
this print for content only—size & color not accurate spine = 0.909" 480 page count

Books for professionals By professionals®

Pro SQL Server 2005 Service Broker
Dear Reader,

Service Broker is an asynchronous messaging framework integrated into the
core SQL Server 2005 database engine. It gives you the ability to write message-
based applications that you can execute directly inside SQL Server 2005.

In this book, I’ll show you how to design and implement distributed mes-
sage-based applications with Service Broker. In the first part of the book, I’ll
teach you the fundamentals of message-based programming, including the key
problems you’ll encounter with distributed message-based scenarios, how to
solve them, and how you can implement your own applications with Service
Broker. After this introduction to Service Broker, I’ll look at more advanced
technical details in the second part of the book and show you how to distrib-
ute Service Broker applications among several instances of SQL Server 2005.
I’ll also show you how to deal with security issues and real-world scenarios
for Service Broker, and I’ll discuss the high-availability features such as load
balancing and database mirroring. Finally, I’ll talk about Service-Oriented
Database Architecture (SODA), a new architectural discipline for implementing
scalable, distributed, database-centric applications.

By the time you finish this book, you’ll know why Service Broker is becoming
one of the most important technologies for SODA architectures based on SQL
Server 2005. You’ll understand the key principles of Service Broker and be able
to implement distributed, high-available, scalable, database-centric applica-
tions with Service Broker. My goal throughout the book is to show you how to
provide an IT infrastructure that allows your company to be a top player in your
business.

US $49.99

Shelve in
SQL Server/Databases

User level:
Intermediate–Advanced

Aschenbrenner
SQL Server 2005 Service Broker

The eXperT’s Voice® in sQl serVer

Pro
SQL Server 2005
Service Broker

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Klaus Aschenbrenner
Foreword by Gerald Hinson,
founding member and architect/development manager of Service Broker

Companion
eBook Available

THE APRESS ROADMAP

Beginning SQL Server 2005
Express for Developers

Beginning SQL Server
2005 for Developers

Pro T-SQL 2005
Programmer’s Guide

Foundations of SQL Server
2005 Business Intelligence

Pro SQL Server 2005

Pro SQL Server
2005 Replication

Pro SQL Server 2005
Service Broker

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-842-9
ISBN-10: 1-59059-842-3

9 781590 598429

54999

Learn how to program distributed message
applications with SQL Server 2005 Service Broker

Pro

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server 2005
Service Broker

■ ■ ■

Klaus Aschenbrenner

Aschenbrenner842-3.book Page i Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server 2005 Service Broker

Copyright © 2007 by Klaus Aschenbrenner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-842-9

ISBN-10 (pbk): 1-59059-842-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: James Huddleston, Dominic Shakeshaft
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Dominic Shakeshaft,
Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editor: Nicole Abramowitz
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Pat Christenson
Proofreader: Lori Bring
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Aschenbrenner842-3.book Page ii Friday, May 4, 2007 3:35 PM

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com
http://www.allitebooks.org

For Karin.
Every day that starts with you turns out to be a great day.

I will always love you.

Aschenbrenner842-3.book Page iii Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

Aschenbrenner842-3.book Page iv Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword . xiii
About the Author . xv
About the Technical Reviewer . xvii
Acknowledgments . xix
Introduction . xxi

PART 1 ■ ■ ■ The Service Broker
Programming Model

■CHAPTER 1 Fundamentals of Message-Based Processing . 3

■CHAPTER 2 Introduction to Service Broker . 17

■CHAPTER 3 Service Broker in Action . 31

■CHAPTER 4 Service Broker Activation . 69

■CHAPTER 5 Service Broker with Managed Code . 119

■CHAPTER 6 Locking and Transaction Management . 151

■CHAPTER 7 Distributed Service Broker Applications. 221

PART 2 ■ ■ ■ Advanced Service Broker
Programming

■CHAPTER 8 Advanced Distributed Service Broker Programming 253

■CHAPTER 9 Service-Oriented Database Architecture . 285

■CHAPTER 10 Real-World Application Scenarios . 329

■CHAPTER 11 High Availability and Scalability . 395

■CHAPTER 12 Administration . 423

■INDEX . 437

Aschenbrenner842-3.book Page v Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

Aschenbrenner842-3.book Page vi Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

Contents

vii

Foreword . xiii
About the Author . xv
About the Technical Reviewer . xvii
Acknowledgments . xix
Introduction . xxi

PART 1 ■ ■ ■ The Service Broker
Programming Model

■CHAPTER 1 Fundamentals of Message-Based Processing 3

Message Concepts . 4
Message Anatomy . 4
Messaging in Daily Life . 5

Why Messaging? . 5
Asynchronous Message Processing . 6
Deferred Message Processing . 6
Fault Tolerance . 7
Distributed Systems. 7

Messaging Problems . 8
Performance. 8
Queue Reader Management . 9
Transaction Management . 10
Message Sequencing and Correlation . 10
Maintenance. 11

Messaging Architectures. 12
SOA. 12
SODA . 12

Available Messaging Technologies . 13
MSMQ. 13
Queued Components . 14
BizTalk Server . 14
XML Web Services . 14
WCF . 14

Summary . 15

Aschenbrenner842-3.book Page vii Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

■CHAPTER 2 Introduction to Service Broker . 17

Conversations . 17
Dialogs . 17
Dialog Lifetime . 18
Conversation Groups . 19
Message Sequencing. 20
Reliable Delivery. 20
Error Handling . 21

Anatomy of a Service. 21
Message Types . 23
Contracts . 23
Queues . 24
Service Programs. 25
Routes . 25

Security . 25
Transport Security . 25
Dialog Security . 26

Message Processing . 27
Performance . 29
Benefits . 30
Summary . 30

■CHAPTER 3 Service Broker in Action . 31

Defining Service Broker Applications . 31
Message Types . 32
Contracts . 36
Queue . 39
Service . 41

Sending Messages . 45
Retrieving and Processing Messages . 51

Retrieving Messages . 53
Processing Messages . 55

Error Handling . 59
Error Handling in Service Programs. 59
Poison-Message Handling . 63
Ending Conversations with Errors . 66

Summary . 68

■CHAPTER 4 Service Broker Activation . 69

Activation Basics . 69
Startup Strategies . 70
When Is Activation Needed? . 71

Aschenbrenner842-3.book Page viii Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

Internal Activation . 72
Controlling Message Throughput. 79
Stored-Procedure Signing . 82
Calling a Stored Procedure in Another Database 90
Using a Single Stored Procedure to Process Many Queues 94

External Activation . 97
Parallel Activation . 112
Troubleshooting Activation . 117

When the Activated Stored Procedure Doesn’t Run 117
When Messages Remain on the Queue. 117

Summary . 118

■CHAPTER 5 Service Broker with Managed Code . 119

The Managed Assembly . 119
Architecture and Design of the Managed Assembly . 123
Building a Managed Service Broker Client . 129
Building a Managed Service Program. 133

Derive Your Service Class . 134
Implement an Entry Point. 134
Implement Message Type Handling . 136
Deploy the Assembly . 136
Register the Managed Stored Procedure . 138
Configure the Service Broker Activation . 139
Using the Service Program . 139

A Practical Example. 142
Summary . 150

■CHAPTER 6 Locking and Transaction Management . 151

Conversation Groups and Locks . 151
State Handling . 158
GET CONVERSATION GROUP . 159
The Receive Loop with State Handling . 160
State Handling with a Managed Stored Procedure 164
A Practical Example . 170
Compensation Logic with Service Broker . 198

Transaction Management . 204
Basic Receive Loop . 204
Measuring Performance. 205
Batched Commits. 208
Cursor-Based Processing . 210
Set-Based Processing . 213
Binary Payload . 216

Summary . 219

Aschenbrenner842-3.book Page ix Friday, May 4, 2007 3:35 PM

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

■CHAPTER 7 Distributed Service Broker Applications . 221

Communication . 221
Service Broker Protocols . 222
Sending a Message . 222

Routing. 224
Routing Algorithm . 225
Managing Routes . 226

Distributed Applications. 228
The Application . 228
Setting Up Routes . 229
Establishing a Communication Channel . 232
Setting Up Security . 236

Summary . 249

PART 2 ■ ■ ■ Advanced Service Broker
Programming

■CHAPTER 8 Advanced Distributed Service Broker Programming 253

Transport Security . 253
LOCAL Route . 254
TRANSPORT Route . 255

Dialog Security . 257
Service Broker Security Protocol . 257
Configuration . 259

Encryption . 268
Transport Encryption . 269
Dialog Encryption . 270
Recommendation . 271

Transport Protocol . 271
Setting Up Tracing . 271
The Captured Service Broker Message . 273
Replaying Service Broker Messages . 276

Replacing Certificates . 276
Transport Security . 276
Dialog Security . 277

Service Listing Manager . 277
Exporting a Service Listing . 279
Importing a Service Listing . 281

Summary . 284

Aschenbrenner842-3.book Page x Friday, May 4, 2007 3:35 PM

■C O N T E N T S xi

■CHAPTER 9 Service-Oriented Database Architecture 285

Service-Oriented Database Architecture. 285
SOA. 286
Reasons for SODA Architectures . 287
Requirements for a SODA Service Provider. 288

Data in SODA . 288
Outside Data. 289
Inside Data . 290

SODA Features in SQL Server 2005 . 292
XML Support. 292
Native Web Services . 295
SQLCLR . 307
Query Notifications. 316

Summary . 327

■CHAPTER 10 Real-World Application Scenarios . 329

Asynchronous Triggers . 329
Defining the Problem . 330
Implementing the Trigger . 331
Creating the Service Broker Infrastructure . 333
Writing the Service Program . 334

Batch Frameworks . 337
Creating the Service Broker Infrastructure . 338
The Implementation of the Batch Framework . 339
Extending the Batch Framework . 345

Publish-Subscribe Frameworks . 348
Defining the Infrastructure. 349
Applying Publisher Logic . 351
Publishing Information . 356

Priority-Based Message Processing . 358
Implementing Priority-Based Messaging. 358

Reliable Web Service Requests. 371
Service Broker Infrastructure. 372
Implementation of the Web Proxy . 376
Using the Web Proxy in a Smart Client . 388

Summary . 393

Aschenbrenner842-3.book Page xi Friday, May 4, 2007 3:35 PM

xii ■C O N T E N T S

■CHAPTER 11 High Availability and Scalability . 395

Database Mirroring . 395
Implementation Details . 396
Setting Up Database Mirroring. 397
Using Service Broker with Database Mirroring . 402

Load Balancing . 404
Service Deployment . 405
Initiator Configuration. 406

Message Forwarding . 408
Reliable Delivery. 408
Security . 408
Network Topology Abstraction. 409
Centralized Routing Instance . 410
Work Distribution . 410
Using Message Forwarding . 411
Monitoring Message Forwarding . 415

Configuration Notice Service . 416
Implementing Dynamic Routing. 417
Implementing the Configuration Notice Service 417

Summary . 422

■CHAPTER 12 Administration . 423

SQL Profiler . 423
Using SQL Profiler . 425

System Monitor . 428
SQL Server Management Objects . 432

Creating Service Broker Objects . 434
Retrieving Information . 435

Summary . 436

■INDEX . 437

Aschenbrenner842-3.book Page xii Friday, May 4, 2007 3:35 PM

xiii

Foreword

Prior to my tenure at Microsoft, I spent eight years building distributed applications for a large tele-
communications firm. These applications were distributed across a wide range of platforms and
written in a variety of languages, spanning Visual Basic to COBOL. There was no common object
model or even a common programming language that was shared across these applications and the
machines they ran upon. The applications were maintained by different administrators in unrelated
departments with disparate business requirements. In a few rare cases, applications that shared data
were not even running at the same time.

Faced with this reality, it quickly became clear that the raging debate between software vendors
over which object-remoting strategy was best (COM+ vs. CORBA) was, to say the least, irrelevant.
Without fail, these vendor offerings assumed a world wherein applications were built using an
object-oriented language (Java or C++) on either UNIX or Windows, and that both the client and
server were always “up” and ready to communicate.

Ironically, this dearth of vendor offerings empowered us to step back and question the status
quo. Was object remoting really the best way to build distributed applications? Did the software ven-
dors truly understand the nuances of building large-scale applications that spanned both trust and
geographic boundaries?

To find the answers to these questions, we studied the nature of existing large-scale systems
both within and outside of the world of computing: the postal system, the airline industry, and the
banking industry. Without fail, we found systems that were very loosely coupled. Specifically,

• Communication was always (and only) done by passing data in agreed-upon formats
(e.g., letters, checks).

• Communicating systems never stopped working as a result of one of their peers slowing down
or stopping (i.e., a person can buy groceries even when the bank is closed).

• Throughput was not a function of the distance between the systems (i.e., you can send the
same number of letters from Seattle per hour whether they are addressed to people also living
in Seattle or in a location as remote as Tokyo).

The same was true of our business applications. Almost everywhere we looked we found appli-
cations that needed a framework to enable sharing data in asynchronous, autonomous ways vs. the
synchronous, dependent model enabled by object remoting.

As a result of this research, we abandoned all object-remoting aspirations and began working
with state-of-the-art queuing technologies such as MQSeries and the like in earnest, as they seemed
the perfect fit for building loosely coupled applications. Unfortunately, our joy was short-lived as we
discovered that state-of-the-art queuing forced developers to choose between reliable messaging
that was slow and not-so-reliable messaging that was fast. In addition, the vast majority of our appli-
cations used a database in some fashion, and the close combination of queues with databases
quickly left us wishing that our queues came with all the amenities that we had come to love in our
database tables. Why couldn’t we query our queues? Why did the queuing system run under different
transactions? Why couldn’t we back up the queues and relational tables together? For that matter,
why didn’t database systems include all of this queuing stuff anyway?

Five years later it was 1999 and I found myself employed by Microsoft and sitting in Adam
Bosworth’s office with the rare opportunity to do something about all of this. I had just completed

Aschenbrenner842-3.book Page xiii Friday, May 4, 2007 3:35 PM

xiv ■F O R E W O R D

a 45-minute sales pitch to Adam (who was then one of the managers of SQL Server), asking him to
grant me three people for three months to prove that SQL Server and message queuing should
become one. Adam, having never laid eyes on me until that meeting, looked at me and asked, “Why
should I fund this? Tomorrow I leave for a one-month vacation, and until 45 minutes ago I’d never
heard of you.” I answered, “Because you’d be a d**n fool not to. That’s why. If I’m wrong, fire me. If
I’m right, we can change distributed applications forever. What are three people for three months to
you anyway?” Apparently this reply resonated with Adam, as he not only funded the effort, but also
helped sell it to the rest of the team.

Six years and many all-nighters later, we shipped SQL Service Broker in SQL Server 2005. Our
original goals were simple:

• Make it fast. “If you can’t deliver 1,000 messages/second, exactly once, and in order, then
don’t even ship it.”

• Integrate deeply with SQL Server. Queues should be backed up, failed over, and queryable just
like relational tables.

• Simplify the programming model. Message queuing is too hard. Make it simpler.

In short, we met these goals and more. Whether your needs are just kicking off something
to run in the background or processing more than 10,000 messages per second on a 16-CPU
machine, SQL Service Broker may add value to your applications. (Yes, it really is that fast. Eat your
heart out, MQSeries . . .).

SQL Service Broker is already being used in a variety of applications. Some people use it in local-
ized ways—for example, to send messages for stored procedures to process later so that their web
application can respond more quickly to browser-based clients. Others use it to speed up writing
audit/log messages from within their applications. Still others use it to load data warehouses. Finally,
there are those who build modern, Service-Oriented Applications (SOA) that span thousands of
branch offices and their back-end data centers.

No vision of this size comes to pass without many individuals playing their part. Phase 1 was the
work the Service Broker team did to build the product. Phase 2 consisted of the early adopters who
had the insight not only to see the potential in the technology, but to help others see it as well. The
book you now hold is the result of a lot of hard work from such an individual. You are about to
become the lucky recipient of Klaus’s insight, hard work, and interaction with the SQL Service Broker
development team. Klaus is not only a visionary, but also an all-around nice guy. It has been our
pleasure to have him sit with us at lunch and co-present with us as at various conferences. He has
become one of us, a partner in the vision that is Service Broker.

Now all that is left is for you, the reader, to take the next step and actually build applications.
Good luck!

Gerald Hinson (geraldh@microsoft.com)
Founder/Development Manager of SQL Service Broker

Aschenbrenner842-3.book Page xiv Friday, May 4, 2007 3:35 PM

mailto:geraldh@microsoft.com

xv

About the Author

■KLAUS ASCHENBRENNER works as a software architect for ANECON (a
Microsoft Gold Certified Partner for Data Management and ISV/Software
Solutions) in Vienna, Austria. Klaus has worked with the .NET Framework
and especially with SQL Server 2005 from the very beginning. In 2004 and
2005, Klaus was honored with Microsoft Most Valuable Professional (MVP)
awards for his tremendous support of the .NET community. He currently
travels around the world teaching clients the core concepts of SQL Server
2005. He also works very closely with Microsoft to drive the next version of
SQL Server, code-named Katmai.

Aschenbrenner842-3.book Page xv Friday, May 4, 2007 3:35 PM

Aschenbrenner842-3.book Page xvi Friday, May 4, 2007 3:35 PM

xvii

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (http://www.brainforce.com) in its Italian branch (http://
www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified
Application Developer for .NET, and a Microsoft Certified Professional, as well as a prolific author
and technical reviewer. Over the past ten years, he has written articles for Italian and international
magazines and coauthored more than ten books on a variety of computer topics.

Aschenbrenner842-3.book Page xvii Friday, May 4, 2007 3:35 PM

http://www.brainforce.com
http://www.brainforce.it
http://www.brainforce.it

Aschenbrenner842-3.book Page xviii Friday, May 4, 2007 3:35 PM

xix

Acknowledgments

It’s 8:30 p.m., and I’m sitting here in a train between Vienna and Linz writing this introduction.
Interestingly, my experience and success with SQL Server 2005 and especially with Service Broker
also started in a train traveling between Vienna and Linz in the year 2002. That year, I bought a very
interesting book about the next version of SQL Server code-named Yukon. It was called A First Look
at SQL Server 2005 for Developers, and it was written by three well-known SQL Server experts: Bob
Beauchemin, Niels Berglund, and Dan Sullivan. It was amazing for me to read about the completely
new concepts in Yukon, such as the integration of the .NET Framework (SQLCLR) and the XML data
type. The book also contained a chapter entitled “Service Broker,” which I didn’t really address at the
time. Several months later I read this chapter completely, and then understood the basic concepts
behind Service Broker.

When I realized what scenarios one could use Service Broker for, I started thinking faster and
faster. I realized that Service Broker and all the other new technologies in Yukon were an important
milestone in the history of SQL Server. In the years from 2002 to 2006, I worked a lot with SQL Server
2005. I was also one of those crazy people who tried out every new Community Technology Preview
(CTP) of Yukon, and I moved my first SQL Server 2005 project into production based on a beta ver-
sion of SQL Server 2005.

I also consulted for several clients around Europe on SQL Server 2005 and made many new con-
tacts in the SQL Server community through the talks I gave at various developer conferences around
the world. But in August 2006, my life put me in another direction. I got an email from an acquisition
editor at Apress, Jim Huddleston, who asked me if I would write a book about Service Broker.

And yes, I took this chance and worked out the original table of contents during the whole next
weekend (sorry about this, Karin). After I returned my proposal back to Jim, he was so crazy about the
content that he just said I should start writing immediately. The only thing I needed was a technical
reviewer, so I thought back to the guys who wrote A First Look at SQL Server 2005 for Developers and
asked Bob Beauchemin if he would become my technical reviewer. He accepted within a few hours,
and my writing started immediately. This was the early beginnings in August 2006 of my book about
Service Broker.

Since August 2006, a lot of time has passed, and some good and bad things have occurred. I want
to mention and thank the people around the whole world who helped me with their passion to put
together this book on Service Broker. First of all, I want to thank my acquisition editor, Jim Huddleston,
for his support and input on this great project. With very great sadness, I found out that Jim passed
away on a Sunday in February 2007 from a heart attack. This was totally unexpected, because Jim was
a healthy man. Unfortunately, I can’t say this to you personally, Jim, but thanks for all your support and
your power that you incorporated into this book, and I enjoyed meeting with you in Seattle.

As I’ve stated, Bob Beauchemin acted as my technical reviewer in the beginning, but unfortu-
nately, Bob had to leave this role due to some time constraints. But Bob, I want to thank you for your
great support, your comments, and your improvements on the first few chapters. I had a great time
working with you. After Bob left as a technical reviewer, Apress was able to provide me with another
technical reviewer within a few days: Fabio Claudio Ferracchiati. Fabio, thanks for your detailed and
great technical reviews of each chapter. I know I’ve made your life very hard throughout these days,
but we finally produced the greatest book about Service Broker. Thanks for your help on this!

During the writing, I also got great support from Microsoft in dealing with all my nasty and
detailed questions about Service Broker. I especially want to mention Remus Rusanu, who answered
each of my questions within a few hours. Remus also provided me with some samples for Chapter 6

Aschenbrenner842-3.book Page xix Friday, May 4, 2007 3:35 PM

xx ■A C K N O W L E D G M E N T S

and Chapter 11. Remus, thanks for your support and also for the in-depth flip-chart session during
the 2006 PASS Community Summit in Seattle—I enjoyed your drawings and the direct view of Bill
Gates’ office. Furthermore, I also want to mention Gerald Hinson (who wrote the foreword), Rushi
Desai, and Rick Negrin from the Service Broker team, who also provided me with additional informa-
tion about Service Broker and who helped introduce me to some other smart people at Microsoft.

When I talk about the Service Broker team at Microsoft, there is also one person I must mention
here: Roger Wolter. Roger is the lead architect on Service Broker who architected and designed all the
things you’ll learn throughout this book. Furthermore, Roger has also written the first book in the
world about Service Broker: The Rational Guide to SQL Server 2005 Service Broker. Roger, thanks for
this great introductory book on Service Broker—it helped me a lot in the beginning.

A great book can’t be made without a publisher. The team at Apress helped me a lot to put
everything together to write the best available book on Service Broker. First of all, there is my project
manager, Kylie Johnston. Kylie, I hope we’ll soon meet face to face, but it was just the greatest time
working with you. Thanks for your help, for your directions on the book, and for your easy-going
project plan. A big thank you also goes to Nicole Abramowitz for her help on the copy edits, and to
Laura Esterman who acted as my production editor. Thanks for all your help, and I’ve enjoyed the
time with both of you.

A big thank you also goes to my colleagues at ANECON for their support and their tremendous
help during the last nine months. I want to thank them for their understanding those mornings when
I came in either with just a few hours of sleep or directly from my writings and was often a little bit
stressed.

Last but not least, I have to thank my family. A big thank you goes to my parents, Herbert and
Dagmar. For the last 13 years, you’ve been the driving factor behind my passion of computers,
computers, and computers. You supported me in every direction to move my career forward to the
point where I’m standing now. Thanks for everything!

Finally, there’s Karin, my girlfriend and the most important person in my life. Karin, I’m very,
very amazed at how easy it was for you during the last nine months while I’ve been writing the book.
There were so many evenings, weekends, and even weeks when I had no time, because Kylie (with
her time-consuming project plan) drove my life. But you handled those days so easily, which gave
me the power to concentrate on the book. Thanks for your love, your support, your passion, and your
easy understanding of the endless nights. Thanks for everything and especially for your love. I’ll ded-
icate this book to you. I will always love you.

Aschenbrenner842-3.book Page xx Friday, May 4, 2007 3:35 PM

xxi

Introduction

SQL Server 2005 Service Broker is an asynchronous messaging framework directly built into SQL
Server 2005. In this book I show how you can use the power of Service Broker to program asynchro-
nous, message-based, distributed, secure, and scalable database applications.

Who This Book Is For
This book is for database developers and application developers who want to learn about Service
Broker and programming message-based applications with SQL Server 2005.

How This Book Is Structured
The book is divided into two parts:

Part 1: The Service Broker Programming Model: The first part of this book introduces you to the
general concepts and programming APIs of Service Broker. After reading through this part,
you’ll be able to implement asynchronous, distributed, reliable, and secure Service Broker
applications.

Part 2: Advanced Service Broker Programming: The second part of the book shows you the more
advanced Service Broker features, including the internals of Service Broker and how to scale out
Service Broker applications to any required size. I also talk to you about Service-Oriented Data-
base Architecture (SODA), where Service Broker acts as one of the key pillars.

The first part of the book is composed of the following chapters:

Chapter 1: Fundamentals of Message-Based Processing: This chapter introduces you to the core
concepts of message-based programming, as well as to some of the fundamental issues you’ll
encounter in this programming approach. Once you understand the theory, you’ll examine how
to work through issues with Service Broker in the next chapter.

Chapter 2: Introduction to Service Broker: This chapter introduces Service Broker from an architec-
tural point of view and explains how Service Broker solves the problems discussed in Chapter 1.

Chapter 3: Service Broker in Action: This chapter teaches you how to program your first message-
based application with Service Broker.

Chapter 4: Service Broker Activation: Now that you know the fundamentals of Service Broker,
this chapter introduces you to the activation feature of Service Broker, which allows you to pro-
cess incoming Service Broker messages automatically.

Chapter 5: Service Broker with Managed Code: This chapter shows how you can use the advan-
tages of the SQLCLR to implement Service Broker applications directly with managed code.

Aschenbrenner842-3.book Page xxi Friday, May 4, 2007 3:35 PM

xxii ■I N T R O D U C T I O N

Chapter 6: Locking and Transaction Management: As soon as you want to implement asynchro-
nous, scalable, message-based applications, you must take care of locking strategies. This
chapter introduces the Service Broker locking functionalities and also shows you how to write
highly efficient Service Broker applications through different transaction-management
strategies.

Chapter 7: Distributed Service Broker Applications: This chapter, which closes the first part of
this book, teaches you how to distribute Service Broker applications to physically different
machines.

The second part of the book is composed of the following chapters:

Chapter 8: Advanced Distributed Service Broker Programming: This chapter goes into the more
technical details of distributed Service Broker applications and shows which options are avail-
able for your applications.

Chapter 9: Service-Oriented Database Architecture: Service-Oriented Database Architecture
(SODA) is a new concept propagated by Microsoft where the database server—in this case, SQL
Server 2005—acts as a full-blown application server. SODA consists of several pillars, and, as
you’ll see, Service Broker is one of those key pillars.

Chapter 10: Real-World Application Scenarios: This chapter details different real-world applica-
tion scenarios where Service Broker can offer huge benefits and lead to better scalability.

Chapter 11: High Availability and Scalability: SQL Server 2005 is all about high availability and
scalability. One of the best things about Service Broker is that you can use SQL Server’s high-
availability and scalability features directly for your Service Broker applications without any
effort. This chapter shows you how to use these features.

Chapter 12: Administration: This final chapter teaches you how you can administer your Service
Broker applications and which features are provided by Service Broker in this area.

Prerequisites
You will need SQL Server 2005 Standard Edition/Developer Edition and Visual Studio 2005 Standard
Edition.

Downloading the Code
The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section of this book’s home page. Please feel free to visit the Apress website and download
all the code there. You can also check for errata and find related titles from Apress.

Contacting the Author
You can reach Klaus at his website, http://www.csharp.at, and via his weblog, http://
www.csharp.at/blog. You can send further questions to Klaus.Aschenbrenner@csharp.at.

Aschenbrenner842-3.book Page xxii Friday, May 4, 2007 3:35 PM

http://www.apress.com
http://www.csharp.at
http://www.csharp.at/blog
http://www.csharp.at/blog
mailto:Aschenbrenner@csharp.at

■ ■ ■

P A R T 1

The Service Broker
Programming Model

8423ch01.fm Page 1 Sunday, April 1, 2007 9:01 PM

8423ch01.fm Page 2 Sunday, April 1, 2007 9:01 PM

3

■ ■ ■

C H A P T E R 1

Fundamentals of Message-Based
Processing

Love is the message and the message is love.

This lyric from Arthur Baker’s song “The Message is Love” has been with me over the past few years,
as I’ve worked and consulted with many clients around the world on .NET and SQL Server. Many of
my clients have implemented large projects that incorporate message technologies in various forms,
including Microsoft Message Queuing (MSMQ), XML web services, Microsoft BizTalk Server, and, of
course, Microsoft SQL Server 2005 Service Broker. But what does Arthur Baker’s song have to do with
IT technology and even with technologies that provide frameworks for message-based applications?
The answer is easy: the core concept behind message systems is a message, so the message is the
central point and the most important part of such a system.

In this first chapter, I’ll introduce you to message-based processing, show you why messaging is
suitable for scalable solutions, and discuss what problems can occur in distributed messaging archi-
tectures. Furthermore, I’ll also show how Service Broker solves the messaging problems described
throughout this chapter. I’ll answer the following questions:

• Why do you need messaging in your application? You’ve probably written successful synchro-
nous applications, so why do you need asynchronous messaging? I’ll explain the advantages
and benefits of this dramatic change in your software architectures.

• What problems can a messaging infrastructure solve? When you use a new technology, such
as Service Broker, you might not see the underlying issues that it solves. Infrastructure ser-
vices for message-based programming offer many different options that encapsulate and
solve problems behind the scenes.

• How do you achieve effective message processing? You can take several approaches, each of
which has its own advantages and disadvantages.

• Which application architectures are suitable for message-based software systems? With
message-based architectures, you aren’t restricted to only client/server or three-tier
architectures; more options are available to you.

• Why use Service Broker as your messaging technology when so many alternatives are available
on the Windows platform? For example, you have your choice between MSMQ, COM+
Queued Components, BizTalk Server, XML web services, and .NET Framework 3.0’s Windows
Communication Foundation (WCF).

As you can see, you can’t just say to yourself or to your project manager, “Hey, there’s Service
Broker. Let’s use it in our next project.” So let’s have a look at your options and start to answer the
fundamental question of why software architectures need messaging.

8423ch01.fm Page 3 Sunday, April 1, 2007 9:01 PM

4 C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G

Message Concepts
Message-based programming allows you to implement more flexible and scalable software archi-
tectures that other programming paradigms, such as classic client/server applications, cannot
provide. If you want to implement scalable applications that are able to handle thousands of concur-
rent users, you must take a message-based approach. Otherwise, you’ll struggle with performance
issues and massive scalability problems. But before diving into the details, let’s have a look at the
central point of a messaging application—the message itself.

Message Anatomy
When you take a look at a message from a 1,000-foot level, you’ll see that it’s composed of three parts:

• Envelope

• Header

• Body

The message envelope is the wrapping in which the message header and the message body are
transferred. The message header contains routing information, such as existing intermediaries on
the route, the final destination, the sender, the priority, and so on. One important thing you should
know is that the header is normally extensible—just think of a user-defined Simple Object Access
Protocol (SOAP) header in a web services scenario. The body of the message stores the payload,
which is transferred from the sender to the receiver. The body can be in any format, such as binary
data, XML data, or even textual data (like in an email message). Figure 1-1 illustrates the structure of
a message.

Figure 1-1. The structure of a message

8423ch01.fm Page 4 Sunday, April 1, 2007 9:01 PM

C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G 5

However, messages aren’t used only in software systems. Messages are used all day long
throughout daily life. The messages in your life provide you the flexibility to do several things in
parallel and asynchronously. You can map these concepts directly into message-based software
solutions.

Messaging in Daily Life
Before I cover messaging from a technical perspective, let’s first discuss the various ways we all use
messaging in daily life:

• Sending and receiving traditional mail

• Sending email

• Calling someone on the phone

When you send a letter, you perform an asynchronous process using a message. Such a mes-
sage always contains three elements: an envelope, a header, and a body. Figure 1-1 illustrates this
concept. The header contains some routing information (the address where the letter must be sent,
or the target) and some information about the sender (the address of the initiator). The header also
contains a stamp with the appropriate value. Using this information, the post office can route your
letter to its final destination through some intermediaries. Intermediaries could be other post offices
along the route to the receiver. For example, when I order books from an online store, the books are
routed to a distribution center in Vienna. The local post office then takes the parcel and delivers it
directly to my house. The distribution center is a kind of intermediary.

Let’s concentrate now on the payload of such a message. The sender defines the payload
(body). For example, you can write a handwritten letter, you can type it, and you can also enclose
some pictures from your last trip to Seattle. The payload can also be defined through a formalized
agreement. When the payload is in XML format, then the agreement can be an XML schema.

