
Shelve in
Programming Languages / Java

User level:
Intermediate

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Varanasi

SOURCE CODE ONLINE

www.apress.com

Practical Spring LDAP
Practical Spring LDAP is your guide to developing Java-based enterprise appli-
cations using the Spring LDAP Framework. This book explains the purpose and
fundamental concepts of LDAP before giving a comprehensive tour of the latest
version, Spring LDAP 1.3.2. It provides a detailed treatment of LDAP controls
and the new features of Spring LDAP 1.3.2 such as Object Directory Mapping
and LDIF parsing.

Additionally, the book focuses on the practical aspects of unit and integration
testing LDAP code. Filled with real-world code examples, this book is a must for
any Java developer working with LDAP.

LDAP has become the de-facto standard for storing and accessing informa-
tion in enterprises. Despite its widespread adoption, developers often struggle
when it comes to using this technology effectively. The traditional JNDI approach
has proven to be painful and has resulted in complex, less modular applications.
The Spring LDAP Framework provides an ideal alternative.

9 781430 263975

ISBN 978-1-4302-6397-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgements ��� xvii

Introduction �� xix

Chapter 1: Introduction to LDAP ■ ��� 1

Chapter 2: Java Support for LDAP ■ �� 15

Chapter 3: Introducing Spring LDAP ■ ��� 27

Chapter 4: Testing LDAP Code ■ �� 59

Chapter 5: Advanced Spring LDAP ■ �� 77

Chapter 6: Searching LDAP ■ ��� 93

Chapter 7: Sorting and Paging Results ■ ��������������������������������������� 111

Chapter 8: Object-Directory Mapping ■ ��� 131

Chapter 9: LDAP Transactions ■ �� 155

Chapter 10: Odds and Ends ■ �� 173

Index �� 189

xix

Introduction

Practical Spring LDAP provides a complete coverage of Spring LDAP, a framework
designed to take the pain out of LDAP programming. This book starts by explaining the
fundamental concepts of LDAP and showing the reader how to set up the development
environment. It then dives into Spring LDAP, analyzing the problems it is designed to
solve. After that, the book focuses on the practical aspects of unit testing and integration
testing LDAP code. This is followed by an in-depth treatment of LDAP controls and new
Spring LDAP 1.3.1 features such as Object Directory Mapping and LDIF parsing. Finally,
it concludes with discussions of LDAP authentication and connection pooling.

What the Book Covers
Chapter 1 starts with an overview of directory servers. It then discusses basics of LDAP
and introduces the four LDAP information models. It finishes up with an introduction to
the LDIF format that is used for representing LDAP data.

Chapter 2 focuses on the Java Naming and Directory Interface (JNDI). In this chapter,
you look at creating applications that interact with LDAP using plain JNDI.

Chapter 3 explains what Spring LDAP is and why it is an important option in
an enterprise developer’s repertoire. In this chapter, you set up the development
environment needed to create Spring LDAP applications, and other important tools such
as Maven and a test LDAP server. Finally, you implement a basic but complete Spring
LDAP application using annotations.

Chapter 4 covers the fundamentals of Unit/Mock/Integration testing. You then look
at setting up an embedded LDAP server for unit testing your application code. You also
review available tools for generating test data. Finally, you use EasyMock framework to
mock test LDAP code.

Chapter 5 introduces the basics of JNDI object factories and using these factories
for creating objects that are more meaningful to the application. You then examine a
complete Data Access Object (DAO) layer implementation using Spring LDAP and object
factories.

Chapter 6 covers LDAP Search. This chapter begins with the underlying ideas of
LDAP Search. I then introduce various Spring LDAP Filters that make LDAP searching
easier. Finally, you look at creating a custom search filter to address situations where the
current set is not sufficient.

Chapter 7 provides an in-depth overview of LDAP controls that can be used for
extending LDAP server functionality. Then it moves on to sorting and paging LDAP
results using sort and page controls.

■ IntroduCtIon

xx

Chapter 8 deals with Object-Directory Mapping, a new feature that was introduced
in Spring LDAP 1.3.1. In this chapter, you look at bridging the gap between domain model
and directory server. You then re-implement the DAO using ODM concepts.

Chapter 9 introduces the important ideas of transactions and transactional integrity,
before analyzing the transaction abstractions provided by Spring Framework. Finally,
it takes a look at Spring LDAP’s compensating transaction support.

Chapter 10 starts with implementing authentication, the most common operation
performed against LDAP. It then deals with parsing LDIF files using another feature that
was introduced in Spring 1.3.1. I end the chapter by looking at the connection pooling
support provided by Spring LDAP.

Target Audience
Practical Spring LDAP is intended for developers interested in building Java/JEE
applications using LDAP. It also teaches techniques for creating unit/integration tests
for LDAP applications. The book assumes basic familiarity with Spring Framework; prior
exposure to LDAP is helpful but not required. Developers who are already familiar with
Spring LDAP will find best practices and examples that can help them get the most out of
the framework.

Downloading Source Code
The source code for the examples in this book can be downloaded from www.apress.com.
For detailed information about how to locate this book’s source code, go to
www.apress.com/source-code/. The code is organized by chapter and can be built using
Maven.

The code uses Spring LDAP 1.3.2 and Spring Framework 3.2.4. It is tested against
OpenDJ and ApacheDS LDAP servers. More information on getting started can be found
in Chapter 3.

Questions?
If you have any questions or suggestions, you can contact the author at
 balaji@inflinx.com.

www.apress.com
www.apress.com/source-code/
http://balaji@inflinx.com

1

Chapter 1

Introduction to LDAP

In this chapter, we will discuss:

Directory basics•	

LDAP information models•	

LDIF format for representing LDAP data•	

A sample application•	

We all deal with directories on a daily basis. We use a telephone directory to look up
phone numbers. When visiting a library, we use the library catalog to look up the books
we want to read. With computers, we use the file system directory to store our files and
documents. Simply put, a directory is a repository of information. The information is
usually organized in such a way that it can be retrieved easily.

Directories on a network are typically accessed using the client/server
communication model. Applications wanting to read or write data to a directory
communicate with specialized directory servers. The directory server performs read or
write operation on the actual directory. Figure 1-1 shows this client/server interaction.

Figure 1-1. Directory server and client interaction

CHAPTER 1 ■ InTRoduCTIon To LdAP

2

The communication between the directory server and client applications is usually
accomplished using standardized protocols. The Lightweight Directory Access Protocol
(LDAP) provides a standard protocol model for communicating with a directory. The
directory servers that implement the LDAP protocol are usually referred to as LDAP
servers. The LDAP protocol is based on an earlier X.500 standard but is significantly
simpler (and hence lightweight) and easily extensible. Over the years, the LDAP protocol
went through iterations and is currently at version 3.0.

LDAP Overview
The LDAP defines a message protocol used by directory clients and directory servers.
LDAP can be better understood by considering the following four models upon which
it is based:

The Information model determines the structure of information •	
stored in the directory.

The Naming model defines how information is organized and •	
identified in the directory.

The Functional model defines the operations that can be •	
performed on the directory.

The Security model defines how to protect information from •	
unauthorized access.

We will be looking at each of these models in the sections that follow.

DIreCtOrY VS. DataBaSe

Beginners often get confused and picture an LdAP directory as a relational database.
Like a database, an LdAP directory stores information. However, there are several
key characteristics that set a directory apart from relational databases.

LdAP directories typically store data that is relatively static in nature. For example,
employee information stored in LdAP such as his phone number or name does not
change every day. However, users and applications look up this information very
frequently. Since the data in a directory is accessed more often than updated, LdAP
directories follow the WoRM principle (http://en.wikipedia.org/wiki/Write_
Once_Read_Many) and are heavily optimized for read performance. Placing data that
change quite often in an LdAP does not make sense.

Relational databases employ techniques such as referential integrity and locking to
ensure data consistency. The type of data stored in LdAP usually does not warrant
such strict consistency requirements. Hence, most of these features are absent on
LdAP servers. Also, transactional semantics to roll back transactions are not defined
under LdAP specification.

http://en.wikipedia.org/wiki/Write_Once_Read_Many
http://en.wikipedia.org/wiki/Write_Once_Read_Many

CHAPTER 1 ■ InTRoduCTIon To LdAP

3

Relational databases are designed following normalization principles to avoid data
duplication and data redundancy. LdAP directories, on the other hand, are organized
in a hierarchical, object-oriented way. This organization violates some of the
normalization principles. Also, there is no concept of table joins in LdAP.

Even though directories lack several of the RdBMS features mentioned above, many
modern LdAP directories are built on top of relational databases such as dB2.

Information Model
The basic unit of information stored in LDAP is referred to as an entry. Entries hold
information about real world objects such as employees, servers, printers, and
organizations. Each entry in an LDAP directory is made up of zero or more attributes.
Attributes are simply key value pairs that hold information about the object represented
by the entry. The key portion of an attribute is also called the attribute type and
describes the kind of information that can be stored in the attribute. The value portion
of the attribute contains the actual information. Table 1-1 shows a portion of an entry
representing an employee. The left column in the entry contains the attribute types,
and the right column holds the attribute values.

Note ■ Attribute names by default are case-insensitive. However, it is recommended to
use camel case format in LdAP operations.

You will notice that the mail attribute has two values. Attributes that are allowed to
hold multiple values are called multi-valued attributes. Single-valued attributes, on the
other hand, can only hold a single value. The LDAP specification does not guarantee the
order of the values in a multi-valued attribute.

Each attribute type is associated with a syntax that dictates the format of the data
stored as attribute value. For example, the mobile attribute type has a TelephoneNumber
syntax associated with it. This forces the attribute to hold a string value with length

Table 1-1. Employee LDAP Entry

Employee Entry

objectClass inetOrgPerson

givenName John

surname Smith

mail john@inflix.com
jsmith@inflix.com

mobile +1 801 100 1000

http://mailto:john@inflix.com/
http://mailto:john@inflix.com/

CHAPTER 1 ■ InTRoduCTIon To LdAP

4

between 1 and 32. Additionally, the syntax also defines the attribute value behavior
during search operations. For example, the givenName attribute has the syntax
DirectoryString. This syntax enforces that only alphanumeric characters are allowed as
values. Table 1-2 lists some of the common attributes along with their associated syntax
description.

Object Classes
In object-oriented languages such as Java, we create a class and use it as a blueprint for
creating objects. The class defines the attributes/data (and behavior/methods) that these
instances can have. In a similar fashion, object classes in LDAP determine the attributes
an LDAP entry can have. These object classes also define which of these attributes
are mandatory and which are optional. Every LDAP entry has a special attribute aptly
named objectClass that holds the object class it belongs to. Looking at the objectClass
value in the employee entry in Table 1-1, we can conclude that the entry belongs to the
inetOrgPerson class. Table 1-3 shows the required and optional attributes in a standard
LDAP person object class. The cn attribute holds the person’s common name whereas the
sn attribute holds the person’s family name or surname.

Table 1-2. Common Entry Attributes

Attribute Type Syntax Description

commonName DirectoryString Stores the common
name of a person.

telephoneNumber TelephoneNumber Stores the person’s primary telephone number.

jpegPhoto Binary Stores one or more images of the person.

Surname DirectoryString Stores the last name of the person.

employeeNumber DirectoryString Stores the employee’s identification number
in the organization.

givenName DirectoryString Stores user’s first name.

mail IA5 String Stores person’s SMTP
mail address.

mobile TelephoneNumber Stores person’s mobile number.

postalAddress Postal Address Stores the location of the user.

postalCode DirectoryString Stores the user’s ZIP or postal code.

st DirectoryString Stores the state or
province name.

uid DirectoryString Stores the user id.

street DirectoryString Stores the street address.

CHAPTER 1 ■ InTRoduCTIon To LdAP

5

As in Java, it is possible for an object class to extend other object classes. This
inheritance will allow the child object class to inherit parent class attributes. For example,
the person object class defines attributes such as common name and surname. The
object class inetOrgPerson extends the person class and thus inherits all the person’s
attributes. Additionally, inetOrgPerson defines attributes that are required for a person
working in an organization, such as departmentNumber and employeeNumber. One special
object class namely top does not have any parents. All other object classes are decedents
of top and inherit all the attributes declared in it. The top object class includes the
mandatory objectClass attribute. Figure 1-2 shows the object inheritance.

Most LDAP implementations come with a set of standard object classes that can be
used out of the box. Table 1-4 lists some of these LDAP object classes along with their
commonly used attributes.

Table 1-3. Person Object Class

Required Attributes Optional Attributes

sn description

telephoneNumber

cn userPassword

objectClass seeAlso

Figure 1-2. LDAP object inheritance

CHAPTER 1 ■ InTRoduCTIon To LdAP

6

Directory Schema
The LDAP directory schema is a set of rules that determine the type of information stored
in a directory. Schemas can be considered as packaging units and contain attribute
type definitions and object class definitions. Before an entry can be stored in LDAP,
the schema rules are verified. This schema checking ensures that the entry has all the
required attributes and does not contain any attributes that are not part of the schema.
Figure 1-3 represents a generic LDAP schema.

Table 1-4. Common LDAP Object Classes

Object Class Attributes Description

top objectClass Defines the root object class. All
other object classes must extend
this class.

organization o Represents a company
or an organization.
The o attribute typically holds the
name of the organization.

organizationalUnit ou Represents a department or similar
entity inside an organization.

person sn
cn
telephoneNumber
userPassword

Represents a person in the directory
and requires the sn (surname) and
cn (common name) attributes.

organizationalPerson registeredAddress
postalAddress
postalCode

Subclasses person and represents
a person in an organization.

inetOrgPerson uid
departmentNumber
employeeNumber
givenName manager

Provides additional attributes
and can be used to represent a
person working in today’s Internet-
and intranet-based organization.
The uid attribute holds the person’s
username or user id.

CHAPTER 1 ■ InTRoduCTIon To LdAP

7

Like databases, directory schemas need to be well designed to address issues like
data redundancy. Before you go about implementing your own schema, it is worth
looking at several of the standard schemas available publicly. Most often these standard
schemas contain all definitions to store the required data and, more importantly, ensure
interoperability across other directories.

Naming Model
The LDAP Naming model defines how entries are organized in a directory. It also
determines how a particular entry can be uniquely identified. The Naming model
recommends that entries be stored logically in a hierarchical fashion. This tree of entries
is often referred to as directory information tree (DIT). Figure 1-4 provides an example
of a generic directory tree.

The root of the tree is usually referred to as the base or suffix of the directory. This
entry represents the organization that owns the directory. The format of suffix can vary
from implementation to implementation but, in general, there are three recommended
approaches, as listed in Figure 1-5.

Figure 1-3. LDAP generic schema

Figure 1-4. Generic DIT

CHAPTER 1 ■ InTRoduCTIon To LdAP

8

Note ■ dC stands for domain component.

The first recommended technique is to use the organization’s do- main name as the
suffix. For example, if the organization’s domain name is example.com, the suffix of the
directory will be o=example. com. The second technique also uses the domain name but
each component of the name is prepended with “dc=” and joined by commas. So the
domain name example.com would result in a suffix dc=example, dc=com. This technique is
proposed in RFC 2247 and is popular with Microsoft Active Directory. The third technique
uses X.500 model and creates a suffix in the format o=organization name, c=country code.
In United States, the suffix for the organization example would be o=example, c=us.

The Naming model also defines how to uniquely name and identify entries in a
directory. Entries that share a common immediate parent are uniquely identified via
their Relative Distinguished Name (RDN). The RDN is computed using one or more
attribute/value pairs of the entry. In its simplest case, RDN is usually of the form
attribute name = attribute value. Figure 1-6 provides a simplified representation of an
organization directory. Each person entry under ou=employees has a unique uid. So the
RDN for the first person entry would be uid=emp1, where emp1 is the employee’s user id.

Figure 1-5. Directory suffix naming conventions

Figure 1-6. Example of an organization directory

http://example.com/
http://example.com/

CHAPTER 1 ■ InTRoduCTIon To LdAP

9

Note ■ The distinguished name is not an actual attribute in the entry. It is simply a logical
name associated with the entry.

It is important to remember that RDN cannot be used to uniquely identify the entry in
the entire tree. However, this can be easily done by combining the RDNs of all the entries
in the path from the top of the tree to the entry. The result of this combination is referred
to as Distinguished Name (DN). In Figure 1-6, the DN for Person 1 would be uid=emp1,
ou=employees, dc=example, dc=com. Since the DN is made by combining RDNs, if an
entry’s RDN changes, the DNs of that entry and all its child entries also changes.

There can be situations where a set of entries do not have a single unique attribute.
In those scenarios, one option is to combine multiple attributes to create uniqueness.
For example, in the previous directory we can use the consumer’s common name and
e-mail address as a RDN. Multi-valued RDNs are represented by separating each
attribute pair with a +, like so:

cn = Balaji Varanasi + mail=balaji@inflinx.com

Note ■ Multi-valued Rdns are usually discouraged. In those scenarios, it is recommended
to create a unique sequence attribute to ensure uniqueness.

Functional Model
The LDAP Functional model describes the access and modification operations that can
be performed on the directory using LDAP protocol. These operations fall in to three
categories: query, update, and authentication.

The query operations are used to search and retrieve information from a directory.
So every time some information needs to be read, a search query needs to be constructed
and executed against LDAP. The search operation takes a starting point within DIT,
the depth of the search, and the attributes an entry must have for a match. In Chapter 6,
you’ll delve deep into searching and look at all the available options.

The update operations add, modify, delete, and rename directory entries. The add
operation, as name suggests, adds a new entry to the directory. This operation requires
the DN of the entry to be created and a set of attributes that constitute the entry. The
delete operation takes a fully qualified DN of the entry and deletes it from the directory.
The LDAP protocol allows only the leaf entries to be deleted. The modify operation
updates an existing entry. This operation takes the entry’s DN and a set of modifications
such as adding a new attribute, updating a new attribute, or removing an existing
attribute. The rename operation can be used to rename or move entries in a directory.

http://mailto:balaji@inflinx.com/

CHAPTER 1 ■ InTRoduCTIon To LdAP

10

The authentication operations are used for connecting and ending sessions between
the client and LDAP server. A bind operation initiates an LDAP session between the client
and LDAP server. Typically, this would result in an anonymous session. It is possible
for the client to provide a DN and set of credentials to authenticate itself and create
an authenticated session. The unbind operation, on the other hand, can be used to
terminate existing session and disconnect from the server.

LDAP V3 introduced a framework for extending existing operations and adding new
operations without changing the protocol itself. You will take a look at these operations
in Chapter 7.

Security Model
The LDAP Security model focuses on protecting LDAP directory information from
unauthorized accesses. The model specifies which clients can access which parts of the
directory and what kinds of operations (search vs. update) are allowed.

The LDAP Security model is based on the client authenticating itself to the server. This
authentication process or bind operation as discussed above involves the client supplying
a DN identifying itself and a password. If the client does not provide DN and password, an
anonymous session is established. RFC 2829 (www.ietf.org/rfc/rfc2829.txt) defines
a set of authentication methods that LDAP V3 servers must support. After successful
authentication, the access control models are consulted to determine whether the client has
sufficient privileges to do what is being requested. Unfortunately, no standards exist when it
comes to access control models and each vendor provides his own implementations.

LDAP Vendors
LDAP has gained a wide support from a variety of vendors. There has also been a strong
open source movement to produce LDAP servers. Table 1-5 outlines some of the popular
Directory Servers.

Table 1-5. LDAP Vendors

Directory Name Vendor Open Source? URL

Apache DS Apache Yes http://directory.apache.org/
apacheds/

OpenLDAP OpenLDAP Yes www.openldap.org/

OpenDS Oracle
(formerly Sun)

Yes www.opends.org/

Tivoli Directory
Server

IBM No www.ibm.com/software/tivoli/
products/directory-server

(continued)

http://www.ietf.org/rfc/rfc2829.txt
http://directory.apache.org/apacheds/
http://directory.apache.org/apacheds/
http://www.openldap.org/
http://www.opends.org/
http://www.ibm.com/software/tivoli/products/directory-server
http://www.ibm.com/software/tivoli/products/directory-server

CHAPTER 1 ■ InTRoduCTIon To LdAP

11

ApacheDS and OpenDJ are pure Java implementation of LDAP directories.
You will be using these two servers for unit and integration testing of the code
throughout this book.

LDIF Format
The LDAP Data Interchange Format (LDIF) is a standard text-based format for
representing directory content and update requests. The LDIF format is defined in RFC
2849 (www.ietf.org/rfc/rfc2849.txt). LDIF files are typically used to export data from
one directory server and import it into another directory server. It is also popular for
archiving directory data and applying bulk updates to a directory. You will be using LDIF
files to store your test data and refreshing directory server between unit tests.

The basic format of an entry represented in LDIF is as follows:

#comment
dn: <distinguished name>
objectClass: <object class>
objectClass: <object class>
...
...
<attribute type>: <attribute value>
<attribute type>: <attribute value>
...

Directory Name Vendor Open Source? URL

Active Directory Microsoft No http://msdn.microsoft.com/
en-us/library/windows/desktop/
aa746492(v=vs.85).aspx

eDirectory Novell No www.novell.com/
products/edirectory/

Oracle Directory
Server Enterprise
Edition

Oracle
(formerly Sun)

No www.oracle.com/technetwork/
middleware/id-mgmt/overview/
index-085178.html

Internet
Directory

Oracle No www.oracle.com/technetwork/
middleware/id-mgmt/overview/
index-082035.html

OpenDJ ForgeRock
Community

Yes http://opendj.forgerock.org/

Table 1-5. (continued)

http://www.ietf.org/rfc/rfc2849.txt
http://msdn.microsoft.com/en-us/library/windows/desktop/aa746492(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa746492(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa746492(v=vs.85).aspx
www.novell.com/products/edirectory/
www.novell.com/products/edirectory/
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-085178.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-085178.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-085178.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-082035.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-082035.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-082035.html
http://opendj.forgerock.org/

CHAPTER 1 ■ InTRoduCTIon To LdAP

12

Lines in the LDIF file starting with a # character are considered as comments. The dn
and at least one objectClass definition of the entry are considered required. Attributes
are represented as name/value pairs separated by a colon. Multiple attribute values are
specified in separate lines and will have the same attribute type. Since LDIF files are
purely text-based, binary data needs to be Base64 encoded before it is stored as part of
the LDIF file.

Multiple entries in the same LDIF file are separated by blank lines. Listing 1-1 shows
an LDIF file with three employee entries. Notice that the cn attribute is a multivalued
attribute and is represented twice for each employee.

Listing 1-1. LDIF File with Three Employee Entries

Barbara’s Entry
dn: cn=Barbara J Jensen, dc=example, dc=com
multi valued attribute
cn: Barbara J Jensen
cn: Babs Jensen
objectClass: person
sn: Jensen

Bjorn’s Entry
dn: cn=Bjorn J Jensen, dc=example, dc=com
cn: Bjorn J Jensen
cn: Bjorn Jensen
objectClass: person
sn: Jensen
Base64 encoded JPEG photo
jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ ERXRTc4UG1RV19iZ2hnPk1xeXBk
eFxlZ2P/2wBDARESEhgVG

Jennifer’s Entry
dn: cn=Jennifer J Jensen, dc=example, dc=com
cn: Jennifer J Jensen
cn: Jennifer Jensen
objectClass: person
sn: Jensen

Sample Application
Throughout this book you will be working with a directory for a hypothetical book library.
I have chosen library because the concept is universal and easy to grasp. A library usually
stores books and other multimedia that patrons can borrow. Libraries also employs
people for taking care of daily library operations. To keep things manageable, the
directory will not be storing information about books. A relational database is probably
suitable for recording book information. Figure 1-7 shows the LDAP directory tree for our
library application.

CHAPTER 1 ■ InTRoduCTIon To LdAP

13

In this directory tree I have used the RFC 2247 (www.ietf.org/rfc/rfc2247.txt)
convention for naming the base entry. The base entry has two organizational unit entries
that hold the employees and patrons information. The ou=employees part of the tree will
hold all the library employee entries. The ou=patrons part of the tree will hold the library
patron entries. Both library employee and patron entries are of the type inetOrgPerson
objectClass. Both employees and patrons access library applications using their unique
login id. Thus the uid attribute will be used as the RDN for entries.

Summary
LDAP and applications that interact with LDAP have become a key part of every
enterprise today. This chapter covered the basics of LDAP Directory. You learned that
LDAP stores information as entries. Each entry is made up of attributes that are simply
key value pairs. These entries can be accessed via their Distinguished Names. You also
saw that LDAP directories have schemas that determine the type of information that can
be stored.

In the next chapter, you will look at communicating with an LDAP directory using
JNDI. In the chapters following Chapter 2, you will focus on using Spring LDAP for
developing LDAP applications.

Figure 1-7. Library DIT

http://www.ietf.org/rfc/rfc2247.txt

15

Chapter 2

Java Support for LDAP

In this chapter, we will discuss:

» Basics of JNDI

» LDAP enabling applications using JNDI

» JNDI drawbacks

The Java Naming and Directory Interface (JNDI), as the name suggests provides a
standardized programming interface for accessing naming and directory services. It is
a generic API and can be used to access a variety of systems including file systems, EJB,
CORBA, and directory services such as Network Information Service and LDAP. JNDI’s
abstractions to directory services can be viewed as similar to JDBC’s abstractions to
relational databases.

The JNDI architecture consists of an Application Programming Interface or API
and a Service Provider Interface or SPI. Developers program their Java applications
using the JNDI API to access directory/naming services. Vendors implement the SPI
with details that deal with actual communication to their particular service/product.
Such implementations are referred to as service providers. Figure 2-1 shows the JNDI
architecture along with a few naming and directory service providers. This pluggable
architecture provides a consistent programming model and prevents the need to learn
a separate API for each product.

Figure 2-1. JNDI Architecture

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

16

The JNDI has been part of the standard JDK distribution since Java version 1.3.
The API itself is spread across the following four packages:

» javax.naming package contains classes and interfaces for
looking up and accessing objects in a naming service.

» javax.naming.directory package contains classes and
interfaces that extend the core javax.naming package. These
classes can be used to access directory services and perform
advanced operations such as filtered searching.

» javax.naming.event package has functionality for event
notification when accessing naming and directory services.

» javax.naming.ldap package contains classes and interfaces
that support the LDAP Version 3 controls and operations. We
will be looking at controls and operations in the later chapters.

The javax.naming.spi package contains the SPI interfaces and classes. Like I
mentioned above, service providers implement SPI and we will not be covering these
classes in this book.

LDAP Using JNDI
While JNDI allows access to a directory service, it is important to remember that JNDI
itself is not a directory or a naming service. Thus, in order to access LDAP using JNDI,
we need a running LDAP directory server. If you don’t have a test LDAP server available,
please refer to steps in Chapter 3 for installing a local LDAP server.

Accessing LDAP using JNDI usually involves the following three steps:

» Connect to LDAP

» Perform LDAP operations

» Close the resources

Connecting to LDAP
All the naming and directory operations using JNDI are performed relative to a context.
So the first step in using JNDI is to create a context that acts as a starting point on the
LDAP server. Such a context is referred to as an initial context. Once an initial context is
established, it can be used to look up other contexts or add new objects.

The Context interface and InitialContext class in the javax.naming package can
be used for creating an initial naming context. Since we are dealing with a directory
here, we will be using a more specific DirContext interface and its implementation
InitialDirContext. Both DirContext and InitialDirContext are available inside the javax.
naming.directory package. The directory context instances can be configured with a set
of properties that provide information about the LDAP server. The following code in
Listing 2-1 creates a context to an LDAP server running locally on port 11389.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

17

Listing 2-1.

Properties environment = new Properties();
environment.setProperty(DirContext.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
environment.setProperty(DirContext.PROVIDER_URL, "ldap://localhost:11389");
DirContext context = new InitialDirContext(environment);

In the above code, we have used the INITIAL_CONTEXT_FACTORY constant
to specify the service provider class that needs to be used. Here we are using the
sun provider com.sun.jndi.ldap.LdapCtxFactory, which is part of the standard JDK
distribution. The PROVIDER_URL is used to specify the fully qualified URL of the
LDAP server. The URL includes the protocol (ldap for non secure or ldaps for secure
connections), the LDAP server host name and the port.

Once a connection to the LDAP server is established it is possible for the application
to identify itself by providing authentication information. Contexts like the one created
in Listing 2-1, where authentication information is not provided are referred to as
anonymous contexts. LDAP servers usually have ACLs (access list controls) in place
that restrict operations and information to certain accounts. So it is very common in
enterprise applications to create and use authenticated contexts. Listing 2-2 provides an
example of creating an authenticated context. Notice that we have used three additional
properties to provide the binding credentials. The SECURITY_AUTHENTICATION
property is set to simple indicating that we will be using plain text user name and
password for authentication.

Listing 2-2.

Properties environment = new Properties();
environment.setProperty(DirContext.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
environment.setProperty(DirContext.PROVIDER_URL, "ldap://localhost:11389");
environment.setProperty(DirContext.SECURITY_AUTHENTICATION, "simple");
environment.setProperty(DirContext.SECURITY_PRINCIPAL, "uid=admin,ou=system");
environment.setProperty(DirContext.SECURITY_CREDENTIALS, "secret");
DirContext context = new InitialDirContext(environment);

Any problems that might occur during the creation of the context will be reported as
instances of javax.naming.NamingException. NamingException is the super class of all
the exceptions thrown by the JNDI API. This is a checked exception and must be handled
properly for the code to compile. Table 2-1 provides a list of common exceptions that we
are likely to encounter during JNDI development.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

18

LDAP Operations
Once we obtain an initial context, we can perform a variety of operations on LDAP using
the context. These operations can involve looking up another context, creating a new
context and updating or removing an existing context. Here is an example of looking up
another context with DN uid=emp1,ou=employees,dc=inflinx,d c=com.

DirContext anotherContext = context.lookup("uid=emp1,ou=employees,
dc=inflinx,dc=com");

We will take a closer look at each of these operations in the coming section.

Table 2-1. Common LDAP Exceptions

Exception Description

AttributeInUseException Thrown when an operation tries to add an existing
attribute.

AttributeModification
Exception

Thrown when an operation tries to add/remove/
update an attribute and violates the attribute’s
schema or state. For example, adding two values to a
single valued attribute would result in this exception.

CommunicationException Thrown when an application fails to communicate
(network problems for example) with the LDAP server.

InvalidAttributesException Thrown when an operation tries to add or modify an
attribute set that has been specified incompletely or
incorrectly. For example, attempting to add a new
entry without specifying all the required attributes
would result in this exception.

LimitExceededException Thrown when a search operation abruptly terminates
as a user or system specified result limit is reached.

InvalidSearchFilterException Thrown when a search operation is given a
malformed search filter.

NameAlreadyBoundException Thrown to indicate that an entry cannot be added as the
associated name is already bound to a different object.

PartialResultException Thrown to indicate that only a portion of the expected
results is returned and the operation cannot be
completed.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

19

Closing Resources
After all the desired LDAP operations are complete, it is important to properly close
the context and any other associated resources. Closing a JNDI resource simply
involves calling the close method on it. Listing 2-3 shows the code associated with
closing a DirContext. From the code you can see that the close method also throws
a NamingException that needs to be properly handled.

Listing 2-3.

try {
 context.close();
}
catch (NamingException e) {
 e.printstacktrace();
}

Creating a New Entry
Consider the case where a new employee starts with our hypothetical Library and we
are asked to add his information to LDAP. As we have seen earlier, before an entry can
be added to LDAP, it is necessary to obtain an InitialDirContext. Listing 2-4 defines a
reusable method for doing this.

Listing 2-4.

private DirContext getContext() throws NamingException{
 Properties environment = new Properties();
 environment.setProperty(DirContext.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.
 LdapCtxFactory");
 environment.setProperty(DirContext.PROVIDER_URL, "ldap://localhost:10389");
 environment.setProperty(DirContext.SECURITY_PRINCIPAL, "uid=admin,ou=system");
 environment.setProperty(DirContext.SECURITY_CREDENTIALS, "secret");
 DirContext context = new InitialDirContext(environment);
 return context;
}

Once we have the initial context, adding the new employee information is a
straightforward operation as shown in Listing 2-5.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

20

Listing 2-5.

public void addEmploye(Employee employee) {
 DirContext context = null;
 try {
 context = getContext();
 // Populate the attributes
 Attributes attributes = new BasicAttributes();
 attributes.put(new BasicAttribute("objectClass", "inetOrgPerson"));
 attributes.put(new BasicAttribute("uid", employee.getUid()));
 attributes.put(new BasicAttribute("givenName", employee.getFirstName()));
 attributes.put(new BasicAttribute("surname", employee.getLastName()));
 attributes.put(new BasicAttribute("commonName", employee.getCommonName()));
 attributes.put(new BasicAttribute("departmentNumber",
 employee.getDepartmentNumber()));
 attributes.put(new BasicAttribute("mail", employee.getEmail()));
 attributes.put(new BasicAttribute("employeeNumber",
 employee.getEmployeeNumber()));

 Attribute phoneAttribute = new BasicAttribute("telephoneNumber");
 for(String phone : employee.getPhone()) {
 phoneAttribute.add(phone);
 }
 attributes.put(phoneAttribute);

 // Get the fully qualified DN
 String dn = "uid="+employee.getUid() + "," + BASE_PATH;
 // Add the entry
 context.createSubcontext("dn", attributes);
 }
 catch(NamingException e) {
 // Handle the exception properly
 e.printStackTrace();
 }
 finally {
 closeContext(context);
 }
}

As you can see, the first step in the process is to create a set of attributes that needs
be added to the entry. JNDI provides the javax.naming.directory.Attributes interface
and its implementation javax.naming.directory.BasicAttributes to abstract an attribute
collection. We then add the employee’s attributes one at a time to the collection using
JNDI’s javax.naming.directory.BasicAttribute class. Notice that we have taken two
approaches in creating the BasicAttribute class. In the first approach we have added

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

21

the single valued attributes by passing the attribute name and value to BasicAttribute’s
constructor. To handle the multi-valued attribute telephone, we first created the
BasicAttribute instance by just passing in the name. Then we individually added the
telephone values to the attribute. Once all the attributes are added, we invoked the
createSubcontext method on the initial context to add the entry. The createSubcontext
method requires the fully qualified DN of the entry to be added.

Notice that we have delegated the closing of the context to a separate method
closeContext. Listing 2-6 shows its implementation.

