 
 [hdfs@sandbox tmp]$ hadoop fs -ls /tmp/ 
 Found 6 items 
 drwxrwxrwx   - admin     hdfs          0 2016-05-01 21:48 /tmp/.hivejobs 
 -rw-r--r--   1 hdfs      hdfs       3864 2016-06-14 22:14 /tmp/2014-01-28.csv 
 -rw-r--r--   3 admin     hdfs       7168 2016-04-27 19:03 /tmp/2015-03-28.csv 
 drwx-wx-wx   - ambari-qa hdfs          0 2015-09-20 16:56 /tmp/hive 
 drwxr-xr-x   - root      hdfs          0 2016-05-01 22:24 /tmp/root 
 drwxrwxrwx   - hdfs      hdfs          0 2015-08-19 12:46 /tmp/udfs 

        HDFS NFS Gateway 
 NFS Gateway is a stateless daemon that translates the NFS protocol to HDFS access protocols. It allows the 
clients to mount HDFS and interact with it through NFS, as if it were a part of their local filesystem. Many 
instances of such daemon can be run to provide high throughput read/write access to HDFS from multiple 
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clients. Before a client can mount HDFS using NFS Gateway, it must be installed on one of the data nodes or 
NameNodes of the Hadoop cluster. Once the HDFS filesystem is mounted using NFS Gateway, the user can 
simply copy files using the OS command line to HDFS.  

     Sqoop 
 As shown in Figure  6-5 , Sqoop is used to transfer data between structured data stores such as relational 
databases, enterprise data warehouses, and NoSQL systems and Hadoop. It extracts data from an external 
system on to HDFS and can also populate tables in Hive and HBase. Sqoop automates most of this process, 
relying on the database to describe the schema for the data to be imported.  

  Figure 6-5.    Sqoop’s workflow       

 Sqoop has a connector-based architecture that connects to various external systems. These connectors 
use a set of JDBC drivers for communication with various systems. Some of the external systems, which do 
not provide a JDBC interface, can also be accessed using these connectors. There are different connectors 
for different external systems. Depending on which external system you can want to connect to from Sqoop, 
you can add the appropriate plug-in. Some of the common connectors included with Sqoop are MySQL, 
Netezza, Oracle, PostgreSQL, Microsoft SQL Server, and Teradata. 

 In this section, we look at the general architecture of Sqoop and study some examples to import data 
from a MySQL database. 

   How Sqoop Works 
 Sqoop is used for bulk transfers of data. Internally it uses map reduce to read/write data to HDFS. When you 
run a Sqoop command, the data set that needs to be transferred is divided into various chunks and a map-
job is assigned to each data chunk. These data slices are worked in parallel, which is why Sqoop is able to 
transfer bulk data efficiently. 

 Figure  6-6  represents a Sqoop import job with a parallelism of four to load data into HDFS.   

 



CHAPTER 6 ■ LOADING DATA INTO HIVE

104

   Sqoop Examples 
 Let’s look at some examples that move data using Sqoop. 

   Importing a Table into HDFS 

   sqoop import --connect jdbc:mysql://localhost/test --table TEST1 --username root --m 1 

   This command will export the table  TEST1  from the  test  MySQL database and store it in HDFS in the 
directory  /user/<user>/TEST1/part-m-00000  file.  

   Importing a Table into a Specific Directory in HDFS 

   sqoop import --connect jdbc:mysql://localhost/test --table TEST1 --username root --m 1 
--target-dir /hive/tables/TEST1/ 

   In this example, the contents of the  TEST1  table will be stored in the  /hive/tables/TEST1  directory in HDFS.  

   Importing All Tables from a Database to HDFS 

   sqoop import-all-tables --connect jdbc:mysql://localhost/test --username root 

   This command will import all tables in the  test  database into HDFS. The Sqoop import job creates a 
directory for each table under  /user/root . We can see the list of imported tables as follows: 

    [root@sandbox ~]# hadoop fs -ls /user/root 
 Found 5 items 
 drwx------   - root hdfs          0 2016-04-30 21:18 /user/root/.Trash 
 drwxr-xr-x   - root hdfs          0 2015-09-20 16:56 /user/root/.hiveJars 
 drwx------   - root hdfs          0 2016-04-30 22:05 /user/root/.staging 
 drwxr-xr-x   - root hdfs          0 2016-06-14 22:24 /user/root/TEST1 
 drwxr-xr-x   - root hdfs          0 2016-06-14 22:24 /user/root/TEST2 

  Figure 6-6.    Sqoop import architecture       

 



CHAPTER 6 ■ LOADING DATA INTO HIVE

105

      Importing a Table into Hive 

   sqoop import --connect jdbc:mysql://localhost/test --table TEST1 --username root  --m 1 
--hive-import 

   This command will import the  TEST1  table into HDFS but also add its metadata to Hive. We can verify 
the data in Hive as follows. 

     hive> use default; 
 OK 
 Time taken: 1.453 seconds 
 hive> select count(*) from test1; 
 Query ID = root_20160614222847_b86f0300-0a22-49fe-a56f-e997c3e7e0e2 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1465942169140_0009) 

   -------------------------------------------------------------------------------- 
         VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 -------------------------------------------------------------------------------- 
 Map 1 ..........   SUCCEEDED      1          1        0        0       0       0 
 Reducer 2 ......   SUCCEEDED      1          1        0        0       0       0 
 -------------------------------------------------------------------------------- 
 VERTICES: 02/02  [==========================>>] 100%  ELAPSED TIME: 4.98 s 
 -------------------------------------------------------------------------------- 
 OK 
 3145728 
 Time taken: 13.049 seconds, Fetched: 1 row(s) 

       Importing a Table into Hive with Data Stored as an ORC Table 

   sqoop import --connect jdbc:mysql://localhost/test --table TEST10 --username root  --m 1 
--hcatalog-database default --hcatalog-table TEST10_ORC --create-hcatalog-table --hcatalog-
storage-stanza "stored as orcfile" 

   This command will create a new table called  TEST10_ORC  in the default database with data stored 
in ORC file format. In most cases, you store the Hive table data in ORC format to make use of the latest 
performance optimizations, for example, vectorization. This command is quite handy for creating table 
definitions and loading data into the ORC format in a single step. Once the data is loaded, you can verify its 
format as follows: 

    hive> describe extended test10_orc; 
 OK 
 a                       int 
 b                       int 
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   Detailed Table Information Table(tableName:test10_orc, dbName:default, owner:root, 
createTime:1465946427, lastAccessTime:0, retention:0, sd:StorageDescriptor(cols:[Field
Schema(name:a, type:int, comment:null), FieldSchema(name:b, type:int, comment:null)], 
location:hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/test10_orc,  inputFormat:org.
apache.hadoop.hive.ql.io.orc.OrcInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.
orc.OrcOutputFormat , compressed:false, numBuckets:-1,  serdeInfo:SerDeInfo(name:null, 
serializationLib:org.apache.hadoop.hive.ql.io.orc.OrcSerde , parameters:{serialization.
format=1}), bucketCols:[], sortCols:[], parameters:{}, skewedInfo:SkewedInfo(skewedColNam
es:[], skewedColValues:[], skewedColValueLocationMaps:{}), storedAsSubDirectories:false), 
partitionKeys:[], parameters:{transient_lastDdlTime=1465946427}, viewOriginalText:null, 
viewExpandedText:null, tableType:MANAGED_TABLE) 
 Time taken: 0.585 seconds, Fetched: 4 row(s) 

       Importing Selective Data 

   sqoop import --connect jdbc:mysql://localhost/test --table TEST1 --username root --m 1 
--where "a>1" 

   With this command, you can import all data from the  TEST1  table, where the value of column  a  is 
greater than 1. This option provides a way to import a subset of any table.  

   Importing Incremental Data 

 You can also perform incremental imports using Sqoop. Incremental import is a technique that imports only 
the newly added rows in a table. It is required to add  incremental ,  check-column , and  last-value  options 
to perform the incremental import.

•     incremental —Used by Sqoop to determine which rows are new. Legal values for this 
mode include  append  and  lastmodified .  

•    check-column  —To provide the column that needs to checked the determine the 
candidate rows.  

•    last-value —This is the maximum value of the last import run.    

   sqoop import --connect jdbc:mysql://localhost/test --username root --table TEST1 --m 1 
--incremental append --check-column id –last-value 1000 

          Apache Nifi 
 So far the tools we discussed require writing scripts, command-line management, and do not provide any 
way to track the data as it is transferred into Hadoop. Apache Nifi provides a very easy-to-use, powerful, 
secure, and trackable way to process and distribute data. It has a very easy-to-use web UI that provides a 
seamless experience among design, control, management, and monitoring of the data transfer jobs. These 
jobs are called data flows and, unlike traditional streaming solutions, they can operate in a bidirectional 
manner. These data flows consists of various processors that provide the logic in terms of the operation that 
needs to be performed on the data. 
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 Apache Nifi is distributed in the form of a compressed file and the installation just requires unpacking 
this file in a directory. For the purposes of this discussion, we assume that you have already installed Apache 
Nifi in your environment. 

 We will create a simple data flow to read the Twitter data and write it in a file in HDFS.

    1.    Log in to Apache Nifi by browsing the URL  http://<nifihost>:9090/nifi . 
Figure  6-7  shows the Apache Nifi UI.   

  Figure 6-7.    Apache Nifi home page       

  Figure 6-8.    Adding a Nifi processor       

    2.    Drag the processor icon      from the toolbar to the grid to open the Add 

Processor window, as shown in Figure  6-8 .   
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    3.    Select the GetTwitter processor (as shown in Figure  6-9 ) and click on Add. This 
processor is used to read data from the Twitter garden hose. Before we can read 
the data, we need to add some properties to it.   

  Figure 6-9.    GetTwitter processor       

    4.    Right-click on this processor and click Configure.   

    5.    Click on the Properties tab and specify the Consumer Key, Consumer Secret, 
Access Token, Access Token Secret, and Terms to Filter on. For example, Hadoop 
(as shown in Figure  6-11 ).   

  Figure 6-10.    GetTwitter processor configuration window       
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  Figure 6-11.    GetTwitter processor configuration properties       

    6.    Now, add another PutHDFS processor and open its configuration properties 
(see Figure  6-12 ). You will need to specify the location of the  hdfs-site.xml  and  
core-site.xml  files and the HDFS directory in which you want to store the tweets.   

  Figure 6-12.    PutHDFS properties       
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    7.    Once you have added the two processors, the canvas should look like Figure  6-13 .   

  Figure 6-13.    Apache Nifi processors with no relationship       

    8.    We now need to add a relation between these two processors. Click in the middle 
of the GetTwitter processor and drag toward PutHDFS. You will notice a dotted 
green line appears between the two processors and the Create Connection 
window opens (see Figure  6-14 ).   

  Figure 6-14.    Create Connection window       

    9.    Click on Add to add this connection.  

    10.    As shown in Figure  6-15 , we now have a simple data flow ready, which can read 
the tweets from Twitter and write them to HDFS. Click on the green Play button 
     in toolbar to start the data flow and save the tweets to HDFS.   
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  Figure 6-15.    A simple data flow example       

    11.    We can verify the data in HDFS as follows: 

    [root@sandbox ~]# hadoop fs -ls /tweets/raw | wc -l 
 20574 
 [root@sandbox ~]# hadoop fs -ls /tweets/raw | head -10 
 Found 20573 items 
 -rw-r--r--   1 root hdfs      13929 2016-05-18 09:47 /tweets/raw/10005654822649.json 
 -rw-r--r--   1 root hdfs       2287 2016-05-18 09:47 /tweets/raw/10006656905343.json 
 -rw-r--r--   1 root hdfs       2528 2016-02-08 11:05 /tweets/raw/10011382997542.json 
 -rw-r--r--   1 root hdfs       6469 2016-01-31 08:33 /tweets/raw/10018657101686.json 
 -rw-r--r--   1 root hdfs       5254 2016-01-31 08:33 /tweets/raw/10021683146427.json 
 -rw-r--r--   1 root hdfs       9242 2016-05-18 09:48 /tweets/raw/10024390262882.json 
 -rw-r--r--   1 root hdfs       2580 2016-01-31 08:33 /tweets/raw/10026695152597.json 
 -rw-r--r--   1 root hdfs       6254 2016-01-31 08:33 /tweets/raw/10029702254017.json 
 -rw-r--r--   1 root hdfs       7410 2016-01-31 08:33 /tweets/raw/10029707961511.json 
 [root@sandbox ~]# 

             Accessing the Data in Hive 
 By now, you should be familiar with various tools that are available to load data into Hadoop. Most of these 
tools store the data in the form of a file in HDFS. Landing data in HDFS does not make it accessible in Hive 
automatically. Hive relies on a table definition, which is stored in Hive Metastore, to access the underlying 
data from HDFS. Lets look at how we can make the data stored in HDFS available in Hive. 

     External Tables 
 An external table has its metadata stored in Hive Metastore but it does not have full control over the 
underlying data. The data belonging to external table is stored in HDFS but it can be located in any directory. 
When you delete an external table, the underlying data is not deleted from HDFS. 

 These tables are quite useful when you are regularly ingesting files of a similar type in a directory on 
HDFS. As long as the underlying data has the same format, when you query the external table, it will fetch 
the latest data from the files on HDFS. In most of the examples, where we have copied the data to HDFS, this 
data can be made available in Hive by creating an external table on top of these files. 
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 We will now create a table called  TEST3  using the following command on one of the text files that we 
loaded into HDFS in the previous examples. 

    drop table test3; 
 create external table test3(id INT, age INT) 
 row format delimited 
 fields terminated by ',' 
 lines terminated by '\n' 
 stored as textfile 
 location '/user/root/TEST3'; 
 0: jdbc:hive2://localhost:10000/default> create external table test3(id INT, age INT) 
 0: jdbc:hive2://localhost:10000/default> row format delimited 
 0: jdbc:hive2://localhost:10000/default> fields terminated by ',' 
 0: jdbc:hive2://localhost:10000/default> lines terminated by '\n' 
 0: jdbc:hive2://localhost:10000/default> stored as textfile 
 0: jdbc:hive2://localhost:10000/default> location '/user/root/TEST3'; 
 No rows affected (2.029 seconds) 
 0: jdbc:hive2://localhost:10000/default> select count(*) from TEST3; 
 INFO  : Tez session hasn't been created yet. Opening session 
 INFO  : 

   INFO  : Status: Running (Executing on YARN cluster with App id 
application_1465942169140_0016) 

   INFO  : Map 1: -/-      Reducer 2: 0/1 
 INFO  : Map 1: 0/1      Reducer 2: 0/1 
 INFO  : Map 1: 0(+1)/1  Reducer 2: 0/1 
 INFO  : Map 1: 1/1      Reducer 2: 0/1 
 INFO  : Map 1: 1/1      Reducer 2: 0(+1)/1 
 INFO  : Map 1: 1/1      Reducer 2: 1/1 
 +--------+--+ 
 |  _c0   | 
 +--------+--+ 
 | 32770  | 
 +--------+--+ 
 1 row selected (13.368 seconds) 
 0: jdbc:hive2://localhost:10000/default> 

         Load Data Statement 
 You can use the  LOAD DATA  statement if you want to copy the data into an existing table definition in Hive. 
The  LOAD DATA  statement is simply a copy/move operation at the file level. Here is the syntax of the  LOAD 
DATA  command: 

   LOAD DATA INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION clause]; 

   When you execute a  LOAD DATA  command, the file stored in  filepath  is copied to the directory 
specified in the table definition of the target table. We will now revisit the example from “Create External 
Table” section, to first create a  TEST4  table and then load the file using the  LOAD DATA  command. 
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    0: jdbc:hive2://localhost:10000/default> CREATE TABLE TEST4(id INT, age INT) STORED AS 
TEXTFILE LOCATION '/tmp/root/TEST4'; 
 No rows affected (1.974 seconds) 
 0: jdbc:hive2://localhost:10000/default> LOAD DATA INPATH '/user/root/TEST3/test.csv' into 
TABLE TEST4; 
 INFO  : Loading data to table default.test4 from hdfs://sandbox.hortonworks.com:8020/user/
root/TEST3/test.csv 
 INFO  : Table default.test4 stats: [numFiles=0, numRows=0, totalSize=0, rawDataSize=0] 
 No rows affected (2.412 seconds) 
 0: jdbc:hive2://localhost:10000/default> SELECT COUNT(*) FROM TEST4; 
 INFO  : Session is already open 
 INFO  : Tez session was closed. Reopening... 
 INFO  : Session re-established. 
 INFO  : 

   INFO  : Status: Running (Executing on YARN cluster with App id 
application_1465942169140_0017) 

   INFO  : Map 1: -/-      Reducer 2: 0/1 
 INFO  : Map 1: 0/1      Reducer 2: 0/1 
 INFO  : Map 1: 0(+1)/1  Reducer 2: 0/1 
 INFO  : Map 1: 1/1      Reducer 2: 0/1 
 INFO  : Map 1: 1/1      Reducer 2: 0(+1)/1 
 INFO  : Map 1: 1/1      Reducer 2: 1/1 
 +--------+--+ 
 |  _c0   | 
 +--------+--+ 
 | 32770  | 
 +--------+--+ 
 1 row selected (12.613 seconds) 
 0: jdbc:hive2://localhost:10000/default> 

          Loading Incremental Changes in Hive 
 Loading data into Hadoop is a continuous task. Once you have loaded a large amount of data from a source 
system initially, you can bring the changes in the form of regular batch runs. In case of Hive, this is done by 
bringing in new data in the form of delta files and adding new partitions to the table. However, you cannot 
modify the data in existing partitions. As a part of Stinger.Next initiative, the community is adding ACID 
functionality to Hive. With this core functionality of insert/update, we also have a set of streaming APIs that 
allow a continuous ingestion of the data to tables in Hive.  

     Hive Streaming 
 The Hive streaming API is mainly used with Storm as a Hive Bolt. It breaks down a stream of data into 
smaller batches. The incoming data can be continuously committed in small batches of records into an 
existing Hive partition or table. Once data is committed it becomes immediately visible to all Hive queries 
initiated subsequently. As mentioned earlier, this streaming functionality is based on insert/update support. 
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 There are currently some limitations on the Hive streaming API:

•    The target table must be bucketed  

•   The streaming API only provides support for streaming delimited input data (such as 
CSV, tab separated, etc.) and JSON (strict syntax) formatted data  

•   The target table must be stored in ORC format  

•   You must set the required parameters to enable ACID functionality

•     hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager   

•    hive.compactor.initiator.on = true   

•    hive.compactor.worker.threads > 0        

 The actual implementation of Hive streaming requires a Storm Bolt to be written in Java, which is 
beyond the scope of this book.  

     Summary 
 In this chapter, we looked at various options to load data into Hive. In most cases, loading data in Hive is 
a two-stage process. All data is first ingested to HDFS, then its metadata is added to Hive Metastore. There 
are many options when it comes to using a tool to ingest the data in HDFS. These tools have been built for 
various use cases. Apache Nifi is commonly used to ingest almost all types of data these days. Its out-of-the-
box unique features (such as provenance, security, and ease of management) make it a very suitable tool for 
enterprise data ingestion into the Hadoop data lake. As more and more companies use Hadoop for real-
time processing use cases, such use cases require continuous data ingestion from operational systems. Hive 
streaming, although still not fully ready for production, provides this functionality through Hive ACID. Some 
of the RDBMS vendors have also created plug-ins for their Change Data Capture (CDC) technologies like 
Oracle GoldenGate, Attunity, etc., to load continuous changes to Hive tables. However, there is still a lot of 
work that needs to be done in this space to make real-time changes accessible and effective.     



115© Scott Shaw, Andreas François Vermeulen, Ankur Gupta, David Kjerrumgaard 2016 
S. Shaw et al., Practical Hive, DOI 10.1007/978-1-4842-0271-5_7

    CHAPTER 7   

 Querying Semi-Structured Data                          

 Hive would not be much of a useful data warehouse tool without the ability to query data. Luckily, querying 
and providing schema-on-read capabilities at scale is the core foundation for Hive use cases. The power 
Hive provides is the ability to translate a large variety of data formats as well as the ability to customize 
translations to fit your unique business needs. Hive adapts to your data formats instead of the other way 
around. This is the core foundation for a data-driven organization. 

 Hive accomplishes this through HCatalog, as described earlier, but also through unique storage and 
load capabilities. You will find many parts of Hive familiar if you are already well-versed in existing query 
languages, but you will also find nuances which extend query capabilities and schemas well beyond what is 
available in a traditional RDBMS. 

 The Hadoop noise machine was fond of referring to data as structured, semi-structured, or non-
structured. Structured data always referred to data represented in rows and columns. This is what was most 
familiar to data analysts, especially professionals working with traditional transactional systems like point-
of-sales or inventory management. Semi-structured data refers to a gray line between columns and rows and 
maybe something more exotic like key-value pairs, arrays, or nested data. Maybe the number of columns in 
the data structure was dynamic, or maybe there were multiple values in a single column. This data felt like 
traditional data but its representation was much different. Examples of this data include XML, HL7, and 
JSON. Here is an actual tweet represented as a JSON file (the file is too long to show in its entirety, so this is 
an abbreviated version): 

   { 
   "created_at": "Wed Sep 23 01:19:54 +0000 2015", 
   "id": 646494164109029400, 
   "id_str": "646494164109029376", 
   "text": "@StarksAndSparks \"I'm not!\" He laughs and shrugs. \"I'm all bone.\"", 
    "source": "<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for 
iPhone</a>", 

   "truncated": false, 
   "in_reply_to_status_id": 646222681067622400, 
   "in_reply_to_status_id_str": "646222681067622400", 
   "in_reply_to_user_id": 3225146093, 
   "in_reply_to_user_id_str": "3225146093", 
   "in_reply_to_screen_name": "StarksAndSparks", 
   "user": { 
     "id": 3526755197, 
     "id_str": "3526755197", 
     "name": "smoll steve", 
     "screen_name": "hellatinysteve", 
     "location": "", 
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     "url": null, 
      "description": "like a chihuahua who thinks he's a pitbull. did someone say napoleon 

complex?", 
     "protected": false, 
     "verified": false, 
     "followers_count": 117, 
     "friends_count": 56, 
     "listed_count": 3, 
     "favourites_count": 155, 
     "statuses_count": 1831, 
     "created_at": "Wed Sep 02 20:26:36 +0000 2015", 
     "utc_offset": null, 
     "time_zone": null, 
     "geo_enabled": true, 
     "lang": "en", 
     "contributors_enabled": false, 
     "is_translator": false, 
     "profile_background_color": "C0DEED", 
     "profile_background_image_url": "http://abs.twimg.com/images/themes/theme1/bg.png", 
      "profile_background_image_url_https": "https://abs.twimg.com/images/themes/theme1/bg.png", 
     "profile_background_tile": false, 
     "profile_link_color": "0084B4", 
     "profile_sidebar_border_color": "C0DEED", 
     "profile_sidebar_fill_color": "DDEEF6", 
     "profile_text_color": "333333", 
     "profile_use_background_image": true, 
      "profile_image_url": "http://pbs.twimg.com/profile_images/639178684478394368/Of3yigOF_

normal.jpg", 
      "profile_image_url_https": "https://pbs.twimg.com/profile_images/639178684478394368/

Of3yigOF_normal.jpg", 
     "profile_banner_url": "https://pbs.twimg.com/profile_banners/3526755197/1441227570", 
     "default_profile": true, 
     "default_profile_image": false, 
     "following": null, 
     "follow_request_sent": null, 
     "notifications": null 
   }, 
   "geo": null, 
   "coordinates": null, 
   "place": null, 
   "contributors": null, 
   "retweet_count": 0, 
   "favorite_count": 0, 
   "entities": { 
     "hashtags": [], 
     "trends": [], 
     "urls": [], 
     "user_mentions": [ 
       { 
         "screen_name": "StarksAndSparks", 
         "name": "Tony Stark.", 
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         "id": 3225146093, 
         "id_str": "3225146093", 
         "indices": [ 
           0, 
           16 
         ] 
       } 
     ], 
     "symbols": [] 
   }, 
   "favorited": false, 
   "retweeted": false, 
   "possibly_sensitive": false, 
   "filter_level": "low", 
   "lang": "en", 
 ... 

   As you can see, there is a wealth of information in every tweet. The power of Hadoop is the ability to 
store a raw file like a JSON tweet like you would store a file on any filesystem, but then be able to use Hive to 
create a schema over the directory that allows you to query attributes of the raw data. You can store all the 
data but only query the data you need. 

 Semi-structured data could also be associated with syslog or application event log files. Finally, there 
was unstructured data in the form of images, OCR, PDF, or spatial data. Unstructured data was complex data 
where potentially the structure was not in columns, rows, or arrays, but was in the byte patterns in an image 
of a cat on the Internet or a rib cage in a X-ray. The truth of the matter is no data is patternless. What matters 
is the algorithm used to detect the pattern. Granted, the pattern may change during moments of ingest or 
may not be readily or easily detectable, but all data still has a pattern and it is up to developers to glean those 
patterns using all the tools at their disposal, and it is up to the tools analyzing the data to have the flexibility 
to accommodate the potential range of patterns. 

 This chapter primarily focuses on the semi-structured data and how we can leverage this data in Hive 
for reporting and analytics. We look at practical data like clickstream, JSON, and server log data. By the end 
of the chapter, you should have a good handle on how to ingest and create schemas on this data as well as 
understand the ingest and translation tools available for expanding data you can use in Hive. 

     Clickstream Data 
 A common use case is leveraging clickstream data to analyze and predict customer behavior. Some 
questions you can answer through the data include:

•    Which page is most popular?  

•   Which page do most users drop off from?  

•   Are users staying on a particular page longer than others?  

•   What is the most common navigation path?    

 As a business you can use the answers to these questions to help promote certain items or customize 
your web page to fit behavior patterns. Furthermore, if you are able to capture this data in real-time, you 
have the ability to get immediate feedback and make corrections when necessary. Marketing and content 
creators can receive instant feedback on changes and promotions and react to them in near real-time. 
Storing this data in HDFS and querying through Hive can also provide for trending analysis for forecasting 
and predictive analytics. 
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 There is no shortage of clickstream tools available. Many of these tools, such as Google Analytics, are 
cloud-based. Using such tools, you are able to gather the data and view results in canned graphs and charts. 
What a Hive plus HDFS option provides for you is the ability to own your own data and potentially enrich 
the data with other internal data such as internal product or sales data. As we will see, the effort to ingest, 
store, and then visualize the data is relatively easy, and it is a project that many companies start with when 
beginning their Hadoop journey. 

 Clickstream data is normally stored as log files usually in a directory on a web server. The most 
common way to ingest these files is through an application such as Apache Flume or Apache Nifi. Setting 
up and configuring Apache Flume is out of scope for this chapter so we will primarily focus on manually 
copying the log to HDFS. In our example we will ingest raw Wikipedia clickstream data. You can download 
the data from    https://figshare.com/articles/Wikipedia_Clickstream/1305770     . There are four data 
sets with a total data set size of 2.37 GB. It does not matter which data set you choose and choosing the 
entire data set is also fine. 

 ■   Note    Apache Flume is an easy-to-use method to ingest running log files into HDFS. Flume runs as an 
agent and in Flume you create sources for log processing. You can have multiple sinks, which perform the 
processing as well as multiple agents with guaranteed delivery. For more information, visit the Apache Flume 
site at    https://flume.apache.org/     .  

 The Wikipedia data consists of web site traffic during the month of January 2015. The data focuses on 
page referrals, that is the current page the user was on and where the user went. This referral can be using a 
search engine or clicking on a link on a page. Let’s take a look a sample from one of the data sets: 

   1758827  2516600  154     !Kung_people                            !Kung_language 
 22980    2516600  74      Phoneme                                 !Kung_language 
          2516600  20      other                                   !Kung_language 
 261237   2516600  21      The_Gods_Must_Be_Crazy                  !Kung_language 
 247700   2516600  12      Xu_language                             !Kung_language 
          2516600  29      other-wikipedia                         !Kung_language 
 1383618  2516600  33      Mama_and_papa                           !Kung_language 
 7863678  2516600  12      List_of_endangered_languages_in_Africa  !Kung_language 
 524854   2516600  20      Alveolar_clicks                         !Kung_language 
 34314219 2516600  11      Ekoka_!Kung                             !Kung_language 
 27164415 2516600  100     Contents_of_the_Voyager_Golden_Record   !Kung_language 
 524853   2516600  21      Palatal_nasal                           !Kung_language 
 17333    2516600  45      Khoisan_languages                       !Kung_language 
 713020   2516600  56      Jul'hoan_dialect                        !Kung_language 
          29988427 300     other-empty                             !Women_Art_Revolution 
          29988427 93      other-google                            !Women_Art_Revolution 
          29988427 24      other-wikipedia                         !Women_Art_Revolution 
 420777   29988427 14      Zeitgeist_Films                         !Women_Art_Revolution 
 6814223  29988427 23      Lynn_Hershman_Leeson                    !Women_Art_Revolution 
 1686995  29988427 27      Carrie_Brownstein                       !Women_Art_Revolution 
          64486    650     other-empty                             !_(disambiguation) 
          64486    226     other-google                            !_(disambiguation) 
          64486    23      other-wikipedia                         !_(disambiguation) 
 600744   64486    14      !!!                                     !_(disambiguation) 
 7712754  64486    237     Exclamation_mark                        !_(disambiguation) 

https://figshare.com/articles/Wikipedia_Clickstream/1305770
https://flume.apache.org/
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   To give you an idea of the size, the full data set contains 22 million referrer article pairs, but is still only a 
sampling of the 4 billion total requests made in January! The data set has six fields:

•     prev_id —If the referer does not correspond to an article in the main namespace 
of English Wikipedia, this value will be empty. Otherwise, it contains the unique 
MediaWiki page ID of the article corresponding to the referrer, i.e., the previous 
article the client was on.  