Sending an email is similar to sending a letter. An email message is transferred with the
Simple Mail Transfer Protocol (SMTP). This protocol defines what goes into the header, and the
sender defines the contents of the payload. Just as with a letter, you can write some text, embed
some graphics, and even attach some documents. All this information is serialized into the pay-
load, and the message is transferred through the SMTP protocol to the receiver’s email address.

Calling someone on the phone entails another type of messaging. The header of this message
contains the phone number that you dial, and the payload is the spoken words you deliver through
the phone line. In the same manner as you can send an email when the receiver is currently not
available, you can also leave a voice-mail message. So, a phone call also works when the receiver is
“offline.”

When you compare a phone call to an email, you’ll find some differences. First, a phone call
is not always reliable. You can’t assume that the receiver understands your words exactly, because
the transmission can sometimes be distorted. Second, the phone connection may be cut off when
you’re talking to someone. In such cases, a phone call is like the User Datagram Protocol (UDP),
because message delivery isn’t guaranteed in either case.

Why Messaging?
When you want to use a new technology in a project, you must be able to argue its merits. Nobody
can just go to a project leader and insist that messaging technology be used simply because it’s avail-
able. Let’s see how messaging solutions can have a positive impact on your application architecture.

8423ch01.fm Page 5 Sunday, April 1, 2007 9:01 PM

36f4dc347211ca9dae05341150039392

6 C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G

Asynchronous Message Processing
Asynchronous message processing means that the sender can continue working while waiting for
the receiver to process and eventually reply to the message. Asynchronous message processing is
useful when long-duration business processes should be decoupled from a client application. The
client application only captures the necessary input from the user, transforms the input into a mes-
sage, and sends it to the destination, which does the real work asynchronously. The benefits of this
design are that client applications are more responsive and users can immediately do other things
within the application. This design may include several destinations to achieve a load-balancing
scenario, so that the workload can be distributed and messages can be processed in parallel.

Sending a letter is a form of asynchronous message processing, because you don’t have to
wait at the post office until your letter arrives at its final destination. Likewise with email: you just
click the Send button, and the email is transferred. In the meantime, you can continue with your
other work.

When you implement message-based solutions, you work with an asynchronous processing
paradigm. When you send a message, the message is sent asynchronously to the receiver, where it
may be processed accordingly. I say “may be” because asynchronous messaging does not define
when the message is processed (the next section talks more about deferred message processing).
One of the benefits of this asynchronous approach is that users can continue with their work while
a message is being processed on an application server. This leads to more scalable applications,
because clients only have to put messages into a queue. Most other things are done at some later
time without further user interaction.

Deferred Message Processing
There’s an important difference between asynchronous and deferred message processing: asyn-
chronous message processing defines that the work is done later, and deferred message processing
defines when the work is actually done on the application server. The message can be processed
immediately, in a few hours, or in a few days—it depends on the message system configuration.
Deferred message processing in an asynchronous scenario has the following advantages:

• The receiver controls when messages are processed.

• Load balancing occurs between several servers and during peak times.

• Fault tolerance exists on the receiving side.

Let’s assume you run a messaging system based on Service Broker in a company where a high
message load occurs during normal work hours. With deferred message processing, you can configure
Service Broker so that messages are only put into the queue during the day and are processed overnight
when more resources are available. This means that user requests can be processed more quickly, and
applications are more responsive under high loads. This is similar to doing automatic database backups
at night—another case where demand is less, and more resources are available at night.

With load balancing, you can define on which server a message should be processed. This is
useful when you have a high load of messages that must be processed quickly. You can deploy sev-
eral instances of a Service Broker service and have clients connect to one of them. If you must take
an instance offline, perhaps to perform some maintenance work on the server, your messaging sys-
tem will continue to work without any problems or changes in configuration, because new requests
from clients will be distributed among the other available Service Broker instances.

8423ch01.fm Page 6 Sunday, April 1, 2007 9:01 PM

C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G 7

Fault Tolerance
Messaging technologies can also help you provide fault-tolerant systems. You can achieve fault tol-
erance through the following ways in a message-based system:

• Reliable messaging

• Load balancing

• Dynamic rerouting

Reliable messaging means that the sender can ensure that a message will arrive at the target. This
reliability is completely independent of whether the target is currently available. If the target is offline,
then the messaging infrastructure on the client will try to resend the message to the target as long as
the target is offline or otherwise not reachable through the network. This approach has several advan-
tages: maintenance work can be done more easily, sent messages cannot be lost, offline scenarios are
supported, and so on.

A big benefit of reliable messaging is that the target can send a response message back to the
sender in a reliable fashion. So, reliable messaging works in both directions on a communication
channel. Therefore, reliable messaging is also an important consideration when you design and
implement smart client solutions. One characteristic of a smart client is that the application still
functions in offline scenarios. Microsoft Office Outlook, for example, is an intelligent smart client
because it allows you to work through your emails and even compose replies when you’re on the
road and not connected to the Internet. When you get back to your office, Outlook synchronizes
its local data store with an Exchange Server in the background and sends all unsent emails to their
receivers.

You can provide the same flexibility in your own smart client applications when you use a
message-based approach. When users want to do some work offline, you can store their requests
as messages locally on their notebooks and send the messages to the application server as soon as
the notebook goes online and an Internet/intranet connection is established. Reliable messaging
makes this possible without any programming.

Load balancing offers the same benefit for fault-tolerant systems that it does for deferred
message processing. By distributing message processing power between several servers, you can
implement a scale-out scenario (scaling horizontally) for your messaging system. As you’ll see in
forthcoming chapters, you can do this easily with Service Broker.

Dynamic rerouting means that you can reconfigure a Service Broker service during the process-
ing without making any changes on the client and without any further interruption. As soon as the
endpoint of a Service Broker service is reconfigured and points to a new address, the clients send
messages transparently to the new location, without any intervention from an administrator. This
could be helpful when you need to take a service offline during maintenance work.

Distributed Systems
If you must implement or support a distributed topology for your application, then a message-based
approach can help you achieve the necessary functionality. Architectures are referred to as distrib-
uted when software components are running on different servers on the network. For example, you
can implement an application server where business logic executes in a central location. This pro-
vides you the advantages of asynchronous and deferred message processing, and these
architectures are also very scalable.

8423ch01.fm Page 7 Sunday, April 1, 2007 9:01 PM

www.allitebooks.com

http://www.allitebooks.org

8 C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G

Some messaging technologies support scale-out scenarios without any change in the imple-
mentation of the message-based services. Service Broker supports this through a concept called
routes. A route defines the endpoint on the network where a service is hosted. You’ll find more infor-
mation about routes in Chapter 7.

When you distribute software components across process boundaries, you must also give care-
ful thought to the following questions about security:

• How are clients authenticated and authorized when they call services?

• How are messages transferred between the sender and the receiver? Is encryption
necessary?

• Should you use symmetric or asymmetric encryption?

• How do you react to threats from the outside world?

As you can see, there are many aspects to consider when implementing distributed message-
based scenarios. In Chapters 7 and 8, you’ll get an in-depth look at how to set up distributed scenarios
with Service Broker and how you can secure communication between sender and receiver.

Messaging Problems
You’ve seen why a messaging technology such as Service Broker makes sense for some scenarios.
However, using a messaging technology just because it’s available isn’t necessarily a good idea. In
fact, it can have an enormous negative impact on your application architecture. You must decide
carefully if a messaging architecture provides benefits for your required scenarios. If you do decide
you want to use messaging technology and you don’t want the problems of message systems, Ser-
vice Broker can help because it already includes functionality that solves the messaging problems
described in this section. Let’s take a detailed look at which messaging problems Service Broker tries
to solve.

Performance
Performance is always an issue. When you ask developers what problems they have with their data-
bases and applications, they’ll almost always mention performance. Therefore, one of Microsoft’s
goals with Service Broker was to have it offer better performance than any other messaging technol-
ogy can currently provide. For example, if you compare Service Broker to MSMQ, you’ll see that the
biggest difference is in the transaction handling. With Service Broker, you don’t need distributed
transactions.

Service Broker solves the transaction-handling problem completely differently. In the Service
Broker world, queues, like tables, are native database objects, so distributed transactions are not
needed when a message is processed and finally removed from the queue. Service Broker can handle
all the different tasks in the context of a local SQL Server transaction—and this provides enormous
performance benefits over MSMQ and other message systems. You can find out more about this
topic in Chapter 6, which discusses transaction management in Service Broker.

8423ch01.fm Page 8 Sunday, April 1, 2007 9:01 PM

C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G 9

Queue Reader Management
In every message system, a message is retrieved from a queue. This process is called queue reader
management. There are two possible options: you can have several queues, where incoming mes-
sages are distributed among the queues, or you can have one queue that receives all the messages.
Let’s look at both solutions.

Several queues might seem at first to be the better option, because multiple components listening
on the different queues can process the messages. You can compare this approach to a supermarket,
where you must wait in one of several check-out lines (queues) to get to a cashier.

But what happens when a new line opens? Many move to the new line, and, of course, they all
want to be the first there. It can become even more complicated. What if you’re the second person
in the newly opened line? It often seems like the person in front of you takes too much time, and it
would have been better for you to have stayed in your original line. As you can see, more than one
queue isn’t always the best option, for supermarkets or for message systems.

■Note The rebalancing of queues always has a cost, and that cost can negatively affect performance.

But can things work efficiently with just one queue? Think of the check-in process at an airport.
Here you have one queue with several check-in stations. When a new station opens, does this lead to
the same problem as with the supermarket check-outs? No, because the people in line are always
distributed among the current available stations without being able to make the choice on their
own. So no rebalancing is necessary among queues.

The second approach is the one that Service Broker takes. In Service Broker, there is only one
queue, but you can configure the number of queue readers listening on the queue to process incoming
messages. In fact, you have multiple concurrent queue readers processing the incoming messages. In
a message system, this is a lot more efficient than multiple queues.

TRANSACTION HANDLING IN MSMQ

With MSMQ, your data-processing logic is typically implemented in a database. The problem is that MSMQ mes-
sages are stored in the file system, but the data-processing logic is in a database. Because of this separation, you
must coordinate two different resources during message processing.

You can’t remove a message from an MSMQ queue when a database transaction fails, and you can’t commit
a database transaction when you can’t remove a message from the queue. In both cases, you get inconsistent data
between the MSMQ queue and the database.

In MSMQ, you use a distributed transaction when you must coordinate more than one resource in the context
of a transaction. However, distributed transactions are relatively expensive in terms of execution time because of the
coordination overhead. This can be a major problem in itself, so you must always carefully decide if you can afford
this extra overhead.

8423ch01.fm Page 9 Sunday, April 1, 2007 9:01 PM

10 C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G

Transaction Management
An effective message system must also support transaction management. Transaction management
defines how several instances of queue readers are coordinated against one queue. To make this
clearer, let’s assume a scenario where an order-entry application sends order request messages to a
queue. Two kinds of request messages are involved:

• A message with the order header

• Several messages with the order line items

As soon as the first message arrives at the queue, a queue reader is instantiated, which takes the
new order header message from the queue and processes it. The queue reader inserts a new row in
an order table and commits the transaction. Then, a reader processes the line-item messages and
also inserts new rows in the database. Everything seems OK, but what happens when an administra-
tor configures more than one queue reader to listen for new messages? In this case, the order header
and the line-item messages can be processed in parallel, with the possibility that an attempt could
be made to insert a line item before the order header. This will raise an exception, because it violates
referential integrity between an order header and its line items.

One possible way around this is to process messages in the correct order. Service Broker
solves this problem through a feature called conversation group locking. Conversation group lock-
ing groups related messages for reading by multiple readers to prevent data integrity problems
caused by processing related messages simultaneously on different threads. During the design of
your Service Broker application, you must make sure that related messages are placed into the
same conversation group.

When you use conversation group locking, Service Broker ensures that the same queue reader
processes messages from the same conversation group, eliminating the need to explicitly syn-
chronize message processing among several threads. Chapter 6 takes a more in-depth look at
transactions, locking, and conversation groups.

■Note Conversation groups are similar to a dialog, where several messages are exchanged between the sender
and the receiver.

Message Sequencing and Correlation
Another issue in message systems is correctly sequencing and maintaining the right correlation
among messages. Sequencing means that messages arrive in the same order as they’re sent, as
Figure 1-2 illustrates.

Figure 1-2. Message sequencing

8423ch01.fm Page 10 Sunday, April 1, 2007 9:01 PM

C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G 11

Sequencing is always important when a receiver gets several messages, each of which depends
on a previous message. In the order-header example, the message with the order header needs to be
processed before the messages with line items. Therefore, you can again ensure the referential integ-
rity of your data in the database. To preserve order, Service Broker includes a sequence number in
every message it sends and forces the receiving application to accept the messages in the same order
as they were sent. Some other messaging systems (such as MSMQ) allow messages to be received in
any order, but Service Broker enforces the strict sequencing of messages. Service Broker doesn’t
include built-in support for priority message ordering, but Chapter 10 shows you how you can over-
come this problem.

Message correlation is another problem. When a client sends several messages to a central ser-
vice queue, the queue readers process the messages and send back response messages. But how can
the client decide which response is for which request? Service Broker solves this problem easily,
because each message is associated with a conversation ID. This unique identifier identifies the
communication channel between the sender and the receiver in a unique fashion. The client appli-
cation can then associate each response with the correct request.

Maintenance
Maintenance is an important issue for all applications, including message applications, and
Microsoft addressed this issue when designing Service Broker. Compared to MSMQ, Service
Broker is much easier to administer and maintain because its queues are native database objects.
When you back up the database, you also back up both the data created by the messages and the
queues holding messages that are not yet processed. This is possible because all Service Broker
objects, like queues, are tied to a database.

In MSMQ, messages are always stored in the file system. When you do backups, the database
and the messages in the file system can be out of sync (see the “Maintenance in MSMQ” sidebar).
Another big advantage of Service Broker is that administration and maintenance are done with
tools that database administrators already know. The best and only tool they need is SQL Server
Management Studio, but they can use sqlcmd if they prefer to. You don’t have to introduce a new
management tool for your messaging solution.

MAINTENANCE IN MSMQ

With MSMQ, messages are stored in the file system, and data is stored in a database such as SQL Server. You must
back up both the messages in the file system and the data in SQL Server. Your backups can easily get out of sync,
because while you update one resource, changes may be made to the other resource.

The only solution to this problem is to take your messaging solution offline, make the backup, and then put it
back online. However, this doesn’t work with a 24/7 system. With Service Broker, synchronizing backups is not a
problem, because both messages and data are stored in the same database. You can do one backup, on the whole
database, and that’s it.

8423ch01.fm Page 11 Sunday, April 1, 2007 9:01 PM

12 C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G

Messaging Architectures
Implementing messaging solutions also leads to new application architectures that you can’t
achieve with traditional approaches such as client/server or three-tier architectures. Let’s have
a look at two other possible types of architecture for message-based software systems: Service-
Oriented Architecture (SOA) and Service-Oriented Database Architecture (SODA).

SOA
SOA is a collection of several architectural patterns with the goal of combining heterogeneous appli-
cation silos (such as mainframe applications). A quick search on Google may lead you to believe that
SOA is only possible with XML web services, but that’s not true. You can use SOA with other technol-
ogies, such as Service Broker. SOA defines the following four core principles:

• Explicit service boundaries

• Autonomous services

• Explicit data contracts

• Interoperability

As you’ll see throughout this book, you can satisfy these principles better and with more reli-
ability with Service Broker. Explicit service boundaries mean that an SOA service must define a
service contract that exposes the operations available to other client applications. This is important
when a client uses discovery technologies to find an appropriate service on a network.

An autonomous service is one that a client can use to process a complete business request.
Email, for example, is an autonomous service, because a user request can be completed with one
service interaction. If you want to send an email with an attachment, you can do it in one step
instead of two separate steps. The big challenge when you design your services is to find the right
granularity and make them as autonomous as possible.

In SOA, the contract defines the contents of the messages sent in both directions. In the context
of Service Broker, you can define the structure of the message body. You have no control over the
structure of message headers. XML messages support interoperability, because any computer sys-
tem can exchange and process them.

SQL Server 2005 allows you to expose Service Broker services to other clients through open
standards, such as XML web services. This makes it possible for clients on other platforms, such
as Java, to interact with your Service Broker services. You can adhere to all four SOA principles with
Service Broker, making it an ideal platform for implementing SOA.

SODA
SQL Server 2005 offers a number of new features, including the following:

• Integration into .NET (SQLCLR)

• Query notifications

• Service Broker

• XML support

• Web services support

8423ch01.fm Page 12 Sunday, April 1, 2007 9:01 PM

C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G 13

Many customers often ask why these features are now integrated directly into the database.
There are several good reasons for each feature that I won’t go into right now because that’s not
my purpose. My point is that you can only achieve real benefits from these features when you use
them in conjunction. The correct use of these features leads to SODA, the concepts of which are
explained in a white paper by David Campbell called “Service Oriented Database Architecture:
App Server-Lite?”1

In SODA, you implement business functionality as SQLCLR stored procedures in the database,
and you use Service Broker as a reliable message bus to make your components available to other
clients. To publish services, you use native web services support in combination with the new XML
features of SQL Server 2005. When you look at this new architecture, you can see that SQL Server
2005 is an important application server in such scenarios. Chapter 9 discusses implementing SODA
applications with Service Broker.

Available Messaging Technologies
Service Broker is not the one and only messaging technology available for the Windows platform.
You can use several technologies to implement a message-based system, but Service Broker offers
some advantages over all the other messaging technologies described in this section. For example,
one important aspect of Service Broker is its distributed programming paradigm. When you develop
a Service Broker application dedicated for one SQL Server and you later decide to spread the Service
Broker application out to several physical SQL Servers (maybe because of scalability problems), then
you just have to configure your application to support a distributed scenario. You don’t have to
change the internal implementation details of your Service Broker application.

Likewise, with load balancing, if you see in a later phase of your project that you must support
load balancing because of several thousands of concurrent users, then you just have to deploy
your Service Broker application to an additional SQL Server and make some configuration changes.
Service Broker will handle the load-balancing mechanism for you in the background. Chapter 11
talks more about these scenarios.

Despite these advantages of Service Broker, let’s now take a look at one of the most important
and familiar messaging technologies available today.

MSMQ
MSMQ has been available as part of Windows since the first version of Windows NT. MSMQ was the
first messaging technology from Microsoft used to provide messaging capabilities for a wide range
of business applications. One of the biggest advantages of MSMQ is that it is licensed and distributed
with Windows, so you don’t have any additional licensing costs when you use it in your own appli-
cations. In addition, it’s not bound to any specific database product. If you want to use Oracle with

1. David Campbell, “Service Oriented Database Architecture: App Server-Lite?” Microsoft Research (September
2005), http://research.microsoft.com/research/pubs/view.aspx?tr_id=983.

8423ch01.fm Page 13 Sunday, April 1, 2007 9:01 PM

http://research.microsoft.com/research/pubs/view.aspx?tr_id=983

14 C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G

MSMQ, you can do it without any problems. However, as with every product and technology, there
are also some drawbacks, including the following:

• Message size is limited to 4 MB.

• MSMQ is not installed by default. Furthermore, you need the Windows installation disk to
install MSMQ.

• You need distributed transactions if you want to run the message processing and data-
processing logic in one Atomic, Consistent, Isolated, and Durable (ACID) transaction.
This requires installation of the Microsoft Distributed Transaction Coordinator (MS DTC).

• Message ordering is not guaranteed.

• Message correlation is not supported out of the box.

• You must implement queue readers manually.

• You must conduct synchronization and locking between several queue readers manually.

• Backup and restoration can be a challenge, because message data and transactional data are
stored in different places.

Queued Components
Queued Components are a part of the Component Object Model (COM+) infrastructure. With Queued
Components, you have the possibility to enqueue a user request to a COM+ application and execute it
asynchronously. Internally, a message is created and sent to a dedicated MSMQ queue. On the server
side, a component referred to as a Listener is used to dequeue the message from the queue and make the
needed method calls on the specified COM+ object. For replay of these method calls, a component
referred to as a Player is used. Queued Components are attractive for a project that already uses the
COM+ infrastructure and requires doing some functions asynchronously and decoupled from client
applications.

BizTalk Server
BizTalk Server is a business process management (BPM) server that enables companies to automate,
orchestrate, and optimize business processes. It includes powerful, familiar tools to design, develop,
deploy, and manage those processes successfully. BizTalk Server also uses messaging technology for
enterprise application integration (EAI). One drawback is its licensing costs, which are very high if
you need to support larger scenarios where scale-out is an issue.

XML Web Services
XML web services is a messaging technology based on open standards such as SOAP and Web
Services Description Language (WSDL), and it’s suitable for interoperability scenarios. .NET 1.0
was the first technology from Microsoft that included full support for creating applications based
on web services technologies.

Over the past few years, Microsoft has made several improvements in the communication stack
and has made it even easier to design, implement, publish, and reuse web services.

WCF
The goal of WCF, which is part of .NET 3.0, is to provide a unique application programming interface
(API) across all communication technologies currently available on Windows. This includes the
technologies already mentioned, as well as some others, such as .NET Remoting. With a unique

8423ch01.fm Page 14 Sunday, April 1, 2007 9:01 PM

C H A P T E R 1 ■ F U N D A M E N T A L S O F M E S S A G E - B A S E D P R O C E S S I N G 15

communication API, you can write distributed applications in a communication-independent way.
During deployment, an administrator can configure which communication technology the applica-
tion should use. Microsoft’s Service Broker team might also include a WCF channel to Service Broker
in an upcoming version of SQL Server, so that you can talk with Service Broker applications directly
from WCF-based applications.

Summary
In this first chapter, I provided an overview of the fundamentals of message-based programming. I
talked about the benefits of using messaging and how to achieve scalability for your applications.
I then discussed several problems that can occur when using messaging technology, and I showed
you how Service Broker solves these problems so that you don’t need to bother with them and can
simply concentrate on the implementation details of your distributed applications.

I then described possible application architectures based on messaging architectures such as
SOA and SODA. Finally, I briefly described other messaging technologies available on Windows and
presented the pros and cons for each. With this information, you have all the necessary knowledge
for understanding the concepts behind Service Broker. In the next chapter, I’ll present an introduc-
tion to Service Broker itself.

8423ch01.fm Page 15 Sunday, April 1, 2007 9:01 PM

8423ch01.fm Page 16 Sunday, April 1, 2007 9:01 PM

17

■ ■ ■

C H A P T E R 2

Introduction to Service Broker

This chapter will describe the Service Broker architecture, including the following components:

• Conversations: In Service Broker programming, everything revolves around a conversation.
I’ll explain exactly what a conversation is and what features it offers.

• Anatomy of a service: The core concept behind a Service Broker application is a service. A
service is composed of several elements, such as message types, contracts, a queue, and a
service program.

• Security: Service Broker is all about communication between services. It also provides sev-
eral security models that you can apply to your Service Broker application.

• Message processing: Service Broker exchanges messages between services. I’ll outline the
steps you need to successfully send a message from one service to another, and I’ll explain
reliable messaging.

• Performance: Service Broker provides different performance benefits, including the transac-
tion model and multiple queue readers.

Conversations
A conversation is a reliable, ordered exchange of messages between two Service Broker services. The
Service Broker architecture defines two kinds of conversations:

• Dialog: A dialog is a two-way conversation between exactly two Service Broker services. Ser-
vices exist on both the sending and receiving ends of a dialog. The one on the sending side
is referred to as the initiator service, and the one on the receiving side is referred to as the tar-
get service. The initiator service starts a new dialog and sends the first message to the target
service. Both services can then exchange messages in either direction.

• Monologue: A monologue is a one-way conversation between a single publisher service and
several subscriber services. This is a reliable version of the popular publish-subscribe para-
digm. Currently, monologues are not supported in Service Broker, but they may be included
in a future version of SQL Server.

Dialogs
Dialogs are bidirectional conversations between two Service Broker services. Dialogs allow Service
Broker to provide exactly-once-in-order message delivery. Each dialog follows a specific contract.

8423ch02.fm Page 17 Tuesday, April 3, 2007 9:21 PM

18 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

A Service Broker dialog solves all the messaging problems discussed in Chapter 1, in addition to the
following features:

• Guaranteed delivery: Service Broker is a reliable messaging system. Therefore, the sender of a
message can be sure that the receiving side will receive the sent message safely—even if the
receiving side is currently offline.

• Long-lived: Dialogs can live for only a few seconds, but they can also span several years for
long-running business processes.

• Exactly once: Message delivery in Service Broker dialogs is guaranteed to occur exactly
once. If the initiator service must resend a message because the previous message didn’t
arrive at the sending side, then both messages will be received on the other side, but only
one message will be processed. The other duplicated message will be dropped automati-
cally from the receiving queue.

• In-order delivery: Service Broker ensures that messages are received in the same order as
they are sent from the initiator service. This addresses the message sequencing and order-
ing problem discussed in Chapter 1.

• Persistence: A Service Broker dialog survives the restart of the whole database server, because
messages and dialogs are persisted directly in the database. This makes it easy to perform
maintenance on the database, because when you shut down the database engine, all open
dialogs and even unprocessed messages are persisted automatically and become available as
soon as you take the database engine online again.

Figure 2-1 illustrates a Service Broker dialog.

Figure 2-1. A Service Broker dialog

Dialog Lifetime
Applications can exchange messages during the lifetime of a dialog. The lifetime of a dialog lasts
from the time a dialog is created until another Service Broker service ends the dialog. Each partici-
pant is responsible for explicitly ending the conversation when it receives a message that indicates
an error or the end of the conversation. In general, one participant is responsible for indicating that
the conversation is complete and successful by ending the conversation without an error.

Dialogs can also guarantee that the lifetime of a conversation doesn’t exceed a specific limit.
The initiating service can optionally specify a maximum lifetime for the dialog. Both services of a
conversation keep track of this lifetime. When a dialog remains active at the maximum lifetime, the
Service Broker infrastructure places a time-out error message on the service queue on each side of
the conversation and refuses new messages for the dialog. Conversations never live beyond the max-
imum lifetime that is established when a new dialog begins.

8423ch02.fm Page 18 Tuesday, April 3, 2007 9:21 PM

C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R 19

Conversation Groups
A conversation group identifies one or more related conversations and allows a Service Broker appli-
cation to easily coordinate conversations involved in a specific business task. Every conversation
belongs to one conversation group, and every conversation group is associated with several conver-
sations from different services. A conversation group can contain one or more conversations.

When an application sends or receives a message, SQL Service locks the conversation group to
which the message belongs. This is called conversation group locking. Thus, only one session at a
time can receive messages for the conversation group. Conversation group locking guarantees that
a Service Broker application can process messages on each conversation exactly-once-in-order and
keep state on a per-conversation group basis. Because a conversation group can contain more than
one conversation, a Service Broker application can use conversation groups to identify messages
related to the same business task and process those messages together.

This concept is important for business processes of long duration. For example, when you order
books online, the order-entry service sends messages to several other services and starts a business
process of reasonably long duration. The other called services could be any or all of the following:

• Credit-card validation service

• Inventory service

• Accounting service

• Shipping service

Say the order-entry service starts four different dialogs to each of these individual services. Ser-
vice Broker groups these four dialogs together in a conversation group. These four services may all
respond at nearly the same time, so it’s possible that response messages for the same order may be
processed on different threads simultaneously without being aware of each other. To solve this
problem, Service Broker locks conversation groups—not conversations. By default, a conversation
group contains a single conversation—the conversation started by the initiator service with the tar-
get service, the order-entry service. Figure 2-2 illustrates this concept.

Figure 2-2. Conversation groups

8423ch02.fm Page 19 Tuesday, April 3, 2007 9:21 PM

20 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

The tasks of the four background services that are started by the order-entry service are nor-
mally done in the context of separate local SQL Server transactions. The message exchange between
the individual services takes place in the form of reliable messaging through the Service Broker
infrastructure. As soon as the order entry service receives replies from all of the background services,
it can reply with a response message back to the client and the business process ends. When this
event occurs, Service Broker closes the conversation group. Chapter 6 takes a detailed look at con-
versation groups and shows you how to achieve effective conversation group locking.

Message Sequencing
In Service Broker, message sequencing and ordering are ensured in the context of the complete life-
time of a conversation. Sequencing and ordering are maintained through sequence numbers, which
are incremented for each sent message. If you send six messages, each message gets a sequence
number starting with 1. As soon as a message is sent from the initiator service to the target service,
Service Broker assigns the current sequence number to the outgoing message. When the messages
are dequeued on the receiving side, Service Broker first tries to get the message with the sequence
number 1, then the message with the sequence number 2, and so on. When a message gets lost
during the sending process, the receiving side waits until the message is successfully resent—the
receiving side can’t skip a message that isn’t delivered successfully from the sender. The message
retry send period starts with four seconds and doubles up to 64 seconds. After this maximum of
64 seconds, the message is resent again once every 64 seconds—forever. Figure 2-3 illustrates this
process.

Figure 2-3. Message ordering in Service Broker

Reliable Delivery
Service Broker also ensures the reliable delivery of messages within the context of a dialog. Service
Broker cannot ensure that messages are received in order unless it also ensures that they are all
received. When messages are lost during the sending process, the messaging sequence contains
gaps, which are not suitable in a dialog. Service Broker makes reliable messaging possible, because
the sender resends missed messages periodically until it receives an acknowledgment from the
receiver about the delivered message.

The resending and acknowledgment protocol is directly built into the infrastructure of Service
Broker, so it is completely transparent to application developers. In Figure 2-4, you can see that mes-
sages that are sent across the network are placed in a temporary queue called the transmission queue.
Service Broker sends messages over the network and marks them as waiting for an acknowledgment in

8423ch02.fm Page 20 Tuesday, April 3, 2007 9:21 PM

C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R 21

this transmission queue. When a message is received at the destination service and stored in the target
queue for further processing, the receiver sends an acknowledgment back to the sender—the initiating
service. When the sender receives this acknowledgment message, it deletes the message from the
transmission queue.

Figure 2-4. Reliable messaging in Service Broker

The initiator service must always define a queue. This queue is used for two purposes. The first
purpose is when the target service wants to send a response message back to the initiator service.
The second purpose is for error handling. The target service must always be able to send an error
message back to the initiator service. The error message is stored in the initiator queue.

Error Handling
Asynchronous applications are often hard to code. When an application sends a message to a ser-
vice, the application cannot ensure that the message is processed immediately. For example, the
sending application and the processing service may not be executed at the same time. This makes
error handling more complicated, because it’s possible that one service might go offline due to
an error without having the chance to inform the other service about the problem.

Because of this problem, a Service Broker dialog always has two services, each associated with
a queue. This means that Service Broker always knows how to inform both ends of a dialog when an
error occurs. This is called symmetric error handling.

Anatomy of a Service
A Service Broker service is a named endpoint to which messages from other services are sent. A
Service Broker service has the following characteristics:

• The interface is defined through the messages it can receive and send.

• Services embody both application logic (code) and state (data).

• Services are living in the scope of a database.

• Services communicate through formal, reliable sessions known as conversations with
each other.

• Services are mapped to queues. Messages sent to a service are stored in their associated
queues.

8423ch02.fm Page 21 Tuesday, April 3, 2007 9:21 PM

22 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

A Service Broker service itself is a native SQL Server object, but it has also direct links to other
Service Broker objects. A Service Broker service consists of the following four objects:

• Message types

• Contracts

• Queue

• Service program

Message types, contracts, and a queue are implemented as native SQL Server objects, while a
service program can be implemented internally (as a stored procedure) or externally (as a separate
application). Figure 2-5 depicts the relationship between the four objects.

Figure 2-5. The four objects that make up a Service Broker service

When you create a new Service Broker service, you must create and configure all of these
objects properly and link them together in order to create a new Service Broker service. A Service
Broker service is always defined in the context of a SQL Server database, but Service Broker doesn’t
restrict where these services are deployed. Service Broker supports the following deployment
scenarios:

• Both services are deployed in the same SQL Server database.

• Each service is deployed in a separate SQL Server database located on the same SQL Server
instance.

• Each service is deployed in a separate SQL Server database located on another SQL Server
instance on a different SQL Server.

The good thing about the Service Broker programming model is that you don’t have to know
during the development how your Service Broker services are deployed across your company. To the
programming model, it is completely transparent. It doesn’t matter if the service is running in the
same SQL Server database or on a SQL Server running in another country connected through the
Internet. Chapters 7 and 8 talk more about distributed scenarios with Service Broker. Now, let’s take
a detailed look at each of these components.