Listing 2-6.

private void closeContext(DirContext context) {
 try {
 if(null != context) {
 context.close();
 }
 }
 catch(NamingException e) {
 // Ignore the exception
 }
}

Updating an Entry
Modifying an existing LDAP entry can involve any of the following operations:

» Add a new attribute and value(s) or add a new value to an
existing multi valued attribute.

» Replace an existing attribute value(s).

» Remove an attribute and its value(s).

In order to allow modification of the entries, JNDI provides an aptly named javax.
naming.directory.ModificationItem class.

A ModificationItem consists of the type of modification to be made and the attribute
under modification. The code below creates a modification item for adding a new
telephone number.

Attribute telephoneAttribute = new BasicAttribute("telephone", "80181001000");
ModificationItem modificationItem = new ModificationItem(DirContext.
ADD_ATTRIBUTE, telephoneAttribute);

Notice that in the above code, we have used the constant ADD_ATTRIBUTE to
indicate that we want an add operation. Table 2-2 provides the supported modification
types along with their descriptions.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

22

The code for updating an entry is provided in Listing 2-7. The modifyAttributes
method takes the fully qualified DN of the entry to be modified and an array of
modification items.

Listing 2-7.

public void update(String dn, ModificationItem[] items) {
 DirContext context = null;
 try {
 context = getContext();
 context.modifyAttributes(dn, items);
 }
 catch (NamingException e) {
 e.printStackTrace();
 }
 finally {
 closeContext(context);
 }
}

Removing an Entry
Removing an entry using JNDI is again a straightforward process and is shown in
Listing 2-8. The destroySubcontext method takes the fully qualified DN of the entry
that needs to be deleted.

Table 2-2. LDAP Modification Types

Modification Type Description

ADD_ATTRIBUTE Adds the attribute with the supplied value or values to the
entry. If the attribute does not exist then it will be created. If the
attribute already exists and the attribute is a multi-valued then
this operation simply adds the specified value(s) to the existing
list. However, this operation on an existing single valued
attributes will result in the AttributeInUseException.

REPLACE_ATTRIBUTE Replaces existing attribute values of an entry with the supplied
values. If the attribute does not exist then it will be created. If
the attribute already exists, then all of its values will be replaced.

REMOVE_ATTRIBUTE Removes the specified value from the existing attribute. If no
value is specified then the attribute in its entirety will be removed.
If the specified value does not exist in the attribute, the operation
will throw a NamingException. If the value to be removed is the
only value of the attribute, then the attribute is also removed.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

23

Listing 2-8.

public void remove(String dn) {
 DirContext context = null;
 try {
 context = getContext();
 context.destroySubcontext(dn);
 }
 catch(NamingException e) {
 e.printStackTrace();
 finally {
 closeContext(context);
 }
}

Many LDAP servers don’t allow an entry to be deleted if it has child entries. In those
servers, deleting a non-leaf entry would require traversing the sub tree and deleting all
the child entries. Then the non-leaf entry can be deleted. Listing 2-9 shows the code
involved in deleting a sub tree.

Listing 2-9.

public void removeSubTree(DirContext ctx, String root)
throws NamingException {
NamingEnumeration enumeration = null;
try {
 enumeration = ctx.listBindings(root);
 while (enumeration.hasMore()) {
 Binding childEntry =(Binding)enumeration.next();
 LdapName childName = new LdapName(root);
 childName.add(childEntry.getName());

 try {
 ctx.destroySubcontext(childName);
 }
 catch (ContextNotEmptyException e) {
 removeSubTree(ctx, childName.toString());
 ctx.destroySubcontext(childName);
 }
 }
}
catch (NamingException e) {
 e.printStackTrace();
}

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

24

finally {
 try {
 enumeration.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Note ■ The openDJ LDAP server supports a special sub tree delete control that when
attached to a delete request can cause the server to delete the non-leaf entry and all its
child entries. We will look at the using LDAP controls in Chapter 7.

Searching Entries
Searching for information is usually the most common operation performed against an
LDAP server. In order to perform a search, we need to provide information such as the
scope of the search, what we are looking for, and what attributes need to be returned.
In JNDI, this search metadata is provided using the SearchControls class. Listing 2-10
provides an example of a search control with subtree scope and returns the givenName
and telephoneNumber attributes. The subtree scope indicates that the search should
start from the given base entry and should search all its subtree entries. We will look at
different scopes available in detail in Chapter 6.

Listing 2-10.

SearchControls searchControls = new SearchControls();
searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
searchControls.setReturningAttributes(new String[]{"givenName",
"telephoneNumber"});

Once we have the search controls defined, the next step is to invoke one of the many
search methods in the DirContext instance. Listing 2-11 provides the code that searches
all the employees and prints their first name and telephone number.

Listing 2-11.

public void search() {
 DirContext context = null;
 NamingEnumeration<SearchResult> searchResults = null;
 try

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

25

 {
 context = getContext();
 // Setup Search meta data
 SearchControls searchControls = new SearchControls();
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 searchControls.setReturningAttributes(new String[]
 {"givenName", "telephoneNumber"});
 searchResults = context.search("dc=inflinx,dc=com",
 "(objectClass=inetOrgPerson)", searchControls);
 while (searchResults.hasMore()) {
 SearchResult result = searchResults.next();
 Attributes attributes = result.getAttributes();
 String firstName = (String)attributes.get("givenName").get();
 // Read the multi-valued attribute
 Attribute phoneAttribute = attributes. get("telephoneNumber");
 String[] phone = new String[phoneAttribute.size()];
 NamingEnumeration phoneValues = phoneAttribute.getAll();
 for(int i = 0; phoneValues.hasMore(); i++) {
 phone[i] = (String)phoneValues.next();
 }
 System.out.println(firstName + "> " + Arrays.toString(phone));
 }
 }
 catch(NamingException e) {
 e.printStackTrace();
 }
 finally {
 try {
 if (null != searchResults) {
 searchResults.close();
 }
 closeContext(context);
 } catch (NamingException e) {
 // Ignore this
 }
 }
}

Here we used the search method with three parameters: a base that determines the
starting point of the search, a filter that narrows down the results, and a search control.
The search method returns an enumeration of SearchResults. Each search result holds
the LDAP entry’s attributes. Hence we loop through the search results and read the
attribute values. Notice that for multi valued attributes we obtain another enumeration
instance and read its values one at a time. In the final part of the code, we close the result
enumeration and the context resources.

CHAPTER 2 ■ JAvA SuPPoRT foR LDAP

26

JNDI Drawbacks
Though JNDI provides a nice abstraction for accessing directory services, it does suffer
from several of the following drawbacks:

» Explicit Resource Management

The developer is responsible for closing all the resources.
This is very error prone and can result in memory leaks.

» Plumbing Code

The methods we have seen above have lot of plumbing code
that can be easily abstracted and reused. This plumbing code
makes testing harder and the developer has to learn the
nitty-gritty of the API.

» Checked Exceptions

The usage for checked exceptions especially in irrecoverable
situations is questionable. Having to explicitly handle
NamingException in those scenarios usually results in empty
try catch blocks.

27

Chapter 3

Introducing Spring LDAP

In this chapter, we will discuss

The basics of Spring LDAP.•	

Downloading and setting up Spring LDAP.•	

Setting up the STS development environment.•	

Setting up a test LDAP server.•	

Creating a Hello World application.•	

Spring LDAP provides simple, clean and comprehensive support for LDAP
programming in Java. This project originally started out on Sourceforge in 2006 under
the name LdapTemplate with the intention of simplifying access to LDAP using JNDI.
The project later became part of the Spring Framework portfolio and has since come a
long way. Figure 3-1 depicts the architecture of a Spring LDAP-based application.

Figure 3-1. Spring LDAP architecture directory

The application code uses the Spring LDAP API for performing operations on a
LDAP server. The Spring LDAP framework contains all of the LDAP-specific code and
abstractions. Spring LDAP, however, will rely on the Spring Framework for some of its
infrastructural needs.

The Spring Framework has become today’s de facto standard for developing
Java-based enterprise applications. Among many other things, it provides a
dependency-injection based lightweight alternative to the JEE programming model.
The Spring Framework is the base for Spring LDAP and all other Spring portfolio projects
such as Spring MVC and Spring Security.

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

28

Motivation
In the previous chapter, we discussed the shortcomings of the JNDI API. A notable
drawback of JNDI is that it is very verbose; almost all of the code in Chapter 2 has to do
with plumbing and very little with application logic. Spring LDAP addresses this problem
by providing template and utility classes that take care of the plumbing code so that the
developer can focus on business logic.

Another notable issue with JNDI is that it requires the developer to explicitly manage
resources such as LDAP contexts. This can be very error-prone. Forgetting to close
resources can result in leaks and can quickly bring down an application under heavy
load. Spring LDAP manages these resources on your behalf and automatically closes
them when you no longer need them. It also provides the ability to pool LDAP contexts,
which can improve performance.

Any problems that might arise during the execution of JNDI operations will be
reported as instances of NamingException or its subclasses. NamingException is a
checked exception and thus the developer is forced to handle it. Data access exceptions
are usually not recoverable and most often there is not much that can be done to
catch these exceptions. To address this, Spring LDAP provides a consistent unchecked
exception hierarchy that mimics NamingException. This allows the application designer
to make the choice of when and where to handle these exceptions.

Finally, plain JNDI programming is hard and can be daunting for new developers.
Spring LDAP with its abstractions makes working with JNDI more enjoyable. Additionally,
it provides a variety of features such as object directory mapping and support for
transactions, making it an important tool for any enterprise LDAP developer.

Obtaining Spring LDAP
Before you can install and start using Spring LDAP, it is important to make sure that the
Java Development Kit (JDK) is already installed on your machine. The latest Spring LDAP
1.3.2 version requires JDK 1.4 or higher and Spring 2.0 or higher. Since I am using Spring 3.2.4
in the examples in the book, it is strongly recommended to install JDK 6.0 or higher.

Spring Framework and its portfolio projects can be downloaded from
www.springsource.org/download/community. A direct link is available on the Spring LDAP
web site at www.springsource.org/ldap. The Spring LDAP download page allows you to
download the latest as well as previous versions of the framework, as shown in Figure 3-2.

Figure 3-2. Spring LDAP download

http://www.springsource.org/download/community
http://www.springsource.org/ldap

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

29

The spring-ldap-1.3.2.RELEASE-dist.zip includes the framework binaries, source code,
and documentation. Since the latest LDAP distribution bundle does not include Spring
distributions, you need to separately download Spring Framework. Figure 3-3 shows the
latest available Spring Framework distribution, 3.2.4.RELEASE. Download both Spring
LDAP and Spring distributions, as shown in Figure 3-3, and unzip them on your machine.

Spring LDAP Packaging
Now that you have successfully downloaded the Spring LDAP framework, let’s delve
into its subfolders. The libs folder contains Spring LDAP binary, source, and javadoc
distribution. The LDAP framework is packaged into six different components. Table 3-1
provides a brief description of each component. The docs folder contains the javadoc for
the API and the reference guide in different formats.

Figure 3-3. Spring Framework download

Table 3-1. Spring LDAP Distribution Modules

Component Jar Description

spring-ldap-core Contains all the classes necessary for using the LDAP
framework. This jar is required in all the applications.

spring-ldap-core-tiger Contains classes and extensions that are specific to Java 5
and higher. Applications running under Java 5 should not
use this jar.

spring-ldap-test Contains classes and utilities that make testing easier. It
also includes classes for starting and stopping in-memory
instances of ApacheDS LDAP server.

spring-ldap-ldif-core Contains classes for parsing ldif format files.

spring-ldap-ldif-batch Contains classes necessary to integrate ldif parser with
Spring Batch Framework.

spring-ldap-odm Contains classes for enabling and creating object directory
mappings.

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

30

Along with Spring Framework, you need additional jar files for compiling and
running applications using Spring LDAP. Table 3-2 lists some of these dependent jars files
along with a description of why they are used.

Downloading Spring LDAP Source
The Spring LDAP project uses Git as their source control system. The source code can be
downloaded from https://github.com/SpringSource/spring-ldap.

Spring LDAP source code can provide valuable insights into the framework
architecture. It also includes a rich test suite that can serve as additional documentation
and help you understand the framework. I strongly recommend that you download and
look at the source code. The Git repository also holds a sandbox folder that contains
several experimental features that may or may not make it into the framework.

Table 3-2. Spring LDAP Dependent Jars

Library Jar Description

commons-lang A required jar used internally by Spring LDAP and Spring
Framework.

commons-logging Logging abstraction used internally by Spring LDAP and Spring
Framework. This is a required jar to be included in applications.
An alternative (and advocated by Spring) is to use SLF4J logging
framework using the SLF4J-JCL bridge.

log4j Required library for logging using Log4J.

spring-core Spring library that contains core utilities used internally by Spring
LDAP. This is a required library for using Spring LDAP.

spring-beans Spring Framework library used for creating and managing Spring
beans. Another library required by Spring LDAP.

spring-context Spring library that is responsible for dependency injection. This is
required when using Spring LDAP inside a Spring application.

spring-tx Spring Framework library that provides transaction abstractions.
This is required when using Spring LDAP transaction support.

spring-jdbc Library that simplifies access to database using JDBC under
the covers. This is an optional library and should be used for
transaction support.

commons-pool Apache Commons Pool library provides support for pooling. This
should be included when using Spring LDAP pooling support.

ldapbp Sun LDAP booster pack that includes additional LDAP V3 Server
controls. This jar is needed when you are planning to use these
additional controls or running under Java 5 or lower.

https://github.com/SpringSource/spring-ldap

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

31

Installing Spring LDAP Using Maven
Apache Maven is an open source, standards-based project management framework that
makes building, testing, reporting, and packaging of projects easier. If you are new to Maven
and are wondering about the tool, the Maven web site, http://maven.apache.org, provides
information on its features along with tons of helpful links. Here are some advantages of
adopting Maven:

•	 Standardized directory structure: Maven standardizes the layout
and organization of a project. Every time a new project starts,
considerable time is spent on decisions such as where the source
code should go or where the configuration files should be placed.
Also, these decisions can vary vastly between projects and teams.
Maven’s standardized directory structure makes adoption easy
across developers and even IDEs.

•	 Declarative dependency management: With Maven, you declare
your project dependencies in a separate pom.xml file. Maven then
automatically downloads those dependencies from repositories and
uses them during build process. Maven also smartly resolves and
downloads transitive dependencies (dependencies of dependencies).

•	 Archetypes: Maven archetypes are project templates that can be
used to easily generate new projects. These archetypes are great
way to share best practices and enforce consistency beyond
Maven’s standard directory structure.

•	 Plug-ins: Maven follows a plug-in based architecture that makes
it easy to add or customize its functionality. Currently there are
hundreds of plug-ins that can be used to carry out variety of
tasks from compiling code to creating project documentation.
Activating and using a plug-in simply involves declaring a
reference to the plug-in in the pom.xml file.

•	 Tools support: All major IDEs today provide tooling support for
Maven. This includes wizards for generating projects, creating
IDE-specific files, and graphical tools for analyzing dependencies.

Installing Maven
To install Maven, simply download the latest version from http://maven.apache.org/
download.html. Once the download is complete, unzip the distribution to a local directory
on your machine. Then make the following modifications to your development box:

Add a M2_HOME environment variable pointing to the maven •	
installation directory.

Add a MAVEN_OPTS environment variable with the value •	
of – Xmx512m.

Add to the Path environment variable the M2_HOME/bin value.•	

http://maven.apache.org/
http://maven.apache.org/download.html
http://maven.apache.org/download.html

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

32

Note ■ Maven requires an Internet connection for downloading dependencies and
plug-ins. If you or your company uses a proxy to connect to Internet, make changes to the
settings.xml file. otherwise you may experience “unable to download artifact” errors.

This completes Maven installation. You can verify the installation by running the
following command on your command line:

$ mvn –v

This command should output information similar to the following:

Apache Maven 3.1.0 (893ca28a1da9d5f51ac03827af98bb730128f9f2; 2013-06-27
20:15:32-0600)
Maven home: c:\tools\maven
Java version: 1.6.0_35, vendor: Sun Microsystems Inc.
Java home: C:\Java\jdk1.6.0_35\jre
Default locale: en_US, platform encoding: Cp1252
OS name: "windows 7", version: "6.1", arch: "x86", family: "windows"

Spring LDAP Archetypes
To jump-start Spring LDAP development, this book uses the following two archetypes:

practical-ldap-empty-archetype: This archetype can be used •	
to create an empty Java project with all the required LDAP
dependencies.

practical-ldap-archetype: Similar to the above archetype, this •	
archetype creates a Java project with all the required LDAP
dependencies. Additionally, it also includes Spring LDAP
configuration files, sample code, and dependencies to run an
in-memory LDAP server for testing purposes.

Before you can use the archetypes to create a project, you need to install them. If you
have not already done so, download the accompanying source/download files from Apress.
In the downloaded distribution, you will find practical-ldap-empty-archetype-1.0.0.jar
and practical-ldap-archetype-1.0.0.jar archetypes. Once you have the jar files
downloaded, run the following two commands at the command line:

mvn install:install-file \
 -DgroupId=com.inflinx.book.ldap \
 -DartifactId=practical-ldap-empty-archetype \
 -Dversion=1.0.0 \
 -Dpackaging=jar
 -Dfile=<JAR_LOCATION_DOWNLOAD>/practical-ldap-empty-archetype-1.0.0.jar

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

33

mvn install:install-file \
 -DgroupId=com.inflinx.book.ldap \
 -DartifactId=practical-ldap-archetype \
 -Dversion=1.0.0 \
 -Dpackaging=jar
 -Dfile=< JAR_LOCATION_DOWNLOAD >/practical-ldap-archetype-1.0.0.jar

These maven install commands will install the two archetypes in your local maven
repository. Creating a project using one of these archetypes simply involves running the
following command:

C:\practicalldap\code>mvn archetype:generate
-DarchetypeGroupId=com.inflinx.book.ldap \
-DarchetypeArtifactId=practical-ldap-empty-archetype \
-DarchetypeVersion=1.0.0 \
-DgroupId=com.inflinx.ldap \
-DartifactId=chapter3 \
-DinteractiveMode=false

Notice that this command is executed inside the directory c:/practicalldap/code.
The command instructs maven to use the archetype practical-ldap-empty-archetype and
generate a project named chapter3. The generated project directory structure is shown
in Figure 3-4.

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

34

This directory structure has a src folder that holds all the code and any associated
resources such as XML files. The target folder contains the generated classes and build
artifacts. The main folder under src usually holds the code that eventually makes its way
to production. The test folder contains the related test code. Each of these two folders
contains java and resources subfolders. As name suggests, the java folder contains Java
code and the resources folder usually contains configuration xml files.

The pom.xml file in the root folder holds the configuration information needed by
Maven. For example, it contains information about all the dependent jar files that are
required for compiling the code (see Listing 3-1).

Listing 3-1.

<dependencies>
 <dependency>
 <groupId>org.springframework.ldap</groupId>
 <artifactId>spring-ldap-core</artifactId>

Figure 3-4. Maven-generated project structure

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

35

 <version>${org.springframework.ldap.version}</version>
 <scope>compile</scope>
 </dependency>
</dependencies>

The pom.xml snippet in Listing 3-1 indicates that the project will need the
spring-ldap-core.jar file during its compilation.

Maven requires a group id and artifact id to uniquely identify a dependency. A group
id is usually unique to a project or organization and is similar to the concept of a Java
package. The artifact id is usually the name of the project or a generated component of
the project. The scope determines the phase during which the dependency should be
included in the classpath. Here are few possible values:

•	 test: A test scope indicates that the dependency should be
included in the classpath only during testing process. JUnit is an
example of such dependency.

•	 provided: The provided scope indicates that the artifact should
be included in the classpath during compilation only. Provided
scope dependencies are usually available at runtime via JDK or
application container.

•	 compile: A compile scope indicates that the dependency should
be included in the classpath at all times.

An additional section in the pom.xml file contains information about the plug-ins
that Maven can use to compile and build the code. One such plug-in declaration is
displayed in Listing 3-2. It instructs Maven to use the compiler plug-in of version 2.0.2 to
compile Java code. The finalName indicates the name of the generated artifact. In this
case, it would be chapter3.jar.

Listing 3-2.

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin
 </artifactId>
 <version>2.0.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 <finalName>chapter3</finalName>
</build>

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

36

To build this generated application, simply run the following command from the
command line. This command cleans the target folder, compiles the source files,
and generates a jar file inside the target folder.

mvn clean compile package

This setup, along with a text editor, is enough to start developing and packaging
Java-based LDAP applications. However, it is a no-brainer that you can be more
productive developing and debugging applications using a graphical IDE. There are
several IDEs, with Eclipse, NetBeans, and IntelliJ IDEA being the most popular. For this
book you will be using Spring Tool Suite, an Eclipse-based IDE from Spring Source.

Setting Up Spring IDE
STS is a free, Eclipse-based development environment that provides the best tool support
for developing Spring-based applications. The following are some of its features:

Wizards for creating Spring projects and Spring beans•	

Integrated support for Maven•	

Templates based on best practices for project and file creation•	

Spring bean and AOP pointcut visualization•	

Spring ROO shell integration for rapid prototyping•	

Task-based user interface that provides guided assistance through •	
tutorials

Support for Groovy and Grails•	

In this section you will look at installing and setting up the STS IDE.

1. Download and initiate the STS installer from the Spring Tool
Suite web site at www.springsource.com/developer/sts.
The installation file for Windows is spring-tool-suite-
3.3.0.RELEASE-e4.3-win32-installer.exe. Double-click
the install file to start the installation (Figure 3-5).

http://www.springsource.com/developer/sts

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

37

2. Read and accept the License Agreement and click the
Next button.

3. On the Target Path screen, choose an installation directory.

4. Leave the default selection and then click the Next button
(see Figure 3-6).

Figure 3-5. Installer home screen

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

38

5. On the following screen, provide the path to the JDK
installation and click the Next button.

6. This will begin the installation; wait for the file transfer
to complete.

7. Click the Next button on the following two screens to
complete the installation.

Creating Projects Using STS
In the earlier “Spring LDAP Archetype” section you used the practical-ldap-empty-archetype
archetype to generate a project from command line. Now let’s look at generating the same
project using STS.

1. From the File menu, select New ➤ Project. It will launch the
New Project wizard (see Figure 3-7). Select the Maven Project
option and click the Next button.

Figure 3-6. Installation packages

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

39

2. Uncheck “Use default Workspace location” and enter the
path for the newly generated project, and then select the Next
button (see Figure 3-8).

Figure 3-7. New Project wizard

Figure 3-8. Project path setup

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

40

3. On the Select an Archetype screen (see Figure 3-9), click
“Add Archetype.” This step assumes that you have already
installed the archetype as mentioned in the earlier section.
Fill the Add Archetype dialog with the details shown in
Figure 3-9 and press OK. Do the same for the other archetype.

Figure 3-9. Archetype details

4. Enter ldap in the Filter field and select the practical-ldap-
empty-archetype. Click the Next button (see Figure 3-10).

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

41

5. On the following screen, provide the information about the
newly created project and click the Finish button
(see Figure 3-11).

Figure 3-10. Archetype selection

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

42

This will generate a project with the same directory structure that you saw earlier.
However, it also creates all the IDE-specific files such as .project and .classpath and
adds all the dependent Jars to the project’s classpath. The complete project structure is
shown in Figure 3-12.

Figure 3-11. Project information

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

43

LDAP Server Setup
In this section you will look at installing an LDAP server to test your LDAP code. Among
the available open source LDAP servers, I find OpenDJ very easy to install and configure.

Note ■ Even if you already have a test LdAP server available, I highly recommend that
you follow the steps below and install opendJ LdAP server. You will be heavily using this
instance to test the code in this book.

Download the OpenDJ distribution file OpenDJ-2.4.6.zip from www.forgerock.org/
opendj-archive.html. Unzip the distribution to a folder on your local system. On my
Windows box, I placed the extracted files and folders under C:\practicalldap\opendj.
Then follow these steps to complete the installation.

Figure 3-12. Generated project structure

http://www.forgerock.org/opendj-archive.html
http://www.forgerock.org/opendj-archive.html

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

44

1. Start the installation by clicking the setup.bat file for
Windows. This will launch the install screen.

Note ■ When installing under Windows 8, make sure you run the installer as an administrator.
otherwise, you will run into an error when enabling the server as a Windows service.

2. On the Server settings screen, enter the following values and
press the Next button. I changed the Listener Port from 389 to
11389 and Administration Connector Port from 4444 to 4445.
I also used opendj as the password. Please use these settings
for running code examples used in this book (see Figure 3-13).

Figure 3-13. LDAP server settings

3. In the Topology Option screen, leave the “This will be a
standalone server” option and click the Next button.

4. In the Directory Data screen, enter the value
“dc=inflinx,dc=com” as the Directory Base DN, leave the other
options untouched, and continue.

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

45

5. In the Review screen, confirm that “Run the server as a
Windows Service” option is checked and click the Finish
button.

6. You will see a confirmation indicating a successful installation
(see Figure 3-14).

Figure 3-14. Successful OpenDJ confirmation

Figure 3-15. Running OpenDJ as a Windows Service

Since you have the OpenDJ installed as Windows Service, you can start the LDAP
server by going to Control Panel ➤ Administrative Tools ➤ Services and selecting OpenDJ
and clicking Start (Figure 3-15).

Note ■ If you have not installed the opendJ as a Windows Service you can start and stop
the server using start-ds.bat and stop-ds.bat files under <OpenDJ_Install_Folder>/bat
folder.

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

46

Installing Apache Directory Studio
The Apache Directory Studio is a popular, open source LDAP browser that can help you
browse LDAP directories very easily. To install Apache Directory Studio, download the
installer file from

http://directory.apache.org/studio/downloads.html.

The Studio installation can be done by following these steps.

1. On Windows, start the installation by double-clicking the
install file (this will bring up the install screen).

2. Read and accept the license agreements to continue.

3. Choose your preferred installation directory, and select
“Install” (see Figure 3-16).

Figure 3-16. Apache installation directory selection

4. You will be shown the status of the installation and
file transfer.

5. After all the files have been transferred, click the Finish button
to complete the installation.

http://directory.apache.org/studio/downloads.html

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

47

Once the installation is complete, the next step is to create a connection to the newly
installed OpenDJ LDAP server. Before you can proceed, make sure your OpenDJ server is
running. Here are the steps to set up the new connection.

1. Launch ApacheDS server. In Windows, click the Apache
Directory Studio.exe file.

2. Launch the New Connection wizard by right-clicking in the
“Connections” section and selecting “New Connection.”

3. On the Network Parameter screen, enter the information
displayed in Figure 3-18. This should match the OpenDJ
information you entered during OpenDJ installation.

Figure 3-17. Creating a new connection

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

48

4. On the Authentication screen, enter “cn=Directory Manager” as
Bind DN or user and “opendj” as password (see Figure 3-19).

Figure 3-19. LDAP connection authentication

Figure 3-18. LDAP connection network parameters

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

49

5. Accept the defaults in the Browser Options section and select
the Finish button.

Loading Test Data
In the previous sections you installed the OpenDJ LDAP server and Apache Directory
Studio for accessing the LDAP server. The final step in setting up your development/test
environment is to load the LDAP server with test data.

Note ■ The accompanying source code/downloads contains two LdIF files, patrons.ldif
and employees.ldif. The patrons.ldif file contains test data that mimics your library’s
patrons. The employees.ldif file contains test data that mimics your library’s employees.
These two files are heavily used for testing the code used in this book. If you have not
already done, please download these files before moving forward.

Here are the steps for loading the test data.

1. Right-click “Root DSE” in the LDAP browser pane and select
Import ➤ LDIF Import (see Figure 3-20).

Figure 3-20. LDIF import

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

50

2. Browse for this patrons.ldif file (see Figure 3-21) and click
the Finish button. Make sure that the “Update existing entries”
checkbox is selected.

Figure 3-21. LDIF import settings

Figure 3-22. LDIF successful import

3. Upon a successful import you will see the data loaded under
the dc=inflinx,dc=com entry (see Figure 3-22).

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

51

Spring LDAP Hello World
With this information in hand let’s dive into the world of Spring LDAP. You will start by
writing a simple search client that reads all the patron names in the ou=patrons LDAP
branch. This is similar to the example you looked at in Chapter 2. Listing 3-3 shows the
search client code.

Listing 3-3.

public class SearchClient {

 @SuppressWarnings("unchecked")
 public List<String> search() {
 LdapTemplate ldapTemplate = getLdapTemplate();
 List<String> nameList = ldapTemplate.search("dc=inflinx,dc=com",

"(objectclass=person)",
 new AttributesMapper() {
 @Override
 public Object mapFromAttributes(Attributes attributes)

throws NamingException {
 return (String)attributes.get("cn").get();
 }
 });
 return nameList;
 }

 private LdapTemplate getLdapTemplate() { }
}

Central to Spring LDAP framework is the org.springframework.ldap.core.LdapTemplate
class. Based on the Template Method design pattern (http://en.wikipedia.org/wiki/
Template_method_pattern), the LdapTemplate class takes care of the unnecessary
plumbing involved in LDAP programming. It provides a number of overloaded search,
lookup, bind, authenticate, and unbind methods that makes LDAP development a breeze.
The LdapTemplate is threadsafe and the same instance can be used by concurrent threads.

SIMPLELDAPTEMPLATE

Spring LdAP version 1.3 introduced a variation of LdapTemplate called
SimpleLdapTemplate. This is a Java 5-based convenience wrapper for the
classic LdapTemplate. The SimpleLdapTemplate adds Java 5 generics support
to lookup and search methods. These methods now take implementations of
ParameterizedContextMapper<T> as parameter, allowing the search and lookup
methods to return typed objects.

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

52

The SimpleLdapTemplate exposes only a subset of operations available in
LdapTemplate. These operations, however, are the most commonly used ones
and hence SpringLdapTemplate would be sufficient in a lot of situations. The
SimpleLdapTemplate also provides the getLdapOperations() method that
exposes the wrapped LdapOperations instance and can be used to invoke the less
commonly used template methods.

In this book, you’ll use both LdapTemplate and SimpleLdapTemplate classes for
implementing code.

You start the search method implementation by obtaining an instance of
LdapTemplate class. Then you invoke a variation of the LdapTemplate’s search method.
The first parameter to the search method is the LDAP base and the second parameter is
the search filter. The search method uses the base and filter to perform search and each
javax.naming.directory.SearchResult obtained is supplied to an implementation
of org.springframework.ldap.core.AttributesMapper that is provided as the third
parameter. In Listing 3-3, the AttributesMapper implementation is achieved via creating
an anonymous class that reads each SearchResult entry and returns the common name
of the entry.

In Listing 3-3, the getLdapTemplate method is empty. Now let’s look at implementing
this method. For LdapTemplate to properly execute the search it needs an initial context on
the LDAP server. Spring LDAP provides org.springframework.ldap.core.ContextSource
interface abstraction and its implementation org.springframework.ldap.core.support.
LdapContextSource for configuring and creating context instances. Listing 3-4 shows the
complete method for getLdapTemplate implementation.

Listing 3-4.

private LdapTemplate getLdapTemplate() {
 LdapContextSource contextSource = new LdapContextSource();
 contextSource.setUrl("ldap://localhost:11389");
 contextSource.setUserDn("cn=Directory Manager");
 contextSource.setPassword("opendj");
 try {
 contextSource.afterPropertiesSet();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 LdapTemplate ldapTemplate = new LdapTemplate();
 ldapTemplate.setContextSource(contextSource);
 return ldapTemplate;
}

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

53

You start the method implementation by creating a new LdapContextSource and
populating it with information about the LDAP server, such as the server URL and
binding credentials. You then invoke the afterPropertiesSet method on the Context
Source that allows Spring LDAP perform housekeeping operations. Finally, you create a
new LdapTemplate instance and pass in the newly created context source.

This completes your search client example. Listing 3-5 shows the main method that
invokes the search operation and prints the names to the console.

Listing 3-5.

public static void main(String[] args) {
 SearchClient client = new SearchClient();
 List<String> names = client.search();
 for(String name: names) {
 System.out.println(name);
 }
}

This search client implementation simply uses Spring LDAP API without any Spring
Framework-specific paradigms. In the coming sections, you will look at springifying this
application. But before you do that, let’s quickly look at Spring ApplicationContext.

Spring ApplicationContext
Central to every Spring Framework application is the notion of ApplicationContext.
Implementations of this interface are responsible for creating and configuring Spring
beans. The application context also acts as an IoC container and is responsible for
performing the dependency injection. A Spring bean is simply a standard POJO with
metadata needed to run inside the Spring container.

In a standard Spring application the ApplicationContext is configured via an XML
file or Java annotations. Listing 3-6 shows a sample application context file with one bean
declaration. The bean myBean is of type com.inflinx.book.ldap.SimplePojo. When the
application loads the context, Spring creates an instance of SimplePojo and manages it.

Listing 3-6.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/
beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

54

 <bean id="myBean" class="com.inflinx.book.ldap.SimplePojo">
 </bean>
</beans>

Spring-Powered Search Client
Our conversion of the search client implementation begins with the
applicationContext.xml file as shown in Listing 3-7.

Listing 3-7.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
/spring-context.xsd">

<bean id="contextSource"
class="org.springframework.ldap.core.support.LdapContextSource">
 <property name="url" value="ldap://localhost:11389" />
 <property name="userDn" value="cn=Directory Manager" />
 <property name="password" value="opendj" />
 </bean>

<bean id="ldapTemplate"
class="org.springframework.ldap.core.LdapTemplate">
 <constructor-arg ref="contextSource" />
</bean>
<context:component-scan base-package="com.inflinx.book.ldap"/>
</beans>

In the context file, you declare a contextSource bean to manage connections to
LDAP server. For LdapContextSource to properly create instances of DirContext, you
need to provide it with information about the LDAP server. The url property takes the
fully qualified URL (ldap://server:port format) to the LDAP server. The base property
can be used to specify the root suffix for all LDAP operations. The userDn and password
properties are used to provide authentication information. Next, you configure a new
LdapTemplate bean and inject the contextSource bean.