•    curr_id —The unique MediaWiki page ID of the article the client requested.  

•    n —The number of occurrences of the  (referer, resource)  pair.  

•    prev_title —The result of mapping the referer URL to the fixed set of values 
described above.  

•    curr_title —The title of the article the client requested.  

•    type 

•     "link"  if the referer and request are both articles and the referer links to the 
request.  

•    "redlink"  if the referer is an article and links to the request, but the request is 
not in the production enwiki.page table.  

•    "other"  if the referer and request are both articles but the referer does not link 
to the request. This can happen when clients search or spoof their referer.       

 If you notice, not all fields are present in every row of the data and this can be a problem when ingesting 
data through traditional ETL processing. Data that’s NULL in nature still has to be accounted for and your 
table will need to be defined for all possible fields whether they exist or not. When using HDFS and Hive, we 
will ingest the data first. Once the data is ingested, we will create the schema. This is the value of schema-on-
read and it is part of what makes a Hive data warehouse development much more agile than traditional data 
warehousing development. 

     Ingesting Data 
 The first step is data ingestion and as mentioned before, we will manually simulate what would normally be 
a log-streaming ingestion process. You should have downloaded a compressed file with a name similar to 
 2015_01_clickstream.tsv.gz . If you only download one data set, the compressed file is about 330 MB. If 
you were to uncompress it, the file would explode to over 1 GB. Files like clickstream data compress well and 
you can normally expect over 70% compression. What is useful is there is no need to uncompress these files 
when storing them in HDFS. 

 ■   Caution    Accessing files natively in Hadoop with compression works for GZIP extensions but not for ZIP 
extensions. If you try to query data stored in files with a .ZIP extension, you will only get null values. If you have 
to work with .ZIP files, there are some options to wrap a ZIP file reader around MapReduce  InputFormat .  

 To begin ingesting data, first go to Ambari and create a landing directory in HDFS. This is where we will 
upload the file prior to creating a table in Hive. We can do this through the Ambari HDFS view. Figure  7-1  
shows you how to get to the HDFS view.  
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 Once you’re in the HDFS Files view, navigate to the  /tmp  directory. You can create the Wiki clickstream 
directory anywhere you would like, but for the purposes of this exercise, we will use  /tmp . Once in  /tmp , click 
on Create Directory and create a directory called  wikiclickstream . Figure  7-2  shows the New Directory 
option.  

 Follow the prompts and you should now see a directory called  wikiclickstream  in the  /tmp  directory. 
Click on the  wikiclickstream  directory to navigate into it. We will now upload the compressed clickstream 
data by clicking on the Upload button and browsing to the file we previously downloaded. Figure  7-3  shows 
the Upload button and the downloaded file. Notice that the file still has the compressed .GZ extension.  

  Figure 7-1.    HDFS Files view       

  Figure 7-2.    Creating a new directory       

  Figure 7-3.    Uploading a clickstream file       
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 The data is now loaded into HDFS. Our data set is small but this could potentially be a multi-terabyte 
file loaded through an automated batch process or a real-time streaming process. Click on the file to view a 
sample of the contents. Notice that HDFS automatically uncompresses the file for viewing. Figure  7-4  shows 
the file’s contents.  

  Figure 7-4.    Contents of clickstream file       

 The only thing left to do is create metadata on the file. Essentially we will build a view or virtual table 
that points to the file so that you can run Hive queries against the data. To do this, we can create our table 
DDL in a script and run it in HiveCL, run our DDL directly in HiveCL, or execute the script in the Hive view. 
For our data, we will use the Hive view. Navigate to the Hive view, which is in the same location as the HDFS 
view. In the query editor, execute the following command: 

   CREATE DATABASE clickstream; 

   Figure  7-5  shows the command as well as the newly created database. You will need to refresh the 
database explorer to see the  clickstream  database.  
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 Once you see it, move your database from  default  to  clickstream . You can do this by selecting the 
database from the drop-down menu or executing the following code in the query editor: 

   USE clickstream; 

   Creating a new database specifically for the clickstream data will help us organize our project. Notice 
that creating a database in Hive is simple and straightforward. You do not need to allocate any memory or 
storage requirements and there are no files or settings associated with the database. This is because the 
database is only a metadata container for any tables you create under it.  

     Creating a Schema 
 Now that we have created the database, let’s create the table. Copy and execute the following script to create 
the  wikilogs  table. 

   CREATE TABLE wikilogs ( 
         previous_id     STRING, 
         current_id      STRING, 
         no_occurences   INT, 
         previous_title  STRING, 
         current_title   STRING, 
         type            STRING) 
 ROW FORMAT DELIMITED 
 FIELDS TERMINATED BY '09' 
 STORED AS textfile; 

   The Hive  CREATE TABLE  statement should look familiar to anyone who knows SQL. The primary 
difference with this  CREATE TABLE  command are the last three commands. The  ROW FORMAT DELIMITED  
command lets Hive know that there is a delimiting character in the file and each field is separated by a Tab 
( 09  is the ASCII value for the Tab command). Fields can be separated by almost any character and this would 
be represented in the  CREATE TABLE  statement. The  STORED AS  command tells Hive how to store the file. In 
this case we will store it as a basic text file. In the real world, you would store the data in a more performant 
file format such as an ORC file. These file formats are discussed in the chapter on performance tuning.  

  Figure 7-5.    Creating a clickstream database       
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     Loading Data 
 The next step is to load the data into the Hive table. You really are not as much loading data as you are 
moving the file to a Hive directory. In this example, we created a Hive managed table, which means Hive 
will also manage the data and the data will be removed if the table is dropped. We could have created a Hive 
external table and pointed the table to a location in HDFS. With an external table, the data is not removed 
when the table is dropped. Loading the data as simple as executing a  LOAD  statement. 

   LOAD DATA INPATH '/tmp/wikiclickstream/2015_01_clickstream.tsv.gz' OVERWRITE INTO TABLE 
wikilogs; 

   You will want to change the filename and directory path to the one that is correct for your system. 
It is key to understand that the  LOAD  command does not perform any transformations on the data, but 
instead; the  LOAD  command simply copies data to the location specified or defaulted in the table DDL. 
The  OVERWRITE  command simply deletes any existing data associated with the table and uses the new 
file data in the  LOAD  command. If an old file exists with the same name, the new file will replace the 
old one.  

     Querying the Data 
 After executing the  LOAD  command, you now have data available in your  wikilogs  table. Let’s first do some 
cleanup by eliminating some unnecessary columns. For our purposes, we do not need the first two columns 
since these are page identifications without values. We are primarily concerned with only the page the 
user was on, the page he went to, and how many times that sequence occurred for all users. We could have 
defined our table originally without the columns but maybe another group in our company had a need 
for that data. For our group we will create a simple view to limit those two columns. Execute the following 
HiveQL in the query editor window. 

   CREATE VIEW wikilogs_view (no_occurences, previous_title, current_title) 
 AS SELECT no_occurences, previous_title, current_title FROM wikilogs; 

   Now that we have a view, we can begin to ask some questions about the data. Let’s first find the 
link with the highest number of occurrences. Execute the following query, but keep in mind that 
depending on your data set size, it could take a while to return the results. Up until now we have done 
no performance tuning and since we are on the sandbox we are not taking advantage of any distributed, 
parallel processing. 

   SELECT * FROM wikilogs_view 
 SORT BY no_occurences DESC; 

   Figure  7-6  shows the results.  
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 The data tells us that by far the most common link occurrence is the Wiki home page. This makes sense 
considering the nature of the data. The  previous_title  field includes common search sources and can 
help us determine which search tools people use most to find data on Wikipedia. The values are defined as 
follows:

•    An article in the main namespace of English Wikipedia ➤ The article title  

•   Any Wikipedia page that is not in the main namespace of English Wikipedia ➤ 
 other-wikipedia   

•   An empty referer ➤  other-empty   

•   A page from any other Wikimedia project ➤  other-internal   

•   Google ➤  other-google   

•   Yahoo ➤  other-yahoo   

•   Bing ➤  other-bing   

•   Facebook ➤  other-facebook   

•   Twitter ➤  other-twitter   

•   Anything else ➤  Other-Other     

  Figure 7-6.    Results of sorting by no_occurences       
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 Based on these values, we can answer questions such as, “What is the most frequently linked Wiki page 
on Facebook”? Let’s find out by executing the following SQL. 

   SELECT * FROM wikilogs_view 
 WHERE previous_title = 'other-facebook' 
 SORT BY no_occurences DESC; 

   Figure  7-7  shows the results.  

  Figure 7-7.    Top links from Facebook       

 The top three links are Cassiel, 3,000_mile_myth, and John_Paul_DeJoria. It is difficult based on the data 
we have to speculate why these particular links from Facebook were popular in January of 2015, but it would 
be interesting to dive into other data during the period to determine why there is a significant gap between 
the number one spot and the other two positions. Additional data that may help us find details about the 
individual Facebook postings, data from the other sources such as Google or Twitter, and geographical data. 
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 Of course your business’s clickstream data would contain considerably more fields than the Wikipedia 
example shown here, but the ingestion, storage, and querying process remains the same. Many companies 
will ingest clickstream data and merge it with internal marketing data for custom ad placements or strategic 
promotional offers. Another use case is to include syslog data from the application servers so that operations 
teams can better identify web page errors resulting from application or hardware failures. The ability to store 
more data at faster rate opens doors into more efficient and proactive maintenance as well as driving quicker 
and more cost-effective business decisions.   

     Ingesting JSON Data 
 In this next section, we take a quick look at a more complex data type. We ingest JSON data, which is 
popularly known as the format of Twitter data. JSON (JavaScript Object Notation) is one of the most widely 
used formats for transmitting application data. It is a popular open standard similar to XML. Like XML, it is 
based on an attribute\value pairing. The value can be almost anything including a single element, long text, 
or even maps and arrays. JSON can also be heavily nested or have dynamic attributes, and this can cause 
problems with standard ETL processes. The popularity of JSON has produced a number of applications and 
programming languages for reading and parsing JSON data. Some dataflow products will even convert any 
incoming data to JSON prior to ingesting into HDFS or a NoSQL database. 

 ■   Note    For an advanced (and more fun) Twitter feed example, I suggest the tutorial that uses Apache Nifi for 
connecting to the Twitter garden hose. Tweets are sent into Nifi and routed to a Solr Banana dashboard and then 
also routed to HDFS for longer-term storage. The whole thing can be set up in less than an hour. You will find all 
the instructions you need on the Hortonworks Community Connection at    https://community.hortonworks.
com/content/kbentry/1282/sample-hdfnifi-flow-to-push-tweets-into-solrbanana.html     .  

 The example we use in this chapter consists of ingesting random JSON files and then building a table in 
Hive so that we can query the data. The ingestion phase is straightforward but there will be some things we 
need to consider when building the tables and querying the data. The decisions we make will impact query 
performance. We discuss all the possible options as we go through the example. 

 Before we do anything, we need data. Luckily, getting JSON data is simple. The method we used for this 
example is the JSON generator at    http://beta.json-generator.com/     . The site randomly creates data for 
any JSON template you upload. For simplicity’s sake, we are going to use the default template. When you 
generate data it will create a listing of multiple JSON elements. Each element or block starts with  _id . We 
have gone ahead and separated these into different JSON files named  json1 ,  json2 , and  json3 . Here is the 
content of  json1 : 

   { 
   "_id": "5774245438f862f0b8121f41", 
   "index": 5, 
   "guid": "580ff472-9036-40b2-aa3c-9085f305d6b4", 
   "isActive": false, 
   "balance": "$2,252.98", 
   "picture": "http://placehold.it/32x32", 
   "age": 36, 
   "eyeColor": "brown", 
   "name": { 

https://community.hortonworks.com/content/kbentry/1282/sample-hdfnifi-flow-to-push-tweets-into-solrbanana.html
https://community.hortonworks.com/content/kbentry/1282/sample-hdfnifi-flow-to-push-tweets-into-solrbanana.html
http://beta.json-generator.com/
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     "first": "Lori", 
     "last": "Pacheco" 
   }, 
   "company": "LUDAK", 
   "email": "lori.pacheco@ludak.net", 
   "phone": "+1 (891) 415-2253", 
   "address": "290 Rochester Avenue, Cannondale, Guam, 7856", 
    "about": "Qui fugiat nostrud qui laborum Lorem excepteur. Minim exercitation esse mollit 
irure fugiat eiusmod proident sit Lorem incididunt. Dolor ex ipsum tempor est eu duis 
exercitation. Enim ea ullamco mollit proident labore eiusmod excepteur magna Lorem anim.", 

   "registered": "Tuesday, February 10, 2015 8:07 AM", 
   "latitude": "75.805649", 
   "longitude": "138.091539", 
   "tags": [ 
     "ullamco", 
     "in", 
     "voluptate", 
     "reprehenderit", 
     "sunt" 
   ], 
   "range": [ 
     0, 
     1, 
     2, 
     3, 
     4, 
     5, 
     6, 
     7, 
     8, 
     9 
   ], 
   "friends": [ 
     { 
       "id": 0, 
       "name": "Byrd Meyers" 
     }, 
     { 
       "id": 1, 
       "name": "Weeks Miles" 
     }, 
     { 
       "id": 2, 
       "name": "Marquez Pace" 
     } 
   ], 
   "greeting": "Hello, Lori! You have 6 unread messages.", 
   "favoriteFruit": "banana" 
 } 
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   Notice that values for things like name, friends, and range have listings or an array of elements. It’s this 
flexible structure that makes JSON so powerful but yet so difficult to ingest into relational systems. Relational 
systems also struggle with querying this type of data and can make the data difficult to tune for performance. 
Considering HDFS is a filesystem, data ingestion is trivial, at least for our purposes since we do not require 
any real-time or automated processes. 

 ■   Note    When creating JSON data for query consumption, it is better to make sure all unnecessary character 
data is removed from the file and your JSON schema is properly formed. As mentioned previously, we find it 
helpful to generate random JSON data with the JSON generator    http://beta.json-generator.com      and then 
paste the JSON into a JSON editor, which will verify the format as well as flatten out the JSON. A good online 
editor can be found at    http://www.jsoneditoronline.org/     .  

 Just like we did with the clickstream data, we will create a directory in HDFS to store the JSON data. 
We chose the same  tmp  directory and created an additional directory called  json_data . Once created, you 
will want to open the directory and add the  json1 ,  json2 , and  json2  files. Figure  7-8  shows the files in the 
 json_data  directory.  

     Querying JSON with a UDF 
 Once the files are added, our next step is to create a schema on the data. This is where it gets interesting and 
where you will need to make a decision on how you will go about querying the data. There are two primary 
ways to access JSON data. You can use a built-in UDF (user defined function) or you can use a built-in or 
publicly available JSON SerDe. The method you decide for JSON access will define how you store the data 
and the schema you apply to the data. 

 Let’s use the UDF method first. The UDF method is the simplest because it uses native Hive functions 
and requires a simple schema. The first step is to create a table to store the JSON data. This table will consist 
of a single string column to represent the entire JSON data. We created a database named  json_data  and 
will create the table in this database. You can use whichever database you choose. Execute the following 
command either in the Hive view or from the command line: 

   CREATE TABLE json_table ( 
 json string); 

  Figure 7-8.    Adding JSON files to HDFS       

 

http://beta.json-generator.com/
http://www.jsoneditoronline.org/
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   As you can see, the table only has one column and we have defined the column as a string. The next 
step is to load the JSON data into this table and store all the data as a single string column. Execute the 
following command from the Hive view or from the command line. 

   LOAD DATA INPATH '/tmp/json_data/json1' INTO TABLE json_table; 

   In this example, we created a directory in  tmp  called  json_data  and uploaded the  json1  file. This  LOAD  
statement takes that file and loads it into a table called  json_udf . To query all the data in the  json_udf  table, 
you execute the following query, which utilizes the  get_json_object  user defined function: 

   select get_json_object(json_table.json, '$') from json_table; 

   This will return all the data from the  json_udf  table. If you want to select multiple values, you need to 
execute a  select  statement for each value. The following is an example of selecting multiple values: 

   select get_json_object(json_table.json, '$.balance) as balance, 
              get_json_object(json_table, '$.gender) as gender, 
              get_json_object(json_table.json, '$.phone) as phone, 
              get_json_object(json.table.json, '$.friends.name) as friendname 
              from json_udf; 

   This query will bring back the balance, gender, phone, and name of the friend from the  json_udf  table. 
As you can start to notice, this query could begin to get complicated as additional rows are selected and as 
the data becomes increasingly nested. The table also must be accessed each time a row is needed and this 
iterative processing can cause significant performance overhead. The benefit of the UDF is that it is built into 
Hive and you do not have to create a complex schema or try to define a schema based on the content and 
format of the JSON data. The choice is yours and the  get_json_object  is a good choice for small JSON data 
sets or when you only need to retrieve a few key attributes.  

     Accessing JSON Using a SerDe 
 By far the most flexible and scalable means to access JSON data is through a SerDe. SerDe is short 
notation for serializer\deserializer and is a means for Hive to read data from a table and write it out in any 
customizable format. Developers write SerDes so that Hive can interpret varying file formats. 

 One such format is JSON. Although there are a few, the most commonly used SerDe for reading 
JSON data in Hive was written by Roberto Congiu and it can be found on GitHub at    https://github.com/
rcongiu/Hive-JSON-Serde     . You will need to follow the instructions to compile the JAR files or you can 
download the binaries directly. In any case, you will need to place the JAR file in a location accessible from 
within your Hive environment. In this example, the JAR file is located at  /usr/local/Hive-JSON-Serde/
json-serde/target/json-serde-1.3.8-SNAPSHOT-jar-with-dependencies.jar . 

 Once you have the JAR file in place, you can start Hive through the command line or through your 
Ambari view. After Hive starts and before we execute any queries, we have to tell Hive which SerDe we are 
using by issuing the  ADD  command. Type the following into your Hive line and execute the command: 

   ADD JAR /usr/local/Hive-JSON-Serde/json-serde/target/json-serde-1.3.8-SNAPSHOT-jar-with-
dependencies.jar; 

   You also have the option of adding this command to your  \hiverc  file so that it’s available each time 
Hive starts. 

https://github.com/rcongiu/Hive-JSON-Serde
https://github.com/rcongiu/Hive-JSON-Serde
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 Now that Hive is aware of the SerDe, you can create a table to hold the JSON data. Run the following 
DDL from the command line (the best method is to refer to a HiveQL file) or from the Ambari view: 

   CREATE TABLE json_serde_table ( 
   id string, 
   about string, 
   address string, 
   age int, 
   balance string, 
   company string, 
   email string, 
   eyecolor string, 
   favoritefruit string, 
   friends array<struct<id:int, name:string>>, 
   gender string, 
   greeting string, 
   guid string, 
   index int, 
   isactive boolean, 
   latitude double, 
   longitude double, 
   name string, 
   phone string, 
   picture string, 
   registered string, 
   tags array<string>) 
 ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
 WITH SERDEPROPERTIES ( "mapping._id" = "id" ) 

   The table has a few interesting properties. First off, it is very different than the single column table we 
used in the UDF example. This means we will be able to select individual rows in a single Hive statement 
more easily. We also have some complex mappings such as  struct  and  array . These are useful for 
representing nested structures in the JSON document. Toward the end, we reference the SerDe we added 
prior to executing our DDL. Finally, we added a  SERDEPROPERTIES  command. This may not be necessary 
for all JSON documents but it is necessary for ours because our first column has an illegal underscore. The 
 SERDEPROPERTIES  command tells Hive to map the illegal ID to a legal ID, which will prevent an error from 
occurring. 

 ■   Tip    Some JSON files can be exceptionally long and complicated. This can make creating the table 
structure challenging. Luckily there is help. Michael Peterson created a program that will infer a schema based 
on your JSON file. You can download the code from his GitHub page at    https://github.com/quux00/hive-
json-schema     .  

 We can now load data into the table just like we loaded data in the previous UDF example: 

   LOAD DATA INPATH '/tmp/json_data/json1' INTO TABLE json_serde_table; 

https://github.com/quux00/hive-json-schema
https://github.com/quux00/hive-json-schema
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   Execute the following query to get some data: 

   SELECT address, friends.name FROM json_serde_table; 

   Notice how we simply use dot notation to access the name value in the friend array. This is an easy and 
sensible method for accessing nested data. 

 Another method that many prefer is to use the built-in JSON SerDe for Hive. The steps are similar to the 
GitHub version except you do not need to add the JAR prior to creating the table. Also if you leave the ID in 
the original JSON file, the ID will query as  NULL . Execute the following DDL to create the table: 

   CREATE TABLE json_serde_table ( 
   id string, 
   about string, 
   address string, 
   age int, 
   balance string, 
   company string, 
   email string, 
   eyecolor string, 
   favoritefruit string, 
   friends array<struct<id:int, name:string>>, 
   gender string, 
   greeting string, 
   guid string, 
   index int, 
   isactive boolean, 
   latitude double, 
   longitude double, 
   name string, 
   phone string, 
   picture string, 
   registered string, 
   tags array<string>) 
 ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' 
 STORED AS TEXTFILE; 

   Accessing the native SerDe table is exactly the same as the previous example. 
 We have looked at two means of accessing JSON data in Hive. This is not an exhaustive list but using a 

SerDe or the UDF demonstrates the most common and easiest methods of accessing JSON data. JSON is an 
incredibly functional and common data format and Hive provides an easy means of accessing the data and 
quickly deriving useful insight from its contents.      
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    CHAPTER 8   

 Hive Analytics                          

 Analytics is the scientific procedure of transforming data into understanding by implementing value-added 
decisions. So what is Hive analytics? Hive analytics is the practical use of the Hive system to achieve 
business value. 

 The objectives of this chapter are to:

•    Understand the fundamental building blocks of Hive analytics.  

•   Understand the fundamental business design tools.  

•   Create a data warehouse using Hive.  

•   Combine the fundamental building blocks to succeed with analytics processing.    

  To achieve the maximum learning experience, the reader should complete the chapter’s examples in the 
order they are presented, as the chapter in total forms the analytics structures that should be developed for 
proficiency in the essential processing skills.  

     Building an Analytic Model 
 An analytic model is the base structure for executing queries in order to translate data into knowledge. 
Wisdom is attained by formulating data structures that will act as the source of the business processes' 
decisions. 

 ■   Note    Analytics without effect are wasteful!  

     Getting Requirements Using Sun Models 
 The requirements are articulated by communicating a set of sun models. Find out what you plan to achieve 
with your analytics. 

 ■   Note    Plan, plan, and then execute. Spend over 80% of your time on the design and then start!  
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   Business Sun Models 
 Business sun models are graphical representations of the business query requirements. 

 The business analyst collects the entire set of analytic requirements from the critical business processes 
and transforms it from the graphical formats of reports into sun models ready to be developed into Hive code. 

 By studying each reporting requirement independently, a sun model can be formulated that represents 
the analysis structure needed to answer the specific report requirement in the Hive data warehouse. 

 ■   Tip    Keep it simple and study only one specific report at a time.  

 Let's start with a simple model. 

   Bar Graph 

 Let's look at a bar graph as an example of how to deal with the requirements (see Figure  8-1 ).  
 What can you extract from the bar graph?

  Figure 8-1.    Top ten customers       
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•    Need a selector for  Customer   

•   Selector is built from two components:

•    First Name  

•   Last Name     

•   Need a measure for  Balance 

•    The balance is in pounds sterling.     

•   Need to filter to return “Top Ten Balances”.  

•   Need to order by descending balance.     

   Bar Graph with Drop Selections 

 The graph is enhanced by adding the preference to look after a series of filters to sub-divide the data set (see 
Figure  8-2 ).   

  Figure 8-2.    Top ten customers with drop-down lists (FirstName, LastName)       

   Sun Model 

 The sun model is a business-friendly design tool that enables the business analyst to record the 
requirements in a format that the business and the technical staff will understand. 

 A sun model consists of two fundamental components:

•     Dimensions —The dimensions are the components of the model that can be used to 
query the analytic model. There are two dimensions in this sun model—Customer 
and Account (see Figure  8-3 ).   
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•    Facts —The fact is the component of the model that can be used for statistical 
functions (see Figure  8-3 ):

•    Sum—Adds the balances of the selected records.  

•   Average—Average the balances across the selected records.  

•   Maximum—Returns the biggest balance from the selected records.  

•   Minimum—Returns the smallest balance from the selected records.  

•   Pearson coefficient of correlation of two sets of balances from the selected 
records.  

•   Nth percentile of balances from the set of selected records.  

•   Computes a histogram of the balances across the selected records.       

  Figure 8-3.    Sun model (two dimensions with one fact)       

 Here is a quick abridged explanation of the sun model:

•    Left selection is for  Customer   

•  Consists of unique key called  Person Key   

•   Selector for  Last Name   

•   Selector for  First Name      

•   Right selection is for  Account 

•    Consists of a unique key called  Account Key   

•   Selector for  Account Number        

 At the interaction between  Customer  and  Account , you record the current  Balance  measure. 
 Now we examine another relationship, called  LiveAt  (see Figure  8-4 ), in the business requirements. 
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•    Left selection is for  Customer 

•    Consists of a unique key called  Person Key   

•   Selector for  Last Name   

•   Selector for  First Name      

•   Center selection is for  Address 

•    Consists of a unique key called  Address Key   

•   Selector for  Post Code      

•   Right selection is for  Date Time 

•    Consists of a unique key called  Date Time Key   

•   Selector for  Date        

 At the interaction between  Customer ,  Address , and  Date Time , you record the current  LiveAt  
relationship.   

   Interlink Matrix 
 The interlink matrix is a design tool that assists the business analyst in recording the relationship between 
dimensions and the facts recorded against each model. 

 You must create a matrix with the entire unique list of dimensions down the left side of the matrix and 
the entire list of facts across the top. Then record an indicator in each intersection of the matrix where a 
specific dimension and specific fact work together to formulate a relationship in the data. 

 Figure  8-5  shows an example of a matrix that clearly shows that  Person  is used by both sun models; this 
shows that  Person  is a common dimension.  

  Figure 8-4.    Sun model (three dimensions with one fact)       
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 ■   Note    As a general rule, it is good practice not to use more than 15 dimensions against a single measure 
to ensure good performance on queries against the database structure. This reduces the amount of joins during 
queries by reducing the dimensions per measure.  

 The general rule is the dimensions are “wide” structures, i.e., there will be many selectors. There is a 
possibility of hundreds of selectors. The records count is “shallow,” i.e., there aren’t many records, as it has to 
work as a list in a selector. A dimension has hundreds of entries. 

 The general rule is the facts are “narrow” structures, i.e., there will be 1 to 15 keys, plus 1 measure. 
The records count is “deep,” i.e., huge volumes of records, as it captures each interaction of the fact in the 
business. A fact could have billions of entries. 

 The interlink matrix must be streamlined or cleaned up to ensure an optimal solution. The matrix is 
formulated by placing the entire list of dimensions down the left side of the matrix. Sort them alphabetically 
and eliminate any duplicates by transferring the indicators to a single dimension row in the matrix. This 
action delivers you with your common dimensions. 

 The top row of the matrix is all the facts or measures you are building for the analytic model. Sort them 
alphabetically and eliminate any duplicates by transferring the indicators onto a single fact column in the 
matrix. This action delivers you with your common facts.   

     Converting Sun Models to Star Schemas 
 The set of sun models is converted into a set of star models by adding the technical detail needed to create 
the physical model. The technique is to take the sun model and add a field type description for each of the 
selectors and measures. 

 From the sun model (see Figure  8-4 ), the  First Name  now evolves into  First Name (varchar (200)) , 
as shown in Figure  8-6 .  

  Figure 8-5.    Interlink matrix       
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   Dimensions 
 Now that you have the basic dimension structures, let's look at the dimensions is more detail.  

   Fundamental Dimensions 
 Dimensions are the part of the data warehouse that enable the “dicing-and slicing: of the data. They are used 
to subdivide the data set into the required selections. 