8423ch02.fm Page 22 Tuesday, April 3, 2007 9:21 PM

C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R 23

Message Types
A message type defines the type of data that a message contains, and its name is associated with
that message type. You must create message types in each database that participates in a conver-
sation. Message types can also use the DEFAULT message type or any other built-in message type.
Each message type specifies the validation that Service Broker performs for messages of that type.
Currently, Service Broker supports the following validations:

• XML validated against an XML schema

• Well-formed XML

• No validation (e.g., for binary data)

• Empty (the message body must be empty)

Service Broker performs validation as soon as the target service receives the sent message. If the
content of the message doesn’t pass validation, Service Broker returns an error message back to the ser-
vice that originally sent the message. This concept is referred to as symmetric error messaging. After
successful validation, the message is put in the queue associated with the target service. Figure 2-6 illus-
trates this concept.

Figure 2-6. Message validation in Service Broker programming

Message validation has an impact on overall performance. The two XML validation types load
every sent message into an XML parser when a message is received. If you receive messages from
distrusted sources and the message volume isn’t high, validation makes sense. When you receive
messages from trusted sources, it makes more sense for the sending application to validate the XML
message and handle any validation errors. This improves the performance on the server side, but
you must decide carefully if you can trust the source.

Contracts
A contract defines which message types a Service Broker service uses to accomplish a particular
task. A contract is an agreement between two Service Broker services about which messages each
service sends to the other service. You must create a contract in each database that participates in a
conversation. When you look at a contract definition, you can determine easily which message types
can be received and sent on a particular conversation.

8423ch02.fm Page 23 Tuesday, April 3, 2007 9:21 PM

24 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

Service Broker also ensures that only message types that are defined in a contract are handled
and processed. When a service sends another message type, the sent message is rejected and an
error message is returned to the sending service. The contract also determines whether a message
type is sent strictly by the initiator of the conversation, strictly by the target of the conversation, or
by either the initiator or the target of the conversation. Service Broker defines the following three
sending directions:

• SENT BY INITIATOR: The initiator sends the message.

• SENT BY TARGET: The target sends the message.

• SENT BY ANY: Either the initiator or the target sends the message.

Figure 2-7 shows how message types are assembled together into a contract.

Figure 2-7. Contracts in Service Broker programming

Queues
In Service Broker, a queue is a storage provider for received messages (either from the target service
or the initiator service) that must be processed. A queue must be defined for the initiator service and
the target service. When Service Broker receives a message from a service, it inserts the message after
a successful validation into the queue that is associated with the target service. A queue is a lot like a
table in SQL Server, but with a few minor differences, as you’ll see throughout the book. Each mes-
sage is represented by a row in a queue. The row contains the payload of the message and some
other information, such as the associated message type, the receiving date, and the contract.

When a message is processed inside a Service Broker service, the service reads the message
directly from the queue and performs the necessary work with the payload of the message. When the
work is done, the associated local SQL Server transaction is committed, and the processed message
is removed from the queue.

Service Broker implements queues with a new SQL Server 2005 feature called hidden tables.
Queues look like ordinary tables to the storage engine, but you can’t use the usual Transact-SQL
(T-SQL) commands (such as INSERT, DELETE, and UPDATE) to manipulate the data in a queue. You’re
also not allowed to define a trigger on a queue. A read-only view is associated with each queue, so
you can use a SELECT statement to see what messages are currently stored inside a queue. This is
much easier than many other messaging systems, which require you to peek at the messages one at
a time to see what’s in the queue.

8423ch02.fm Page 24 Tuesday, April 3, 2007 9:21 PM

C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R 25

Because queues are implemented as hidden database tables, messages share all the high-
availability features that safeguard SQL Server data. All the features that you use to ensure that
your SQL Server data isn’t lost or damaged—such as transactions, logging, backup, mirroring,
clustering, and so on—also apply to Service Broker messages.

Service Programs
In Service Broker, a service program can be a stored procedure, when internal activation is used, or
a separate program, when external activation is used. A service program processes incoming messages
from a queue. Service Broker can activate a service program automatically when a new message
arrives. Alternatively, you can schedule an event to activate the service program, or you can execute
it manually.

A service program often needs to send a response message to the initiator of the conversation
to complete a task. This response is part of the same conversation so that the initiator can receive the
right response (known as message correlation).

Routes
A route is a SQL Server object that specifies on which network address a Service Broker service is
located. Because of this indirection, you can deploy your services to separate machines without
changing any implementation details. During the development process, you can start with services
in a local database, and in deployment, you can install each service on a different machine. In this
case, you must configure the network addresses of both services with routes. Just think of a route as
a piece of configuration information stored in the database. For more information about routes,
refer to Chapter 7, which covers distributed Service Broker scenarios.

Security
Service Broker allows services hosted by different SQL Server instances to communicate securely,
even when the instances are on different machines that have no other trust relationship or when the
source and destination machines are not connected to the same network.

Service Broker provides two different types of security: transport security and dialog security.
Understanding these two types of security and how they work together will help you design, deploy,
and administer Service Broker applications.

• Transport security: This prevents unauthorized SQL Server instances from sending Service
Broker messages to Service Broker services defined in another SQL Server instance. Transport
security establishes an authenticated network connection between two SQL Server instances.

• Dialog security: This encrypts messages in an individual dialog conversation and verifies the
identities of participants across the dialog. Dialog security also provides remote authoriza-
tion and message integrity checking. Dialog security establishes authenticated and encrypted
communication between two Service Broker services.

Transport Security
When you distribute Service Broker services to different SQL Server instances, you must establish an
authenticated network connection between those instances. Furthermore, you must exchange mes-
sages often in a secure manner. For that reason, Service Broker provides transport security. With

8423ch02.fm Page 25 Tuesday, April 3, 2007 9:21 PM

26 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

transport security, you’re able to create a secure and authenticated communication channel between
two SQL Server instances. Service Broker provides two authentication options:

• Windows-based authentication: This provides authentication to Service Broker services by
using Windows authentication protocols such as NTLM or Kerberos. You can use Windows-
based authentication only if both SQL Server instances that are hosting the different Service
Broker services belong to the same Windows domain, or if they belong to two different
Windows domains that are trusted between each other.

• Certificate-based authentication: This provides authentication by using certificates to estab-
lish authentication between two Service Broker services. You usually use certificate-based
authentication when you have to work with systems on different physical networks on dis-
trusted domains. You can also use certificate-based authentication when the two Service
Broker services don’t belong to the same Windows domain. Certificate-based authentication
is a lot faster than Windows-based authentication. You establish authentication by exchang-
ing a designated public key certificate of the opposite SQL Server instance.

You’ll learn more about transport security in Chapter 7, where I talk about distributed Service
Broker programming.

Dialog Security
Transport security only establishes authentication and protects messages through encryption
between two SQL Server instances. This works fine in easy network topologies where the initiator
service sends a message directly to the target service. However, Service Broker supports more com-
plex network topologies through a concept referred to as a Service Broker forwarder.

A Service Broker forwarder is a SQL Server instance that accepts Service Broker messages and
forwards them to the next hop on the route to the target service. In these network topologies, it’s dif-
ficult to rely only on transport security, because each message must be decrypted at a passing
Service Broker forwarder and finally encrypted when forwarded to the next hop along the route to
the target service. The encryption and decryption of the messages slow down the overall perfor-
mance of your Service Broker application. You’ll learn more about Service Broker forwarders in
Chapter 11, where I talk about scale-out scenarios with Service Broker.

Because you can’t rely only on transport security in some scenarios, Service Broker provides
dialog security. By using dialog security, you can establish a secure and authenticated communica-
tion channel between two Service Broker services, regardless of how many Service Broker
forwarders are configured on the route from the initiator service to the target service. Figure 2-8
shows the difference between transport and dialog security.

8423ch02.fm Page 26 Tuesday, April 3, 2007 9:21 PM

C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R 27

Figure 2-8. Transport and dialog security in Service Broker

Message Processing
Let’s take a detailed look at the message flow from one service to another service in order to under-
stand how messages are exchanged within a Service Broker conversation. Figure 2-9 shows all the
tasks that the implemented Service Broker application must do when a message exchange occurs
between two Service Broker services.

Figure 2-9. Message exchange in Service Broker

8423ch02.fm Page 27 Tuesday, April 3, 2007 9:21 PM

www.allitebooks.com

http://www.allitebooks.org

28 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

Let’s take a look at the Service Broker objects created for this scenario. A contract is defined that
includes two message types called RequestMessage and ResponseMessage. The contract and both message
types must be deployed in each SQL Server database anticipating the Service Broker conversation. On
the sender’s side, a service named InitiatorService is created, and the InitiatorQueue is assigned to this
service. Likewise, on the target’s side, a service named TargetService is created, and the TargetQueue
is assigned to this service. Let’s focus now on the steps you need to take to send a message from the
InitiatorService to the TargetService.

In the first step of this scenario, it is assumed that a user has some kind of application (such as
a Windows Forms or Web Forms application) and calls a stored procedure named StartDialog in the
database where InitiatorService is defined. This stored procedure is responsible for opening a new
conversation between the InitiatorService and the TargetService.

The second step consists of putting a message with the message type RequestMessage in the
local InitiatorQueue of the InitiatorService. Because of the reliable messaging features of
Service Broker, the message isn’t sent directly to the TargetService when both Service Broker ser-
vices are running on different databases or different instances. Instead, the created message is
moved in a queue called a transmission queue. From this queue, Service Broker tries to send the
message over the network and marks the message in the transmission queue as waiting for an
acknowledgment from the TargetService. Refer to Figure 2-4 earlier in this chapter for details
about reliable messaging.

As the third step illustrates, as soon as the message arrives on the TargetService, the message
is put in the TargetQueue where the message waits for further processing. In the meantime, an
acknowledge message is sent back to the InitiatorService, so that the sent message can be deleted
from the transmission queue on the sender’s side.

In the fourth step, a service program—normally implemented as a stored procedure or an exter-
nal application—is started that reads the message from the queue and processes it accordingly. You
can start the service program manually or automatically as soon as a new message arrives at the
queue. This process, shown in the fifth step, is referred to as service program activation. When the
received message is processed, a response message is typically created, which must be sent back to
the initiating service. As the sixth step illustrates, Service Broker again stores the message in the
transmission queue on the target side.

In the seventh step, the response message is transferred from the transmission queue on the
target side to the initiating service, where it is stored in the InitiatorQueue. As soon as the message
arrives in the queue, a service program is needed to process the message. You can configure this ser-
vice program so that it starts automatically as soon as a new message arrives in that queue. The
service program can be implemented either as a stored procedure (through internal activation) or
an external application (through external activation). As the eighth step illustrates, the service pro-
gram processes the response message from the target service and can inform the client application
about the outcome of the service request.

8423ch02.fm Page 28 Tuesday, April 3, 2007 9:21 PM

C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R 29

Performance
Performance is always a key requirement in a software system. When you implement message-
based applications, you must consider performance. Service Broker provides performance benefits
in several areas:

• Message-processing logic: You can implement the message-processing logic of your service
programs in different ways. In a high-load production system where performance is a key
requirement, you need other message-processing approaches. This is in contrast with a
Service Broker system, where only a few messages are exchanged within the whole day.
Chapter 6 describes more message-processing techniques you can use to get the best mes-
sage throughput out of your Service Broker application.

• Multiple queue readers: When you use Service Broker activation (whether internally or exter-
nally), you can define how many service programs are processing messages concurrently.
Therefore, it’s easy to control the message throughput and adjust it to your requirements.

• Transaction management: Other messaging systems such as MSMQ need distributed
transactions to ensure the consistency of data over different resource managers that are
incorporated in the message-processing logic. Distributed transactions make life easier
when you work with different resource managers, but they’re terrible in terms of perfor-
mance. Service Broker takes another approach and uses local SQL Server transactions
instead of distributed transactions. This is possible because messages and the message-
processing logic (service programs) are stored within the same database.

• Single log writes: Because Service Broker uses local SQL Server transactions, performance
is also better, since no transaction coordinator is needed. Furthermore, only one log write is
needed when a local SQL Server transaction is committed.

Figure 2-10 shows the performance overhead introduced with distributed transactions.

Figure 2-10. Performance problems with distributed transactions

8423ch02.fm Page 29 Tuesday, April 3, 2007 9:21 PM

30 C H A P T E R 2 ■ I N T R O D U C T I O N T O S E R V I C E B R O K E R

Finally, Figure 2-11 shows how Service Broker handles the problems with local SQL Server
transactions.

Figure 2-11. Transaction management in Service Broker

Compared to other messaging technologies, Service Broker provides better performance, as
well as transactional reliability directly out of the box.

Benefits
As you’ve seen throughout this chapter, Service Broker provides several unique features that make it
a powerful messaging platform:

• One API: Service Broker provides one API for both message and data-processing logic. With
MSMQ, you must program with the System.Messaging and System.Data namespaces of the
.NET Framework. Service Broker simplifies this, because it includes the messaging support
directly in T-SQL instead of providing an additional API.

• Centralized administration tools: Whether you want to administer a SQL Server database with
or without Service Broker functionality, you use the same tool: SQL Server Management Studio.
If you want to back up or restore your Service Broker application, you can use the same process
as you would for an online transaction processing (OLTP) database. Your administrators don’t
have to learn new tools.

• Reliable messaging: Reliability is one of the key features of Service Broker. The nice thing
about reliability is that Service Broker provides it for you out of box. When you use Service
Broker, you use reliable messaging automatically.

• Scale-out scenarios: From the programming perspective, it makes no difference if you
implement a Service Broker application that is hosted on one SQL Server instance or if
you implement a solution that is distributed to different SQL Server instances. All necessary
aspects of physical service distribution are done through configuration steps during the
deployment of a Service Broker application.

Summary
This chapter covered the architecture and the core concepts of Service Broker. You learned about
conversations, dialogs, and conversation groups. You also looked at the components of a service,
including objects such as message types, contracts, and queues. Because you can use Service Broker
in distributed scenarios, you learned about transport and dialog security.

In the next chapter, you’ll see how to implement a messaging application with Service Broker,
and you’ll learn the necessary steps to build one from scratch.

8423ch02.fm Page 30 Tuesday, April 3, 2007 9:21 PM

31

■ ■ ■

C H A P T E R 3

Service Broker in Action

Now that you’ve learned the theoretical concepts about messaging and Service Broker architec-
ture, it’s time to talk about the actual implementation of Service Broker applications. In this chapter,
you’ll learn how to write your own Service Broker services and how these services can communicate
with each other. I’ll cover the following topics in detail:

• Defining Service Broker applications: A Service Broker application consists of several Service
Broker objects, including message types, contracts, a queue, and a service. You’ll learn how
these objects are related to each other and how you can program them.

• Sending messages: Once you define your Service Broker application, you’re able to send
messages between your Service Broker services. You’ll learn how to exchange messages
successfully.

• Retrieving and processing messages: As soon as you send messages to another Service
Broker service, you must retrieve and process the messages. You’ll learn how to retrieve
and process the messages and how to react to different message types.

• Error handling: Every robust software application needs error handling; the same is true
with Service Broker. Service Broker provides error-handling possibilities that are directly
integrated into the infrastructure provided by Service Broker. You’ll learn how to use error
handling and how to handle poison messages.

Let’s start with how to define a Service Broker application.

Defining Service Broker Applications
Let’s start with a simple “Hello World” Service Broker application in which you define both the initi-
ator service and the target service in the same database. Because of this, you don’t have to bother
with security and distributed messaging complications.

One limitation of SQL Server 2005 is that you can’t manage Service Broker objects through SQL
Server Management Studio. There are no wizards for managing message types, contracts, a queue,
and a service. You can manage these objects through the T-SQL statements described in this chap-
ter. In addition, you can manage them through SQL Server Management Objects (SMO), which I
cover in Chapter 12 when I discuss administration. Microsoft will provide direct support for Service
Broker in SQL Server Management Studio in the next version of SQL Server.

Aschenbrenner842-3.book Page 31 Tuesday, April 3, 2007 9:44 PM

32 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

■Note Service Broker objects are always case-sensitive. This allows Service Broker to avoid spending time
resolving the collation of the dialog initiator and target. The only exception to this is the queue object, which follows
the collation of the database. This is acceptable because a queue is never referenced directly from an outside
service.

Message Types
The simple sample application used in this chapter follows the following messaging sequence:

• The initiator service sends a message to the target service containing some important infor-
mation, such as a name.

• The target service receives the message and processes it.

• The target service creates a response message and sends it back to the initiator service.

Figure 3-1 illustrates this message flow.

Figure 3-1. A simple message flow

As with every Service Broker application, you must first define the interface for your Service
Broker services, which includes the exchanged message types and the contracts supported by your
Service Broker services. As you can see in Figure 3-1, you need a request message (sent by the initia-
tor service) and a response message (sent by the target service). Both message types are grouped
together in a contract.

Now let’s look at how you define a message type in the context of a Service Broker application.
SQL Server 2005 offers some Data Definition Language (DDL) enhancements to T-SQL for creating
Service Broker objects. When you want to create a new message type, you use the CREATE MESSAGE
TYPE statement. Listing 3-1 shows the syntax for this statement.

Aschenbrenner842-3.book Page 32 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 33

Listing 3-1. Syntax for CREATE MESSAGE TYPE

CREATE MESSAGE TYPE message_type_name
 [AUTHORIZATION owner_name]
 [VALIDATION =
 {
 NONE |
 EMPTY |
 WELL_FORMED_XML |
 VALID_XML WITH SCHEMA COLLECTION schema_collection_name
 }
]

Table 3-1 describes the several arguments of the CREATE MESSAGE TYPE statement.

Table 3-1. Arguments for CREATE MESSAGE TYPE

Argument Description

message_type_name The name of the message type to create. The new message
type is created within the current database and is owned
by the principal specified in the AUTHORIZATION clause. You
can’t put a message type into a schema.

AUTHORIZATION owner_name Specifies the owner of the message type. You can specify a
database user or a database role.

VALIDATION Specifies the validation of incoming messages used by
Service Broker. If no validation is specified, the NONE vali-
dation is used.

NONE Used when the incoming message isn’t validated. In this
case, the message body can contain any data or even NULL.

EMPTY Used when the body of the incoming message must
contain NULL.

WELL_FORMED_XML Used when the body of the incoming message must
contain valid XML data.

VALID_XML WITH SCHEMA COLLECTION Used when the body of the incoming message must
contain XML data that can be validated against the
specified XML schema collection. See the next sidebar
for more information.

XML SCHEMA COLLECTION

An XML schema collection stores one or more XML Schema Definition (XSD) schemas in a SQL Server 2005 data-
base. When you create an instance of the xml data type, you can assign an XML schema collection to the data type.
Therefore, any change in the xml data type must conform to the associated XML schema collection.

When you define Service Broker message types, you can also assign an XML schema collection to an XML
message. In this case, Service Broker automatically validates the XML contained in the message and checks if the
XML data conforms to the XSD schema stored in the XML schema collection. Be cautious, because the XML valida-
tion takes a lot of time and can hurt your message-processing performance. I suggest using XML validation only
during development and just using WELL_FORMED_XML for your production system.

Aschenbrenner842-3.book Page 33 Tuesday, April 3, 2007 9:44 PM

34 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

You can now create message types for both the request and the response messages used by
your Service Broker application. It’s important that you give each message type (and also each
contract) a unique name. This is necessary because you must define message types and contracts
in each database where a Service Broker service is running. Therefore, you can get naming con-
flicts with other Service Broker services that define the same name for message types that have
other meanings. It’s conventional to prefix each message type and each contract with your own
Internet domain. Listing 3-2 shows you how you can define both message types needed for the
sample Service Broker conversation. (I create two message types: RequestMessage and
ResponseMessage.)

■Note Please make sure to create a new database in which you execute the following listings in this chapter.

Listing 3-2. Defining Message Types

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c03/RequestMessage]
 VALIDATION = NONE

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c03/ResponseMessage]
 VALIDATION = NONE

As soon as you define the message types, you can also view them in SQL Server Management
Studio, as shown in Figure 3-2.

Figure 3-2. Viewing defined message types

Aschenbrenner842-3.book Page 34 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/RequestMessage
http://ssb.csharp.at/SSB_Book/c03/ResponseMessage

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 35

You can also see the registered message types through the sys.service_message_types catalog
view. This view is handy when you must determine programmatically which message types are
defined in your database. Table 3-2 lists the columns in this view.

Table 3-2. Columns in the sys.service_message_types Catalog View

When you want to change the validation of an already registered message type, you can
use the ALTER MESSAGE TYPE T-SQL statement. You can change the owner of a message type
through the ALTER AUTHORIZATION T-SQL statement. Listing 3-3 shows how you can change the
validation of the registered message types to WELL_FORMED_XML.

Listing 3-3. Changing a Message Type

ALTER MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c03/RequestMessage]
 VALIDATION = WELL_FORMED_XML

ALTER MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c03/ResponseMessage]
 VALIDATION = WELL_FORMED_XML

You can delete existing message types with the DROP MESSAGE TYPE T-SQL statement. Addition-
ally, each SQL Server database contains the predefined message type [DEFAULT]. This message type
is equivalent to each message type that you created explicitly. The validation of this message type is
set to NONE, which means that this message type can contain any information you need. This mes-
sage type is handy when you want to quickly set up a Service Broker application and you don’t want
to concentrate on message type definitions. However, I don’t suggest using this message type in pro-
duction, because then you can’t control the format of the message body.

Column Data Type Description

name SYSNAME The name of the message type. It must be unique within
the database.

message_type_id INT The internal identifier of the message type. It must be
unique within the database.

principal_id INT The identifier for the database principal that owns this
message type.

validation CHAR(2) The message type validation done by Service Broker when
receiving a message of this type:
N = None
X = XML
E = Empty.

validation_desc NVARCHAR(60) The description of the validation done by Service Broker
when receiving a message of this type:
NONE
XML
EMPTY.

xml_collection_id INT The identifier of the XML schema collection used to vali-
date a message of this type when XML schema validation
is used.

Aschenbrenner842-3.book Page 35 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/RequestMessage
http://ssb.csharp.at/SSB_Book/c03/ResponseMessage

36 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Contracts
Once you’ve defined the message types for your Service Broker application, you can create the
needed contract. The contract defines the message types used in a Service Broker conversation and
also determines which side of the conversation can send messages of which type. In other words, the
contract defines the sending direction of each message. You can create contracts with the CREATE
CONTRACT T-SQL statement. Listing 3-4 shows the complete syntax of this statement.

Listing 3-4. Syntax for CREATE CONTRACT

CREATE CONTRACT contract_name
 [AUTHORIZATION owner_name]
 (
 {
 message_type_name SENT BY { INITIATOR | TARGET | ANY }
 | [DEFAULT] } [,...n]
)

Table 3-3 describes the several arguments of the CREATE CONTRACT statement.

Table 3-3. Arguments for CREATE CONTRACT

Argument Description

contract_name Specifies the name of the contract created inside the database.

AUTHORIZATION owner_name Specifies the owner of the contract. You can specify a database
user or a database role.

message_type_name Specifies the message type included in this contract.

SENT BY Specifies in which direction a Service Broker service can send a
message of the specified message type.

INITIATOR Specifies that the initiator of the conversation can send the
specified message type. A service that begins a conversation is
referred to as the initiator of the conversation.

TARGET Specifies that the target of the conversation can send the speci-
fied message type. A service that accepts a conversation that
was started by another service is referred to as the target of the
conversation.

ANY Specifies that either the initiator or the target service can send
the message type.

[DEFAULT] Specifies that this contract supports the [DEFAULT] message type.
This option is equivalent to specifying [DEFAULT] SENT BY ANY. By
default, all databases contain a message type named [DEFAULT].
This message type uses a validation of NONE. In the context of this
clause, [DEFAULT] is not a keyword and must be delimited as an
identifier. Service Broker also provides the [DEFAULT] contract,
which specifies the [DEFAULT] message type.

Aschenbrenner842-3.book Page 36 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 37

As you can see from Listing 3-4, you can provide several message types for a contract. In the
sample, you need a contract that specifies that the initiator service can send the request message
type and that the target service can send the response message type. Listing 3-5 shows the necessary
code fragment.

Listing 3-5. Defining the Contract

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract]
(
 [http://ssb.csharp.at/SSB_Book/c03/RequestMessage] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c03/ResponseMessage] SENT BY TARGET
)
GO

As soon as you define the contract in your database, you can view it through the SQL Server
Management Studio, as shown in Figure 3-3.

Figure 3-3. Viewing the defined contract

The registered contracts are also available through the sys.service_contracts and
sys.service_contract_message_usages catalog views. The first catalog view retrieves all registered
contracts. The second one retrieves the message types associated with a specified contract.
Table 3-4 describes the columns in the sys.service_contracts catalog view.

Table 3-4. Columns in the sys.service_contracts Catalog View

Column Data Type Description

name SYSNAME Contains the name of the registered contract.

service_contract_id INT Contains the internal identifier of the contract. This identi-
fier is used to join with other catalog views.

principal_id INT Contains the identifier for the database principal that owns
this contract.

Aschenbrenner842-3.book Page 37 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract
http://ssb.csharp.at/SSB_Book/c03/RequestMessage
http://ssb.csharp.at/SSB_Book/c03/ResponseMessage

38 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Table 3-5 describes the columns in the sys.service_contract_message_usages catalog view.

Table 3-5. Columns in the sys.service_contract_message_usages Catalog View

With the three catalog views, you can write a query that returns all associated message types of
a contract. Listing 3-6 shows the query, and Figure 3-4 shows its results.

Listing 3-6. Getting Contract Information Through the Catalog Views

SELECT
 sc.name AS 'Contract',
 mt.name AS 'Message type',
 cm.is_sent_by_initiator,
 cm.is_sent_by_target,
 mt.validation
FROM sys.service_contract_message_usages cm
 INNER JOIN sys.service_message_types mt ON cm.message_type_id =
 mt.message_type_id
 INNER JOIN sys.service_contracts sc ON sc.service_contract_id =
 cm.service_contract_id
GO

Figure 3-4. The registered contracts

Sometimes customers ask how they can alter a Service Broker contract, because there is no cor-
responding ALTER CONTRACT T-SQL statement. The short answer is that they can’t alter an existing
contract. You can compare a contract with an interface description in COM. Also, a rule exists that
says you can’t change published interfaces; the same is true with a Service Broker contract. So, when
you need to change a Service Broker contract, you have to implement some kind of versioning.

You can delete existing contracts with the DROP CONTRACT T-SQL statement. If the contract is
associated with a Service Broker service, then you can’t drop the contract, and SQL Server returns an

Column Data Type Description

service_contract_id INT Contains the internal identifier of the contract

message_type_id INT Contains the identifier of the message type used by the
contract

is_sent_by_initiator BIT Indicates that the message type can be sent by the initiator

is_sent_by_target BIT Indicates that the message type can be sent by the target

Aschenbrenner842-3.book Page 38 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 39

error message. If there is an open conversation based on the dropped contract, the conversation
closes and an error message returns to both Service Broker services.

As with message types, Service Broker provides a contract named [DEFAULT]. The [DEFAULT]
contract indicates that ALL can send the [DEFAULT] message type (but no other message type).
However, there are some confusing things about the [DEFAULT] contract, which I cover in the
“Services” section.

Queue
After you define the appropriate message types and contracts, each service side must define a queue
where received messages are stored for further processing through a service program. In the sample,
you need two queues in the same database, because the services are not distributed between several
SQL Server instances. You create queues with the CREATE QUEUE T-SQL statement. Listing 3-7 shows
the complete syntax for this statement.

Listing 3-7. Syntax for CREATE QUEUE

CREATE QUEUE queue_name
 [WITH
 [STATUS = { ON | OFF },
 [RETENTION = { ON | OFF },
 [ACTIVATION
 (
 [STATUS = { ON | OFF },
 PROCEDURE_NAME = procedure_name,
 MAX_QUEUE_READERS = max_queue_readers
 EXECUTE AS { SELF | 'user_name' | OWNER }
)]
]
 [ON { filegroup | [DEFAULT] }]
]

Table 3-6 describes the most important arguments of the CREATE QUEUE statement.

Table 3-6. Arguments for CREATE QUEUE

Argument Description

queue_name Specifies the name of the queue created inside the database.

STATUS Specifies the status of the queue. It can be online (ON) or offline (OFF).
When the queue is offline, no messages can be added to the queue or
processed from the queue. This would make sense when you must
turn off a service for maintenance work.

RETENTION Specifies if retention is used for this queue. If set to ON, all messages
sent or received on conversation groups using this queue are stored in
the queue until the conversation has ended. This allows you to store
messages for auditing purposes, or to perform compensating transac-
tions if an error occurred.

ACTIVATION Specifies the information needed to activate a stored procedure when
a new message arrives at the queue.

STATUS Indicates if activation is used for this queue. It can be ON or OFF.

Continued

Aschenbrenner842-3.book Page 39 Tuesday, April 3, 2007 9:44 PM

40 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Table 3-6. Continued

Note from these descriptions that you can also control the activation mechanism of the queue.
I cover this more in Chapter 4, where I discuss the activation scenarios available in Service Broker.
Listing 3-8 shows how you can create the sending and receiving queues.

Listing 3-8. Creating the Needed Queues

CREATE QUEUE InitiatorQueue
WITH STATUS = ON

CREATE QUEUE TargetQueue
WITH STATUS = ON

As soon as you create your queues, they’re visible in SQL Server Management Studio, as shown
in Figure 3-5.

Figure 3-5. The created queues

Argument Description

PROCEDURE_NAME Specifies the name of the stored procedure to activate when a new
message arrives at the queue.

MAX_QUEUE_READERS Specifies the maximum number of instances of the activation stored
procedure that the queue starts at the same time to process the
incoming messages.

EXECUTE AS Specifies the SQL Server database user account under which the acti-
vation stored procedure runs.

ON filegroup [DEFAULT] Specifies the SQL Server filegroup on which you want to create this
queue. You can use the DEFAULT identifier to create the queue on the
default filegroup, or you can specify another filegroup.

Aschenbrenner842-3.book Page 40 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 41

The created queues are also available through the sys.service_queues catalog view. Each row
in this view represents a queue defined in the current database. Table 3-7 lists the columns in this
catalog view.

Table 3-7. Columns in the sys.service_queues Catalog View

Service
After defining message types, contracts, and a queue, you must finally define your Service Broker
service in each database participating in the conversation. In the example, you must define two ser-
vices in the same database because you don’t use Service Broker’s distributed message-processing
capabilities. You create services through the CREATE SERVICE T-SQL statement. Service Broker uses
the name of the created service to route messages, deliver messages to the correct queue within a
database, and enforce the contract for a conversation. Listing 3-9 shows the complete syntax for the
CREATE SERVICE T-SQL statement.

Listing 3-9. Syntax for CREATE SERVICE

CREATE SERVICE service_name
 [AUTHORIZATION owner_name]
 ON QUEUE [schema_name.]queue_name
 [
 (contract_name | [DEFAULT] [, ...n])
]

Column Data Type Description

max_readers SMALLINT Specifies the maximum number of parallel queue
readers used for this queue

activation_procedure NVARCHAR(776) The name of the activated stored procedure in the
three-part syntax

execute_as_principal_id INT ID of the EXECUTE AS database principal; NULL
by default, or if EXECUTE AS CALLER, -2 = EXECUTE
AS OWNER

is_activation_enabled BIT Indicates if activation is enabled

is_receive_enabled BIT Indicates if the queue is currently able to receive
messages

is_enqueue_enabled BIT Indicates if the queue is currently able to enqueue
new messages

is_retention_enabled BIT Indicates if retention is enabled

Aschenbrenner842-3.book Page 41 Tuesday, April 3, 2007 9:44 PM

42 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Table 3-8 describes the arguments of the CREATE SERVICE statement.

Table 3-8. Arguments for CREATE SERVICE

Listing 3-10 shows how to define both the Service Broker services needed for the sample
application.

Listing 3-10. Creating the Necessary Service Broker Services

CREATE SERVICE InitiatorService
ON QUEUE InitiatorQueue
(
 [http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract]
)
GO

CREATE SERVICE TargetService
ON QUEUE TargetQueue
(
 [http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract]
)
GO

As soon as you create the needed Service Broker services, they become available in the SQL
Server Management Studio, as shown in Figure 3-6.

Argument Description

service_name Specifies the name of the service to create. The service is created
in the current database, and the owner of the service is specified
through AUTHORIZATION clause.

AUTHORIZATION
owner_name

Specifies the owner of the service to the specified database user
or role.

ON QUEUE queue_name Specifies the queue that is associated with this service.

contract_name Specifies the contract that is supported by this service. If you
specify no contract, the service can only initiate conversations
with a target service.