With all your dependencies declared in the context file, you can proceed to re-
implementing the search client, as shown in Listing 3-8.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context%0a/spring-context.xsd
http://www.springframework.org/schema/context%0a/spring-context.xsd

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

55

Listing 3-8.

package com.inflinx.book.ldap;
import java.util.List;
import javax.naming.NamingException;
import javax.naming.directory.Attributes;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support. ClassPathXmlApplicationContext;
import org.springframework.ldap.core.AttributesMapper;
import org.springframework.ldap.core.LdapTemplate;
import org.springframework.stereotype.Component;

@Component
public class SpringSearchClient {

 @Autowired
 @Qualifier("ldapTemplate")
 private LdapTemplate ldapTemplate;

 @SuppressWarnings("unchecked")
 public List<String> search() {
 List<String> nameList = ldapTemplate.search("dc=inflinx,dc=com",

"(objectclass=person)",
 new AttributesMapper() {
 @Override
 public Object mapFromAttributes(Attributes attributes)

throws NamingException {
 return (String)attributes.get("cn").get();
 }
 });
 return nameList;
 }
}

You will notice that this code is no different from the SearchClient code you saw in
Listing 3-4. You just extracted the creation of LdapTemplate to an external configuration
file. The @Autowired annotation instructs Spring to inject the ldapTemplate dependency.
This simplifies the search client class very much and helps you focus on the search logic.

The code to run the new search client is shown in Listing 3-9. You
start by creating a new instance of ClassPathXmlApplicationContext. The
ClassPathXmlApplicationContext takes the applicationContext.xml file as its
parameter. Then you retrieve an instance of SpringSearchClient from the context and
invoke the search method.

http://mailto:@autowired/

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

56

Listing 3-9.

public static void main(String[] args){
 ApplicationContext context = new ClassPathXmlApplicationContext

("classpath:applicationContext.xml");
 SpringSearchClient client = context.getBean(SpringSearchClient.class);
 List<String> names = client.search();
 for(String name: names) {
 System.out.println(name);
 }
}

Spring LdapTemplate Operations
In the previous section, you utilized LdapTemplate to implement search. Now, let’s look at
using LdapTemplate for adding, removing, and modifying information in LDAP.

Add Operation
The LdapTemplate class provides several bind methods that allow you to create new
LDAP entries. The simplest among those methods is as follows:

public void bind(String dn, Object obj, Attributes attributes)

The first parameter to this method is the unique distinguished name of the object
that needs to be bound. The second parameter is the object to be bound and is usually
an implementation of the DirContext interface. The third parameter is the attribute of
the object to be bound. Among the three, only the first parameter is required and you can
pass a null for the rest of the two.

Listing 3-10 shows the code involved in creating a new patron entry with minimal
set of information. You start the method implementation by creating a new instance of
BasicAttributes class to hold the patron attributes. Single-valued attributes are added
by passing the attribute name and value to the put method. To add the multi-valued
attribute objectclass, you create a new instance of BasicAttribute. You then add the
entry’s objectClass values to the objectClassAttribute and add it to the attributes list.
Finally, you invoke the bind method on the LdapTemplate with the patron information
and patron’s fully qualified DN. This adds the patron entry to LDAP server.

Listing 3-10.

public void addPatron() {
 // Set the Patron attributes
 Attributes attributes = new BasicAttributes();
 attributes.put("sn", "Patron999");
 attributes.put("cn", "New Patron999");

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

57

 // Add the multi-valued attribute
 BasicAttribute objectClassAttribute = new BasicAttribute("objectclass");
 objectClassAttribute.add("top");
 objectClassAttribute.add("person");
 objectClassAttribute.add("organizationalperson");
 objectClassAttribute.add("inetorgperson");
 attributes.put(objectClassAttribute);
 ldapTemplate.bind("uid=patron999,ou=patrons,dc=inflinx,dc=com",null,

attributes);
}

Modify Operation
Consider the scenario where you want to add a telephone number to the newly added
patron. To do that, LdapTemplate provides a convenient modifyAttributes method with
the following signature:

public void modifyAttributes(String dn, ModificationItem[] mods)

This variation of modifyAttributes method takes the fully qualified unique DN of
the entry to be modified as its first parameter. The second parameter takes an array of
ModificationItems where each modification item holds the attribute information that
needs to be modified.

Listing 3-11 shows the code that adds a new telephone number to the patron.

Listing 3-11.

public void addTelephoneNumber() {
 Attribute attribute = new BasicAttribute("telephoneNumber", "801 100 1000");
 ModificationItem item = new ModificationItem(DirContext.ADD_ATTRIBUTE,

attribute);
 ldapTemplate.modifyAttributes("uid=patron999," +

"ou=patrons,dc=inflinx,dc=com", new ModificationItem[] {item});
}

In this implementation, you simply create a new BasicAttribute with
telephone information. Then you create a new ModificationItem and pass in the
ADD_ATTRIBUTE code, indicating that you are adding an attribute. Finally, you invoke
the modifyAttributes method with the patron DN and the modification item. The
DirContext has a REPLACE_ATTRIBUTE code that when used will replace an attribute’s
value. Similarly, the REMOVE_ATTRIBUTE code will remove the specified value from
the attribute.

CHAPTER 3 ■ InTRoduCIng SPRIng LdAP

58

Deleting Operation
Similar to addition and modification, LdapTemplate makes it easy to remove an entry
with the unbind method. Listing 3-12 provides the code that implements the unbind
method and removes a patron. As you can see, the unbind method takes the DN for the
entry that needs to be removed.

Listing 3-12.

public void removePatron() {
 ldapTemplate.unbind("uid=patron999," + "ou=patrons,dc=inflinx,dc=com");
}

Summary
Spring LDAP Framework aims at simplifying LDAP programming in Java. In this chapter,
you got a high-level overview of Spring LDAP and some of the concepts associated with
Spring Framework. You also looked at the setup needed to get up and running with
Spring LDAP. In the next chapter, you will focus on testing Spring LDAP applications.

59

Chapter 4

Testing LDAP Code

In this chapter, you will learn

The basics of unit/mock/integration testing.•	

Testing using an embedded LDAP server.•	

Mock testing using EasyMock.•	

Generating test data.•	

Testing is an important aspect of any software development process. As well as
detecting bugs, it also helps to verify that all requirements are met and that the software
works as expected. Today, formally or informally, testing is included in almost every
phase of the software development process. Depending on what is being tested and
the purpose behind the test, we end up with several different types of testing. The most
common testing done by developers is unit testing, which ensures that individual units
are working as expected. Integration testing usually follows unit testing and focuses on
the interaction between previously tested components. Developers are usually involved
in creating automated integration tests, especially the tests that deal with databases and
directories. Next is system testing where the complete, integrated system is evaluated to
ensure that all the requirements have been met. Non-functional requirements such as
performance and efficiency are also tested as part of system testing. Acceptance testing
is usually done at the end to make sure that the delivered software meets the customer/
business user needs.

Unit Testing
Unit testing is a testing methodology where the smallest parts of the application, referred
to as units, are verified and validated individually in isolation. In structural programming,
the unit could be an individual method or function. In object-oriented programming
(OOP), an object is the smallest executable unit. Interaction between objects is central to
any OO design and is usually done by invoking methods. Thus, unit testing in OOP can
range from testing individual methods to testing a cluster of objects.

Writing unit tests requires a developer’s time and effort. But this investment has been
proven to deliver several undeniable benefits.

CHAPTER 4 ■ TEsTing LDAP CoDE

60

Note ■ it is important to measure how much of the code is covered by unit tests.
Tools like Clover and Emma provide metrics for code coverage. These metrics can also be
used to highlight any paths that are exercised by few unit tests (or none at all).

The biggest advantage of unit testing is that it can help identify bugs at early stages
of development. Bugs that are discovered only during QA or in production consume a
lot more debugging time and money. Also, a good set of unit tests acts as a safety net and
gives confidence when code is refactored. Unit tests can help improve design and even
serve as documentation.

Good unit tests have the following characteristics:

Every unit test must be independent of other tests. This atomic •	
nature is very important and each test must not cause any side
effects to other tests. Unit tests should also be order independent.

A unit test must be repeatable. For a unit test to be of any value, it •	
must produce consistent results. Otherwise, it cannot be used as a
sanity check during refactoring.

Unit tests must be easy to set up and clean up. So they should not •	
rely on external systems such as databases and servers.

Unit tests must be fast and provide immediate feedback. It would •	
not be productive to wait on long-running tests before you make
another change.

Unit tests must be self-validating. Each test should contain •	
enough information to determine automatically if a test passes
or fails. No manual intervention should be needed to interpret
the results.

Enterprise applications often use external systems like databases, directories,
and web services. This is especially true in the DAO layer. Unit testing database code,
for example, may involve starting a database server, loading it with schema and data,
running tests, and shutting down the server. This quickly becomes tricky and complex.
One approach is to use mock objects and hide the external dependencies. Where this
is not sufficient, it may be necessary to use integration testing and test the code with
external dependencies intact. Let’s look at each case in little more detail.

Mock Testing
The goal of mock testing is to use mock objects to simulate real objects in controlled ways.
Mock objects implement the same interface as that of the real objects but are scripted to
mimic/fake and track their behavior.

CHAPTER 4 ■ TEsTing LDAP CoDE

61

For example, consider a UserAccountService that has a method to create new user
accounts. The implementation of such a service usually involves validating the account
information against business rules, storing the newly created account in a database, and
sending out a confirmation e-mail. Persisting data and e-mailing information are usually
abstracted out to classes in other layers. Now, when writing a unit test to validate the
business rules associated with the account creation, you might not really care about
the intricacies involved in the e-mail notification part. However, you do want to verify
that an e-mail got generated. This is exactly where mock objects come in handy.
To achieve this, you just need to give the UserAccountService a mock implementation of
the EmailService that is responsible for sending e-mails. The mock implementation will
simply mark the e-mail request and return a hardcoded result. Mock objects are a great
way to isolate tests from complex dependencies, allowing them to run faster.

There are several open source frameworks that make working with mock objects easier.
Popular ones include Mockito, EasyMock, and JMock. A complete comparison list
of these frameworks can be found at http://code.google.com/p/jmockit/wiki/
MockingToolkitComparisonMatrix.

Some of these frameworks allow creating mocks for classes that don’t implement
any interfaces. Regardless of the framework used, unit testing using mock objects usually
involves the following steps:

Create a new mock instance.•	

Set up the mock. This involves instructing the mock what to •	
expect and what to return.

Run the tests, passing the mock instance to the component •	
under test.

Verify the results.•	

Integration Testing
Even though mock objects serve as great placeholders, very soon you will run into cases
where faking will not be enough. This is especially true for DAO layer code where you
need to validate SQL query executions and verify modifications to database records.
Testing this kind of code falls under the umbrella of integration testing. As mentioned
earlier, integration testing focuses on testing interactions between components with their
dependencies in place.

It has become common for developers to write automated integration tests using
unit-testing tools, thereby blurring the distinction between the two. However, it is
important to remember that integration tests don’t run in isolation and are usually
slower. Frameworks such as Spring provide container support for writing and executing
integration tests easily. The improved availability of embedded databases, directories,
and servers enables developers to write faster integration tests.

http://code.google.com/p/jmockit/wiki/MockingToolkitComparisonMatrix
http://code.google.com/p/jmockit/wiki/MockingToolkitComparisonMatrix

CHAPTER 4 ■ TEsTing LDAP CoDE

62

JUnit
JUnit has become the de facto standard when it comes to unit testing Java applications.
The introduction of annotations in JUnit 4.x made it even easier to create tests and assert
test results for expected values. JUnit can easily be integrated with build tools like ANT
and Maven. It also has great tooling support available in all popular IDEs.

With JUnit, the standard practice is to write a separate class that holds test methods.
This class is often referred to as a test case, and each test method is intended to test a
single unit of work. It is also possible to organize test cases into groups referred to as
test suites.

The best way to learn JUnit is to write a test method. Listing 4-1 shows a simple
StringUtils class with an isEmpty method. The method takes a String as parameter
and returns true if it is either null or an empty string.

Listing 4-1.

public class StringUtils {
 public static boolean isEmpty(String text) {
 return test == null || "".equals(test);
 }
}

Listing 4-2 is the JUnit class with a method to test the code.

Listing 4-2.

public class StringUtilsTest {
 @Test
 public void testIsEmpty() {
 Assert.assertTrue(StringUtils.isEmpty(null));
 Assert.assertTrue(StringUtils.isEmpty(""));
 Assert.assertFalse(StringUtils.isEmpty("Practical Spring Ldap"));
 }
}

Notice that I have followed the convention <Class Under Test>Test for naming the
test class. Prior to JUnit 4.x, test methods needed to begin with the word “test”. With 4.x,
test methods just need to be marked with annotation @Test. Also notice that the
testIsEmpty method holds several assertions for testing the isEmpty method’s logic.

Table 4-1 lists some of the important annotations available in JUnit 4.

CHAPTER 4 ■ TEsTing LDAP CoDE

63

Testing Using Embedded LDAP Server
ApacheDS, OpenDJ, and UnboundID are open source LDAP directories that can be
embedded into Java applications. Embedded directories are part of the application’s JVM,
making it easy to automate tasks such as startup and shutdown. They have a small startup
time and typically run fast. Embedded directories also eliminate the need for a dedicated,
standalone LDAP server for each developer or build machine.

Note ■ Concepts discussed here serve as the foundation for the LdapUnit open source
project. You will be using LdapUnit for testing code in all future chapters. Please visit
http://ldapunit.org to download project artifacts and browse through the complete
source code.

Embedding an LDAP server involves programmatically creating the server and
starting/stopping it. However, despite their maturity, programmatically interacting with
ApacheDS or OpenDJ is cumbersome. In the next section, you will look at the setup
necessary to configure and use ApacheDS LDAP server.

Table 4-1. JUnit 4 Annotations

Annotation Description

@Test Annotates a method as a JUnit test method. The method should be
of public scope and have void return type.

@Before Marks a method to run before every test method. Useful for setting
up test fixtures. The @Before method of a superclass is run before
the current class.

@After Marks a method to be run after every test method. Useful for
tearing down test fixtures. The @After method of a superclass is run
before the current class.

@Ignore Marks a method to be ignored during test runs. This helps avoid the
need for commenting half-baked test methods.

@BeforeClass Annotates a method to run before any test method is run. For a test
case, the method is run only once and can be used to provide class
level setup work.

@AfterClass Annotates a method to run after all the test methods are run. This
can be useful for performing any cleanups at a class level.

@RunWith Specifies the class that is used to run the JUnit test case.

http://ldapunit.org/

CHAPTER 4 ■ TEsTing LDAP CoDE

64

Setting Up Embedded ApacheDS
Central to ApacheDS is the directory service that stores data and supports search
operations. Thus, starting an ApacheDS LDAP server first involves creating and
configuring a directory service. Listing 4-3 shows the code associated with creating a
directory service. Note that you are simply using the DefaultDirectoryServiceFactory
and initializing it.

Listing 4-3.

DirectoryServiceFactory dsf = DefaultDirectoryServiceFactory.DEFAULT;
dsf.init("default" + UUID.randomUUID().toString());
directoryService = dsf.getDirectoryService();

ApacheDS uses partitions to store LDAP entries. (A partition can be viewed as a
logical container that holds an entire DIT). It is possible that a single ApacheDS instance
can have multiple partitions. Associated with each partition is a root Distinguished Name
(DN) called the partition suffix. All the entries in that partition are stored under that
root DN. The code in Listing 4-4 creates a partition and adds it to the directoryService
created in Listing 4-3.

Listing 4-4.

PartitionFactory partitionFactory =
 DefaultDirectoryServiceFactory.DEFAULT.getPartitionFactory();
/* Create Partition takes id, suffix, cache size, working directory*/
Partition partition = partitionFactory.createPartition("dc=inflinx,dc=com",
"dc=inflinx,dc=com", 1000, new File(
 directoryService.getWorkingDirectory(),rootDn));
partition.setSchemaManager(directoryService.getSchemaManager());

// Inject the partition into the DirectoryService
directoryService.addPartition(partition);

You create the partition using the partition factory. In order to create a new partition,
you must provide the following information: a name that uniquely identifies the partition,
a partition suffix or rootDn, cache size, and a working directory. In Listing 4-4, you have
used the rootDn as the partition name also.

With the directory service created and configured, the next step is to create an LDAP
server. Listing 4-5 shows the code associated with it. To the newly created LDAP Server,
you provide a name. Then you create a TcpTransport object that will be listening on port
12389. The TcpTransport instance allows a client to communicate with your LDAP server.

Listing 4-5.

// Create the LDAP server
LdapServer ldapServer = new LdapServer();
ldapServer.setServiceName("Embedded LDAP service");

CHAPTER 4 ■ TEsTing LDAP CoDE

65

TcpTransport ldapTransport = new TcpTransport(12389);
ldapServer.setTransports(ldapTransport);
ldapServer.setDirectoryService(directoryService);

The final step is to start the service, which is achieved with the following code:

directoryService.startup();
ldapServer.start();

This completes the implementation of the startup method. The implementation of
the shutdown method is described in Listing 4-6.

Listing 4-6.

public void stopServer() {
 try {
 System.out.println("Shutting down LDAP Server");
 ldapServer.stop();
 directoryService.shutdown();
 FileUtils.deleteDirectory(directoryService.getWorkingDirectory());
 System.out.println("LDAP Server shutdown" + " successful");
 }
 catch(Exception e) {
 throw new RuntimeException(e);
 }
}

In addition to invoking the stop/shutdown method, notice that you have deleted the
DirectoryService’s working directory. The complete code for the embedded ApacheDS
implementation is shown in Listing 4-7.

Listing 4-7.

package org.ldapunit.server;

import java.io.File;
import java.util.UUID;
import org.apache.commons.io.FileUtils;
import org.apache.directory.server.core.DirectoryService;
import org.apache.directory.server.core.factory.
DefaultDirectoryServiceFactory;
import org.apache.directory.server.core.factory. DirectoryServiceFactory;
import org.apache.directory.server.core.factory.PartitionFactory;
import org.apache.directory.server.core.partition.Partition;
import org.apache.directory.server.ldap.LdapServer;
import org.apache.directory.server.protocol.shared. transport.TcpTransport;

CHAPTER 4 ■ TEsTing LDAP CoDE

66

public class ApacheDSConfigurer implements EmbeddedServerConfigurer {

 private DirectoryService directoryService;
 private LdapServer ldapServer;
 private String rootDn;
 private int port;

 public ApacheDSConfigurer(String rootDn, int port) {
 this.rootDn = rootDn;
 this.port = port;
 }

 public void startServer() {
 try {
 System.out.println("Starting Embedded " +

"ApacheDS LDAP Server");
 DirectoryServiceFactory dsf = DefaultDirectoryServiceFactory.

DEFAULT;
 dsf.init("default" + UUID.randomUUID().toString());
 directoryService = dsf.getDirectoryService();

 PartitionFactory partitionFactory = DefaultDirectoryServiceFactory.

DEFAULT.getPartitionFactory();

 /* Create Partition takes id, suffix, cache size, working

directory*/
 Partition partition = partitionFactory.

createPartition(rootDn,rootDn, 1000, new File(directoryService.
getWorkingDirectory(), rootDn));

 partition.setSchemaManager(directoryService.getSchemaManager());

 // Inject the partition into the DirectoryService
 directoryService.addPartition(partition);

 // Create the LDAP server ldapServer = new LdapServer();
 ldapServer.setServiceName("Embedded LDAP service");
 TcpTransport ldapTransport = new TcpTransport(port);
 ldapServer.setTransports(ldapTransport);

 ldapServer.setDirectoryService(directoryService);
 directoryService.startup();
 ldapServer.start();

 System.out.println("Embedded ApacheDS LDAP server" + "has started

successfully");
 }

CHAPTER 4 ■ TEsTing LDAP CoDE

67

 catch(Exception e) {
 throw new RuntimeException(e);
 }
 }

 public void stopServer() {
 try {
 System.out.println("Shutting down Embedded " + "ApacheDS LDAP

Server");
 ldapServer.stop();
 directoryService.shutdown();
 FileUtils.deleteDirectory(directoryService.getWorkingDirectory());

 System.out.println("Embedded ApacheDS LDAP " + "Server shutdown

successful");
 }
 catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
}

Creating Embedded Context Factory
With the above code in place, the next step is to automatically start the server and
create contexts that you can use to interact with the embedded server. In Spring, you
can achieve this by implementing a custom FactoryBean that creates new instances of
ContextSource. In Listing 4-8, you start the creation of the context factory.

Listing 4-8.

package com.practicalspring.ldap.test;

import org.springframework.beans.factory.config. AbstractFactoryBean;
import org.springframework.ldap.core.ContextSource;
import org.springframework.ldap.core.support.DefaultDirObjectFactory;
import org.ldapunit.server.ApacheDSConfigurer;
import org.apache.directory.server.ldap.LdapServer;

public class EmbeddedContextSourceFactory extends
AbstractFactoryBean<ContextSource> {

 private int port;
 private String rootDn;
 private ApacheDSConfigurer apacheDsConfigurer;

CHAPTER 4 ■ TEsTing LDAP CoDE

68

 @Override
 public Class<?> getObjectType() {
 return ContextSource.class;
 }

 @Override
 protected ContextSource createInstance() throws Exception {

 // To be implemented later.
 return null;
 }
 public void setRootDn(String rootDn) {
 this.rootDn = rootDn;
 }
 public void setPort(int port) {
 this.port = port;
 }
}

Notice that the EmbeddedContextSourceFactory bean uses two setter methods:
setPort and setRootDn. The setPort method can be used to set the port on which the
embedded server should run. The setRootDn method can be used to provide the name of
the root context. Listing 4-9 shows the implementation of the createInstance method,
which creates a new instance of ApacheDSConfigurer and starts the server. Then it creates
a new LdapContenxtSource and populates it with the embedded LDAP server information.

Listing 4-9.

apacheDsConfigurer = new ApacheDSConfigurer(rootDn, port);
apacheDsConfigurer.startServer();

LdapContextSource targetContextSource = new LdapContextSource();
targetContextSource.setUrl("ldap://localhost:" + port);
targetContextSource.setUserDn(ADMIN_DN);
targetContextSource.setPassword(ADMIN_PWD);
targetContextSource.setDirObjectFactory(DefaultDirObjectFactory.class);
targetContextSource.afterPropertiesSet();

return targetContextSource;

The implementation of destroyInstance is provided in Listing 4-10. It simply
involves cleaning up the created context and stopping the embedded server.

CHAPTER 4 ■ TEsTing LDAP CoDE

69

Listing 4-10.

@Override
protected void destroyInstance(ContextSource instance) throws Exception {
 super.destroyInstance(instance);
 apacheDsConfigurer.stopServer();
}

The final step is to create a Spring context file that uses the new context factory. This
is shown in Listing 4-11. Notice that the embedded context source is being injected into
the ldapTemplate.

Listing 4-11.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <bean id="contextSource" class="com.inflinx.ldap.test.

EmbeddedContextSourceFactory">
 <property name="port" value="12389" />
 <property name="rootDn" value="dc=inflinx,dc=com" />
 </bean>

 <bean id="ldapTemplate" class="org.springframework.ldap.core.

LdapTemplate">
 <constructor-arg ref="contextSource" />
 </bean>
</beans>

Now you have the entire infrastructure needed to write JUnit test cases. Listing 4-12
shows a simple JUnit test case. This test case has a setup method that runs before each
test method. In the setup method you load the data so that the LDAP server will be in a
known state. In Listing 4-12, you are loading data from employees.ldif file. The teardown
method runs after each test method is run. In the teardown method, you are deleting all
the entries in LDAP server. This will allow you to start clean with a new test. The three test
methods are very rudimentary and simply print the information on the console.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

CHAPTER 4 ■ TEsTing LDAP CoDE

70

Listing 4-12.

package com.inflinx.book.ldap.test;

import java.util.List;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ldap.core.ContextMapper;
import org.springframework.ldap.core.ContextSource;
import org.springframework.ldap.core.DirContextAdapter;
import org.springframework.ldap.core.DistinguishedName;
import org.springframework.ldap.core.LdapTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations= {"classpath:repositoryContext-test.xml"})
public class TestRepository {

 @Autowired
 ContextSource contextSource;

 @Autowired
 LdapTemplate ldapTemplate;

 @Before
 public void setup() throws Exception {
 System.out.println("Inside the setup");
 LdapUnitUtils.loadData(contextSource, new ClassPathResource

("employees.ldif"));
 }

 @After
 public void teardown() throws Exception {
 System.out.println("Inside the teardown");
 LdapUnitUtils.clearSubContexts(contextSource, new DistinguishedName

("dc=inflinx,dc=com"));
 }

 @Test
 public void testMethod() {
 System.out.println(getCount(ldapTemplate));
 }

CHAPTER 4 ■ TEsTing LDAP CoDE

71

 @Test
 public void testMethod2() {
 ldapTemplate.unbind(new DistinguishedName("uid=employee0,ou=employees,

dc=inflinx,dc=com"));
 System.out.println(getCount(ldapTemplate));
 }

 @Test
 public void testMethod3() {
 System.out.println(getCount(ldapTemplate));
 }

 private int getCount(LdapTemplate ldapTemplate) {
 List results = ldapTemplate.search("dc=inflinx,dc=com",

"(objectClass=inetOrgPerson)", new ContextMapper() {
 @Override
 public Object mapFromContext(Object ctx) {
 return ((DirContextAdapter)ctx).getDn();
 }
 });
 return results.size();
 }
}

Mocking LDAP Using EasyMock
In the previous section you looked at testing your LDAP code using an embedded LDAP
server. Now let’s look at testing LDAP code using the EasyMock framework.

EasyMock is an open source library that makes creating and using mock objects
easy. Beginning with version 3.0, EasyMock natively supports mocking both interfaces
and concrete classes. The latest version of EasyMock can be downloaded from
http://easymock.org/Downloads.html. In order to mock concrete classes, two
additional libraries namely CGLIB and Objenesis are needed. Maven users can obtain
the required jar files by simply adding the following dependency in their pom.xml:

<dependency>
 <groupId>org.easymock</groupId>
 <artifactId>easymock</artifactId>
 <version>3.2</version>
 <scope>test</scope>
</dependency>

http://easymock.org/
http://easymock.org/

CHAPTER 4 ■ TEsTing LDAP CoDE

72

Creating a mock using EasyMock involves calling the createMock method on the
EasyMock class. The following example creates a mock object for LdapTemplate:

LdapTemplate ldapTemplate = EasyMock.createMock(LdapTemplate. class);

Each newly created mock object starts in the recording mode. In this mode you
record the expected behavior or expectation of the mock. For example, you can tell the
mock that if this method gets called, return this value. For example, the following code
adds a new expectation to the LdapTemplate mock:

EasyMock.expect(ldapTemplate.bind(isA(DirContextOperations. class)));

In this code you are instructing the mock that a bind method will be invoked and an
instance of DirContextOperations will be passed in as its parameter.

Once all the expectations are recorded, the mock needs to be able to replay these
expectations. This is done by invoking the replay method on EasyMock and passing in
the mock objects that needs to be replayed as parameters.

EasyMock.replay(ldapTemplate);

The mock object can now be used in test cases. Once the code under test completes
its execution, you can verify if all the expectations on the mock are met. This is done by
invoking the verify method on EasyMock.

EasyMock.verify(ldapTemplate);

Mocking can be especially useful for verifying context row mappers used in the
search methods. As you have seen before, a row mapper implementation converts an
LDAP context/entry into a Java domain object. Here is the method signature in the
ContextMapper interface that performs the conversion:

public Object mapFromContext(Object ctx)

The ctx parameter in this method will typically be an instance of the
DirContextOperations implementation. So, in order to unit test ContextMapper
implementations, you need to pass in a mock DirContextOperations instance to the
mapFromContext method. The mock DirContextOperations should return dummy but
valid data so that the ContextMapper implementation can create a domain object from it.
Listing 4-13 shows the code to mock and populate a DirContextOperations instance. The
mockContextOperations loops through the passed-in dummy attribute data and adds
expectations for single- and multi-valued attributes.

CHAPTER 4 ■ TEsTing LDAP CoDE

73

Listing 4-13.

public static DirContextOperations mockContextOperations(Map<String, Object>
attributes) {

 DirContextOperations contextOperations = createMock(DirContextOperations.

class);
 for(Entry<String, Object> entry : attributes.entrySet()){
 if(entry.getValue() instanceof String){
 expect(contextOperations.getStringAttribute(eq(entry.

getKey()))).andReturn((String)entry.getValue());
 expectLastCall().anyTimes();
 }
 else if(entry.getValue() instanceof String[]){
 expect(contextOperations.
 getStringAttributes(eq(entry.getKey()))).andReturn((String[])

entry.getValue());
 expectLastCall().anyTimes();
 }
 }
 return contextOperations;
}

With this code in place, Listing 4-14 shows the code that uses the
mockContextOperations method for mock testing context row mapper.

Listing 4-14.

public class ContextMapperExample {

 @Test
 public void testConextMapper() {
 Map<String, Object> attributes = new HashMap<String, Object>();
 attributes.put("uid", "employee1");
 attributes.put("givenName", "John"); attributes.put("surname", "Doe");
 attributes.put("telephoneNumber", new String[]

{"8011001000","8011001001"});

 DirContextOperations contextOperations = LdapMockUtils.

mockContextOperations(attributes);
 replay(contextOperations);

 //Now we can use the context operations to test a mapper
 EmployeeContextMapper mapper = new EmployeeContextMapper();
 Employee employee = (Employee)mapper.mapFromContext(contextOperations);
 verify(contextOperations);

CHAPTER 4 ■ TEsTing LDAP CoDE

74

 // test the employee object
 assertEquals(employee.getUid(), "employee1");
 assertEquals(employee.getFirstName(), "John");
 }
}

Test Data Generation
For testing purposes, you often need to generate initial test data. OpenDJ provides a great
command-line utility called make- ldif that makes generating test LDAP data a breeze.
Please refer to Chapter 3 for instructions on installing OpenDJ. The command-line tools
for Windows OS are located in the bat folder under the OpenDJ installation.

The make-ldif tool requires a template for creating test data. You will use the
patron.template file shown in Listing 4-15 for generating patron entries.

Listing 4-15.

define suffix=dc=inflinx,dc=com
define maildomain=inflinx.com
define numusers=101

branch: [suffix]

branch: ou=patrons,[suffix]
subordinateTemplate: person:[numusers]

template: person
rdnAttr: uid
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: <first>
sn: <last>
cn: {givenName} {sn}
initials: {givenName:1}<random:chars:ABCDEFGHIJKLMNOPQRSTUVWXYZ:1>{sn:1}
employeeNumber: <sequential:0>
uid: patron<sequential:0>
mail: {uid}@[maildomain]
userPassword: password
telephoneNumber: <random:telephone>
homePhone: <random:telephone>
mobile: <random:telephone>
street: <random:numeric:5> <file:streets> Street
l: <file:cities>

http://maildomain=inflinx.com

CHAPTER 4 ■ TEsTing LDAP CoDE

75

st: <file:states>
postalCode: <random:numeric:5>
postalAddress: {cn}${street}${l}, {st} {postalCode}

This is a simple modification to the example.template file that comes out of the box
with the installation. The example.template is located in <OpenDJ_Install>\config\
MakeLDIF folder. The uid has been modified to use the prefix “patron” instead of “user”.
Also, the numUsers value has been changed to 101. This indicates the number of test
users you would like the script to generate. To generate the test data, run the following
command in a command line:

C:\ practicalldap\opendj\bat>make-ldif --ldifFile
c:\ practicalldap\testdata\patrons.ldif --templateFile
c:\ practicalldap\templates\patron.template --randomSeed 1

The •	 --ldifFile option is used to specify the target file location.
Here you are storing it under the name patrons.ldif in the
testdata directory

The •	 --templateFile is used to specify the template file to
be used.

The •	 --randomSeed is an integer that needs to be used to seed the
random number generator used during data generation.

Upon successful creation, you will see a screen similar to Figure 4-1. In addition to
the 101 test entries, the script creates two additional base entries.

Figure 4-1. Make LDIF command result

CHAPTER 4 ■ TEsTing LDAP CoDE

76

Summary
In this chapter, you took a deep dive into testing LDAP code. You started with an overview
of testing concepts. Then you spent time setting up ApacheDS for embedded testing.
Although embedded testing simplifies things, there are times where you want to test code,
minimizing the need for external infrastructure dependencies. You can address those
situations using mock testing. Finally, you used OpenDJ tools to generate test data.

In the next chapter, you will look at creating Data Access Objects (DAOs) that interact
with LDAP using object factories.

77

Chapter 5

Advanced Spring LDAP

In this chapter, you will learn

The basics of JNDI object factories.•	

DAO implementation using object factories.•	

JNDI Object Factories
JNDI provides the notion of object factories, which makes dealing with LDAP information
easier. As the name suggests, an object factory transforms directory information into
objects that are meaningful to the application. For example, using object factories it
is possible to have a search operation return object instances like Patron or Employee
instead of plain javax.naming.NamingEnumeration.

Figure 5-1 depicts the flow involved when an application performs LDAP operations
in conjunction with an object factory. The flow starts with the application invoking a search
or a lookup operation. The JNDI API will execute the requested operation and retrieves
entries from LDAP. These results are then passed over to the registered object factory, which
transforms them into objects. These objects are handed over to the application.

Figure 5-1. JNDI/object factory flow

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

78

Object factories dealing with LDAP need to implement the javax.naming.spi.
DirObjectFactory interface. Listing 5-1 shows a Patron object factory implementation
that takes the passed-in information and creates a Patron instance. The obj parameter to
the getObjectInstance method holds reference information about the object. The name
parameter holds the name of the object. The attrs parameter contains the attributes
associated with the object. In the getObjectInstance you read the required attributes
and populate the newly created Patron instance.

Listing 5-1.

package com.inflinx.book.ldap;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.Name;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttributes;
import javax.naming.spi.DirObjectFactory
import com.inflinx.book.ldap.domain.Patron;

public class PatronObjectFactory implements DirObjectFactory {

 @Override
 public Object getObjectInstance(Object obj, Name name, Context

nameCtx,Hashtable<?, ?> environment, Attributes attrs) throws Exception {
 Patron patron = new Patron();
 patron.setUid(attrs.get("uid").toString());
 patron.setFullName(attrs.get("cn").toString());
 return patron;
 }

 @Override
 public Object getObjectInstance(Object obj, Name name, Context

nameCtx,Hashtable<?, ?> environment) throws Exception {
 return getObjectInstance(obj, name, nameCtx, environment,

new BasicAttributes());
 }
}

Before you can start using this object factory, it must be registered during Initial Context
creation. Listing 5-2 shows an example of using PatronObjectFactory during lookups. You
register the PatronObjectFactory class using the DirContext.OBJECT_FACTORIES property.
Notice that the context’s lookup method now returns a Patron instance.