   Common Types of Dimensions 

 There is a group of specific types of dimensions you can formulate your data into for your data warehouse 
model. 

 Each of the types of dimensions adds specific behaviors into the dimensions and enables the selectors 
to perform the required business requirements for the analytic model. 

 The different structures are described as  Types . 

 ■   Note    There is a variety of discussion in the design community about which types should exist. We will only 
cover Type 0, Type 1, Type 2, and Type 3, plus some special other structures that are performance enhancers.  

 So let's discuss these different dimension types in more detail. 

 ■   Tip    Getting your dimensions spot-on and efficient will take practice, but you can master the process by 
repeating it until you learn to intuit what works for which types of data.   

  Figure 8-6.    Star schema from the sun model       
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   Type 0: Protect the First Value 

 The Type 0 dimension record adds a new value only if it does not exist in the dimension table; if it exists, it's 
kept as the original value that was added to its fields. 

 This dimension is used when you want to keep the value of the record the same as the first time you 
received it without any future updates. In businesses, this is used when the original value of the business 
entity should be protected. 

 Figure  8-7  shows an example that explains when the first post code of a person is protected.  

  Figure 8-7.    Type 0 dimension       

 Ruff Hond is loaded with the KA12 8RR post code during the first run. 
 Ruff Hond moves to post code EH1 2NG, but the system does not change the post code. It keeps it as 

KA12 8RR.  

   Type 1: Keep Last Value 

 The Type 1 dimension adds a new value if it does not exist in the dimension table; if it exists it's updated to 
the latest value. 

 This dimension is used when you want to keep the value of the record up to date with latest values 
without keeping any previous values. 

 The end result of a load is a snapshot of the data as of the last upload. 
 In businesses, this is used when the last value of the business entity is stored without keeping any 

history of previous values. 
 Figure  8-8  shows when the latest post code of a person is stored without history.  
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 Ruff Hond is loaded with the KA12 8RR post code during the first run. 
 Ruff Hond moves to EH1 2NG. The system changes the post code to EH1 2NG and keeps no record of 

Ruff Hond living at post code KA12 8RR.  

   Type 2: Keep Full History 

 The Type 2 dimension adds a new value if it does not exist in the dimension table; if it exists, the previous 
current records are updated with a valid date/time value. A new record is added for the latest value. 

 This dimension is used when you want to keep all the values of the record as the data changes during 
the lifecycle. This gives you a full history of the data uploads. This is used when the last value of the business 
entity is stored while keeping a history of all previous values. 

 Figure  8-9  shows the last post code of a person stored with a full history and the date value being valid.  

  Figure 8-8.    Type 1 dimension       
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  Figure 8-9.    Type 2 dimension       

 Ruff Hond is loaded with the KA12 8RR post code during the first run with an empty valid-to-date. 
 Ruff Hond moves to EH1 2NG. The system changes his post code to EH1 2NG by updating the valid-to-

date on the previous post code as the KA12 8RR record and then adds a new record with the EH1 2NG post 
code, with an empty valid-to-date. 

 ■   Note    From experience, we advise that if you are not sure which dimension you need to use, use a Type 2. 
You can convert the Type 2 dimension to any other later because it holds every data item needed to restructure 
the Type 2 dimension into any other dimension type.   

   Type 3: Record Transition 

 The Type 3 dimension record adds a value if it does not exist in the dimension table; if it exists, the previous 
field value is updated with the current field value and current field is updated with the last value using the 
existing data field. 

 This dimension is used when you want to keep the previous value of the record as the data changes 
during the lifecycle. This gives you a direct reference to the previous history of the data uploads. This is used 
when the last value of the business entity is stored while keeping the transition from the previous value in 
the same record. 

 Figure  8-10  explains when the last post code of a person is stored with the previous post code.  
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  Figure 8-10.    Type 3 dimension       

 Ruff Hond is loaded with post code KA12 8RR during the first run, with an empty Prev Post Code value. 
 Ruff Hond moves to EH1 2NG. The system changes the post code to EH1 2NG by updating the Prev Post 

Code to KA12 8RR on the record and then updating a record with a post code to EH1 2NG.  

   Mini-Dimensions 

 The mini-dimension (see Figure  8-11 ) is an extension of the dimension. It supports the subdivision of the 
dimension to assist with data query fields in these cases:

•    When fields are not used by all query processes in the model.  

•   When it is not possible to return all fields in one dimension during one query action.     

  Figure 8-11.    Mini-dimensions       
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 Dividing the fields into two dimensions reduces the size of the data the queries have to process. This 
works well if you only need part of the field on a regular basis. This does not change the values of the record; 
it only enhances the processing speed of the query.  

   Mini-Dimension for Fast-Changing Values in Type 2 Dimensions 

 If the dimension includes specific fields that undergo fast changes that result in the dimension growing too 
fast on the disk, you can split off these fast-changing fields (see Figure  8-12 ) to remodel the data warehouse. 
You can minimize the disk size growth in this manner with ease.  

  Figure 8-12.    Fast-changing the mini-dimension       

 Dividing the fields into two dimensions reduces the size of the data stored to keep the history of the data 
records. 

 This does not change the values of the record; it only improves the data storage and query process. 

 ■   Note    There is a fine balance between disk space growth and query time impact is required. You will be 
advised to tune these structures over time to maintain good performance.   

   Mini-Dimension for Separated Values Due to Security Constraints 

 It’s often mandatory to isolate values to ensure compliance with security requirements. In this structure, you 
separate the security-sensitive fields in a detached dimension. See Figure  8-13 .  
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 Dividing the fields into two dimensions isolates the fields across two dimensions to enable the data to 
be secured in isolation. (See Chapter   9     for how to use security in Hive.) 

 ■   Caution    Ensure that you keep the keys in synchronization across the complete data set. If you lose these 
relationships, your whole structure will become null and void.   

   Mini-Dimension for Separated Values Due to Language Differences 

 There is the requirement in analytic models to present the same dimension in different languages. This 
is achieved by replication of the dimensions with each language in a separate dimension. This makes the 
process easier than using one big dimension with all the languages values. See Figure  8-14 .  

  Figure 8-13.    Security mini-dimensions       

  Figure 8-14.    Mini-dimension for language differences       

 

 

http://dx.doi.org/10.1007/978-1-4842-0271-5_9
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 By dividing the fields into many mini-dimensions, queries can generate different languages. You simply 
combine the correct data queries tables for the language you require.  

   Outrigger Dimensions 

 An outrigger is used when you already have a dimension that contains the value you want, so you simply add 
a key into the dimension you construct to link to the existing dimension. See Figure  8-15 .  

  Figure 8-15.    Outrigger dimensions       

 This creates three tables that are used to represent the required data. 

 ■   Caution    If you create an outrigger, take care that during current and future changes you do not implement 
changes to the outrigger structure. That would damage the main purpose of the dimension you used as the 
outrigger, as it would null and void the outrigger relationship and the main purpose of the dimension. 

 The most common mistake is using an automatic key generator on the outrigger dimension. Every time your 
rebuild the key you disrupt the outrigger relationship.   

   Bridge Dimensions 

 The bridge dimension is used to represent the relationship created when two dimensions have a many-to-
many relationship and you want to create a bridge dimension structure. See Figure  8-16 .  
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 Ruff Hond lives at two locations—KA12 8RR and EH1 2NG. By adding the bridge, this relationship is 
converted into two one-to-many relationships. 

 ■   Caution    If you create a bridge dimension, it should be kept to a minimum, as these structures require 
complex relationships when you query them. These data structures can create massive data sets during 
queries.    

   Facts 
 Facts are the measures of the analytic model. The data fields are numeric to enable the option to apply 
mathematical and aggregation functions. 

   Calculated Facts 

 Using mathematical and aggregation functions creates new facts. Possible functions to use are:

•    Sum  

•   Average  

•   Minimum  

•   Maximum  

•   Count  

•   Combining facts to create a new calculated fact    

 There are many other functions you can apply, but we are not going list them here. (See Appendix B for 
more details.) 

 Figure  8-17  shows how applying a sum creates a new calculated fact called the current balance.   

  Figure 8-16.    Bridge dimensions       
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   Factless Facts 

 A factless fact is a data structure that presents a structure that holds the relationship between the different 
dimensions. 

 There are relationships between entities that have no measures. An example is the relationship between 
customers and their home addresses (see Figure  8-18 ).  

  Figure 8-17.    Calculated facts       

  Figure 8-18.    Factless fact       

 There is only the relationship between the customer and the address in this fact table. So no fact or 
measure is stored with the keys. 

 ■   Note    Word of advice, when creating facts, you should always add a standard field called  factcount = 1 , 
as this makes it easier to use mathematical and aggregation functions on queries.     
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     Building the Data Warehouse 
 The data warehouse is built by converting sun models into star models. You do this by providing fields with 
data types and then translating the star schemas into Hive code to build the Hive data warehouse structures. 

 Before you proceed with the physical construction, let's just do a validation check: 
 Revisit the interlink matrix and all the sun models you prepared with the business.

•    The matrix is formulated by placing the dimensions down the left side of the matrix. 
Sort them alphabetically and remove any duplicates. Now you have your common 
dimensions.  

•   The top row of the matrix is all the facts and measures you are building for the 
analytic model. Sort them alphabetically and remove any duplicates. Now you have 
your common facts.  

•   Determine if the dimensions have the correct type your business needs.   

•    Type 0  

•   Type 1  

•   Type 2  

•   Type 3  

•   Mini

•    Fast-Changing  

•   Security  

•   Language     

•   Outriggers  

•   Bridges    

 Now that you validated the data warehouse, let's create a dimension in Hive. 

 ■   Note    To execute the Hive code, you need to open your Hive terminal.  

   Log On as the Root User 
 If you receive an access error against the root user, execute following commands: 

   hadoop fs -mkdir /user/root 
 hadoop fs -chmod 777 /user/root 

   This will resolve the access issue.  

   Dimensions 
 Dimensions are the core selectors of the data warehouse. Dimensions are created by using tables with the 
prefix of  dim- . 
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   Typical Dimension 

 This is a typical dimension structure.

•    It has a unique key called  personkey   

•   It has two selectors called  firstname  and  lastname     

 There are two key pieces needed to build a simple Hive dimension: a database and a table.

    1.    To create a transform database, execute the following in your Hive terminal: 

   CREATE DATABASE IF NOT EXISTS transformdb; 

   This Hive code creates a database called  transformdb  while checking that it did not exists.     

 ■   Note    If you are wondering, why  transformdb , this will be discussed in detail later in the chapter in the 
section “Master Data Warehouse Management”. Just use it as specified until that point.  

     2.    Create a person dimension table.     

 The dimension consists of:

•     Personkey , which is the key of the dimension.  

•    Firstname  and  lastname , which are the attributes of the dimension.    

 In your Hive terminal, execute the following: 

   USE transformdb; 

   This informs Hive to use the database you just created. 
 In your Hive terminal, execute the following to create the dimension table: 

    CREATE TABLE IF NOT EXISTS transformdb.dimperson (  
    personkey  BIGINT,  
    firstname  STRING,  
    lastname   STRING  
  )  
  CLUSTERED BY (firstname, lastname,personkey) INTO 1 BUCKETS  
  STORED AS orc  
  TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true');  

   This Hive code creates a table called  transformdb.dimperson  with three fields. 

 ■   Note    If you are unsure about the full meaning of the Hive command, read Chapter   4     for more information.   

http://dx.doi.org/10.1007/978-1-4842-0271-5_4
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   Common Dimensions 

 The common dimensions are the communal selectors you require for your analytic model. 
 This is the base for all your possible drop lists and/or filters you can apply to the model. 

  At this point you will not create the rest of the dimensions, as they are created in the "Master Data Warehouse 
Management" section, in the “Transform Database” subheading.    

   Facts 
 Facts are the measures of the analytic model. 

  For facts, you create the tables with the prefix of  fct- .  

   Typical Facts 

 The following is a typical fact structure:

•    A set of keys, one for every dimension linked to the fact.  

•   A single fact, i.e., a measure.    

 To create the fact table, execute the following in your Hive terminal: 

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount ( 
   personaccountkey     BIGINT, 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   This Hive code creates a table called  fctpersonaccount  that consists of keys that link to three 
dimensions ( personaccount ,  person , and  account ) and has one fact called  balance .  

   Common Facts 

 The common facts are the common measures you require for your analytic model. The fact can be used with 
any Hive mathematical and aggregate functions. 

 ■   Note    See Appendix B for details on what you can use.  
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 There are the various possibilities to create extra calculated facts at query time to supplement these 
common facts. 

 Examples include:

•    Final balance—Use a  sum()  function.  

•   Maximum balance—Use a  max()  function.  

•   Amount of accounts—Use a  count()  function.  

•   Variance in balance—Use a  variance()  function.  

•   Percentile of balance—Use a  percentile_approx()  function.        

     Assessing an Analytic Model 
 You have now constructed a basic analytic model. The next step is to enable the queries to assess the model 
for the users to achieve their business requirements. 

     Assess the Sun Models 
 A good test is to take each of your sun models and create a query that delivers the information in the 
required format to the business community. 

 This way, you create a one-to-one delivery check against the agreed sun models that you formulated 
with your business user's help. 

 In your Hive terminal, execute the following to create the extra Hive structures you will need. 
 This should be easy as you will have mastered the required Hive skills by now. 

   Create Two More Databases 
 You will need extra databases and tables for the next step. For now, simply create them; the business 
explanation is covered in the “Master Data Warehouse Management” section. 

   CREATE DATABASE IF NOT EXISTS organisedb; 
 CREATE DATABASE IF NOT EXISTS reportdb; 

      Create Extra Tables 
 Now let's add more tables to give you extra structures to master your Hive skills even more. Practice makes 
perfect, so follow these eight steps.

    1.    In database, use  transformdb : 

   USE transformdb; 

       2.    Create the table  transformdb.dimaccount : 

   CREATE TABLE IF NOT EXISTS transformdb.dimaccount ( 
   accountkey      BIGINT, 
   accountnumber   INT 
 ) 
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 CLUSTERED BY (accountnumber,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

       3.    In database, use  organisedb : 

   USE organisedb; 

       4.    Create the table  organisedb.dimaccount : 

   CREATE TABLE IF NOT EXISTS organisedb.dimaccount LIKE transformdb.dimaccount; 

        Did you spot the use of  like  to create new tables? This is a useful command to ensure your structures match 
between two tables.  

     5.    Create the table  organisedb.fctpersonaccount : 

   CREATE TABLE IF NOT EXISTS organisedb.fctpersonaccount ( 
   personaccountkey     BIGINT, 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = true','orc.compress'='ZLIB', 'orc.create.index'='true'); 

       6.    Create the table  organisedb.dimperson : 

   CREATE TABLE IF NOT EXISTS organisedb.dimperson ( 
   personkey  BIGINT, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname,personkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

       7.    In database, use  reportdb : 

   USE reportdb; 
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       8.    Create the table  reportdb.report001 : 

   CREATE TABLE IF NOT EXISTS reportdb.report001( 
   firstname       STRING, 
   lastname        STRING, 
   accountnumber   INT, 
   balance         DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (firstname, lastname) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

       You now have all the data structures you will require for our next steps. 
 The assessment is to test if you have the complete sun model (see Figure  8-19 ).  

  Figure 8-19.    Sun model       

 To create the assessment for the sun model (see Figure  8-19 ), use the following Hive code. 

   INSERT INTO TABLE reportdb.report001 
 SELECT 
   dimperson.firstname, dimperson.lastname, 
   dimaccount.accountnumber, 
   fctpersonaccount.balance 
 FROM 
   organisedb.fctpersonaccount 
 JOIN 
   organisedb.dimperson 
 ON 
   fctpersonaccount.personkey = dimperson.personkey 
 JOIN 
   organisedb.dimaccount   
 ON   
   fctpersonaccount.accountkey = dimaccount.accountkey; 
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   If you successfully return a result you have proven that the sun model was produced by your data 
warehouse structures.   

     Assess the Aggregations 
 Creating aggregations against the analytic model is common and is covered by the calculated fact structures. 

 There is also the option to apply some complex functional calculations, but for the purposes of this 
structure, you will only note the  sum  option. 

 Create the table  reportdb.report002  as follows: 

   CREATE TABLE IF NOT EXISTS reportdb.report002( 
   accountnumber   INT, 
   last_balance         DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (firstname, lastname) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   Aggregate the data: 

   INSERT INTO TABLE reportdb.report002 
 SELECT 
   dimaccount.accountnumber, 
   sum(fctpersonaccount.balance) as last_balance 
 FROM 
   organisedb.fctpersonaccount 
 JOIN 
   organisedb.dimaccount   
 ON   
   fctpersonaccount.accountkey = dimaccount.accountkey; 

   This Hive code aggregates the balances to give the latest balance measure by using the  sum()  function.  

     Assess the Data Marts 
 The concept of a data mart is used when you need to subdivide into smaller analytic models for a specific 
analytic requirement that is permanently stored. 

 Possible reasons you would need a data mart include:

•    To divide data by region, so that each region only sees its own data.  

•   To create month-end results that are static until the next month end.  

•   To enhance performance by reducing data volumes per query.  

•   To subdivide the data warehouse to have data marts to place physically on servers in 
the branches.    
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 To perform this assessment, execute the following Hive code: 

   INSERT INTO TABLE organisedb.fctpersonaccount 
 SELECT DISTINCT 
   personaccountkey, 
   personkey, 
   accountkey, 
   balance 
 FROM 
   transformdb.fctpersonaccount 
 WHERE 
   personaccountkey = 1 
 ORDER BY personaccountkey,personkey,accountkey; 

   This code performs a subdivide on the table  transformdb.fctpersonaccount  and inserts only 
the records that match the  where  statement  personaccountkey = 1 into table "organisedb.
fctpersonaccount" . 

 This can be used to create data marts for specific subsets of the data warehouse. 
 You now understand the basic processes of a working data warehouse, so let's build a full data 

warehouse.   

     Master Data Warehouse Management 
 Now that we have explained the theories behind building a data warehouse model by creating a data 
warehouse and data marts, the following several examples show a complete cycle of the build process for a 
simple set of requirements. 

 We are using the  Retrieve-Assess-Process-Transform-Organize-Report  design principle from the Rapid 
Information Factory approach. 

 As you go through the complete data warehouse examples, we will discuss what each layer of the design 
supplies to the data warehouse build process. 

 ■   Note    The next part of the chapter is a full processing of the warehouse. If you can complete the remainder 
of this chapter, you have mastered the data warehouse in Hive. You will find the Hive code in our example 
section to assist you with the process, which saves you from coping it from the book.  

 A data warehouse is a structure with layers and as a unit will enable you to handle your business 
requirements (your sun models). 

 Remember the following advice we learned through experience:

•    Plan every change to the data warehouse structure with care and you will be 
successful.  

•   Use the sun models to verify your requirements with the business.  

•   Keep to the processing rules!  

•   Taking shortcuts will cost you in the future.    
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     Prerequisites 
 You need the example data from the  00rawdata  directory. The following comma-separated value files are 
required:

•    The  rawaccount.csv  file—Holds 10,000 records.  

•   The  rawaddress.csv  file—Holds 220,182 records.  

•   The  rawaddresshistory.csv  file—Holds 100 records.  

•   The  rawdatetime.csv  file—Holds 1,052,640 records  

•   The  rawfirstname.csv  file—Holds 5,494 records.  

•   The  rawlastname.csv  file—Holds 16,001 records  

•   The  rawperson.csv  file—Holds 1,000 records.    

 Now that you have your data loaded, let's build the data warehouse.  

     Retrieve Database 
 The retrieve database is the data area that is used to transfer the data from the external data sources into the 
Hive data structure. 

 Data is normally transferred into the structure in an as-is format. Simply replicate the data structure and 
the data contained within the structure from the external data source. 

 WHY AS-IS … ?

 This enables you to reprocess your data warehouse from the original data format without dependencies 
on other source systems. We have learned the hard way that a reformatting process does not always 
work as designed. So keep the original data in Hive; it’s less painful that way.  

 You create a database called  retrievedb  to hold the imported data. 

 ■   Note    Source code for this chapter is available for download from    www.apress.com/9781484202722     . 
 See example script  Retrieve001.txt  for the Hive code.  

 Let's start by removing the existing  retrievedb.  Remember you created this earlier. 

   DROP DATABASE retrievedb CASCADE; 

   Now you recreate  retrievedb  to accept the data from your external data sources. 

   CREATE DATABASE IF NOT EXISTS retrievedb; 

   You will now create tables and load data from the external data sources. 
 Simply follow the steps to load the required set of data.

http://www.apress.com/9781484202722
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    1.    Create the table and load the data for  rawfirstname.csv : 

    USE retrievedb; 
 CREATE TABLE IF NOT EXISTS retrievedb.rawfirstname ( 
   firstnameid    string, 
   firstname      string, 
   sex            string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawfirstname.csv' 
OVERWRITE INTO TABLE retrievedb.rawfirstname; 

        2.    Create the table and load the data for  rawlastname.csv : 

    CREATE TABLE IF NOT EXISTS retrievedb.rawlastname ( 
   lastnameid    string, 
   lastname      string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawlastname.csv' 
OVERWRITE INTO TABLE retrievedb.rawlastname; 

        3.    Create the table and load the data for  rawperson.csv : 

    CREATE TABLE IF NOT EXISTS retrievedb.rawperson ( 
   persid         string, 
   firstnameid    string, 
   lastnameid     string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawperson.csv' 
OVERWRITE INTO TABLE retrievedb.rawperson; 

          Additional Data Loads 
 Let's do some more data loads. (See example script  Retrieve002.txt  for the Hive code.)

    1.    Create the table and load the data for  rawdatetime.csv : 

    CREATE TABLE IF NOT EXISTS retrievedb.rawdatetime ( 
   id            string, datetimes     string, monthname string, 
   yearnumber    string, monthnumber   string, daynumber string, 
   hournumber    string, minutenumber  string, ampm      string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawdatetime.csv' 
OVERWRITE INTO TABLE retrievedb.rawdatetime; 
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         See example script  Retrieve003.txt  for the Hive code.  

     2.    Create the table and load the data for  rawaddress.csv : 

    CREATE TABLE IF NOT EXISTS retrievedb.rawaddress ( 
   id            string, Postcode      string, Latitude string, 
   Longitude     string, Easting       string, Northing string, 
   GridRef       string, District      string, Ward     string, 
   DistrictCode  string, WardCode      string, Country  string, 
   CountyCode    string, Constituency  string, TypeArea string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawaddress.csv' 
OVERWRITE INTO TABLE retrievedb.rawaddress; 

        3.    Create the table and load the data for  rawaddresshistory.csv : 

    CREATE TABLE IF NOT EXISTS retrievedb.rawaddresshistory ( 
   id  string, pid  string, aid  string, did1  string, did2  string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawaddresshistory.
csv' OVERWRITE INTO TABLE retrievedb.rawaddresshistory; 

         See example script  Retrieve004.txt  for the Hive code.  

     4.    Create the table and load the data for  rawaccount.csv : 

    CREATE TABLE IF NOT EXISTS retrievedb.rawaccount ( 
   id   string,   pid  string,  accountno  string, balance  string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawaccount.csv' 
OVERWRITE INTO TABLE retrievedb.rawaccount; 

        You have just completed the data retrieve layer of the data warehouse and mastered the following:

•    Creating tables with delimited fields.  

•   Loading data from delimited files.    

 The same Hive code can also support other delimiters. 
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 Try the  pipe  delimiter. 

    CREATE TABLE IF NOT EXISTS retrievedb.rawaccountpipe ( 
   id   string,   pid  string,  accountno  string, balance  string 
 ) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'; 

   LOAD DATA LOCAL INPATH 'file:///root/exampledata/datawarehouse/00rawdata/rawaccount.pipe' 
OVERWRITE INTO TABLE retrievedb.rawaccount; 

     Any delimiter is possible, but  comma ,  tab ,  pipe , and  space  are the more common.    

     Assess Database 
 The Assess Database is the data structure that enables you to use data quality rules to assess if the data in 
your retrieve database is of good quality. 

 The assess process is basically a process of channeling the data from one table to the next to ensure the 
specific assessment function is performed. 

 This results in a series of interim tables that, after the process is completed, are discarded. 

 ■   Tip    Suffix your interim tables with a number. For example,  firstname001  belongs to  firstname 's process.  

 To enable the process, you create a database called  assessdb . 

  See example script  Assess001.txt  for the Hive code.  

   Remove the access Database 

   DROP DATABASE IF EXISTS assessdb CASCADE; 

      Create the assess Database 

   CREATE DATABASE IF NOT EXISTS assessdb; 

      Create the assess firstname Tables 

   USE assessdb; 

   The assess layer is now used to assess and clean up the  firstname  data from the retrieve layer.  
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   Create the Interim firstname001 Table 

   CREATE TABLE IF NOT EXISTS assessdb.firstname001 ( 
   firstnameid    string, 
   firstname      string, 
   sex            string 
 ) 
 CLUSTERED BY (firstnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

     1.    Clear out all data from  firstname001 . 

   TRUNCATE TABLE assessdb.firstname001; 

          Remove the Headings from the firstname Data 
 The first assessment is on the  firstname . 

 On investigation of the  retrievedb.rawfirstname , we discovered that due to the structure mismatch 
between the input file and the database, we in error uploaded the headings of the input file. 

 The proposed solution is to simply filter the headings out of the data set by using a  SELECT  statement 
with a  WHERE  of  firstnameid <> '"id" '. 

   INSERT INTO TABLE assessdb.firstname001 
 SELECT firstnameid, firstname, sex 
 FROM retrievedb.rawfirstname 
 WHERE firstnameid <> '"id"'; 

      Create the Interim firstname002 Table 
 You need to create the table  assessdb.firstname002  and then perform the  INSERT  statement to assess 
the data. 

   CREATE TABLE IF NOT EXISTS assessdb.firstname002 ( 
   firstnameid    string, 
   firstname      string, 
   sex            string 
 ) 
 CLUSTERED BY (firstnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

      Clear Out All Data from firstname002 

   TRUNCATE TABLE assessdb.firstname002; 
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      Remove the Spaces from the Firstname Data 
 Now that you have the data set without the headings, you can assess the quality of the records. 

 We discovered because of quality checks in our source system that values in the data set may have 
leading or lagging spaces. 

 To fix this issue, we use built-in functions in Hive. 
 We will use:

•     ltrim —Left trim removes any leading spaces.  

•    rtrim  —Right trim removes any lagging spaces.    

 We also compound the two functions into a function chain by using  rtrim(ltrim()) . 
 To complete this assess rule, we create a  SELECT  statement to apply our new function to the data in 

 firstname001  and then insert that into a table called  firstname002 . 

   INSERT INTO TABLE assessdb.firstname002 
 SELECT firstnameid, rtrim(ltrim(firstname)), rtrim(ltrim(sex)) 
 FROM assessdb.firstname001; 

      Create the Interim firstname003 Table 
 You need to create the table  assessdb.firstname003  and then perform the  INSERT  statement. 

   CREATE TABLE IF NOT EXISTS assessdb.firstname003 ( 
   firstnameid    int, 
   firstname      string, 
   sex            string 
 ) 
 CLUSTERED BY (firstnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

      Clear Out All Data from firstname003 

   TRUNCATE TABLE assessdb.firstname003; 

      Convert Data Types in the firstname Data 
 On further inspection of the data set, we discover two more issues:

•    We have to convert the  firstnameid  from string to integer data type.  

•   We have to remove an unwanted extra character from the  firstname  and  sex  data 
values.    

 Hive has internal functions to deal with these issues also. 



CHAPTER 8 ■ HIVE ANALYTICS

163

 ■   Tip    We suggest you research the internal functions in Appendix B. Understand how they work and try 
combinations of them in a chain. These are your tools—understand them and master them.  

 To complete this assess rule, we create a  SELECT  statement to apply our new functions to the data in 
 firstname002  and then insert that into a table called  firstname003 . 

   INSERT INTO TABLE assessdb.firstname003 
 SELECT 
   CAST(firstnameid as INT), SUBSTRING(firstname,2,LENGTH(firstname)-2), 
   SUBSTRING(sex,2,LENGTH(sex)-2) 
 FROM assessdb.firstname002; 

      Create the firstname Table 

   CREATE TABLE IF NOT EXISTS assessdb.firstname ( 
   firstnameid    int, 
   firstname      string, 
   sex            string 
 ) 
 CLUSTERED BY (firstnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

      Clear Out All Data from firstname 

   TRUNCATE TABLE assessdb.firstname; 

      Transfer Data in the firstname Table 
 Perfect, we now have a high-quality data set in  assessdb.firstname003 . 

 You will now transfer the data set to the final assess table. 
 To complete this assess rule, we create a  SELECT  statement to our high quality data set from 

 firstname003  and then insert it into a table called  firstname . 