[DEFAULT] Specifies that the service may be a target for conversations using
the [DEFAULT] contract. [DEFAULT] is not a keyword, so you must
delimit it as an identifier.

Aschenbrenner842-3.book Page 42 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract
http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 43

Figure 3-6. The created services

The created services are also available through the sys.services catalog view. Table 3-9 lists the
columns available in the sys.services catalog view.

Table 3-9. Columns in the sys.services Catalog View

Listing 3-11 shows how you can join the sys.services, sys.service_contract_usages, and
sys.service_contracts catalog views to retrieve the contracts that a service supports.

Listing 3-11. Getting the Contracts of the Defined Services

SELECT
 sv.name AS 'Service',
 sc.name AS 'Contract'
FROM sys.services sv
 INNER JOIN sys.service_contract_usages scu ON scu.service_id =
 sv.service_id
 INNER JOIN sys.service_contracts sc ON sc.service_contract_id =
 scu.service_contract_id
GO

Column Data Type Description

name SYSNAME The name of the service; must be unique within the current
database

service_id INT The internal identifier of the new service

principal_id INT The identifier for the database principal that owns this service

service_queue_id INT The object ID for the queue that is associated with this service

Aschenbrenner842-3.book Page 43 Tuesday, April 3, 2007 9:44 PM

44 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Figure 3-7 shows the result of the T-SQL query from Listing 3-11.

Figure 3-7. The services with the associated contracts

You can alter an existing service with the ALTER SERVICE T-SQL statement. There are three pos-
sible aspects you can change for a service:

• The queue associated with the service: You can specify a new queue for the service. Service
Broker moves all messages for this service from the current queue to the new queue.

• Adding a contract: You can specify a contract that is added to the service definition.

• Dropping a contract: You can specify a contract that is dropped from the service definition.

Listing 3-12 shows the usage of this T-SQL statement.

Listing 3-12. Altering a Service Definition

ALTER SERVICE TargetService
ON QUEUE MyNewTargetQueue
(
 ADD CONTRACT [MyNewContract]
 DROP CONTRACT [http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract]
)

If you want to delete a Service Broker service, you can use the DROP SERVICE T-SQL statement.
As a parameter, you must supply the name of the service to be dropped.

I want to mention a few important things about the [DEFAULT] contract. When you want to use
the [DEFAULT] contract, you must explicitly specify it at the target service, as Listing 3-13
demonstrates.

Listing 3-13. Using the [DEFAULT] Contract on the Target Service

CREATE SERVICE TargetService
 ON QUEUE TargetQueue
(
 [DEFAULT]
)

This is confusing, because you don’t have to specify the [DEFAULT] contract at the initiating ser-
vice, since you also define the contract when you start a new conversation with another Service
Broker service. Listing 3-14 shows a valid service definition when you also want to use the [DEFAULT]
contract.

Listing 3-14. Using the [DEFAULT] Contract on the Initiator Service

CREATE SERVICE InitiatorService
 ON QUEUE InitiatorQueue

Aschenbrenner842-3.book Page 44 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 45

Sending Messages
By now, you’ve set up all the infrastructure objects that Service Broker needs. The next logical step is
to send a message from the InitiatorService to the TargetService. To accomplish this task, you
must perform the following two steps:

1. Create a new conversation between the two Service Broker services.

2. Send a message of the message type [http://ssb.csharp.at/SSB_Book/c03/RequestMessage]
to the TargetService.

For both steps, Service Broker offers you special T-SQL statements: BEGIN DIALOG CONVERSATION
and SEND ON CONVERSATION. Listing 3-15 shows you the syntax of the BEGIN DIALOG CONVERSATION
statement.

Listing 3-15. Syntax for BEGIN DIALOG CONVERSATION

BEGIN DIALOG [CONVERSATION] @dialog_handle
 FROM SERVICE initiator_service_name
 TO SERVICE 'target_service_name'
 [, { 'service_broker_guid' | 'CURRENT DATABASE' }]
 [ON CONTRACT contract_name]
 [WITH
 {
 RELATED_CONVERSATION = related_conversation_handle |
 RELATED_CONVERSATION_GROUP = related_conversation_group_id
 }]
 [LIFETIME = dialog_lifetime]
 [ENCRYPTION = { ON | OFF }]

Table 3-10 describes the arguments of this T-SQL statement.

Table 3-10. Arguments for BEGIN DIALOG CONVERSATION

INITIATOR SERVICES AND CONTRACTS

By now, you’ve learned that each service must specify the supported contracts. That’s true for target services, but
it’s not completely true for initiator services. Initiator services aren’t bound to a contract, because they can initiate
conversations with many different targets.

This also prevents them from ever being targeted. That’s an important concept, because when an initiating ser-
vice isn’t bound to a specified contract, the target service isn’t able to send response messages back to this service.

Argument Description

@dialog_handle This variable stores the conversation dialog handle returned
by this T-SQL statement. The conversation dialog handle
uniquely identifies the conversation started with this
statement.

FROM SERVICE
initiator_service_name

Specifies the service that starts the conversation. The
name specified must be the name of a service in the
current database.

Continued

Aschenbrenner842-3.book Page 45 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/RequestMessage

46 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Table 3-10. Continued

As soon as you start a new conversation between both Service Broker services, you can send a
message from the initiator to the target. For this purpose, you use the SEND ON CONVERSATION T-SQL
statement. Listing 3-16 shows the syntax for the SEND ON CONVERSATION T-SQL statement.

Listing 3-16. Syntax for SEND ON CONVERSATION

SEND ON CONVERSATION conversation_handle
 [MESSAGE TYPE message_type_name]
 [(message_body)]

Argument Description

TO SERVICE
'target_service_name'

Specifies the target service of the initiated conversation.

service_broker_guid The ID of the Service Broker instance that hosts the target
service. If you host a Service Broker service in more than
one database, you can use the service_broker_guid argu-
ment to identify in a unique way the target of your new
conversation.

ON CONTRACT contract_name Specifies the contract used by this conversation. The
contract must exist in the current database.

RELATED_CONVERSATION
related_conversation_handle

Specifies an existing conversation group that the new con-
versation is added to. When this clause is present, the new
conversation belongs to the same conversation group as
the dialog specified by related_conversation_handle. The
statement fails if the related_conversation_handle
doesn’t reference an existing dialog.

RELATED_CONVERSATION_GROUP
related_conversation_group_id

Specifies the existing conversation group that the new con-
versation is added to. When this clause is present, the new
conversation is added to the conversation group specified by
related_conversation_group_id. If related_conversation_
group_id doesn’t reference an existing conversation group,
Service Broker will create a new conversation group with the
specified related_conversation_group_id and relate the new
conversation to that conversation group.

LIFETIME Specifies the maximum amount of time the conversation
will be active. To complete the dialog successfully, each
Service Broker service must explicitly end the dialog before
the lifetime expires.

ENCRYPTION Specifies if encryption is used for the message sending.

Aschenbrenner842-3.book Page 46 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 47

Table 3-11 describes the arguments of this T-SQL statement.

Table 3-11. Arguments for SEND ON CONVERSATION

Listing 3-17 shows you how to send a message from the InitiatorService to the TargetService.

Listing 3-17. Sending a Message

BEGIN TRY
 BEGIN TRANSACTION;
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<HelloWorldRequest>
 Klaus Aschenbrenner
 </HelloWorldRequest>';

 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c03/RequestMessage]
 (
 @msg
);
 COMMIT;
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

Let’s step through this T-SQL batch line by line:

BEGIN TRANSACTION;
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

Argument Description

conversation_handle Specifies the conversation under which the message should be sent.

message_type_name The message type used for the sent message. You must define this
message type in the service contract used by this conversation. The
contract must allow the message type to be sent from this side of the
conversation.

message_body The message body of the message sent to the other Service Broker
service.

Aschenbrenner842-3.book Page 47 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract
http://ssb.csharp.at/SSB_Book/c03/RequestMessage

48 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

In the first three lines, a new local SQL Server transaction is created and two variables are
declared. The first variable, @ch, stores the unique identifier of the new conversation, referred to
as conversation dialog handle. The variable @msg stores the message body sent to the other Service
Broker service.

Within these next five lines, a new conversation between the two services is created:

BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract]
 WITH ENCRYPTION = OFF;

You must specify both service names, as well as the contract on which the conversation is based.
Note carefully that the service name specified in the TO SERVICE clause must be specified as a string lit-
eral, because the target service can live on another SQL Server instance. When you want to distribute
your Service Broker application across several SQL Server instances, you don’t need to update this
code because you can create a route for the service name specified in the TO SERVICE clause.

During the development of this T-SQL batch, you can’t even know if the target service runs in
the same database (as in this case) or on a SQL Server instance several thousand miles away from
you. Because you specified the target service name as a string literal, no changes must be applied to
this T-SQL batch when an administrator moves the target service to another SQL Server instance.
For simplification, message encryption is turned off for this conversation.

In these next few lines, you create the body of your message:

SET @msg =
 '<HelloWorldRequest>
 Klaus Aschenbrenner
 </HelloWorldRequest>';

Because the validation of the message type [http://ssb.csharp.at/SSB_Book/c03/RequestMessage]
is defined as WELL_FORMED_XML, you can send any valid XML document as a payload for this message.
When you turn on XML schema validation for this message type, then you must successfully validate
the XML data assigned here to the variable @msg against an XML schema collection that you specify in the
CREATE MESSAGE TYPE T-SQL statement.

Finally, you send the message over the previously created conversation, and you commit the
transaction:

SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c03/RequestMessage]
(
 @msg
);
COMMIT;

When you send the message through SEND ON CONVERSATION, you must supply the conversation
dialog handle that was initialized with a unique identifier from the call to BEGIN DIALOG CONVERSATION.
Furthermore, you must also supply the message type of the message you want to send to the target
service.

When you want to use the [DEFAULT] contract, you must not specify it in the BEGIN DIALOG
CONVERSATION statement. The two statements in Listing 3-18 are equivalent.

Aschenbrenner842-3.book Page 48 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/HelloWorldContract
http://ssb.csharp.at/SSB_Book/c03/RequestMessage
http://ssb.csharp.at/SSB_Book/c03/RequestMessage

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 49

Listing 3-18. Sending a Message on the [DEFAULT] Contract

SEND ON CONVERSATION @handle
(
 'Hello World'
)

-- or

SEND ON CONVERSATION @handle
MESSAGE TYPE [DEFAULT]
(
 'Hello World'
)

As you can see from these descriptions about the [DEFAULT] contract, the whole thing can be a
bit complicated.

As soon as you initiate a new conversation between two services through BEGIN DIALOG
CONVERSATION, a conversation endpoint is created for the initiating service. The conversation end-
point for the target service is created when you send the first message. A conversation endpoint
represents the ongoing conversation for the associated service. From the sys.conversation_
endpoints catalog view, you can obtain more information about the conversation. Table 3-12
describes the columns that are available through the sys.conversation_endpoints catalog view.

Table 3-12. Columns in the sys.conversation_endpoints Catalog View

Column Data Type Description

conversation_handle UNIQUEIDENTIFIER The identifier used for this conversa-
tion endpoint

conversation_id UNIQUEIDENTIFIER The identifier shared by both Service
Broker services of the ongoing con-
versation

is_initiator TINYINT Specifies if this conversation is the
initiator or the target of the con-
versation

service_contract_id INT The identifier of the contract that this
conversation follows

conversation_group_id UNIQUEIDENTIFIER The identifier of the conversation
group that this conversation belongs to

service_id INT The identifier of the Service Broker
service of this side of the conversation

lifetime DATETIME The expiration date/time of this con-
versation

state CHAR(2) The current state of the conversation
(see Table 3-14 for the possible values)

Continued

Aschenbrenner842-3.book Page 49 Tuesday, April 3, 2007 9:44 PM

50 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Table 3-12. Continued

Column Data Type Description

state_desc NVARCHAR(60) The description of the current state
of the conversation (see Table 3-13 for
the possible values)

far_service NVARCHAR(256) The name of the service on the remote
side of the conversation

far_broker_instance NVARCHAR(128) The identifier of the broker instance
on the remote side of the conversation

principal_id INT The identifier of the principal whose
certificate is used by the local side of
this conversation

far_principal_id INT The identifier of the principal whose
certificate is used by the remote side
of this conversation

outbound_session_key_identifier UNIQUEIDENTIFIER The identifier for the outbound
encryption key for this conversation

inbound_session_key_identifier UNIQUEIDENTIFIER The identifier for the inbound encryp-
tion key for this conversation

security_timestamp DATETIME The time when the local session key
was created

dialog_timer DATETIME The time at which the conversation
timer for this conversation sends a
DialogTimer message

send_sequence BIGINT The next message number in the send
sequence

last_send_tran_id BINARY(6) The internal transaction ID of last
transaction to send a message

end_dialog_sequence BIGINT The sequence number of the
EndDialog message

receive_sequence BIGINT The next message number expected
in the message receive sequence

receive_sequence_flag INT The next message fragment number
expected in the message receive
sequence

system_sequence BIGINT The sequence number of the last
system message for this dialog

first_out_of_order_sequence BIGINT The sequence number of the first
message in the out-of-order messages
for this conversation

last_out_of_order_sequence BIGINT The sequence number of the last
message in the out-of-order messages
for this conversation

Aschenbrenner842-3.book Page 50 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 51

Table 3-13 shows the possible states for a conversation that are stored in the column state_desc
of the sys.conversation_endpoints catalog view.

Table 3-13. Possible States for a Conversation

When you execute the query SELECT * FROM sys.conversation_endpoints, two rows are
returned, as you can see in Figure 3-8.

Figure 3-8. The created conversation endpoints for both services

Retrieving and Processing Messages
If you’ve followed the steps so far, you should have sent your first message from one Service Broker
service to another Service Broker service located in the same database. If everything went fine, your
sent message was stored in the TargetQueue associated with the TargetService. When you execute
the query SELECT * FROM TargetQueue on the queue, you should see the output shown in Figure 3-9.

last_out_of_order_frag INT The sequence number of the last
message in the out-of-order frag-
ments for this dialog

is_system BIT 1 if this is a system dialog

state state_desc Description

SO STARTED_OUTBOUND Indicates that Service Broker processed a BEGIN CONVERSATION
for this conversation, but no messages have been sent yet.

SI STARTED_INBOUND Indicates that another instance started a new conversation
with Service Broker, but Service Broker has not yet completely
received the first message.

CO CONVERSING Indicates that the conversation is established, and both sides
of the conversation send messages.

DI DISCONNECTED_INBOUND Indicates that the remote side of the conversation has issued an
END CONVERSATION. The conversation remains in this state until the
local side of the conversation issues an END CONVERSATION.

DO DISCONNECTED_OUTBOUND Indicates that the local side of the conversation has issued an
END CONVERSATION. The conversation remains in this state until
the remote side of the conversation issues an END CONVERSATION.

CD CLOSED Indicates that the conversation endpoint is no longer in use.

ER ERROR Indicates that an error has occurred on this endpoint.

Column Data Type Description

Aschenbrenner842-3.book Page 51 Tuesday, April 3, 2007 9:44 PM

52 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Figure 3-9. The received message in the target queue

As you can see from Figure 3-9, a queue is implemented as a table. Each message stored in a
queue is represented as a row. However, you can’t manipulate the contents of a queue with INSERT,
DELETE, and UPDATE T-SQL statements. You’ve already seen that you can insert new messages into a
queue with the SEND ON CONVERSATION statement. Table 3-14 lists the columns available for a queue.

Table 3-14. Columns Available for a Queue

Column Data Type Description

status TINYINT The status of the message. Messages in the
queue contain one of the following values:
0 = Ready
1 = Received
2 = Not yet complete
3 = Retained sent message.

priority INT Not used in SQL Server 2005.

queuing_order BIGINT The message order number within the queue.

conversation_group_id UNIQUEIDENTIFIER The identifier of the conversation group that
this message belongs to.

conversation_handle UNIQUEIDENTIFIER The handle for the conversation that this
message is a part of.

message_sequence_number BIGINT The sequence number of the message within
the conversation.

service_name NVARCHAR(512) The name of the service to which the message
is sent.

service_id INT The service identifier to which the message
is sent.

service_contract_name NVARCHAR(256) The name of the contract that the conversation
follows.

service_contract_id INT The contract identifier that the conversation
follows.

message_type_name NVARCHAR(256) The name of the message type that describes
the message.

message_type_id INT The message type identifier that describes the
message.

validation NCHAR(2) The validation used by the message. The
possible values are
E = Empty
N = None
X = XML.

message_body VARBINARY(MAX) The content of the message.

Aschenbrenner842-3.book Page 52 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 53

Retrieving Messages
Let’s now concentrate on how you can process a message from a queue and how you can send a
response message back to the initiating service. Service Broker offers the RECEIVE T-SQL statement
so you can process pending messages from a queue. The RECEIVE T-SQL statement pulls one or more
messages from a queue and removes them physically from the queue. The syntax is similar to a
SELECT statement, as shown in Listing 3-19.

Listing 3-19. Syntax for RECEIVE

[WAITFOR (]
 RECEIVE [TOP (n)]
 column_name [,...n]
 FROM queue_name
 [INTO table_variable]
 [WHERE { conversation_handle = conversation_handle |
 conversation_group_id = conversation_group_id }]
[)] [, TIMEOUT timeout]

Table 3-15 describes the arguments of this T-SQL statement.

Table 3-15. Arguments for RECEIVE

Even though the statement looks a lot like a SELECT statement, the RECEIVE statement is a little bit
different in that a given message can only be received once and is then deleted from the queue. Once
a successful RECEIVE is committed, the message can’t be received again. The RECEIVE statement doesn’t
retrieve all the messages on the queue. It locks the first available conversation group that has messages
available and is not locked by another RECEIVE statement. Listing 3-20 shows how you can use this
statement to retrieve sent messages from the queue. This listing assumes that the sent messages con-
tain valid XML data, because the message body is cast to the new SQL Server 2005 XML data type.

Argument Description

WAITFOR Indicates that the RECEIVE statement waits for a message to arrive on
the queue, if no messages are currently present.

TOP (n) Indicates the maximum number of message to be returned. If this
clause is not specified, all messages are returned that meet the state-
ment criteria.

column_name Specifies the names of the columns to include in the result set.

queue_name Specifies the name of the queue from where the messages are
received.

INTO table_variable Specifies the table variable into which the received messages are
stored.

conversation_handle Specifies the conversation handle for the conversation where
messages are received.

conversation_group_id Specifies the conversation group ID or the conversation group where
messages are received.

TIMEOUT timeout Specifies the amount of time, in milliseconds, for the WAITFOR T-SQL
statement to wait for a new message.

Aschenbrenner842-3.book Page 53 Tuesday, April 3, 2007 9:44 PM

54 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Listing 3-20. Receiving Messages from a Queue

DECLARE @cg UNIQUEIDENTIFIER
DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML;

BEGIN TRY
 BEGIN TRANSACTION;

 RECEIVE TOP(1)
 @cg = conversation_group_id,
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue

 PRINT 'Conversation group: ' + CAST(@cg AS NVARCHAR(MAX))
 PRINT 'Conversation handle: ' + CAST(@ch AS NVARCHAR(MAX))
 PRINT 'Message type: ' + @messagetypename
 PRINT 'Message body: ' + CAST(@messagebody AS NVARCHAR(MAX))
 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

■Note The WHERE clause in the RECEIVE statement is slightly different from the one in the SELECT statement.
You can only make a restriction for the columns conversation_handle and conversation_group_id. If you try
to apply a restriction on another column, you’ll get an error from SQL Server.

One drawback of the code in Listing 3-20 is that a message must already be in the queue when
you execute the T-SQL batch. One solution to this problem is to use the RECEIVE statement in com-
bination with the WAITFOR statement. You can use the WAITFOR T-SQL statement to force the RECEIVE
statement to wait for a message if the queue is empty. The TIMEOUT clause specifies how many milli-
seconds the RECEIVE statement will wait for a message to appear on the queue before returning. A
WAITFOR without a timeout means that the RECEIVE statement will wait for a message no matter how
long it takes. Waiting for a message to appear in a queue is generally more efficient than periodically
polling the queue with RECEIVE. The RECEIVE statement also has a TOP clause to control the number
of messages returned.

Listing 3-21 uses the WAITFOR T-SQL statement in combination with the RECEIVE T-SQL state-
ment. To demonstrate the behavior of the WAITFOR T-SQL statement, you can execute this T-SQL
batch in a separate query window inside SQL Server Management Studio and send messages to the
target service in a separate query window.

Listing 3-21. Using the WAITFOR Statement with the RECEIVE Statement

DECLARE @cg UNIQUEIDENTIFIER
DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML;

Aschenbrenner842-3.book Page 54 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 55

BEGIN TRY
 BEGIN TRANSACTION;

 WAITFOR (
 RECEIVE TOP (1)
 @cg = conversation_group_id,
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT > 0)
 BEGIN
 PRINT 'Conversation group: ' + CAST(@cg AS NVARCHAR(MAX))
 PRINT 'Conversation handle: ' + CAST(@ch AS NVARCHAR(MAX))
 PRINT 'Message type: ' + @messagetypename
 PRINT 'Message body: ' + CAST(@messagebody AS NVARCHAR(MAX))
 END

 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

Processing Messages
Now that you’ve seen how to retrieve a received message from a queue, let’s look at how to process
a retrieved message and send a response message back to the initiator service. You need to imple-
ment the following steps:

1. Process the message and create a response message.

2. Send the response message on the same conversation back to the initiating service.

Let’s look in detail at processing the incoming message. As you saw in Listings 3-20 and 3-21,
you can easily store the XML message body in a variable. As soon as you have the whole XML mes-
sage in a variable, you can use the new XML features of SQL Server 2005 to easily select the needed
data out of the XML document and process it accordingly.

In this case, let’s store the message payload in a table called ProcessedMessages. Listing 3-22
shows the CREATE TABLE T-SQL statement needed to create this table.

Listing 3-22. Definition of the ProcessedMessages Table

CREATE TABLE ProcessedMessages
(
 ID UNIQUEIDENTIFIER NOT NULL,
 MessageBody XML NOT NULL,
 ServiceName NVARCHAR(MAX) NOT NULL
)
GO

Aschenbrenner842-3.book Page 55 Tuesday, April 3, 2007 9:44 PM

56 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

In Listing 3-24, you can also see that you can encapsulate the data-processing logic and
message-processing logic in a local SQL Server transaction. How you process messages in a pro-
duction system is up to your business requirements. As soon as the message is processed, you
can compose a response message and send it back to the initiating service through the SEND ON
CONVERSATION T-SQL statement. At this point, you can close the conversation between both services,
because you don’t have anything else to do. You use END CONVERSATION, and Service Broker sends a
message of the message type [http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog] to
the initiating service. The initiating service must then receive this message and also use END
CONVERSATION on its side. Note carefully that you must explicitly end Service Broker conversations on
both service sides.

■Caution If you forget to end a conversation on one side, the conversation will remain open forever!

Listing 3-23 shows the syntax for the END CONVERSATION T-SQL statement.

Listing 3-23. Syntax for END CONVERSATION

END CONVERSATION conversation_handle
 [[WITH ERROR = failure_code DESCRIPTION = 'failure_text']
 [WITH CLEANUP]]

Table 3-16 describes the arguments of this T-SQL statement.

Table 3-16. Arguments for END CONVERSATION

XML FEATURES IN SQL SERVER 2005

SQL Server 2005 provides you a lot of new XML features. The biggest improvement is the implementation of a native
XML data type. With this data type, you have the ability to store XML documents directly in your tables. You can also
associate this data type with an XML schema collection to enforce a specific XML schema when inserting and updat-
ing the XML data.

The xml data type also offers methods with which you can manipulate the XML data. These methods are
value(), exist(), query(), nodes(), and modify(). With modify(), you can even change the XML docu-
ments stored in a table, directly inside SQL Server. You don’t have to load the XML data into a middle-tier
component, do the necessary updates on the XML data, and write the XML data back to SQL Server.

Argument Description

conversation_handle Specifies the conversation handle for the conversation to end.

WITH ERROR = failure_code Specifies the failure code that is included in the error message
sent to the other side of the conversation. The failure code must
be greater than 0.

Aschenbrenner842-3.book Page 56 Tuesday, April 3, 2007 9:44 PM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 57

You can now extend the code in Listing 3-21 with all the needed tasks. Listing 3-24 shows the
complete T-SQL batch, which performs the following tasks:

• Message receiving

• Message processing

• Storing the message body in a table

• Sending a response message back to the initiating service

• Ending the open conversation on the target service side

Listing 3-24. The Whole Message-Processing Logic on the Target Side

DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML
DECLARE @responsemessage XML;

BEGIN TRY
 BEGIN TRANSACTION
 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT > 0)
 BEGIN
 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c03/RequestMessage')
 BEGIN
 -- Store the received request message in a table
 INSERT INTO ProcessedMessages (ID, MessageBody, ServiceName)
 VALUES (NEWID(), @messagebody, 'TargetService')

 -- Construct the response message
 SET @responsemessage = '<HelloWorldResponse>' +
 @messagebody.value('/HelloWorldRequest[1]', 'NVARCHAR(MAX)') +
 '</HelloWorldResponse>';

DESCRIPTION = failure_text Specifies the failure text that is included in the error message sent
to the other side of the conversation.

WITH CLEANUP Removes all messages and catalog view entries for this side of the
conversation without notifying the other side of the conversation.
Service Broker drops the conversation endpoint, all messages for
the conversation in the transmission queue, and all messages
for the conversation in the service queue. Use this option to
remove conversations that cannot complete normally. For exam-
ple, if the remote service has been permanently removed, you can
use WITH CLEANUP to remove open conversations to that service.

Argument Description

Aschenbrenner842-3.book Page 57 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/RequestMessage
mailto:@messagebody.value('/HelloWorldRequest

58 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

 -- Send the response message back to the initiating service
 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c03/ResponseMessage]
 (
 @responsemessage
);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END
 END
 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

Now you can send a message from the initiating service to the target service. As soon as you exe-
cute the batch, the message is stored in the table ProcessedMessages, and a response message and an
EndDialog message are sent back to the initiating service. When you query the InitiatorQueue, you
see the two messages shown in Figure 3-10.

Figure 3-10. The received messages in the initiating queue

As you can see in Figure 3-10, each received message on the initiating service has a different
message type. This distinction is important for the message-processing logic, because you must
handle different message types. The code in Listing 3-24 isn’t 100% correct, because you also must
be able to handle error messages and end-dialog messages sent by Service Broker. You now develop
the service program for the InitiatorService, which processes these two messages to handle this.
You can then apply the same strategy to the service program you used to process the messages sent
from the target service back to the initiator service. Listing 3-25 shows the complete T-SQL batch,
which does the message processing for the InitiatorService service.

Listing 3-25. The Whole Message-Processing Logic on the Initiator Side

DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML;

BEGIN TRY
 BEGIN TRANSACTION
 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM InitiatorQueue
), TIMEOUT 60000

Aschenbrenner842-3.book Page 58 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/ResponseMessage

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 59

 IF (@@ROWCOUNT > 0)
 BEGIN
 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c03/ResponseMessage')
 BEGIN
 -- Store the received response message in a table
 INSERT INTO ProcessedMessages (ID, MessageBody, ServiceName)
 VALUES (NEWID(), @messagebody, 'InitiatorService')
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation on the initiator's side
 END CONVERSATION @ch;
 END
 END
 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

As you can see from the code in Listing 3-25, the RECEIVE statement returns only one row. So you
must execute the previous T-SQL batch two times to process both messages. Another option would be to
store all retrieved messages in a table variable and process them from there accordingly. In Chapter 6,
where I talk about writing effective service programs, you’ll see several patterns for processing messages.
As soon as you process the EndDialog message on the initiator side, the conversation will end on both
sides and then be discarded from memory. However, for security reasons, it takes about 30 minutes until
the initiator’s conversation endpoint is deleted from the sys.conversation_endpoints catalog view.

Congratulations, you’ve now successfully implemented your first Service Broker messaging
application! In the next section, I show you how to deal with error handling and poison messages.

Error Handling
In this last section of this chapter, I talk a little bit about error handling in Service Broker applica-
tions. Error handling can often be complex in distributed messaging applications, because the
sender and the receiver aren’t running in parallel. As you know, the receiver’s side of a Service
Broker application can run on a remote server anywhere in the world and process incoming mes-
sages at any time—maybe now, maybe a few days later. Debugging and troubleshooting such
applications can be an interesting and time-intensive task.

Error Handling in Service Programs
All work done by Service Broker occurs asynchronously, deferred in a background process. Therefore,
you have no chance to inform users directly about problems during message processing. A good
practice is to handle each different message type in separate TRY/CATCH statements. Transactions
make error handling straightforward by allowing you to roll back all the work done in processing a
message—including all sent and received messages. The key to making this work correctly is to roll
back transactions only when reprocessing the message is likely to succeed.

Aschenbrenner842-3.book Page 59 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/ResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

60 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

For example, you should retry a deadlock error, because it will eventually succeed. However, a
primary key violation caused by trying to insert a record that already exists will retry forever. A mes-
sage that raises, for example, a primary key violation is called a poison message, because no matter
how often you repeat the message processing, it will always fail.

If you decide to roll back a transaction, remember that everything is rolled back. Therefore, if
you want to log the error, you have to do it after the rollback is complete. If you choose not to roll
back the current transaction, you have the following two options:

• End the conversation with an error and commit the transaction: This is the normal way to
handle permanent errors, such as poison messages. In most cases, if one message in a con-
versation can’t be processed, the whole conversation can’t be completed successfully.

• Commit the RECEIVE statement to remove the message from the queue, but continue the
ongoing conversation: This is only appropriate if the conversation can complete successfully
without processing this message. A typical example might be an error that must be resolved
manually but doesn’t prevent the business transaction represented by the dialog from com-
pleting successfully. In this case, you must roll back the work that was done without rolling
back the RECEIVE part of the transaction. You can achieve this with a savepoint. You can create
a savepoint with the SAVE TRANSACTION T-SQL statement. After receiving the message, a save-
point is established in the current transaction so that you can roll back the following work
without rolling back the RECEIVE statement. If the error is a permanent error, such as a pri-
mary key constraint violation, the message is saved in a log table, the message processing is
rolled back to the savepoint of the transaction, and the RECEIVE statement is committed to the
database.

Listing 3-26 shows you how you can implement error handling with a savepoint in your service
program.

Listing 3-26. Error Handling with a Savepoint

DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML
DECLARE @responsemessage XML;

WHILE (1=1)
BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

Aschenbrenner842-3.book Page 60 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 61

 SAVE TRANSACTION MessageReceivedSavepoint

 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c03/RequestMessage')
 BEGIN
 BEGIN TRY
 -- Store the received request message in a table
 INSERT INTO ProcessedMessages (ID, MessageBody, ServiceName)
 VALUES (NEWID(), @messagebody, 'TargetService')

 -- Construct the response message
 SET @responsemessage = '<HelloWorldResponse>' +
 @messagebody.value('/HelloWorldRequest[1]', 'nvarchar(max)') +
 '</HelloWorldResponse>';

 -- Send the response message back to the initiating service
 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c03/ResponseMessage]
 (
 @responsemessage
);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END TRY
 BEGIN CATCH
 IF (ERROR_NUMBER() = 1205)
 BEGIN
 -- A deadlock occurred.
 -- We can try it again...
 ROLLBACK TRANSACTION
 CONTINUE
 END
 ELSE
 BEGIN
 -- Another error occurred.
 -- The message can't be processed successfully
 ROLLBACK TRANSACTION MessageReceivedSavepoint
 PRINT 'Error occurred: ' + CAST(@messagebody AS NVARCHAR(MAX))
 END
 END CATCH
 END

Aschenbrenner842-3.book Page 61 Tuesday, April 3, 2007 9:44 PM

http://ssb.csharp.at/SSB_Book/c03/RequestMessage
mailto:@messagebody.value('/HelloWorldRequest
http://ssb.csharp.at/SSB_Book/c03/ResponseMessage

62 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
END
GO

Let’s step through Listing 3-26 step by step. The first step consists of the message retrieving
logic using the RECEIVE T-SQL statement, which you already know from previous listings. After a new
message is retrieved successfully from the TargetQueue, a savepoint is established through the T-SQL
statement SAVE TRANSACTION. This savepoint is given the name MessageReceivedSavepoint:

-- Message retrieving through the RECEIVE T-SQL statement
-- ...