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

79

Listing 5-2.

package com.inflinx.book.ldap;

import java.util.Properties;
import javax.naming.NamingException;
import javax.naming.directory.DirContext;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.ldap.LdapContext;
import com.inflinx.book.ldap.domain.Patron;

public class JndiObjectFactoryLookupExample {

 private LdapContext getContext() throws NamingException {
 Properties environment = new Properties();
 environment.setProperty(DirContext.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.ldap.LdapCtxFactory");
 environment.setProperty(DirContext.PROVIDER_URL,

"ldap://localhost:11389");
 environment.setProperty(DirContext.SECURITY_PRINCIPAL,

"cn=Directory Manager");
 environment.setProperty(DirContext.SECURITY_CREDENTIALS, "opends");
 environment.setProperty(DirContext.OBJECT_FACTORIES,

"com.inflinx.book.ldap.PatronObjectFactory");

 return new InitialLdapContext(environment, null);
 }

 public Patron lookupPatron(String dn) {
 Patron patron = null;
 try {
 LdapContext context = getContext();
 patron = (Patron) context.lookup(dn);
 }
 catch(NamingException e) {
 e.printStackTrace();
 }
 return patron;
 }

 public static void main(String[] args) {
 JndiObjectFactoryLookupExample jle = new JndiObjectFactoryLookupExample();
 Patron p = jle.lookupPatron("uid=patron99,ou=patrons,"

+ "dc=inflinx,dc=com");
 System.out.println(p);
 }
}

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

80

Spring and Object Factories
Spring LDAP provides an out-of-the-box implementation of DirObjectFactory called
org.springframework.ldap.core.support.DefaultDirObjectFactory. As you saw
in the previous section, the PatronObjectFactory creates instances of Patrons from
the contexts found. Similarly, the DefaultDirObjectFactory creates instances of
org.springframework.ldap.core.DirContextAdapter from found contexts.

The DirContextAdapter class is generic in nature and can be viewed as a holder of
LDAP entry data. The DirContextAdapter class provides a variety of utility methods that
greatly simplify getting and setting attributes. As you will see in later sections, when changes
are made to attributes, the DirContextAdapter automatically keeps track of those changes
and simplifies updating LDAP entry’s data. The simplicity of the DirContextAdapter along
with DefaultDirObjectFactory enables you to easily convert LDAP data into domain
objects, reducing the need to write and register a lot of object factories.

In the next sections, you will be using the DirContextAdapter to create an Employee
DAO that abstracts read and write access of Employee LDAP entries.

DaO DeSIGN patterN

Most Java and JEE applications today access a persistent store of some type
for their everyday activities. The persistent stores vary from popular relational
databases to LdAP directories to legacy mainframe systems. depending on the type
of persistent store, the mechanism to obtain and manipulate data will vary greatly.
This can result in tight coupling between the application and data access code,
making it hard to switch between the implementations. This is where a data Access
Object or dAO pattern can help.

The data Access Object is a popular core JEE pattern that encapsulates access to
data sources. Low-level data access logic such as connecting to the data source
and manipulating data is cleanly abstracted to a separate layer by the dAO. A dAO
implementation usually includes the following:

1. A dAO interface that provides the CRUd method contract.

2. Concrete implementation of the interface using a data
source-specific APi.

3. domain objects or transfer objects that are returned by
the dAO.

With a dAO in place, the rest of the application need not worry about the underlying
data implementation and can focus on high-level business logic.

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

81

DAO Implementation Using Object Factory
Typically the DAOs you create in Spring applications have an interface that serves as the
DAO’s contract and an implementation that contains the actual logic to access the data
store or directory. Listing 5-3 shows the EmployeeDao interface for the Employee DAO you
will be implementing. The DAO has create, update, and delete methods for modifying
the employee information. It also has two finder methods, one that retrieves an employee
by its id and another that returns all the employees.

Listing 5-3.

package com.inflinx.book.ldap.repository;
import java.util.List;
import com.inflinx.book.ldap.domain.Employee;
public interface EmployeeDao {
 public void create(Employee employee);
 public void update(Employee employee);
 public void delete(String id);
 public Employee find(String id);
 public List<Employee> findAll();
}

The previous EmployeeDao interface uses an Employee domain object. Listing 5-4
shows this Employee domain object. The Employee implementation holds all the important
attributes of a Library employee. Notice that instead of using the fully qualified DN, you
will be using the uid attribute as the object’s unique identifier.

Listing 5-4.

package com.inflinx.book.ldap.domain;
public class Employee {
 private String uid;
 private String firstName;
 private String lastName;
 private String commonName;
 private String email;
 private int departmentNumber;
 private String employeeNumber;
 private String[] phone;
 // getters and setters omitted for brevity
}

You start with a basic implementation of the EmployeeDao, as shown in Listing 5-5.

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

82

Listing 5-5.

package com.inflinx.book.ldap.repository;

import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.core.simple.SimpleLdapTemplate;
import com.practicalspring.springldap.domain.Employee;

@Repository("employeeDao")
public class EmployeeDaoLdapImpl implements EmployeeDao {

 @Autowired
 @Qualifier("ldapTemplate")
 private SimpleLdapTemplate ldapTemplate;

 @Override
 public List<Employee> findAll() { return null; }

 @Override
 public Employee find(String id) { return null; }

 @Override
 public void create(Employee employee) {}

 @Override
 public void delete(String id) {}

 @Override
 public void update(Employee employee) {}

}

In this implementation, you are injecting an instance of SimpleLdapTemplate.
The actual creation of the SimpleLdapTemplate will be done in an external configuration
file. Listing 5-6 shows the repositoryContext.xml file with SimpleLdapTemplate and
associated bean declarations.

Listing 5-6.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

83

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd ">

 <context:component-scan base-package="com.inflinx.book.ldap" />

 <bean id="contextSource" class=

"org.springframework.ldap.core.support.LdapContextSource">
 <property name="url" value="ldap://localhost:11389" />
 <property name="base" value="ou=employees,dc=inflinx,dc=com"/>
 <property name="userDn" value="uid=admin,ou=system" />
 <property name="password" value="secret" />
 </bean>
 <bean id="ldapTemplate" class=

"org.springframework.ldap.core.simple.SimpleLdapTemplate">
 <constructor-arg ref="contextSource" />
 </bean>
</beans>

This configuration file is similar to the one you saw in Chapter 3. You provide the
LDAP server information to the LdapContextSource to create a contextSource bean.
By setting the base to "ou=employees,dc=inflinx,dc=com", you have restricted all the
LDAP operations to the employee branch of the LDAP tree. It is important to understand
that a search operation on the branch "ou=patrons" will not be possible using the
contexts created here. If the requirement is to search all of the branches of the LDAP tree,
then the base property needs to be an empty string.

An important property of LdapContextSource is the dirObjectFactory, which
can be used to set a DirObjectFactory to use. However, in Listing 5-6, you didn’t
use this property to specify your intent to use DefaultDirObjectFactory. That is
because by default LdapContextSource registers the DefaultDirObjectFactory as its
DirObjectFactory.

In the final portion of the configuration file you have the SimpleLdapTemplate
bean declaration. You have passed in the LdapContextSource bean as the constructor
argument to the SimpleLdapTemplate.

Implementing Finder Methods
Implementing the findAll method of the Employee DAO requires searching LDAP for
all the employee entries and creating Employee instances with the returned entries. To do
this, you will be using the following method in the SimpleLdapTemplate class:

public <T> List<T> search(String base, String filter,
ParameterizedContextMapper<T> mapper)

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

84

Since you are using the DefaultDirObjectFactory, every time a search or a
lookup is performed, every context found in the LDAP tree will be returned as an
instance of DirContextAdapter. Like the search method you saw in Listing 3-8, the
above search method takes a base and filter parameters. Additionally, it takes an
instance of ParameterizedContextMapper<T>. The above search method will pass the
returned DirContextAdapters to the ParameterizedContextMapper<T> instance for
transformation.

The ParameterizedContextMapper<T> and its parent interface, the ContextMapper,
hold the mapping logic needed to populate domain objects from the passed-in
DirContextAdapter. Listing 5-7 provides the context mapper implementation for
mapping Employee instances. As you can see, the EmployeeContextMapper extends
AbstractParameterizedContextMapper, which is an abstract class that implements
ParameterizedContextMapper.

Listing 5-7.

package com.inflinx.book.ldap.repository.mapper;

import org.springframework.ldap.core.DirContextOperations;
import org.springframework.ldap.core.simple.
AbstractParameterizedContextMapper;
import com.inflinx.book.ldap.domain.Employee;

public class EmployeeContextMapper
extends AbstractParameterizedContextMapper<Employee> {

 @Override
 protected Employee doMapFromContext(DirContextOperations context) {

 Employee employee = new Employee();
 employee.setUid(context.getStringAttribute("UID"));
 employee.setFirstName(context.getStringAttribute("givenName"));
 employee.setLastName(context.getStringAttribute("surname"));
 employee.setCommonName(context.getStringAttribute("commonName"));
 employee.setEmployeeNumber(context.getStringAttribute("employeeNumber"));
 employee.setEmail(context.getStringAttribute("mail"));
 employee.setDepartmentNumber(Integer.parseInt(context.getStringAttribute

("departmentNumber")));
 employee.setPhone(context.getStringAttributes("telephoneNumber"));

 return employee;
 }
}

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

85

In Listing 5-7, the DirContextOperations parameter to the doMapFromContext
method is an interface for DirContextAdapter. As you can see, the doMapFromContext
implementation involves creating a new Employee instance and reading the attributes you
are interested in from the supplied context.

With the EmployeeContextMapper in place, the findAll method implementation
becomes trivial. Since all the employee entries have the objectClass inetOrgPerson,
you will be using "(objectClass=inetOrgPerson)" as the search filter. Listing 5-8 shows
the findAll implementation.

Listing 5-8.

@Override
public List<Employee> findAll() {
 return ldapTemplate.search("", "(objectClass=inetOrgPerson)",

new EmployeeContextMapper());
}

The other finder method can be implemented in two ways: searching an LDAP tree
with the filter (uid=<supplied employee id>) or performing an LDAP lookup with an
employee DN. Since search operations with filters are more expensive than looking up a
DN, you will be implementing the find method using the lookup. Listing 5-9 shows the
find method implementation.

Listing 5-9.

@Override
public Employee find(String id) {
 DistinguishedName dn = new DistinguishedName();
 dn.add("uid", id);
 return ldapTemplate.lookup(dn, new EmployeeContextMapper());
}

You start the implementation by constructing a DN for the employee. Since the
initial context base is restricted to the employee branch, you have just specified the RDN
portion of the employee entry. Then you use the lookup method to look up the employee
entry and create an Employee instance using the EmployeeContextMapper.

This concludes the implementation of both finder methods. Let’s create a JUnit test
class for testing your finder methods. The test case is shown in Listing 5-10.

Listing 5-10.

package com.inflinx.book.ldap.repository;

import java.util.List;
import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

86

import org.junit.runner.RunWith;
import org.ldapunit.util.LdapUnitUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ldap.core.DistinguishedName;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import com.inflinx.book.ldap.domain.Employee;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations={"classpath:repositoryContext-test.xml"})
public class EmployeeDaoLdapImplTest {

 private static final String PORT = "12389";
 private static final String ROOT_DN = "dc=inflinx,dc=com";

 @Autowired
 @Qualifier("employeeDao")
 private EmployeeDao employeeDao;

 @Before
 public void setup() throws Exception {
 System.out.println("Inside the setup");
 LdapUnitUtils.loadData(new ClassPathResource("employees.ldif"), PORT);
 }

 @After
 public void teardown() throws Exception {
 System.out.println("Inside the teardown");
 LdapUnitUtils.clearSubContexts(new DistinguishedName(ROOT_DN), PORT);
 }

 @Test
 public void testFindAll() {
 List<Employee> employeeList = employeeDao.findAll();
 Assert.assertTrue(employeeList.size() > 0);
 }

 @Test
 public void testFind() {
 Employee employee = employeeDao.find("employee1");
 Assert.assertNotNull(employee);
 }
}

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

87

Notice that you have specified the repositoryContext-test.xml in the
ContextConfiguration. This test context file is shown in Listing 5-11. In the configuration
file you have created an embedded context source using the LdapUnit framework’s
EmbeddedContextSourceFactory class. The embedded LDAP server is an instance of
OpenDJ (as specified by the property serverType) and will run on port 12389.

The setup and teardown methods in the JUnit test case are implemented for loading
and deleting test employee data. The employee.ldif file contains the test data you will be
using throughout this book.

Listing 5-11.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.inflinx.book.ldap" />

 <bean id="contextSource" class=

"org.ldapunit.context.EmbeddedContextSourceFactory">
 <property name="port" value="12389" />
 <property name="rootDn" value="dc=inflinx,dc=com" />
 <property name="base" value="ou=employees,dc=inflinx,dc=com" />
 <property name="serverType" value="OPENDJ" />
 </bean>
 <bean id="ldapTemplate" class=

"org.springframework.ldap.core.simple.SimpleLdapTemplate">
 <constructor-arg ref="contextSource" />
 </bean>
</beans>

Create Method
SimpleLdapTemplate provides several bind methods for adding entries to LDAP. To create
a new Employee you will use the following bind method variation:

public void bind(DirContextOperations ctx)

This method takes a DirContextOperations instance as its parameter. The bind
method invokes the getDn method on the passed-in DirContextOperations instance and
retrieves the fully qualified DN of the entry. It then binds all the attributes to the DN and
creates a new entry.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

88

The implementation of the create method in the Employee DAO is shown in Listing 5-12.
As you can see, you start by creating a new instance of a DirContextAdapter.
Then you populate the context’s attributes with employee information. Notice that
the departmentNumber’s int value is being explicitly converted to a String. If this
conversion is not done, the method will end up throwing an “org.springframework.
ldap.InvalidAttributeValueException” exception. The last line in the method does the
actual binding.

Listing 5-12.

@Override
public void create(Employee employee) {

 DistinguishedName dn = new DistinguishedName();
 dn.add("uid", employee.getUid());
 DirContextAdapter context = new DirContextAdapter();
 context.setDn(dn);
 context.setAttributeValues("objectClass", new String[]
 {"top", "person", "organizationalPerson", "inetOrgPerson"});
 context.setAttributeValue("givenName", employee.getFirstName());
 context.setAttributeValue("surname", employee.getLastName());
 context.setAttributeValue("commonName", employee.getCommonName());
 context.setAttributeValue("mail", employee.getEmail());
 context.setAttributeValue("departmentNumber",
 Integer.toString(employee.getDepartmentNumber()));
 context.setAttributeValue("employeeNumber",

employee.getEmployeeNumber());
 context.setAttributeValues("telephoneNumber",employee.getPhone());

 ldapTemplate.bind(context);
}

Note ■ Compare the code in Listing 5-12 with the code in Listing 3-10. You can clearly
see that DirContextAdapter does a great job simplifying attribute manipulation.

Let’s quickly verify the create method’s implementation with the JUnit test case in
Listing 5-13.

Listing 5-13.

@Test
public void testCreate() {
 Employee employee = new Employee();
 employee.setUid("employee1000");
 employee.setFirstName("Test");
 employee.setLastName("Employee1000");

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

89

 employee.setCommonName("Test Employee1000");
 employee.setEmail("employee1000@inflinx.com");
 employee.setDepartmentNumber(12356);
 employee.setEmployeeNumber("45678");
 employee.setPhone(new String[]{"801-100-1200"});

 employeeDao.create(employee);
}

Update Method
Updating an entry involves adding, replacing, or removing its attributes. The simplest way
to achieve this is to remove the entire entry and create it with a new set of attributes. This
technique is referred to as rebinding. Deleting and recreating an entry is obviously not
efficient, and it makes more sense to just operate on changed values.

In Chapter 3, you used the modifyAttributes and ModificationItem instances
for updating LDAP entries. Even though modifyAttributes is a nice approach, it does
require a lot of work to manually generate the ModificationItem list. Thankfully,
DirContextAdapter automates this and makes updating an entry a breeze. Listing 5-14
shows the update method implementation using DirContextAdapter.

Listing 5-14.

@Override
public void update(Employee employee) {
 DistinguishedName dn = new DistinguishedName();
 dn.add("uid", employee.getUid());

 DirContextOperations context = ldapTemplate.lookupContext(dn);
 context.setAttributeValues("objectClass", new String[] {"top", "person",

"organizationalPerson", "inetOrgPerson"});
 context.setAttributeValue("givenName", employee.getFirstName());
 context.setAttributeValue("surname", employee.getLastName());
 context.setAttributeValue("commonName", employee.getCommonName());
 context.setAttributeValue("mail", employee.getEmail());
 context.setAttributeValue("departmentNumber",

Integer.toString(employee.getDepartmentNumber()));
 context.setAttributeValue("employeeNumber",

employee.getEmployeeNumber());
 context.setAttributeValues("telephoneNumber", employee.getPhone());

 ldapTemplate.modifyAttributes(context);
}

http://employee1000@inflinx.com/

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

90

In this implementation, you will notice that you first look up the existing context
using the employee’s DN. Then you set all the attributes like you did in the create
method. (The difference being that DirContextAdapter keeps track of value changes
made to the entry.) Finally, you pass in the updated context to the modifyAttributes
method. The modifyAttributes method will retrieve the modified items list from the
DirContextAdapter and perform those modifications on the entry in LDAP. Listing 5-15
shows the associated test case that updates the first name of an employee.

Listing 5-15.

@Test
public void testUpdate() {
 Employee employee1 = employeeDao.find("employee1");
 employee1.setFirstName("Employee New");
 employeeDao.update(employee1);
 employee1 = employeeDao.find("employee1");
 Assert.assertEquals(employee1.getFirstName(),"Employee New");
}

Delete Method
Spring LDAP makes unbinding straightforward with the unbind method in the
LdapTemplate/SimpleLdapTemplate. Listing 5-16 shows the code involved in deleting
an employee.

Listing 5-16.

@Override
public void delete(String id) {
 DistinguishedName dn = new DistinguishedName();
 dn.add("uid", id);
 ldapTemplate.unbind(dn);
}

Since your operations are all relative to the initial context with the base
"ou=employees,dc=inflinx,dc=com", you create the DN with just uid, the entry’s RDN.
Invoking the unbind operation will remove the entry and all its associated attributes.

Listing 5-17 shows the associated test case to verify the deletion of the entry.
Once an entry is successfully removed, any find operation on that name will result in a
NameNotFoundException. The test case validates this assumption.

CHAPTER 5 ■ AdvAnCEd SPRing LdAP

91

Listing 5-17.

@Test(expected=org.springframework.ldap.NameNotFoundException.class)
public void testDelete() {
 String empUid = "employee11";
 employeeDao.delete(empUid);
 employeeDao.find(empUid);
}

Summary
In this chapter, you were introduced to the world of JNDI object factories. You then looked
at the DefaultDirObjectFactory, Spring LDAP’s object factory implementation. You
spent the rest of the chapter implementing an Employee DAO using DirContextAdapter
and SimpleLdapTemplate.

In the next chapter, you will take a deep dive into the world of LDAP search and
search filters.

93

Chapter 6

Searching LDAP

In this chapter you will learn

The basics of LDAP search•	

LDAP search using filters•	

Creating custom search filter•	

Searching for information is the most common operation performed against LDAP.
A client application initiates an LDAP search by passing in search criteria, the information
that determines where to search and what to search for. Upon receiving the request, the
LDAP server executes the search and returns all the entries that match the criteria.

LDAP Search Criteria
The LDAP search criteria are made up of three mandatory parameters—base, scope, and
filter and several optional parameters. Let’s look at each of these parameters in detail.

Base Parameter
The base portion of the search is a Distinguished Name (DN) that identifies the branch of
the tree that will be searched. For example, a base of "ou=patrons, dc=inflinx, dc=com"
indicates that the search will start in the Patron branch and move downwards. It is also
possible to specify an empty base, which will result in searching the root DSE entry.

Note ■ The root DSE or DSA-Specific Entry is a special entry in the LDAP server. It typically
holds server-specific data such as the vendor name, vendor version, and different controls
and features that it supports.

CHAPTER 6 ■ SEARCHIng LDAP

94

Scope Parameter
The scope parameter determines how deep, relative to the base, an LDAP search needs
to be performed. LDAP protocol defines three possible search scopes: base, one level,
and subtree. Figure 6-1 illustrates the entries that get evaluated as part of the search with
different scopes.

Figure 6-1. Search scopes

The base scope restricts the search to the LDAP entry identified
by the base parameter. No other entries will be included as part
of the search. In your Library application schema, with a base
DN dc=inflinx,dc=com and scope of base, a search would just
return the root organization entry, as shown in Figure 6-1.

The one level scope indicates searching all the entries one level directly below the
base. The base entry itself is not included in the search. So, with base dc=inflinx,dc=com
and scope one level, a search for all entries would return employees and patrons
organizational unit.

Finally, the subtree scope includes the base entry and all of its descendent entries
in the search. This is the slowest and most expensive option of the three. In your
Library example, a search with this scope and base dc=inflinx, dc=com would return
all the entries.

Filter Parameter
In your Library application LDAP Server, let’s say you want to find all the patrons that live
in the Midvale area. From the LDAP schema, you know that patron entries have the city
attribute that holds the city name they live in. So this requirement essentially boils down to
retrieving all entries that have the city attribute with a value of “Midvale”. This is exactly what
a search filter does. A search filter defines the characteristics that all the returning entries
possess. Logically speaking, the filter gets applied to each entry in the set identified by base
and scope. Only the entries that match the filter become part of the returned search results.

CHAPTER 6 ■ SEARCHIng LDAP

95

An LDAP search filter is made up of three components: an attribute type, an operator,
and a value (or range of values) for the attribute. Depending on the operator, the value part
can be optional. These components must always be enclosed inside parentheses, like so:

Filter = (attributetype operator value)

With this information in hand, the search filter to locate all patrons living in Midvale
would look like this:

(city=Midvale)

Now, let’s say you want to find all the patrons who live in Midvale area and have an
e-mail address so that you can send them news of occasional library events. The resulting
search filter is essentially a combination of two filter items: an item that identifies patrons
in the city of Midvale and an item that identifies patrons that have an e-mail address. You
have already seen the first item of the filter. Here is the other portion of the filter:

(mail=*)

The =* operator indicates the presence of an attribute. So the expression mail=* will
return all entries that have a value in their mail attribute. The LDAP specification defines
filter operators that can be used to combine multiple filters and create complex filters.
Here is the format for combining the filters:

Filter = (operator filter1 filter2)

Notice the use of prefix notation, where the operator is written before their operands
for combining the two filters. Here is the required filter for your use case:

(&(city=Midvale)(mail=*))

The & in this filter is an And operator. The LDAP specification defines a variety of
search filter operators. Table 6-1 lists some of the commonly used operators.

Table 6-1. Search Filter Operators

Name Symbol Example Description

Equality Filter = (sn=Smith) Matches all the entries with last
name Smith.

Substring Filter =, * (sn=Smi*) Matches all entries whose last
name begins with Smi.

Greater Than
or Equals Filter

>= (sn>=S*) Matches all entries that are
alphabetically greater than or
equal to S.

(continued)

CHAPTER 6 ■ SEARCHIng LDAP

96

Optional Parameters
In addition to the above three parameters, it is possible to include several optional
parameters to control search behavior. For example, the timelimit parameter indicates
the time allowed to complete the search. Similarly, the sizelimit parameter places an
upper bound on the number of entries that can be returned as part of the result.

A very commonly used optional parameter involves providing a list of attribute names.
When a search is performed, the LDAP server by default returns all the attributes associated
with entries found in the search. Sometimes this might not be desirable. In those scenarios,
you can provide a list of attribute names as part of the search, and the LDAP server would
return only entries with those attributes. Here is an example of search method in the
LdapTemplate that takes an array of attribute names (ATTR_1, ATTR_2, and ATTR_3):

ldapTemplate.search("SEARCH_BASE", "uid=USER_DN", 1, new String[]{"ATTR_1",
"ATTR_2", ATTR_3}, new SomeContextMapperImpl());

When this search is performed, the entries returned will only have ATTR_1, ATTR_2,
and ATTR_3. This could reduce the amount of data transferred from the server and is
useful in high traffic situations.

Since version 3, LDAP servers can maintain attributes for each entry for purely
administrative purposes. These attributes are referred to as operational attributes and are
not part of the entry’s objectClass. When an LDAP search is performed, the returned
entries will not contain the operational attributes by default. In order to retrieve operational
attributes, you need to provide a list of operational attributes names in the search criteria.

Table 6-1. (continued)

Name Symbol Example Description

Less Than or
Equals Filter

<= (sn<=S*) Matches all entries that are
alphabetically lower than or
equals to S.

Presence Filter =* (objectClass=*) Matches all entries that have
the attribute objectClass. This
is a popular expression used to
retrieve all entries in LDAP.

Approximate
Filter

~= (sn~=Smith) Matches all entries whose last
name is a variation of Smith. So
this can return Smith and Snith.

And Filter & (&(sn=Smith)
(zip=84121))

Returns all Smiths
living in the 84121 area.

Or Filter | (|(sn=Smith)
(sn=Lee))

Returns all entries with last name
Smith or Lee.

Not Filter ! (!(sn=Smith)) Returns all entries whose last
name is not Smith.

CHAPTER 6 ■ SEARCHIng LDAP

97

Note ■ Examples of operational attributes include createTimeStamp, which holds the
time when the entry was created, and pwdAccountLockedTime, which records the time
when a user’s account was locked.

LDAP INJECTION

LDAP injection is a technique where an attacker alters an LDAP query to run
arbitrary LDAP statements against the directory server. LDAP injection can result in
unauthorized data access or modifications to the LDAP tree. Applications that don’t
perform proper input validation or sanitize their input are prone to LDAP injection.
This technique is similar to the popular SQL injection attack used against databases.

To better understand LDAP injection, consider a web application that uses LDAP for
authentication. Such applications usually provide a web page that lets a user enter
his user name and password. In order to verify that username and password match,
the application would then construct an LDAP search query that looks more or less
like this:

(&(uid=USER_INPUT_UID)(password=USER_INPUT_PWD))

Let’s assume that the application simply trusts the user input and doesn’t perform
any validation. now if you enter the text jdoe)(&))(as the user name and any
random text as password, the resulting search query filter would look like this:

(&(uid=jdoe)(&))((password=randomstr))

If the username jdoe is a valid user id in LDAP, then regardless of the entered
password, this query will always evaluate to true. This LDAP injection would allow an
attacker to bypass authentication and get into the application. The “LDAP Injection
& Blind LDAP Injection” article available at www.blackhat.com/presentations/
bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
discusses various LDAP injection techniques in great detail.
Preventing LDAP injection, and any other injection techniques in general, begins
with proper input validation. It is important to sanitize the entered data and properly
encode it before it is used in search filters.

http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf

CHAPTER 6 ■ SEARCHIng LDAP

98

Spring LDAP Filters
In the previous section, you learned that LDAP search filters are very important for
narrowing down the search and identifying entries. However, creating LDAP filters
dynamically can be tedious, especially when trying to combine multiple filters. Making
sure that all the braces are properly closed can be error-prone. It is also important to
escape special characters properly.

Spring LDAP provides several filter classes that make it easy to create and encode
LDAP filters. All these filters implement the Filter interface and are part of the
org.springframework.ldap.filter package. Listing 6-1 shows the Filter API interface.

Listing 6-1.

package org.springframework.ldap.filter;

public interface Filter {
 String encode();
 StringBuffer encode(StringBuffer buf);
 boolean equals(Object o);
 int hashCode();
}

The first encode method in this interface returns a string representation of the filter.
The second encode method accepts a StringBuffer as its parameter and returns the
encoded version of the filter as a StringBuffer. For your regular development process,
you use the first version of encode method that returns String.

The Filter interface hierarchy is shown in Figure 6-2. From the hierarchy, you
can see that AbstractFilter implements the Filter interface and acts as the root
class for all other filter implementations. The BinaryLogicalFilter is the abstract
superclass for binary logical operations such as AND and OR. The CompareFilter
is the abstract superclass for filters that compare values such as EqualsFilter and
LessThanOrEqualsFilter.

CHAPTER 6 ■ SEARCHIng LDAP

99

Note ■ Most LDAP attribute values by default are case-insensitive for searches.

In the coming sections, you will look at each of the filters in Figure 6-2. Before you do
that, let’s create a reusable method that will help you test your filters. Listing 6-2 shows
the searchAndPrintResults method that uses the passed-in Filter implementation
parameter and performs a search using it. It then outputs the search results to the
console. Notice that you will be searching the Patron branch of the LDAP tree.

Figure 6-2. Filter hierarchy

CHAPTER 6 ■ SEARCHIng LDAP

100

Listing 6-2.

import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.core.DirContextOperations;
import org.springframework.ldap.core.simple.
AbstractParameterizedContextMapper;
import org.springframework.ldap.core.simple.SimpleLdapTemplate;
import org.springframework.ldap.filter.Filter;
import org.springframework.stereotype.Component;

@Component("searchFilterDemo")
public class SearchFilterDemo {

 @Autowired
 @Qualifier("ldapTemplate")
 private SimpleLdapTemplate ldapTemplate;

 public void searchAndPrintResults(Filter filter) {
 List<String> results = ldapTemplate.search("ou=patrons,dc=inflinx,

dc=com", filter.encode(),
 new AbstractParameterizedContextMapper<String>() {
 @Override
 protected String doMapFromContext(DirContextOperations context) {
 return context.getStringAttribute("cn");
 }
 });

 System.out.println("Results found in search: " + results.size());
 for(String commonName: results) {
 System.out.println(commonName);
 }
 }
 }
}

EqualsFilter
An EqualsFilter can be used to retrieve all entries that have the specified attribute and
value. Let’s say you want to retrieve all patrons with the first name Jacob. To do this, you
create a new instance of EqualsFilter.

EqualsFilter filter = new EqualsFilter("givenName", "Jacob");

CHAPTER 6 ■ SEARCHIng LDAP

101

The first parameter to the constructor is the attribute name and the second
parameter is the attribute value. Invoking the encode method on this filter results in the
string (givenName=Jacob).

Listing 6-3 shows the test case that invokes the searchAndPrintResults with the
above EqualsFilter as parameter. The console output of the method is also shown in the
Listing. Notice that the results have patrons with first name jacob (notice the lowercase j).
That is because the sn attribute, like most LDAP attributes, is defined in the schema as
being case-insensitive.

Listing 6-3.

@Test
public void testEqualsFilter() {
 Filter filter = new EqualsFilter("givenName", "Jacob");
 searchFilterDemo.searchAndPrintResults(filter);
}

Results found in search: 2
Jacob Smith
jacob Brady

LikeFilter
The LikeFilter is useful for searching LDAP when only a partial value of an attribute
is known. The LDAP specification allows the usage of the wildcard * to describe these
partial values. Say you want to retrieve all users whose first name begins with “Ja.”
To do this, you create a new instance of LikeFilter and pass in the wildcard substring as
attribute value.

LikeFilter filter = new LikeFilter("givenName", "Ja*");

Invoking the encode method on this filter results in the string (givenName=Ja*).
Listing 6-4 shows the test case and the results of invoking the searchAndPrintResults
method with the LikeFilter.

Listing 6-4.

@Test
public void testLikeFilter() {
 Filter filter = new LikeFilter("givenName", "Ja*");
 searchFilterDemo.searchAndPrintResults(filter);
}

Results found in search: 3
Jacob Smith
Jason Brown
jacob Brady

CHAPTER 6 ■ SEARCHIng LDAP

102

The wildcard * in the substring is used to match zero or more characters. However,
it is very important to understand that LDAP search filters do not support regular
expressions. Table 6-2 lists some substring examples.

Table 6-2. LDAP Substring Examples

LDAP Substring Description

(givenName=*son) Matches all patrons whose first name ends with son.

(givenName=J*n) Matches all patrons whose first name starts with J and ends with n.

(givenName=*a*) Matches all patrons with first name containing the character a.
(givenName=J*s*n) Matches patrons whose first name starts with J, contains

character s, and ends with n.

You might be wondering about the necessity of a LikeFilter when you can
accomplish the same filter expression by simply using the EqualsFilter, like this:

EqualsFilter filter = new EqualsFiler("uid", "Ja*");

Using EqualsFilter in this scenario will not work because the encode method in
EqualsFilter considers the wildcard * in the Ja* as a special character and properly
escapes it. Thus, the above filter when used for a search would result in all entries that
have a first name starting with Ja*.

PresentFilter
PresentFilters are useful for retrieving LDAP entries that have at least one value in a
given attribute. Consider the earlier scenario where you wanted to retrieve all the patrons
that have an e-mail address. To do this, you create a PresentFilter, as shown:

PresentFilter presentFilter = new PresentFilter("email");

Invoking the encode method on the presentFilter instance results in
the string (email=*). Listing 6-5 shows the test code and the result when the
searchAndPrintResults method is invoked with the above presentFilter.

Listing 6-5.

@Test
public void testPresentFilter() {
 Filter filter = new PresentFilter("mail");
 searchFilterDemo.searchAndPrintResults(filter);
}

Results found in search: 97
Jacob Smith
Aaren Atp

CHAPTER 6 ■ SEARCHIng LDAP

103

Aarika Atpco
Aaron Atrc
Aartjan Aalders
Abagael Aasen
Abagail Abadines
.........
.........

NotPresentFilter
NotPresentFilters are used to retrieve entries that don’t have a specified attribute.
Attributes that do not have any value in an entry are considered to be not present. Now,
let’s say you want to retrieve all patrons that don’t have an e-mail address. To do this, you
create an instance of NotPresentFilter, as shown:

NotPresentFilter notPresentFilter = new NotPresentFilter("email");

The encoded version of the notPresentFilter results in the expression !(email=*).
Running the searchAndPrintResults results in the output shown in Listing 6-6. The first
null is for the organizational unit entry "ou=patrons,dc=inflinx,dc=com".

Listing 6-6.

@Test
public void testNotPresentFilter() {
 Filter filter = new NotPresentFilter("mail");
 searchFilterDemo.searchAndPrintResults(filter);
}

Results found in search: 5
null
Addons Achkar
Adeniyi Adamowicz
Adoree Aderhold
Adorne Adey

Not Filter
A NotFilter is useful for retrieving entries that do not match a given condition. In the
“LikeFilter” section, you looked at retrieving all entries that start with Ja. Now let’s say you
want to retrieve all entries that don’t start with Ja. This is where a NotFilter comes into
picture. Here is the code for accomplishing this requirement:

NotFilter notFilter = new NotFilter(new LikeFilter("givenName", "Ja*"));

CHAPTER 6 ■ SEARCHIng LDAP

104

Encoding this filter results in the string !(givenName=Ja*). As you can see, the
NotFilter simply adds the negation symbol (!) to the filter passed into its constructor.
Invoking the searchAndShowResults method results in the output shown in Listing 6-7.