   INSERT INTO TABLE assessdb.firstname 
 SELECT 
   firstnameid, 
   firstname, 
   sex 
 FROM 
   assessdb.firstname003 
 ORDER BY firstnameid; 
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 ■     Tip    You could be ensnared to simply go back to the previous step and point the  insert  to  firstname  and 
not  firstname003 . It would be a valid process, but it’s better to always clean up the data set first and then load 
it to the final table. Here is why. 

 You can perform extra steps in the assessment chain without impacting the existing data set in final table. This 
helps with future development. 

 The use of filters and functions will always be slower than a direct  select  and  insert . So if you prepare 
the data set first by using the filters and functions and then you simply insert you data, the final table will be 
unstable for a shorter time between truncating the table and inserting the new data set.   

   Evaluate Data in the firstname Table 
   SELECT 
   firstnameid, 
   firstname, 
   sex 
 from 
   assessdb.firstname 
 SORT BY 
   firstname LIMIT 10; 

      What Have You Mastered? 
•     You can remove unwanted records, i.e., headings.  

•   You can remove unwanted spaces in the data records.  

•   You can change data types of the data set.    

 You can now apply your new knowledge in the  lastname  tables using the next set of data.  

   Create assess lastname Tables 

    CREATE TABLE IF NOT EXISTS assessdb.lastname001 ( 
   lastnameid    string, 
   lastname      string 
 ) 
 CLUSTERED BY (lastnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.lastname001; 

   INSERT INTO TABLE assessdb.lastname001 
 SELECT lastnameid, lastname 
 FROM retrievedb.rawlastname 
 WHERE lastnameid <> '"id"'; 
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   CREATE TABLE IF NOT EXISTS assessdb.lastname002 ( 
   lastnameid    string, 
   lastname      string 
 ) 
 CLUSTERED BY (lastnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.lastname002; 

   INSERT INTO TABLE assessdb.lastname002 
 SELECT lastnameid, rtrim(ltrim(lastname)) 
 FROM assessdb.lastname001; 

   CREATE TABLE IF NOT EXISTS assessdb.lastname003 ( 
   lastnameid    int, 
   lastname      string 
 ) 
 CLUSTERED BY (lastnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.lastname003; 

   INSERT INTO TABLE assessdb.lastname003 
 SELECT CAST(lastnameid as INT), SUBSTRING(lastname,2,LENGTH(lastname)-2) 
 FROM assessdb.lastname002; 

   CREATE TABLE IF NOT EXISTS assessdb.lastname ( 
   lastnameid    int, 
   lastname      string 
 ) 
 CLUSTERED BY (lastnameid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.lastname; 

   INSERT INTO TABLE assessdb.lastname 
 SELECT lastnameid, lastname 
 FROM assessdb.lastname003 
 ORDER BY lastnameid; 

       Evaluate Data in the lastname Table 

   SELECT 
   lastnameid, 
   lastname 
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 from 
   assessdb.lastname 
 SORT BY 
   lastname LIMIT 10; 

   If you see 10 records, you've created the next table. Let's move on.  

   Create assess person Tables 

    CREATE TABLE IF NOT EXISTS assessdb.person001 ( 
   persid         string, 
   firstnameid    string, 
   lastnameid     string 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.person001; 

   INSERT INTO TABLE assessdb.person001 
 SELECT persid, firstnameid, lastnameid 
 FROM retrievedb.rawperson 
 WHERE persid <> '"id"'; 

   CREATE TABLE IF NOT EXISTS assessdb.person002 ( 
   persid         int, 
   firstnameid    int, 
   lastnameid     int 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.person002; 

   INSERT INTO TABLE assessdb.person002 
 SELECT CAST(persid as INT), CAST(firstnameid as INT), CAST(lastnameid as INT) 
 FROM assessdb.person001; 

   CREATE TABLE IF NOT EXISTS assessdb.person ( 
   persid         int, 
   firstnameid    int, 
   lastnameid     int 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
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   TRUNCATE TABLE assessdb.person; 

   INSERT INTO TABLE assessdb.person 
 SELECT persid, firstnameid, lastnameid 
 FROM assessdb.person002; 

    The next table type is a combination table. Combination tables are formulated form more than one 
source table.  

   Create assess personfull Tables 

    CREATE TABLE IF NOT EXISTS assessdb.personfull( 
   persid       int, 
   firstnameid  int, 
   firstname    string, 
   lastnameid   int, 
   lastname     string, 
   sex          string 
 ) 
 CLUSTERED BY (persid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.personfull; 

    Let's master this combination table type: 

   INSERT INTO TABLE assessdb.personfull 
 SELECT person.persid, person.firstnameid, firstname.firstname,        person.lastnameid, 
lastname.lastname, firstname.sex 
 FROM assessdb.firstname 
 JOIN assessdb.person 
 ON firstname.firstnameid = person.firstnameid 
 JOIN assessdb.lastname 
 ON lastname.lastnameid = person.lastnameid; 

 ■     Note    You can now create tables directly from retrieving data and from a combination of other assess 
tables. You can do combination tables using joins. See Chapter   5     on joins for more detail.   

   Cleanup assess Database 
 The next step is tidying up the  assess  layer. This reclaims extra space for the next steps. 

   DROP TABLE assessdb.firstname001; 
 DROP TABLE assessdb.firstname002; 
 DROP TABLE assessdb.firstname003; 
 DROP TABLE assessdb.lastname001; 

http://dx.doi.org/10.1007/978-1-4842-0271-5_5
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 DROP TABLE assessdb.lastname002; 
 DROP TABLE assessdb.lastname003; 
 DROP TABLE assessdb.person001; 
 DROP TABLE assessdb.person002; 

    See example script  Assess002.txt  for the Hive code.  

 Now that you have mastered the process of assessing data, you can try your skills against a larger data set.  

   Create assess datetime Tables 

    CREATE TABLE IF NOT EXISTS assessdb.datetime001 ( 
   id            string, datetimes     string, monthname string, 
   yearnumber    string, monthnumber   string, daynumber string, 
   hournumber    string, minutenumber  string, ampm      string 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.datetime001; 

   INSERT INTO TABLE assessdb.datetime001 
 SELECT 
   id, datetimes, monthname, yearnumber, monthnumber, 
   daynumber, hournumber, minutenumber, ampm 
 FROM retrievedb.rawdatetime 
 WHERE id <> '"id"'; 

   CREATE TABLE IF NOT EXISTS assessdb.datetime002 ( 
   id         string, datetimes    string, monthname string, 
   yearnumber string, monthnumber  string, daynumber string, 
   hournumber string, minutenumber string, ampm      string 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.datetime002; 

   INSERT INTO TABLE assessdb.datetime002 
 SELECT 
   id, rtrim(ltrim(datetimes)), rtrim(ltrim(monthname)), 
   rtrim(ltrim(yearnumber)), rtrim(ltrim(monthnumber)), 
   rtrim(ltrim(daynumber)), rtrim(ltrim(hournumber)), 
   rtrim(ltrim(minutenumber)), rtrim(ltrim(ampm)) 
 FROM assessdb.datetime001; 
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   CREATE TABLE IF NOT EXISTS assessdb.datetime003 ( 
   id          int, datetimes    string, monthname string, 
   yearnumber  int, monthnumber  int,    daynumber int, 
   hournumber  int, minutenumber int,    ampm      string 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.datetime003; 

   INSERT INTO TABLE assessdb.datetime003 
 SELECT 
   CAST(id as INT), SUBSTRING(datetimes,2,LENGTH(datetimes)-2), 
   SUBSTRING(monthname,2,LENGTH(monthname)-2), CAST(yearnumber as INT), 
   CAST(monthnumber as INT),  CAST(daynumber as INT), CAST(hournumber as INT), 
   CAST(minutenumber as INT), SUBSTRING(ampm,2,LENGTH(ampm)-2) 
 FROM assessdb.datetime002; 

   CREATE TABLE IF NOT EXISTS assessdb.dates ( 
   id         int, datetimes     string, monthname string, 
   yearnumber int, monthnumber   int,    daynumber int, 
   hournumber int, minutenumber  int,    ampm      string 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.dates; 

   INSERT INTO TABLE assessdb.dates 
 SELECT 
   id, datetimes, monthname, yearnumber, monthnumber, daynumber, 
   hournumber, minutenumber, ampm 
 FROM assessdb.datetime003; 

    That was easy as you have mastered the basic rules. You are not bound by the size of the data set.  

   Cleanup Assess Database 
 The next step is tidying up the assess layer. 

   DROP TABLE assessdb.datetime001; 
 DROP TABLE assessdb.datetime002; 
 DROP TABLE assessdb.datetime003; 

    See example script  Assess003.txt  for the Hive code.   
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   Create the assess Address Tables 
 Next you will master a "wider" data set using the address data. 

  You have the skills, and you just need to apply the rules you have mastered.  

    CREATE TABLE IF NOT EXISTS assessdb.address001 ( 
   id STRING, postcode STRING, latitude STRING, longitude STRING, 
   easting STRING,northing STRING, gridref STRING, district STRING, 
   ward STRING, districtcode STRING, wardcode STRING, country STRING, 
   countycode STRING, constituency STRING, typearea STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.address001; 

   INSERT INTO TABLE assessdb.address001 
 SELECT 
   id, postcode, latitude, longitude, easting, northing, gridref, district, 
   ward, districtcode, wardcode, country, countycode, constituency, typearea 
 FROM retrievedb.rawaddress 
 WHERE id <> '"id"'; 

   CREATE TABLE IF NOT EXISTS assessdb.address002 ( 
   id STRING, postcode STRING, latitude STRING, longitude STRING, 
   easting STRING, northing STRING, gridref STRING, district STRING, 
   ward STRING, districtcode STRING, wardcode STRING, country STRING, 
   countycode STRING, constituency STRING, typearea STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.address002; 

   INSERT INTO TABLE assessdb.address002 
 SELECT 
   id, rtrim(ltrim(postcode)), rtrim(ltrim(latitude)), rtrim(ltrim(longitude)), 
   rtrim(ltrim(easting)), rtrim(ltrim(northing)), rtrim(ltrim(gridref)), 
   rtrim(ltrim(district)), rtrim(ltrim(ward)), rtrim(ltrim(districtcode)), 
   rtrim(ltrim(wardcode)), rtrim(ltrim(country)), rtrim(ltrim(countycode)), 
   rtrim(ltrim(constituency)), rtrim(ltrim(typearea)) 
 FROM assessdb.address001; 

   CREATE TABLE IF NOT EXISTS assessdb.address003 ( 
   id INT, postcode STRING, latitude DECIMAL(18, 9), longitude DECIMAL(18, 9), 
   easting INT, northing INT, gridref STRING, district STRING, ward STRING, 
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   districtcode STRING, wardcode STRING, country STRING, countycode STRING, 
   constituency STRING, typearea STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.address003; 

   INSERT INTO TABLE assessdb.address003 
 SELECT 
   CAST(id as INT), SUBSTRING(postcode,2,LENGTH(postcode)-2), 
   CAST(latitude as DECIMAL(18, 9)), CAST(longitude as DECIMAL(18, 9)), 
   CAST(easting as INT), CAST(northing as INT), 
   SUBSTRING(gridref,2,LENGTH(gridref)-2), 
   SUBSTRING(district,2,LENGTH(district)-2), 
   SUBSTRING(ward,2,LENGTH(ward)-2), 
   SUBSTRING(districtcode,2,LENGTH(districtcode)-2), 
   SUBSTRING(wardcode,2,LENGTH(wardcode)-2), 
   SUBSTRING(country,2,LENGTH(country)-2), 
   SUBSTRING(countycode,2,LENGTH(countycode)-2), 
   SUBSTRING(constituency,2,LENGTH(constituency)-2), 
   SUBSTRING(typearea,2,LENGTH(typearea)-2) 
 FROM assessdb.address002; 

   CREATE TABLE IF NOT EXISTS assessdb.postaddress ( 
   id INT, postcode STRING, latitude DECIMAL(18, 9), 
   longitude DECIMAL(18, 9), easting INT, northing INT, 
   gridref STRING, district STRING, ward STRING, districtcode STRING, 
   wardcode STRING, country STRING, countycode STRING, 
   constituency STRING, typearea STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE assessdb.postaddress 
 SELECT 
   id, postcode, latitude, longitude, easting, northing, gridref, district, 
   ward, districtcode, wardcode, country, countycode, constituency, typearea 
  FROM 
   assessdb.address003; 

   CREATE TABLE IF NOT EXISTS assessdb.addresshistory001 ( 
   id STRING, pid STRING, aid STRING, did1 STRING, did2 STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
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   TRUNCATE TABLE assessdb.addresshistory001; 

   INSERT INTO TABLE assessdb.addresshistory001 
 SELECT 
   id, pid, aid, did1, did2 
 FROM 
   retrievedb.rawaddresshistory 
 WHERE id <> '"id"'; 

   CREATE TABLE IF NOT EXISTS assessdb.addresshistory002 ( 
   id INT, pid INT, aid INT, did1 INT, did2 INT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.addresshistory002; 

   INSERT INTO TABLE assessdb.addresshistory002 
 SELECT 
   CAST(id as INT), CAST(pid as INT), CAST(aid as INT), 
   CAST(did1 as INT), CAST(did2 as INT) 
 FROM 
   assessdb.addresshistory001; 

   CREATE TABLE IF NOT EXISTS assessdb.addresshistory ( 
   id INT, pid INT, aid INT, did1 INT, did2 INT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.addresshistory; 

   INSERT INTO TABLE assessdb.addresshistory 
 SELECT 
   id, pid, aid, did1, did2 
 FROM 
   assessdb.addresshistory002; 

    Once more, the number of fields has no impact on the rules. Just keep on applying them against the 
data sets.  

   Clean Up the address Tables 

    DROP TABLE assessdb.address001; 
 DROP TABLE assessdb.address002; 
 DROP TABLE assessdb.address003; 

   DROP TABLE assessdb.addresshistory001; 
 DROP TABLE assessdb.addresshistory002; 
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       Evaluate the address Tables 

   SELECT 
   addresshistory.id, addresshistory.pid, personfull.firstname, 
   personfull.lastname, addresshistory.aid, postaddress.postcode, 
   addresshistory.did1, dates1.datetimes as startdate, 
   addresshistory.did2, dates2.datetimes as enddate 
 FROM 
   assessdb.addresshistory 
 JOIN 
   assessdb.personfull ON addresshistory.pid = personfull.persid 
 JOIN 
   assessdb.postaddress ON addresshistory.aid = postaddress.id 
 JOIN 
   assessdb.dates as dates1 ON addresshistory.did1 = dates1.id 
 JOIN 
   assessdb.dates as dates2 ON addresshistory.did2 = dates2.id 
 LIMIT 20; 

   You can now see 20 records if you created the address data warehouse section. Let's load more data. 
You should have the process mastered. 

  See example script  Assess004.txt  for the Hive code.   

   Create the assess account Tables 

    CREATE TABLE IF NOT EXISTS assessdb.account001 ( 
   id STRING, pid STRING, accountno STRING, balance STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.account001; 

   INSERT INTO TABLE assessdb.account001 
 SELECT 
   id, pid, accountno, balance 
 FROM retrievedb.rawaccount 
 WHERE id <> '"id"'; 

   CREATE TABLE IF NOT EXISTS assessdb.account002 ( 
   id STRING, pid STRING, accountno STRING, balance STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 



CHAPTER 8 ■ HIVE ANALYTICS

174

   TRUNCATE TABLE assessdb.account002; 

   INSERT INTO TABLE assessdb.account002 
 SELECT 
   id, pid, rtrim(ltrim(accountno)), balance 
 FROM assessdb.account001; 

   CREATE TABLE IF NOT EXISTS assessdb.account003 ( 
   id INT, pid INT, accountid INT, accountno string, balance DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
 TRUNCATE TABLE assessdb.account003; 

   INSERT INTO TABLE assessdb.account003 
 SELECT 
   CAST(id as INT), CAST(pid as INT), CAST(accountno as INT), 
   CONCAT('AC',accountno), CAST(balance as DECIMAL(18, 9)) 
 FROM assessdb.account002; 

   CREATE TABLE IF NOT EXISTS assessdb.account ( 
   id INT, pid INT, accountid INT, accountno STRING, balance DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE assessdb.account; 

   INSERT INTO TABLE assessdb.account 
 SELECT 
   id, pid, accountid, accountno, balance 
  FROM 
   assessdb.account003; 

       Clean Up the assess account Tables 

   DROP TABLE assessdb.account001; 
 DROP TABLE assessdb.account002; 
 DROP TABLE assessdb.account003; 

   You have now completed the assess layer for this book. Well done. 

  If you investigate the functions in Appendix B, you can master the functions to handle any corrections you need 
to make to the data during the assess layer's processing.  

 You can now proceed to the next layer.   
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     Process Database 
 The process database is structured as a data vault. Designed by Dan Linstedt, this database-modeling 
technique provides long-term chronological storage of data (see Figure  8-20 ).  

 The basic structure consists of three structures:

•     Hubs —Comprise a list of unique business keys with little tendency to change.  

•    Links —Associations and transactions between business keys are recorded as links. 
These structures handle the relationships within the data set.  

•    Satellites —The hubs and links form the core structure of the data vault, but detail 
attributes are stored in isolated tables called satellites.    

  For more information, research the concepts of “data vaults”.  

 Create a database called  processdb  to hold the process data structures: 

   CREATE DATABASE IF NOT EXISTS processdb; 

   The first table you create is  personhub.  The hub consists of:

•    A hub key called  id .  

•   A business key called  keyid .  

•   Two natural keys called  firstname  and  lastname .    

    USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.personhub ( 
   id         INT, 
   keyid      STRING, 
   firstname  STRING, 
   lastname   STRING 
 ) 

  Figure 8-20.    Basic data vault structure.       
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 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

      You should use several keys to ensure you can handle any data restructuring in the future, if you have any 
issues with data integrity or have to rebuild the hub. In this example, you use  Keyid  and  firstname  plus 
 lastname  as two different keys for the same data set.  

 The second table you create is called  personsexsatellite . The satellite consists of:

•    A hub key called  id .  

•   A business key called  keyid  from  personhub .  

•   An attribute called  sex .  

•   A timestamp called  timestamp  to record when data was loaded.    

   CREATE TABLE IF NOT EXISTS processdb.personsexsatellite ( 
   id         INT, 
   keyid      STRING, 
   sex        STRING, 
   timestmp   BIGINT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   The third table you create is called  person_person_link . It creates the business relationship of one 
person’s relationship to another person. 

 The link consists of:

•    A link key called  id .  

•   A person hub key called  personid1 .  

•   A person hub key called  personid2 .    

 Here is the Hive code: 

   CREATE TABLE IF NOT EXISTS processdb.person_person_link( 
   id INT, 
   personid1 INT, 
   personid2 INT 
 ) 
 CLUSTERED BY (id, personid1, personid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

    See example script  Process001.txt  for the Hive code. It holds the process-related data structures.  
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 You can work through the code with ease now, as you have used the Hive code before and you are 
simply creating different data structures. 

    DROP DATABASE processdb CASCADE; 

   CREATE DATABASE IF NOT EXISTS processdb; 
 USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.personhub ( 
   id         INT, 
   keyid      STRING, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.personhub001 ( 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.personhub001; 

   INSERT INTO TABLE processdb.personhub001 
 SELECT DISTINCT 
   firstname, 
   lastname 
 FROM 
   assessdb.personfull; 

   CREATE TABLE IF NOT EXISTS processdb.personhub002 ( 
   rid         BIGINT, 
   tid         BIGINT, 
   firstname   STRING, 
   lastname    STRING 
 ) 
 CLUSTERED BY (rid, tid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.personhub002; 

   INSERT INTO TABLE processdb.personhub002 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY firstname, lastname), 
   unix_timestamp(), 
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   firstname, 
   lastname 
 FROM 
   processdb.personhub001; 

   CREATE TABLE IF NOT EXISTS processdb.personhub003 ( 
   keyid      STRING, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (keyid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.personhub003; 

   INSERT INTO TABLE processdb.personhub003 
 SELECT 
   CONCAT(tid, '/', rid), 
   firstname, 
   lastname 
 FROM 
   processdb.personhub002; 

   CREATE TABLE IF NOT EXISTS processdb.personhub004 ( 
   keyid      STRING, 
   firstname  STRING, 
   lastname   STRING, 
   CDC        STRING 
 ) 
 CLUSTERED BY (keyid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.personhub004; 

   INSERT INTO TABLE processdb.personhub004 
 SELECT 
   A.keyid, 
   A.firstname, 
   A.lastname, 
   B.keyid 
 FROM 
   processdb.personhub003 AS A 
 LEFT JOIN 
   processdb.personhub AS B 
 ON 
   A.firstname = B.firstname  AND A.lastname = B.lastname; 

   CREATE TABLE IF NOT EXISTS processdb.personhub005 ( 
   keyid      STRING, 
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   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (keyid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.personhub005; 

   INSERT INTO TABLE processdb.personhub005 
 SELECT 
   keyid, 
   firstname, 
   lastname 
 FROM 
   processdb.personhub004 
 WHERE CDC IS NULL; 

   INSERT INTO TABLE processdb.personhub005 
 SELECT 
   keyid, 
   firstname, 
   lastname 
 FROM 
   processdb.personhub; 

   TRUNCATE TABLE processdb.personhub; 

   INSERT INTO TABLE processdb.personhub 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY keyid), 
   keyid, 
   firstname, 
   lastname 
 FROM 
   processdb.personhub005; 

   DROP TABLE processdb.personhub001; 
 DROP TABLE processdb.personhub002; 
 DROP TABLE processdb.personhub003; 
 DROP TABLE processdb.personhub004; 

   CREATE TABLE IF NOT EXISTS processdb.personsexsatellite001 ( 
   keyid      STRING, 
   sex        STRING 
 ) 
 CLUSTERED BY (keyid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
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   TRUNCATE TABLE processdb.personsexsatellite001; 

   INSERT INTO TABLE processdb.personsexsatellite001 
 SELECT DISTINCT 
   A.keyid, 
   B.sex 
 FROM 
   processdb.personhub005 as A 
 JOIN   
   assessdb.personfull AS B 
 ON 
   A.firstname = B.firstname AND A.lastname = B.lastname; 

   CREATE TABLE IF NOT EXISTS processdb.personsexsatellite ( 
   id         INT, 
   keyid      STRING, 
   sex        STRING, 
   timestmp   BIGINT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.personsexsatellite; 

   INSERT INTO TABLE processdb.personsexsatellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY keyid), 
   keyid, 
   sex, 
   unix_timestamp() 
 FROM 
   processdb.personsexsatellite001; 

   DROP TABLE processdb.objecthub001; 
 DROP TABLE processdb.personsexsatellite001; 

    You are making good progress with your process layer. Well done! 

  See example script  Process002.txt  for the Hive code. It holds all the object-related data structures.  

    USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.objecthub ( 
   id          int, 
   objecttype  string, 
   objectname  string, 
   objectid    int 
 ) 
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 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.objecthub; 

   CREATE TABLE IF NOT EXISTS processdb.objecthub001 (   
   objecttype  string, 
   objectname  string, 
   objectid    int 
 ) 
 CLUSTERED BY (objecttype, objectname,objectid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.objecthub001; 

   INSERT INTO TABLE processdb.objecthub001 
 SELECT DISTINCT 
   'intangible', 
   'bankaccount', 
   accountid 
 FROM 
   assessdb.account; 

   TRUNCATE TABLE processdb.objecthub; 

   INSERT INTO TABLE processdb.objecthub 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY objecttype,objectname,objectid), 
   objecttype, 
   objectname, 
   objectid 
 FROM 
   processdb.objecthub001; 

   CREATE TABLE IF NOT EXISTS processdb.objectbankaccountsatellite0001 ( 
   accountid           int, 
   transactionid       int, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (accountid,transactionid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.objectbankaccountsatellite001; 

   INSERT INTO TABLE processdb.objectbankaccountsatellite0001 
 SELECT 
   accountid, 
   id as transactionid, 
   balance 
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 FROM 
   assessdb.account; 

   CREATE TABLE IF NOT EXISTS processdb.objectbankaccountsatellite ( 
   id                  int, 
   accountid           int, 
   transactionid       int, 
   balance             DECIMAL(18, 9), 
   timestmp            bigint 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.objectbankaccountsatellite; 

   INSERT INTO TABLE processdb.objectbankaccountsatellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY accountid,transactionid), 
   accountid, 
   transactionid, 
   balance, 
   unix_timestamp() 
 FROM 
   processdb.objectbankaccountsatellite0001; 

   DROP TABLE processdb.objectbankaccountsatellite0001; 
 DROP TABLE processdb.objecthub001; 

   More progress ... Just keep on running the Hive code. 

     See example script  Process003.txt  for the Hive code. It holds all the location-related data structures.  

    USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.locationhub ( 
   id            INT, 
   locationtype  STRING, 
   locationname  STRING, 
   locationid    INT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE processdb.locationhub; 

   CREATE TABLE IF NOT EXISTS processdb.locationhub001 (   
   locationtype  STRING, 
   locationname  STRING, 
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   locationid    INT 
 ) 
 CLUSTERED BY (locationtype, locationname,locationid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.locationhub001; 

   INSERT INTO TABLE processdb.locationhub001 
 SELECT DISTINCT 
   'intangible', 
   'geospace', 
   id as locationid 
 FROM 
   assessdb.postaddress; 

   TRUNCATE TABLE processdb.locationhub; 

   INSERT INTO TABLE processdb.locationhub 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY locationtype,locationname,locationid), 
   locationtype, 
   locationname, 
   locationid 
 FROM 
   processdb.locationhub001; 

   CREATE TABLE IF NOT EXISTS processdb.locationgeospacesatellite0001 ( 
   locationid    INT,            postcode     STRING, 
   latitude      DECIMAL(18, 9), longitude    DECIMAL(18, 9), 
   easting       INT,            northing     INT, 
   gridref       STRING,         district     STRING, 
   ward          STRING,         districtcode STRING, 
   wardcode      STRING,         country      STRING, 
   countycode    STRING,         constituency STRING, 
   typearea      STRING 
 ) 
 CLUSTERED BY (locationid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.locationgeospacesatellite0001; 

   INSERT INTO TABLE processdb.locationgeospacesatellite0001 
 SELECT 
   id as locationid, postcode, latitude, longitude, easting, northing,gridref, 
   district, ward, districtcode, wardcode, country, countycode, 
   constituency, typearea 
 FROM 
   assessdb.postaddress; 
  CREATE TABLE IF NOT EXISTS processdb.locationgeospace1satellite ( 
   id            INT, 
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   locationid    INT, 
   postcode      STRING, 
   timestmp      BIGINT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.locationgeospace1satellite; 

   INSERT INTO TABLE processdb.locationgeospace1satellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY locationid), 
   locationid, 
   postcode, 
   unix_timestamp() 
 FROM 
   processdb.locationgeospacesatellite0001 
 ORDER BY locationid; 

   CREATE TABLE IF NOT EXISTS processdb.locationgeospace2satellite ( 
   id            INT, 
   locationid    INT, 
   latitude      DECIMAL(18, 9), 
   longitude     DECIMAL(18, 9), 
   timestmp      BIGINT 
 ) 
 CLUSTERED BY (id, locationid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.locationgeospace2satellite; 

   INSERT INTO TABLE processdb.locationgeospace2satellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY locationid), 
   locationid, 
   latitude, 
   longitude, 
   unix_timestamp() 
 FROM 
   processdb.locationgeospacesatellite0001; 

   CREATE TABLE IF NOT EXISTS processdb.locationgeospace3satellite ( 
   id            INT, 
   locationid    INT, 
   easting       INT, 
   northing      INT, 
   timestmp      BIGINT 
 ) 
 CLUSTERED BY (id, locationid) INTO 1 BUCKETS 
 STORED AS orc 
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 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.locationgeospace3satellite; 

   INSERT INTO TABLE processdb.locationgeospace3satellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY locationid), 
   locationid, 
   easting, 
   northing, 
   unix_timestamp() 
 FROM 
   processdb.locationgeospacesatellite0001;   

   CREATE TABLE IF NOT EXISTS processdb.locationgeospace4satellite ( 
   id            INT, 
   locationid    INT, 
   postcode      STRING, 
   latitude      DECIMAL(18, 9), 
   longitude     DECIMAL(18, 9), 
   easting       INT, 
   northing      INT, 
   gridref       STRING, 
   district      STRING, 
   ward          STRING, 
   districtcode  STRING, 
   wardcode      STRING, 
   country       STRING, 
   countycode    STRING, 
   constituency  STRING, 
   typearea      STRING, 
   timestmp      BIGINT 
 ) 
 CLUSTERED BY (id, locationid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.locationgeospace4satellite; 

   INSERT INTO TABLE processdb.locationgeospace4satellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY locationid), 
   locationid, 
   postcode, 
   latitude, 
   longitude, 
   easting, 
   northing, 
   gridref, 
   district, 
   ward, 
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   districtcode, 
   wardcode, 
   country, 
   countycode, 
   constituency, 
   typearea, 
   unix_timestamp() 
 FROM 
   processdb.locationgeospacesatellite0001;   

   DROP TABLE processdb.locationgeospacesatellite0001; 
 DROP TABLE processdb.locationhub001; 

    We are nearly finished … some more structures are required. 