IF (@@ROWCOUNT = 0)
BEGIN
 ROLLBACK TRANSATION
 BREAK
END

SAVE TRANSACTION MessageReceivedSavepoint

After the savepoint is established, you try to process the message type [http://ssb.csharp.at/
SSB_Book/c03/RequestMessage]. If an error occurs during the process of this message type, the exe-
cution goes directly into the CATCH block. Inside the CATCH block, you check to see if a permanent
error occurred. If this is the case, you roll back the transaction to the established savepoint named
MessageReceivedSavepoint. If it is not a permanent error (like a deadlock), you roll back the whole
transaction and try it again:

BEGIN CATCH
 IF (ERROR_NUMBER() = 1205)
 BEGIN
 -- A deadlock occurred.
 -- We can try it again...
 ROLLLBACK TRANSACTION
 CONTINUE
 END
 ELSE
 BEGIN
 -- Another error occurred.
 -- The message can't be processed successfully, because it's a poison message
 ROLLBACK TRANSACTION MessageReceivedSavepoint
 PRINT 'Error occurred: ' + CAST(@messagebody AS NVARCHAR(MAX))
 END
END CATCH

Aschenbrenner842-3.book Page 62 Tuesday, April 3, 2007 9:44 PM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://ssb.csharp.at/SSB_Book/c03/RequestMessage
http://ssb.csharp.at/SSB_Book/c03/RequestMessage

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 63

Poison-Message Handling
Careful coding is always the best approach to handling poison messages, because only the applica-
tion knows whether it makes sense to roll back a transaction and try the RECEIVE statement again.
Service Broker includes a mechanism for detecting and dealing with poison messages. When a
queue experiences five rollbacks in a row, Service Broker disables the queue and raises a SQL Server
event. An application that subscribes to the poison message event notification with the CREATE EVENT
NOTIFICATION T-SQL statement can either try to resolve the poison message automatically or notify
an administrator who can manually resolve the poison message and reenable the queue.

Service Broker’s poison-message handling is different from most other messaging systems.
Other messaging systems move poison messages to a “dead-letter” queue and go on to process the
rest of the messages in the queue. This approach won’t work for Service Broker dialogs, because dia-
log messages must be processed in order. Skipping a poison message violates the dialog semantics.
While Service Broker effectively detects poison messages, disabling the queue temporarily halts all
processing for applications associated with this queue. For this reason, you should use good defen-
sive coding techniques to prevent poison messages in the first place.

To show you how Service Broker handles poison messages, let’s create two T-SQL batches. The
first one sends a message, and the second one retrieves the message and just rolls back the current
transaction. After the service program has tried to process the message from the queue five times,
the message will become a poison message and Service Broker will disable the queue automatically,
as shown in Listing 3-27.

Listing 3-27. Handling Poison Messages in Service Broker

DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML

WHILE (1=1)
BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 -- Rolling back the current transaction
 PRINT 'Rollback the current transaction - simulating a poison message...'
 ROLLBACK TRANSACTION
END
GO

Aschenbrenner842-3.book Page 63 Tuesday, April 3, 2007 9:44 PM

64 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Now, when you place a message into the TargetQueue and execute the service program shown
in Listing 3-27, you’ll see that Service Broker deactivates the queue automatically, and you’ll get an
error message, as shown in Figure 3-11.

Figure 3-11. Poison messages in Service Broker

When you want to reenable the queue, you must execute the following T-SQL statement:

ALTER QUEUE TargetQueue WITH STATUS = ON

Note that Service Broker creates an event notification only when a Service Broker queue is
disabled because of a poison message. When you disable a queue manually, no event notification
message is created. Because of this, an application has the possibility to subscribe to this event
notification and react accordingly in this error situation. You can use the CREATE EVENT NOTIFICATION
T-SQL statement to set up an event notification. Listing 3-28 shows the syntax for this statement.

Listing 3-28. Syntax for CREATE EVENT NOTIFICATION

CREATE EVENT NOTIFICATION event_notification_name
ON { SERVER | DATABASE | QUEUE queue_name }
[WITH FAN_IN]
FOR { event_type | event_group } [,...n]
TO SERVICE 'broker_service', { 'broker_instance_specifier' | 'current database' }

Aschenbrenner842-3.book Page 64 Tuesday, April 3, 2007 9:44 PM

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 65

Table 3-17 describes the arguments for this statement.

Table 3-17. Arguments for CREATE EVENT NOTIFICATION

Listing 3-29 shows how you can set up the event notification and create the T-SQL batch that
handles the event notification.

Listing 3-29. Using Event Notification of Poison Messages

-- Create the queue that stores the event notification messages
CREATE QUEUE PoisonMessageNotifyQueue
GO

-- Create the service that accepts the event notification messages
CREATE SERVICE PoisonMessageNotifyService ON QUEUE PoisonMessageNotifyQueue
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
);
GO

-- Create the event notification itself
CREATE EVENT NOTIFICATION PoisonMessageNotification ON QUEUE TargetQueue
FOR Broker_Queue_Disabled
TO SERVICE 'PoisonMessageNotifyService', 'current database'
GO

-- Select the received event notification message
SELECT * FROM PoisonMessageNotifyQueue
GO

Argument Description

event_notification_name Specifies the name of the event notification to be created

SERVER Creates the event notification for the current instance of SQL
Server

DATABASE Creates the event notification for the current SQL Server database

queue_name Specifies the name of the queue to which the event notification
applies

WITH FAN_IN Instructs SQL Server to send only one message per event to any
specified service for all event notifications that are created on the
same event, are created by the same principal, and specify the same
service and broker_instance_specifier

event_type Specifies the name of the event type that causes the event notifica-
tion to occur

event_group Specifies the name of a predefined group of T-SQL or SQL Trace
event types

broker_service Specifies the target service that receives the event notification
message that occurred

broker_instance_specifier Specifies a Service Broker instance against which broker_service
is resolved

Aschenbrenner842-3.book Page 65 Tuesday, April 3, 2007 9:44 PM

http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

66 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

Listing 3-30 shows the message body for the event notification message.

Listing 3-30. The Body of the Event Notification Message

<EVENT_INSTANCE>
 <EventType>BROKER_QUEUE_DISABLED>
 <PostTime>2006-09-15T23:56:19.187</PostTime>
 <SPID>21</SPID>
 <ServerName>WINXP_KLAUS</ServerName>
 <LoginName>sa</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>Chapter3_HelloWorldSvc</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>TargetQueue</ObjectName>
 <ObjectType>QUEUE</ObjectType>
</EVENT_INSTANCE>

Ending Conversations with Errors
You must be aware that Service Broker can send error messages along with the ongoing con-
versation (the user also has this ability through END CONVERSATION conversation_handle WITH
ERROR). This means that your service programs must be able to handle the message type
[http://schemas.microsoft.com/SQL/ServiceBroker/Error] that indicates an error. Once an
error is sent to one side of the conversation, neither side can do a SEND. However, the error receiver
can still receive messages already in the queue. The content of this message type is well-formed
XML. A message of this type is also delivered to the initiator service if the target service ends a
dialog with an error message. Listing 3-31 shows the code needed for a target service to end a con-
versation with an error.

Listing 3-31. Ending a Conversation with an Error

DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML

BEGIN TRY
 BEGIN TRANSACTION
 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 60000

 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c03/RequestMessage')
 BEGIN
 -- End the conversation with an error
 END CONVERSATION @ch
 WITH ERROR = 4242
 DESCRIPTION = 'My custom error message'

Aschenbrenner842-3.book Page 66 Tuesday, April 3, 2007 9:44 PM

http://schemas.microsoft.com/SQL/ServiceBroker/Error
http://ssb.csharp.at/SSB_Book/c03/RequestMessage

C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N 67

 END
 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

As soon as a service has ended its side of the conversation with an error, an error message is sent
to the other endpoint of the conversation. The other side still must call END CONVERSATION. The mes-
sage body contains the error code and the error message specified by the other service. Listing 3-32
shows the XML error message.

Listing 3-32. The XML Error Message

<Error xmlns="http://schemas.microsoft.com/SQL/ServiceBroker/Error">
 <Code>4242</Code>
 <Description>My custom error message</Description>
</Error>

With the new XML features in SQL Server 2005, you can now extract the necessary error infor-
mation easily out of the message and store it in a table, for example. Listing 3-33 shows an example
of a service program that handles error messages accordingly.

Listing 3-33. Handling Error Messages

DECLARE @ch UNIQUEIDENTIFIER
DECLARE @messagetypename NVARCHAR(256)
DECLARE @messagebody XML
DECLARE @errorcode INT
DECLARE @errormessage NVARCHAR(3000);

BEGIN TRY
 BEGIN TRANSACTION
 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM InitiatorQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT > 0)
 BEGIN
 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c03/ResponseMessage')
 BEGIN
 -- Store the received response) message in a table
 INSERT INTO ProcessedMessages (ID, MessageBody, ServiceName)
 VALUES (NEWID(), @messagebody, 'InitiatorService')
 END

Aschenbrenner842-3.book Page 67 Tuesday, April 3, 2007 9:44 PM

http://schemas.microsoft.com/SQL/ServiceBroker/Error
http://ssb.csharp.at/SSB_Book/c03/ResponseMessage

68 C H A P T E R 3 ■ S E R V I C E B R O K E R I N A C T I O N

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation on the initiator's side
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/Error')
 BEGIN
 -- Extract the error information from the sent message
 SET @errorcode = (SELECT @messagebody.value(
 N'declare namespace
 brokerns="http://schemas.microsoft.com/SQL/ServiceBroker/Error";
 (/brokerns:Error/brokerns:Code)[1]', 'int'));
 SET @errormessage = (SELECT @messagebody.value(
 'declare namespace
 brokerns="http://schemas.microsoft.com/SQL/ServiceBroker/Error";
 (/brokerns:Error/brokerns:Description)[1]', 'nvarchar(3000)'));

 -- Log the error
 INSERT INTO ErrorLog(ID, ErrorCode, ErrorMessage)
 VALUES (NEWID(), @errorcode, @errormessage)

 -- End the conversation on the initiator's side
 END CONVERSATION @ch;
 END
 END
 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH
GO

Summary
In this chapter, you’ve seen how Service Broker applications are developed. You started by defining
message types, contracts, queues, and services. You then moved on to sending and receiving mes-
sages, where you learned the usage of the T-SQL statements SEND and RECEIVE. In the last section of
this chapter, you learned about troubleshooting, and you saw how Service Broker handles poison
messages. Finally, you learned about Service Broker error messages and how you can process them
in your own service programs.

In the next chapter, I cover Service Broker activation, with which you can automatically start a
stored procedure when a new message arrives at a Service Broker queue. Stay tuned.

Aschenbrenner842-3.book Page 68 Tuesday, April 3, 2007 9:44 PM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker/Error
mailto:@messagebody.value
http://schemas.microsoft.com/SQL/ServiceBroker/Error
mailto:@messagebody.value
http://schemas.microsoft.com/SQL/ServiceBroker/Error

69

■ ■ ■

C H A P T E R 4

Service Broker Activation

With activation, you can specify that Service Broker starts a service program automatically as
soon as a new message arrives at a queue. In this chapter, I’ll present activation in detail and show
you how you can use it to implement great Service Broker solutions. In this chapter, I’ll cover the
following:

• Activation basics: Activation allows you to start a service program as soon as a new message
arrives in a service queue. With activation, you can process received messages automatically
without any additional coding efforts.

• Internal activation: With internal activation, you have the ability to activate a stored proce-
dure as soon as a new message arrives. As you’ll see, there are several options, as well as
some issues you must be careful of.

• External activation: External activation allows you to start an external application when a
message arrives in a service queue. You can move long-running processing logic away from
SQL Server and put it into separate processes for better performance and scalability.

• Parallel activation: Normally, activated stored procedures are only started when Service
Broker encounters receiving new messages. However, there are some tricks to starting more
than one stored procedure simultaneously for message processing.

• Troubleshooting activation: If you’re not careful during activation setup, you could encounter
several problems. You’ll learn about common configuration issues introduced with Service
Broker activation.

Activation Basics
Traditionally, a messaging application handled a queue by continuously polling the queue to see if
any messages had arrived or by using a trigger on the queue that would start the receiving applica-
tion every time a message arrived on the queue. The first approach wastes a lot of resources when
few messages are arriving on the queue, and the second approach wastes a lot of resources on start-
ing the application if messages are arriving at a high rate. Service Broker activation takes the best
features of both approaches. When a message arrives on a queue, a stored procedure starts to pro-
cess if a stored procedure isn’t already running to process it.

When a stored procedure starts, it keeps receiving messages until the queue is empty. This
means that resources aren’t wasted by polling an empty queue, and resources aren’t wasted by start-
ing an application to process each message that arrives. Therefore, activation addresses two issues:

• Having to start service programs manually when a new message arrives on a queue

• Terminating service programs when all messages on the queue are processed

8423ch04.fm Page 69 Tuesday, April 3, 2007 9:46 PM

70 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Service Broker activation is a unique way to ensure that the right resources are available to pro-
cess messages as they arrive on a queue. Service Broker supports two different kinds of activation:

• Internal activation

• External activation

When you use internal activation, a specified stored procedure starts as soon as a new message
arrives on a queue. The stored procedure must receive and process messages from the queue it is
associated with. You use external activation when you want to process incoming messages in an
external application such as a Windows service. When you use external activation, you must register
for a notification of an event that fires when an external activation should occur. The receiving appli-
cation completely defines the way messages are processed in the external application.

Before going into the details about internal and external activation, let’s look at when to use
which type of activation and when activation occurs in a database.

Startup Strategies
The strategies for starting an application fall into four different categories:

• Internal activation

• External activation

• Scheduled tasks

• Startup tasks

Each activation strategy has different pros and cons. A Service Broker application can also com-
bine some of these strategies. For example, an application can use internal activation with a small
number of queue readers most of the time and then start more queue readers automatically at cer-
tain peak times during the day. Let’s take a brief look at each of these startup strategies.

Internal Activation
With Service Broker internal activation, a Service Broker queue monitor directly activates a stored
procedure when necessary. This is often the most straightforward approach. With the internal acti-
vation of a stored procedure, you don’t need to write additional code in the application to manage
the activation. However, internal activation requires that you write the application as a stored
procedure, either as T-SQL or Common Language Runtime (CLR) code. When you use internal acti-
vation, you write your service program in a fashion that it terminates if no messages are available on
the associated queue.

External Activation
Some applications run in response to a specific event. For example, you can run a monitoring appli-
cation when the CPU usage on the computer falls below a specific level, or you can run a logging
application when a new table is created. External activation is a special case of this event-based
activation.

For events that event notifications can trigger, event-based activation can be combined with
Service Broker activation. In this case, you can use internal activation on the queue that receives the
event notification. The activation stored procedure receives the notification message and starts an
external application. The problem with this solution is that you can’t control which things the appli-
cation does with the received messages. Therefore, this approach could lead to several security risks
when external applications are involved.

8423ch04.fm Page 70 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 71

Scheduled Tasks
With a scheduled task, an application is activated on a configured schedule. This strategy is conve-
nient for batch-processing applications. An application that runs as a scheduled task can exit when
there are no more messages to process, or the application can exit at a certain time. For example, an
application that processes orders to a supplier can store messages during the day and then process
the messages overnight to produce a single order to the supplier. In this case, the application can use
a SQL Server Agent job to start the application at a specific time each night.

Startup Tasks
Some applications start once, typically when the computer starts or when SQL Server starts. Exam-
ples of these tasks are a startup stored procedure in SQL Server, an application in the Windows
startup group, or a Windows service. In this case, the application remains running and processes
messages as they arrive. An application that runs continuously doesn’t require startup time when
a message arrives on the queue. However, because the application doesn’t exit when there are no
messages, the program consumes resources even when there is no work for the program to do.

When Is Activation Needed?
Activation is necessary whenever a queue has useful work to perform. Queue monitors determine
whether activation is necessary. Service Broker creates a queue monitor for each queue with activa-
tion STATUS = ON or for which a QUEUE_ACTIVATION event notification has been registered. The
sys.dm_broker_queue_monitors dynamic management view (DMV) lists the queue monitors active
in the SQL Server instance. Each queue monitor tracks whether the queue contains messages that
are ready to be received, how recently a RECEIVE T-SQL statement on the queue returned an empty
result set, and how many activated stored procedures are currently running for the queue.

A queue monitor checks whether activation is necessary every few seconds and when any of the
following events occur:

• A new message arrives at the queue.

• SQL Server executes a RECEIVE T-SQL statement for the queue.

• A transaction containing a RECEIVE T-SQL statement rolls back.

• All stored procedures started by the queue monitor exit.

• SQL Server executes an ALTER T-SQL statement for the queue.

Activation is necessary if one of the following things is true:

• A new message arrives on a queue that contains no unread messages, and there are no acti-
vated stored procedures running for the queue.

• The queue contains unread messages, there is no session waiting in a GET CONVERSATION
GROUP T-SQL statement or a RECEIVE T-SQL statement without a WHERE clause, and no GET
CONVERSATION GROUP T-SQL statement or RECEIVE T-SQL statement without a WHERE clause has
returned an empty result set for a few seconds. In other words, when messages are accumu-
lating on the queue, the activated stored procedures aren’t able to read them fast enough. You
can find more details on the GET CONVERSATION GROUP T-SQL statement in Chapter 6.

In effect, this activation approach allows the queue monitor to tell whether the number of
queue readers processing the queue are keeping up with the incoming message traffic. Notice that
this approach takes conversation group locking into account. Because only one queue reader at a
time can process messages for a conversation group, starting queue readers in response to a simpler

8423ch04.fm Page 71 Tuesday, April 3, 2007 9:46 PM

72 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

approach, such as the number of unread messages in the queue, might waste resources. Instead,
Service Broker activation considers whether a new queue reader will have useful work to do.

For example, a queue may contain a large number of unprocessed messages on a single conver-
sation. In this case, only one queue reader can process the messages. The queue monitor activates
another queue reader. The second queue reader waits in the RECEIVE T-SQL statement, since all of the
messages belong to the same conversation group. As long as all the messages in the queue belong
to the same conversation group and the second queue reader remains running, the queue monitor
doesn’t start another queue reader.

Once Service Broker determines that activation is necessary, Service Broker must decide
whether activation occurs. For internal activation, the queue monitor activates a new instance
of the activated stored procedure when the existing ones can’t keep up with processing the
current messages in the queue. If the number of running programs is equal to or greater than the
MAX_QUEUE_READERS value, the queue monitor won’t start a new instance of the stored procedure.
The sys.dm_broker_activated_tasks DMV contains information on stored procedures started by
Service Broker.

For external activation, Service Broker has no information on the number of distinct queue
readers that may be working with the queue. Further, some startup time may be required between
the time that the activation event is raised and the time that a reader begins reading the queue.
Therefore, Service Broker provides a time-out for an external application to respond. Once an appli-
cation calls RECEIVE on the queue or the time-out expires, Service Broker will create another event
notification if activation is required. An external application monitors the EVENT NOTIFICATION while
the program is running to determine whether more queue readers are required to read messages.
Let’s now have a look at both internal and external activation.

Internal Activation
When you want to use internal activation, you must configure a service queue according to your
requirements. The first thing you need when you set up internal activation is a stored procedure that
contains the service programs that process incoming messages on the associated service queue. All
the service programs you’ve seen in the previous chapters can be used in a stored procedure for
internal activation. Listing 4-1 shows a stored procedure that processes incoming request messages
on the associated queue.

Listing 4-1. A Stored Procedure Used for Internal Activation on the Target Side

CREATE PROCEDURE ProcessRequestMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename NVARCHAR(256)
 DECLARE @messagebody XML
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRY
 BEGIN TRANSACTION

8423ch04.fm Page 72 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 73

 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c04/RequestMessage')
 BEGIN
 -- Store the received request message in a table
 INSERT INTO ProcessedMessages (ID, MessageBody, ServiceName)
 VALUES (NEWID(), @messagebody, 'TargetService')

 -- Construct the response message
 SET @responsemessage = '<HelloWorldResponse>' +
 @messagebody.value('/HelloWorldRequest[1]', 'NVARCHAR(MAX)') +
 '</HelloWorldResponse>';

 -- Send the response message back to the initiating service
 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/ResponseMessage]
 (
 @responsemessage
);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION
 END CATCH
 END
GO

8423ch04.fm Page 73 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestMessage
mailto:@messagebody.value('/HelloWorldRequest
http://ssb.csharp.at/SSB_Book/c04/ResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

74 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

As soon as you create the needed stored procedure, you can enable the internal activation
mechanism on a service queue. You can do this during the creation of the queue with the CREATE
QUEUE T-SQL statement or later through the ALTER QUEUE T-SQL statement. Listing 4-2 demonstrates
both techniques.

Listing 4-2. Setting Up a Queue for Internal Activation

CREATE QUEUE [TargetQueue]
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = [ProcessRequestMessages],
 MAX_QUEUE_READERS = 1,
 EXECUTE AS SELF
)

-- or

ALTER QUEUE [TargetQueue]
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = [ProcessRequestMessages],
 MAX_QUEUE_READERS = 1,
 EXECUTE AS SELF
)

Table 4-1 shows the arguments you need to specify in the CREATE QUEUE/ALTER QUEUE T-SQL
statement, when you want to configure internal activation for a service queue.

Table 4-1. The Needed Arguments for Internal Activation

Argument Description

STATUS Indicates if the activation feature of Service Broker is used. If STATUS = ON,
Service Broker will start the specified stored procedure (indicated with
PROCEDURE_NAME) when the number of procedures currently running is less
than MAX_QUEUE_READERS and when messages arrive on the queue faster
than the stored procedure receives messages. When STATUS = OFF, the
queue doesn’t activate the stored procedure. If this clause is not specified,
the default is ON.

PROCEDURE_NAME Specifies the name of the stored procedure you need to activate to process
messages in this queue.

MAX_QUEUE_READERS Specifies the maximum number of instances of the activated stored proce-
dure that the queue starts at the same time. The value of MAX_QUEUE_READERS
must be a number between 0 and 32,767.

EXECUTE AS Specifies the SQL Server database user account under which the activated
stored procedure runs. SQL Server must be able to check the permissions for
this user at the time that the queue activates the stored procedure. For a
Windows domain user, the server must be connected to the domain when
the procedure is activated or when activation fails. For a SQL Server user,
Service Broker always checks the permissions. EXECUTE AS SELF means that
the stored procedure executes as the current user.

8423ch04.fm Page 74 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 75

As soon as you configure the internal activation on the TargetQueue, you can use the
sys.service_queues catalog view to show if the configuration of the internal activation com-
pleted successfully (see Figure 4-1). If a stored procedure is registered for activation, the
activation_procedure column will show the name of this procedure.

Figure 4-1. sys.service_queues for an activated stored procedure

As soon as you set up internal activation on a service queue, you can use the sys.dm_broker_
queue_monitors DMV to view the currently available queue monitors that manage the activation of
your queues. This DMV returns a row for each available queue monitor. Table 4-2 describes the col-
umns in the sys.dm_broker_queue_monitors DMV.

Table 4-2. Columns in sys.dm_broker_queue_monitors

Listing 4-3 shows how you can use the information provided by this DMV to retrieve the current
status of all message queues available in the current database.

Listing 4-3. Retrieving the Status of the Message Queues

SELECT
 t1.name AS [Service Name],
 t3.name AS [Schema Name],
 t2.name AS [Queue Name],
 CASE WHEN t4.state IS NULL
 THEN 'Not available'
 ELSE t4.state
 END AS [Queue State],

Column Data Type Description

database_id INT The identifier for the database that contains the
queue that the queue monitor watches.

queue_id INT The identifier for the queue that the queue monitor
watches.

state NVARCHAR(64) Represents the state of the queue monitor. The
state can be one of the following possible values:
INACTIVE, NOTIFIED, RECEIVES_OCCURING.

last_empty_rowset_time DATETIME The last time that a RECEIVE T-SQL statement from
the queue returned an empty result set.

last_activated_time DATETIME The last time that this queue monitor activated a
stored procedure.

tasks_waiting INT The number of sessions that are currently waiting
within a RECEIVE T-SQL statement for this queue.

8423ch04.fm Page 75 Tuesday, April 3, 2007 9:46 PM

76 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

 CASE WHEN t4.tasks_waiting IS NULL THEN '--'
 ELSE CONVERT(VARCHAR, t4.tasks_waiting)
 END AS [Tasks Waiting],
 CASE WHEN t4.last_activated_time IS NULL THEN '--'
 ELSE CONVERT(VARCHAR, t4.last_activated_time)
 END AS [Last Activated Time],
 CASE WHEN t4.last_empty_rowset_time IS NULL THEN '--'
 ELSE CONVERT(VARCHAR, t4.last_empty_rowset_time)
 END AS [Last Empty Rowset Time],
 (
 SELECT
 COUNT(*)
 FROM sys.transmission_queue t6
 WHERE (t6.from_service_name = t1.name)
 AND (t5.service_broker_guid = t6.to_broker_instance)
)
 AS [Message Count]
 FROM sys.services t1
 INNER JOIN sys.service_queues t2 ON t1.service_queue_id = t2.object_id
 INNER JOIN sys.schemas t3 ON t2.schema_id = t3.schema_id
 LEFT OUTER JOIN sys.dm_broker_queue_monitors t4 ON t2.object_id = t4.queue_id
 AND t4.database_id = DB_ID()
 INNER JOIN sys.databases t5 ON t5.database_id = DB_ID()
GO

By now, you’ve configured the internal activation on the TargetQueue, so now you can send a
request message to the TargetService. In this case, the configured stored procedure is activated,
receives the message, processes it, and returns a response message back to the InitiatorService.
Listing 4-4 shows the code needed to send a request message to the TargetService.

■Note Please make sure to create a new database in which you create all the necessary Service Broker objects
(message types, contracts, queues, and services) needed for this chapter. Please refer to the code samples for this
chapter in the Source Code/Download area of the Apress website (http://www.apress.com) for more details.

Listing 4-4. Sending a Message to an Internal Activated Queue

BEGIN TRY;
 BEGIN TRANSACTION
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c04/HelloWorldContract]
 WITH ENCRYPTION = OFF;

8423ch04.fm Page 76 Tuesday, April 3, 2007 9:46 PM

http://www.apress.com
http://ssb.csharp.at/SSB_Book/c04/HelloWorldContract

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 77

 SET @msg =
 '<HelloWorldRequest>
 Klaus Aschenbrenner
 </HelloWorldRequest>';

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/RequestMessage] (@msg);

 COMMIT;
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH

As you can see from Listing 4-4, there are no differences in the sending code from the samples
shown in Chapter 3, where you use activation on the receiving side. It is completely transparent to a
sending service if the target queue is activated internally or not. As soon as the stored procedure is
activated on the receiving side, you can also query the sys.dm_broker_activated_tasks DMV to
determine if the activation of the stored procedure was successful. However, you must investigate
this view quickly after sending a message, because otherwise, the stored procedure will have pro-
cessed the message already and won’t be activated anymore. In this case, the stored procedure
won’t be listed anymore in the sys.dm_broker_activated_tasks DMV. Table 4-3 describes the col-
umns available through this view.

Table 4-3. Columns Available for the sys.dm_broker_activated_tasks DMV

Figure 4-2 shows the output of the sys.dm_broker_activated_tasks DMV.

Figure 4-2. Output of the sys.dm_broker_activated_tasks DMV

Column Data Type Description

spid INT The session ID of the activated stored procedure

database_id INT The database ID in which the queue is defined

queue_id INT The object ID of the queue for which the stored procedure is
activated

procedure_name NVARCHAR(650) The name of the activated stored procedure

execute_as INT The user ID that the stored procedure runs as

8423ch04.fm Page 77 Tuesday, April 3, 2007 9:46 PM

www.allitebooks.com

http://ssb.csharp.at/SSB_Book/c04/RequestMessage
http://www.allitebooks.org

78 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

By now, you’ve configured internal activation on the TargetQueue on the receiving side. You can
also apply the same technique on the sending side where the InitiatorQueue lives. Listing 4-5 shows
a stored procedure for processing incoming response messages on the InitiatorQueue.

Listing 4-5. A Stored Procedure Used for Internal Activation on the Initiator Side

CREATE PROCEDURE ProcessResponseMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename NVARCHAR(256)
 DECLARE @messagebody XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRY
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM InitiatorQueue
), TIMEOUT 60000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c04/ResponseMessage')
 BEGIN
 INSERT INTO ProcessedMessages (ID, MessageBody, ServiceName)
 VALUES(NEWID(), @messagebody, 'InitiatorService')
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION
 END CATCH
 END

8423ch04.fm Page 78 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/ResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 79

Finally, you need to configure the stored procedure ProcessResponseMessages as an activated
stored procedure for the InitiatorQueue, as shown in Listing 4-6.

Listing 4-6. Internal Activation Configuration on the Initiator Side

ALTER QUEUE [InitiatorQueue]
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = [ProcessResponseMessages],
 MAX_QUEUE_READERS = 1,
 EXECUTE AS SELF
)

As soon as you enable internal activation on the queue, Service Broker starts the stored procedure
and processes all available messages in the queue sent by the stored procedure ProcessRequestMessages
used on the other side of this conversation.

Controlling Message Throughput
The most interesting thing about activation is that it helps you control the message throughput of
your Service Broker application through the parameters STATUS and MAX_QUEUE_READERS in the CREATE
QUEUE and ALTER QUEUE T-SQL statements.

Let’s assume that you have a Service Broker application that receives several thousand mes-
sages per hour during the whole day. Processing each message takes a lot of time, because you must
interact with some other Service Broker services spread across the country. Because of this high
workload, you’re unable to process the messages immediately through a service program when they
arrive at the service queue. Activation allows you to disable the activation mechanism or set the
MAX_QUEUE_READERS parameters to 0.

When you disable the activation mechanism, new messages are stored in the service queue
but aren’t processed by the service program immediately. Therefore, you need no additional pro-
cessing power, but you’re able to support a high workload scenario. As soon as you have more
processing power available (e.g., during the night, when no one works with the system), you can
activate the activation mechanism so that the retrieved messages of the whole day get processed
automatically and consume the available processing power. Listing 4-7 demonstrates this.

Listing 4-7. Disabling Activation for a Service Queue

ALTER QUEUE [TargetQueue]
WITH ACTIVATION
(
 STATUS = OFF
)

-- or

ALTER QUEUE [TargetQueue]
WITH ACTIVATION
(
 MAX_QUEUE_READERS = 0
)

8423ch04.fm Page 79 Tuesday, April 3, 2007 9:46 PM

80 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

With the code in Listing 4-8, you can generate a high workload for your Service Broker applica-
tion. In this case, the messages are stored in the service queue and aren’t processed by the activated
stored procedure.

Listing 4-8. Generating a High Message Workload for the Target Queue

DECLARE @i INT
SET @i = 1

WHILE (@i <= 10000)
BEGIN
 BEGIN TRANSACTION;
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c04/HelloWorldContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<HelloWorldRequest>
 Klaus Aschenbrenner
 </HelloWorldRequest>';

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/RequestMessage]
 (
 @msg
);

 COMMIT TRANSACTION;
 SET @i = @i + 1
END

This T-SQL batch generates 10,000 request messages for you that are sent to the TargetService.
Because MAX_QUEUE_READERS is set to 0, the messages are stored in the target queue and aren’t pro-
cessed further, as you can see in Figure 4-3.

Figure 4-3. The unprocessed messages stored in the target queue

8423ch04.fm Page 80 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/HelloWorldContract
http://ssb.csharp.at/SSB_Book/c04/RequestMessage

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 81

When you enable the internal activation on the target queue or when you set the parameter
MAX_QUEUE_READERS to a value greater than 0, Service Broker starts processing the stored messages
automatically, as Listing 4-9 demonstrates.

Listing 4-9. Configuration of MAX_QUEUE_READERS

ALTER QUEUE [TargetQueue]
WITH ACTIVATION
(
 MAX_QUEUE_READERS = 20
)

With the MAX_QUEUE_READERS parameter, you can control how many conversation groups can be
processed in parallel. You can put a throttle on your queue, depending on the configured value of
MAX_QUEUE_READERS. For example, if you set MAX_QUEUE_READERS to 20, the sys.dm_broker_activated_tasks
DMV will show 20 stored procedures running in parallel and processing the stored messages, as you can
see in Figure 4-4.