Listing 6-7.

@Test
public void testNotFilter() {
 NotFilter notFilter = new NotFilter(new LikeFilter("givenName", "Ja*"));
 searchFilterDemo.searchAndPrintResults(notFilter);
}

Results found in search: 99
Aaren Atp Aarika
Atpco Aaron Atrc
Aartjan Aalders
Abagael Aasen
Abagail Abadines
.........................

It is also possible to combine NotFilter and PresentFilter to create expressions
that are equivalent to NotPresentFilter. Here is a new implementation that gets all the
entries that don’t have an e-mail address:

NotFilter notFilter = new NotFilter(new PresentFilter("email"));

GreaterThanOrEqualsFilter
The GreaterThanOrEqualsFilter is useful for matching all entries that are
lexicographically equal to or higher than the given attribute value. For example, a search
expression (givenName >= Jacob) can be used to retrieve all entries with given name
alphabetically after Jacob, in addition to Jacob. Listing 6-8 shows this implementation
along with the output results.

Listing 6-8.

@Test
public void testGreaterThanOrEqualsFilter() {
 Filter filter = new GreaterThanOrEqualsFilter("givenName", "Jacob");
 searchFilterDemo.searchAndPrintResults(filter);
}

Results found in search: 3
Jacob Smith
jacob Brady
Jason Brown

CHAPTER 6 ■ SEARCHIng LDAP

105

LessThanOrEqualsFilter
The LessThanOrEqualsFilter can be used to match entries that are lexicographically
equal or lower than the given attribute. So, the search expression (givenName<=Jacob)
will return all entries with first name alphabetically lower or equal to Jacob. Listing 6-9
shows the test code that invokes searchAndPrintResults implementation of this
requirement along with the output.

Listing 6-9.

@Test
public void testLessThanOrEqualsFilter() {
 Filter filter = new LessThanOrEqualsFilter("givenName", "Jacob");
 searchFilterDemo.searchAndPrintResults(filter);
}

Results found in search: 100
Jacob Smith
Aaren Atp
Aarika Atpco
Aaron Atrc
Aartjan Aalders
Abagael Aasen
Abagail Abadines
Abahri Abazari
....................

As mentioned, the search includes entries with first name James. The LDAP
specification does not provide a less than (<) operator. However, it is possible to combine
NotFilter with GreaterThanOrEqualsFilter to obtain “less than” functionality. Here is
an implementation of this idea:

NotFilter lessThanFilter = new NotFilter(new GreaterThanOrEqualsFilter
("givenName", "James"));

AndFilter
The AndFilter is used to combine multiple search filter expressions to create complex
search filters. The resulting filter will match entries that meet all the sub-filter conditions.
For example, the AndFilter is suitable for implementing an earlier requirement to get all
the patrons that live in the Midvale area and have an e-mail address. The following code
shows this implementation:

AndFilter andFilter = new AndFilter();
andFilter.and(new EqualsFilter("postalCode", "84047"));
andFilter.and(new PresentFilter("email"));

CHAPTER 6 ■ SEARCHIng LDAP

106

Invoking the encode method on this filter results in (&(city=Midvale)
(email=*)). Listing 6-10 shows the test case that creates the AndFilter and calls the
searchAndPrintResults method.

Listing 6-10.

@Test
public void testAndFilter() {
 AndFilter andFilter = new AndFilter();
 andFilter.and(new EqualsFilter("postalCode", "84047"));
 andFilter.and(new PresentFilter("mail"));
 searchFilterDemo.searchAndPrintResults(andFilter);
}

Results found in search: 1
Jacob Smith

OrFilter
Like the AndFilter, an OrFilter can be used to combine multiple search filters. However,
the resulting filter will match entries that meet any of the sub-filter conditions. Here is
one implementation of the OrFilter:

OrFilter orFilter = new OrFilter();
orFilter.add(new EqualsFilter("postalcode", "84047"));
orFilter.add(new EqualsFilter("postalcode", "84121"));

This OrFilter will retrieve all patrons that live in either the 84047 or the 84121
postal code. The encode method returns the expression (|(postalcode =84047)
(postalcode=84121)). The test case for the OrFilter is shown in Listing 6-11.

Listing 6-11.

@Test
public void testOrFilter() {
 OrFilter orFilter = new OrFilter();
 orFilter.or(new EqualsFilter("postalCode", "84047"));
 orFilter.or(new EqualsFilter("postalCode", "84121"));
 searchFilterDemo.searchAndPrintResults(orFilter);
}

Results found in search: 2
Jacob Smith
Adriane Admin-mtv

CHAPTER 6 ■ SEARCHIng LDAP

107

HardcodedFilter
The HardcodedFilter is a convenience class that makes it easy to add static filter text
while building search filters. Let’s say you are writing an admin application that allows the
administrator to enter a search expression in a text box. If you want to use this expression
along with other filters for a search, you can use HardcodedFilter, as shown:

AndFilter filter = new AndFilter();
filter.add(new HardcodedFilter(searchExpression));
filter.add(new EqualsFilter("givenName", "smith"));

In this code, the searchExpression variable contains the user-entered search
expression. HardcodedFilter also comes in very handy when the static portion of
a search filter comes from a properties file or a configuration file. It is important to
remember that this filter does not encode the passed-in text. So please use it with caution,
especially when dealing with user input directly.

WhitespaceWildcardsFilter
The WhitespaceWildcardsFilter is another convenience class that makes creation
of sub-string search filters easier. Like its superclass EqualsFilter, this class takes an
attribute name and a value. However, as the name suggests, it converts all whitespaces in
the attribute value to wildcards. Consider the following example:

WhitespaceWildcardsFilter filter = new WhitespaceWildcardsFilter("cn", "John Will");

This filter results in the following expression: (cn=*John*Will*). This filter can be
useful while developing search and lookup applications.

Creating Custom Filters
Even though the filter classes provided by Spring LDAP are sufficient in most cases, there
might be scenarios where the current set is inadequate. Thankfully, Spring LDAP has
made it easy to create new filter classes. In this section, you will look at creating a custom
approximate filter.

Approximate filters are used to retrieve entries with attribute values approximately
equal to the specified value. Approximate expressions are created using the ~= operator.
So a filter of (givenName ~= Adeli) will match entries with first name such as Adel or
Adele. The approximate filter is useful in search applications when the actual spelling
of the value is not known to the user at the time of the search. The implementation
of the algorithm to find phonetically similar values varies from one LDAP server
implementation to another.

Spring LDAP does not provide any out-of-the-box class to create an approximate filter. In
Listing 6-12, you create an implementation of this filter. Notice that the ApproximateFilter
class extends the AbstractFilter. The constructor is defined to accept the attribute type and

CHAPTER 6 ■ SEARCHIng LDAP

108

the attribute value. In the encode method, you construct the filter expression by concatenating
the attribute type, operator, and the value.

Listing 6-12.

import org.springframework.ldap.filter.AbstractFilter;

private class ApproximateFilter extends AbstractFilter {

 private static final String APPROXIMATE_SIGN = "~=";
 private String attribute;
 private String value;

 public ApproximateFilter(String attribute, String value) {
 this.attribute = attribute;
 this.value = value;
 }

 @Override
 public StringBuffer encode(StringBuffer buff) {
 buff.append('(');
 buff.append(attribute).append(APPROXIMATE_SIGN).append(value);
 buff.append(')');

 return buff;
 }
}

Listing 6-13 shows the test code for running the searchAndPrintResults method
with ApproximateFilter class.

Listing 6-13.

@Test
public void testApproximateFilter() {
 ApproximateFilter approx = new ApproximateFilter("givenName", "Adeli");
 searchFilterDemo.searchAndPrintResults(approx);
}

Here is the output of running the test case:

Results found in search: 6
Adel Acker
Adela Acklin
Adele Acres
Adelia Actionteam
Adella Adamczyk
Adelle Adamkowski

CHAPTER 6 ■ SEARCHIng LDAP

109

Table 6-3. Special Characters and Escape Values

Special Character Escape Value

(\28

) \29

* \2a

\ \5c
/ \2f

Handling Special Characters
There will be times when you need to construct search filters with characters such as
(or a * that have special meanings in LDAP. To execute these filters successfully, it is
important to escape the special characters properly. Escaping is done using the
format \xx where xx denotes the hexadecimal representation of the character. Table 6-3
lists all of the special characters along with their escape values.

In addition to the above characters, if any of the following characters are used in a
DN, they also need to be properly escaped: comma (,), equals sign (=), plus sign (+),
less than (<), greater than (>), pound sign (#), and semi-colon (;).

Summary
In this chapter, you learned how to simplify LDAP searches using search filters. I started
the chapter with an overview of LDAP search concepts. Then you looked at different
search filters that you can use to retrieve data in a variety of ways. You also saw how
Spring LDAP makes it easy to create custom search filters.

In the next chapter, you will look at sorting and paging the results obtained from an
LDAP server.

111

Chapter 7

Sorting and Paging Results

In this chapter you will learn

The basics of LDAP controls.•	

Sorting LDAP results.•	

Paging LDAP results.•	

LDAP Controls
LDAP controls provide a standardized way to modify the behavior of LDAP operations.
A control can be viewed simply as a message that a client sends to an LDAP server (or
vice versa). Controls that are sent as part of a client request can provide additional
information to the server indicating how the operation should be interpreted and
executed. For example, a delete subtree control can be specified on an LDAP delete
operation. Upon receiving a delete request, the default behavior of an LDAP server is to
just delete the entry. However, when a delete subtree control is appended to the delete
request, the server automatically deletes the entry as well as all its subordinate entries.
Such controls are referred to as request controls.

It is also possible for LDAP servers to send controls as part of their response message
indicating how the operation was processed. For example, an LDAP server may return
a password policy control during a bind operation indicating that the client’s password
has expired or will be expiring soon. Such controls sent by the server are referred to as
response controls. It is possible to send any number of request or response controls along
with an operation.

LDAP controls, both request and response, are made up of the following three
components:

An Object Identifier (OID) that uniquely identifies the control. •	
These OIDs prevent conflicts between control names and are
usually defined by the vendor that creates the control. This is a
required component of a control.

Indication whether the control is critical or non-critical for the •	
operation. This is also a required component and can be either
TRUE or FALSE.

CHAPTER 7 ■ SoRTing And PAging RESulTS

112

Optional information specific to the control. For example, the •	
paged control used for paging search results needs the page size
to determine the number of entries to return in a page.

The formal definition of an LDAP control as specified in RFC 2251
(www.ietf.org/rfc/rfc2251.txt) is shown in Figure 7-1. This LDAP specification,
however, does not define any concrete controls. Control definitions are usually provided
by LDAP vendors and their support varies vastly from one server to another.

When an LDAP server receives a control as part of an operation, its behavior is
dependent on the control and its associated information. The flow chart in Figure 7-2
shows the server behavior upon receiving a request control.

Figure 7-1. LDAP control specification

Figure 7-2. LDAP server control interaction

http://www.ietf.org/rfc/rfc2251.txt

CHAPTER 7 ■ SoRTing And PAging RESulTS

113

Some of the commonly supported LDAP controls along with their OID and
description are shown in Table 7-1.

Identifying Supported Controls
Before a particular control can be used, it is important to make sure that the LDAP
server you are using supports that control. The LDAP specification mandates every
LDAP v3 compliant server publish all the supported controls in the supportedControl
attribute of the Root DSA-Specific Entry (DSE). Thus, searching the Root DSE entry for
the supportedControl attribute will list all the controls. Listing 7-1 shows the code that
connects to the OpenDJ server running on port 11389 and prints the control list to the
console.

Table 7-1. Commonly Used Controls

Control Name OID Description (RFC)

Sort Control 1.2.840.113556.1.4.473 Requests the server to sort the search
results before sending them to client. This
is part of RFC 2891.

Paged Results
Control

1.2.840.113556.1.4.319 Requests the server to return search results
in pages consisting of specified number
of entries. Only sequential iteration of the
search results is allowed. This is defined as
part of RFC 2696.

Subtree Delete
Control

1.2.840.113556.1.4.805 Requests the server delete the entry and all
its descendent entries.

Virtual List
View Control

2.16.840.1.113730.3.4.9 This is similar to Page search results but
allows client request arbitrary subsets of
entries. This control is described in the
Internet Drafts file VLV 04.

Password Policy
Control

1.3.6.1.4.1.42.2.27.8.5.1 Server-sent control that holds information
about failed operation (authentication, for
example) due to password policy problems
such as password needs to be reset or
account has been locked or password has
expired or expiring.

Manage DSA/IT
Control

2.16.840.1.113730.3.4.2 Requests the server to treat “ref” attribute
entries (referrals) as regular LDAP entries.

Persistent
Search Control

2.16.840.1.113730.3.4.3 This control allows the client to receive
notifications of changes in the LDAP server
for entries that match a search criteria.

CHAPTER 7 ■ SoRTing And PAging RESulTS

114

Listing 7-1.

package com.inflinx.book.ldap;

import java.util.Properties;
import javax.naming.NamingEnumeration;
import javax.naming.NamingException;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;

public class SupportedControlApplication {

 public void displayControls() {

 String ldapUrl = "ldap://localhost:11389";
 try {
 Properties environment = new Properties();
 environment.setProperty(DirContext.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.ldap.LdapCtxFactory");
 environment.setProperty(DirContext.PROVIDER_URL,ldapUrl);
 DirContext context = new InitialDirContext(environment);
 Attributes attributes = context.getAttributes("", new String[]

{"supportedcontrol"});
 Attribute supportedControlAttribute = attributes.get("supportedcontrol");
 NamingEnumeration controlOIDList = supportedControlAttribute.getAll();
 while(controlOIDList != null && controlOIDList.hasMore()) {
 System.out.println(controlOIDList.next());
 }
 context.close();
 }
 catch(NamingException e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) throws NamingException {
 SupportedControlApplication supportedControlApplication = new

SupportedControlApplication();
 supportedControlApplication.displayControls();
 }
}

CHAPTER 7 ■ SoRTing And PAging RESulTS

115

Here is the output after running the code from Listing 7-1:

1.2.826.0.1.3344810.2.3
1.2.840.113556.1.4.1413
1.2.840.113556.1.4.319
1.2.840.113556.1.4.473
1.2.840.113556.1.4.805
1.3.6.1.1.12
1.3.6.1.1.13.1
1.3.6.1.1.13.2
1.3.6.1.4.1.26027.1.5.2
1.3.6.1.4.1.42.2.27.8.5.1
1.3.6.1.4.1.42.2.27.9.5.2
1.3.6.1.4.1.42.2.27.9.5.8
1.3.6.1.4.1.4203.1.10.1
1.3.6.1.4.1.4203.1.10.2
2.16.840.1.113730.3.4.12
2.16.840.1.113730.3.4.16
2.16.840.1.113730.3.4.17
2.16.840.1.113730.3.4.18
2.16.840.1.113730.3.4.19
2.16.840.1.113730.3.4.2
2.16.840.1.113730.3.4.3
2.16.840.1.113730.3.4.4
2.16.840.1.113730.3.4.5
2.16.840.1.113730.3.4.9

The OpenDJ installation provides a command line ldapsearch tool that can also
be used for listing the supported controls. Assuming that OpenDJ is installed under
c:\practicalldap\opendj on Windows, here is the command to get a list of supported
controls:

ldapsearch --baseDN "" --searchScope base --port 11389 "(objectclass=*)"
supportedControl

Figure 7-3 displays the results of running this command. Notice that in order to
search Root DSE, you used the scope base and did not provide a base DN. Also, the
supported control OIDs in the figure match the OIDs received after running the Java code
in Listing 7-1.

CHAPTER 7 ■ SoRTing And PAging RESulTS

116

JNDI and Controls
The javax.naming.ldap package in the JNDI API contains support for LDAP V3-specific
features such as controls and extended operations. While controls modify or augment the
behavior of existing operations, extended operations allow additional operations to be
defined. The UML diagram in Figure 7-4 highlights some of the important control classes
in the javax.naming.ldap package.

Figure 7-3. OpenDJ ldapsearch command

Figure 7-4. Java LDAP control class hierarchy

CHAPTER 7 ■ SoRTing And PAging RESulTS

117

The javax.naming.ldap.Control interface provides abstraction for both request
and response controls. Several implementations of this interface, such as SortControl
and PagedResultsControl, are provided as part of the JDK. Additional controls, such as
Virtual- ListViewControl and PasswordExpiringResponseControl, are available as
part of the LDAP booster pack.

A core component in the javax.naming.ldap package is the LdapContext interface.
This interface extends the javax.naming.DirContext interface and provides additional
methods for performing LDAP V3 operations. The InitialLdapContext class in the
javax.naming.ldap package provides a concrete implementation of this interface.

Using controls with JNDI API is a very straightforward. The code in Listing 7-2
provides the algorithm for using controls.

Listing 7-2.

 LdapContext context = new InitialLdapContext();
 Control[] requestControls = // Concrete control instance array
 context.setRequestControls(requestControls);
 /* Execute a search operation using the context*/
 context.search(parameters);
 Control[] responseControls = context.getResponseControls();
 // Analyze the response controls

In this algorithm, you start by creating instances of the controls that you would like to
include in the request operation. Then you perform the operation and process the results
of the operation. Finally, you analyze any response controls that the server has sent over.
In the coming sections, you will look at concrete implementations of this algorithm in
conjunction with sort and paging controls.

Spring LDAP and Controls
Spring LDAP does not provide access to a directory context when working with
LdapTemplate’s search methods. As a result, you don’t have a way to add request controls
to the context or process response controls. To address this, Spring LDAP provides a
directory context processor that automates the addition and analysis of LDAP controls to
a context. Listing 7-3 shows the DirContextProcessor API code.

Listing 7-3.

package org.springframework.ldap.core;

import javax.naming.NamingException;
import javax.naming.directory.DirContext;

public interface DirContextProcessor {
 void preProcess(DirContext ctx) throws NamingException;
 void postProcess(DirContext ctx) throws NamingException;
}

CHAPTER 7 ■ SoRTing And PAging RESulTS

118

Concrete implementations of the DirContextProcessor interface are passed to the
LdapTemplate’s search methods. The preProcess method gets called before a search
is performed. Hence, the concrete implementations will have logic in the preProcess
method to add request controls to the context. The postProcess method will be called
after the search execution. So, the concrete implementations will have logic in the
postProcess method to read and analyze any response controls that the LDAP server
would have sent.

Figure 7-5 shows the UML representation of the DirContextProcessor and all its
implementations.

The AbstractRequestControlDirContextProcessor implements the preProcess
method of the DirContextProcessor and applies a single RequestControl on an
LdapContext. The AbstractRequestDirContextProcessor delegates the actual creation
of the request controls to the subclasses through the createRequestControl template
method.

The AbstractFallbackRequestAndResponseControlDirContextProcessor class
extends the AbstractRequestControlDirContextProcessor and makes heavy use of
reflection to automate DirContext processing. It performs the tasks of loading control
classes, creating their instances, and applying them to the context. It also takes care of
most of the post processing of the response control, delegating a template method to the
subclass that does the actual value retrieval.

The PagedResultsDirContextProcessor and SortControlDirContextProcessor are
used for managing paging and sorting controls. You will be looking at them in the coming
sections.

Figure 7-5. DirContextProcessor class hierarchy

CHAPTER 7 ■ SoRTing And PAging RESulTS

119

Sort Control
The sort control provides a mechanism to request an LDAP server sort the results of a
search operation before sending them over to the client. This control is specified in RFC
2891 (www.ietf.org/rfc/rfc2891.txt). The sort request control accepts one or more
LDAP attribute names and supplies it to the server to perform the actual sorting.

Let’s look at using the sort control with plain JNDI API. Listing 7-4 shows the code
for sorting all search results by their last names. You start by creating a new instance of
the javax.naming.ldap.SortControl and provide it with the sn attribute indicating your
intention to sort by last name. You have also indicated that this is a critical control by
providing the CRITICAL flag to the same constructor. This request control is then added
to the context using the setRequestControls method and the LDAP search operation
is performed. You then loop through the returned results and print them to the console.
Finally, you look at the response controls. The sort response control holds the result of
the sort operation. If the server failed to sort the results, you indicate this by throwing an
exception.

Listing 7-4.

public void sortByLastName() {
 try {
 LdapContext context = getContext();
 Control lastNameSort = new SortControl("sn", Control.CRITICAL);
 context.setRequestControls(new Control[]{lastNameSort});
 SearchControls searchControls = new SearchControls();
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 NamingEnumeration results = context.search("dc=inflinx,dc=com",

"(objectClass=inetOrgPerson)", searchControls);

 /* Iterate over search results and display
 * patron entries
 */
 while (results != null && results.hasMore()) {
 SearchResult entry = (SearchResult)results.next();
 System.out.println(entry.getAttributes().get("sn") +

" (" + (entry.getName()) + ")");
 }

 /* Now that we have looped, we need to look at the response controls*/
 Control[] responseControls = context.getResponseControls();
 if(null != responseControls) {
 for(Control control : responseControls) {
 if(control instanceof SortResponseControl) {
 SortResponseControl sortResponseControl =

(SortResponseControl) control;

http://www.ietf.org/rfc/rfc2891.txt

CHAPTER 7 ■ SoRTing And PAging RESulTS

120

 if(!sortResponseControl.isSorted()) {
 // Sort did not happen. Indicate this with an exception
 throw sortResponseControl.getException();
 }
 }
 }
 }
 context.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
}

The output should display the sorted patrons as shown below:
sn: Aalders (uid=patron4,ou=patrons)
sn: Aasen (uid=patron5,ou=patrons)
sn: Abadines (uid=patron6,ou=patrons)
sn: Abazari (uid=patron7,ou=patrons)
sn: Abbatantuono (uid=patron8,ou=patrons)
sn: Abbate (uid=patron9,ou=patrons)
sn: Abbie (uid=patron10,ou=patrons)
sn: Abbott (uid=patron11,ou=patrons)
sn: Abdalla (uid=patron12,ou=patrons)
......................................

Now let’s look at implementing the same sort behavior using Spring LDAP. Listing 7-5
shows the associated code. In this implementation, you start out by creating a new
org.springframework.ldap.control.SortControlDirContextProcessor instance.
The SortControlDirContextProcessor constructor takes the LDAP attribute name
that should be used as the sort key during control creation. The next step is to create the
SearchControls and a filter to limit the search. Finally, you invoke the search method,
passing in the created instances along with a mapper to map the data.

Listing 7-5.

public List<String> sortByLastName() {
 DirContextProcessor scdcp = new SortControlDirContextProcessor("sn");
 SearchControls searchControls = new SearchControls();
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);

 EqualsFilter equalsFilter = new EqualsFilter("objectClass",

"inetOrgPerson");

 @SuppressWarnings("unchecked")
 ParameterizedContextMapper<String> lastNameMapper = new AbstractParameter

izedContextMapper<String>() {

CHAPTER 7 ■ SoRTing And PAging RESulTS

121

 @Override
 protected String doMapFromContext(DirContextOperations context) {
 return context.getStringAttribute("sn");
 }
 };

 List<String> lastNames = ldapTemplate.search("", equalsFilter.encode(),

searchControls, lastNameMapper, scdcp);
 for (String ln : lastNames){
 System. out .println(ln);
 }
 return lastNames;
}

Upon invoking this method, you should see the following output in the console:

Aalders
Aasen
Abadines
Abazari
Abbatantuono
Abbate
Abbie
Abbott
Abdalla
Abdo
Abdollahi
Abdou
Abdul-Nour
................

Implementing Custom DirContextProcessor
As of Spring LDAP 1.3.2, SortControlDirContextProcessor can be used to sort only on
one LDAP attribute. The JNDI API, however, allows you to sort on multiple attributes.
Since there will be cases where you would like to sort your search results on multiple
attributes, let’s implement a new DirContextProcessor that will allow you to do this in
Spring LDAP.

As you have seen so far, the sort operation requires a request control and will send
a response control. So the easiest way to implement this functionality is to extend the
AbstractFallbackRequestAndResponseControlDirContextProcessor. Listing 7-6 shows
the initial code with empty abstract methods implementation. As you will see, you are
using three instance variables to hold the state of the control. The sortKeys, as the name
suggests, will hold the attribute names that you will be sorting on. The sorted and the
resultCode variables will hold the information extracted from the response control.

CHAPTER 7 ■ SoRTing And PAging RESulTS

122

Listing 7-6.

package com.inflinx.book.ldap.control;

import javax.naming.ldap.Control;
import org.springframework.ldap.control.
AbstractFallbackRequestAndResponseControlDirContextProcessor;

public class SortMultipleControlDirContextProcessor extends
AbstractFallbackRequestAndResponseControlDirContextProcessor {

 //The keys to sort on
 private String[] sortKeys;

 //Did the results actually get sorted?
 private boolean sorted;

 //The result code of the sort operation
 private int resultCode;

 @Override
 public Control createRequestControl() {
 return null;
 }

 @Override
 protected void handleResponse(Object control) {
 }

 public String[] getSortKeys() {
 return sortKeys;
 }

 public boolean isSorted() {
 return sorted;
 }

 public int getResultCode() {
 return resultCode;
 }
}

The next step is to provide necessary information to
AbstractFallbackRequestAndResponseControlDirContextProcessor for loading the
controls. The AbstractFallbackRequestAndResponseControlDirContextProcessor
expects two pieces of information from subclasses: the fully qualified class names of the
request and response controls to be used, and the fully qualified class names of the controls
that should be used as fallback. Listing 7-7 shows the constructor code that does this.

CHAPTER 7 ■ SoRTing And PAging RESulTS

123

Listing 7-7.

public SortMultipleControlDirContextProcessor(String ... sortKeys) {

 if(sortKeys.length == 0) {
 throw new IllegalArgumentException("You must provide " + "atlease one

key to sort on");
 }

 this.sortKeys = sortKeys;
 this.sorted = false;
 this.resultCode = -1;
 this.defaultRequestControl = "javax.naming.ldap.SortControl";
 this.defaultResponseControl = "javax.naming.ldap.SortResponseControl";
 this.fallbackRequestControl = "com.sun.jndi.ldap.ctl.SortControl";
 this.fallbackResponseControl = "com.sun.jndi.ldap.ctl.SortResponseControl";

 loadControlClasses();
}

Notice that you have provided the control classes that come with the JDK as the
default controls to be used and the controls that come with the LDAP booster pack
as the fallback controls. On the last line of the constructor, you instruct the
AbstractFallbackRequestAndResponseControlDirContextProcessor class to load the
classes into JVM for usage.

The next step in the process is to provide implementation to the
createRequestControl method. Since the superclass
AbstractFallbackRequestAndResponseControlDirContextProcessor will take care
of the actual creation of the control, all you need to do is to provide the information
necessary for creating the control. The following code shows this:

@Override
public Control createRequestControl() {
 return super.createRequestControl(new Class[] {String[].class,

boolean.class }, new Object[] { sortKeys, critical });
}

The final step in the implementation is to analyze the response control and retrieve
the information regarding the completed operation. Listing 7-8 shows the code involved.
Notice that you are using reflection to retrieve the sorted and result code information
from the response control.

CHAPTER 7 ■ SoRTing And PAging RESulTS

124

Listing 7-8.

@Override
protected void handleResponse(Object control) {

 Boolean result = (Boolean) invokeMethod("isSorted", responseControlClass,

control);
 this.sorted = result;

 Integer code = (Integer) invokeMethod("getResultCode",

responseControlClass, control);
 this.resultCode = code;
}

Now that you have created a new DirContextProcessor instance that allows you to
sort on multiple attributes, let’s take it for a spin. Listing 7-9 shows a sort method that
uses the SortMultipleControlDirContextProcessor. The method uses the attributes st
and l for sorting the results.

Listing 7-9.

public void sortByLocation() {

 String[] locationAttributes = {"st", "l"};
 SortMultipleControlDirContextProcessor smcdcp = new SortMultipleControlDir

ContextProcessor(locationAttributes);
 SearchControls searchControls = new SearchControls();
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);

 EqualsFilter equalsFilter = new EqualsFilter("objectClass","inetOrgPerson");

 @SuppressWarnings("unchecked")
 ParameterizedContextMapper<String> locationMapper = new AbstractParameterized

ContextMapper<String>() {

 @Override
 protected String doMapFromContext(DirContextOperations context) {
 return context.getStringAttribute("st") + "," + context.

getStringAttribute("l");
 }
 };

CHAPTER 7 ■ SoRTing And PAging RESulTS

125

 List<String> results = ldapTemplate.search("", equalsFilter.encode(),
searchControls, locationMapper, smcdcp);

 for(String r : results) {
 System.out.println(r);
 }
}

Upon invoking the method, the sorted locations will be displayed on the console
as shown:

AK,Abilene
AK,Florence
AK,Sioux Falls
AK,Wilmington
AL,Glendive
AR,Gainesville
AR,Green Bay
AZ,Gainesville
AZ,Moline
AZ,Reno
AZ,Saint Joseph
AZ,Wilmington
CA,Buffalo
CA,Ottumwa
CO,Charlottesville
CO,Lake Charles
CT,Quincy
CT,Youngstown
...............

Paged Search Controls
The paged results control allows LDAP clients to control the rate at which the results of
an LDAP search operation are returned. The LDAP clients create a page control with a
specified page size and associate it with the search request. Upon receiving the request,
the LDAP server will return the results in chunks, with each chunk containing the
specified number of results. The paged results control is highly useful when dealing with
large directories or building search applications with paging capabilities. This control is
described in RFC 2696 (www.ietf.org/rfc/rfc2696.txt).

Figure 7-6 describes the interaction between the LDAP client and server using
a page control.

http://www.ietf.org/rfc/rfc2696.txt

CHAPTER 7 ■ SoRTing And PAging RESulTS

126

Note ■ ldAP servers often use the sizeLimit directive to restrict the number of results
that are returned for a search operation. if a search produces more results than the specified
sizeLimit, a size limit exceeded exception javax.naming.SizeLimitExceededException
is thrown. The paging method does not let you pass through this limit.

As a first step, the LDAP client sends the search request along with the page control.
Upon receiving the request, the LDAP server executes the search operation and returns
the first page of results. Additionally, it sends a cookie that needs to be used to request the
next paged results set. This cookie enables the LDAP server to maintain the search state.
The client must not make any assumptions about the internal structure of the cookie.
When the client makes a request for the next batch of results, it sends the same search
request and page control, and the cookie. The server responds with the new result set and
a new cookie. When there are no more search results to be returned, the server sends an
empty cookie.

Paging using the paged search control is unidirectional and sequential. It is not
possible for the client to jump between pages or go back. Now that you know the basics of
the paging control, Listing 7-10 shows its implementation using the plain JNDI API.

Listing 7-10.

public void pageAll() {

 try {
 LdapContext context = getContext();
 PagedResultsControl prc = new PagedResultsControl(20, Control.CRITICAL);
 context.setRequestControls(new Control[]{prc});
 byte[] cookie = null;

Figure 7-6. Page control interaction

CHAPTER 7 ■ SoRTing And PAging RESulTS

127

 SearchControls searchControls = new SearchControls();
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 do {
 NamingEnumeration results = context.search("dc=inflinx,dc=com",

"(objectClass=inetOrgPerson)",searchControls);
 // Iterate over search results
 while(results != null && results.hasMore()) {
 // Display an entry
 SearchResult entry = (SearchResult)results.next();
 System.out.println(entry.getAttributes().get("sn") +

" (" + (entry.getName())+ ")");
 }
 // Examine the paged results control response
 Control[] controls = context.getResponseControls();
 if (controls != null) {
 for(int i = 0; i < controls.length; i++) {
 if(controls[i] instanceof PagedResultsResponseControl) {
 PagedResultsResponseControl prrc =(PagedResultsResponseControl)

controls[i];
 int resultCount = prrc.getResultSize();
 cookie = prrc.getCookie();
 }
 }
 }
 // Re-activate paged results
 context.setRequestControls(new Control[]{
 new PagedResultsControl(20, cookie, Control.CRITICAL)});
 } while(cookie != null);

 context.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
}

In Listing 7-10, you start the implementation by obtaining a context on the LDAP
server. Then you create the PagedResultsControl and specify the page size as its
constructor parameter. You add the control to the context and performed the search
operation. Then you loop through the search results and display the information on
the console. As the next step, you examine the response controls to indentify the server
sent PagedResultsResponseControl. From that control you extract the cookie and an
estimated total number of results for this search. The result count is optional information
and the server can simply return zero indicating that unknown count. Finally, you create a
new PagedResultsControl with the page size and the cookie as its constructor parameter.
This process is repeated until the server sends an empty (null) cookie indicating that
there are no more results to be processed.

CHAPTER 7 ■ SoRTing And PAging RESulTS

128

Spring LDAP abstracts most of the code in Listing 7-10 and makes it easy to deal
with page controls using the PagedResultsDirContextProcessor. Listing 7-11 shows the
Spring LDAP code.

Listing 7-11.

public void pagedResults() {

 PagedResultsCookie cookie = null;
 SearchControls searchControls = new SearchControls();
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 int page = 1;
 do {
 System.out.println("Starting Page: " + page);
 PagedResultsDirContextProcessor processor = new PagedResultsDirContext

Processor(20,cookie);
 EqualsFilter equalsFilter = new EqualsFilter("objectClass","inetOrgPerson");
 List<String> lastNames = ldapTemplate.search("", equalsFilter.encode(),

searchControls, new LastNameMapper(), processor);
 for(String l : lastNames) {
 System.out.println(l);
 }
 cookie = processor.getCookie();
 page = page + 1;
 } while(null != cookie.getCookie());
}

In this implementation, you create the PagedResultsDirContextProcessor with
the page size and a cookie. Note that you are using the
org.springframework.ldap.control.PagedResultsCookie class for abstracting the
cookie sent by the server. The cookie value initially starts with a null. Then you perform
the search and loop through the results. The cookie sent by the server is extracted from
the DirContextProcessor and is used to check for future search requests. You are also
using a LastNameMapper class to extract the last name from the results context. Listing 7-12
gives the implementation of the LastNameMapper class.