  See example script  Process004.txt  for the Hive code. It holds all the event-related data structures.  

    USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.eventhub ( 
   id          int, 
   eventtype  string, 
   eventname  string, 
   eventid    int 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE processdb.eventhub; 

   CREATE TABLE IF NOT EXISTS processdb.eventhub001 (   
   eventtype  string, 
   eventname  string, 
   eventid    int 
 ) 
 CLUSTERED BY (eventtype, eventname,eventid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.eventhub001; 

   INSERT INTO TABLE processdb.eventhub001 
 SELECT DISTINCT 
   'intangible', 
   'banktransaction', 
   id as eventid 
 FROM 
   assessdb.account; 
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   TRUNCATE TABLE processdb.eventhub; 

   INSERT INTO TABLE processdb.eventhub 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY eventtype,eventname,eventid), 
   eventtype, 
   eventname, 
   eventid 
 FROM 
   processdb.eventhub001; 

   CREATE TABLE IF NOT EXISTS processdb.eventbanktransactionsatellite0001 ( 
   accountid           int, 
   transactionid       int, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (accountid,transactionid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.eventbanktransactionsatellite001; 

   INSERT INTO TABLE processdb.eventbanktransactionsatellite0001 
 SELECT 
   accountid, 
   id as transactionid, 
   balance 
 FROM 
   assessdb.account; 
 CREATE TABLE IF NOT EXISTS processdb.eventbanktransactionsatellite ( 
   id                  int, 
   accountid           int, 
   transactionid       int, 
   balance             DECIMAL(18, 9), 
   timestmp            bigint 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.eventbanktransactionsatellite; 

   INSERT INTO TABLE processdb.eventbanktransactionsatellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY accountid,transactionid), 
   accountid, 
   transactionid, 
   balance, 
   unix_timestamp() 
 FROM 
   processdb.eventbanktransactionsatellite0001; 



CHAPTER 8 ■ HIVE ANALYTICS

188

   DROP TABLE processdb.eventbanktransactionsatellite0001; 
 DROP TABLE processdb.eventhub001; 
 SHOW TABLES; 

     See example script  Process005.txt  for the Hive code. It holds all the time-related data structures.  

    USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.timehub ( 
   id            INT, 
   timeid    INT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.timehub; 
 CREATE TABLE IF NOT EXISTS processdb.timehub001 ( 
   timeid    INT 
 ) 
 CLUSTERED BY (timeid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.timehub001; 

   INSERT INTO TABLE processdb.timehub001 
 SELECT DISTINCT 
   id as timeid 
 FROM 
   assessdb.dates 
 WHERE yearnumber = 2015; 

   INSERT INTO TABLE processdb.timehub001 
 SELECT DISTINCT 
   id as timeid 
 FROM 
   assessdb.dates 
 WHERE yearnumber = 2016; 

   TRUNCATE TABLE processdb.timehub; 

   INSERT INTO TABLE processdb.timehub 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY timeid), 
   timeid 
 FROM 
   processdb.timehub001; 
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   CREATE TABLE IF NOT EXISTS processdb.timesatellite0001 ( 
   timeid        INT, 
   datetimes     string 
 ) 
 CLUSTERED BY (timeid) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.timesatellite0001; 

   INSERT INTO TABLE processdb.timesatellite0001 
 SELECT 
   id as timeid, 
   datetimes 
 FROM 
   assessdb.dates 
 WHERE yearnumber = 2015; 

   INSERT INTO TABLE processdb.timesatellite0001 
 SELECT 
   id as timeid, 
   datetimes 
 FROM 
   assessdb.dates 
 WHERE yearnumber = 2016; 

   CREATE TABLE IF NOT EXISTS processdb.time1satellite ( 
   id            INT, 
   timeid        INT, 
   datetimes     STRING, 
   timestmp      BIGINT 
 ) 
 CLUSTERED BY (id) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.time1satellite; 

   INSERT INTO TABLE processdb.time1satellite 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY timeid), 
   timeid, 
   datetimes, 
   unix_timestamp() 
 FROM 
   processdb.timesatellite0001 
 ORDER BY timeid; 

   DROP TABLE processdb.timesatellite0001; 
 DROP TABLE processdb.timehub001; 
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    You have now created all the hubs and satellites. Now you will add all the link tables. This section is 
extensive, but the reward is close. You will soon have a fully working data vault. 

  See example script  Process006.txt  for the Hive code. It holds all the links between the person, object, 
location, event, and time data structures.  

    USE processdb; 

   CREATE TABLE IF NOT EXISTS processdb.person_person_link( 
   id INT, 
   personid1 INT, 
   personid2 INT 
 ) 
 CLUSTERED BY (id, personid1, personid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.person_person_link; 

   CREATE TABLE IF NOT EXISTS processdb.person_person_link002( 
   personid1 INT, 
   personid2 INT 
 ) 
 CLUSTERED BY (personid1, personid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.person_person_link002; 

   CREATE TABLE IF NOT EXISTS processdb.personlink001( 
   personid INT 
 ) 
 CLUSTERED BY (personid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.personlink001 
 SELECT 
   personhub.id as personid 
 FROM 
   processdb.personhub 
 LIMIT 10; 

   CREATE TABLE IF NOT EXISTS processdb.object_object_link( 
   id INT, 
   objectid1 INT, 
   objectid2 INT 
 ) 
 CLUSTERED BY (id, objectid1, objectid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
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   CREATE TABLE IF NOT EXISTS processdb.object_object_link002( 
   objectid1 INT, 
   objectid2 INT 
 ) 
 CLUSTERED BY (objectid1, objectid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.objectlink001( 
   objectid INT 
 ) 
 CLUSTERED BY (objectid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.objectlink001; 

   INSERT INTO TABLE processdb.objectlink001 
 SELECT 
   objecthub.id as objectid 
 FROM 
   processdb.objecthub 
 LIMIT 10; 

   CREATE TABLE IF NOT EXISTS processdb.location_location_link( 
   id INT, 
   locationid1 INT, 
   locationid2 INT 
 ) 
 CLUSTERED BY (id, locationid1, locationid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   TRUNCATE TABLE processdb.location_location_link; 

   CREATE TABLE IF NOT EXISTS processdb.location_location_link002( 
   locationid1 INT, 
   locationid2 INT 
 ) 
 CLUSTERED BY (locationid1, locationid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.locationlink001( 
   locationid INT 
 ) 
 CLUSTERED BY (locationid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.locationlink001 
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 SELECT 
   locationhub.id as locationid 
 FROM 
   processdb.locationhub 
 LIMIT 10; 

   CREATE TABLE IF NOT EXISTS processdb.event_event_link( 
   id INT, 
   eventid1 INT, 
   eventid2 INT 
 ) 
 CLUSTERED BY (id, eventid1, eventid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.event_event_link002( 
   eventid1 INT, 
   eventid2 INT 
 ) 
 CLUSTERED BY (eventid1, eventid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.eventlink001( 
   eventid INT 
 ) 
 CLUSTERED BY (eventid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
 INSERT INTO TABLE processdb.eventlink001 
 SELECT 
   eventhub.id as eventid 
 FROM 
   processdb.eventhub 
 LIMIT 10; 

   CREATE TABLE IF NOT EXISTS processdb.time_time_link( 
   id INT, 
   timeid1 INT, 
   timeid2 INT 
 ) 
 CLUSTERED BY (id, timeid1, timeid2) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.time_time_link002( 
   timeid1 INT, 
   timeid2 INT 
 ) 
 CLUSTERED BY (timeid1, timeid2) INTO 1 BUCKETS 
 STORED As orc 
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 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS processdb.timelink001( 
   timeid INT 
 ) 
 CLUSTERED BY (timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.timelink001 
 SELECT 
   timehub.id as timeid 
 FROM 
   processdb.timehub 
 LIMIT 10; 

   CREATE TABLE IF NOT EXISTS processdb.person_object_link002( 
   personid INT, 
   objectid INT 
 ) 
 CLUSTERED BY (personid, objectid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_object_link002 
 SELECT DISTINCT 
   personlink001.id as personid, 
   objectlink001.id as objectid 
 FROM 
   processdb.personlink001 
 GROSS JOIN 
   processdb.objectlink001 
 LIMIT 20; 

   INSERT INTO TABLE processdb.person_object_link002 
 SELECT personhub.id, objecthub.objectid 
 FROM assessdb.account 
 JOIN 
 processdb.personhub 
 ON account.pid = personhub.id 
 JOIN 
 processdb.objecthub 
 ON account.accountid = objecthub.objectid 
 LIMIT 100; 

   CREATE TABLE IF NOT EXISTS processdb.person_object_link( 
   id INT, 
   personid INT, 
   objectid INT 
 ) 
 CLUSTERED BY (id, personid, objectid) INTO 1 BUCKETS 
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 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_object_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY personid, objectid), 
   personid, 
   objectid 
 FROM 
   processdb.person_object_link002; 

   CREATE TABLE IF NOT EXISTS processdb.person_location_link002( 
   personid INT, 
   locationid INT 
 ) 
 CLUSTERED BY (personid, locationid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_location_link002 
 SELECT DISTINCT 
   personlink001.id as personid, 
   locationlink001.id as locationid 
 FROM 
   processdb.personlink001 
 GROSS JOIN 
   processdb.locationlink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.person_location_link( 
   id INT, 
   personid INT, 
   locationid INT 
 ) 
 CLUSTERED BY (id, personid, locationid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_location_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY personid, locationid), 
   personid, 
   locationid 
 FROM 
   processdb.person_location_link002; 

   CREATE TABLE IF NOT EXISTS processdb.person_event_link002( 
   personid INT, 
   eventid INT 
 ) 
 CLUSTERED BY (personid, eventid) INTO 1 BUCKETS 
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 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_event_link002 
 SELECT DISTINCT 
   personlink001.id as personid, 
   eventlink001.id as eventid 
 FROM 
   processdb.personlink001 
 GROSS JOIN 
   processdb.eventlink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.person_event_link( 
   id INT, 
   personid INT, 
   eventid INT 
 ) 
 CLUSTERED BY (id, personid, eventid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_event_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY personid, eventid), 
   personid, 
   eventid 
 FROM 
   processdb.person_event_link002; 

   CREATE TABLE IF NOT EXISTS processdb.person_time_link002( 
   personid INT, 
   timeid INT 
 ) 
 CLUSTERED BY (personid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_time_link002 
 SELECT DISTINCT 
   personlink001.id as personid, 
   timelink001.id as timeid 
 FROM 
   processdb.personlink001 
 GROSS JOIN 
   processdb.timelink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.person_time_link( 
   id INT, 
   personid INT, 
   timeid INT 
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 ) 
 CLUSTERED BY (id, personid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.person_time_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY personid, timeid), 
   personid, 
   timeid 
 FROM 
   processdb.person_time_link002; 

   CREATE TABLE IF NOT EXISTS processdb.object_location_link002( 
   objectid INT, 
   locationid INT 
 ) 
 CLUSTERED BY (objectid, locationid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.object_location_link002 
 SELECT DISTINCT 
   objectlink001.id as objectid, 
   locationlink001.id as locationid 
 FROM 
   processdb.objectlink001 
 GROSS JOIN 
   processdb.locationlink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.object_location_link( 
   id INT, 
   objectid INT, 
   locationid INT 
 ) 
 CLUSTERED BY (id, objectid, locationid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.object_location_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY objectid, locationid), 
   objectid, 
   locationid 
 FROM 
   processdb.object_location_link002; 

   CREATE TABLE IF NOT EXISTS processdb.object_event_link002( 
   objectid INT, 
   eventid INT 
 ) 
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 CLUSTERED BY (objectid, eventid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.object_event_link002 
 SELECT DISTINCT 
   objectlink001.id as objectid, 
   eventlink001.id as eventid 
 FROM 
   processdb.objectlink001 
 GROSS JOIN 
   processdb.eventlink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.object_event_link( 
   id INT, 
   objectid INT, 
   eventid INT 
 ) 
 CLUSTERED BY (id, objectid, eventid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.object_event_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY objectid, eventid), 
   objectid, 
   eventid 
 FROM 
   processdb.object_event_link002; 

   CREATE TABLE IF NOT EXISTS processdb.object_time_link002( 
   objectid INT, 
   timeid INT 
 ) 
 CLUSTERED BY (objectid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.object_time_link002 
 SELECT DISTINCT 
   objectlink001.id as objectid, 
   timelink001.id as timeid 
 FROM 
   processdb.objectlink001 
 GROSS JOIN 
   processdb.timelink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.object_time_link( 
   id INT, 
   objectid INT, 
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   timeid INT 
 ) 
 CLUSTERED BY (id, objectid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.object_time_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY objectid, timeid), 
   objectid, 
   timeid 
 FROM 
   processdb.object_time_link002; 

   CREATE TABLE IF NOT EXISTS processdb.location_event_link002( 
   locationid INT, 
   eventid INT 
 ) 
 CLUSTERED BY (locationid, eventid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.location_event_link002 
 SELECT DISTINCT 
   locationlink001.id as locationid, 
   eventlink001.id as eventid 
 FROM 
   processdb.locationlink001 
 GROSS JOIN 
   processdb.eventlink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.location_event_link( 
   id INT, 
   locationid INT, 
   eventid INT 
 ) 
 CLUSTERED BY (id, locationid, eventid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.location_event_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY locationid, eventid), 
   locationid, 
   eventid 
 FROM 
   processdb.location_event_link002; 

   CREATE TABLE IF NOT EXISTS processdb.location_time_link002( 
   locationid INT, 
   timeid INT 
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 ) 
 CLUSTERED BY (locationid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.location_time_link002 
 SELECT DISTINCT 
   locationlink001.id as locationid, 
   timelink001.id as timeid 
 FROM 
   processdb.locationlink001 
 GROSS JOIN 
   processdb.timelink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.location_time_link( 
   id INT, 
   locationid INT, 
   timeid INT 
 ) 
 CLUSTERED BY (id, locationid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.location_time_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY locationid, timeid), 
   locationid, 
   timeid 
 FROM 
   processdb.location_time_link002; 

   CREATE TABLE IF NOT EXISTS processdb.event_time_link002( 
   eventid INT, 
   timeid INT 
 ) 
 CLUSTERED BY (eventid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.event_time_link002 
 SELECT DISTINCT 
   eventlink001.id as eventid, 
   timelink001.id as timeid 
 FROM 
   processdb.eventlink001 
 GROSS JOIN 
   processdb.timelink001 
 LIMIT 20; 

   CREATE TABLE IF NOT EXISTS processdb.event_time_link( 
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   id INT, 
   eventid INT, 
   timeid INT 
 ) 
 CLUSTERED BY (id, eventid, timeid) INTO 1 BUCKETS 
 STORED As orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE processdb.event_time_link 
 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY eventid, timeid), 
   eventid, 
   timeid 
 FROM 
   processdb.event_time_link002; 

    You now have a data vault. Let's just clean up the  processdb  database and we are done. 

  See example script  Process007.txt  for the Hive code. It cleans up the  process  database.  

    USE processdb; 

   DROP TABLE processdb.person_event_link002; 
 DROP TABLE processdb.person_location_link002; 
 DROP TABLE processdb.person_object_link002; 
 DROP TABLE processdb.person_person_link002; 
 DROP TABLE processdb.person_time_link002; 
 DROP TABLE processdb.personlink001;    

   DROP TABLE processdb.object_event_link002; 
 DROP TABLE processdb.object_location_link002; 
 DROP TABLE processdb.object_object_link002; 
 DROP TABLE processdb.object_time_link002; 
 DROP TABLE processdb.objectlink001;   

   DROP TABLE processdb.location_event_link002; 
 DROP TABLE processdb.location_location_link002; 
 DROP TABLE processdb.location_time_link002; 
 DROP TABLE processdb.locationlink001; 

   DROP TABLE processdb.event_event_link002; 
 DROP TABLE processdb.event_time_link002; 
 DROP TABLE processdb.eventlink001; 

   DROP TABLE processdb.time_time_link002; 
 DROP TABLE processdb.timelink001; 

    You have now completed the range of scripts against your Hive solution to create all the data structures 
for  processdb . 
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 Let's quickly verify which tables you have created. Execute this command: 

   SHOW TABLES; 

   Success! You have completed the process layer.  

     Transform Database 
 The transform database holds a ROLAP (Relational Online Analytical Processing) model consisting of the 
physical deployment of the dimensions and facts as described by the sun models. 

 You create a database called  transformdb  to hold the transform data structures as recommended 
by your sun models. 

   CREATE DATABASE IF NOT EXISTS transformdb; 
 USE transformdb; 

   The first dimension you create is  dimperson , which consists of:

•    A dimension key called  personkey .  

•   Two dimensional attributes called  firstname  and  lastname .    

   CREATE TABLE IF NOT EXISTS transformdb.dimperson ( 
   personkey  BIGINT, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname,personkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   Let's load the sample data into the dimension for  person . 

   INSERT INTO TABLE transformdb.dimperson 
 VALUES 
 (999997,'Ruff','Hond'), 
 (999998,'Robbie','Rot'), 
 (999999,'Helen','Kat'); 

 ■     Note    We are simply inserting data because it speeds up the processing through this layer.  

 The second dimension you create is  dimaccount , which consists of:

•    A dimension key called  accountkey .  

•   A dimensional attribute called  accountnumber .    

   CREATE TABLE IF NOT EXISTS transformdb.dimaccount ( 
   accountkey      BIGINT, 
   accountnumber   INT 
 ) 
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 CLUSTERED BY (accountnumber,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   Let’s load some sample data into the dimension for the  dimaccount . 

   INSERT INTO TABLE transformdb.dimaccount 
 VALUES 
 (88888887,208887), 
 (88888888,208888), 
 (88888889,208889); 

   The first fact you create is  fctpersonaccount , which consists of the following:

•    A fact key called  personaccountkey .  

•   A fact key called  personkey  from dimension  dimperson .  

•   A fact key called  accountkey  from dimension  dimaccount .  

•   A measure called  balance .    

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount ( 
   personaccountkey     BIGINT, 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   Let's load some sample data into the fact  fctpersonaccount . 
 The next interim fact table you create is  fctpersonaccount001 : 

    CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount001 ( 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.fctpersonaccount001 
 VALUES 
 (999997,88888887,10.60), 
 (999997,88888887,400.70), 
 (999997,88888887,-210.90), 
 (999998,88888888,1000.00), 
 (999998,88888888,1990.60), 
 (999998,88888888,900.70), 
 (999999,88888889,160.60), 
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 (999999,88888889,180.70), 
 (999999,88888889,100.60), 
 (999999,88888889,120.90), 
 (999999,88888889,180.69), 
 (999999,88888889,130.30); 

    The next interim fact table you create is  fctpersonaccount002 : 

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount002 ( 
   personkey      BIGINT, 
   accountkey     BIGINT, 
   balance        DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   Let's load some active data into the fact  fctpersonaccount002 . 

   INSERT INTO TABLE transformdb.fctpersonaccount002 
 SELECT 
 CAST(personkey AS BIGINT), 
 CAST(accountkey AS BIGINT), 
 CAST(SUM(balance) AS DECIMAL(18, 9)) 
 FROM transformdb.fctpersonaccount001 
 GROUP BY personkey, accountkey; 

   Let's load some active data into the fact  fctpersonaccount  by using the dimensions  dimperson  and 
 dimaccount  via fact  fctpersonaccount0002 . 

   INSERT INTO TABLE transformdb.fctpersonaccount 
 SELECT 
 ROW_NUMBER() OVER (ORDER BY personkey, accountkey), 
 CAST(personkey AS BIGINT), 
 CAST(accountkey AS BIGINT), 
 CAST(balance AS DECIMAL(18, 9)) 
 FROM transformdb.fctpersonaccount002; 

   Clean up the  transformdb : 

   DROP TABLE transformdb.fctpersonaccount001; 
 DROP TABLE transformdb.fctpersonaccount002; 

   You now have the basic building blocks for the transform ROLAP structures. Let's deploy your well 
mastered Hive skills against the transform requirements and build the complete transform database. 

 ■   Note    See example script  Transform01.txt  for the Hive code. It creates and populates the dimension 
 dimperson .  
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    DROP DATABASE transformdb CASCADE; 

   CREATE DATABASE IF NOT EXISTS transformdb; 
 USE transformdb; 

   CREATE TABLE IF NOT EXISTS transformdb.dimperson ( 
   personkey  BIGINT, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname,personkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS transformdb.dimperson001 ( 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.dimperson001 
 SELECT DISTINCT 
   firstname, 
   lastname 
 FROM 
   processdb.personhub; 

   CREATE TABLE IF NOT EXISTS transformdb.dimperson002 ( 
   personkey  BIGINT, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname,personkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.dimperson002 
 SELECT 
   ROW_NUMBER() OVER (ORDER BY firstname, lastname), 
   firstname, 
   lastname 
 FROM 
   transformdb.dimperson001; 

   INSERT INTO TABLE transformdb.dimperson 
 SELECT 
   personkey, 
   firstname, 
   lastname 
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 FROM 
   transformdb.dimperson002 
 ORDER BY firstname, lastname, personkey; 

   INSERT INTO TABLE transformdb.dimperson 
 VALUES 
 (999997,'Ruff','Hond'), 
 (999998,'Robbie','Rot'), 
 (999999,'Helen','Kat'); 

   DROP TABLE transformdb.dimperson001; 
 DROP TABLE transformdb.dimperson002; 

 ■      Note    See example script  Transform02.txt  for the Hive code. It creates and populates the dimension 
 dimaccount .  

    USE transformdb; 

   CREATE TABLE IF NOT EXISTS transformdb.dimaccount ( 
   accountkey      BIGINT, 
   accountnumber   INT 
 ) 
 CLUSTERED BY (accountnumber,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS transformdb.dimaccount001 ( 
   accountnumber   INT 
 ) 
 CLUSTERED BY (accountnumber) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.dimaccount001 
 SELECT DISTINCT 
   objectid 
 FROM 
   processdb.objecthub 
 WHERE objecttype = 'intangible' 
 AND objectname = 'bankaccount'; 

   CREATE TABLE IF NOT EXISTS transformdb.dimaccount002 ( 
   accountkey      BIGINT, 
   accountnumber   INT 
 ) 
 CLUSTERED BY (accountnumber,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.dimaccount002 
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 SELECT DISTINCT 
   ROW_NUMBER() OVER (ORDER BY accountnumber DESC), 
   accountnumber   
 FROM 
   transformdb.dimaccount001; 

   INSERT INTO TABLE transformdb.dimaccount 
 SELECT DISTINCT 
   accountkey, 
   accountnumber   
 FROM 
   transformdb.dimaccount002 
 ORDER BY accountnumber; 

   INSERT INTO TABLE transformdb.dimaccount 
 VALUES 
 (88888887,208887), 
 (88888888,208888), 
 (88888889,208889); 

   DROP TABLE transformdb.dimaccount001; 
 DROP TABLE transformdb.dimaccount002; 

 ■      Note    See example script  Transform03.txt  for the Hive code. It creates and populates the fact 
 fctpersonaccount .  

    USE transformdb; 

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount ( 
   personaccountkey     BIGINT, 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount001 ( 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.fctpersonaccount001 
 VALUES 
 (999997,88888887,10.60), 
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 (999997,88888887,400.70), 
 (999997,88888887,-210.90), 
 (999998,88888888,1000.00), 
 (999998,88888888,1990.60), 
 (999998,88888888,900.70), 
 (999999,88888889,160.60), 
 (999999,88888889,180.70), 
 (999999,88888889,100.60), 
 (999999,88888889,120.90), 
 (999999,88888889,180.69), 
 (999999,88888889,130.30); 

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaccount002 ( 
   personkey      BIGINT, 
   accountkey     BIGINT, 
   balance        DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.fctpersonaccount002 
 SELECT 
 CAST(personkey AS BIGINT), 
 CAST(accountkey AS BIGINT), 
 CAST(SUM(balance) AS DECIMAL(18, 9)) 
 FROM transformdb.fctpersonaccount001 
 GROUP BY personkey, accountkey; 

   INSERT INTO TABLE transformdb.fctpersonaccount 
 SELECT 
 ROW_NUMBER() OVER (ORDER BY personkey, accountkey), 
 CAST(personkey AS BIGINT), 
 CAST(accountkey AS BIGINT), 
 CAST(balance AS DECIMAL(18, 9)) 
 FROM transformdb.fctpersonaccount002; 

   DROP TABLE transformdb.fctpersonaccount001; 
 DROP TABLE transformdb.fctpersonaccount002; 

 ■      Note    See example script  Transform04.txt  for the Hive code. It creates and populates  dimaddress , 
 dimdatetime , and  fctpersonaddressdate .  

    USE transformdb; 

   DROP TABLE transformdb.dimaddress; 

   CREATE TABLE IF NOT EXISTS transformdb.dimaddress( 
   addresskey    BIGINT, 
   postcode      STRING 
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 ) 
 CLUSTERED BY (addresskey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.dimaddress 
 VALUES 
 (1,'KA12 8RR'), 
 (2,'FK8 1EJ'), 
 (3,'EH1 2NG'); 

   DROP TABLE transformdb.dimdatetime; 

   CREATE TABLE IF NOT EXISTS transformdb.dimdatetime( 
   datetimekey    BIGINT, 
   datetimestr    STRING 
 ) 
 CLUSTERED BY (datetimekey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.dimdatetime 
 VALUES 
 (1,'2015/08/23 16h00'), 
 (2,'2015/10/03 17h00'), 
 (3,'2015/11/12 06h00'); 

   CREATE TABLE IF NOT EXISTS transformdb.fctpersonaddressdate( 
   personaddressdatekey      BIGINT, 
   personkey                 BIGINT, 
   addresskey                BIGINT, 
   datetimekey               BIGINT 
 ) 
 CLUSTERED BY (datetimekey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE transformdb.fctpersonaddressdate 
 VALUES 
 (1,999997,1,1), 
 (2,999998,2,2), 
 (3,999999,3,3); 

    If all the scripts completed, check to see that you have all your dimensions and facts, and then execute: 

   SHOW TABLES; 

   You have just completed the transform layer.  
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     What Have You Mastered 
 You have successfully created a data warehouse, which includes:

•    Creating dimensions.  

•   Creating facts  

•   Creating aggregations.    

 You are making excellent progress. You have mastered the process of building a data warehouse. The 
hard work is done. 

 ■   Note    Building the data warehouse from the data sources normally takes 70 to 80% of the programming 
effort in the project.  

 The next phase is to create data marts from your fully functional data warehouse.  

     Organize Database 
 The organize database holds a series of smaller ROLAP (Relational Online Analytical Processing) models 
consisting of subdivisions of the dimensional and fact model, as described by the sun models, but filtered to 
create data marts. 

 You create a database called  organisedb  to hold the data mart structures. 

   CREATE DATABASE IF NOT EXISTS organisedb; 

   Remember the command you can use in Hive to create the table from another table as a reference. 
 This works perfectly for data marts, as they contain the same data structure and only have the filtered 

data from the original table. 

    CREATE TABLE IF NOT EXISTS organisedb.dimperson LIKE transformdb.dimperson; 

   CREATE TABLE IF NOT EXISTS organisedb.dimaccount LIKE transformdb.dimaccount; 

   CREATE TABLE IF NOT EXISTS organisedb.fctpersonaccount LIKE transformdb.fctpersonaccount; 

   CREATE TABLE IF NOT EXISTS organisedb.dimaddress( 
   addresskey    BIGINT, 
   postcode      STRING 
 ) 
 CLUSTERED BY (addresskey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS organisedb.fctpersonaddressdate( 
   personaddressdatekey      BIGINT, 
   personkey                 BIGINT, 
   addresskey                BIGINT, 
   datetimekey               BIGINT 
 ) 



CHAPTER 8 ■ HIVE ANALYTICS

210

 CLUSTERED BY (datetimekey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

 ■      Note    See example script  Organise01.txt  for the Hive code. It creates and populates the complete 
 organise  database.  