Figure 4-4. The current activated stored procedures

8423ch04.fm Page 81 Tuesday, April 3, 2007 9:46 PM

82 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Note that an activated stored procedure can only handle messages from one conversation
group concurrently. For example, if you have a conversation group with several hundred messages,
and you set MAX_QUEUE_READERS to a higher number, then Service Broker only starts one stored pro-
cedure that processes all messages from this conversation group sequentially. This is because
messages from one conversation group can only be executed sequentially due to the synchroniza-
tion issues. Think back to Chapter 1, where I talked about the synchronization problems introduced
with several concurrent queue readers.

Stored-Procedure Signing
When you work with activated stored procedures in Service Broker, you may encounter strange
behavior, because a number of features behave differently when you use them in the context of an
activated stored procedure. This often happens because the activated stored procedure is executed
in a security context that is different from the user you’re currently working with. Therefore, you can
encounter strange behavior when you do the following things in your activated stored procedure:

• Querying server-level views: Querying server-level views requires special permissions that
standard users don’t have. Therefore, your activated stored procedure will return fewer rows
than you have tested it for under a higher-privileged user account.

• Querying DMVs: DMVs return only rows to which the user of the current used security context
has permissions. When you query DMVs with your current user account, you may get more
rows back from a DMV than when you use a lower-privileged security context in your acti-
vated stored procedure.

When you execute the same stored procedure from a user session, everything seems to work
as you’d expect because of the higher-privileged security context. A typical example is when a stored
procedure does a lookup in a DMV such as sys.dm_exec_sessions. This DMV returns one row per
authenticated session on SQL Server. When you execute this stored procedure in the context of
internal activation, you get fewer rows back, as expected. Let’s demonstrate this in a practical
example.

■Note Please create a new database, because the objects you’ll use here were already used in the last sample.

Listing 4-10 shows the complete Service Broker code needed to set up a Service Broker applica-
tion that returns the current active sessions from the sys.dm_exec_sessions DMV.

Listing 4-10. Service Broker Service for Retrieving Session Information

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/RequestSessions]
 VALIDATION = EMPTY
GO

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/Sessions]
 VALIDATION = WELL_FORMED_XML
GO

8423ch04.fm Page 82 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestSessions
http://ssb.csharp.at/SSB_Book/c04/Sessions

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 83

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c04/SessionsContract]
(
 [http://ssb.csharp.at/SSB_Book/c04/RequestSessions] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c04/Sessions] SENT BY TARGET
)
GO

CREATE QUEUE [TargetQueue]
GO

CREATE SERVICE [TargetService]
ON QUEUE [TargetQueue]
(
 [http://ssb.csharp.at/SSB_Book/c04/SessionsContract]
)
GO

CREATE QUEUE [InitiatorQueue]
GO

CREATE SERVICE [InitiatorService]
ON QUEUE [InitiatorQueue]
GO

CREATE PROCEDURE SessionsServiceProcedure
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename SYSNAME;

 BEGIN TRY
 BEGIN TRANSACTION
 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name
 FROM TargetQueue
), TIMEOUT 60000;

 IF (@@ROWCOUNT > 0)
 BEGIN
 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c04/RequestSessions')
 BEGIN
 DECLARE @response XML;

8423ch04.fm Page 83 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/SessionsContract
http://ssb.csharp.at/SSB_Book/c04/RequestSessions
http://ssb.csharp.at/SSB_Book/c04/Sessions
http://ssb.csharp.at/SSB_Book/c04/SessionsContract
http://ssb.csharp.at/SSB_Book/c04/RequestSessions

84 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

 SELECT @response =
 (
 SELECT * FROM sys.dm_exec_sessions
 FOR XML PATH ('session'), TYPE
);

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/Sessions]
 (
 @response
);

 END CONVERSATION @ch;
 END
 END

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION
 END CATCH
END
GO

As you can see from Listing 4-10, you use the FOR XML PATH feature of SQL Server to transform
the returned rows of the sys.dm_exec_sessions DMV directly into an XML document stored in a XML
data type. The retrieved XML document is finally sent back to the initiator service with this code:

DECLARE @response XML;

SELECT @response =
(
 SELECT * FROM sys.dm_exec_sessions
 FOR XML PATH ('session'), TYPE
);

SEND ON CONVERSATION @ch
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/Sessions]
(
 @response
);

Now, when you send a message to the TargetService and you execute the SessionServiceProcedure
stored procedure manually, you get several sessions back in the response message, as you can see in
Figure 4-5.

8423ch04.fm Page 84 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/Sessions
http://ssb.csharp.at/SSB_Book/c04/Sessions

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 85

Figure 4-5. The current sessions returned by the Service Broker service

Let’s now enable internal activation for the TargetQueue. See Listing 4-11.

8423ch04.fm Page 85 Tuesday, April 3, 2007 9:46 PM

86 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Listing 4-11. Enabling Internal Activation

ALTER QUEUE [TargetQueue]
WITH ACTIVATION
(
 STATUS = ON,
 MAX_QUEUE_READERS = 1,
 PROCEDURE_NAME = SessionServiceProcedure,
 EXECUTE AS OWNER
)
GO

When you execute the query SELECT CAST(message_body) FROM InitiatorQueue, the returned
response message from the TargetService is different, as you can see in Figure 4-6.

Figure 4-6. The one and only session returned by the Service Broker service

As you can see, the Service Broker service now returns only one session. But what causes this
difference? The activated stored procedure is executing in an EXECUTE AS context. A great article in

8423ch04.fm Page 86 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 87

SQL Server 2005 Books Online (BOL)1 explains the behavior of EXECUTE AS. It is not activation that
causes the different behavior, but rather the fact that activation always uses an EXECUTE AS context.
The activation execution context is trusted only in the database, not the whole server. Anything
related to the whole server, such as a linked server or a DMV, acts if you’re logged in as [Public].
When activated, the stored procedure loses the necessary privileges and can only see its own
sessions.

The recommended way to fix this issue is to sign the SessionServiceProcedure stored procedure
with a server-level certificate that has the proper rights (in this case, the VIEW SERVER STATE privilege)
needed to execute a SELECT on the proper DMV. You must perform the following steps to sign this
stored procedure:

1. Change the procedure to have an EXECUTE AS OWNER clause. EXECUTE AS OWNER specifies that
the stored procedure will execute in the context of the owner of the stored procedure.

2. Create a certificate with a private key in the database.

3. Sign the procedure with the private key of the certificate created.

4. Drop the private key of the certificate.

5. Copy the certificate into the master database.

6. Create a login from this certificate.

7. Grant AUTHENTICATE SERVER to the certificate-derived login.

8. Grant any additional privileges required by the procedure (such as VIEW SERVER STATE).

Let’s take a detailed look at each of these steps.

Changing the Execution Context
In the first step, you must modify the stored procedure that it is executed in the execution context
of the owner. You can use the WITH EXECUTE clause in the CREATE PROCEDURE T-SQL statement.
Listing 4-12 demonstrates this.

Listing 4-12. Changing the Execution Context of the Stored Procedure

CREATE PROCEDURE SessionsServiceProcedure
WITH EXECUTE AS OWNER
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename SYSNAME;

 BEGIN TRY
 BEGIN TRANSACTION
 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name
 FROM TargetQueue
), TIMEOUT 60000;

1. “Extending Database Impersonation by Using EXECUTE AS,” SQL Server 2005 Books Online, http://
msdn2.microsoft.com/en-us/library/ms188304.aspx.

8423ch04.fm Page 87 Tuesday, April 3, 2007 9:46 PM

http://msdn2.microsoft.com/en-us/library/ms188304.aspx
http://msdn2.microsoft.com/en-us/library/ms188304.aspx

88 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

 IF (@@ROWCOUNT > 0)
 BEGIN
 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c04/RequestSessions')
 BEGIN
 DECLARE @response XML;

 SELECT @response =
 (
 SELECT * FROM sys.dm_exec_sessions
 FOR XML PATH ('session'), TYPE
);

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/Sessions] (@response);

 END CONVERSATION @ch;
 END
 END

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION
 END CATCH
END
GO

Certificate Creation
In the next step (see Listing 4-13), you must create a certificate in the current database. You later use
this certificate to sign the SessionsServiceProcedure stored procedure and map it to a login to which
the needed permissions are granted.

Listing 4-13. Create a Certificate That Is Needed for Code Signing

CREATE CERTIFICATE SessionsServiceProcedureCertificate
 ENCRYPTION BY PASSWORD = 'Password123'
 WITH SUBJECT = 'SessionsServiceProcedure signing certificate'
GO

As you can see from Listing 4-13, you encrypt the SessionsServiceProcedureCertificate with a
password and assign a subject to it.

Code Signing
As soon as you create the certificate, you can sign the stored procedure SessionsServiceProcedure
with the SessionsServiceProcedureCertificate. You can use the ADD SIGNATURE T-SQL statement, as
Listing 4-14 shows.

8423ch04.fm Page 88 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestSessions
http://ssb.csharp.at/SSB_Book/c04/Sessions

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 89

Listing 4-14. Signing the Stored Procedure

ADD SIGNATURE TO OBJECT::[SessionsServiceProcedure]
 BY CERTIFICATE [SessionsServiceProcedureCertificate]
 WITH PASSWORD = 'Password123'
GO

When you sign the SessionsServiceProcedure stored procedure, you must supply the password
that you used to decrypt the certificate.

Removing the Private Key
After signing the stored procedure, it’s always a good practice to remove the private key from the cer-
tificate used to sign the stored procedure. This way, you can guarantee that the certificate is not used
again to sign any other stored procedure; see Listing 4-15.

Listing 4-15. Removing the Private Key from the Certificate

ALTER CERTIFICATE [SessionsServiceProcedureCertificate]
 REMOVE PRIVATE KEY
GO

Copying the Certificate into the master Database and Creating the Login
In the next step, you must create a login for the SessionsServiceProcedureCertificate. To do this,
you must first copy the certificate into the master database. You can use simple BACKUP CERTIFICATE
and CREATE CERTIFICATE T-SQL statements, as shown in Listing 4-16.

■Caution Make sure that the user account with which you execute Listing 4-16 has write permissions to the
given path.

Listing 4-16. Copying the Certificate into the master Database

BACKUP CERTIFICATE [SessionsServiceProcedureCertificate]
 TO FILE = 'c:\SessionsServiceProcedureCertificate.cert'
GO

USE master
GO

CREATE CERTIFICATE [SessionsServiceProcedureCertificate]
 FROM FILE = 'c:\SessionsServiceProcedureCertificate.cert'
GO

Granting Permissions
In the final step, you can create a login in the master database for the certificate and grant it the nec-
essary permissions needed to execute the activated SessionsServiceProcedure stored procedure, as
shown in Listing 4-17.

8423ch04.fm Page 89 Tuesday, April 3, 2007 9:46 PM

90 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Listing 4-17. Creating a Login for the Certificate

CREATE LOGIN [SessionsServiceProcedureLogin]
 FROM CERTIFICATE [SessionsServiceProcedureCertificate]
GO

GRANT AUTHENTICATE SERVER TO [SessionsServiceProcedureLogin]
GRANT VIEW SERVER STATE TO [SessionsServiceProcedureLogin]
GO

When you want to query the sys.dm_exec_sessions DMV, the SessionServiceProcedureLogin
needs the permissions AUTHENTICATE SERVER and VIEW SERVER STATE.

Executing the Stored Procedure with Higher Privileges
When you’ve successfully done all these steps, you can send a new request message to the
TargetService. You’ll receive a response message containing all the current sessions. As you
can see from this example, you must think carefully of the needed permissions when you use
an activated stored procedure in Service Broker, because otherwise you’ll lose the execution
context and your service will return data other than what you originally expected.

If you think that signing a stored procedure is too much work for you during the development
phase of your Service Broker application, then you might be interested to know that there’s a short-
cut. You can activate the TRUSTWORTHY flag on the database, and everything will work fine. Listing 4-18
shows how you can activate the TRUSTWORTHY flag for a database.

Listing 4-18. Activating the TRUSTWORTHY Flag

ALTER DATABASE MyDatabaseName
 SET TRUSTWORTHY ON

■Caution You should do this only if you completely trust the database administrator of the database in question.
I recommend this setting only when you’re on a development server. If you’re in production, please use the code-
signing approach.

Calling a Stored Procedure in Another Database
You might be asking when it would make sense in a Service Broker application to call a stored pro-
cedure in another database. Let’s say you’ve implemented a logging framework in a database, and
you want to use it inside your Service Broker application. In this case, calling a stored procedure in
another database is a requirement for you.

The interesting thing about an activated stored procedure in Service Broker is that you can’t call
a stored procedure in a database other than the activated one. In this case, there is a transition in the
execution context, so the activated stored procedure doesn’t have the necessary permissions to call
another stored procedure in another database. Let’s assume from the example in Listing 4-12 that
you’re now calling inside the activated stored procedure SessionsServiceProcedure a stored proce-
dure located inside another database.

Creating the Logging Functionality
First, you want to create the database that hosts a simple logging functionality; see Listing 4-19.

8423ch04.fm Page 90 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 91

Listing 4-19. Creating the Logging Functionality

CREATE DATABASE Chapter4_LoggingDatabase
GO

USE Chapter4_LoggingDatabase
GO

CREATE TABLE LoggingTable
(
 ID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 [Message] NVARCHAR(MAX) NOT NULL
)
GO

CREATE PROCEDURE LoggingProcedure
@Message NVARCHAR(MAX)
AS
 INSERT INTO LoggingTable (ID, [Message])
 VAlUES (NEWID(), @Message)
GO

Listing 4-20 shows how the stored procedure from the logging database can be called from the
activated stored procedure. Keep in mind, however, that this won’t work, because there is a transi-
tion in the execution context.

Listing 4-20. The Wrong Way to Call a Stored Procedure Located in Another Database

IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c04/RequestSessions')
BEGIN
 DECLARE @response XML;

 SELECT @response =
 (
 SELECT * FROM sys.dm_exec_sessions
 FOR XML PATH ('session'), TYPE
);

 --Calling a stored procedure in another database
 EXEC Chapter4_LoggingDatabase.dbo.LoggingProcedure
 'This is a test message for the logging database';

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/Sessions]
 (
 @response
);

 END CONVERSATION @ch;
END

Listing 4-20 produces an error because the activated stored procedure doesn’t have the neces-
sary permissions to do the cross-database stored procedure call. You can find the error in the event
log of Windows, as shown in Figure 4-7, when you use this stored procedure as an activated stored
procedure for the service queue.

8423ch04.fm Page 91 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestSessions
http://ssb.csharp.at/SSB_Book/c04/Sessions

92 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Figure 4-7. The other stored procedure couldn’t be executed.

Because of the transactional reliability features of Service Broker, the current transaction is
rolled back, and the received message is put back into the TargetQueue. The activation will kick in
again, causing the same error and causing the request to roll back again. Then activation will kick
in again, and so on and so forth. After five consecutive rollbacks, Service Broker poison-message
support will detect this situation and will disable the queue; see Figure 4-8.

Figure 4-8. The queue is now deactivated because of a poison message.

8423ch04.fm Page 92 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 93

Code Signing
To fix this problem, you must sign the activated stored procedure with a certificate and map a user
with the needed permissions to this certificate. This is the same approach as Listing 4-14 demon-
strates. Listing 4-21 shows the complete code to achieve this goal.

■Caution Make sure that you delete the backup certificate from the previous section “Stored Procedure
Signing” from the file system and that you have the needed file system permissions. Otherwise, you’ll get an error
such as “Cannot write into file 'C:\SessionsServiceProcedure.cert'. Verify that you have write permissions, that the
file path is valid, and that the file does not already exist.”

Listing 4-21. The Right Way to Call a Stored Procedure Located in Another Database

CREATE PROCEDURE SessionsServiceProcedure
WITH EXECUTE AS OWNER
AS
BEGIN
 -- The same code as before...
 -- ...
END
GO

CREATE CERTIFICATE SessionsServiceProcedureCertificate
 ENCRYPTION BY PASSWORD = 'Password123'
 WITH SUBJECT = 'SessionsServiceProcedure Signing certificate'
GO

ADD SIGNATURE TO OBJECT::[SessionsServiceProcedure]
 BY CERTIFICATE [SessionsServiceProcedureCertificate]
 WITH PASSWORD = 'Password123'
GO

ALTER CERTIFICATE [SessionsServiceProcedureCertificate]
 REMOVE PRIVATE KEY
GO

BACKUP CERTIFICATE [SessionsServiceProcedureCertificate]
 TO FILE = 'c:\SessionsServiceProcedure.cert'
GO

USE Chapter4_TestDatabase
GO

CREATE CERTIFICATE [SessionsServiceProcedureCertificate]
 FROM FILE = 'c:\SessionsServiceProcedure.cert'
GO

CREATE USER [SessionsServiceProcedureUser]
 FROM CERTIFICATE [SessionsServiceProcedureCertificate]
GO

8423ch04.fm Page 93 Tuesday, April 3, 2007 9:46 PM

94 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

GRANT AUTHENTICATE TO [SessionsServiceProcedureUser]
GRANT EXECUTE ON [TestProcedure] TO [SessionsServiceProcedureUser]

USE Chapter4_CallingOtherStoredProcedures
GO

ALTER QUEUE TargetQueue
WITH STATUS = ON
GO

As soon as you complete these steps, you can send a new request message to the TargetService.
A response message will be returned, while the stored procedure in the other database will also exe-
cute successfully.

Using a Single Stored Procedure to Process Many Queues
As you’ve seen throughout this chapter, you need one activated stored procedure for each queue
you’ve created. Let’s assume a scenario where you have several more queues. In this case, you must
create an associated activated stored procedure for each queue. Wouldn’t it be nice if you could have
one stored procedure that handles all the messages automatically on all the available queues? You
need to perform the following steps if you want to implement such a scenario:

1. Create the necessary queues with the associated services.

2. Set up internal activation on each queue and point to the same stored procedure.

3. Write a stored procedure that determines which queue you’ll use to query for the messages
to process.

You can accomplish the first two steps easily, because you just have to use the T-SQL state-
ments shown in Chapter 3.

Writing the Activated Stored Procedure
During the creation of the queues, each queue must point to the same stored procedure that is
activated when a new message arrives. The most interesting thing in this puzzle is how the stored
procedure knows from which queue messages must be processed. Fortunately, Service Broker
provides you this information through the dynamic management views.

Your first place of refuge is the sys.dm_broker_activated_tasks DMV. This DMV returns all acti-
vated stored procedures that are currently running, as well as the stored procedure from which you
issue a SELECT on this view.

■Note Because you’re querying a DMV, you have to make sure to sign your activated stored procedure, as you’ve
learned in the previous two sections.

You can find your own stored procedure when you use the WHERE clause on the spid column, and
you can provide the current spid of the running stored procedure through the @@SPID variable. The
interesting column in the returned result set is the queue_id column, which represents the internal
object ID of the queue for which the stored procedure was activated. You can use this information to
query the sys.service_queues catalog view and use a WHERE clause on the object_id column where you
provide the content of the queue_id column from the previous DMV. Listing 4-22 shows the needed
queries.

8423ch04.fm Page 94 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 95

Listing 4-22. Getting the Associated Queue for the Current Running Stored Procedure

DECLARE @queue_id INT
DECLARE @queue_name NVARCHAR(MAX)

SELECT @queue_id = queue_id FROM sys.dm_broker_activated_tasks
WHERE spid = @@SPID

SELECT @queue_name = [name] FROM sys.service_queue
WHERE object_id = @queue_id

As soon as you determine the queue name, you can easily build a dynamic RECEIVE T-SQL
statement that uses the correct queue. You can use the sp_executesql built-in procedure with a
parameter substitution so that you can store the result of your RECEIVE T-SQL statement in T-SQL
variables for further processing. Listing 4-23 shows the most important part of the
ProcessRequestMessages stored procedure.

Listing 4-23. An Activated Stored Procedure That Handles Multiple Queues

CREATE PROCEDURE ProcessRequestMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER -- conversation handle
 DECLARE @messagetypename NVARCHAR(256)
 DECLARE @messagebody XML
 DECLARE @responsemessage XML
 DECLARE @queue_id INT
 DECLARE @queue_name NVARCHAR(MAX)
 DECLARE @sql NVARCHAR(MAX)
 DECLARE @param_def NVARCHAR(MAX);

 -- Determining the queue for which the stored procedure was activated
 SELECT @queue_id = queue_id FROM sys.dm_broker_activated_tasks
 WHERE spid = @@SPID

 SELECT @queue_name = [name] FROM sys.service_queues
 WHERE object_id = @queue_id

 -- Creating the parameter substitution
 SET @param_def = '
 @ch UNIQUEIDENTIFIER OUTPUT,
 @messagetypename NVARCHAR(MAX) OUTPUT,
 @messagebody XML OUTPUT'

 -- Creating the dynamic T-SQL statement, which does a query on the actual queue
 SET @sql = '
 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM '
 + QUOTENAME(@queue_name) + '
), TIMEOUT 60000'

8423ch04.fm Page 95 Tuesday, April 3, 2007 9:46 PM

96 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

 WHILE (1=1)
 BEGIN
 BEGIN TRY
 BEGIN TRANSACTION

 -- Executing the dynamic T-SQL statement that contains the actual queue
 EXEC sp_executesql
 @sql,
 @param_def,
 @ch = @ch OUTPUT,
 @messagetypename = @messagetypename OUTPUT,
 @messagebody = @messagebody OUTPUT

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c04/RequestMessage')
 BEGIN
 -- Construct the response message
 SET @responsemessage = '<HelloWorldResponse>' +
 @messagebody.value('/HelloWorldRequest[1]', 'nvarchar(max)') +', ' +
 @queue_name + '</HelloWorldResponse>';

 -- Send the response message back to the initiating service
 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c04/ResponseMessage]
 (
 @responsemessage
);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION
 END CATCH
 END
GO

8423ch04.fm Page 96 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestMessage
mailto:@messagebody.value('/HelloWorldRequest
http://ssb.csharp.at/SSB_Book/c04/ResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 97

Parameter Substitution
Let’s take a detailed look at the ProcessRequestMessages stored procedure from Listing 4-23. After
you determine the correct queue name (see Listing 4-22), you create the dynamic T-SQL statement
that does the query on the actual queue. Note that you need to create a parameter substitution,
because the dynamic T-SQL statement uses parameters; see Listing 4-24.

Listing 4-24. Creating the Parameter Substitution

-- Creating the parameter substitution
SET @param_def =
 '@ch UNIQUEIDENTIFIER OUTPUT,
 @messagetypename NVARCHAR(MAX) OUTPUT,
 @messagebody XML OUTPUT'

-- Creating the dynamic T-SQL statement, which does a query on the actual queue
SET @sql =
 'WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM '
 + QUOTENAME(@queue_name) + '
), TIMEOUT 60000'

After you build the dynamic T-SQL statement that contains the actual queue name, you execute
the T-SQL statement through a call to sp_executesql. After you execute the T-SQL statement, you’ll see
that the message-processing logic is the same as you’ve seen throughout the book; see Listing 4-25.

Listing 4-25. Executing the Dynamically Built T-SQL Statement

-- Executing the dynamic T-SQL statement that contains the actual queue
EXEC sp_executesql
 @sql,
 @param_def,
 @ch = @ch OUTPUT,
 @messagetypename = @messagetypename OUTPUT,
 @messagebody = @messagebody OUTPUT

Note that you must also sign the stored procedure; otherwise, you’ll have no access to the
sys.dm_broker_activated_tasks DMV. Alternatively, you can activate the TRUSTWORTHY flag on
the database.

External Activation
When you use internal activation, you must always keep in mind that the activated stored procedure
is executed in a background thread inside the process space of SQL Server. Therefore, internal acti-
vation is useful when you have to do a few short tasks inside your activated stored procedure.

8423ch04.fm Page 97 Tuesday, April 3, 2007 9:46 PM

98 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

However, sometimes you might need to do some long-duration work inside the stored procedure.
For example, you might need to perform one of the following tasks:

• Invoke web services.

• Call other stored procedures that take a long time to execute.

• Call services that are only available through a slow connection.

In these cases, you’re tying a long-running SQL Server thread to your activated stored proce-
dure. This can lead to scalability problems in your Service Broker application, because important
database resources (such as threads) aren’t available to other requests. For these scenarios, Service
Broker offers external activation.

With external activation, you can process a Service Broker message outside of SQL Server. You
can perform the message processing in different kinds of applications available for the Windows
platform, including traditional Windows applications, console applications, and Windows services.
These applications are referred to as external activators.

Using the Event Notification
The current Service Broker release doesn’t include an external activator, but it does include hooks
that an external activator can use and an example implementation that you can use to build your
own external activator. You implement the hooks for external activation as a SQL Server event
notification. With SQL Server event notification, you have the ability to receive an event when
some events occur inside the SQL Server engine. The event-notification mechanism of SQL Server
offers an event that fires every time Service Broker activation starts a new copy of an activated
stored procedure. The event notification fired by SQL Server is implemented as a Service Broker
message, which follows the internal Service Broker contract [http://schemas.microsoft.com/SQL/
Notifications/PostEventNotification].

The sent message can be handled by any other external application that can start the correct
message-processing logic (indicated through the message type) in an external process that is com-
pletely isolated from SQL Server. When a service queue must be activated, Service Broker fires the
QUEUE_ACTIVATION event notification. You can subscribe to this event notification for each Service
Broker queue defined in the database.

When you want to set up the external activation for a Service Broker queue, you must perform
the following steps:

1. If necessary, deactivate the internal activation on the queue.

2. Create a new queue, which receives the QUEUE_ACTIVATION event-notification messages.

3. Create a Service Broker service for the event notification on the new queue.

4. Create an event notification for the QUEUE_ACTIVATION event on the necessary queue.

You can create a new event notification with the CREATE EVENT NOTIFICATION T-SQL statement.
Listing 4-26 shows the syntax for this statement.

Listing 4-26. Syntax for CREATE EVENT NOTIFICATION

CREATE EVENT NOTIFICATION event_notification_name
ON { SERVER | DATABASE | QUEUE queue_name }
[WITH FAN_IN]
FOR { event_type | event_group } [,...n]
TO SERVICE 'broker_service', { 'broker_instance_specifier' | 'current database' }

Table 4-4 describes the arguments for this statement.

8423ch04.fm Page 98 Tuesday, April 3, 2007 9:46 PM

http://schemas.microsoft.com/SQL/Notifications/PostEventNotification
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 99

Table 4-4. Arguments for the CREATE EVENT NOTIFICATION T-SQL Statement

Enabling External Activation
Listing 4-27 shows the necessary steps to enable external activation for the TargetQueue that you use
with the TargetService.

Listing 4-27. Setting Up External Activation on TargetQueue

-- Deactivate internal activation on the queue if necessary
ALTER QUEUE TargetQueue
 WITH ACTIVATION (DROP)
GO

Argument Description

event_notification_name Specifies the name of the event notification.

SERVER Indicates that the event notification is applied to the current
instance of SQL Server. If specified, the event notification fires
whenever the specified event in the FOR clause occurs anywhere
in the instance of SQL Server.

DATABASE Indicates that the event notification is applied to the current
database of SQL Server. If specified, the event notification fires
whenever the specified event in the FOR clause occurs in the cur-
rent database.

QUEUE Indicates that the event notification is applied to the specified
queue in the current database. QUEUE can be specified only if FOR
QUEUE_ACTIVATION or FOR BROKER_QUEUE_DISABLED are also specified.

queue_name Specifies the name of the queue to which the event notification
applies. queue_name can be specified only if QUEUE is specified.

WITH FAN_IN Instructs SQL Server to send only one message per event to any
specified service for all event notifications that are created on the
same event, are created by the same principal, specify the same
service and broker_instance_specifier, and specify WITH FAN_IN.

event_type The name of an event type that causes the event notification to
execute. event_type can be a T-SQL DDL event type, a SQL Trace
event type, or a Service Broker event type.

event_group The name of a predefined group of T-SQL or SQL Trace event types.

broker_service Specifies the target service that receives the event instance data.
SQL Server opens one or more conversations to the target service
for the event notification. This service must honor the same SQL
Server Events message type and contract that is used to send the
message.

broker_instance_specifier Specifies a Service Broker instance against which broker_service
is resolved. You can acquire the value for a specific Service Broker
instance by querying the service_broker_guid column of the
sys.databases catalog view. Use 'current database' to specify
the Service Broker instance in the current database. 'current
database' is a case-sensitive string literal.

8423ch04.fm Page 99 Tuesday, April 3, 2007 9:46 PM

100 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

-- Create the event notification queue
CREATE QUEUE ExternalActivatorQueue
GO

-- Create the event notification service
CREATE SERVICE ExternalActivatorService
ON QUEUE ExternalActivatorQueue
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
)
GO

-- Subscribe to the QUEUE_ACTIVATION event on the queue TargetQueue
CREATE EVENT NOTIFICATION EventNotificationTargetQueue
 ON QUEUE TargetQueue
 FOR QUEUE_ACTIVATION
 TO SERVICE 'ExternalActivatorService', 'current database'
GO

As you can see from Listing 4-27, you can easily set up event notification for a Service Broker
queue. When you send a message to the TargetService (refer to Listing 4-4), the sent message is put
into the TargetQueue, and an event notification message is put into the EventNotificationTargetQueue.
When you cast the column message_body to the XML data type, you’ll see the XML document shown in
Listing 4-28.

Listing 4-28. The Content of the Event-Notification Message

<EVENT_INSTANCE>
 <EventType>QUEUE_ACTIVATION</EventType>
 <PostTime>2006-09-26T19:09:21.860</PostTime>
 <SPID>23</SPID>
 <ServerName>WINDOWSVISTA</ServerName>
 <LoginName>sa</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>Chapter4_ExternalActivation</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>TargetQueue</ObjectName>
 <ObjectType>QUEUE</ObjectType>
</EVENT_INSTANCE>

This event notification message provides an external application all the information it needs
to determine in which queue a message is waiting for processing. After you successfully set up the
external activation, you need an application that waits for an event-notification message and then
processes the messages available in the queue determined by the event-notification message.

Implementing the External Console Application
To demonstrate the behavior of the external activation mechanism, let’s write a simple C# pro-
gram that waits until an event-notification message arrives at the ExternalActivatorQueue, as
configured in Listing 4-27. As soon as the event-notification message is sent, the C# application
starts the processing logic, which performs a RECEIVE on the TargetQueue and sends a response

8423ch04.fm Page 100 Tuesday, April 3, 2007 9:46 PM

http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 101

message back to the InitiatorService. To simplify this sample, I’ve written a class named Broker
that encapsulates the necessary T-SQL statements for a Service Broker conversation. Table 4-5
describes the available methods.

Table 4-5. Available Methods of the Broker Class

Listing 4-29 shows the main logic for the external console application.

Listing 4-29. The Main Method of the External Application

public static void Main(string [] args)
{
 Broker broker = new Broker();

 while (true)
 {
 string msg;
 string msgType;
 Guid dialogHandle;
 Guid serviceInstance;

 broker.tran = broker.cnn.BeginTransaction();
 broker.Receive("ExternalActivatorQueue",
 out msgType,
 out msg,
 out serviceInstance,
 out dialogHandle);

 if (msg != null)
 {
 Console.WriteLine("External activation occurred...");
 new TargetService().ProcessMessages();
 }

 broker.tran.Commit();
 }
}

As you can see from Listing 4-29, the main program contains an endless loop, which checks period-
ically if a new event-notification message is available on the ExternalActivatorQueue. If a new message is

Method Description

Send Sends a message (parameter msg) on the specified conversation (parameter
dialogHandle)

Receive Receives a message from a queue (parameter queueName) and returns all necessary
information about the message (output parameters msgType, msg, ConversationGroup,
and dialogHandle)

EndDialog Ends the dialog for the specified conversation (parameter dialogHandle)

8423ch04.fm Page 101 Tuesday, April 3, 2007 9:46 PM

102 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

available on that queue, the program calls the ProcessMessages method of the TargetService class, which
does further processing. Listing 4-30 shows the concrete usage of this method.

Listing 4-30. The ProcessMessages Method of the TargetService Class

public void ProcessMessages
{
 Broker broker = new Broker();

 while (true)
 {
 string msg;
 string msgType;
 Guid dialogHandle;
 Guid serviceInstance;

 broker.tran = broker.cnn.BeginTransaction();
 broker.Receive("TargetQueue",
 out msgType,
 out msg,
 out serviceInstance,
 out dialogHandle);

 if (msg == null)
 {
 broker.tran.Commit();
 break;
 }

 switch (msgType)
 {
 case "http://ssb.csharp.at/SSB_Book/c04/RequestMessage":
 {
 broker.Send(dialogHandle, "<Response />");
 break;
 }
 case "http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog":
 {
 broker.EndDialog(dialogHandle);
 break;
 }
 case "http://schemas.microsoft.com/SQL/ServiceBroker/Error":
 {
 // You don't have to call broker.tran.Rollback() here, because then
 // the current message would become a poison message after 5 retries.
 broker.EndDialog(dialogHandle);
 break;
 }
 }

8423ch04.fm Page 102 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestMessage":
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog":
http://schemas.microsoft.com/SQL/ServiceBroker/Error":

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 103

 broker.tran.Commit();
 }
}

The interesting part of Listing 4-30 is that you retrieve the message from the TargetQueue.
Listing 4-31 shows how you use the Receive method of the Broker class.