Listing 7-12.

private class LastNameMapper extends AbstractParameterizedContextMapper<String> {

 @Override
 protected String doMapFromContext(DirContextOperations context) {
 return context.getStringAttribute("sn");
 }
}

CHAPTER 7 ■ SoRTing And PAging RESulTS

129

Summary
In this chapter you learned the basic concepts associated with LDAP controls. You then
looked at the sort control, which can be used to perform server-side sorting of the results.
You saw how Spring LDAP simplifies the sort control usage significantly. The paging control
can be used to page LDAP results, which can be very useful under heavy traffic conditions.

In the next chapter, you will look at using Spring LDAP ODM technology for
implementing the data access layer.

131

Chapter 8

Object-Directory Mapping

In this chapter, you will learn

The basics of ODM.•	

Spring LDAP ODM implementation.•	

Enterprise Java developers employ object-oriented (OO) techniques to create
modular, complex applications. In the OO paradigm, objects are central to the system
and represent entities in the real world. Each object has an identity, state, and behavior.
Objects can be related to other objects through inheritance or composition. LDAP
directories, on the other hand, represent data and relationships in a hierarchical tree
structure. This difference leads to an object-directory paradigm mismatch and can cause
problems in communication between OO and directory environments.

Spring LDAP provides an Object-Directory Mapping (ODM) framework that bridges
the gap between the object and directory models. The ODM framework allows us to
map concepts between the two models and orchestrates the process of automatically
transforming LDAP directory entries into Java objects. ODM is similar to the more
familiar Object-Relational Mapping (ORM) methodology that bridges the gap between
object and relational database worlds. Frameworks such as Hibernate and Toplink have
made ORM popular and an important part of the developer’s toolset.

Though Spring LDAP ODM shares the same concepts as ORM, it does have the
following differences:

Caching of LDAP entries is not possible.•	

ODM metadata is expressed through class-level annotations.•	

No XML configuration is available.•	

Lazy loading of entries is not possible.•	

A query language, such as HQL, does not exist. Loading of objects •	
is done via DN lookups and standard LDAP search queries.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

132

Spring ODM Basics
The Spring LDAP ODM is distributed as a separate module from the core LDAP project.
To include the Spring LDAP ODM in the project, the following dependency needs to be
added to project’s pom.xml file:

<dependency>
 <groupId>org.springframework.ldap</groupId>
 <artifactId>spring-ldap-odm</artifactId>
 <version>${org.springframework.ldap.version}</version>
 <exclusions>
 <exclusion>
 <artifactId>commons-logging</artifactId>
 <groupId>commons-logging</groupId>
 </exclusion>
 </exclusions>
</dependency>

The Spring LDAP ODM is available under the org.springframework.ldap.odm
package and its subpackages. The core classes of Spring LDAP ODM are represented in
Figure 8-1. You will look at each of these classes in detail throughout this chapter.

Figure 8-1. Spring LAP ODM core classes

Central to the LDAP ODM is the OdmManager that provides generic search and CRUD
operations. It acts as a mediator and transforms data between LDAP entries and Java objects.
The Java objects are annotated to provide the transformation metadata. Listing 8-1 shows the
OdmManager API.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

133

Listing 8-1.

Package org.springframeworkldap.odm.core;

import java.util.List;
import javax.naming.Name;
import javax.naming.directory.SearchControls;

public interface OdmManager {

 void create(Object entry);
 <T> T read(Class<T> clazz, Name dn);
 void update(Object entry);
 void delete(Object entry);
 <T> List<T> findAll(Class<T> clazz, Name base, SearchControls

searchControls);
 <T> List<T> search(Class<T> clazz, Name base, String filter,

SearchControls searchControls);
}

The OdmManager’s create, update, and delete methods take a Java object and use
the information in it to perform corresponding LDAP operations. The read method takes
two parameters, a Java class that determines the type to return and a fully qualified DN
that is used to look up the LDAP entry. The OdmManager can be viewed as a slight variation
on the Generic DAO pattern you saw in Chapter 5.

Spring LDAP ODM provides an out-of-the-box implementation of the OdmManager,
the aptly named OdmManagerImpl. In order to function properly, an OdmManagerImpl uses
the following three objects:

A •	 ContextSource implementation for communicating with the
LDAP Server.

A •	 ConverterManager implementation to convert LDAP data types
to Java data types and vice versa.

A set of domain classes that needs to be managed by the ODM •	
implementation.

To simplify the creation of OdmManagerImpl instances, the framework provides a
factory bean, OdmManagerImplFactoryBean. Here is the necessary configuration for
creating OdmManager instances:

<bean id="odmManager" class="org.springframework.ldap.odm. core.impl.
OdmManagerImplFactoryBean">
 <property name="converterManager" ref="converterManager" />
 <property name="contextSource" ref="contextSource" />
 <property name="managedClasses">

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

134

 <set>
 <value>FULLY_QUALIFIED_CLASS_NAME</value>
 </set>
 </property>
</bean>

The OdmManager delegates the conversion management of the LDAP attributes to
Java fields (and vice versa) to a ConverterManager. The ConverterManager itself relies
on a set of Converter instances for the actual conversion purposes. Listing 8-2
shows the Converter interface API. The convert method accepts an object as its
first parameter and converts it into an instance of the type specified by the toClass
parameter.

Listing 8-2.

package org.springframework.ldap.odm.typeconversion.impl;

public interface Converter {
 <T> T convert(Object source, Class<T> toClass) throws Exception;
}

The generic nature of the converters makes it easy to create specific
implementations. Spring LDAP ODM provides a ToStringConverter implementation
of the Converter interface that converts the given source object into a String. Listing 8-3
provides the ToStringConverter API implementation. As you can see, the conversion
takes place by simply invoking the toString method on the source object.

Listing 8-3.

package org.springframework.ldap.odm.typeconversion.impl.converters;

import org.springframework.ldap.odm.typeconversion.impl.Converter;

public final class ToStringConverter implements Converter {

 public <T> T convert(Object source, Class<T> toClass) {
 return toClass.cast(source.toString());
 }
}

The inverse of this implementation is the FromStringConverter, which converts
a java.lang.String object into any specified toClass type. Listing 8-4 provides the
FromStringConverter API implementation. The converter implementation creates a
new instance by invoking the toClass parameter’s constructor and passing in the String
object. The toClass type parameter must have a public constructor that accepts a single
java.lang.String type parameter. For example, the FromStringConverter can convert
String data to an Integer or Long data type.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

135

Listing 8-4.

package org.springframework.ldap.odm.typeconversion.impl.converters;

import java.lang.reflect.Constructor;
import org.springframework.ldap.odm.typeconversion.impl.Converter;

public final class FromStringConverter implements Converter {

 public <T> T convert(Object source, Class<T> toClass) throws Exception {
 Constructor<T> constructor = toClass.getConstructor(java.lang.String.class);
 return constructor.newInstance(source);
 }
}

These two converter classes should be sufficient for converting most LDAP data
types to common Java field types such as java.lang.Integer, java.lang.Byte,
etc. and vice versa. Listing 8-5 shows the XML configuration involved in creating
FromStringConverter and ToStringConverter instances.

Listing 8-5.

<bean id="fromStringConverter" class="org.springframework.ldap.odm.
typeconversion.impl.converters.FromStringConverter" />
<bean id="toStringConverter" class="org.springframework.ldap.odm.
typeconversion.impl.converters.ToStringConverter" />

Now you are ready to create an instance of ConverterManager and register the
above two converters with it. Registering a converter involves specifying the converter
itself, a fromClass indicating the type of the source object the converter is expecting,
and a toClass indicating the type the converter will return. To simplify the Converter
registration process, Spring ODM provides a ConverterConfig class. Listing 8-6 shows
the XML configuration for registering the toStringConverter instance.

Listing 8-6.

<bean id="toStringConverter" class="org.springframework.ldap.odm.
typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="toStringConverter"/>
 <property name="fromClasses">
 <set>
 <value>java.lang.Integer</value>
 </set>
 </property>

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

136

 <property name="toClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
</bean>

As you can see, ConverterConfig is an inner class of the org.springframework.
ldap.odm.typeconversion.impl.ConverterManagerFactoryBean class. This
configuration tells the ConverterManager to use the toStringConverter bean for
converting java.lang.Integer types to String types. Internally, the converter is
registered under a key that is computed using the following algorithm:

key = fromClass.getName() + ":" + syntax + ":" + toClass. getName();

Sometimes you would like the same converter instance to be used for converting
from a variety of data types. The ToStringConverter, for example, can be used to convert
additional types such as java.lang.Long, java.lang.Byte, java.lang.Boolean, etc.
To address such scenarios, the ConverterConfig accepts a set of from and to classes that
the converter can deal with. Listing 8-7 shows the modified ConverterConfig that accepts
several fromClasses.

Listing 8-7.

<bean id="toStringConverter" class="org.springframework.ldap.odm.
typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="toStringConverter" />
 <property name="fromClasses">
 <set>
 <value>java.lang.Byte</value>
 <value>java.lang.Integer</value>
 <value>java.lang.Boolean</value>
 </set>
 </property>
 <property name="toClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
</bean>

Each class specified in the above fromClasses set would be paired with a class
in the toClasses set for converter registration. So if you specify n fromClasses and
m toClasses, it would result in n*m registrations for the converter. Listing 8-8 shows
fromStringConverterConfig, which is quite similar to the previous configuration.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

137

Listing 8-8.

<bean id="fromStringConverterConfig" class="org.springframework.ldap.odm.
typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="fromStringConverter" />
 <property name="fromClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
 <property name="toClasses">
 <set>
 <value>java.lang.Byte</value>
 <value>java.lang.Integer</value>
 <value>java.lang.Boolean</value>
 </set>
 </property>
</bean>

Once you have the necessary converter configuration, new ConverterManager
instances can be created using the ConverterManagerFactoryBean. Listing 8-9 shows the
required XML declaration.

Listing 8-9.

<bean id="converterManager" class="org.springframework.ldap.odm.
typeconversion.impl.ConverterManagerFactoryBean">
 <property name="converterConfig">
 <set>
 <ref bean="fromStringConverterConfig"/>
 <ref bean="toStringConverterConfig"/>
 </set>
 </property>
</bean>

This concludes the setup needed for using the ODM framework. In the next sections,
you will look at annotating the domain classes and using this configuration for LDAP reads
and writes. Before you do that, let’s recap what you did up to this point (see Figure 8-2).

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

138

1. OdmManager instances are created by
OdmManagerImplFactoryBean.

2. OdmManager uses ConverterManager instances for conversion
between LDAP and Java types.

3. For the conversion from a specific type to another specific
type, the ConverterManager uses a converter.

4. ConverterManager instances are created by
ConverterManagerFactoryBean.

5. The ConverterManagerFactoryBean uses the
ConverterConfig instances to simplify the Converter
registration. The ConverterConfig class takes the
fromClasses, toClasses, and the converter that goes along
with the relationship.

ODM Metadata
The org.springframework.ldap.odm.annotations package contains annotations that
can be used to turn simple Java POJOs into ODM manageable entities. Listing 8-10 shows
the Patron Java class that you will convert into an ODM entity.

Figure 8-2. OdmManager inner workings

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

139

Listing 8-10.

public class Patron {

 private String lastName;
 private String firstName;
 private String telephoneNumber;
 private String fullName;
 private String mail;
 private int employeeNumber;

 // Getters and setters

 @Override
 public String toString() {
 return "Dn: " + dn + ", firstName: " + firstName + ", fullName: " +
 fullName + ", Telephone Number: " + telephoneNumber;
 }
}

You will start the conversion by annotating the class with @Entry. This marker
annotation tells the ODM Manager that the class is an entity. It is also used to provide
the objectClass definitions in LDAP that the entity maps to. Listing 8-11 shows the
annotated Patron class.

Listing 8-11.

@Entry(objectClasses = { "inetorgperson", "organizationalperson", "person", "top" })
public class Patron {
 // Fields and getters and setters
}

The next annotation you need to add is the @Id. This annotation specifies the entry’s
DN and can only be placed on a field that is a derivative of javax.naming.Name class.
To address this, you will create a new field called dn in the Patron class. Listing 8-12
shows the modified Patron class.

Listing 8-12.

@Entry(objectClasses = { "inetorgperson", "organizationalperson", "person", "top" })
public class Patron {

 @Id
 private Name dn;
 // Fields and getters and setters
}

The @Id annotation in the Java Persistence API specifies the identifier property of
the entity bean. Additionally, its placement determines the default access strategy the JPA

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

140

provider will use for mapping. If the @Id is placed over a field, field access is used. If it is
placed over a getter method, property access will be used. However, Spring LDAP ODM
only allows field access.

The @Entry and @Id are the only two required annotations to make the Patron class
an ODM entity. By default, all the fields in the Patron entity class will automatically
become persistable. The default strategy is to use the name of the entity field as the
LDAP attribute name while persisting or reading. In the Patron class, this would
work for attributes such as telephoneNumber or mail because the field name and the
LDAP attribute name are the same. But this would cause problems with fields such as
firstName and fullName as their names are different from the LDAP attribute names.
To address this, ODM provides the @Attribute annotation that maps the entity fields to
object class fields. This annotation allows you to specify the name of the LDAP attribute,
an optional syntax OID, and an optional type declaration. Listing 8-13 shows the
completely annotated Patron entity class.

Listing 8-13.

@Entry(objectClasses = { "inetorgperson", "organizationalperson", "person", "top" })
public class Patron {

 @Id
 private Name dn;

 @Attribute(name = "sn")
 private String lastName;

 @Attribute(name = "givenName")
 private String firstName;
 private String telephoneNumber;

 @Attribute(name = "cn")
 private String fullName;
 private String mail;

 @Attribute(name = "objectClass")
 private List<String> objectClasses;

 @Attribute(name = "employeeNumber", syntax = "2.16.840.1.113730.3.1.3")
 private int employeeNumber;

 // Getters and setters

 @Override
 public String toString() {
 return "Dn: " + dn + ", firstName: " + firstName + "," + " fullName: "

+ fullName + ", Telephone Number: " + telephoneNumber;
 }
}

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

141

There are times where you wouldn’t want to persist certain fields of an entity class.
Typically these involve fields that are computed. Such fields can be annotated with
@Transient annotation indicating that the field should be ignored by OdmManager.

ODM Service Class
Spring-based enterprise applications typically have a service layer that holds the application’s
business logic. Classes in the service layer delegate persistent specifics to a DAO or Repository
layer. In Chapter 5, you implemented a DAO using LdapTemplate. In this section, you will
create a new service class that uses the OdmManager as a DAO replacement. Listing 8-14 shows
the interface of the service class you will be implementing.

Listing 8-14.

package com.inflinx.book.ldap.service;

import com.inflinx.book.ldap.domain.Patron;

public interface PatronService {

 public void create(Patron patron);
 public void delete(String id);
 public void update(Patron patron);
 public Patron find(String id);
}

The service class implementation is given in Listing 8-15. In the implementation,
you inject an instance of OdmManager. The create and update method implementations
simply delegate the calls to the OdmManager. The find method converts the passed-in id
parameter to the fully qualified DN and delegates the actual retrieval to OdmManager’s
read method. Finally, the delete method uses the find method to read the patron and
uses the OdmManager’s delete method to delete it.

Listing 8-15.

package com.inflinx.book.ldap.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.core.DistinguishedName;
import org.springframework.ldap.odm.core.OdmManager;
import org.springframework.stereotype.Service;
import com.inflinx.book.ldap.domain.Patron;

@Service("patronService")
public class PatronServiceImpl implements PatronService {

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

142

 private static final String PATRON_BASE = "ou=patrons,dc=inflinx,dc=com";

 @Autowired
 @Qualifier("odmManager")
 private OdmManager odmManager;

 @Override
 public void create(Patron patron) {
 odmManager.create(patron);
 }
 @Override
 public void update(Patron patron) {
 odmManager.update(patron);
 }
 @Override
 public Patron find(String id) {
 DistinguishedName dn = new DistinguishedName(PATRON_BASE);
 dn.add("uid", id);
 return odmManager.read(Patron.class, dn);
 }
 @Override
 public void delete(String id) {
 odmManager.delete(find(id));
 }
}

The JUnit test to verify the PatronService implementation is shown in Listing 8-16.

Listing 8-16.

package com.inflinx.book.ldap.service;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.ldapunit.util.LdapUnitUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ldap.NameNotFoundException;
import org.springframework.ldap.core.DistinguishedName;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import com.inflinx.book.ldap.domain.Patron;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

143

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:repositoryContext-test.xml")
public class PatronServiceImplTest {

 @Autowired
 private PatronService patronService;
 private static final String PORT = "12389";
 private static final String ROOT_DN = "dc=inflinx,dc=com";

 @Before
 public void setup() throws Exception {
 System.out.println("Inside the setup");
 LdapUnitUtils.loadData(new ClassPathResource("patrons.ldif"), PORT);
 }

 @After
 public void teardown() throws Exception {
 System.out.println("Inside the teardown");
 LdapUnitUtils.clearSubContexts(new DistinguishedName(ROOT_DN), PORT);
 }

 @Test
 public void testService() {
 Patron patron = new Patron();

 patron.setDn(new DistinguishedName("uid=patron10001," + "ou=patrons,

dc=inflinx,dc=com"));
 patron.setFirstName("Patron");
 patron.setLastName("Test 1");
 patron.setFullName("Patron Test 1");
 patron.setMail("balaji@inflinx.com");
 patron.setEmployeeNumber(1234);
 patron.setTelephoneNumber("8018640759");
 patronService.create(patron);

 // Lets read the patron
 patron = patronService.find("patron10001");
 assertNotNull(patron);

 patron.setTelephoneNumber("8018640850");
 patronService.update(patron);
 patron = patronService.find("patron10001");
 assertEquals(patron.getTelephoneNumber(), "8018640850");
 patronService.delete("patron10001");

http://balaji@inflinx.com/

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

144

 try {
 patron = patronService.find("patron10001");
 assertNull(patron);
 }
 catch(NameNotFoundException e) {
 }
 }
}

The repositoryContext-test.xml file contains snippets of the configuration you
have seen so far. Listing 8-17 gives the complete content of the XML file.

Listing 8-17.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.inflinx.book.ldap" />
 <bean id="contextSource" class="org.ldapunit.context.

EmbeddedContextSourceFactory">
 <property name="port" value="12389" />
 <property name="rootDn" value="dc=inflinx,dc=com" />
 <property name="serverType" value="OPENDJ" />
 </bean>
 <bean id="odmManager" class="org.springframework.ldap.odm.core.impl.

OdmManagerImpl">
 <constructor-arg name="converterManager" ref="converterManager" />
 <constructor-arg name="contextSource" ref="contextSource" />
 <constructor-arg name="managedClasses">
 <set>
 <value>com.inflinx.book.ldap.domain.Patron</value>
 </set>
 </constructor-arg>
 </bean>
 <bean id="fromStringConverter" class="org.springframework.ldap.odm.

typeconversion.impl.converters.FromStringConverter" />
 <bean id="toStringConverter" class="org.springframework.ldap.odm.

typeconversion.impl.converters.ToStringConverter" />

 <!-- Configuration information for a single instance of FromString -->
 <bean id="fromStringConverterConfig" class="org.springframework.ldap.odm.

typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

145

 <property name="converter" ref="fromStringConverter" />
 <property name="fromClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
 <property name="toClasses">
 <set>
 <value>java.lang.Byte</value>
 <value>java.lang.Integer</value>
 <value>java.lang.Boolean</value>
 </set>
 </property>
 </bean>
 <bean id="toStringCoverterConfig" class="org.springframework.ldap.odm.

typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="toStringConverter" />
 <property name="fromClasses">
 <set>
 <value>java.lang.Byte</value>
 <value>java.lang.Integer</value>
 <value>java.lang.Boolean</value>
 </set>
 </property>
 <property name="toClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
 </bean>
 <bean id="converterManager" class="org.springframework.ldap.odm.

typeconversion.impl.ConverterManagerFactoryBean">
 <property name="converterConfig">
 <set>
 <ref bean="fromStringConverterConfig"/>
 <ref bean="toStringCoverterConfig"/>
 </set>
 </property>
 </bean>
</beans>

Configuration Simplifications
The configuration in Listing 8-17 may look daunting at first. So to address this, let’s create
a new ConverterManager implementation that simplifies the configuration process.
Listing 8-18 shows the DefaultConverterManagerImpl class. As you can see, it uses the
ConverterManagerImpl class internal to its implementation.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

146

Listing 8-18.

package com.inflinx.book.ldap.converter;

import org.springframework.ldap.odm.typeconversion.ConverterManager;
import org.springframework.ldap.odm.typeconversion.impl.Converter;
import org.springframework.ldap.odm.typeconversion.impl.
ConverterManagerImpl;
import org.springframework.ldap.odm.typeconversion.impl.converters.
FromStringConverter;
import org.springframework.ldap.odm.typeconversion.impl.converters.
ToStringConverter;

public class DefaultConverterManagerImpl implements ConverterManager {

 private static final Class[] classSet = { java.lang.Byte.class, java.

lang.Integer.class, java.lang.Long.class, java.lang.Double.class, java.
lang.Boolean.class };

 private ConverterManagerImpl converterManager;

 public DefaultConverterManagerImpl() {
 converterManager = new ConverterManagerImpl();
 Converter fromStringConverter = new FromStringConverter();
 Converter toStringConverter = new ToStringConverter();
 for(Class clazz : classSet) {
 converterManager.addConverter(String.class, null, clazz,

fromStringConverter);
 converterManager.addConverter(clazz, null, String.class,

toStringConverter);
 }
 }

 @Override
 public boolean canConvert(Class<?> fromClass, String syntax, Class<?> toClass) {
 return converterManager.canConvert(fromClass, syntax, toClass);
 }

 @Override
 public <T> T convert(Object source, String syntax, Class<T> toClass) {
 return converterManager.convert(source,syntax,toClass);
 }
}

Using this class reduces the needed configuration quite a bit, as shown in
Listing 8-19.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

147

Listing 8-19.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.inflinx.book.ldap" />
 <bean id="contextSource" class="org.ldapunit.context.

EmbeddedContextSourceFactory">
 <property name="port" value="12389" />
 <property name="rootDn" value="dc=inflinx,dc=com" />
 <property name="serverType" value="OPENDJ" />
 </bean>
 <bean id="odmManager" class="org.springframework.ldap.odm.core.impl.

OdmManagerImplFactoryBean">
 <property name="converterManager" ref="converterManager" />
 <property name="contextSource" ref="contextSource" />
 <property name="managedClasses">
 <set>
 <value>com.inflinx.book.ldap.domain.Patron</value>
 </set>
 </property>
 </bean>
 <bean id="converterManager" class="com.inflinx.book.ldap.converter.

DefaultConverterManagerImpl" />
</beans>

Creating Custom Converter
Consider the scenario where your Patron class uses a custom PhoneNumber class for storing
a patron’s phone number. Now, when a Patron class needs to be persisted, you need to
convert the PhoneNumber class to String type. Similarly, when you read a Patron class from
LDAP, the data in the telephone attribute needs to be converted into PhoneNumber class. The
default ToStringConverter and FromStringConverter will not be useful for such conversion.
Listing 8-20 and Listing 8-21 show the PhoneNumber and modified Patron classes, respectively.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd%22%3e

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

148

Listing 8-20.

package com.inflinx.book.ldap.custom;

public class PhoneNumber {

 private int areaCode;
 private int exchange;
 private int extension;

 public PhoneNumber(int areaCode, int exchange, int extension) {
 this.areaCode = areaCode;
 this.exchange = exchange;
 this.extension = extension;
 }

 public boolean equals(Object obj) {
 if(obj == null || obj.getClass() != this.getClass())
 { return false; }

 PhoneNumber p = (PhoneNumber) obj;
 return (this.areaCode == p.areaCode) && (this.exchange ==

p.exchange) && (this.extension == p.extension);
 }

 public String toString() {
 return String.format("+1 %03d %03d %04d", areaCode, exchange,

extension);
 }

 // satisfies the hashCode contract
 public int hashCode() {
 int result = 17;
 result = 37 * result + areaCode;
 result = 37 * result + exchange;
 result = 37 * result + extension;

 return result;
 }
}

Listing 8-21.

package com.inflinx.book.ldap.custom;

import java.util.List;
import javax.naming.Name;

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

149

import org.springframework.ldap.odm.annotations.Attribute;
import org.springframework.ldap.odm.annotations.Entry;
import org.springframework.ldap.odm.annotations.Id;

@Entry(objectClasses = { "inetorgperson", "organizationalperson", "person", "top" })
public class Patron {

 @Id
 private Name dn;

 @Attribute(name = "sn")
 private String lastName;

 @Attribute(name = "givenName")
 private String firstName;

 @Attribute(name = "telephoneNumber")
 private PhoneNumber phoneNumber;

 @Attribute(name = "cn")
 private String fullName;
 private String mail;

 @Attribute(name = "objectClass")
 private List<String> objectClasses;

 @Attribute(name = "employeeNumber", syntax = "2.16.840.1.113730.3.1.3")
 private int employeeNumber;

 // Getters and setters

 @Override
 public String toString() {
 return "Dn: " + dn + ", firstName: " + firstName + "," + " fullName: "

+ fullName + ", " + "Telephone Number: " + phoneNumber;
 }
}

To convert PhoneNumber to String, you create a new FromPhoneNumberConverter
converter. Listing 8-22 shows the implementation. The implementation simply involves
calling the toString method to perform the conversion.

Listing 8-22.

package com.inflinx.book.ldap.custom;

import org.springframework.ldap.odm.typeconversion.impl.Converter;

public class FromPhoneNumberConverter implements Converter {

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

150

 @Override
 public <T> T convert(Object source, Class<T> toClass) throws Exception {
 T result = null;
 if(PhoneNumber.class.isAssignableFrom(source.getClass()) && toClass.

equals(String.class)) {
 result = toClass.cast(source.toString());
 }
 return result;
 }
}

Next, you need an implementation to convert the LDAP string attribute to Java
PhoneNumber type. To do this, you create the ToPhoneNumberConverter, as shown in
Listing 8-23.

Listing 8-23.

package com.inflinx.book.ldap.custom;

import org.springframework.ldap.odm.typeconversion.impl.Converter;

public class ToPhoneNumberConverter implements Converter {

 @Override
 public <T> T convert(Object source, Class<T> toClass) throws Exception {
 T result = null;
 if(String.class.isAssignableFrom(source.getClass()) && toClass ==

PhoneNumber.class) {
 // Simple implementation
 String[] tokens = ((String)source).split(" ");
 int i = 0;
 if(tokens.length == 4) {
 i = 1;
 }
 result = toClass.cast(new PhoneNumber(
 Integer.parseInt(tokens[i]),
 Integer.parseInt(tokens[i+1]),
 Integer.parseInt(tokens[i+2])));
 }
 return result;
 }
}

Finally, you tie up everything in the configuration, as shown in Listing 8-24.

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

151

Listing 8-24.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.inflinx.book.ldap" />
 <bean id="contextSource" class="org.ldapunit.context.
EmbeddedContextSourceFactory">
 <property name="port" value="12389" />
 <property name="rootDn" value="dc=inflinx,dc=com" />
 <property name="serverType" value="OPENDJ" />
 </bean>
 <bean id="odmManager" class="org.springframework.ldap.odm.core.impl.

OdmManagerImpl">
 <constructor-arg name="converterManager" ref="converterManager" />
 <constructor-arg name="contextSource" ref="contextSource" />
 <constructor-arg name="managedClasses">
 <set>
 <value>com.inflinx.book.ldap.custom.Patron</value>
 </set>
 </constructor-arg>
 </bean>
 <bean id="fromStringConverter" class="org.springframework.ldap.odm.

typeconversion.impl.converters.FromStringConverter" />
 <bean id="toStringConverter" class="org.springframework.ldap.odm.

typeconversion.impl.converters.ToStringConverter" />
 <bean id="fromPhoneNumberConverter" class="com.inflinx.book.ldap.custom.

FromPhoneNumberConverter" />
 <bean id="toPhoneNumberConverter" class="com.inflinx.book.ldap.custom.

ToPhoneNumberConverter" />

 <!-- Configuration information for a single instance of FromString -->
 <bean id="fromStringConverterConfig" class="org.springframework.ldap.odm.

typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="fromStringConverter" />
 <property name="fromClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd%22%3e

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

152

 <property name="toClasses">
 <set>
 <value>java.lang.Byte</value>
 <value>java.lang.Integer</value>
 <value>java.lang.Boolean</value>
 </set>
 </property>
 </bean>
 <bean id="fromPhoneNumberConverterConfig" class="org.springframework.

ldap.odm.typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="fromPhoneNumberConverter" />
 <property name="fromClasses">
 <set>
 <value>com.inflinx.book.ldap.custom.PhoneNumber</value>
 </set>
 </property>
 <property name="toClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
 </bean>
 <bean id="toPhoneNumberConverterConfig" class="org.springframework.ldap.

odm.typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="toPhoneNumberConverter" />
 <property name="fromClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
 <property name="toClasses">
 <set>
 <value>com.inflinx.book.ldap.custom.PhoneNumber</value>
 </set>
 </property>
 </bean>
 <bean id="toStringConverterConfig" class="org.springframework.ldap.odm.

typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">
 <property name="converter" ref="toStringConverter"/>
 <property name="fromClasses">
 <set>
 <value>java.lang.Byte</value>
 <value>java.lang.Integer</value>
 <value>java.lang.Boolean</value>
 </set>
 </property>

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

153

 <property name="toClasses">
 <set>
 <value>java.lang.String</value>
 </set>
 </property>
 </bean>
 <bean id="converterManager" class="org.springframework.ldap.odm.

typeconversion.impl.ConverterManagerFactoryBean">
 <property name="converterConfig">
 <set>
 <ref bean="fromPhoneNumberConverterConfig"/>
 <ref bean="toPhoneNumberConverterConfig"/>
 <ref bean="fromStringConverterConfig"/>
 <ref bean="toStringConverterConfig"/>
 </set>
 </property>
 </bean>
</beans>

The modified test case for testing the newly added converters is shown in
Listing 8-25.

Listing 8-25.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:repositoryContext-test3.xml")
public class PatronServiceImplCustomTest {

 @Autowired
 private PatronService patronService;
 private static final String PORT = "12389";
 private static final String ROOT_DN = "dc=inflinx,dc=com";

 @Before
 public void setup() throws Exception {
 System.out.println("Inside the setup");
 LdapUnitUtils.loadData(new ClassPathResource("patrons.ldif"), PORT);
 }

 @After
 public void teardown() throws Exception {
 System.out.println("Inside the teardown");
 LdapUnitUtils.clearSubContexts(new DistinguishedName(ROOT_DN), PORT);
 }

CHAPTER 8 ■ ObjECT-DiRECTORy MAPPing

154

 @Test
 public void testService() {
 Patron patron = new Patron();
 patron.setDn(new DistinguishedName("uid=patron10001," + "ou=patrons,
 dc=inflinx,dc=com"));
 patron.setFirstName("Patron"); patron.setLastName("Test 1");
 patron.setFullName("Patron Test 1");
 patron.setMail("balaji@inflinx.com");
 patron.setEmployeeNumber(1234);
 patron.setPhoneNumber(new PhoneNumber(801, 864, 8050));
 patronService.create(patron);

 // Lets read the patron
 patron = patronService.find("patron10001");
 assertNotNull(patron);

 System.out.println(patron.getPhoneNumber());
 patron.setPhoneNumber(new PhoneNumber(435, 757, 9369));
 patronService.update(patron);

 System.out.println("updated phone: " + patron.getPhoneNumber());
 patron = patronService.find("patron10001");

 System.out.println("Read the phone number: " + patron.getPhoneNumber());
 assertEquals(patron.getPhoneNumber(), new PhoneNumber(435, 757, 9369));

 patronService.delete("patron10001");
 try {
 patron = patronService.find("patron10001");
 assertNull(patron);
 }
 catch(NameNotFoundException e) {
 }
 }
}

Summary
Spring LDAP’s Object-Directory Mapping (ODM) bridges the gap between object
and directory models. In this chapter, you learned the basics of ODM and looked at
annotations for defining ODM mappings. You then took a deep dive into the ODM
framework and built a Patron service and custom converters.

Up to this point in the book, you have created several variations of Service and
DAO implementations. In the next chapter, you will explore Spring LDAP’s support for
transactions.

http://balaji@inflinx.com/

155

Chapter 9

LDAP Transactions

In this chapter, you will learn

The basics of transactions.•	

Spring transaction abstraction.•	

Spring LDAP support for transactions.•	

Transaction Basics
Transactions are an integral part of enterprise applications. Put simply, a transaction is
a series of operations that are performed together. For a transaction to be completed or
committed, all its operations must succeed. If, for any reason, one operation fails, the
entire transaction fails and is rolled back. In that scenario, all the previous operations that
have succeeded must be undone. This ensures that the end state matches the state that
was in place before the transaction started.

In your day-to-day world, you run into transactions all the time. Consider an online
banking scenario where you wish to transfer $300 from your savings account to your
checking account. This operation involves debiting the savings account by $300 and
crediting the checking account by $300. If the debiting part of the operation were to
succeed and the crediting part fail, you would end up with $300 less in your combined
accounts. (Ideally, we all would like the debit operation to fail and the credit operation
to succeed, but the bank might be knocking on our door the next day.) Banks ensure that
accounts never end up in such inconsistent states by using transactions.

Transactions are usually associated with the following four well-known
characteristics, often referred to as ACID properties:

•	 Atomicity: This property ensures that a transaction executes
completely or not at all. So in our above example, we either
successfully transfer the money or our transfer fails. This
all-or-nothing property is also referred to as single unit of work or
logical unit of work.

•	 Consistency: This property ensures that a transaction leaves the
system in a consistent state after its completion. For example, with
a database system, this means that all the integrity constraints,
such as primary key or referential integrity, are satisfied.

CHAPTER 9 ■ LDAP TRAnsACTions

156

•	 Isolation: This property ensures that a transaction executes
independent of other parallel transactions. Changes or side
effects of a transaction that has not yet completed will never
be seen by other transactions. In the money transfer scenario,
another owner of the account will only see the balances before or
after the transfer. They will never be able to see the intermediate
balances no matter how long the transaction takes to complete.
Many database systems relax this property and provide several
levels of isolation. Table 9-1 lists the primary transaction levels
and descriptions. As the isolation level increases, transaction
concurrency decreases and transaction consistency increases.