    DROP DATABASE organisedb CASCADE; 

   CREATE DATABASE IF NOT EXISTS organisedb; 

   USE organisedb; 

   CREATE TABLE IF NOT EXISTS organisedb.dimperson ( 
   personkey  BIGINT, 
   firstname  STRING, 
   lastname   STRING 
 ) 
 CLUSTERED BY (firstname, lastname,personkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS organisedb.dimperson LIKE transformdb.dimperson; 

   INSERT INTO TABLE organisedb.dimperson 
 SELECT 
   personkey, 
   firstname, 
   lastname 
 FROM 
   transformdb.dimperson 
 ORDER BY firstname, lastname, personkey; 

   CREATE TABLE IF NOT EXISTS organisedb.dimaccount ( 
   accountkey      BIGINT, 
   accountnumber   INT 
 ) 
 CLUSTERED BY (accountnumber,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS organisedb.dimaccount LIKE transformdb.dimaccount; 

   INSERT INTO TABLE organisedb.dimaccount 
 SELECT DISTINCT 
   accountkey, 
   accountnumber   
 FROM 
   transformdb.dimaccount 
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 ORDER BY accountnumber; 

   CREATE TABLE IF NOT EXISTS organisedb.fctpersonaccount ( 
   personaccountkey     BIGINT, 
   personkey            BIGINT, 
   accountkey           BIGINT, 
   balance             DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (personkey,accountkey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   CREATE TABLE IF NOT EXISTS organisedb.fctpersonaccount LIKE transformdb.fctpersonaccount; 

    Now we create the data marts. We want to select only the record for a specific account holder. Here is 
the Hive code: 

   INSERT INTO TABLE organisedb.fctpersonaccount 
 SELECT DISTINCT 
   personaccountkey, 
   personkey, 
   accountkey, 
   balance 
 FROM 
   transformdb.fctpersonaccount 
 WHERE 
   personaccountkey = 1 
 ORDER BY personaccountkey,personkey,accountkey; 

 ■     Note    The  where  statement enforces the subset of the data warehouse into a data mart.  

 If you execute the following Hive code: 

   SELECT * FROM organisedb.fctpersonaccount; 

   You should only return one record. 
 You have just mastered the process of organizing data marts. 
 Let's create one more data mart for addresses. This time we want to slice by columns into a new data mart. 

    CREATE TABLE IF NOT EXISTS organisedb.dimaddress( 
   addresskey    BIGINT, 
   postcode      STRING 
 ) 
 CLUSTERED BY (addresskey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE organisedb.dimaddress 
 SELECT DISTINCT 
   addresskey, 
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   postcode   
 FROM 
   transformdb.dimaddress 
 ORDER BY addresskey; 

    Execute the following Hive code: 

   SELECT * FROM organisedb.dimaddress; 

   You have just successfully created a data mart by subselecting specific columns that are important to 
this data mart. 

 So lets try an amalgamation of the two requirements. 

   CREATE TABLE IF NOT EXISTS organisedb.fctpersonaddressdate( 
   personaddressdatekey      BIGINT, 
   personkey                 BIGINT, 
   addresskey                BIGINT, 
   datetimekey               BIGINT 
 ) 
 CLUSTERED BY (datetimekey) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 
 INSERT INTO TABLE organisedb.fctpersonaddressdate 
 SELECT 
   personaddressdatekey, 
   personkey, 
   addresskey, 
   datetimekey 
 FROM 
   transformdb.fctpersonaddressdate 
 WHERE personaddressdatekey = 1 
 ORDER BY 
   personaddressdatekey, 
   personkey, 
   addresskey, 
   datetimekey; 

   If the script completed, check that you have all your dimensions and facts for your data marts and execute: 

   SHOW TABLES; 

   Congratulations! You have successfully created a data mart ready to be interrogated for reporting. 

   Tips 
 Subdivide any data warehouse you are moving to a branch server with the data for that branch only. This 
saves you on network transport and also enhances the speed of the queries in the branch. 

 Do not do the data mart splitting on the branch servers. Instead, use the more powerful central server 
and then only transfer the end result of the  organise  layer with the report layer to the branch. If you can 
create a separate branch server for the central site, that enables you to process new data without impacting 
the central branch.   
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     Report Database 
 The report database groups the business sun model’s results. Create a series of queries to the database 
to ensure you report consistently across the business. Also create data sets for business entities like the 
morning report that should stay fixed for the day. There are normally various reports that are created on 
different intervals, such as hourly, daily, weekly, monthly, quarterly, and yearly. 

 ■   Tip    If you need to create international reports, i.e., produce daily reports at 8h00 local time, use a fixed 
time for the central processing and add the  timezone  shift in the  organise  layer for the specific branch. That 
way, your report layer is always set to local time.  

 Let's start: 

 ■   Note    See example script  Report01.txt  for the Hive code. It creates and populates the  report  database.  

    DROP DATABASE reportdb CASCADE; 

   CREATE DATABASE IF NOT EXISTS reportdb; 
 USE reportdb; 

   CREATE TABLE IF NOT EXISTS reportdb.report001( 
   firstname       STRING, 
   lastname        STRING, 
   accountnumber   INT, 
   balance         DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (firstname, lastname) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE reportdb.report001 
 SELECT 
   dimperson.firstname, dimperson.lastname, 
   dimaccount.accountnumber, fctpersonaccount.balance 
 FROM 
   organisedb.fctpersonaccount 
 JOIN 
   organisedb.dimperson 
 ON 
   fctpersonaccount.personkey = dimperson.personkey 
 JOIN 
   organisedb.dimaccount   
 ON   
   fctpersonaccount.accountkey = dimaccount.accountkey; 

   CREATE TABLE IF NOT EXISTS reportdb.report002( 
   accountnumber   INT, 
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   last_balance    DECIMAL(18, 9) 
 ) 
 CLUSTERED BY (firstname, lastname) INTO 1 BUCKETS 
 STORED AS orc 
 TBLPROPERTIES('transactional' = 'true','orc.compress'='ZLIB','orc.create.index'='true'); 

   INSERT INTO TABLE reportdb.report002 
 SELECT 
   dimaccount.accountnumber, sum(fctpersonaccount.balance) as last_balance 
 FROM 
   organisedb.fctpersonaccount 
 JOIN 
   organisedb.dimaccount 
 ON 
   fctpersonaccount.accountkey = dimaccount.accountkey; 

    Congratulations! You have completed the Hive data warehouse.  

     Example Reports 
 The data result for  Report001  can be reported via a visualization design to convert the data into a 
business story. 

 Report all account balances bigger than $998.00. 

   SELECT * FROM reportdb.report001 WHERE balance > 998; 

   This returns 10 results from  reportdb.report001 . 

 Firstname  Lastname  Accountno  Balance 

 ELISEO  BOULWARE  68105  ($1,000.00) 

 SHONNA  HIGBY  18004  ($1,000.00) 

 LOUISE  MERINO  59136  ($1,000.00) 

 KERSTIN  SAUCEDA  82385  ($999.00) 

 NANA  BEHLING  30073  ($999.00) 

 SHARDA  DIALS  18946  ($1,000.00) 

 VALARIE  BLANKENSHIP  58597  ($1,000.00) 

 JAZMINE  HUNSAKER  69942  ($999.00) 

 KENNETH  KURTZ  30669  ($999.00) 

 DELL  HAWKS  48440  ($999.00) 

   The data can be formatted using various graphical packages. For example, you could format it as a pie 
graph (see Figure  8-21 ).  
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 Or as a bar graph (see Figure  8-22 ).    

  Figure 8-21.    Pie graph       
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     Advanced Analytics 
 There are several advanced analytics programs around that enhance the Hive ecosystem. This section covers 
the integration with R as it supplies an easy open source Hive access route in the analytics environment. 

 Notable packages are:

•    Package  hive —R integration of the core of Hadoop and Hive is possible using the 
correct package (   https://cran.r-project.org/web/packages/hive/hive.pdf     ).  

•   Package  NexR RHive 2.0 —RHive is an R extension facilitating distributed computing 
via a Hive query. RHive allows easy usage of HQL (Hive SQL) in R, and allows easy 
usage of R objects and R functions in Hive (   https://github.com/nexr/RHive     ). The 
user guide is available at    https://github.com/nexr/RHive/wiki/User-Guide     .     
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  Figure 8-22.    Bar graph       

 

https://cran.r-project.org/web/packages/hive/hive.pdf
https://github.com/nexr/RHive
https://github.com/nexr/RHive/wiki/User-Guide
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     What’s Next? 
 There are many more tools available for Hive, so we suggest you pick your favorite virtualization tool and you 
will find a Hive connector for that platform. You have completed Chapter   8     and should now:

•    Understand the basic data warehouse components:

•    Dimensions with types.  

•   Facts and measures—calculated and factless.     

•   Know how to create sun models for business requirements.  

•   Convert sun models into star schemas.  

•   Convert star schemas into Hive code using the Retrieve-Assess-Process-Transform-
Organize-Report design principle.  

•   Understand the construction of the following analytic data structures in Hive.

•    Retrieve—Data imports from external sources.  

•   Assess—Enhance data quality.  

•   Process—Create a data vault.  

•   Transform—Create data warehouse.  

•   Organize—Create data marts.  

•   Report—Create reports.       

 Now that you can build a data warehouse and the analytics, proceed to Chapter   9     to master the skills 
required to secure your data in Hive.     

http://dx.doi.org/10.1007/978-1-4842-0271-5_8
http://dx.doi.org/10.1007/978-1-4842-0271-5_9
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    CHAPTER 9   

 Performance Tuning: Hive                          

 One of the biggest challenges Hive users face is the slow response time experienced by end users who are 
running ad hoc queries. When compared to the performance achieved by traditional relation database 
queries, Hive’s response times are often unacceptably slow and often leave you wondering how you can 
achieve the type of performance your end users are accustomed to. 

 This chapter presents a systematic approach to diagnosing and improving the performance of Hive 
queries, which can be easily applied to the majority of your existing Hive tables. Each technique is applied in 
a cumulative manner thereby compounding the effect. Throughout the process, we will reduce the execution 
time of a single Hive query from 475 seconds to just under 49 seconds. 

     Hive Performance Checklist 
 In the first part of this chapter, we examine the effect of various optimization techniques against the same 
query, to better illustrate the impact of each. The cluster used for this testing consists of a single master node 
with eight cores and 32 GB of RAM, and six worker nodes each with four cores and 32 GB of RAM with Hive 
version 1.2.1.2.3 installed. The baseline query shown here finds the top five airports that have had the most 
flights delayed by more than 15 minutes, where the wind speed at the origin airport was above 1 meter/
second. 

   SELECT  origin, COUNT(*) as cnt 
   FROM flights f JOIN airports a ON (f.origin = a.code) 
                  JOIN weather w ON (a.station = w.station AND w.year = f. 
               year AND w.month = f.month and w.day=f.day) 
   WHERE f.depdelay>15 and w.metric = 'AWND' and w.value>10 
   GROUP by origin SORT BY cnt DESC LIMIT 5; 

   The data used for the query comes from the three following publicly available data sources that you can 
download yourself and use to follow along throughout this chapter. 

 The “flight” data comes from    http://stat-computing.org/dataexpo/2009/the-data.html      and 
contains flight delay data from 1987-2008 for all U.S. airports. It consists of a total of 123,534,969 rows, each 
with 29 columns. 

 The “airport” data contains basic information about all the airports in the United States and can be used 
to connect the airport code to the weather data. It consists of 3404 rows, each with six data columns, and can 
be downloaded from    http://stat-computing.org/dataexpo/2009/airports.csv     . 

 The “weather” data comes from the NOAA web site of historical data, which can be downloaded from 
   ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/$year.csv.gz      on a year-by-year basis. For this 
exercise, we downloaded all of the data for the years 1987 thru 2008 inclusive, which resulted in a total of 
636,511,075 rows with 11 data columns each.  

http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/airports.csv
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/$;year.csv.gz
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     Execution Engines 
 Hive currently supports three execution engines, each with its own relative strengths and weaknesses. It 
is worth noting that while there is a default execution engine for Hive, which is controlled by the  hive.
execution.engine  property in the  hive-site.xml  file, it is also possible to override this setting on a 
per-query basis by changing the value of the property at runtime. We will compare the performance of the 
MapReduce and Tez execution engines next by running the same query using both engines and measuring 
the performance of each. 

     MapReduce 
 The MapReduce execution engine runs the Hive query as a traditional MapReduce job. It is the original 
execution engine, and it is also the safest fallback option if your query fails to execute with one of the 
other execution engines. You can select this execution engine by setting the value of the  hive.execution.
engine  property to  mr , i.e.,  hive.execution.engine=mr . For purposes of this exercise, we will execute the 
query using the MapReduce execution engine and use this performance as a baseline for our performance 
improvements. The output from this query shown shows that the query took 475.732 seconds to execute and 
wrote over 711 MB of intermediate data to the disk in process. 

   MapReduce Jobs Launched: 
 Stage-Stage-11: Map: 6   Cumulative CPU: 233.33 sec   HDFS Read: 164317688 HDFS Write: 
711087924 SUCCESS 
 Stage-Stage-2: Map: 13  Reduce: 50   Cumulative CPU: 1438.11 sec   HDFS Read: 3278981109 
HDFS Write: 268969 SUCCESS 
 Stage-Stage-3: Map: 4  Reduce: 1   Cumulative CPU: 15.57 sec   HDFS Read: 292269 HDFS Write: 
5887 SUCCESS 
 Stage-Stage-4: Map: 1  Reduce: 1   Cumulative CPU: 3.89 sec   HDFS Read: 10052 HDFS Write: 
221 SUCCESS 
 Stage-Stage-5: Map: 1  Reduce: 1   Cumulative CPU: 4.05 sec   HDFS Read: 4787 HDFS Write: 57 
SUCCESS 
 Total MapReduce CPU Time Spent: 28 minutes 14 seconds 950 msec 
 OK 
 ORD     1297377 
 ATL     1112511 
 DFW     933903 
 LAX     626875 
 PHX     584062 
 Time taken: 475.732 seconds, Fetched: 5 row(s) 

        Tez 
 Apache Tez provides more efficient processing than the MapReduce execution engine, by reducing 
operations and limiting the amount of intermediate data that is written to disk, as depicted in Figure  9-1 . As 
you can see, the traditional MapReduce execution engine has several steps in which the intermediate data 
from the reducers are written back to HDFS, which incurs the performance penalty for disk I/O. Contrast 
this with the data flow of the Tez execution engine shown on the right side, where the reducer’s intermediate 
data is passed directly to the next reducer in the execution plan and bypasses the expense of writing the data 
to disk.  
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 Let’s measure the performance of this execution engine by setting the value of the  hive.execution.
engine  property to  tez , i.e.,  hive.execution.engine=tez , and changing the following two properties 
mentioned in Table  9-1 — hive.prewarm.enabled =true  and  hive.prewarm.numcontainers=10 . Then we 
rerun the query.

     set hive.execution.engine=tez; 
 set hive.prewarm.enabled=true; 
 set hive.prewarm.numcontainers=10; 
 Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1457719973622_0118) 

   ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 ..... SUCCEEDED     22         22        0        0       0       0 
 Map 5 ..... SUCCEEDED      1          1        0        0       0       0 
 Map 6 ..... SUCCEEDED     29         29        0        0       0       0 
 Reducer 2 ..SUCCEEDED     28         28        0        0       0       0 
 Reducer 3 ..SUCCEEDED     14         14        0        0       0       0 
 Reducer 4 ..SUCCEEDED      1          1        0        0       0       0 
 ------------------------------------------------------------------------------- 
 VERTICES: 06/06  [==========================>>] 100%  ELAPSED TIME: 141.23 s    
 ------------------------------------------------------------------------------- 

  Figure 9-1.    Execution engine comparison       
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 OK 
 ORD     1297377 
 ATL     1112511 
 DFW     933903 
 LAX     626875 
 PHX     584062 
 Time taken: 166.448 seconds, Fetched: 5 row(s) 

    As you can see, just changing the execution engine resulted in a decrease of the execution time by 
309 seconds, or almost 65%. In order to maximize the benefits of the Tez execution engine, you will also want 
to adjust the configuration settings listed in Table  9-1 .   

     Storage Formats 
 There are some file formats that are optimized for Hive use, including Parquet and ORC files. Both of these 
formats are designed to reduce the amount of data read from disk during a query and thereby improve the 
overall performance of the query. 

     The Optimized Row Columnar (ORC) Format 
 The ORC format is a column-based storage format, meaning that rather than storing all of the data for an 
individual row of data consecutively on disk, the data for each column of storage contiguously instead. As 
you can see in Figure  9-2 , this allows you to avoid unnecessary disk access for queries that do not contain 
certain columns, by “skipping over” large sections of data not needed in the results.  

     Table 9-1.    Tez-Related Configuration Settings   

 Property  Value  Purpose 

 Heap size for HiveServer  16 GB  Increase the memory from the default 
of 1 GB. 

  hive.prewarm.enabled   True  Tells Hive to create Tez containers. 

  hive.prewarm.numcontainers   Varies  Tune the number of containers to be 
held exclusively for Tez. 

  TEZ_CONTAINER_MAX_JAVA_HEAP_
FRACTION  

 0.8  Tez container size is a multiple of 
YARN container size. 

  hive.auto.convert.join.
nonconditionaltask.size  

 Varies  Tune the map join size. 
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 The ORC format is a splitable file format, meaning that an individual file can be split into multiple 
block-sized pieces that can be processed in parallel. Each individual block of data is further broken down 
into 256 MB “stripes” of data that are used to store column data together. Any query that doesn’t require that 
particular column value can “skip” that stride entirely. The ORC format also retains a built-in index, min/
max, and other metadata about the contents of each strip in a separate “index data” section of the strip, 
which allows for fast filtering of stripes based on the query filter parameters. 

 In order to measure the performance impact of ORC, we must first create two copies of the original tables 
that will be stored in the ORC format. The quickest way to accomplish this is to run the following  CREATE TABLE 
AS SELECT  (CTAS) statements. Then we will modify the query to use the newly created tables and execute. 

    CREATE TABLE flights_orc STORED AS ORC tblproperties("orc.compress"="SNAPPY") 
      AS SELECT * FROM flights; 
 CREATE TABLE weather_orc STORED AS ORC tblproperties("orc.compress"="SNAPPY") 
      AS SELECT * FROM weather; 
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  Figure 9-2.    ORC storage format       
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   SELECT  origin, COUNT(*) as cnt 
 FROM flights_orc f JOIN airports a ON (f.origin = a.code) JOIN weather_orc w ON (a.station = 
w.station AND w.year = f.year AND w.month = f.month and w.day=f.day) 
 WHERE f.depdelay>15 and w.metric = 'AWND' and w.value>10 
 GROUP by origin SORT BY cnt DESC LIMIT 5; 

   Total jobs = 1 
 Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1457719973622_0119) 

   ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 ....   SUCCEEDED     22         22        0        0       0       0 
 Map 5 ....   SUCCEEDED      1          1        0        0       0       0 
 Map 6 ....   SUCCEEDED     29         29        0        0       0       0 
 Reducer 2 ...SUCCEEDED     28         28        0        0       0       0 
 Reducer 3 ...SUCCEEDED     14         14        0        0       0       0 
 Reducer 4 ...SUCCEEDED      1          1        0        0       0       0 
 ------------------------------------------------------------------------------- 
 VERTICES: 06/06  [==========================>>] 100%  ELAPSED TIME: 61.60 s     
 ------------------------------------------------------------------------------- 
 OK 
 ORD     1297377 
 ATL     1112511 
 DFW     933903 
 LAX     626875 
 PHX     584062 
 Time taken: 66.664 seconds, Fetched: 5 row(s) 

    As you can see, utilizing the ORC storage format resulted in a decrease of the execution time by 100 
seconds, which is a reduction of over 60%. In order to maximize the benefits of the ORC storage format, you 
may also want to adjust the following configuration settings when you create a table. 

 Property  Value  Notes 

  orc.compress   SNAPPY  High-level compression (one of  NONE ,  ZLIB ,  SNAPPY ) 

  orc.compress.size   262,144  Number of bytes in each compression chunk 

  orc.stripe.size   64 MB  Number of bytes in each stripe 

  orc.row.index.stride   10,000  Number of rows between index entries (must be >= 1000) 

  orc.create.index   True  Whether to create row indexes or not 

        The Parquet Format 
 The Parquet format is another column-based storage format that also stores all of the data for each column 
contiguously on disk, and therefore enjoys performance benefits similar to that of ORC. In order to measure 
the exact performance impact of Parquet, we must first create two copies of the original tables that will be 
stored in the Parquet format. The quickest way to accomplish this is to run the following  CREATE TABLE AS 
SELECT  (CTAS) statements. Then we will modify the query to use the newly created tables and execute. 
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    CREATE TABLE flights_parquet STORED AS Parquet AS SELECT * FROM flights; 
 CREATE TABLE weather_parquet STORED AS Parquet AS SELECT * FROM weather; 

   SELECT  origin, COUNT(*) as cnt 
 FROM flights_parquet f JOIN airports a ON (f.origin = a.code) JOIN weather_parquet w ON 
(a.station = w.station AND w.year = f.year AND w.month = f.month and w.day=f.day) 
 WHERE f.depdelay>15 and w.metric = 'AWND' and w.value>10 
 GROUP by origin SORT BY cnt DESC LIMIT 5; 

   Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1457719973622_0121) 

   ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 ....... SUCCEEDED     67         67        0        0       0       0 
 Map 5 ........SUCCEEDED      1          1        0        0       0       0 
 Map 6 ........SUCCEEDED     60         60        0        0       0       0 
 Reducer 2 ....SUCCEEDED      1          1        0        0       0       0 
 Reducer 3 ....SUCCEEDED      1          1        0        0       0       0 
 Reducer 4 ....SUCCEEDED      1          1        0        0       0       0 
 -------------------------------------------------------------------------------- 
 VERTICES: 06/06  [==========================>>] 100%  ELAPSED TIME: 112.39 s    
 -------------------------------------------------------------------------------- 
 OK 
 ORD     1297377 
 ATL     1112511 
 DFW     933903 
 LAX     626875 
 PHX     584062 
 Time taken: 113.938 seconds, Fetched: 5 row(s) 

    The Parquet storage format resulted in a decrease of the execution time by 53 seconds, which is a 
reduction of almost 32%. While this is an improvement over using just the Tez execution engine, it is still not 
as good of an improvement as seen with the ORC format.   

     Vectorized Query Execution 
 Hive’s default query execution engine processes one row at a time that requires multiple layers of virtual 
method calls within the nested loop, which is very inefficient from a CPU perspective. Vectorized query 
execution is a Hive feature that aims to eliminate these inefficiencies by reading the rows in batches of 1024 
and applying the operation on the entire collection of records at a time rather than individually. This vector 
mode of execution has been proven to be an order of magnitude faster for typical query operations such as 
scans, filters, aggregates, and joins. In order to use vectorized query execution, you must store your data in 
ORC format. 

 Let’s measure the performance of this execution engine by setting the value of the  hive.vectorized.
execution.enabled  property to  true  and running the query against the ORC backed tables. 
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    set hive.vectorized.execution.enabled = true; 

   SELECT  origin, COUNT(*) as cnt 
 FROM flights_orc f JOIN airports a ON (f.origin = a.code) JOIN weather_orc w ON (a.station = 
w.station AND w.year = f.year AND w.month = f.month and w.day=f.day) 
 WHERE f.depdelay>15 and w.metric = 'AWND' and w.value>10 
 GROUP by origin SORT BY cnt DESC LIMIT 5; 

   Launching Job 1 out of 1 

   Status: Running (Executing on YARN cluster with App id application_1457719973622_0122) 

   ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 .......SUCCEEDED     22         22        0        0       0       0 
 Map 5 .......SUCCEEDED      1          1        0        0       0       0 
 Map 6 .......SUCCEEDED     29         29        0        0       0       0 
 Reducer 2 ...SUCCEEDED     28         28        0        0       0       0 
 Reducer 3 ...SUCCEEDED     14         14        0        0       0       0 
 Reducer 4 ...SUCCEEDED      1          1        0        0       0       0 
 ------------------------------------------------------------------------------- 
 VERTICES: 06/06  [==========================>>] 100%  ELAPSED TIME: 50.60 s     
 ------------------------------------------------------------------------------- 
 OK 
 ORD     1297377 
 ATL     1112511 
 DFW     933903 
 LAX     626875 
 PHX     584062 
 Time taken: 52.174 seconds, Fetched: 5 row(s) 

    The vectorized query execution resulted in a decrease of the execution time by 12 seconds over just Tez 
and ORC alone, which is a reduction of over 18%.  

     Query Execution Plan 
 The Hive driver is responsible for translating the SQL statement into an execution plan for the target 
execution engine by following the sequence depicted in Figure  9-3 : 

    1.    The  parser  parses the SQL statement and produces an abstract syntax tree 
(AST) that represents the logical operations that must be performed in order 
to generate the correct result set, e.g.,  SELECTs ,  JOINs ,  UNION s, groupings, 
projections, and so on.  

    2.    The  planner  takes the AST and retrieves table metadata from the Hive Metastore, 
including the HDFS file location, storage formats, number of rows, and so on.  

    3.    The  query optimizer  uses the AST and table metadata from the previous steps 
and produces a physical operation tree known as the execution plan that 
represents all the physical operations that must be performed to retrieve the 
data, e.g., a nested loop join, sort-merge join, hash join, index join, and so on.     
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 The execution plan generated by the query optimizer ultimately determines the tasks that will be 
executed on your Hadoop cluster. Consequently, they have the biggest performance impact in a data 
analytics system such as Hive, since the difference between generating the right or wrong execution plan 
could mean seconds, minutes, or even hours of additional execution time. 

 The CBO helps the Hive driver produce an optimal execution plan by leveraging the table statistics in 
order to make informed decisions on performance costs of each possible execution plan it generates. 

     Cost-Based Optimization 
 The cost-based optimization (CBO) engine uses statistics in the Hive Metastore to produce optimal 
query plans. There are two types of statistics that are used for optimization: table stats, which include the 
uncompressed size of the table, number of rows, and number of files used to store the data, and column 
stats, which include NDV (number of distinct values) and min/max/count values. 

 The CBO does join reordering, improves plans for star and bushy join schemas, and provides 
opportunistic improvements based on sample queries. The downside of the CBO is the fact that you must 
gather and maintain accurate statistics about your tables in order for the cost-based optimization engine to 
be effective. Unfortunately, the collection of table statistics is an expensive operation, but the benefits can be 
reaped on all subsequent queries involving the table for which statistics were collected. You can automate 

  Figure 9-3.    Hive driver execution flow       
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the global collection of table statistics, by setting the  hive.stats.autogather  property to  true  inside  hive-
site.xml . Since that was not the value of the property when we first created our ORC backed tables, we will 
need to issue the following command to gather the table statistics for us: 

    ANALYZE TABLE weather_ORC COMPUTE STATISTICS; 
 Table weather stats: [numFiles=29, numRows=832252480, totalSize=2600971165, 
rawDataSize=242185471680] 

   ANALYZE TABLE weather_ORC COMPUTE STATISTICS FOR COLUMNS; 

   ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 .......SUCCEEDED     29         29        0        0       0       0 
 Reducer 2 ...SUCCEEDED      1          1        0        0       0       0 
 ------------------------------------------------------------------------------- 
 VERTICES: 02/02  [==========================>>] 100%  ELAPSED TIME: 197.79 s    
 ------------------------------------------------------------------------------- 
 OK 
 Time taken: 216.449 seconds 

   ANALYZE TABLE flights_ORC COMPUTE STATISTICS; 
 Table flights stats: [numFiles=22, numRows=123534969, totalSize=1632812702, 
rawDataSize=73119762912] 

   ANALYZE TABLE flights_ORC COMPUTE STATISTICS FOR COLUMNS; 
 ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 .......SUCCEEDED     22         22        0        0       0       0 
 Reducer 2 ...SUCCEEDED      1          1        0        0       0       0 
 ------------------------------------------------------------------------------- 
 VERTICES: 02/02  [==========================>>] 100%  ELAPSED TIME: 184.85 s    
 ------------------------------------------------------------------------------- 
 OK 
 Time taken: 186.767 seconds 

    Once the stats have been computed, we can enable the CBO by setting the following properties inside 
Hive so that every query we run will now use the cost-based optimization engine. 