Listing 4-31. Retrieving a Sent Message

broker.tran = broker.cnn.BeginTransaction();
broker.Receive("TargetQueue",
 out msgType,
 out msg,
 out serviceInstance,
 out dialogHandle);

Figure 4-9 shows the output of the external console application.

Figure 4-9. Output of the external console application

Activating the External Console Application
When you look carefully at Listing 4-30, you might decide that it wouldn’t make much sense to use
external activation, because the C# application can also do a RECEIVE on the TargetQueue periodi-
cally. This assumption is correct for this simple example, but let’s assume that you have several
different queues that need external activation. In that case, you can redirect the event-notification
messages to one queue—the ExternalActivatorQueue (used in this example). Now you can write an
external application that either checks on that queue periodically or uses a WAITFOR statement until
new event-notification messages appear. The application starts the correct external application for
the current external event-notification message. Figure 4-10 illustrates this technique.

8423ch04.fm Page 103 Tuesday, April 3, 2007 9:46 PM

104 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Figure 4-10. External activation for several queues

If you use this technique for the external activation mechanism, then a separate queue for the
event notification messages makes much more sense. Microsoft provides a ready-to-use external
application sample that periodically checks if new event notification messages are available on a
configured queue. This sample is named ExternalActivator and is available through the GotDotNet
site2 in the code gallery. If an event notification message is detected on the specified queue, then the
ExternalActivator looks into the configuration file. The configuration file is used to determine
which external processing application it must launch to process the incoming message on the orig-
inal queue that triggered the external activation event inside Service Broker. Figure 4-11 shows
ExternalActivator when running in the console.

Figure 4-11. The ExternalActivator

2. http://www.gotdotnet.com/codegallery/codegallery.aspx?id=9f7ae2af-31aa-44dd-9ee8-6b6b6d3d6319

8423ch04.fm Page 104 Tuesday, April 3, 2007 9:46 PM

http://www.gotdotnet.com/codegallery/codegallery.aspx?id=9f7ae2af-31aa-44dd-9ee8-6b6b6d3d6319

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 105

From the ExternalActivator command prompt, you can choose from the following commands:

• Help: Displays the list of available commands.

• Status: Displays the current status of each configured application. Here you can also see
how many activated external applications are currently running and how many applica-
tions already started successfully.

• Config: Displays the current configuration for the activator. Here you can check if each
configuration application was initialized successfully.

• Activator: Reports the overall status for the activator itself. Here you can check if the activa-
tor was connected successfully to the database.

• Recycle: Recycles the output log file.

• Debug: Displays if debug information is reported in the output log.

• Debug on|off: Controls the report of debug information in the output log.

• Quit: Shuts down the activator.

Configuring the ExternalActivator
Let’s have a look now at how you can configure ExternalActivator. The configuration is stored in
the ExternalActivator.exe.xml XML file. Listing 4-32 shows the basic configuration used in this
example.

Listing 4-32. Configuration of the ExternalActivator

<Activator>
 <Setup>
 <!-- define the notification service that we will listen on -->
 <NotificationSQLServer>localhost</NotificationSQLServer>
 <NotificationDatabase>Chapter4_ExternalActivation</NotificationDatabase>
 <NotificationService>ExternalActivatorService</NotificationService>

 <!-- optional elements -->
 <!-- default false -->
 <EnableDebugTrace>true</EnableDebugTrace>
 </Setup>
</Activator>

Table 4-6 describes the available configuration options.

8423ch04.fm Page 105 Tuesday, April 3, 2007 9:46 PM

106 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Table 4-6. Configuration Options for ExternalActivator

As soon as you specify the needed information about the external activation service, you must
configure each external application and its associated queue. Listing 4-33 shows the additional con-
figuration needed for an external application.

Listing 4-33. Configuration for an External Application

<Activator>
 <Setup>
 ...
 </Setup>

 <ConfigurationRecord Enabled ="true">
 <ApplicationName>c:\ProcessingApplication.exe</ApplicationName>
 <SQLServer>WINDOWSVISTA</SQLServer>
 <Database>Chapter4_ExternalActivation</Database>
 <Schema>dbo</Schema>
 <Queue>TargetQueue</Queue>
 <CommandLineArgs/>
 <Min>0</Min>
 <Max>10</Max>
 <HasConsole>true</HasConsole>
 <StandardOut/>
 <StandardIn/>
 <StandardErr/>
 </ConfigurationRecord>
</Activator

Table 4-7 describes the configuration options for an external application.

Option Description

<NotificationSQLServer> Specifies the SQL Server instance where the external activation ser-
vice was created and is receiving event-notification messages about
an external activation request

<NotificationDatabase> Specifies the database in which the external activation service was
created

<NotificationService> Specifies the name of the external activation service

<EnableDebugTrace> Specifies if the debug trace of the ExternalActivator is enabled

8423ch04.fm Page 106 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 107

Table 4-7. Configuration Options for an External Application

When you configure the ExternalActivator with the settings specified in Table 4-7, you can
start it again. You can then send a new message to the TargetService. As soon as the message is sent,
an event notification message is sent to the ExternalActivatorService. ExternalActivator receives
this message and retrieves the message_body column from the associated queue (which was
described in Listing 4-28).

Then the ExternalActivator tries to find a <ConfigurationRecord> element where the config-
ured options matches the content of the message_body from the event-notification message. The
following options are matched:

• <ConfigurationRecord><SQLServer> is matched with <EVENT_INSTANCE><ServerName>.

• <ConfigurationRecord><Database> is matched with <EVENT_INSTANCE><DatabaseName>.

• <ConfigurationRecord><Schema> is matched with <EVENT_INSTANCE><SchemaName>.

• <ConfigurationRecord><Queue> is matched with <EVENT_INSTANCE><ObjectName>.

When a matched configuration record is found in the configuration file, the specified execut-
able starts.

■Note You must always specify in <ConfigurationRecord><SQLServer> the Network Basic Input/Output
System (NetBIOS) name of the SQL Server instance, because the event-notification message also contains the
NetBIOS name. If you’re working locally during development, this implies that you also can’t use the shortcut
localhost. You must also specify the NetBIOS name of your local computer on which SQL Server runs.

Option Description

<ApplicationName> Specifies the path and the name of the executable to launch

<SQLServer> Specifies the SQL Server instance on which the queue of the original
incoming message is hosted

<Database> Specifies the name of the database in which the queue of the original
incoming message is hosted

<Schema> Specifies the schema associated with the queue

<Queue> Specifies the name of the queue to which the original message was sent

<CommandLineArgs> Specifies the command-line arguments passing to the external applica-
tion when launched

<Min> Specifies how many instances of the external application should run at
minimum

<Max> Specifies how many instances of the external application should run at
maximum

8423ch04.fm Page 107 Tuesday, April 3, 2007 9:46 PM

108 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

The executable’s responsibility is now to do a RECEIVE T-SQL statement on the original queue
and to process the received message according to the message-processing logic. Listing 4-34 shows
an updated version of the C# program, which now only does a RECEIVE T-SQL statement on the orig-
inal queue and processes the received message.

Listing 4-34. The External Activated Application

public static void Main(string [] args)
{
 Broker broker = new Broker();

 while (true)
 {
 string msg;
 string msgType;
 Guid dialogHandle;
 Guid serviceInstance;

 broker.tran = broker.cnn.BeginTransaction();
 broker.Receive("TargetQueue",
 out msgType,
 out msg,
 out ServiceInstance,
 out dialogHandle);

 if (msg == null)
 {
 broker.tran.Commit();
 break;
 }

 switch (msgType)
 {
 case "http://ssb.csharp.at/SSB_Book/c04/RequestMessage":
 {
 broker.Send(dialogHandle, "<Response>Response from C#...</Response>");
 break;
 }
 case "http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog":
 {
 broker.EndDialog(dialogHandle);
 break;
 }
 case "http://schemas.microsoft.com/SQL/ServiceBroker/Error":
 {
 broker.EndDialog(dialogHandle);
 break;
 }
 }
 }

 broker.tran.Commit();
}

8423ch04.fm Page 108 Tuesday, April 3, 2007 9:46 PM

http://ssb.csharp.at/SSB_Book/c04/RequestMessage":
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog":
http://schemas.microsoft.com/SQL/ServiceBroker/Error":

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 109

The external console application starts as soon as you send a message to the TargetService.
In this case, the ExternalActivator retrieves the event-notification message and starts your external
console application. Figure 4-12 shows the output of the external console application.

Figure 4-12. Output of the external console application

Several Activated External Console Applications
Let’s extend this example with an additional Service Broker service that also activates
another external application through the ExternalActivator. For this scenario, let’s create
the InitiatorService and two target services named TargetService1 and TargetService2.
For each target service, you enable the external-activation mechanism and send both event-
notification messages to the ExternalActivatorService. ExternalActivator then activates
the external applications ProcessingApplication1.exe and ProcessingApplication2.exe
according to the received event-notification message. Figure 4-13 shows the overall architec-
ture for this scenario.

8423ch04.fm Page 109 Tuesday, April 3, 2007 9:46 PM

110 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Figure 4-13. Architecture for multiple external activated applications

Listing 4-35 shows the configuration file for the ExternalActivator application.

Listing 4-35. Configuration for Two Externally Activated Applications

<Activator>
 <Setup>
 ...
 </Setup>

 <ConfigurationRecord Enabled="true">
 <ApplicationName>c:\ProcessingApplication1.exe</ApplicationName>
 <SQLServer>WINDOWSVISTA</SQLServer>
 <Database>Chapter4_ExternalActivationMultipleActivatedApplications</Database>
 <Schema>dbo</Schema>
 <Queue>TargetQueue1</Queue>
 <CommandLineArgs />
 <Min>0</Min>
 <Max>5</Max>
 <HasConsole>true</HasConsole>
 <StandardOut />
 <StandardIn />
 <StandardErr />
 </ConfigurationRecord>

8423ch04.fm Page 110 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 111

 <ConfigurationRecord Enabled="true">
 <ApplicationName>c:\ProcessingApplication2.exe</ApplicationName>
 <SQLServer>WINDOWSVISTA</SQLServer>
 <Database>Chapter4_ExternalActivationMultipleActivatedApplications</Database>
 <Schema>dbo</Schema>
 <Queue>TargetQueue2</Queue>
 <CommandLineArgs />
 <Min>0</Min>
 <Max>5</Max>
 <HasConsole>true</HasConsole>
 <StandardOut />
 <StandardIn />
 <StandardErr />
 </ConfigurationRecord>
</Activator>

Now, when you send messages to both services, ExternalActivator executes both external
applications, and this starts the processing of the incoming messages on the original queues
(TargetQueue1, TargetQueue2). As soon as there are no available messages, both external applications
are shut down. Figure 4-14 shows both activated console applications.

Figure 4-14. Output of both external console applications

8423ch04.fm Page 111 Tuesday, April 3, 2007 9:46 PM

112 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Another nice feature of the ExternalActivator application is that you can install it as a Windows
service. Then it can start automatically as soon as the computer is booted. If you want to install the
application as a Windows service, you can use the /Install option from the command line. You must
also supply the name of the Windows service; otherwise, the registration of the ExternalActivator as a
Windows service fails:

ExternalActivator.exe /Install:External_Activator

Figure 4-15 shows the ExternalActivator registered as a Windows service.

Figure 4-15. The ExternalActivator installed as a Windows service

As soon as ExternalActivator is registered and running, you can send messages to the queues,
and everything will work the same as before. When an error occurs, ExternalActivator writes an
entry to the event log. If something is not working as expected, the event log should be your first
source of information. If you want to uninstall the ExternalActivator Windows service, you can do
it from the command line:

ExternalActivator.exe /Uninstall:External_Activator

Parallel Activation
A frequent question in newsgroups and from customers is how to start all configured queue readers
(set through MAX_QUEUE_READERS) simultaneously, so that they process messages in parallel. The
basic answer to this question is that you can’t do it, because Service Broker provides no support for
this scenario. However, there is a trick for achieving the same result with the external-activation
mechanism.

Normally, the activation mechanism monitors the queues and the RECEIVE T-SQL statements
and decides when it’s appropriate to launch a new instance of the activated stored procedure. How-
ever, there is also the QUEUE_ACTIVATION event notification, which you used earlier to set up external
activation and which the external-activation sample also uses. In this case, a notification is sent to
the subscribed service. The point here is that there is no restriction on how many different notifica-
tion subscriptions you can create for the same QUEUE_ACTIVATION event. When it’s time to activate, all
the subscribed Service Broker services are notified about the notification.

These subscribed Service Broker services run on queues that can have attached stored proce-
dures to be activated. So, you can use the subscribed service’s queue activation to launch a separate
procedure per subscribed service for each original queue activation notification. For example, if you
create five QUEUE_ACTIVATION subscriptions from five separate Service Broker services, you will
launch five stored procedures nearly simultaneously. Figure 4-16 illustrates this.

8423ch04.fm Page 112 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 113

Figure 4-16. Using external activation for the parallel activation of internal stored procedures

■Note Please make sure to execute the scripts in the following listings in a new database.

The code in Listing 4-36 sets up the needed infrastructure.

Listing 4-36. Setting Up the Infrastructure for Parallel Activation

CREATE QUEUE [TargetQueue]
GO

CREATE SERVICE [TargetService]
ON QUEUE [TargetQueue]
(
 [DEFAULT]
)
GO

CREATE QUEUE [ActivatorQueue_1];
CREATE QUEUE [ActivatorQueue_2];
CREATE QUEUE [ActivatorQueue_3];
CREATE QUEUE [ActivatorQueue_4];
CREATE QUEUE [ActivatorQueue_5];
GO

8423ch04.fm Page 113 Tuesday, April 3, 2007 9:46 PM

114 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

CREATE SERVICE [ActivatorService_1]
ON QUEUE [ActivatorQueue_1]
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
)
GO

CREATE SERVICE [ActivatorService_2]
ON QUEUE [ActivatorQueue_2]
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
)
GO

CREATE SERVICE [ActivatorService_3]
ON QUEUE [ActivatorQueue_3]
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
)
GO

CREATE SERVICE [ActivatorService_4]
ON QUEUE [ActivatorQueue_4]
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
)
GO

CREATE SERVICE [ActivatorService_5]
ON QUEUE [ActivatorQueue_5]
(
 [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]
)
GO

As you can see from Listing 4-36, you create the “real” Service Broker service with its queue
(TargetQueue) and the services and queues to which a post-event-notification message is sent
(ActivatorQueue_1 – ActivatorQueue_5). By now, you’ve set up the whole infrastructure needed
to use parallel activation. The only thing you need is a service program for the queues
ActivatorQueue_1 – ActivatorQueue_5 to be activated automatically as soon as a post-event-
notification message is received on those queues. One very important point to note here is that
the service programs must first receive the original sent message from the TargetQueue. Other-
wise, this approach won’t work. Take a look at Listing 4-37, which shows the implementation of
the service program.

Listing 4-37. Service Program for Parallel Activation

CREATE PROCEDURE [ApplicationServiceProgram_1]
AS
BEGIN
 DECLARE @conversationHandle UNIQUEIDENTIFIER;
 DECLARE @messageTypeName SYSNAME;
 DECLARE @notification XML;
 DECLARE @applicationMessage VARBINARY(MAX);

8423ch04.fm Page 114 Tuesday, April 3, 2007 9:46 PM

http://schemas.microsoft.com/SQL/Notifications/PostEventNotification
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 115

 BEGIN TRY
 BEGIN TRANSACTION;

 RECEIVE TOP (1)
 @conversationHandle = conversation_handle,
 @messageTypeName = message_type_name,
 @notification = CAST(message_body AS XML)
 FROM [ActivatorQueue_1];

 IF (@messageTypeName =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @conversationHandle;
 END

 IF (@messageTypeName =
 'http://schemas.microsoft.com/SQL/ServiceBroker/Error')
 BEGIN
 END CONVERSATION @conversationHandle;
 END

 WHILE (1 = 1)
 BEGIN
 WAITFOR (
 RECEIVE
 @conversationHandle = conversation_handle,
 @messageTypeName = message_type_name,
 @applicationMessage = message_body
 FROM [TargetQueue]
), TIMEOUT 1000;

 IF (@@ROWCOUNT = 0)
 BEGIN
 -- Do not rollback here!
 BREAK;
 END

 IF (@messageTypeName =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @conversationHandle;
 END

 IF (@messageTypeName =
 'http://schemas.microsoft.com/SQL/ServiceBroker/Error')
 BEGIN
 END CONVERSATION @conversationHandle;
 END

8423ch04.fm Page 115 Tuesday, April 3, 2007 9:46 PM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker/Error
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker/Error

116 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

 IF (@messageTypeName = 'DEFAULT')
 BEGIN
 -- Here's the place where you implement your application logic
 SEND ON CONVERSATION @conversationHandle (@applicationMessage);
 END CONVERSATION @conversationHandle;
 END

 COMMIT TRANSACTION;
 BEGIN TRANSACTION;
 END

 COMMIT TRANSACTION;
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION
 END CATCH
END

As you can see from Listing 4-37, this stored procedure is very straightforward. The only thing
you must remember is that you need to first retrieve the post-event notification before you do a
RECEIVE on the original TargetQueue. The only problem now is that five different stored procedures
must be dedicated to each activated queue. The only difference in these stored procedures is the
queue from which they are receiving the post-event-notification message.

You can also write a stored procedure that several different queues can use. Listing 4-23 already
demonstrated this approach. But in this case, you must sign your stored procedure, because reading
from the sys.dm_broker_activated_tasks DMV requires server-level access. Refer back to the “Stored
Procedure Signing” section, which covered this in more detail. Finally, Listing 4-38 shows how to set up
the post-event notification and configure the internal activation of the ApplicationServiceProgram_1
stored procedure. Repeat this step for each defined Service Broker service.

Listing 4-38. Setting Up the Post-Event Notification

CREATE EVENT NOTIFICATION [ActivatorEvent_1]
 ON QUEUE [TargetQueue]
 FOR QUEUE_ACTIVATION
 TO SERVICE 'ActivatorService_1', 'current database';
GO

ALTER QUEUE [ActivatorQueue_1]
WITH ACTIVATION
(
 STATUS = ON,
 MAX_QUEUE_READERS = 1,
 PROCEDURE_NAME = [ApplicationServiceProgram_1],
 EXECUTE AS OWNER
)
GO

Now, when you send a bunch of messages to the TargetService, the TargetQueue gets activated
and sends a post-event-notification message to the ActivatorService_1 – ActivatorService_5 ser-
vices. As soon as the post-event-notification messages are sent, the configured service programs are
launched. These do the actual processing of the received message from the TargetQueue.

8423ch04.fm Page 116 Tuesday, April 3, 2007 9:46 PM

C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N 117

Troubleshooting Activation
Activated stored procedures run on a background thread in SQL Server 2005. Therefore, the tech-
niques for troubleshooting an activated stored procedure differ slightly from the techniques used for
troubleshooting stored procedures that are part of an interactive session.

The database engine writes output from an activated stored procedure to the SQL Server error
log. If the activated stored procedure produces incorrect results or fails to read from the queue, you
should check the SQL Server error log for output from the stored procedure. Statements such as the
PRINT T-SQL statement also output to the error log when they’re executed in the context of an acti-
vated stored procedure.

One of the best ways to troubleshoot an activated stored procedure is to turn off activation on
the queue and then run the stored procedure from SQL Server Management Studio. Running the
stored procedure from an interactive session allows you to see any errors that the stored procedure
returns. However, when the database engine activates the stored procedure, the database settings
and security context may be different. Before running the procedure, use the EXECUTE AS clause to set
the user for the session to the user specified for activation, and set the options for the session to the
database defaults.

The following sections provide more information and troubleshooting techniques when
Service Broker activation doesn’t work the way it should.

When the Activated Stored Procedure Doesn’t Run
There are two common causes of the activated stored procedure not running:

• The settings for the queue may have been changed: In this case, use the sys.service_queues
catalog view to confirm the settings for the queue. In particular, check to ensure that activa-
tion for the queue is enabled, that the queue specifies the correct stored procedure, and that
the queue specifies the correct security principal. Confirm that the security principal has
EXECUTE permissions on the specified stored procedure.

• The stored procedure may have failed to start or may have exited immediately after starting: In
this case, check the SQL Server log for errors from the stored procedure. You can also run the
stored procedure from SQL Server Management Studio and check the results.

When Messages Remain on the Queue
When messages remain on the queue, make sure that the activated stored procedures were correctly
started by performing the following steps:

1. Check the sys.dm_broker_queue_monitors DMV to ensure that a queue monitor is active for
the queue: If it isn’t, then the activation is not ON for the queue. Use the ALTER QUEUE T-SQL
statement to turn activation ON.

2. Check the state of the queue monitor for the queue: It should be RECEIVES_OCCURRING. If the
queue monitor is not in this state, check the sys.dm_broker_activated_tasks DMV to ensure
that activated tasks for the queue are currently running. If no activated tasks are running,
then activation is failing.

If activated tasks are running, but messages remain on the queue, then the task is either failing
to RECEIVE or failing to commit transactions. Check the SQL Server error log for errors from the
stored procedure. Stopping activation and running the stored procedure by hand may help to trou-
bleshoot the problem.

8423ch04.fm Page 117 Tuesday, April 3, 2007 9:46 PM

118 C H A P T E R 4 ■ S E R V I C E B R O K E R A C T I V A T I O N

Summary
This chapter looked at the activation feature in Service Broker. You saw how to start a stored proce-
dure automatically as soon as a message arrives on a queue. This process is referred to as internal
activation.

As you’ve seen throughout this chapter, Service Broker activation is a powerful technique, but
its security requirements make it complex. You must always keep in mind that an activated stored
procedure executes in a different security context. Therefore, the stored procedure may return other
results, as you’d expect when you run the stored procedure in an interactive session inside SQL
Server Management Studio. To solve this problem, sign your stored procedure so you can execute it
with the needed SQL Server permissions.

In the last section, you also saw how to activate an external application when a message arrives.
This process is referred to as external activation. Microsoft provides the ExternalActivator sample
application, where you can configure tasks that should be activated when a new message arrives on
a queue.

In the next chapter, you’ll learn how to program Service Broker applications in the .NET lan-
guage of your choice, such as C# or Visual Basic (VB).

8423ch04.fm Page 118 Tuesday, April 3, 2007 9:46 PM

119

■ ■ ■

C H A P T E R 5

Service Broker with Managed Code

A Service Broker application always consists of Service Broker objects (such as message types,
contracts, queues, and services) and maybe an associated service program in the form of a stored
procedure or an external application. The drawback to this approach is that you must implement
everything with T-SQL code. When you build a Service Broker client in the .NET language of your
choice, you must also use T-SQL code to communicate with Service Broker in the database.

Microsoft ships a managed assembly with SQL Server 2005 that implements an object model
around Service Broker. Therefore, you can build Service Broker clients in managed code (such as C#
or VB), and you also have the possibility to write stored procedures for a service program in a .NET
language. This managed assembly provides you several classes that encapsulate Service Broker
objects, such as message types, contracts, queues, service programs, and conversations. Methods
of these classes generate the needed T-SQL statements you saw in Chapter 3. This chapter will cover
the following topics:

• The managed assembly: I’ll give you an overview about the managed assembly and which
classes are available.

• Architecture and design: To get the most power out of the managed assembly, you must
have a basic understanding about the architecture and the internal design of the managed
assembly.

• Building a managed Service Broker client: With the managed assembly, you can write a
managed Service Broker client that uses functionality of the managed assembly.

• Building a managed service program: The managed assembly also provides you functional-
ity to easily write service programs for Service Broker services.

• Practical example: I’ll wrap everything up by providing you with a practical example around
the managed assembly.

The Managed Assembly
The managed assembly for Service Broker objects is implemented in a C# Visual Studio 2005 solu-
tion called ServiceBrokerInterface, which you can find in the Samples directory within the SQL
Server 2005 installation path. Figure 5-1 shows the solution in Visual Studio 2005.

8423ch05.fm Page 119 Thursday, April 5, 2007 3:11 PM

120 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Figure 5-1. The Service Broker managed assembly inside Visual Studio 2005

As you can see from Figure 5-1, several classes are available in this solution. Table 5-1 describes
the general purpose of each class.

Table 5-1. The Classes in the Service Broker Managed Assembly

Let’s take a detailed look at each of these classes and how they’re implemented internally. I’ll
start with the Service class. This class represents a Service Broker service on either the initiator or
the target side. Table 5-2 describes the most important methods of this class.

Class Description

BrokerMethodAttribute This class implements a .NET attribute with which you can decorate
a method with a Service Broker message type. When a message of the
specified message type is received in the managed service program,
then the associated method is called.

Conversation This class encapsulates all the aspects and behaviors of a Service
Broker conversation. This class provides methods such as Receive,
Send, End, and EndWithError.

Message This class encapsulates a Service Broker message. With this class, you
have direct access to the body of the message, the associated valida-
tion, and so on.

Service This class encapsulates a Service Broker service. This class provides
you methods such as BeginDialog, GetConversation, LoadState,
SaveState, and Run.

ServiceException This class wraps the exceptions thrown in the Run method of the
Service class.

8423ch05.fm Page 120 Thursday, April 5, 2007 3:11 PM

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 121

Table 5-2. Methods for the Service Class

When you start a new dialog between two Service Broker services with BeginDialog, an object of
the type Conversation is returned. Table 5-3 shows the available Conversation methods.

Method Description

Service(string name,
SqlConnection connection,
SqlTransaction transaction)

This constructor initializes a new service object by querying
the appropriate database management view for the associ-
ated queue name.

Run(bool autoCommit,
SqlConnection connection,
SqlTransaction transaction)

Implements the message loop for the Service Broker service.
It fetches the next conversation from the message queue,
reads one message at a time from the conversation, trans-
lates the message using the current application object, and
fires the corresponding event to the application. Application
state is saved automatically whenever a new batch of mes-
sages is fetched. The autoCommit parameter indicates if you’d
like the message loop to commit automatically at the end of
each fetched batch.

BeginDialog(string
toServiceName, string
brokerInstance, string
contractName, TimeSpan
lifetime, bool encryption,
Guid groupId, SqlConnection
connection, SqlTransaction
transaction)

This method begins a new dialog with a remote service by
invoking the corresponding database commands. It associ-
ates the dialog with the specified conversation group
(parameter groupId).

GetConversation(Conversation
conversation, SqlConnection
connection, SqlTransaction
transaction)

This method blocks (or times out) until the specified conver-
sation is available on the message queue.

LoadState(SqlDataReader
reader, SqlConnection
connection, SqlTransaction
transaction)

This method is invoked inside the message loop for loading
the application state associated with the conversation group
being processed into the current context. You must override
this method in your own service class to perform application-
specific database operations.

SaveState(SqlConnection
connection, SqlTransaction
transaction)

This method is invoked inside the message loop when the ser-
vice program has finished processing a conversation group
and wishes to save the state to the database.

8423ch05.fm Page 121 Thursday, April 5, 2007 3:11 PM

122 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Table 5-3. Methods for the Conversation Class

Table 5-4 shows the last important class of the managed assembly, the Message class.

Table 5-4. Methods/Properties for the Message Class

Method Description

Cleanup(SqlConnection
connection, SqlTransaction
transaction)

Ends the conversation with a cleanup. Changes are not
reflected until the transaction commits.

Conversation(Service
service, Guid handle)

This constructor doesn’t create a new conversation by run-
ning the BEGIN DIALOG T-SQL command. Instead, you use it to
create conversation objects from a conversation handle and
an associated service object. To create a new conversation
with a remote service, use the method Service.BeginDialog.

End(SqlConnection
connection, SqlTransaction
transaction)

Ends the conversation by invoking the END T-SQL command.
Changes are not reflected until the transaction commits.

EndWithError(int errorCode,
string errorDescription,
SqlConnection connection,
SqlTransaction transaction)

Ends the conversation with an error. Changes are not reflected
until the transaction commits.

MoveToGroup(Guid newGroupId,
SqlConnection connection,
SqlTransaction transaction)

Moves the conversation to a new group by invoking the MOVE
CONVERSATION T-SQL command. Changes are not reflected
until the transaction commits.

Receive() Receives a new message from the fetched batch of messages
from the queue.

Send(Message message,
SqlConnection connection,
SqlTransaction transaction)

Sends the message on this conversation to the remote service.
The message is not actually sent until the transaction is
committed.

Method/Property Description

Message(string type,
Stream body)

This constructor creates a new message object with the
given message type and with the given stream as the message
payload.

Guid ConversationGroupId This property represents the conversation group of the con-
versation from which the message was received.

long SequenceNumber This property represents the sequence number of the mes-
sage in the queue.

string ServiceName This property represents the service to which this message
is sent.

string Type This property represents the message type of this message.

string Validation This property represents the associated validation with the
message type of this message. E means empty, N means none,
and X means well-formed XML.

8423ch05.fm Page 122 Thursday, April 5, 2007 3:11 PM

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 123

Architecture and Design of
the Managed Assembly
Before I show you how to use the managed assembly, I want you to have a better understanding
about the architecture and the internal design. The most important class of the managed assembly
is the Service class. Refer back to Table 5-2, which shows the available methods in this class.

When you derive your own service class from the Service base class, you have to call the base
class constructor in your own constructor. This is a necessary step, because the base constructor
determines the associated queue with that service and stores its name in the m_queueName instance
variable. Finally, the method callback map is built with a call to the BuildCallbackMap method, which
I’ll cover soon. Listing 5-1 shows the implementation of the base class constructor.

Listing 5-1. Implementation of the Base Class Constructor of the Service Class

public Service(string name, SqlConnection connection, SqlTransaction transaction)
{
 if (connection.State != ConnectionState.Open)
 throw new ArgumentException("Database connection is not open");

 m_name = name;

 SqlCommand cmd = connection.CreateCommand();
 cmd.CommandText = "SELECT q.name " +
 "FROM sys.service_queues q JOIN sys.services as s " +
 "ON s.service_queue_id = q.object_id " +
 "WHERE s.name = @sname";
 cmd.Transaction = transaction;

 SqlParameter param;
 param = cmd.Parameters.Add("@sname", SqlDbType.NChar, 255);
 param.Value = m_name;

 m_queueName = (string)cmd.ExecuteScalar();

 if (m_queueName == null)
 throw new ArgumentException("Could not find any service with the name '" +
 name + "' in this database.");

 m_appLoaderProcName = null;
 m_fetchSize = 0;
 m_reader = new MessageReader(this);
 BuildCallbackMap();
}

As soon as you create a class implementation that represents your own Service Broker service, you
must implement methods for the message types you want to process inside the managed stored pro-
cedure. Because of the design of the managed assembly, you must write a separate method for each
message type you want to handle. You must decorate each of these methods with the [BrokerMethod]
attribute. This attribute associates a message type with a method. In other words, this ensures that the
method is called when the message type—defined with the [BrokerMethod] attribute—is received on
the service queue. Listing 5-2 demonstrates this.

8423ch05.fm Page 123 Thursday, April 5, 2007 3:11 PM

124 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Listing 5-2. Associating Message Types with Method Implementations

public class TargetService : Service
{
 [BrokerMethod("http://ssb.csharp.at/SSB_Book/c05/RequestMessage")]
 public void ProcessRequestMessage(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
 {
 // Create the response message
 MemoryStream body = new MemoryStream(Encoding.ASCII.GetBytes(
 "<HelloWorldResponse>Hello world from a managed stored procedure " +
 "activated by Service Broker!</HelloWorldResponse>"));
 Message msgSend = new Message(
 "http://ssb.csharp.at/SSB_Book/c05/ResponseMessage, body);

 // Send the response message back to the initiator of the conversation
 ReceivedMessage.Conversation.Send(msgSend, Connection, Transaction);
 }

 [BrokerMethod(Message.EndDialogType)]
 public void EndConversation(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
 {
 // Ends the current Service Broker conversation
 ReceivedMessage.Conversation.End(Connection, Transaction);
 }

 [BrokerMethod(Message.ErrorType)]
 public void ProcessErrorMessages(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
 {
 // Ends the current Service Broker conversation due to an error
 ReceivedMessage.Conversation.End(Connection, Transaction);
 }
}

As soon as the managed service receives a new message on its service queue, it looks into the
callback map for the method to execute for the received message-type name. The base class con-
structor builds the callback method through a call to BuildCallbackMap (as you saw in Listing 5-1).
Listing 5-3 shows the implementation of the BuildCallbackMap method, which is part of the man-
aged assembly.