Table 9-1. Isolation Levels

Isolation Level Description

Read Uncommitted This isolation level allows a running transaction to see changes
made by other uncommitted transactions. Changes made by
this transaction become visible to other transactions even
before it completes. This is the lowest level of isolation and can
more appropriately be considered as lack of isolation. Since it
completely violates one of the ACID properties, it is not supported
by most database vendors.

Read Committed This isolation level allows a query in a running transaction to
see only data committed before the query began. However, all
uncommitted changes or changes committed by concurrent
transactions during query execution will not be seen. This is
the default isolation level for most databases including Oracle,
MySQL, and PostgreSQL.

Repeatable Read This isolation level allows a query in a running transaction to
read the same data every time it is executed. To achieve this, the
transaction acquires locks on all the rows examined (not just
fetched) until it is complete.

Serializable This is the strictest and most expensive of all the isolation levels.
Interleaving transactions are stacked up so that transactions
are executed one after another rather than concurrently. With
this isolation level, queries will only see the data that has been
committed before the start of the transaction and will never see
uncommitted changes or commits by concurrent transactions.

•	 Durability: This property ensures that the results of a committed
transaction never get lost due to a failure. Revisiting the bank
transfer scenario, when you receive a confirmation that the
transfer has succeeded, the durability property makes sure that
this change becomes permanent.

CHAPTER 9 ■ LDAP TRAnsACTions

157

Local vs. Global Transactions
Transactions are often categorized into either local or global transactions depending on
the number of resources that participate in the transaction. Examples of these resources
include a database system or a JMS queue. Resource managers such as a JDBC driver are
typically used to manage resources.

Local transactions are transactions that involve a single resource. The most common
example is a transaction associated with a single database. These transactions are
usually managed via objects used to access the resource. In the case of a JDBC database
transaction, implementations of the java.sql.Connection interface are used to access
the database. These implementations also provide commit and rollback methods for
managing transactions. In the case of a JMS queue, the javax.jms.Session instance
provides methods for controlling transactions.

Global transactions, on the other hand, deal with multiple resources. For example, a
global transaction can be used to read a message from a JMS queue and write a record to
the database all in one transaction.

Global transactions are managed using a transaction manager that is external to
the resources. It is responsible for communicating with resource managers and making
the final commit or rollback decision on distributed transactions. In Java/JEE, global
transactions are implemented using Java Transaction API (JTA). JTA provides standard
interfaces for transaction manager and transaction participating components.

Transaction managers employ a “two phase commit” protocol to coordinate global
transactions. As the names suggests, the two phase commit protocol has the following
two phases:

•	 Prepare phase: In this phase, all participating resource managers
are asked if they are ready to commit their work. Upon receiving
the request, the resource managers attempt to record their state.
If successful, the resource manager responds positively. If it
cannot commit, the resource manager responds negatively and
rolls back the local changes.

•	 Commit phase: If the transaction manager receives all positive
responses, it commits the transaction and notifies all the
participants of the commit. If it receives one or more negative
responses, it rolls back the entire transaction and notifies all the
participants.

The two phase commit protocol is shown in Figure 9-1.

CHAPTER 9 ■ LDAP TRAnsACTions

158

Programmatic vs. Declarative Transactions
Developers have two choices when it comes to adding transaction capabilities to their
application.

Programmatically
In this scenario, the transaction management code for starting, committing, or rolling
back transactions surrounds the business code. This can provide extreme flexibility
but can also make maintenance difficult. The following code gives an example of
programmatic transaction using JTA and EJB 3.0:

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class OrderManager {

 @Resource
 private UserTransaction transaction;

 public void create(Order order) {
 try {
 transaction.begin();
 // business logic for processing order
 verifyAddress(order);
 processOrder(order);
 sendConfirmation(order);
 transaction.commit();
 }

Figure 9-1. Two phase commit protocol

CHAPTER 9 ■ LDAP TRAnsACTions

159

 catch(Exception e) {
 transaction.rollback();
 }
 }
}

Declaratively
In this scenario, the container is responsible for starting, committing, or rolling back
transactions. The developer usually specifies the transaction behavior via annotations or
XML. This model cleanly separates the transaction management code from business logic.
The following code gives an example of declarative transactions using JTA and EJB 3.0.
When an exception happens during order processing, the setRollbackOnly method on
the session context is called; this marks that the transaction must be rolled back.

@Stateless
@TransactionManagement(TransactionManagementType.CONTAINER)
public class OrderManager {

 @Resource
 private SessionContext context;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void create(Order order) {
 try {
 // business logic for processing order
 verifyAddress(order);
 processOrder(order);
 sendConfirmation(order);
 }
 catch(Exception e) {
 context.setRollbackOnly();
 }
 }
}

Spring Transaction Abstraction
The Spring Framework provides a consistent programming model for handling both
global and local transactions. The transaction abstraction hides the inner workings of
different transaction APIs, such as JTA, JDBC, JMS, and JPA, and allows developers to
write transaction-enabled code in an environment-neutral way. Behind the scenes,
Spring simply delegates the transaction management to the underlying transaction
providers. Both programmatic and declarative transaction management models are
supported without requiring any EJBs. The declarative approach is usually recommended
and that is what we will be using in this book.

CHAPTER 9 ■ LDAP TRAnsACTions

160

Central to Spring’s transaction management is the PlatformTransactionManager
abstraction. It exposes key aspects of transaction management in a technology-independent
manner. It is responsible for creating and managing transactions and is required for
both declarative and programmatic transactions. Several implementations of this
interface, such as JtaTransactionManager, DataSourceTransactionManager and
JmsTransactionManager, are available out of the box. The PlatformTransactionManager
API is shown in Listing 9-1.

Listing 9-1.

package org.springframework.transaction;

public interface PlatformTransactionManager {

 TransactionStatus getTransaction(TransactionDefinition definition) throws

TransactionException;
 void commit(TransactionStatus status) throws TransactionException;
 void rollback(TransactionStatus status) throws TransactionException;
 String getName();
}

The getTransaction method in the PlatformTransactionManager is used
to retrieve an existing transaction. If no active transaction is found, this method
might create a new transaction based on the transactional properties specified in
the TransactionDefinition instance. The following is the list of properties that
TransactionDefinition interface abstracts:

•	 Read-only: This property indicates whether this transaction is
read-only or not.

•	 Timeout: This property mandates the time in which the
transaction must complete. If the transaction fails to complete in
the specified time, it will be rolled back automatically.

•	 Isolation: This property controls the degree of isolation among
transactions. The possible isolation levels are discussed in
Table 9-1.

•	 Propagation: Consider the scenario where an active
transaction exists and Spring encounters code that needs
to be executed in a transaction. One option in that scenario
is to execute the code in the existing transaction. Another
option is to suspend the existing transaction and start a new
transaction to execute the code. The propagation property can
be used to define such transaction behavior. Possible values
include PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW,
PROPAGATION_SUPPORTS, etc.

CHAPTER 9 ■ LDAP TRAnsACTions

161

The getTransaction method returns an instance of TransactionStatus representing
the status of the current transaction. Application code can use this interface to check if
this is a new transaction or if the transaction has been completed. The interface can also
be used to programmatically request a transaction rollback. The other two methods in the
PlatformTransactionManager are commit and rollback which, as their names suggest,
can be used to commit or roll back the transaction.

Declarative Transactions Using Spring
Spring provides two ways to declaratively add transaction behavior to applications: pure
XML and annotations. The annotation approach is very popular and greatly simplifies
the configuration. To demonstrate declarative transactions, consider the simple
scenario of inserting a new record in a Person table in a database. Listing 9-2 gives the
PersonRepositoryImpl class with a create method implementing this scenario.

Listing 9-2.

import org.springframework.jdbc.core.JdbcTemplate;

public class PersonRepositoryImpl implements PersonRepository {

 private JdbcTemplate jdbcTemplate;

 public void create(String firstName, String lastName) {
 String sql = "INSERT INTO PERSON (FIRST_NAME, " + "LAST_NAME) VALUES (?, ?)";
 jdbcTemplate.update(sql, new Object[]{firstName, lastName});
 }
}

Listing 9-3 shows the PersonRepository interface that the above class implements.

Listing 9-3.

public interface PersonRepository {

 public void create(String firstName, String lastName);

}

The next step is to make the create method transactional. This is done by simply
annotating the method with @Transactional, as shown in Listing 9-4. (Note that I
annotated the method in the implementation and not the method in the interface.)

CHAPTER 9 ■ LDAP TRAnsACTions

162

Listing 9-4.

import org.springframework.transaction.annotation.Transactional;

public class PersonRepositoryImpl implements PersonRepository {

 @Transactional
 public void create(String firstName, String lastName) {

 }
}

The @Transactional annotation has several properties that can be used to specify
additional information such as propagation and isolation. Listing 9-5 shows the method
with default isolation and REQUIRES_NEW propagation.

Listing 9-5.

@Transactional(propagation=Propagation.REQUIRES_NEW, isolation=Isolation.DEFAULT)
public void create(String firstName, String lastName) {
}

The next step is to specify a transaction manager for Spring to use. Since you are
going after a single database, the org.springframework.jdbc.datasource.DataSourc
eTransactionManager shown in Listing 9-6 is ideal for your case. From Listing 9-6, you
can see that the DataSourceTransactionManager needs a datasource in order to obtain
and manage connections to the database.

Listing 9-6.

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

The complete application context configuration file for declarative transaction
management is given in Listing 9-7.

Listing 9-7.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/tx

CHAPTER 9 ■ LDAP TRAnsACTions

163

xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/tx/spring-aop.xsd">

 <bean id="transactionManager" class="org.springframework.jdbc.datasource.

DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>
 <tx:annotation-driven transaction-manager="transactionManager"/>
 <aop:aspectj-autoproxy />
</beans>

The <tx:annotation-driven/> tag indicates that you are using annotation-based
transaction management. This tag, along with <aop:aspectj-autoproxy />, instructs
Spring to use Aspect-Oriented Programming (AOP) and create proxies that manage
transaction on behalf of the annotated class. So, when a call is made to a transactional
method, the proxy intercepts the call and uses the transaction manager to obtain a
transaction (new or existing). The called method is then invoked, and if the method
completes successfully, the proxy using the transaction manager will commit the
transaction. If the method fails, throwing an exception, the transaction will be rolled back.
This AOP-based transaction processing is shown in Figure 9-2.

Figure 9-2. AOP-based Spring transaction

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/tx/spring-aop-3.0.xsd

CHAPTER 9 ■ LDAP TRAnsACTions

164

LDAP Transaction Support
The LDAP protocol requires that all LDAP operations (such as modify or delete) follow
ACID properties. This transactional behavior ensures consistency of the information
stored in the LDAP server. However, LDAP does not define transactions across multiple
operations. Consider the scenario where you want to add two LDAP entries as one atomic
operation. A successful completion of the operation means that both entries get added
to the LDAP server. If there is a failure and one of the entries can’t be added, the server
will automatically undo the addition of the other entry. Such transactional behavior is not
part of the LDAP specification and does not exist in the world of LDAP. Also, the lack of
transactional semantics such as commit and rollback make it impossible to assure data
consistency across multiple LDAP servers.

Though transactions are not part of the LDAP specification, servers such as IBM
Tivoli Directory Server and ApacheDS provide transaction support. The Begin transaction
(OID 1.3.18.0.2.12.5) and End transaction (OID 1.3.18.0.2.12.6) extended controls
supported by IBM Tivoli Directory Server can be used to demarcate a set of operations
inside a transaction. The RFC 5805 (http://tools.ietf.org/html/rfc5805) attempts to
standardize transactions in LDAP and is currently in experimental state.

Spring LDAP Transaction Support
The lack of transactions in LDAP might seem surprising at first. More importantly, it can
act as a barrier to the widespread adoption of directory servers in enterprises. To address
this, Spring LDAP offers a non-LDAP/JNDI-specific compensating transaction support.
This transaction support integrates tightly with the Spring transaction management
infrastructure you saw in the earlier section. Figure 9-3 shows the components responsible
for Spring LDAP transaction support.

Figure 9-3. Spring LDAP transaction support

The ContextSourceTransactionManager class implements PlatformTransactionManager
and is responsible for managing LDAP-based transactions. This class, along with its
collaborators, keeps track of the LDAP operations performed inside the transaction and
makes a record of the state before each operation. If the transaction were to rollback,
the transaction manager will take steps to restore the original state. To achieve this behavior,

http://tools.ietf.org/html/rfc5805

CHAPTER 9 ■ LDAP TRAnsACTions

165

the transaction manager uses a TransactionAwareContextSourceProxy instead of working
directly with LdapContextSource. This proxy class also ensures that a single
javax.naming.directory.DirContext instance is used throughout the transaction and will
not be closed until the transaction is finished.

Compensating Transactions
A compensating transaction undoes the effects of a previously committed transaction and
restores the system to a previous consistent state. Consider a transaction that involves
booking an airline ticket. A compensating transaction in that scenario is an operation that
cancels the reservation. In the case of LDAP, if an operation adds a new LDAP entry, the
corresponding compensating transaction simply involves removing that entry.

Compensating transactions are useful for resources such as LDAP and web services
that don’t provide any standard transactional support. However, it is important to
remember that compensating transactions provide an illusion and can never replace real
transactions. So, if a server crashes or the connection to the LDAP server is lost before the
compensating transaction completes, you will end up with inconsistent data. Also, since
the transaction is already committed, concurrent transactions might see invalid data.
Compensating transactions can result in additional overhead as the client has to deal
with extra undo operations.

To understand Spring LDAP transactions better, let’s create a Patron service with
transactional behavior. Listing 9-8 shows the PatronService interface with just a create
method.

Listing 9-8.

package com.inflinx.book.ldap.transactions;

import com.inflinx.book.ldap.domain.Patron;

public interface PatronService {
 public void create(Patron patron);
}

Listing 9-9 shows the implementation of this service interface. The create method
implementation simply delegates the call to the DAO layer.

Listing 9-9.

package com.inflinx.book.ldap.transactions;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.inflinx.book.ldap.domain.Patron;

CHAPTER 9 ■ LDAP TRAnsACTions

166

@Service("patronService")
@Transactional
public class PatronServiceImpl implements PatronService {

 @Autowired
 @Qualifier("patronDao")
 private PatronDao patronDao;

 @Override
 public void create(Patron patron) {
 patronDao.create(patron);
 }
}

Notice the usage of @Transactional annotation at the top of the class declaration.
Listing 9-10 and Listing 9-11 show the PatronDao interface and its implementation
PatronDaoImpl, respectively.

Listing 9-10.

package com.inflinx.book.ldap.transactions;

import com.inflinx.book.ldap.domain.Patron;

public interface PatronDao {
 public void create(Patron patron);
}

Listing 9-11.

package com.inflinx.book.ldap.transactions;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.core.DirContextAdapter;
import org.springframework.ldap.core.DirContextOperations;
import org.springframework.ldap.core.DistinguishedName;
import org.springframework.ldap.core.LdapTemplate;
import org.springframework.stereotype.Repository;
import com.inflinx.book.ldap.domain.Patron;

@Repository("patronDao")
public class PatronDaoImpl implements PatronDao {

 private static final String PATRON_BASE = "ou=patrons,dc=inflinx,dc=com";

CHAPTER 9 ■ LDAP TRAnsACTions

167

 @Autowired
 @Qualifier("ldapTemplate")
 private LdapTemplate ldapTemplate;

 @Override
 public void create(Patron patron) {
 System.out.println("Inside the create method ...");
 DistinguishedName dn = new DistinguishedName(PATRON_BASE);
 dn.add("uid", patron.getUserId());
 DirContextAdapter context = new DirContextAdapter(dn);
 context.setAttributeValues("objectClass", new String[]
 {"top", "uidObject", "person", "organizationalPerson",

"inetOrgPerson"});
 context.setAttributeValue("sn", patron.getLastName());
 context.setAttributeValue("cn", patron.getCn());
 ldapTemplate.bind(context);
 }
}

As you can see from these two listings, you create Patron DAO and its implementation
following the concepts discussed in Chapter 5. The next step is to create a Spring
configuration file that will autowire the components and will include the transaction
semantics. Listing 9-12 gives the contents of the configuration file. Here you are using the
locally installed OpenDJ LDAP server.

Listing 9-12.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/
spring-context.xsd http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd">

 <context:component-scan base-package="com.inflinx.book.ldap" />
 <bean id="contextSourceTarget" class="org.springframework.ldap.core.

support.LdapContextSource">
 <property name="url" value="ldap://localhost:11389" />
 <property name="userDn" value="cn=Directory Manager" />
 <property name="password" value="opendj" />
 <property name="base" value=""/>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

CHAPTER 9 ■ LDAP TRAnsACTions

168

 </bean>
 <bean id="contextSource" class="org.springframework.ldap.transaction.

compensating.manager. TransactionAwareContextSourceProxy">
 <constructor-arg ref="contextSourceTarget" />
 </bean>
 <bean id="ldapTemplate" class="org.springframework.ldap. core.

LdapTemplate">
 <constructor-arg ref="contextSource" />
 </bean>
 <bean id="transactionManager" class="org.springframework.ldap.

transaction.compensating.manager.ContextSourceTransactionManager">
 <property name="contextSource" ref="contextSource" />
 </bean>
 <tx:annotation-driven transaction-manager="transactionManager" />
 </beans>

In this configuration, you start by defining a new LdapContextSource and providing
it with your LDAP information. Up to this point, you referred to this bean with the
id contextSource and injected it for use by LdapTemplate. However, in this new
configuration, you are calling it contextSourceTarget. You then configure an instance of
TransactionAwareContextSourceProxy and inject the contextSource bean into it. This
newly configured TransactionAwareContextSourceProxy bean has the id contextSource
and is used by LdapTemplate. Finally, you configure the transaction manager using
ContextSourceTransactionManager class. As discussed earlier, this configuration allows
a single DirContext instance to be used during a single transaction, which in turn enables
transaction commit/rollback.

With this information in place, let’s verify if your create method and configuration
behaves correctly during a transaction rollback. In order to simulate a transaction
rollback, let’s modify the create method in the PatronServiceImpl class to throw a
RuntimeException, as shown:

@Override
public void create(Patron patron) {
 patronDao.create(patron);
 throw new RuntimeException(); // Will roll back the transaction
}

The next step in verifying the expected behavior is to write a test case that calls
PatronServiceImpl’s create method in order to create a new Patron. The test case
is shown in Listing 9-13. The repositoryContext-test.xml file contains the XML
configuration defined in Listing 9-12.

Listing 9-13.

package com.inflinx.book.ldap.transactions;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:repositoryContext-test.xml")
public class PatronServiceImplTest {

CHAPTER 9 ■ LDAP TRAnsACTions

169

 @Autowired
 private PatronService patronService;

 @Test(expected=RuntimeException.class)
 public void testCreate() {
 Patron patron = new Patron();
 patron.setUserId("patron10001");
 patron.setLastName("Patron10001");
 patron.setCn("Test Patron10001");
 patronService.create(patron);
 }
}

When you run the test, Spring LDAP should create a new patron; then, upon rolling
back the transaction, it would remove the newly created patron. The inner workings of
Spring LDAP’s compensating transactions can be seen by looking at OpenDJ log file. The
log file is named access and is located in the OPENDJ_INSTALL\logs folder.

Listing 9-14 shows a portion of the log file for this create operation. You will notice
that when the create method on the PatronDaoImpl gets invoked, an “ADD REQ”
command is sent to the OpenDJ server to add the new Patron entry. When Spring LDAP
rolls back the transaction, a new “DELETE REQ” command is sent to remove the entry.

Listing 9-14.

[14/Sep/2013:15:03:09 -0600] CONNECT conn=52 from=127.0.0.1:54792
to=127.0.0.1:11389 protocol=LDAP
[14/Sep/2013:15:03:09 -0600] BIND REQ conn=52 op=0 msgID=1 type=SIMPLE
dn="cn=Directory Manager"
[14/Sep/2013:15:03:09 -0600] BIND RES conn=52 op=0 msgID=1 result=0
authDN="cn=Directory Manager,cn=Root DNs,cn=config" etime=0
[14/Sep/2013:15:03:09 -0600] ADD REQ conn=52 op=1 msgID=2
dn="uid=patron10001,ou=patrons,dc=inflinx,dc=com"
[14/Sep/2013:15:03:09 -0600] ADD RES conn=52 op=1 msgID=2 result=0 etime=2
[14/Sep/2013:15:03:09 -0600] DELETE REQ conn=52 op=2 msgID=3
dn="uid=patron10001,ou=patrons,dc=inflinx,dc=com"
[14/Sep/2013:15:03:09 -0600] DELETE RES conn=52 op=2 msgID=3 result=0 etime=4
[14/Sep/2013:15:03:09 -0600] UNBIND REQ conn=52 op=3 msgID=4
[14/Sep/2013:15:03:09 -0600] DISCONNECT conn=52 reason="Client Unbind""

This test verified that Spring LDAP’s compensating transaction infrastructure
would automatically remove the newly added entry if the transaction were to roll back
for any reason.

Now let’s continue implementing the PatronServiceImpl methods and verify their
transactional behaviors. Listing 9-15 and Listing 9-16 show the delete method added
to the PatronService interface and PatronServiceImpl class, respectively. Again, the
actual delete method implementation is straightforward and simply involves calling the
PatronDaoImpl’s delete method.

CHAPTER 9 ■ LDAP TRAnsACTions

170

Listing 9-15.

public interface PatronDao {
 public void create(Patron patron);
 public void delete(String id) ;
}

Listing 9-16.

// Import and annotations remvoed for brevity
public class PatronServiceImpl implements PatronService {

 // Create method removed for brevity
 @Override
 public void delete(String id) {
 patronDao.delete(id);
 }
}

Listing 9-17 shows the PatronDaoImpl’s delete method implementation.

Listing 9-17.

// Annotation and imports removed for brevity
public class PatronDaoImpl implements PatronDao {

 // Removed other methods for brevity
 @Override
 public void delete(String id) {
 DistinguishedName dn = new DistinguishedName(PATRON_BASE);
 dn.add("uid", id);
 ldapTemplate.unbind(dn);
 }
}

With this code in hand, let’s write a test case that invokes your delete method in a
transaction. Listing 9-18 shows the test case. The “uid=patron98” is an existing entry in
your OpenDJ server and was created during the LDIF import in Chapter 3.

Listing 9-18.

@Test
public void testDeletePatron() {
 patronService.delete("uid=patron98");
}

When you run this test case and invoke the PatronServiceImpl’s delete method in
a transaction, Spring LDAP’s transaction infrastructure simply renames the entry under
a newly calculated temporary DN. Essentially, with a rename, Spring LDAP is moving

CHAPTER 9 ■ LDAP TRAnsACTions

171

your entry to a different location on the LDAP server. Upon a successful commit, the
temporary entry is removed. On a rollback, the entry is renamed and thus will be moved
from the temporary location to its original location.

Now, run the method and watch the access log under OpenDJ. Listing 9-19 shows the
portion for the log file for the delete operation. Notice that the delete operation results in
a “MODIFYDN REQ” command that renames the entry to be deleted. Upon a successful
commit, the renamed entry is removed via “DELETE REQ” command.

Listing 9-19.

[[14/Sep/2013:16:21:56 -0600] CONNECT conn=54 from=127.0.0.1:54824
to=127.0.0.1:11389 protocol=LDAP
[14/Sep/2013:16:21:56 -0600] BIND REQ conn=54 op=0 msgID=1 type=SIMPLE
dn="cn=Directory Manager"
[14/Sep/2013:16:21:56 -0600] BIND RES conn=54 op=0 msgID=1 result=0
authDN="cn=Directory Manager,cn=Root DNs,cn=config" etime=1
[14/Sep/2013:16:21:56 -0600] MODIFYDN REQ conn=54 op=1 msgID=2
dn="uid=patron97,ou=patrons,dc=inflinx,dc=com" newRDN="uid=patron97_temp"
deleteOldRDN=true newSuperior="ou=patrons,dc=inflinx,dc=com
[14/Sep/2013:16:21:56 -0600] MODIFYDN RES conn=54 op=1 msgID=2 result=0
etime=4
[14/Sep/2013:16:21:56 -0600] DELETE REQ conn=54 op=2 msgID=3
dn="uid=patron97_temp,ou=patrons,dc=inflinx,dc=com"
[14/Sep/2013:16:21:56 -0600] DELETE RES conn=54 op=2 msgID=3 result=0
etime=2
[14/Sep/2013:16:21:56 -0600] UNBIND REQ conn=54 op=3 msgID=4
[14/Sep/2013:16:21:56 -0600] DISCONNECT conn=54 reason="Client Unbind"

Now, let’s simulate a rollback for the delete method in the PatronServiceImpl class,
as shown in Listing 9-20.

Listing 9-20.

public void delete(String id) {
 patronDao.delete(id);
 throw new RuntimeException(); // Need this to simulate a rollback
}

Now, let’s update the test case with a new Patron Id that you know still exists in the
OpenDJ server, as shown in Listing 9-21.

Listing 9-21.

@Test(expected=RuntimeException.class)
public void testDeletePatron() {
 patronService.delete("uid=patron96");
}

CHAPTER 9 ■ LDAP TRAnsACTions

172

When this code is run, the expected behavior is that Spring LDAP will rename
the patron96 entry by changing its DN and then upon rollback will rename it again to
the right DN. Listing 9-22 shows the OpenDJ’s access log for the above operation. Note
that the delete operation first results in renaming of the entry by sending the first
MODIFYDN REQ. Upon a rollback, a second “MODIFYDN REQ” is sent to rename the
entry back to original location.

Listing 9-22.

[14/Sep/2013:16:33:43 -0600] CONNECT conn=55 from=127.0.0.1:54829
to=127.0.0.1:11389 protocol=LDAP
[14/Sep/2013:16:33:43 -0600] BIND REQ conn=55 op=0 msgID=1 type=SIMPLE
dn="cn=Directory Manager"
[14/Sep/2013:16:33:43 -0600] BIND RES conn=55 op=0 msgID=1 result=0
authDN="cn=Directory Manager,cn=Root DNs,cn=config" etime=0
[14/Sep/2013:16:33:43 -0600] MODIFYDN REQ conn=55 op=1 msgID=2
dn="uid=patron96,ou=patrons,dc=inflinx,dc=com" newRDN="uid=patron96_temp"
deleteOldRDN=true newSuperior="ou=patrons,dc=inflinx,dc=com
[14/Sep/2013:16:33:43 -0600] MODIFYDN RES conn=55 op=1 msgID=2 result=0
etime=1
[14/Sep/2013:16:33:43 -0600] MODIFYDN REQ conn=55 op=2 msgID=3
dn="uid=patron96_temp,ou=patrons,dc=inflinx,dc=com" newRDN="uid=patron96"
deleteOldRDN=true newSuperior="ou=patrons,dc=inflinx,dc=com
[14/Sep/2013:16:33:43 -0600] MODIFYDN RES conn=55 op=2 msgID=3
result=0 etime=0
[14/Sep/2013:16:33:43 -0600] UNBIND REQ conn=55 op=3 msgID=4
[14/Sep/2013:16:33:43 -0600] DISCONNECT conn=55 reason="Client Unbind"

For an update operation, as you can guess by now, the Spring LDAP infrastructure
calculates compensating ModificationItem list for the modifications that are made on
the entry. On a commit, nothing needs to be done. But upon a rollback, the computed
compensating ModificationItem list will be written back.

Summary
In this chapter, you explored the basics of transactions and looked at Spring LDAP’s
transaction support. Spring LDAP keeps a record of the state in the LDAP tree before
performing an operation. If a rollback were to happen, Spring LDAP performs
compensating operations to restore the previous state. Keep in mind that this
compensating transaction support gives an illusion of atomicity but doesn’t guarantee it.

In the next chapter, you will explore other Spring LDAP features such as connection
pooling and LDIF parsing.

173

Chapter 10

Odds and Ends

In this chapter, you will learn

How to perform authentication using Spring LDAP•	

How to parse LDIF files•	

LDAP connection pooling•	

Authentication Using Spring LDAP
Authentication is a common operation performed against LDAP servers. This usually
involves verifying a username and password against the information stored in the
directory server.

One approach for implementing authentication using Spring LDAP is via the
getContext method of the ContextSource class. Here is the getContext method API:

DirContext getContext(String principal, String credentials) throws
NamingException

The principal parameter is the fully qualified DN of the user, and the credentials
parameter is the user’s password. The method uses the passed-in information to
authenticate against LDAP. Upon successful authentication, the method returns
a DirContext instance representing the user’s entry. Authentication failures are
communicated to the caller via an exception. Listing 10-1 gives a DAO implementation
for authenticating patrons in your Library application using the getContext technique.

Listing 10-1.

package com.inflinx.book.ldap.repository;

import javax.naming.directory.DirContext;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.NamingException;
import org.springframework.ldap.core.ContextSource;
import org.springframework.ldap.core.DistinguishedName;

CHAPTER 10 ■ Odds And Ends

174

import org.springframework.ldap.support.LdapUtils;
import org.springframework.stereotype.Repository;

@Repository("authenticationDao")
public class AuthenticationDaoImpl implements AuthenticationDao{

 public static final String BASE_DN = "ou=patrons,dc=inflinx,dc=com";

 @Autowired
 @Qualifier("contextSource")
 private ContextSource contextSource;

 @Override
 public boolean authenticate(String userid, String password) {
 DistinguishedName dn = new DistinguishedName(BASE_DN);
 dn.add("uid", userid);
 DirContext authenticatedContext = null;
 try {
 authenticatedContext = contextSource.getContext(dn.toString(),

password);
 return true;
 }
 catch(NamingException e) {
 e.printStackTrace();
 return false;
 }
 finally {
 LdapUtils.closeContext(authenticatedContext);
 }
 }
}

The getContext method requires a fully qualified DN of the user entry. Hence, the
authentication method starts out by creating a DistinguishedName instance with the
supplied "ou=patrons,dc=inflinx,dc=com" base. Then you append the provided userid
to the DN to create the patron’s fully qualified DN. The authentication method then
invokes the getContext method, passing in the string representation of the patron’s DN
and password. A successful authentication simply exits the method with a return value of
true. Notice that in the finally block you are closing the obtained context.

Listing 10-2 shows a JUnit test to verify the proper working of this authenticate method.

Listing 10-2.

package com.inflinx.book.ldap.parser;

import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;

CHAPTER 10 ■ Odds And Ends

175

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import com.inflinx.book.ldap.repository.AuthenticationDao;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:repositoryContext-test.xml")

public class AuthenticationDaoTest {

@Autowired
@Qualifier("authenticationDao")
private AuthenticationDao authenticationDao;

 @Test
 public void testAuthenticate() {
 boolean authResult = authenticationDao.authenticate("patron0",

"password");
 Assert.assertTrue(authResult);
 authResult = authenticationDao.authenticate("patron0",

"invalidPassword");
 Assert.assertFalse(authResult);
 }
}

The repositoryContext-test.xml associated with Listing 10-2 is shown in
Listing 10-3. In this scenario, you are working with your installed OpenDJ LDAP server.

Listing 10-3.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.inflinx.book.ldap" />

 <bean id="contextSource" class="org.springframework.ldap.core.support.

LdapContextSource">
 <property name="url" value="ldap://localhost:11389" />
 <property name="userDn" value="cn=Directory Manager" />
 <property name="password" value="opendj" />
 <property name="base" value=""/>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

CHAPTER 10 ■ Odds And Ends

176

 </bean>
 <bean id="ldapTemplate" class="org.springframework.ldap.core.

LdapTemplate">
 <constructor-arg ref="contextSource" />
 </bean>
</beans>

The only drawback with the implementation shown in Listing 10-3 is that the
getContext method requires the fully qualified DN of the patron entry. There could
be scenarios where the client’s code might not know the fully qualified DN of the user.
In Listing 10-1, you append a hard-coded value to create the fully qualified DN. This
approach will fail if you want to start using the code in Listing 10-1, say, to authenticate
your library’s employees also. To address such situations, Spring LDAP added several
variations of the authenticate method shown below to the LdapTemplate class:

boolean authenticate(String base, String filter, String password)

This authenticate method uses the supplied base DN and filter parameters to
perform a search for the user’s LDAP entry. If an entry is found, the fully qualified DN of the
user is extracted. Then, this DN, along with the password, is passed to the ContextSource’s
getContext method to perform authentication. Essentially this is a two-step process but
it alleviates the need for fully qualified DN upfront. Listing 10-4 contains the modified
authentication implementation. Notice that the authenticate method signature in the
DAO implementation has not changed. It still accepts the username and password as its
parameters. But thanks to the authenticate method abstraction, the implementation has
become lot simpler. The implementation passes an empty base DN since you want the
search to be performed relative to the base DN used during ContextSource creation.

Listing 10-4.

package com.inflinx.book.ldap.repository;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.core.LdapTemplate;
import org.springframework.stereotype.Repository;

@Repository("authenticationDao2")
public class AuthenticationDaoImpl2 implements AuthenticationDao {

 @Autowired
 @Qualifier("ldapTemplate")
 private LdapTemplate ldapTemplate;

 @Override
 public boolean authenticate(String userid, String password){
 return ldapTemplate.authenticate("","(uid=" + userid + ")", password);
 }
}

CHAPTER 10 ■ Odds And Ends

177

Listing 10-5 shows the JUnit test case to verify the above authenticate method
implementation.

Listing 10-5.

package com.inflinx.book.ldap.parser;

import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import com.inflinx.book.ldap.repository.AuthenticationDao;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:repositoryContext-test.xml")
public class AuthenticationDao2Test {

@Autowired
@Qualifier("authenticationDao2")
private AuthenticationDao authenticationDao;

 @Test
 public void testAuthenticate() {
 boolean authResult = authenticationDao.authenticate("patron0", "password");
 Assert.assertTrue(authResult);
 authResult = authenticationDao.authenticate("patron0","invalidPassword");
 Assert.assertFalse(authResult);
 }
}

Handling Authentication Exceptions
The previous authenticate methods in LdapTemplate simply tell you whether
authentication succeeded or failed. There will be cases where you are interested in the
actual exception that caused the failure. For those scenarios, LdapTemplate provides
overloaded versions of the authenticate method. The API for one of the overloaded
authenticate methods is as follows:

boolean authenticate(String base, String filter, String password,
AuthenticationErrorCallback errorCallback);

Any exceptions that occur during the execution of the above authenticate method
will be passed on to an AuthenticationErrorCallback instance provided as the method
parameter. This collected exception can be logged or used for post-authentication

CHAPTER 10 ■ Odds And Ends

178

processes. Listing 10-6 and Listing 10-7 show the AuthenticationErrorCallback API and
its simple implementation, respectively. The execute method in the callback can decide
what to do with the raised exception. In your simple implementation, you are just storing
it and making it available to the LdapTemplate’s search caller.