    SET hive.cbo.enable=true; 
 SET hive.compute.query.using.stats = true; 
 SET hive.stats.fetch.column.stats = true; 
 SET hive.stats.fetch.partition.stats = true; 

   SELECT  origin, COUNT(*) as cnt 
   FROM flights f JOIN airports a ON (f.origin = a.code) 
                  JOIN weather w ON (a.station = w.station AND w.year = f. 
               year AND w.month = f.month and w.day=f.day) 
   WHERE f.depdelay>15 and w.metric = 'AWND' and w.value>10 
   GROUP by origin SORT BY cnt DESC LIMIT 5; 
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   ------------------------------------------------------------------------------- 
 VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED 
 ------------------------------------------------------------------------------- 
 Map 1 .......SUCCEEDED     22         22        0        0       0       0 
 Map 5 .......SUCCEEDED      1          1        0        0       0       0 
 Map 6 .......SUCCEEDED     29         29        0        0       0       0 
 Reducer 2 ...SUCCEEDED     77         77        0        0       0       0 
 Reducer 3 ...SUCCEEDED     39         39        0        0       0       0 
 Reducer 4 ...SUCCEEDED      1          1        0        0       0       0 
 ------------------------------------------------------------------------------- 
 VERTICES: 06/06  [==========================>>] 100%  ELAPSED TIME: 45.98 s     
 ------------------------------------------------------------------------------- 
 OK 
 ORD     1297377 
 ATL     1112511 
 DFW     933903 
 LAX     626875 
 PHX     584062 
 Time taken: 48.4 seconds, Fetched: 5 row(s) 

    The CBO engine further reduced the execution time by another four seconds, or 7%, and brings the 
final optimization. While the CBO’s impact wasn’t significant, there are other queries in which the impact is 
much more profound, such as when your  JOIN  statements aren’t in the optimal order. In order to view the 
execution plan produced by the CBO, you can utilize the Hive  EXPLAIN  command to display the execution 
plan, which has the following syntax: 

   EXPLAIN [EXTENDED|DEPENDENCY|AUTHORIZATION] query 

   The  EXPLAIN  output consists of three parts—the Abstract Syntax Tree for the query, the dependencies 
between the different stages of the plan, and a description of each of the stages. As an example, consider the 
following  EXPLAIN  command and the corresponding execution plan: 

    EXPLAIN 
 SELECT  origin, COUNT(*) as cnt 
   FROM flights f JOIN airports a ON (f.origin = a.code) 
                  JOIN weather w ON (a.station = w.station AND w.year = f. 
               year AND w.month = f.month and w.day=f.day) 
   WHERE f.depdelay>15 and w.metric = 'AWND' and w.value>10 
   GROUP by origin SORT BY cnt DESC LIMIT 5; 

   OK 
 STAGE DEPENDENCIES: 
    Stage-1 is a root stage 
    Stage-0 depends on stage 1. 

   STAGE PLANS: 
    Stage: Stage-1 
       Tez 
         Edges: 
             Map 1 <- Map 5 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE) 
             Reducer 2 <- Map 1 (SIMPLE_EDGE) 
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             Reducer 3 <- Reducer 2 (SIMPLE_EDGE) 
             Reducer 4 <- Reducer 3 (SIMPLE_EDGE) 
         DagName: ch08_2016042270101_a64ba841-734b6-3517-8f96-ed7bf89e92b4:2 
         Verticies: 
            Map 1 
               Map Operator Tree 
                  ...... 
            Map 5 
               Map Operator Tree 
                  ...... 
            Map 6 
               Map Operator Tree 
                  ...... 

         The Execution Plan 
 We will examine each of the map operations in great detail momentarily, but we first want to stop and 
point out what information we can glean from this portion of the  EXPLAIN  output. First off, we can see that 
there are exactly two stages in this execution plan— Stage-1  does all of the work to generate the results and 
 Stage-0  returns the results to the end user and depends on  Stage-1 . Secondly, we can see that the  DAG  for 
 Stage-1  is as shown in Figure  9-4 .  

 As we will see next, map phase 5 prepares the weather data for the  JOIN  operation by applying the filter 
to the data set to return only those rows that match the criteria in the  WHERE  clause. Similarly, map phase 
6 applies a filter to the airport table before sending it off to map phase 1, which performs the three-way 
join to connect the weather, the airport, and the flight data. Reducers 3 and 4 perform the  COUNT  and  LIMIT  
functions before returning the result set to the user. Now let’s look at these phases in great detail, starting at 
the top of the  DAG  and working our way down the execution chain. 

   Map 5 
    Map Operator Tree: 
       TableScan 
         alias: w 
         filterExpr: (((((station is not null and year is not null) and month 
         is not null) and day is not null) and (metric=’AWND’)) and (value > 
         10)) (type:boolean) 
         Statistics: Num rows: 636511075 Data size: 2592872704 Basic stats: 
         COMPLETE Column stats: COMPLETE 

  Figure 9-4.    Execution plan DAG       

 



CHAPTER 9 ■ PERFORMANCE TUNING: HIVE

231

         Filter Operator 
         predicate: (((((station is not null and year is not null) and month 
         is not null) and day is not null) and (metric=’AWND’)) and (value > 
         10)) (type:boolean) 
         Statistics: Num rows: 1982900 Data size: 394597100 Basic stats: 
         COMPLETE Column stats: COMPLETE 
         Reduce output Operator 
            Key expressions: station (type: string), year (type: int), month(type: 
            Int), day(type: int) 
            Sort order: ++++ 
            Map-reduce partition columns: station (type: string), year (type: 
            int), month(type: int), day(type: int) 
            Statistics: Num rows: 1982900 Data size: 394597100 Basic stats: 
            COMPLETE Column stats: COMPLETE 
         Execution mode: Vectorized 

   Observations about map phase 5: It is handling the weather table and it is applying a filter based on all 
four of the tables’ partition keys, which helps reduce the number of records processed to just 1,982,900 rows 
out of the 636,511,075 rows in the table. So instead of having to process 2.6 GB of data, we only have 8 MB to 
deal with. 

   Map 6 
    Map Operator Tree: 
       TableScan 
         alias: a 
         filterExpr: (code is not null and station is not null) (type: boolean) 
         Statistics: Num rows: 3404 Data size: 166345 Basic stats: COMPLETE Column 
         Stats: NONE 
         Filter Operator 
            predicate: (code is not null and station is not null)(type: boolean) 
            Statistics: Num rows: 851 Data size: 41586 Basic stats: COMPLETE 
            Column Stats: NONE 
            Reduce Output Operator 
               key expressions: code (type: string) 
               sort order: + 
               Map-reduce partition columns: code (type: string) 
               Statistics: Num rows: 851 Data size: 41586 Basic stats: COMPLETE 
               Column Stats: NONE 
               Value expressions: station (type: string) 

   Observations about map phase 6: It is handling the airport table, which only has 3404 rows to begin 
with, but this mapper filters it down further to just 851 rows and prepares the data set for the map join, which 
occurs in Map phase 1. 

   Map 1 
    Map Operator Tree: 
       TableScan 
         alias: f 
         filterExpr: ((((origin is not null and year is not null) and month is not 
         null) and day is not null) and (depdelay > 15)) (type: boolean) 
         Statistics: Num rows: 41178523 Data size: 4238297753 Basic stats: 
         COMPLETE Column stats: COMPLETE 
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         Filter Operator 
            predicate: ((((origin is not null and year is not null) and month is 
            not null) and day is not null) and (depdelay > 15)) (type: boolean) 
            Statistics: Num rows: 41178523 Data size: 4238297753 Basic stats: 
            COMPLETE Column stats: COMPLETE 
             Map Join Operator  
                 condition map: 
                    Inner join 0 to 1 
                 condition expressions: 
                    0 {year} {month} {day} {origin} 
                    1 {station} 
                 keys: 
                    0 origin (type: string) 
                    1 code (type: string) 
                 outputColumnNames: _col0, _col1, _col2, _col16, _col37 
                 input vertices: 
                    1 Map 6 
                 Statistics: Num rows: 4596156 Data size: 4662127629 Basic stats: 
                 COMPLETE Column stats: NONE 
                  Map Join Operator  
                    condition map: 
                         Inner Join 0 to 1 
                    Condition expressions: 
                         0 (_col16} 
                         1 
                    keys: 
                         0 _col37 (type: string), _col0 (type: int), _col1 (type: 
                          int), _col2 (type: int) 
                         1 station (type: string), year (type: int), month (type: 
                            int), day (type: int) 
                    outputColumnNames: _col16 
                    input vertices: 
                         1 Map 5 
                    Statistics: Num rows: 49825772 Data size: 5128340503 Basic 
                    stats: COMPLETE Column stats: NONE 

   As you can see, the CBO helped generate an optimal execution plan in which the amount of data read 
from disk and processed was greatly reduced at the earliest possible point in the execution, making the 
overall job more efficient.  

     Performance Checklist Summary 
 Overall, we were able to reduce the execution time of a single query involving two large tables from 475 
seconds to under 49 seconds (almost a 10x improvement) using just a few techniques such as Tez, ORC 
storage format, vectorized query execution, and the cost-based optimization engine. Best of all, most if not 
all of these techniques can be applied to the majority of your existing Hive tables with minimal effort.       
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    CHAPTER 10   

 Hive Security                          

 Data is one of the most valuable assets of any organization. Loss of information is probably one of the worst 
nightmares in any organization. Incidents of such nature can cause not only a significant financial loss but 
can also result in an epoch-making damage to the reputation of the company. Protecting your data asset 
requires appropriate security solutions in place to avoid breaches. Implementing strong security solutions 
requires a thorough planning and design stage with a strong need to recognize the risks associated with the 
platform. 

 Hadoop is a distributed system for storing and processing large amounts of data in a single shared 
platform known as a  data lake . There are many advantages of bringing the data from various systems in a 
data lake. It allows data scientists to discover various insights by co-relating the data sets that were otherwise 
stored in various silos. These data sets will still be of interest to various business users, who should only be 
able to access the data that they are supposed to. In some industries, there are strict rules that drive such 
distinction of access between various types of users or business units. The organizations that operate in this 
space often invest significant amount of money to ensure proper controls are in place. 

 In this chapter we revisit the aspects of data security and discuss the current state of security in Hive. 
We also visit various types of privileges in Hive, which are maintained using Apache Ranger, the security 
solution of Apache Hadoop. Finally, we also look at how Apache Ranger maintains an audit record of the 
data accessed using Hive. 

     Data Security Aspects 
 Before we look into the state of security in Hadoop, lets discuss various aspects of any data security solution, 
shown in Table  10-1 .

    Table 10-1.    Various Aspects of Security   

 Security Aspect  Feature  Purpose 

 Administration  Central management and consistent 
security 

 How can I set policy across the 
entire cluster? 

 Authentication/perimeter 
security 

 Authenticate users and systems  Who am I/prove it? 

 Authorization  Provision access to data  What can I do? 

 Audit  Maintain a record of data access  What did I do? 

 Data protection  Protect data at rest and in motion  How can I encrypt data at rest and 
over the wire? 
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     Authentication 
 Authentication is a process of verifying someone's identity, i.e., ensuring that someone is who they claim 
to be. This is done by comparing the credentials provided by the individual or a software service to what is 
stored on the file or on an authentication server. If the credentials match, the user or the machine is granted 
access. This is the first step in granting users access to any system. Various authentication systems use 
different methods to perform authentication. An enterprise system requires the authentication mechanisms 
to be rigid enough to ensure that the credentials aren't easy to guess or compromised by someone 
eavesdropping on the network.  

     Authorization 
 Authorization is a way of controlling the resources that can be accessed by a verified user in a system. 
In a multi-tenanted system, this is perhaps the most critical element of security. Without appropriate 
authorization system in place, there is no way to control who can access what. Every time an authenticated 
user makes a request to access a resource, the authorization system uses the access control rules to 
determine whether that user should be granted access to that resource. These access control rules are 
created by security administrators.  

     Administration 
 Administration is the process of managing the users of a system. As the number of users grows in any system, 
this becomes a complex challenge. You can create the most sophisticated security policies in a system, but 
if they are not applied to the users correctly, the system won't be truly secure. Hence, it is the job of user 
administrators to ensure that the right policies are not only defined but also correctly applied to various 
types of users. Most companies often perform a regular check to ensure that the security policies are applied 
as they should be and there is no deviation from what they should be. That includes, for example, ensuring 
that users in a particular group do not have access to a particular part of the system that they don’t need.  

     Auditing 
 Auditing is a process for maintaining a trail of of every access that was granted or denied to users. The audit 
trail provides a view of the day-to-day health of a system’s security architecture. Looking at the audit trail, 
administrators can determine who accessed what and if there are any users who tried to access something 
that they shouldn't have. Maintaining an audit trail is often a legal requirement in many industries and 
enterprises are required to show these to third-party companies, which perform regular audits of their entire 
security infrastructure.  

     Data Protection 
 In today's world, data is one of the most critical assets of any enterprise. Different security standards like 
PCI DSS require this data to be protected. This protection is required both for the data at rest and while 
it is accessed by someone. There are multiple security protocols that ensure that online data (while it is 
accessed) is secure. These protocols are widely used by various systems on the Internet. However, the 
systems also need to ensure that the data stored on the disk is also protected. Even if someone steals the 
physical disk from a data center, the information stored on the storage media should be protected in a way 
that it cannot be interpreted.   
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     Hadoop Security 
 Since its advent, Hadoop has come a long way both in terms of its functionality and the way you secure 
data in it. It started as a project to store and index the web in a distributed platform, whereby achieving the 
performance and other features were much more important than ensuring appropriate security measures 
were in place. The earlier version of Hadoop relied on querying the OS level parameters to crosscheck the 
username. These parameters could be very easily set to any values allowing impersonation. However, as 
Hadoop became popular, more and more companies started to use it to store and process huge data sets in 
large clusters. 

 The concept of YARN resulted in the transformation of Hadoop silos into an enterprise data lake, which 
could be used by various business units to run batch, interactive, and real-time workloads. Lack of security 
was a huge barrier in the adoption of Hadoop and the community recognized this. The distributed nature 
of Hadoop makes it difficult to implement security in a cluster. A typical Hadoop cluster consists of many 
nodes and the interaction between a client process and the actual job process happens at various levels. 
Many times, the user who submits the job is different from the user who actually executes the code at the 
processing time. The addition of various processing engines in the Hadoop ecosystem made security in 
Hadoop even more difficult but more important. Multiple processing engines are executed in a distributed 
manner and require the authorization checks to be executed at multiple layers. This is now handled by 
integrating the Hadoop infrastructure with Apache Ranger. 

 The purpose of this chapter is not to go into too much detail of the history of security options in 
Hadoop, but to discuss the current state of security. The Apache open source community has put in an 
enormous amount of effort to integrate the Hadoop stack with standard security solutions like Active 
Directory, LDAP, and Kerberos for authentication. Authorization of users to various data sets for different 
processing engines is now done using Apache Ranger. Apache Ranger also provides auditing capabilities in 
Hadoop. Further, the data stored in Hadoop can be protected using HDFS Transparent Data Encryption and 
encrypted over the Internet using security protocols like SSL/TCL. We look into more details about these 
solutions later in this chapter.  

     Hive Security 
 Hive started as a project to write processing jobs using SQL in Hadoop without having to write complex Java 
for MapReduce. At the time when Hive was written, Hadoop was not integrated with existing enterprise 
security solutions. Since then a lot has changed, especially in terms of how the authorization access is 
controlled in Hive. Let's take a look at the various authorization modes in Hive. 

     Default Authorization Mode 
 This is also known as the legacy authorization mode. This was the only authorization model available until 
Hive version 0.10.0. There were many security vulnerabilities in this mode and hence it was not very well 
suited to provide a secure environment. In terms of its working it was quite similar to a relational database. 
Just like a relational database, there was a concept of users/groups and roles. The privileges could be added 
to a group and the group could then be assigned to a single user(s) or groups. By default, when a user created 
a table under this mode, no privileges were granted to the person who created the table. 

 This authorization mode was enabled by modifying the value of  hive.security.authorization.
enabled  to  true  in the  hive-site.xml  file, as shown. 
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     <property> 
       <name>hive.security.authenticator.manager</name> 
       <value>org.apache.hadoop.hive.ql.security.ProxyUserAuthenticator</value> 
     </property> 

        <property>  
        <name>hive.security.authorization.enabled</name>  
        <value>true</value>  
      </property>  

       <property> 
       <name>hive.security.authorization.manager</name> 
        <value>org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.

SQLStdConfOnlyAuthorizerFactory</value> 
     </property> 

    This mode was quite similar to RDBMS style authorization. The access was managed at various levels 
like users, groups, and roles. This authorization mode also had some properties to control the default 
privileges that the users, groups, and roles would get when a new table was created.  

     Storage-Based Authorization Mode 
 The storage-based authorization mode was added in later versions of Hive. It relies on permission model 
of HDFS, the filesystem of Hadoop. In this type of security model, the HDFS permissions act as a single 
source of truth and Hive simply relies on this single source of truth to determine whether or not the access 
should be granted to a user request. When a user tries to access a table, Hive checks the permissions of the 
underlying directories on the filesystem to control the security to the Hive objects. 

 The storage-based authorization mode can be enabled by setting the following properties in 
 hive-site.html . 

     <property> 
       <name>hive.security.metastore.authenticator.manager</name> 
       <value>org.apache.hadoop.hive.ql.security.HadoopDefaultMetastoreAuthenticator</value> 
     </property> 

       <property> 
       <name>hive.security.metastore.authorization.auth.reads</name> 
       <value>true</value> 
     </property> 

       <property> 
       <name>hive.security.metastore.authorization.manager</name> 
        <value>org.apache.hadoop.hive.ql.security.authorization.

StorageBasedAuthorizationProvider</value> 
     </property> 

       <property> 
       <name>hive.server2.allow.user.substitution</name> 
       <value>true</value> 
     </property> 
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    Since Hive CLI is deprecated, most of the users will be connecting to HiveServer2 either by using 
Beeline or another tool using JDBC/ODBC. It is important to also set another parameter called  hive.
server2.enable.doAs  to  true  for this authorization mode to work. 

     <property> 
       <name>hive.server2.authentication.spnego.keytab</name> 
       <value>HTTP/_HOST@EXAMPLE.COM</value> 
     </property> 

       <property> 
       <name>hive.server2.authentication.spnego.principal</name> 
       <value>/etc/security/keytabs/spnego.service.keytab</value> 
     </property> 

       <property> 
       <name>hive.server2.enable.doAs</name> 
       <value>true</value> 
     </property> 

       <property> 
       <name>hive.server2.logging.operation.enabled</name> 
       <value>true</value> 
     </property> 

    This parameter determines the end user with which HiveServer2 executes the queries. When it’s set 
to  true , HiveServer2 executes the queries as the user who was authenticated; otherwise, it uses the user ID 
with which HiveServer2 process was started, which in most cases is the Hive. 

 This authorization mode is suitable if the users also require direct access to the data files on HDFS for 
running other jobs using one of the other processing paradigms like Pig, Spark, or even MapReduce. 

  HDFS ACLs provide a lot of flexibility to manage file-level access. If the users only require access using SQL, 
then use the SQL standards-based authorization mode.  

     SQL Standards-Based Authorization Mode 
 This authorization mode provides a way to control access to a much finer level than storage-based 
authorization. If the users of Hive are connecting to HiveServer2 and only require access to the data using 
SQL, this is the recommended authorization mode. In this mode, you can control access at column, view 
level, as the HiveServer2 API understands the concept of rows and columns. This also provides a mechanism 
that can be integrated with Apache Ranger to define policies for managing access. We discuss the Hive plug-
in for Ranger later in this chapter. 

 In order to enable this security mode, you need to set the following parameters in  hive-site.xml . 

     <property> 
       <name>hive.security.authorization.manager</name> 
        <value>org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.

SQLStdConfOnlyAuthorizerFactory</value> 
  </property> 
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     <property> 
     <name>hive.server2.doAs</name> 
     <value>false</value> 
  </property> 

     <property> 
       <name>hive.security.metastore.authenticator.manager</name> 
       <value>org.apache.hadoop.hive.ql.security.HadoopDefaultMetastoreAuthenticator</value> 
     </property> 

       <property> 
       <name>hive.security.metastore.authorization.auth.reads</name> 
       <value>true</value> 
     </property> 

    The general best practice is to allow users access only through HiveServer2 and to restrict the user code 
and non-SQL commands that can be run. When a user submits a request, the privileges are checked but the 
actual query is executed as the Hive server user. You should also lock down the access to the actual data at the 
HDFS level, by giving the permission only to the Hive server user. If there are any additional users who don't 
require access through SQL but only need access to these files at the HDFS level, you can create ACLs for them.  

     Managing Access through SQL 
 Just like with standard SQL, you can manage access control in Hive using privileges, users, roles, and objects. 
Privileges are granted to users and roles. Users belong to one or more roles and they can enable a role. 
Some of the privileges that can be granted in Hive are  ALTER ,  DROP ,  INDEX ,  LOCK ,  SELECT ,  INSERT ,  UPDATE , 
 DELETE , and  CREATE ,  ALL . If you are familiar with standard SQL, you will find that the commands to manage 
privileges in Hive are quite similar. We now look at some examples for creating and managing privileges for 
various objects in Hive. 

 Let’s first create a database. 

   CREATE DATABASE TEST; 

   We will now create a new table in the  TEST  database. 

   USE TEST; 
 CREATE TABLE TESTING (A INT, B STRING); 

   Grant  SELECT  privilege on the  TESTING  table to user  JOHN : 

   GRANT SELECT on TABLE TESTING TO USER JOHN; 

   Verify the  GRANTS  on  TABLE TESTING : 

   SHOW GRANT ON TABLE TESTING; 

   Verify all grants for user  JOHN : 

   SHOW GRANT USER JOHN ON ALL; 

   You can enable a  ROLE  for a user using the  SET ROLE  command. 
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   SET ROLE BI_ROLE; 

   The grant can also be provided on column level for a table. 

   GRANT SELECT ON TABLE TESTING COLUMN A TO USER SCOTT; 

   You can enable partition-level privileges for a table and then control the privileges for those partitions. 

   CREATE TABLE TESTING (A INT, B STRING)  PARTITIONED BY (state string); 
 ALTER TABLE TESTING  SET TBLPROPERTIES ('PARTITION_LEVEL_PRIVILEGE’='TRUE'); 
 GRANT SELECT ON TABLE TESTING PARTITION (state='NY') to USER SCOTT; 

   Loading data into a table requires the  UPDATE  privilege. 

   GRANT UPDATE on TABLE TESTING TO USER JOHN; 
 LOAD DATA INPATH '/tmp/hive/testing.csv' into TABLE TESTING; 

   Just like standard SQL, you have the option to grant the privileges with  GRANT OPTION  and  ADMIN OPTION  
for roles. This allows the recipient of the privilege to grant them to another user.   

     Hive Authorization Using Apache Ranger 
 Apache Ranger is a framework for enabling, monitoring, and managing the comprehensive data security 
across the Hadoop platform. Ranger simply helps a Hadoop admin with various security management tasks. 
It provides a mechanism to manage the security from a single pane for various components. With Ranger, 
you can control fine-grained access to various components of the Hadoop ecosystem. As shown in 
Figure  10-1 , it has a set of built-in plug-ins that integrate with various processing engines, including Hive. 
When a user runs a query using a client that connects to HiveServer2, the Hive plug-in for Ranger, which is 
integrated with HiveServer2, evaluates the privileges from the pool of its access policies defined using the 
Ranger control panel.  

  Figure 10-1.    Ranger architecture       
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 As you can see from the architecture in Figure  10-1 , Ranger has an Administration Portal you can use 
to define various policies for different components. It also has a built-in Policy Server, where all defined 
policies are maintained. Ranger stores these in a policy database, which is currently deployed in a RDBMS. 
Ranger also has a built-in Audit Server, which we discuss later in this chapter. 

 ■   Note    The further sections of this chapter assume that you have already installed Ranger in your demo 
environment. The installation and integration of Ranger with Active Directory/LDAP is beyond the scope of this 
book. It is documented on Apache Ranger web site and can be accessed through this link:    https://cwiki.
apache.org/confluence/display/RANGER/Apache+Ranger+0.5.0+Installation     . 

 The focus of this chapter is to define the Hive access policies in Ranger and then verify that they are enforced 
by checking the audit records.  

     Accessing the Ranger UI 
 You can access the Ranger UI using the following URL: 

    http://rangerserver:6080      

 When you log in to the Ranger UI, the home page lists the various menus and types of policies that can 
be created using Ranger (as shown in Figure  10-2 ).   

     Creating Ranger Policies 
 Use these steps to create a new policy in the Ranger UI:

    1.    Click on the policy group name under Hive. As shown in Figure  10-3 , this should 
bring up the page with a list of existing Hive policies.   

  Figure 10-2.    Ranger user interface       

 

https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5.0+Installation
https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5.0+Installation
http://rangerserver:6080/
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    2.    Now click on Add New Policy to open a new page, similar to the one in Figure  10-4 .   

  Figure 10-3.    List of policies in Ranger       

  Figure 10-4.    Creating a new Ranger policy       
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    3.    Provide the following details in the Add New Policy window:

•    Policy Name—Name that you want to assign to this new policy.  

•   Hive Database—The name of the database for which this policy is defined; you 
can choose  *  for all databases.  

•   Table/UDF—Name of the table/UDF; this can be  *  for all tables/UDFs.  

•   Hive Column—This column is used to control column-level access.  

•   Audit Logging—This parameter is very important as it determines whether the 
access defined by this policy should be audited or not.  

•   User and Group Permissions—This is where you define the type of access for a 
user or a group. You can even delegate the admin responsibilities to a user so he 
can further manage the access of this object.        

 Once you fill in all the details shown in Figure  10-5  and define the policy, these controls are enforced on 
the relevant objects in Hive.  

  Figure 10-5.    Adding details of a new Ranger policy       

 ■   Note    If the Ranger Hive plug-in is enabled and you grant any privileges using the  GRANT  command in SQL, 
Ranger automatically creates the Ranger policies for you. This is quite useful when you run a script to create 
Hive objects and then grant privileges on them.   
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     Auditing Using Apache Ranger 
 As previously mentioned, you can also audit various types of access using Apache Ranger. Ranger has a 
built-in Audit Server that collects all audit data for every plug-in that is deployed. As long as the policy that 
you created is marked as Audit Enabled, Ranger will audit all access and store its records. These records can 
then be viewed using the Ranger UI. 

 In order to see the Ranger audit records, click on the Audit option in the menu bar. You will then see a 
list of recent audit records, as shown in Figure  10-6 .  

 You can filter these records using various options in the Audit page.      

  Figure 10-6.    Listing audit records in Ranger       
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    CHAPTER 11   

 The Future of Hive                          

 The future of Hive is a roadmap of enhancements and improvements. 
 The topics of this chapter are:

•    Hive LLAP (Live Long and Process)  

•   Hive-on-Spark  

•   Hive: ACID and MERGE  

•   Tunable isolation levels  

•   OLAP/cube-based analytics  

•   The HiveServer2 engine    

 ■   Note    This chapter is a view into the near future of Hive.  

     LLAP (Live Long and Process) 
 The demand for sub-second queries calls for fast query execution and lower setup cost of tasks within the 
ecosystem. The challenge for Hive is to accomplish this without impacting the scale and flexibility that users 
require from a future distributed solution. 

 A future-proof methodology using a hybrid engine that leverages Tez and a new engine called LLAP 
(Live Long and Process) is the next phase for Hive. 

 LLAP is an enhanced daemon process running on multiple nodes, and it is responsible for the 
following:

•    Caching and data recycle queries with compressed columnar data in-memory (off-
heap) copies of the data. Most important speed improvements in the stack to date.  

•   Multi-threaded execution together with reads with predicate pushdown and hash 
joins on the Hive ecosystem. Enhances the task allocations and DAG creation.  

•   High throughput IO using Async IO Elevator with dedicated thread and core per 
disk to improve the usage of existing environments with more efficient processing 
solutions.  

•   Granular column-level security across applications. Hive is going secure without the 
overhead of other security solutions.    
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 YARN will be responsible for workload management in LLAP by means of delegation. Queries will 
transport information from YARN to LLAP about their authorized resource allocation. LLAP processes will 
then distribute supplementary resources to assist the query as instructed by YARN. 

 The hybrid engine approach delivers fast response times by efficient in-memory data caching and 
low-latency processing, delivered by node resident processes. The effective limiting of LLAP usage during 
the initial phases of query processing means that Hive by-passes limitations around coordination, workload 
management, and failure isolation that are normally presented by running an entire query in this processing 
on the databases.  

     Hive-on Spark 
 Apache Spark is rapidly evolving into the programmatic successor to MapReduce for data processing on 
Apache Hadoop. The successful integration will open the enormous development that is done in the Spark 
ecosystem directly to Hive. 

 The biggest is the development in the deep-learning capability of spark. The evolving research into 
solutions using Spark and TensorFlow will deliver capacity to Hive solutions to use these investments via the 
Hive-on-Spark stack. 

 Machine learning has rapidly developed as a critical portion in mining Big Data for actionable insights. 
Built on top of Spark, MLlib is a scalable machine-learning library that delivers high-quality algorithms.  

     Hive: ACID and MERGE 
 Hive will in the near future support ACID transactions by adding extra functions. 

 Functions such as:

•     INSERT ,  UPDATE , and  DELETE   

•   Snapshot isolation  

•   Streaming ingest    

 Hive will in the near future support  MERGE  as standard by introducing an Upsert    function to Hive. This is 
a prime improvement to ensure the data warehousing ecosystem is working effectively and efficiently. 

 The following ACID-supporting functions are coming to native Hive:

•     BEGIN TRANSACTION   

•    COMMIT   

•    ROLLBACK     

 Making Hive ACID proof is a massive achievement, as Hive is now successfully hardened for enterprise-
level transaction processing.  

     Tunable Isolation Levels 
 A Hive lock manager will be improved to facilitate transactional-level isolation on data transactions. 
This will empower Hive development to tune the data processing with the best isolation for the specific 
circumstances.  
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     ROLAP/Cube-Based Analytics 
 Analyzing billions of records in near-realtime from within Hive is the future we anticipate. Hive will be 
empowered with sophisticated, multi-dimensional slicing-and-dicing capability against relational online 
analytical processing (ROLAP). 

 This will enable options to construct Kimball bus architectures and the Corporate Information Factory 
structures within Hive. 

 Hive will be able to generate SQL and MDX interfaces across the distributed ecosystem with ease to 
generate cube-based analytics and without negatively impacting the performance of the overall system.  

     HiveServer2 Development 
 Hive clients will interconnect with HiveServer2 over a JDBC/ODBC connection handling multiple user 
sessions, each with a different thread is the future delivery. Massive improvements in scalability of the core 
Hive ecosystem are achieved by the new Hive engine. 

 HiveServer2 will support long-running sessions with asynchronous threads that will speed up the 
import and movement of data within the Hive cluster. 

 An embedded metastore for HiveServer2 will performs the following tasks:

•    Get statistics and schema from the MetastoreDB.  

•   Compile queries.  

•   Generate query execution plans.  

•   Submit query execution plans.  

•   Return query results to the client.     

     Multiple HiveServer2 Instances for Different Workloads 
 Hive will in the future be able to adapt to different workloads in a dynamic manner. 

 Multiple HiveServer2 instances can be used for:

•    Load-balancing and high availability using Zookeeper.  

•   Running multiple applications with different settings.    

 ■   Note    Hive will evolve into a major component, involved in the building of the future architecture of the 
distributed data processing ecosystem. 

 By mastering your processing with Hive skills, you are also securing your future.      
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    APPENDIX A   

 Building a Big Data Team                          

 Building a Big Data team is a fundamental requirement to ensure the success of business responsibilities 
for maintenance of production jobs and active projects. 

 The objectives of this appendix are:

•    Describe the basic roles and requirements needed to create a Hive solution.  

•   Define the minimum group of roles required for an effective team.  

•   Decide who is assigned responsibility for which element in the solution.    

  It takes time and commitment to achieve a superior solution and get the maximum impact with the team.  

     Minimum Team 
 There are a minimum number of roles a successful team needs, as follows. 

     Executive Team 
 The executive team is the main contact between the Big Data team and the rest of the business. 

   Senior Sponsorship 
 The senior sponsor provides the business strategy for completing and maintaining the Big Data program. 

 They ensure that the business value is achieved through the project work completed by the team(s). 
They ensure that tasks are value-added and that they enhance the business capacity. 

 They are accountable for the Big Data solution as a business asset/service to the board of directors. 
The Big Data solution must be seen as a primary business asset, similar to any other asset listed on the 
business balance sheet.   

     Business Team 
 The business team is the staff members who form the business support structure for the Big Data program. 



APPENDIX A ■ BUILDING A BIG DATA TEAM

250

   Big Data Director/Head of Big Data 
 The Big Data director is responsible for the whole Big Data program to ensure that the strategy from the 
senior sponsorship is delivered. This person ensures that the entire range of support functions is in place to 
safeguard future delivery of the services. 

 The director is responsible for the technical teams that designs, delivers, and deploys the current and 
future work of the Big Data solution.  

   Internal Business Developers and Analysts 
 The business developers and analysts are the people in the day-to-day business who perform the operational 
and tactical Big Data work to ensure that daily activities in the business support the longer-term strategy. 

 These people perform and deliver the solution’s business-as-usual activities.   

     Technical Team 
 The technical team is responsible for any technical support for the Big Data solutions. They add new 
solutions and maintain the existing solution. 

   Hive Architects 
 The Hive architects are the technical owners of the system. They ensure the effective and efficient solution 
to support the strategy to be designed, developed, and delivered. The Hive architects ensure that complete 
back-office requirements are provided so the solution is technically sound. They also ensure that future 
innovative changes do not adversely impact the current solution.  

   Hive Administrators 
 The Hive administrators ensure that the Big Data cluster is performing at an effective and efficient level. 

 They ensure the clusters perform all their technical functions as designed.  

   Data Engineers 
 The data engineers design, develop, and deploy the Hive Extract-Transform-Load process, Reports 
development, data analysis, and data modeling functionalities. 

 They assist the architect in implementing the essential modifications to the solution to materialize the 
strategy of the team into the solution. They are the physical creators of the solution components.    

     Expanded Team 
 As a project grows in size, the team starts expanding to support additional specialists. Specific people are 
now assigned to specific pieces of the solution. These specialists perform the work necessary to achieve the 
business strategy. 

     Business Team 
 The business team is the staff members who form the business support structure for the now-expanding Big 
Data program(s). 
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   Requirements Specialists/Domain Experts 
 Experts help the teams from particular business areas ensure the specific areas business requirements are 
protected by the solution’s daily processing.  

   Statisticians/Data Scientists 
 Using advanced data processing methods necessitates specialists in data processing methodologies and 
statistical analytic solutions. 

 They ensure that the data processing involves value-added transformations to the business’ knowledge 
using repeatable and verifiable methods.   

     Technical Team 
 The technical team is responsible for technical support of the Big Data solutions. They add new solutions 
and maintain the existing solution. 

   Business Analysts 
 The bigger team now adds more internal business developers and analysts, but with a more intense role that 
handles specific business requirement tasks. 

 The business analyst ensures that the requirements from the specialists/domain experts are accurately 
recorded and converted into functional and non-functional requirements, which are in turn ready for the 
development teams to use as guidance. 

 A large team will use multiple business analysts. We suggest that the project manager organize these 
specialists into groups of five to eight people with a senior person handling the day-to-day work.  

   Data Architect 
 The data architect is responsible for the data architecture of the analytics systems. 

 This person uses information technology disciplines for designing, developing, deploying, and 
managing the analytic data architecture. 

 Data architects govern in what manner data will be stored, consumed, integrated, and managed by the 
Hive systems. 

 There should only be one data architect in an optimal structure. However, for large projects, a 
maximum of three members can perform this function if they work together as a single design unit.  

   Technical Architect 
 The technical architect is responsible for the server architecture of the analytics systems only. 

 They use information technology disciplines for designing, developing, deploying, and managing the 
analytic server architecture as designed by the Hive architects. 

 There should only be one technical architect in an optimal setting. However, for large projects, a group 
of five members maximum could perform this function if they work together as a single design unit.  

   Hive Developers 
 The Hive developer is the technical expert who designs, develops, and deploys all the Hive code for the 
solution. The data engineer develops the data structures into Hive code. The Hive developer optimizes the 
Hive code specifically for the environment by adding extra optimizations to improve the Hive code. 
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 A large team will use multiple Hive developers. We suggest that the project manager organize these 
specialists into groups of five to eight people with a senior person handling the day-to-day work.  

   Visualization Developers 
 The visualization developer is the technical expert who designs, develops, and deploys the visualization of 
the solution. 

 A large team will use multiple visualization developers. We suggest that the project manager organize 
these specialists into groups of five to eight people with a senior person handling the day-to-day work.  

   Quality Assurance Testers 
 Quality assurance testers test the system to prevent defects in analytic solution and avoiding defects in the 
services to users. 

 A large team will use multiple testers. We suggest that the project manager organize these specialists 
into groups of five to eight people with a senior person handling the day-to-day work.  

   Trainers 
 The trainer helps the users understand the developed functions of the analytic solution to support the 
business.  

   Technical Writers 
 A technical writer is a professional writer who writes the technical documentation to help users understand 
and use the analytic solution.  

   Infrastructure Engineers 
 The infrastructure engineers install, upgrade, and maintain servers. 

 In large installations, this expert area of responsibility is normally outsourced to a third-party provider. 
 Cloud services are commonly used in the Hive solution arena, which means that an infrastructure 

provision could become a simple on-demand request to the cloud provider. 
 The Big Data director assigns the appropriate responsibility to ensure the Hive solution is covered by a 

service level agreement. 
 Remember the team is duty-bound to adapt to the business needs in an effective and efficient manner 

to deliver value and ensure a successful delivery. 
 Best of luck with your team’s future work on your Hive solution(s).    

     Work Lifecycle for the Team 
 The team should use an agile plan consisting of two sprints of 10 days to add new functionality and then a 
sprint of 10 days to perform any maintenance releases. 

 If possible, do not perform new functionality releases of code on the same sprint as a maintenance 
release. This ensures that the true impact of the maintenance is experienced by the business. 

 Using the 30-day lifecycle ensures regular delivery of new solutions to the business while supporting a 
healthy, evolving Hive architecture.     



253© Scott Shaw, Andreas François Vermeulen, Ankur Gupta, David Kjerrumgaard 2016 
S. Shaw et al., Practical Hive, DOI 10.1007/978-1-4842-0271-5_13

    APPENDIX B   

 Hive Functions                          

 Hive offers a comprehensive set of functions. 
 The objectives of this appendix are:

•    Highlight the basic Hive functions.  

•   Explain a simple use of each function.  

•   Achieve the basic understanding of how to use the functions in a data solution.    

     Built-In Functions 
 We will cover the following classes of functions in this appendix:

•    Mathematical  

•   Collection  

•   Type-Conversion  

•   Date  

•   Conditional  

•   String  

•   Miscellaneous  

•   User-Defined (UDFs)     

     Mathematical Functions 
 Return Type  Name (Signature)  Description 

  double    round(double a)   Returns the rounded  BIGINT  value of the double. 

  double    round(double a, int d)   Returns the double rounded to  d  decimal places. 

  bigint    floor(double a)   Returns the maximum  BIGINT  value that is equal or less 
than the double. 

  bigint    ceil(double a), 
ceiling(double a)  

 Returns the minimum  BIGINT  value that is equal or 
greater than the double. 

(continued)
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 Return Type  Name (Signature)  Description 

  double    rand(), rand(int seed)   Returns a random number (changes from row to row) 
that is distributed uniformly from 0 to 1. Specifying the 
seed provides a generated random number sequence 
that’s deterministic. 

  double    exp(double a)   Returns  e  to power  a  where  e  is the base of the natural 
logarithm. 

  double    ln(double a)   Returns the natural logarithm of the argument. 

  double    log10(double a)   Returns the base-10 logarithm of the argument. 

  double    log2(double a)   Returns the base-2 logarithm of the argument. 

  double    log(double base, double a)   Returns the base  base  logarithm of the argument. 

  double    pow(double a, double p), 
power(double a, double p)  

 Returns  a  to power of  p . 

  double    sqrt(double a)   Returns the square root of  a . 

  string    bin(bigint a)   Returns the number in binary format. 

  string    hex(bigint a) hex(string a)   If the argument is an  int ,  hex  returns the number as a 
string in  hex  format. Otherwise if the number is a string, 
it converts each character into its hex representation and 
returns the resulting string. 

  string    unhex(string a)   Inverse of  hex . Interprets each pair of characters as a 
hexadecimal number and converts them to the character 
represented by the number. 

  string    conv(bigint num, int 
from_base, int to_base), 
conv(STRING num, int from_
base, int to_base)  

 Converts a number from a given base to a different base. 

  double    abs(double a)   Returns the absolute value. 

  int double    pmod(int a, int b) 
pmod(double a, double b)  

 Returns the positive value of a mod  b . 

  double    sin(double a)   Returns the sine of  a  ( a  is in radians). 

  double    asin(double a)   Returns the arc sin of  x  if -1<=a<=1 or null otherwise. 

  double    cos(double a)   Returns the cosine of  a  ( a  is in radians). 

  double    acos(double a)   Returns the arc cosine of  x  if -1<=a<=1 or null otherwise. 

  double    tan(double a)   Returns the tangent of  a  ( a  is in radians). 

  double    atan(double a)   Returns the arctangent of  a . 

  double    degrees(double a)   Converts value of  a  from radians to degrees. 

  double    radians(double a)   Converts value of  a  from degrees to radians. 

  int double    positive(int a), 
positive(double a)  

 Returns  a  for all values of  -a  and  a . 

  int double    negative(int a), 
negative(double a)  

 Returns  -a  for all values of  -a  and  a . 

(continued)
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 Return Type  Name (Signature)  Description 

  float    sign(double a)   Returns the sign of  a  as  1.0  or  -1.0 . 

  double    e()   Returns the value of  e . 

  double    pi()   Returns the value of  pi . 

        Collection Functions 
 Return Type  Name (Signature)  Description 

  int    size(Map<K.V>)   Returns the number of elements in the  map  type. 

  int    size(Array<T>)   Returns the number of elements in the  array  type. 

  array<K>    map_keys(Map<K.V>)   Returns an unordered array containing the keys of 
the input map. 

  array<V>    map_values(Map<K.V>)   Returns an unordered array containing the values of 
the input map. 

  boolean    array_contains(Array<T>, value)   Returns  TRUE  if the array contains  value . 

  array<t>    sort_array(Array<T>)   Sorts the input array in ascending order according 
to the natural ordering of the array elements and 
returns it. 

        Type-Conversion Functions 
 Return Type  Name (Signature)  Description 

  binary    binary(string|binary)   Casts the parameter into a binary. 

 Expected " = " to follow "type"   cast(expr as <type>)   Converts the results of the expression  expr  to 
 <type> ; for example,  cast('1' as BIGINT)  
will convert the string  '1'  to its integer 
representation. A  null  is returned if the 
conversion does not succeed. 
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        Date Functions 
 Return Type  Name (Signature)  Description 

  string    from_unixtime(bigint 
unixtime[, string 
format])  

 Converts the number of seconds from the UNIX epoch 
(1970-01-01 00:00:00 UTC) to a string representing the 
timestamp of that moment in the current system time zone, 
in the format of  "1970-01-01 00:00:00" . 

  bigint    unix_timestamp()   Gets the current timestamp using the default time zone. 

  bigint    unix_timestamp(string 
date)  

 Converts the time string in format  yyyy-MM-dd HH:mm:ss  
to the UNIX timestamp and returns  0  if fails:  unix_
timestamp('2009-03-20 11:30:01') = 1237573801 . 

  bigint    unix_timestamp(string 
date, string pattern)  

 Converts the time string with given pattern (see 
here) to UNIX timestamp; returns  0  if fails:  unix_
timestamp('2009-03-20', 'yyyy-MM-dd') = 1237532400 . 

  string    to_date(string 
timestamp)  

 Returns the date part of a timestamp string:  to_date("1970-
01-01 00:00:00") = "1970-01-01" . 

  int    year(string date)   Returns the year part of a date or a timestamp string: 
 year("1970-01-01 00:00:00") = 1970 ,  year("1970-01-
01") = 1970 . 

  int    month(string date)   Returns the month part of a date or a timestamp 
string:  month("1970-11-01 00:00:00") = 11 , 
 month("1970-11-01") = 11 . 

  int    day(string date) 
dayofmonth(date)  

 Returns the day part of a date or a timestamp string: 
 day("1970-11-01 00:00:00") = 1 ,  day("1970-11-01") = 1 . 

  int    hour(string date)   Returns the hour of the timestamp:  hour('2009-07-30 
12:58:59') = 12 ,  hour('12:58:59') = 12 . 

  int    minute(string date)   Returns the minute of the timestamp. 

  int    second(string date)   Returns the second of the timestamp. 

  int    weekofyear(string date)   Returns the week number of a timestamp string: 
 weekofyear("1970-11-01 00:00:00") = 44 , 
 weekofyear("1970-11-01") = 44 . 

  int    datediff(string enddate, 
string startdate)  

 Returns the number of days from  startdate  to  enddate : 
 datediff('2009-03-01', '2009-02-27') = 2 . 

  string    date_add(string 
startdate, int days)  

 Adds a number of days to  startdate :  date_add('2008-12-
31', 1) = '2009-01-01' . 

  string    date_sub(string 
startdate, int days)  

 Subtracts a number of days from  startdate :  date_
sub('2008-12-31', 1) = '2008-12-30' . 

  timestamp    from_utc_
timestamp(timestamp, 
string timezone)  

 Assumes given timestamp is UTC and converts it to given 
time zone. 

  timestamp    to_utc_
timestamp(timestamp, 
string timezone)  

 Assumes given timestamp is in given time zone and 
converts it to UTC. 
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        Conditional Functions 
 Return Type  Name (Signature)  Description 

  T    if(boolean testCondition, T 
valueTrue, T valueFalseOrNull)  

 Returns  valueTrue  when  testCondition  is 
 true ; returns  valueFalseOrNull  otherwise. 

  T    COALESCE(T v1, T v2, ...)   Returns the first  v  that is not  NULL  or  NULL  if all 
 v s are  NULL . 

  T    CASE a WHEN b THEN c [WHEN d THEN e]* 
[ELSE f] END  

 When  a = b , returns  c ; when  a = d , returns  e ; 
otherwise returns  f . 

  T    CASE WHEN a THEN b [WHEN c THEN d]* 
[ELSE e] END  

 When  a = true , returns  b ; when  c = true , 
returns  d ; otherwise, returns  e . 

        String Functions 
 Return Type  Name (Signature)  Description 

  int    ascii(string str)   Returns the numeric ASCII value of the first 
character of  str . 

  string    concat(string|binary A, 
string|binary B…)  

 Returns the string or bytes resulting from 
concatenating the strings or bytes passed 
in as parameters in order. For example, 
 concat('foo', 'bar')  results in  'foobar' . 
Note that this function can take any number of 
input strings. 

  array<struct<string,
double>>  

  context_ngrams
(array<array<string>>, 
array<string>, int K, int pf)  

 Returns the top-k contextual N-grams from 
a set of tokenized sentences, given a string of 
" context ". 

  string    concat_ws(string SEP, 
string A, string B…)  

 Like  concat() , but with custom separator  SEP . 

  string    concat_ws(string SEP, 
array<string>)  

 Like  concat_ws() , but taking an array of 
strings. 

  int    find_in_set(string str, 
string strList)  

 Returns the first occurrence of  str  in  strList  
where  strList  is a comma-delimited string. 
Returns  null  if either argument is  null . 
Returns  0  if the first argument contains any 
commas. For example,  find_in_set('ab', 
'abc,b,ab,c,def')  returns  3 . 

  string    format_number(number x, 
int d)  

 Formats the number  X  to a format like 
 #,###,###.## , rounded to  d  decimal places 
and returns the result as a string. If  d  is  0 , the 
result has no decimal point or fractional part. 

(continued)
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 Return Type  Name (Signature)  Description 

  string    get_json_object(string 
json_string, string path)  

 Extracts the JSON object from a JSON string 
based on the JSON path specified and returns 
JSON string of the extracted JSON object. It 
will return  null  if the input JSON string is 
invalid. The JSON path can only have the 
characters [0-9a-z_], i.e., no uppercase or 
special characters. Also, the keys  cannot  start 
with numbers. This is due to restrictions on 
Hive column names. 

  boolean    in_file(string str, string 
filename)  

 Returns  true  if the string  str  appears as an 
entire line in the filename. 

  int    instr(string str, string 
substr)  

 Returns the position of the first occurrence of 
substr in  str.  

  int    length(string A)   Returns the length of the string. 

  int    locate(string substr, string 
str[, int pos])  

 Returns the position of the first occurrence of 
 substr  in  str  after position  pos.  

  string    lower(string A) 
lcase(string A)  

 Returns the string resulting from converting 
all characters of  A  to lowercase. For example, 
 lower('fOoBaR')  results in  'foobar'.  

  string    lpad(string str, int len, 
string pad)  

 Returns  str , left-padded to a length of  len . 

  string    ltrim(string A)   Returns the string resulting from trimming 
spaces from the beginning(left side) of  A . 
For example,  ltrim(' foobar ')  results in 
 'foobar  '. 

  array<struct<string,
double>>  

  ngrams(array<array<string>>, 
int N, int K, int pf)  

 Returns the top-k N-grams from a set of 
tokenized sentences, such as those returned 
by the  sentences() . Hive Custom Aggregate 
Functions (UDAF). 

  string    parse_url(string urlString, 
string partToExtract 
[, string keyToExtract])  

 Returns the specified part from the URL. 
Valid values for  partToExtract  include 
 HOST ,  PATH ,  QUERY ,  REF ,  PROTOCOL ,  AUTHORITY , 
 FILE , and  USERINFO . For example,  parse_
url('    http://facebook.com/path1/p.
php?k1=v1&k2=v2#Ref1      ', 'HOST')  returns 
 'facebook.com' . Also a value of a particular 
key in  QUERY  can be extracted by providing 
the key as the third argument. For example, 
 parse_url('    http://facebook.com/path1/p.
php?k1=v1&k2=v2#Ref1      ', 'QUERY', 'k1')  
returns  'v1' . 

  string    printf(String format, 
Obj… args)  

 Returns the input formatted according to 
 printf -style format strings. 
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 Return Type  Name (Signature)  Description 

  string    regexp_extract(string 
subject, string pattern, 
int index)  

 Returns the string extracted using the pattern. 
For example,  regexp_extract('foothebar', 
'foo(.*?)(bar)', 2)  returns  'bar .' Note that 
some care is necessary in using predefined 
character classes: using ' \s ' as the second 
argument will match the letter  s ;  's'  is 
necessary to match whitespace, etc. The  index  
parameter is the Java regex matcher  group()  
method index. 

  string    regexp_replace(string 
INITIAL_STRING, string 
PATTERN, string REPLACEMENT)  

 Returns the string resulting from replacing 
all substrings in  INITIAL_STRING  that match 
the Java regular expression syntax defined 
in  PATTERN  with instances of  REPLACEMENT . 
For example,  regexp_replace("foobar", 
"oo|ar", "")  returns  'fb' . Note that some 
care is necessary in using predefined character 
classes: using ' \s ' as the second argument will 
match the letter s;  's'  is necessary to match 
whitespace, etc. 

  string    repeat(string str, int n)   Repeats  str n  times. 

  string    reverse(string A)   Returns the reversed string. 

  string    rpad(string str, int len, 
string pad)  

 Returns  str , right-padded to a length of  len.  

  string    rtrim(string A)   Returns the string resulting from trimming 
spaces from the end (right side) of  A . For 
example,  rtrim(' foobar ')  results in 
 'foobar' . 

  array<array<string>>    sentences(string str, 
[string lang], [string 
locale])  

 Tokenizes a string of natural language text into 
words and sentences, where each sentence is 
broken at the appropriate sentence boundary 
and returned as an array of words. The  lang  
and  locale  are optional arguments. For 
example,  sentences('Hello there! How 
are you?')  returns  ( ("Hello", "there"), 
("How", "are", "you") ) . 

  string    space(int n)   Returns a string of  n  spaces. 

  array    split(string str, string 
pat)  

 Splits  str  around  pat  ( pat  is a regular 
expression). 

  map<string,string>    str_to_map(text[, 
delimiter1, delimiter2])  

 Splits text into key-value pairs using two 
delimiters.  delimiter1  separates text into K-V 
pairs, and  delimiter2  splits each K-V pair. 
Default delimiters are , for  delimiter1  and  =  
for  delimiter2 . 

(continued)
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 Return Type  Name (Signature)  Description 

  string    substr(string|binary 
A, int start) 
substring(string|binary A, 
int start)  

 Returns the substring or slice of the byte array 
of  A , starting from start position until the end 
of string  A . For example,  substr('foobar', 
4)  results in  'bar'  (see    http://dev.mysql.
com/doc/refman/5.0/en/string-functions.
html#function_substr     ). 

  string    substr(string|binary 
A, int start, int len) 
substring(string|binary A, 
int start, int len)  

 Returns the substring or slice of the byte array 
of  A , starting from start position with length 
 len . For example,  substr('foobar', 4, 1)  
results in ' b ' (see    http://dev.mysql.com/
doc/refman/5.0/en/string-functions.
html#function_substr     ). 

  string    translate(string input, 
string from, string to)  

 Translates the input string by replacing the 
characters present in the  from  string with the 
corresponding characters in the  to  string. 
This is similar to the  translate  function in 
PostgreSQL. If any of the parameters of this 
UDF are  NULL , the result is  NULL  as well. 

  string    trim(string A)   Returns the string resulting from trimming 
spaces from both ends of  A . For example, 
 trim(' foobar ')  results in  'foobar' . 

  string    upper(string A) ucase
(string A)  

 Returns the string resulting from converting 
all characters of  A  to uppercase. For example, 
 upper('fOoBaR')  results in  'FOOBAR' . 

        Miscellaneous Functions 
 Return Type  Name (Signature)  Description 

  int    hash(a1[, a2...])   Returns a hash value of the arguments. 

        Aggregate Functions 
 Return Type  Name (Signature)  Description 

  bigint    count(*), 
count(expr), 
count(DISTINCT expr
[, expr_.])  

  count(*)  returns the total number of retrieved rows, including 
rows containing  NULL  values;  count(expr)  returns the number 
of rows for which the supplied expression is non- NULL ; 
 count(DISTINCT expr[, expr])  returns the number of rows 
for which the supplied expression(s) are unique and non- NULL . 

  double    sum(col), 
sum(DISTINCT col)  

 Returns the sum of the elements in the group or the sum of the 
distinct values of the column in the group. 
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 Return Type  Name (Signature)  Description 

  double    avg(col), 
avg(DISTINCT col)  

 Returns the average of the elements in the group or the 
average of the distinct values of the column in the group. 

  double    min(col)   Returns the minimum of the column in the group. 

  double    max(col)   Returns the maximum value of the column in the group 

  double    variance(col), 
var_pop(col)  

 Returns the variance of a numeric column in the group. 

  double    var_samp(col)   Returns the unbiased sample variance of a numeric column in 
the group. 

  double    stddev_pop(col)   Returns the standard deviation of a numeric column in the 
group. 

  double    stddev_samp(col)   Returns the unbiased sample standard deviation of a numeric 
column in the group. 

  double    covar_pop(col1, col2)   Returns the population covariance of a pair of numeric 
columns in the group. 

  double    covar_samp(col1, 
col2)  

 Returns the sample covariance of a pair of numeric columns 
in the group. 

  double    corr(col1, col2)   Returns the Pearson coefficient of the correlation of a pair of 
numeric columns in the group. 

  double    percentile(BIGINT 
col, p)  

 Returns the exact  p th percentile of a column in the group 
(does not work with floating point types).  p  must be between 0 
and 1.  Note : A true percentile can be computed only for integer 
values. Use  PERCENTILE_APPROX  if your input is non-integral. 

  array<double>    percentile(BIGINT col, 
array(p1 [, p2]...))  

 Returns the exact percentiles  p1 ,  p2 , … of a column in the 
group (does not work with floating point types). pi must be 
between 0 and 1.  Note : A true percentile can be computed 
only for integer values. Use  PERCENTILE_APPROX  if your input is 
non-integral. 

  double    percentile_
approx(DOUBLE col, 
p [, B])  

 Returns an approximate  p th percentile of a numeric column 
(including floating point types) in the group. The  B  parameter 
controls approximation accuracy at the cost of memory. 
Higher values yield better approximations, and the default is 
10,000. When the number of distinct values in  col  is smaller 
than  B , this gives an exact percentile value. 

  array<double>    percentile_
approx(DOUBLE col, 
array(p1 [, p2]...) 
[, B])  

 Same as above, but accepts and returns an array of percentile 
values instead of a single one. 

  array<struct 
{'x','y'}>  

  histogram_
numeric(col, b)  

 Computes a histogram of a numeric column in the group 
using  b  non-uniformly spaced bins. The output is an array of 
size  b  of double-valued (x,y) coordinates that represent the bin 
centers and heights. 

  array    collect_set(col)   Returns a set of objects with duplicate elements eliminated. 
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        User-Defined Functions (UDFs) 
   CREATE FUNCTION [db_name.]function_name AS class_name 
   [USING JAR|FILE|ARCHIVE 'file_uri' [, JAR|FILE|ARCHIVE 'file_uri'] ]; 

   This statement creates a function by the  class_name . JARs, files, and archives will be added to the 
environment as specified with the  USING  clause. When the function is referenced for the first time by a Hive 
session, these resources will be added to the environment as if    ADD JAR/FILE      had been issued. If Hive is not 
in local mode, the resource location must be a non-local URI such as an HDFS location. 

 The function will be added to the specified database, or to the current database at the time that the 
function was created. The function can be referenced by fully qualifying the function name ( db_name.
function_name ) or can be referenced without qualification if the function is in the current database. 

  Mastering the use of Hive’s built-in functions and the permutation chains that you can construct using these 
functions is of massive significance to becoming skilled at Hive. 

 These are your data tools. 

 Practice using them on a methodical basis to grow into an expert at processing data in Hive.  

  To get an up-to-date reference list, see    https://cwiki.apache.org/confluence/display/Hive/
LanguageManual     .      

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli#LanguageManualCli-HiveResources
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
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