Listing 10-6.

package org.springframework.ldap.core;

public interface AuthenticationErrorCallback {
 public void execute(Exception e);
}

Listing 10-7.

package com.practicalspring.ldap.repository;

import org.springframework.ldap.core.AuthenticationErrorCallback;

public class EmployeeAuthenticationErrorCallback implements
AuthenticationErrorCallback {

 private Exception authenticationException;

 @Override
 public void execute(Exception e) {
 this.authenticationException = e;
 }

 public Exception getAuthenticationException() {
 return authenticationException;
 }
}

Listing 10-8 shows the modified AuthenticationDao implementation along with
the error callback; here you are simply logging the failed exception to the console.
Listing 10-9 shows the JUnit test.

Listing 10-8.

package com.practicalspring.ldap.repository;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.ldap.core.LdapTemplate;
import org.springframework.stereotype.Repository;

CHAPTER 10 ■ Odds And Ends

179

@Repository("authenticationDao3")
public class AuthenticationDaoImpl3 implements AuthenticationDao {

@Autowired
@Qualifier("ldapTemplate")
private LdapTemplate ldapTemplate;

 @Override
 public boolean authenticate(String userid, String password){
 EmployeeAuthenticationErrorCallback errorCallback = new

EmployeeAuthenticationErrorCallback();
 boolean isAuthenticated = ldapTemplate.authenticate("","(uid=" +

userid + ")", password, errorCallback);
 if(!isAuthenticated) {
 System.out.println(errorCallback.getAuthenticationException());
 }
 return isAuthenticated;
 }
}

Listing 10-9.

package com.inflinx.book.ldap.parser;

import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import com.inflinx.book.ldap.repository.AuthenticationDao;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:repositoryContext-test.xml")
public class AuthenticationDao3Test {

@Autowired
@Qualifier("authenticationDao3")
private AuthenticationDao authenticationDao;

 @Test
 public void testAuthenticate() {
 boolean authResult = authenticationDao.authenticate("patron0",

"invalidPassword");
 Assert.assertFalse(authResult);
 }
}

CHAPTER 10 ■ Odds And Ends

180

Upon running the JUnit test in Listing 10-9, you should see the following error
message in the console:

org.springframework.ldap.AuthenticationException: [LDAP:
error code 49 - Invalid Credentials]; nested exception is
javax.naming.AuthenticationException: [LDAP: error code 49 -
Invalid Credentials]

Parsing LDIF Data
The LDAP Data Interchange Format is a standards-based data interchange format for
representing LDAP directory data in a flat file format. LDIF is discussed in detail in
Chapter 1. As an LDAP developer or administrator, you may sometimes need to parse
LDIF files and perform operations such as a bulk directory load. For such scenarios,
Spring LDAP introduced a set of classes in the org.springframework.ldap.ldif package
and its subpackages that make it easy to read and parse LDIF files.

Central to the org.springframework.ldap.ldif.parser package is the Parser
interface and its default implementation LdifParser. The LdifParser is responsible
for reading individual lines from an LDIF file and converting them into Java objects.
This object representation is possible through two newly added classes, namely
LdapAttribute and LdapAttributes.

The code in Listing 10-10 uses LdifParser to read and print the total number
of records in an LDIF file. You start the implementation by creating an instance of
LdifParser and passing in the file you would like to parse. Before the parser can be used,
you need to open it. Then you use the parser’s iterator style interface for reading and
counting individual records.

Listing 10-10.

package com.inflinx.book.ldap.parser;

import java.io.File;
import java.io.IOException;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ldap.core.LdapAttributes;
import org.springframework.ldap.ldif.parser.LdifParser;

public class SimpleLdifParser {

 public void parse(File file) throws IOException {
 LdifParser parser = new LdifParser(file);
 parser.open();
 int count = 0;
 while(parser.hasMoreRecords()) {
 LdapAttributes attributes = parser.getRecord();
 count ++;
 }

CHAPTER 10 ■ Odds And Ends

181

 parser.close();
 System.out.println(count);
 }

 public static void main(String[] args) throws IOException {
 SimpleLdifParser parser = new SimpleLdifParser();
 parser.parse(new ClassPathResource("patrons.ldif").getFile());
 }
}

Before running the above class, make sure that you have the patrons.ldif file
in the classpath. Upon running the class with the patrons.ldif file included with the
Chapter 10 code, you should see the count 103 printed to the console.

The parsing implementation of LdifParser relies on three supporting policy
definitions: separator policy, attribute validation policy, and record specification policy.

The separator policy provides the separation rules for LDIF •	
records in a file and is defined in the RFC 2849. It is implemented
via the org.springframework.ldap.ldif.support.
SeparatorPolicy class.

The attribute validation policy, as the name suggests, •	
is used to ensure that all the attributes are structured
properly in the LDIF file prior to parsing. It is implemented
via the AttributeValidationPolicy interface and the
DefaultAttributeValidationPolicy class. These two are located
in the org.springframework.ldap.ldif.support package. The
DefaultAttributeValidationPolicy uses regular expressions to
validate attribute format according to RFC 2849.

The record specification policy is used to validate •	
rules that each LDIF record must confirm to. Spring
LDAP provides the Specification interface and two
implementations for this policy: org.springframework.
ldap.schema.DefaultSchemaSpecification and org.
springframework.ldap.schema.BasicSchemaSpecification.
The DefaultSchemaSpecification has an empty
implementation and does not really validate the records. The
BasicSchemaSpecification can be used to perform basic checks
such as that an objectClass must exist for each LAP entry. For
most cases, the BasicSchemaSpecification will suffice.

The modified parse method implementation, along with the three policy definitions,
is given in Listing 10-11.

CHAPTER 10 ■ Odds And Ends

182

Listing 10-11.

package com.inflinx.book.ldap.parser;

import java.io.File;
import java.io.IOException;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ldap.core.LdapAttributes;
import org.springframework.ldap.ldif.parser.LdifParser;
import org.springframework.ldap.ldif.support.DefaultAttributeValidationPolicy;
import org.springframework.ldap.schema.BasicSchemaSpecification;

public class SimpleLdifParser2 {

 public void parse(File file) throws IOException {
 LdifParser parser = new LdifParser(file);
 parser.setAttributeValidationPolicy(new DefaultAttributeValidationPolicy());
 parser.setRecordSpecification(new BasicSchemaSpecification());
 parser.open();
 int count = 0;
 while(parser.hasMoreRecords()) {
 LdapAttributes attributes = parser.getRecord();
 count ++;
 }
 parser.close();
 System.out.println(count);
 }

 public static void main(String[] args) throws IOException {
 SimpleLdifParser2 parser = new SimpleLdifParser2();
 parser.parse(new ClassPathResource("patrons.ldif").getFile());
 }
}

Upon running the above method, you should see the count 103 in the console.

LDAP Connection Pooling
LDAP connection pooling is a technique where connections to LDAP directory are reused
rather than being created each time a connection is requested. Without connection
pooling, each request to LDAP directory causes a new connection to be created and
then released when the connection is no longer required. Creating a new connection
is resource-intensive and this overhead can have adverse effects on performance. With
connection pooling, connections are stored in pool after they are created and are recycled
for subsequent client requests.

CHAPTER 10 ■ Odds And Ends

183

Connections in a pool at any point can be in one of these three states:

•	 In Use: The connection is open and currently in use.

•	 Idle: The connection is open and available for reuse.

•	 Closed: The connection is no longer available for use.

Figure 10-1 illustrates the possible actions on a connection at any given time.

Built In Connection Pooling
JNDI provides basic support for connection pooling via the "com.sun.jndi.ldap.connect.pool"
environment property. Applications creating a directory context can set this property to
true and indicate that connection pooling needs to be turned on. Listing 10-12 shows the
plain JNDI code that utilizes pooling support.

Listing 10-12.

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.
LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://localhost:11389");

// Enable connection pooling
env.put("com.sun.jndi.ldap.connect.pool", "true");

// Create one initial context
(Get connection from pool) DirContext ctx = new InitialDirContext(env);

// do something useful with ctx
// Close the context when we’re done
ctx.close(); // Return connection to pool

By default the contexts created using Spring LDAP have the "com.sun.jndi.ldap.
connect.pool" property set to false. The native connection pooling can be turned on by
setting the pooled property of the LdapContextSource to true in the configuration file.
The following code shows the configuration change:

<bean id="contextSource" class="org.springframework.ldap.core.support.
LdapContextSource">
 <property name="url" value="ldap://localhost:11389" />

Figure 10-1. Connection pool states

CHAPTER 10 ■ Odds And Ends

184

 <property name="base" value="dc=example,dc=com" />
 <property name="userDn" value="cn=Manager" />
 <property name="password" value="secret" />
 <property name="pooled" value="true"/>
</bean>

Though the native LDAP connection pooling is simple, it does suffer from certain
drawbacks. The pool of connections is maintained per the Java Runtime Environment. It
is not possible to maintain multiple connection pools per JVM. Also, there is no control
over the properties of the connection pool, such as the number of connections to be
maintained at any time or idle connection time. It is also not possible to provide any
custom connection validation to ensure that pooled connections are still valid.

Spring LDAP Connection Pooling
In order to address shortcomings with native JNDI pooling, Spring LDAP provides a
custom pooling library for LDAP connections. The Spring LDAP pooling library maintains
its own set of LDAP connections that are specific to each application.

Note ■ spring LdAP utilizes the Jakarta Commons Pool library for its underlying pooling
implementation.

Central to Spring LDAP pooling is the org.springframework.ldap.pool.
factory.PoolingContextSource, which is a specialized ContextSource implementation
and is responsible for pooling DirContext instances. To utilize connection pooling, you
start by configuring a Spring LDAP Context Source, as shown:

<bean id="contextSourceTarget" class="org.springframework.ldap.core.support.
LdapContextSource">
 <property name="url" value="ldap://localhost:389" />
 <property name="base" value="dc=example,dc=com" />
 <property name="userDn" value="cn=Manager" />
 <property name="password" value="secret" />
 <property name="pooled" value="false"/>
</bean>

Note that you have the pooled property of the context source set to false. This will
allow the LdapContextSource create brand new connections when the need arises. Also,
the id of the ContextSource is now set to contextSourceTarget instead of contextSource,
which is what you usually use. The next step is to create a PoolingContextSource, as shown:

<bean id="contextSource" class="org.springframework.ldap.pool.factory.
PoolingContextSource">
 <property name="contextSource" ref="contextSourceTarget" />
</bean>

CHAPTER 10 ■ Odds And Ends

185

The PoolingContextSource wraps the contextSourceTarget you configured earlier.
This is required since the PoolingContextSource delegates the actual creation of DirContexts
to the contextSourceTarget. Also note that you have used the id contextSource for this
bean instance. This allows you to keep the configuration changes to minimum while using a
PoolingContextSource instance in an LdapTemplate, as shown:

<bean id="ldapTemplate" class="org.springframework.ldap.core.LdapTemplate">
 <constructor-arg ref="contextSource" />
</bean>

The PoolingContextSource provides a variety of options that can be used to fine-tune
connection pooling. Table 10-1 lists some of the important configuration properties.

Table 10-1. PoolingContextSource Configuration Properties

Property Description Default

testOnBorrow When set to true, the DirContext is
validated before it is borrowed from the
pool. If the DirContext fails validation, it is
removed from the pool and a new attempt
is made to borrow another DirContext.
This testing might add a small delay in
serving the borrow request.

False

testOnReturn When set to true, this property indicates
that DirContext will be validated before
returning to the pool.

False

testWhileIdle When set to true, this property indicates
that idle DirContext instances in the
pool should be validated at a specified
frequency. Objects failing the validation
will be dropped from the pool.

False

timeBetweenEvictionRunsMillis This property indicates the time in
milliseconds to sleep between running idle
context tests. A negative number indicates
that idle test will never be run.

-1

whenExhaustedAction Specifies the action to be taken when
the pool is exhausted. The possible
options are WHEN_EXHAUSTED_FAIL (0),
WHEN_EXHAUSTED_BLOCK (1), and WHEN_
EXHAUSTED_GROW (2).

1

maxTotal The maximum number of active
connections that this pool can contain.
A non-positive integer indicates no limit.

-1

(continued)

CHAPTER 10 ■ Odds And Ends

186

Pool Validation
Spring LDAP makes it easy to validate pooled connections. This validation ensures that
the DirContext instances are properly configured and connected to LDAP server before
they are borrowed from the pool. The same validation is done before the contexts are
returned to the pool or on the contexts sitting idle in the pool.

The PoolingContextSource delegates the actual validation to concrete instances
of the org.springframework.ldap.pool.validation.DirContextValidator interface.
In Listing 10-13 you can see that the DirContextValidator has only one method:
validateDirContext. The first parameter, contextType, indicates if the context to be
validated is a read-only or a read-write context. The second parameter is the actual
context that needs to be validated.

Listing 10-13.

package org.springframework.ldap.pool.validation;

import javax.naming.directory.DirContext;
import org.springframework.ldap.core.ContextSource;
import org.springframework.ldap.pool.DirContextType;

public interface DirContextValidator {
 boolean validateDirContext(DirContextType contextType, DirContext dirContext);
}

Out of the box, Spring LDAP provides an aptly named default implementation
of the DirContextValidator called org.springframework.ldap.pool.validation.
DefaultDirContextValidator. This implementation simply performs a search
using the context and verifies the returned javax.naming.NamingEnumeration. If the
NamingEnumeration does not contain any results or if an exception is thrown, the context
fails the validation and will be removed from the pool. Applications requiring more
sophisticated validation can create new implementations of the DirContextValidator
interface.

Property Description Default

maxIdle The maximum number of idle connections
of each type (read, read-write) that can be
idle in the pool.

8

maxWait The maximum number of milliseconds
that a pool will wait for a connection to be
returned to the pool before throwing an
exception. A negative number indicates
indefinite wait.

-1

Table 10-1. (continued)

CHAPTER 10 ■ Odds And Ends

187

Configuring pooling validation is shown in Listing 10-14. You start by creating a
dirContextValidator bean of type DefaultDirContextValidator. Then you modify
the contextSource bean declaration to include the dirContextValidator bean. In
Listing 10-14, you have also added the testOnBorrow and testWhileIdle properties.

Listing 10-14.

<bean id="dirContextValidator" class="org.springframework.ldap.pool.
validation.DefaultDirContextValidator" />
<bean id="contextSource" class="org.springframework.ldap.pool.factory.
PoolingContextSource">
 <property name="contextSource" ref="contextSourceTarget" />
 <property name="dirContextValidator" ref="dirContextValidator"/>
 <property name="testOnBorrow" value="true" />
 <property name="testWhileIdle" value="true" />
</bean>

Summary
This brings us to the end of our journey. Throughout the book, you have learned the key
features of Spring LDAP. With this knowledge, you should be ready to start developing
Spring LDAP-based applications.

Finally, it has been an absolute pleasure writing this book and sharing my insights
with you. I wish you all the best. Happy coding!

A, B���������
Apache directory studio

authentication screen, 48
installation, 46
network parameter screen, 47–48
new connection, 47

ApacheDS LDAP server
code implementation, 65
context factory, 67

destroyInstance implementation, 68
LdapContenxtSource, 68
setPort and setRootDn method, 68
Spring context file, 69
teardown method, 69

DefaultDirectoryServiceFactory, 64
partition suffix, 64
shutdown method, 65
startup method, 65
TcpTransport object, 64

Apache Maven
advantages, 31
archetypes

artifact id, 35
graphical IDE, 36
group id, 35
jar files, 32
plug-in, 35
practical-ldap-archetype, 32
practical-ldap-empty-archetype, 32
project structure, 33–34
root folder, 34
src folder, 34

installation, 31
project creation

archetype screen, 40
archetype selection, 41
New Project wizard, 39

path setup, 39
project information, 41–42
project structure, 42–43

STS
features, 36
installation and setting, 36–38

Authentication
authenticate method abstraction, 176
DAO implementation, 173
exceptions

API for overloaded authenticate
methods, 177

AuthenticationErrorCallback
API, 178

JUnit test, 179
modified AuthenticationDao

implementation, 178
fully qualified DN, 176
getContext method API, 173
JUnit test, 174
repositoryContext-test.xml, 175

C���������
Connection pooling

built in connection pooling, 183
description, 182
Spring LDAP connection pooling, 184
states, 183
validation, 186

D, E���������
Data Access Object (DAO), 80

create method, 88
delete method, 90
EmployeeDao implementation, 81
EmployeeDao interface, 81

Index

189

■ index

190

Employee domain object, 81
finder methods

DefaultDirObjectFactory, 84
EmbeddedContextSourceFactory

class, 87
findAll implementation, 85
find method implementation, 85
JUnit test class, 85
lookup method, 85
ParameterizedContext

Mapper<T>, 84
setup and teardown method, 87
SimpleLdapTemplate class, 83

LdapContextSource, 83
SimpleLdapTemplate, 82
update method, 89

DSA-specific entry, 93

F���������
Functional model, 9

G���������
getLdapTemplate method, 52

H���������
Hello World application

ApplicationContext, 53–54
getLdapTemplate method, 52
LdapTemplate class, 52
search client code, 51
search client implementation, 54–55
simple search client, 51

I���������
Information model

attributes, 4
directory schema, 6–7
employee entry, 3
object classes, 4–5

J, K���������
Java Naming and Directory

Interface (JNDI)
architecture, 15
and controls, 116

definition, 15
drawbacks, 26
LDAP

closing resources, 19
destroySubcontext method, 22
exceptions, 18
INITIAL_CONTEXT_FACTORY

constant, 16
modification item class, 21–22
new entry creation, 19–20
operations, 18
search controls, 24–25
SECURITY_AUTHENTICATION

property, 17
object factories

DAO (see Data Access
Object (DAO))

DirContextAdapter class, 80
Patron instance, 78
registration, 78

packages, 16
javax.naming.ldap package, 116

L���������
LdapContext interface, 117
LDAP controls

commonly used controls, 113
components, 111
definition, 112
DirContextProcessor

AbstractFallbackRequest
AndResponseControl
DirContextProcessor, 122

createRequestControl
method, 123

empty abstract methods, 121
JNDI API, 121
response control and information

retrieval, 123
sorted locations, 125
sort method, 124

JNDI, 116
LDAP server control interaction, 112
paged results control

cookie, 126
JNDI API, 126
LastNameMapper class, 128
LDAP client and server

interaction, 125
PagedResultsControl, 127

190

Data Access Object (DAO) (cont.)

■ index

191

PagedResults
DirContextProcessor, 128

request controls, 111
response controls, 111
sort control, 119
specification, 112
Spring LDAP, 117
supported control identification

OpenDJ ldapsearch
command, 115–116

supportedControl
attribute, 113

LDAP Data Interchange
Format (LDIF), 11

LDAP injection, 97
LdapTemplate’s

search method, 52
Lightweight Directory Access

Protocol (LDAP)
application, 12–13
client/server interaction, 1
directory vs. database, 2
functional model, 9
information model

attributes, 4
directory schema, 6–7
employee entry, 3
object classes, 4–5

LDIF format, 11
naming model

definition, 8
directory suffix, 8
generic directory tree, 7
organization directory, 8
techniques, 8

security model, 10
testing, 59
vendors, 10

M���������
Manage DSA/IT Control, 113

N���������
Naming model

definition, 8
directory suffix, 8
generic directory tree, 7
organization directory, 8
techniques, 8

O���������
Object-directory mapping (ODM)

configuration simplifications, 145
ConverterConfig, 136
Converter interface API, 134
core classes, 132
custom converter

configuration, 150
modified Patron classes, 148
PhoneNumber classes, 147
ToPhoneNumberConverter, 150
toString method, 149

dependency, 132
FromStringConverter API

implementation, 134
fromStringConverterConfig, 136
metadata

@Attribute annotation, 140
@Entry, 139
@Id, 139
Patron Java class, 138
@Transient annotation, 141

OdmManager API, 132
OdmManagerImpl, 133
OdmManager inner workings, 138
OdmManager instances, 133
vs. ORM, 131
service class

complete XML content, 144
implementation, 141
interface, 141
JUnit test, 142

ToStringConverter API
implementation, 134

XML configuration
FromStringConverter and

ToStringConverter
instances, 135

toStringConverter instance, 135
XML declaration, 137

Object-oriented programming (OOP), 59
OpenDJ LDAP server

confirmation message, 45
directory data screen, 44
installation, 44
OpenDJ-2.4.6.zip, 43
review screen, 45
settings screen, 44
topology option screen, 44
Windows service, 45

■ index

192

P, Q���������
Paged Results Control, 113
Parsing

attribute validation policy, 181
LdifParser, 180
modified parse method

implementation, 181
record specification policy, 181
separator policy, 181

PasswordExpiringResponseControl, 117
Password Policy Control, 113
Persistent Search Control, 113

R���������
Relative Distinguished Name (RDN), 8–9
Request controls, 111
Response controls, 111
Root DSE, 93

S���������
Search filter

characteristics, 94
components, 95
custom approximate filter

expressions, 107
implementation, 107
searchAndPrintResults

method, 108
operators, 95
search criteria

base parameter, 93
filter parameter, 94
optional parameters, 96
scope parameter, 94

special characters and escape
values, 109

Spring LDAP filters
AndFilter, 105
EqualsFilter, 100
Filter API interface, 98
Filter interface hierarchy, 98
GreaterThanOrEqualsFilter, 104
HardcodedFilter, 107
LessThanOrEqualsFilter, 105
LikeFilter, 101
NotFilter, 103
NotPresentFilter, 103
OrFilter, 106

PresentFilter, 102
searchAndPrintResults method, 99
WhitespaceWildcardsFilter, 107

Security model, 10
SimpleLdapTemplate, 51
Sort Control, 113
Spring LDAP

AbstractFallbackRequestAnd
ResponseControlDir
ContextProcessor class, 118

AbstractRequestControlDir
ContextProcessor, 118

Apache Maven (see Apache Maven)
architecture directory, 27
dependent jars files, 30
DirContextProcessor API code, 117
DirContextProcessor

class hierarchy, 118
distribution modules, 29
download page, 28
framework distribution, 29
Hello World (see Hello World

application)
JNDI drawbacks, 28
PagedResultsDirContextProcessor, 118
postProcess method, 118
preProcess method, 118
server setup

apache directory studio (see
Apache directory studio)

OpenDJ (see OpenDJ LDAP server)
test data loading, 49–50

SortControlDirContextProcessor, 118
source code, 30
template operations

add operation, 56–57
deleting operation, 58
modify operation, 57

Spring LDAP See JNDI object factories
Spring LDAP transaction support, 164
Spring tool suite (STS), 36
Subtree Delete Control, 113

T, U���������
Testing

ApacheDS (see ApacheDS LDAP server)
EasyMock

bind method, 72
CGLIB and Objenesis libraries, 71
createMock method, 72

■ index

193

DirContextOperations, 72
mockContextOperations

method, 73
replay method, 72
row mapper implementation, 72
verify method, 72

embedded directories, 63
integration testing, 61
JUnit

annotations, 63
ANT and Maven tools, 62
StringUtils class, 62

mock testing
goals, 60
open source framework, 61
UserAccountService, 61

OpenDJ, 74
-ldifFile, 75
-randomSeed, 75
-templateFile, 75

unit testing, 59
advantages, 60
characteristics, 60
enterprise applications, 60
OOP, 59

Transactions
atomicity, 155
compensating transaction

delete method, 169
description, 165
OpenDJ log file, 169
PatronDao interface, 166
PatronService interface, 165

RuntimeException, 168
Spring configuration file, 167
test code, 168

consistency, 155
declarative transactions, 159

AOP-based transaction, 163
complete configuration, 162
DataSourceTransaction

Manager, 162
default isolation and REQUIRES_

NEW propagation, 162
PersonRepositoryImpl class, 161
PersonRepository interface, 161
@Transactional annotation, 161

description, 155
durability, 156
global transactions, 157
isolation, 156
LDAP transaction support, 164
local transactions, 157
programmatic transactions, 158
transaction abstract

PlatformTransactionManager
abstraction, 160

TransactionDefinition interface
abstracts, 160

TransactionStatus instance, 161
Two phase commit protocol, 157

V, W, X, Y, Z���������
Virtual List View Control, 113, 117

Practical Spring
LDAP

Enterprise Java LDAP Development
Made Easy

Balaji Varanasi

Practical Spring LDAP: Enterprise Java LDAP Development Made Easy

Copyright © 2013 Balaji Varanasi. All rights reserved.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6397-5

ISBN-13 (electronic): 978-1-4302-6398-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewer: Manual Jordan
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/

To my life, Sudha

vii

Contents

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgements ��� xvii

Introduction �� xix

Chapter 1: Introduction to LDAP ■ ��� 1

LDAP Overview �� 2

Information Model ��� 3

Object Classes �� 4

Directory Schema ��� 6

Naming Model ��� 7

Functional Model ��� 9

Security Model �� 10

LDAP Vendors �� 10

LDIF Format ��� 11

Sample Application �� 12

Summary ��� 13

Chapter 2: Java Support for LDAP ■ �� 15

LDAP Using JNDI ��� 16

Connecting to LDAP �� 16

LDAP Operations ��� 18

Closing Resources �� 19

■ Contents

viii

Creating a New Entry �� 19

Updating an Entry �� 21

Removing an Entry �� 22

Searching Entries �� 24

JNDI Drawbacks �� 26

Chapter 3: Introducing Spring LDAP ■ ��� 27

Motivation �� 28

Obtaining Spring LDAP �� 28

Spring LDAP Packaging �� 29

Downloading Spring LDAP Source �� 30

Installing Spring LDAP Using Maven ��� 31

Installing Maven ��� 31

Spring LDAP Archetypes ��� 32

Setting Up Spring IDE ��� 36

Creating Projects Using STS ��� 38

LDAP Server Setup �� 43

Installing Apache Directory Studio�� 46

Loading Test Data ��� 49

Spring LDAP Hello World ��� 51

Spring ApplicationContext �� 53

Spring-Powered Search Client ��� 54

Spring LdapTemplate Operations �� 56

Add Operation ��� 56

Modify Operation �� 57

Deleting Operation �� 58

Summary ��� 58

■ Contents

ix

Chapter 4: Testing LDAP Code ■ �� 59

Unit Testing �� 59

Mock Testing ��� 60

Integration Testing ��� 61

JUnit �� 62

Testing Using Embedded LDAP Server �� 63

Setting Up Embedded ApacheDS��� 64

Creating Embedded Context Factory �� 67

Mocking LDAP Using EasyMock �� 71

Test Data Generation ��� 74

Summary ��� 76

Chapter 5: Advanced Spring LDAP ■ �� 77

JNDI Object Factories ��� 77

Spring and Object Factories �� 80

DAO Implementation Using Object Factory ��� 81

Implementing Finder Methods �� 83

Create Method �� 87

Update Method ��� 89

Delete Method �� 90

Summary ��� 91

Chapter 6: Searching LDAP ■ ��� 93

LDAP Search Criteria ��� 93

Base Parameter �� 93

Scope Parameter �� 94

Filter Parameter �� 94

Optional Parameters ��� 96

■ Contents

x

Spring LDAP Filters ��� 98

EqualsFilter ��� 100

LikeFilter ��� 101

PresentFilter ��� 102

NotPresentFilter �� 103

Not Filter ��� 103

GreaterThanOrEqualsFilter ��� 104

LessThanOrEqualsFilter �� 105

AndFilter ��� 105

OrFilter �� 106

HardcodedFilter �� 107

WhitespaceWildcardsFilter ��� 107

Creating Custom Filters ��� 107

Handling Special Characters ��� 109

Summary ��� 109

Chapter 7: Sorting and Paging Results ■ ��������������������������������������� 111

LDAP Controls �� 111

Identifying Supported Controls �� 113

JNDI and Controls �� 116

Spring LDAP and Controls ��� 117

Sort Control ��� 119

Implementing Custom DirContextProcessor �� 121

Paged Search Controls �� 125

Summary ��� 129

Chapter 8: Object-Directory Mapping ■ ��� 131

Spring ODM Basics �� 132

ODM Metadata �� 138

■ Contents

xi

ODM Service Class �� 141

Configuration Simplifications �� 145

Creating Custom Converter ��� 147

Summary ��� 154

Chapter 9: LDAP Transactions ■ �� 155

Transaction Basics �� 155

Local vs� Global Transactions �� 157

Programmatic vs� Declarative Transactions �� 158

Programmatically �� 158

Declaratively ��� 159

Spring Transaction Abstraction �� 159

Declarative Transactions Using Spring �� 161

LDAP Transaction Support ��� 164

Spring LDAP Transaction Support �� 164

Compensating Transactions �� 165

Summary ��� 172

Chapter 10: Odds and Ends ■ �� 173

Authentication Using Spring LDAP �� 173

Handling Authentication Exceptions �� 177

Parsing LDIF Data �� 180

LDAP Connection Pooling �� 182

Built In Connection Pooling ��� 183

Spring LDAP Connection Pooling ��� 184

Pool Validation ��� 186

Conclusion ��� 187

Index �� 189

xiii

About the Author

Balaji Varanasi is a software development manager
and technology entrepreneur. He has over 13 years
of experience architecting and developing Java/.NET
applications and, more recently, iPhone apps. During
this period he has worked in the areas of security, web
accessibility, search, and enterprise portals. He has a
Master’s Degree in Computer Science and serves as
faculty, teaching programming and information system
courses. He shares his insights and experiments at
http://blog.inflinx.com. When not programming,
he enjoys spending time with his lovely wife in Salt
Lake City, Utah.

http://blog.inflinx.com

xv

About the Technical
Reviewer

Manuel Jordan Elera is an autodidactic developer and
researcher who enjoys learning new technologies for
his own experiments and creating new integrations.

Manuel won the 2010 Springy Award – Community
Champion and Spring Champion 2013. In his little
free time, he reads the Bible and composes music on
his guitar. Manuel is a Senior Member in the Spring
Community Forums, known as dr_pompeii.

Manuel has acted as Technical Reviewer for these
books (all published by Apress):

Pro SpringSource dm Server (2009)

Spring Enterprise Recipes (2009)

Spring Recipes (Second Edition) (2010)

Pro Spring Integration (2011)

Pro Spring Batch (2011)

Pro Spring 3 (2012)

Pro Spring MVC: With Web Flow (2012)

Pro Spring Security (2013)

Pro Hibernate and MongoDB (2013)

Pro JPA 2 (Second Edition) (2013)

Read and contact him through his blog at http://manueljordan.wordpress.com/ and
follow him on his Twitter account, @dr_pompeii.

http://manueljordan.wordpress.com/

xvii

Acknowledgements

This book would not have been possible without the support of several people, and I
would like to take this opportunity to sincerely thank them.

Thanks to the amazing people at Apress: most importantly, Steve Anglin, Tom Welsh,
Anamika Panchoo, Mary Behr, and many others. Many thanks to Manuel Jordan Elera for
his technical review and the valuable feedback he provided.

Special thanks to my friends Mike Mormando and Steve Trousdale. Your suggestions
helped me refine and improve this book’s content.

Finally, I would like to thank my wife for her constant support and encouragement in
all my endeavors. Without you, this book would not have been possible.

—Balaji

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgements
	Introduction
	Chapter 1: Introduction to LDAP
	LDAP Overview
	Information Model
	Object Classes
	Directory Schema

	Naming Model
	Functional Model
	Security Model
	LDAP Vendors
	LDIF Format
	Sample Application
	Summary

	Chapter 2: Java Support for LDAP
	LDAP Using JNDI
	Connecting to LDAP
	LDAP Operations
	Closing Resources

	Creating a New Entry
	Updating an Entry
	Removing an Entry
	Searching Entries
	JNDI Drawbacks

	Chapter 3: Introducing Spring LDAP
	Motivation
	Obtaining Spring LDAP
	Spring LDAP Packaging
	Downloading Spring LDAP Source

	Installing Spring LDAP Using Maven
	Installing Maven
	Spring LDAP Archetypes
	Setting Up Spring IDE
	Creating Projects Using STS

	LDAP Server Setup
	Installing Apache Directory Studio
	Loading Test Data

	Spring LDAP Hello World
	Spring ApplicationContext
	Spring-Powered Search Client

	Spring LdapTemplate Operations
	Add Operation
	Modify Operation
	Deleting Operation

	Summary

	Chapter 4: Testing LDAP Code
	Unit Testing
	Mock Testing
	Integration Testing
	JUnit
	Testing Using Embedded LDAP Server
	Setting Up Embedded ApacheDS
	Creating Embedded Context Factory

	Mocking LDAP Using EasyMock
	Test Data Generation
	Summary

	Chapter 5: Advanced Spring LDAP
	JNDI Object Factories
	Spring and Object Factories
	DAO Implementation Using Object Factory
	Implementing Finder Methods
	Create Method
	Update Method
	Delete Method

	Summary

	Chapter 6: Searching LDAP
	LDAP Search Criteria
	Base Parameter
	Scope Parameter
	Filter Parameter
	Optional Parameters

	Spring LDAP Filters
	EqualsFilter
	LikeFilter
	PresentFilter
	NotPresentFilter
	Not Filter
	GreaterThanOrEqualsFilter
	LessThanOrEqualsFilter
	AndFilter
	OrFilter
	HardcodedFilter
	WhitespaceWildcardsFilter

	Creating Custom Filters
	Handling Special Characters
	Summary

	Chapter 7: Sorting and Paging Results
	LDAP Controls
	Identifying Supported Controls
	JNDI and Controls
	Spring LDAP and Controls
	Sort Control
	Implementing Custom DirContextProcessor
	Paged Search Controls
	Summary

	Chapter 8: Object-Directory Mapping
	Spring ODM Basics
	ODM Metadata
	ODM Service Class
	Configuration Simplifications
	Creating Custom Converter
	Summary

	Chapter 9: LDAP Transactions
	Transaction Basics
	Local vs. Global Transactions
	Programmatic vs. Declarative Transactions
	Programmatically
	Declaratively

	Spring Transaction Abstraction
	Declarative Transactions Using Spring
	LDAP Transaction Support
	Spring LDAP Transaction Support
	Compensating Transactions
	Summary

	Chapter 10: Odds and Ends
	Authentication Using Spring LDAP
	Handling Authentication Exceptions
	Parsing LDIF Data
	LDAP Connection Pooling
	Built In Connection Pooling
	Spring LDAP Connection Pooling
	Pool Validation
	Summary

	Index