8423ch05.fm Page 124 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/RequestMessage
http://ssb.csharp.at/SSB_Book/c05/ResponseMessage

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 125

Listing 5-3. Implementation of the BuildCallbackMap Method

private void BuildCallbackMap()
{
 Type t = this.GetType();
 m_dispatchMap = new Dictionary<BrokerMethodAttribute, MethodInfo>();
 MethodInfo [] methodInfoArray = t.GetMethods(
 BindingFlags.Public | BindingFlags.Instance);

 foreach (MethodInfo methodInfo in methodInfoArray)
 {
 object [] attributes = methodInfo.GetCustomAttributes(
 typeof(BrokerMethodAttribute), true);

 foreach (BrokerMethodAttribute statefulTransition in attributes)
 {
 BrokerMethodAttribute statelessTransition =
 new BrokerMethodAttribute(statefulTransition.Contract,
 statefulTransition.MessageType);

 if (m_dispatchMap.ContainsKey(statefulTransition) ||
 (m_dispatchMap.ContainsKey(statelessTransition))
 {
 string exceptionMessage = "Method '" + methodInfo.Name +
 "' redefines a handler for message type '" +
 statefulTransition.MessageType + "'";

 if (statefulTransition.State != -1)
 exceptionMessage += " in state " + statefulTransition.State;

 throw new NotSupportedException(exceptionMessage);
 }

 m_dispatchMap[statefulTransition] = methodInfo;
 }
 }
}

BuildCallbackMap builds a dictionary that stores for each [BrokerMethod] attribute the corre-
sponding method (methodInfo variable) that must be called as soon as a new message is received on
that service. It also includes some error handling to check that no message type is associated with
more than one callback method.

Now let’s look at how a message is received from the corresponding queue and how that mes-
sage is dispatched to the configured callback method. To accomplish this behavior, the managed
assembly executes several methods from the Service, Conversation, and Message classes. Figure 5-2
shows the UML sequence diagram that executes when the managed assembly reads a new message
from a queue.

8423ch05.fm Page 125 Thursday, April 5, 2007 3:11 PM

126 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

■Note A sequence diagram is one of the available diagram types in Unified Modeling Language (UML). You can
find more information about UML at http://en.wikipedia.org/wiki/Unified_Modeling_Language.

Figure 5-2. This sequence diagram executes when a new message is received and processed.

Now let’s look at each of these methods, which are called during the message receiving and pro-
cessing. Listing 5-4 shows the GetConversation method, which is executed inside the Run method
that is called when SQL Server starts the managed stored procedure.

Listing 5-4. Implementation of the GetConversation Method

public Conversation GetConversation(
 SqlConnection connection,
 SqlTransaction transaction)
{
 if (!m_reader.IsOpen)
 FetchNextMessageBatch(null, connection, transaction);

 return m_reader.GetNextConversation();
}

GetConversation calls FetchNextMessageBatch. The purpose of this method is to fetch a
new set of messages from the associated service queue. Listing 5-5 shows the implementation
of FetchNextMessageBatch.

8423ch05.fm Page 126 Thursday, April 5, 2007 3:11 PM

http://en.wikipedia.org/wiki/Unified_Modeling_Language

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 127

Listing 5-5. Implementation of the FetchNextMessageBatch Method

private void FetchNextMessageBatch(
 Conversation conversation,
 SqlConnection connection,
 SqlTransaction transaction)
{
 SqlCommand cmd;

 if (conversation != null || m_appLoaderProcName == null)
 {
 cmd = BuildReceiveCommand(conversation, connection, transaction);

 SqlDataReader dataReader = cmd.ExecuteReader();
 m_reader.Open(dataReader);
 }
 else if (m_appLoaderProcName != null)
 {
 cmd = BuildGcgrCommand(connection, transaction);

 SqlDataReader dataReader = cmd.ExecuteReader();

 if (!LoadState(dataReader, connection, transaction))
 {
 dataReader.Close();
 return;
 }

 m_reader.Open(dataReader);
 }
}

FetchNextMessageBatch builds the needed T-SQL statements for retrieving messages from the
associated queue. When state information is also retrieved for the current conversation group,
FetchNextMessageBatch calls either BuildGcgrCommand or BuildReceiveCommand. Chapter 6 provides
more information about state handling within Service Broker applications. As soon as the messages
are retrieved into an instance of a SqlDataReader, the SqlDataReader is passed to the Open method of
the MessageReader class. The main purpose of this class is to create instances of the Message class out
of the messages read from the queue.

As soon as GetConversation returns a conversation, the Receive method is called on that con-
versation. Receive calls Read of the MessageReader class. Listing 5-6 shows the implementation of the
Read method.

Listing 5-6. Implementation of the Read Method

public Message Read(Conversation conversation)
{
 if (m_curMsg == null || m_curMsg.Conversation.Handle != conversation.Handle)
 return null;

 Message result = m_curMsg;
 AdvanceCursor();

 return result;
}

8423ch05.fm Page 127 Thursday, April 5, 2007 3:11 PM

128 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

When Receive retrieves the received message, it dispatches the message to the corresponding
callback method, which the base constructor of the service class defined. The dispatching mecha-
nism is implemented in Service’s DispatchMessage method, as shown in Listing 5-7.

Listing 5-7. Implementation of the DispatchMessage Method

public virtual void DispatchMessage(
 Message message,
 SqlConnection connection,
 SqlTransaction transaction)
{
 if (message.Type == Message.EchoType && message.ContractName = EchoContractName)
 {
 EchoHandler(message, connection, transaction);
 return;
 }

 MethodInfo mi;
 BrokerMethodAttribute statefulTransition = new BrokerMethodAttribute(
 State, message.ContractName, message.Type);
 BrokerMethodAttribute statefulMessageTypeTransition = new BrokerMethodAttribute(
 State, message.Type);
 BrokerMethodAttribute statelessTransition = new BrokerMethodAttribute(
 message.ContractName, message.Type);
 BrokerMethodAttribute statelessMessageTypeTransition = new BrokerMethodAttribute(
 message.Type);

 if (m_dispatchMap.ContainsKey(statefulTransition))
 mi = m_dispatchMap[statefulTransition];
 else if (m_dispatchMap.ContainsKey(statefulMessageTypeTransition))
 mi = m_dispatchMap[statefulMessageTypeTransition];
 else if (m_dispatchMap.ContainsKey(statelessTransition))
 mi = m_dispatchMap[statelessTransition];
 else if (m_dispatchMap.ContainsKey(statelessMessageTypeTransition))
 mi = m_dispatchMap[statelessMessageTypeTransition];
 else
 {
 string exceptionMessage = "No broker method defined for message type '" +
 message.Type + "' on contract '" + message.ContractName + "'";

 if (State != -1)
 exceptionMessage += " in state " + State;

 throw new InvalidOperationException(exceptionMessage);
 }

 mi.Invoke(this, new object[3] { message, connection, transaction });

 if (connection.State != ConnectionState.Open)
 throw new ObjectDisposeException("Connection", "Method '" + mi.Name +
 "' closed the database connection.");
}

8423ch05.fm Page 128 Thursday, April 5, 2007 3:11 PM

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 129

As you can see from Listing 5-7, the corresponding MethodInfo object is retrieved from the dic-
tionary, and the method is called through .NET reflection.

Building a Managed Service Broker Client
Let’s see now how to write a managed Service Broker client with a .NET language of your choice that
sends messages through the Service Broker infrastructure to another Service Broker service on the
network. I assume that you’ve already set up your Service Broker infrastructure that includes the fol-
lowing objects. The creation of these objects is also provided an as external T-SQL script in the
Source Code/Download area of the Apress website (http://www.apress.com) for this chapter.

• Message types: [http://ssb.csharp.at/SSB_Book/c05/RequestMessage] and
[http://ssb.csharp.at/SSB_Book/c05/ResponseMessage]

• Contract: [http://ssb.csharp.at/SSB_Book/c05/HelloWorldContract]

• Queues: InitiatorQueue and TargetQueue

• Services: InitiatorService and TargetService

When you want to send a new message from a managed Service Broker client, you must follow
these steps:

1. Create and open a new SqlConnection to the database hosting the client side of the Service
Broker application.

2. Begin a new transaction.

3. Create a new Service class object.

4. Begin a new dialog with another Service Broker service.

5. Send a message over the created dialog.

6. Close the connection to the database.

Listing 5-8 shows how you can accomplish these steps with the features provided by the man-
aged assembly.

Listing 5-8. Implementing the Managed Service Broker Client

public static void Main()
{
 SqlConnection cnn = null;
 SqlTransaction tran = null;
 TextReader reader = null;

 try
 {
 // Opening a new database connection
 cnn = new SqlConnection("Initial Catalog=Chapter5_ManagedServiceBroker;
 Data Source=localhost;Integrated Security=SSPI;");
 cnn.Open();

 // Starting a new database transaction
 tran = cnn.BeginTransaction();

8423ch05.fm Page 129 Thursday, April 5, 2007 3:11 PM

http://www.apress.com
http://ssb.csharp.at/SSB_Book/c05/RequestMessage
http://ssb.csharp.at/SSB_Book/c05/ResponseMessage
http://ssb.csharp.at/SSB_Book/c05/HelloWorldContract

130 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

 // Create a new service object
 Service initiatorService = new Service("InitiatorService", cnn, tran);
 initiatorService.FetchSize = 1;

 // Begin a new dialog with the service TargetService
 Conversation dialog = initiatorService.BeginDialog(
 "TargetService",
 null,
 "http://ssb.csharp.at/SSB_Book/c05/HelloWorldContract",
 TimeSpan.FromMinutes(1),
 false,
 cnn,
 tran);

 // Create a new request message
 Message request = new Message(
 "http://ssb.csharp.at/SSB_Book/c05/RequestMessage",
 null);

 // Send the message over the new dialog
 dialog.Send(request, cnn, tran);

 // Commit the transaction, so that the message is really sent to the
 // other Service Broker service
 tran.Commit();

 Console.WriteLine("Press Enter to Exit");
 Console.ReadLine();
 }
 catch (ServiceException ex)
 {
 Console.WriteLine("An exception occurred – {0}\n", ex.ToString());

 if (tran != null)
 tran.Rollback();
 }
 finally
 {
 if (reader != null)
 reader.Close();

 if (cnn != null)
 cnn.Close();
 }
}

Figure 5-3 shows the output of this simple Service Broker client.

8423ch05.fm Page 130 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/HelloWorldContract
http://ssb.csharp.at/SSB_Book/c05/RequestMessage

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 131

Figure 5-3. The managed Service Broker client built with the managed assembly

If you take a look into the TargetQueue in the SQL Server database (with a T-SQL statement such
as SELECT * FROM TargetQueue), you’ll see that the client application sent the message successfully
(see Figure 5-4).

Figure 5-4. The sent message on the TargetQueue

After the client application sends the message successfully, you can implement an activated
stored procedure that processes the message and sends a response back to the client. Have a look
at Listing 5-9.

Listing 5-9. Message-Processing Stored Procedure for the TargetQueue

CREATE PROCEDURE ProcessRequestMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename NVARCHAR(256)
 DECLARE @messagebody XML
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

8423ch05.fm Page 131 Thursday, April 5, 2007 3:11 PM

132 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

 IF (@messagetypename = 'http://ssb.csharp.at/SSB_Book/c05/RequestMessage')
 BEGIN
 SET @responsemessage = '<HelloWorldResponse>' +
 @messagebody.value('/HelloWorldRequest[1]', 'nvarchar(max)') +
 '</HelloWorldResponse>';

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c05/ResponseMessage]
 (@responsemessage);

 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @ch;
 END
 END
GO

ALTER QUEUE TargetQueue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = ProcessRequestMessages,
 MAX_QUEUE_READERS = 5,
 EXECUTE AS SELF
)
GO

You can now extend the client application to wait for the sent response message and handle it
correctly (see Listing 5-10).

Listing 5-10. Waiting for Response Messages in the Client Application

// Here comes the code from Listing 5-8...
// ...

// Begin a new transaction for receiving messages
tran = cnn.BeginTransaction();

// Wait for 5 seconds
initiatorService.WaitforTimeout = TimeSpan.FromSeconds(5);

// Check if there is a message from a conversation available on the queue
if (initiatorService.GetConversation(dialog, cnn, tran) == null)
{
 dialog.EndWithError(1, "No response within 5 seconds.");
 tran.Commit();

8423ch05.fm Page 132 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/RequestMessage
mailto:@messagebody.value('/HelloWorldRequest
http://ssb.csharp.at/SSB_Book/c05/ResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 133

 cnn.Close();
 return;
}

// Read the sent message
Message response = dialog.Receive();

if (response.Body != null)
{
 reader = new StreamReader(response.Body);
 Console.WriteLine(reader.ReadToEnd());
}

// End the dialog
dialog.End(cnn, tran);

// Committing the transaction
tran.Commit();
cnn.Close();

Figure 5-5 shows the output of the managed Service Broker client.

Figure 5-5. The managed Service Broker client built with the managed assembly

The activated T-SQL stored procedure starts automatically as soon as the client application
sends a request message and sends a response message back to the client, which is received with the
code shown in Listing 5-10.

Building a Managed Service Program
Another nice feature of the managed assembly for Service Broker is that it lets you write an activated
managed stored procedure for Service Broker. You must deploy the managed stored procedure to
SQL Server 2005. It executes automatically when a new message arrives in the specified queue

8423ch05.fm Page 133 Thursday, April 5, 2007 3:11 PM

134 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

through the SQLCLR mechanism available in SQL Server 2005. When you implement an activated
stored procedure with the managed assembly, you must follow these steps:

1. Derive your own service class from the Service base class.

2. Implement the entry point for your managed stored procedure.

3. Implement all necessary methods and associate them—through the .NET attribute
[BrokerMethod]—with your custom message types and with the error message type and
the end dialog message type provided by Service Broker.

4. Deploy the assembly into SQL Server 2005.

5. Register the managed stored procedure.

6. Configure the managed stored procedure for Service Broker activation.

Derive Your Service Class
First, you must define the TargetService in a class derived from the Service base class. Listing 5-11
shows this definition.

Listing 5-11. Deriving a Service Class from the Service Base Class

public class TargetService : Service
{
 public TargetService(SqlConnection Connection)
 : base("TargetService", Connection)
 {
 WaitforTimeout = TimeSpan.FromSeconds(1);
 }
}

As you can see from Listing 5-11, you must call the base constructor in the class constructor and
pass the service name as an argument. Please refer back to Listing 5-1 for more information about
the internal implementation of the base constructor and why you have to call it.

Implement an Entry Point
After you create your derived service class, you’re able to implement the entry point of your man-
aged stored procedure. Listing 5-12 shows the basic skeleton of an entry point that you can use in
every managed stored procedure written with the managed assembly.

Listing 5-12. Implementing the Entry Point for the TargetService

public class TargetService : Service
{
 public static void ServiceProcedure()
 {
 Service service = null;
 SqlConnection cnn = null;

8423ch05.fm Page 134 Thursday, April 5, 2007 3:11 PM

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 135

 try
 {
 // Open the database connection
 cnn = new SqlConnection("context connection=true;");
 cnn.Open();

 // Instantiate the Service Broker service "TargetService"
 service = new TargetService(cnn);
 service.FetchSize = 1;

 // Run the message loop of the service
 service.Run(true, cnn, null);
 }
 catch (ServiceException ex)
 {
 if (ex.Transaction != null)
 ex.Transaction.Rollback();
 }
 finally
 {
 if (cnn != null)
 cnn.Close();
 }
 }
}

As you can see from Listing 5-12, you have to open a new context connection to SQL Server
2005. After you acquire the context connection, you have to create a new instance of your service
class—in this case, the TargetService class. After you set the properties of the service class (it’s com-
pletely up to your requirements which properties to set), you call the Run method of the service class
to start the message-processing logic.

CONTEXT CONNECTIONS IN SQL SERVER 2005

SQL Server 2005 supports the concept of a context connection. When you’re implementing a managed stored pro-
cedure and you need a connection inside the managed stored procedure to the database that hosts the managed
stored procedure, you can use the context connection. The context connection is the database connection under
which the managed stored procedure is actually executed. Therefore, you don’t have to open an additional connec-
tion to the SQL Server database.

However, keep in mind that you can’t open more than one context connection inside a managed stored proce-
dure. You must pass the context connection to each method that wants to use the context connection. As you can
see from Listing 5-12, you create the context connection inside the entry point of the managed stored procedure and
then hand it over to the Run method of the service class.

8423ch05.fm Page 135 Thursday, April 5, 2007 3:11 PM

136 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Implement Message Type Handling
After you implement the entry point for your managed stored procedure, you have to write the
methods that process your different supported message types. Please refer back to Listing 5-2,
which demonstrated how you can use the [BrokerMethod] attribute to associate a message type
with a method.

As you can see from Listing 5-2 you have to handle the message types [http://ssb.csharp.at/
SSB_Book/c05/RequestMessage], [http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog],
and [http://schemas.microsoft.com/SQL/ServiceBroker/Error] in this example.

Deploy the Assembly
After you implement all the needed methods, you can deploy the assembly to your SQL Server 2005
database. You can start this task automatically from Visual Studio 2005 or start the deployment
directly from Microsoft SQL Server Management Studio with the T-SQL statement CREATE ASSEMBLY.
Listing 5-13 shows the syntax for this statement.

Listing 5-13. Syntax for the CREATE ASSEMBLY T-SQL Statement

CREATE ASSEMBLY assembly_name
[AUTHORIZATION owner_name]
FROM { <client_assembly_specifier> | <assembly_bits> [,...n] }
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]
[;]

Table 5-5 describes the arguments for this statement.

Table 5-5. Arguments for the CREATE ASSEMBLY T-SQL Statement

Argument Description

assembly_name The name of the assembly used to reference it within the data-
base. The name must be unique within the database and a valid
identifier.

AUTHORIZATION Specifies the owner of the assembly. You can specify a database
user or a database role. If you don’t specify anything, owner-
ship is given to the current user.

<client_assembly_specifier> Indicates the local path or network location where the assem-
bly that is being registered is located, and also indicates the
manifest file name that corresponds to the assembly. SQL
Server also looks for any dependent assemblies of this assembly
in the same location and registers them with the same owner as
the root-level assembly.

8423ch05.fm Page 136 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/RequestMessage
http://ssb.csharp.at/SSB_Book/c05/RequestMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker/Error

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 137

Listing 5-14 shows how to use the CREATE ASSEMBLY T-SQL statement to register the created
assembly in the database you’ve built in this section for the target service. Please make sure to point
to the correct path where you’ve built the assembly.

Listing 5-14. Registering the Service Broker Assembly in the Database

-- Add the assembly file to the database
CREATE ASSEMBLY BackendServiceAssembly
FROM 'c:\BackendService.dll'
GO

-- Add the debug information to the assembly
ALTER ASSEMBLY BackendServiceAssembly
ADD FILE FROM 'c:\BackendService.pdb'
GO

<assembly_bits> Represents the list of binary values that make up the assembly
and its dependent assemblies. The first value in this list is con-
sidered the root-level assembly. The values corresponding to
the dependent assemblies can be supplied in any order.

PERMISSION_SET Specifies a set of code access permissions that are granted to the
assembly when it is accessed by SQL Server. If not specified,
SAFE is applied as the default. SAFE is the most restrictive per-
mission set. The code executed by an assembly with SAFE
permission cannot access external system resources such as
files, the network, environment variables, or the registry.
EXTERNAL_ACCESS enables assemblies to access certain external
system resources such as files, networks, environment vari-
ables, and the registry. UNSAFE enables unrestricted access to
resources, both within and outside an instance of SQL Server.
Code running from within an UNSAFE assembly can also call
unmanaged code.

PERMISSION SETS IN SQL SERVER 2005

SQL Server 2005 supports the permission sets SAFE, EXTERNAL_ACCESS, and UNSAFE. Whenever you deploy
assemblies to a SQL Server 2005 database, you should use the permission set SAFE for security reasons. However,
sometimes you need access to resources such as files and networks, and Web services. In these scenarios, you can
use the permission set EXTERNAL_ACCESS.

UNSAFE is the permission set where the assembly can do everything in the database. You can call unmanaged
code or instantiate COM objects. You should not use this permission set for your assemblies, because then your code
will be completely unsafe and could do everything that is possible with extended stored procedures.

Argument Description

8423ch05.fm Page 137 Thursday, April 5, 2007 3:11 PM

138 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Register the Managed Stored Procedure
As soon as you register the managed assembly in your database, you can register the managed stored
procedure. Listing 5-15 shows the required T-SQL code.

Listing 5-15. Registration of the Managed Stored Procedure

-- Register the stored procedure written in managed code
CREATE PROCEDURE ProcessRequestMessagesManaged
AS
EXTERNAL NAME BackendServiceAssembly.BackendService.TargetService.ServiceProcedure
GO

If you want to make sure that the registration of the assembly is successful, you can use the
sys.assemblies catalog view. This catalog view returns for each registered assembly in the database
a row with more information about the registered assembly. Table 5-6 describes the columns avail-
able in this catalog view.

Table 5-6. Columns in the sys.assemblies Catalog View

Figure 5-6 shows the content of the sys.assemblies catalog view after the managed assembly is
deployed to the database.

Figure 5-6. The content of the sys.assemblies catalog view

Column Data Type Description

name SYSNAME Represents the name of the registered assembly. The
name is unique within the database.

principal_id INT The ID of the principal that owns the assembly.

assembly_id INT The ID of the assembly. The assembly ID is unique
within the database.

permission_set TINYINT Specifies the used permission set for the assembly:
1 = SAFE
2 = EXTERNAL_ACCESS
3 = UNSAFE.

permission_set_desc NVARCHAR(60) Specifies the description of the permission set for the
registered assembly.

is_visible BIT 1 = Assembly is visible to register T-SQL entry points.
2 = Assembly is intended only for managed callers.

clr_name NVARCHAR(4000) String that encodes the simple name, version num-
ber, culture, public key, and CPU architecture of the
assembly.

create_date DATETIME Specifies the date on which the assembly was created
or registered.

modify_date DATETIME Specifies the date on which the assembly was
modified.

8423ch05.fm Page 138 Thursday, April 5, 2007 3:11 PM

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 139

As you can see from Figure 5-6, the referenced ServiceBrokerInterface assembly is also
deployed to the database automatically.

Configure the Service Broker Activation
As soon as you register the assembly in the database, you can change the activation for the
TargetQueue to use the managed stored procedure for message processing. Listing 5-16 shows
the required T-SQL code.

Listing 5-16. Configuration of Service Broker Activation

-- Use the managed stored procedure for activation
ALTER QUEUE TargetQueue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = ProcessRequestMessagesManaged,
 MAX_QUEUE_READERS = 5,
 EXECUTE AS SELF
)
GO

Using the Service Program
Now when you call the managed client you developed earlier in this chapter, the managed stored
procedure processes the incoming messages and returns the corresponding return message back to
the client. Figure 5-7 shows the response from the managed stored procedure.

Figure 5-7. Processing Service Broker messages by a managed stored procedure

With this information in hand, you can now write an additional managed stored procedure
that does the message processing on the InitiatorQueue. This managed stored procedure handles
the messages sent from TargetService back to the InitiatorService. You can then send Service
Broker messages from either T-SQL or managed code, and the message processing is done in man-
aged code. Listing 5-17 shows the needed code for the InitiatorService.

8423ch05.fm Page 139 Thursday, April 5, 2007 3:11 PM

140 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Listing 5-17. Implementing the InitiatorService

public class InitiatorService : Service
{
 public InitiatorService(SqlConnection Connection)
 : base("InitiatorService", Connection)
 {
 WaitforTimeout = TimeSpan.FromSeconds(1);
 }

 public static void ServiceProcedure()
 {
 Service service = null;
 SqlConnection cnn = null;

 try
 {
 cnn = new SqlConnection("context connection=true;");
 cnn.Open();

 service = new InitiatorService(cnn);
 service.FetchSize = 1;
 service.Run(true, cnn, null);
 }
 catch (ServiceException ex)
 {
 if (ex.Transaction != null)
 ex.Transaction.Rollback();
 }
 finally
 {
 if (cnn != null)
 cnn.Close();
 }
 }

 [BrokerMethod("http://ssb.csharp.at/SSB_Book/c05/ResponseMessage")]
 public void ProcessResponseMessage(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
 {
 ReceivedMessage.Conversation.End(Connection, Transaction);
 }

 [BrokerMethod(Message.EndDialogType)]
 public void EndConversation(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
 {
 ReceivedMessage.Conversation.End(Connection, Transaction);
 }

8423ch05.fm Page 140 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/ResponseMessage

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 141

 public void ProcessErrorMessage(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
 {
 ReceivedMessage.Conversation.End(Connection, Transaction);
 }
}

As soon as you develop the InitiatorService class, you can deploy the assembly again to the
SQL Server 2005 database and activate the internal activation on the InitiatorQueue, as shown in
Listing 5-18. Please make sure to point to the correct path where you’ve built the assembly.

Listing 5-18. Deployment of the Managed Assembly

-- Add the assembly file to the database
CREATE ASSEMBLY InitiatorServiceAssembly
FROM 'c:\InitiatorService.dll'
GO

-- Add the debug information to the assembly
ALTER ASSEMBLY InitiatorServiceAssembly
ADD FILE FROM 'c:\InitiatorService.pdb'
GO

-- Register the stored procedure written in managed code
CREATE PROCEDURE ProcessRequestMessagesManaged
AS
EXTERNAL NAME
InitiatorServiceAssembly.InitiatorService.InitiatorService.
ServiceProcedure
GO

-- Use the managed stored procedure for activation
ALTER QUEUE InitiatorQueue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = ProcessResponseMessagesManaged,
 MAX_QUEUE_READERS = 5,
 EXECUTE AS SELF
)
GO

When you register the managed stored procedure for internal activation, you can use
the code from Listing 5-8 to send a message to the Service Broker service. In this case, the
ProcessRequestMessagesManaged managed stored procedure starts and processes the messages
arriving in the TargetQueue. This stored procedure sends a response message back to the
InitiatorService, where the ProcessResponseMessages managed stored procedure starts and
finally ends the dialog between the two services.

8423ch05.fm Page 141 Thursday, April 5, 2007 3:11 PM

142 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

A Practical Example
Now that you’ve seen how to use managed code to implement Service Broker solutions, let’s look
at a more complex sample where you’ll see how easy it is to implement Service Broker applications
with managed code. I’ll show you how to implement an inventory application where a client can
submit two different types of messages:

• InventoryUpdate: Updates the inventory in the database.

• InventoryRequest: Checks if the specified quantity of the inventory is in stock. If it is, the
requested quantity is removed from the inventory.

Listing 5-19 shows the T-SQL code for creating the necessary Service Broker infrastructure
objects.

Listing 5-19. Creating the Service Broker Infrastructure for the Inventory Application

-- Message type and contract for updating the inventory
CREATE MESSAGE TYPE
[http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage]
VALIDATION = WELL_FORMED_XML
GO

CREATE CONTRACT
[http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract]
(
 [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage]
 SENT BY INITIATOR
)
GO

-- Message types and contract for removing items from the inventory
CREATE MESSAGE TYPE
[http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE
[http://ssb.csharp.at/SSB_Book/c05/InventoryQueryResponseMessage]
VALIDATION = WELL_FORMED_XML
GO

CREATE CONTRACT
[http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract]
(
 [http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage]
 SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c05/InventoryQueryResponseMessage]
 SENT BY TARGET
)
GO

8423ch05.fm Page 142 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryResponseMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryResponseMessage

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 143

-- Create the target service
CREATE QUEUE [InventoryTargetQueue]
GO

CREATE SERVICE [InventoryTargetService]
ON QUEUE [InventoryTargetQueue]
(
 [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract],
 [http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract]
)
GO

-- Create the initiator service
CREATE QUEUE [InventoryInitiatorQueue]
GO

CREATE SERVICE [InventoryInitiatorService]
ON QUEUE [InventoryInitiatorQueue]
(
 [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract],
 [http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract]
)
GO

Note two differences between the code in Listing 5-19 and all the other samples up to this point in
this book. The first is that the contract [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract]
consists of only one message type, [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage],
which is sent by the initiator of the conversation. It’s a one-way messaging scenario. The second is that
both queues accept more than one contract, so messages of both contracts can be sent to and retrieved
from the queues and are processed accordingly.

The last thing you need for this sample is to populate the Inventory table with several items. The
T-SQL code in Listing 5-20 creates and populates this table.

Listing 5-20. Creating and Populating the Inventory Table

-- Create the inventory table
CREATE TABLE Inventory
(
 InventoryId NVARCHAR(10) NOT NULL,
 Quantity INT NOT NULL,
 PRIMARY KEY (InventoryId)
)
GO

-- Populate the inventory table
INSERT Inventory VALUES ('PS1372', 200)
INSERT Inventory VALUES ('PC1035', 200)
INSERT Inventory VALUES ('BU1111', 200)
-- and the rest comes here...

8423ch05.fm Page 143 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage

144 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

With this Service Broker infrastructure, you can now create the managed stored procedure that
processes the incoming messages on the InventoryTargetService. The entry point for this managed
stored procedure is the same code as in Listing 5-11 and Listing 5-12. The first use case for this exam-
ple is the requirement to update the inventory. To accomplish this task, a client sends a message
of the type [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage] bound to the Service
Broker contract [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract]. Listing 5-21
shows the ProcessInventoryUpdate method that processes this message type.

Listing 5-21. Updating the Inventory Table

[BrokerMethod("http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage")]
public void ProcessInventoryUpdate(
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
{
 try
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(ReceivedMessage.BodyAsString);

 XmlNodeList list = doc.GetElementsByTagName("InventoryId");
 string inventoryId = list.Items(0).InnerXml;

 list = doc.GetElementsByTagName("Quantity");
 int quantity = Convert.ToInt32(list.Items(0).InnerXml);

 // Updating the inventory
 UpdateInventory(Connection, Transaction, inventoryId, quantity);

 // End the conversation between the two services
 ReceivedMessage.Conversation.End(Connection, Transaction);
 }
 catch (Exception ex)
 {
 ReceivedMessage.Conversation.EndWithError(
 1, ex.Message, Connection, Transaction);
 }
}

private void UpdateInventory(
 SqlConnection Connection,
 SqlTransaction Transaction,
 string InventoryId,
 int Quantity)
{
 // Creating the SqlCommand
 SqlCommand cmd = new SqlCommand("UPDATE Inventory " +
 "SET Quantity = Quantity + @Quantity " +
 "WHERE InventoryId = @InventoryId", Connection);
 cmd.Transaction = Transaction;

8423ch05.fm Page 144 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 145

 // Add InventoryId parameter
 SqlParameter paramInventoryId = new SqlParameter("@InventoryId",
 SqlDbType.NVarChar, 10);
 paramInventoryId.Value = InventoryId;
 cmd.Parameters.Add(paramInventory);

 // Add Quantity parameter
 SqlParameter paramQuantity = new SqlParameter("@Quantity", SqlDbType.Int);
 paramQuantity.Value = Quantity;
 cmd.Parameters.Add(paramQuantity);

 // Execute the SqlCommand
 cmd.ExecuteNonQuery();
}

Once you write the necessary methods in the managed stored procedure, you must deploy the
stored procedure to the database. You do this through the CREATE ASSEMBLY T-SQL statement already
described in Listing 5-13 and Table 5-5. Listing 5-22 shows the needed T-SQL.

Listing 5-22. Registering the Managed Stored Procedure

CREATE ASSEMBLY [InventoryTargetServiceAssembly]
FROM 'c:\InventoryTargetService.dll'
GO

ALTER ASSEMBLY [InventoryTargetServiceAssembly]
ADD FILE FROM 'c:\InventoryTargetService.pdb'
GO

CREATE PROCEDURE InventoryTargetProcedure
AS
EXTERNAL NAME
[InventoryTargetServiceAssembly].
[InventoryTargetService.TargetService].
 ServiceProcedure
GO

ALTER QUEUE [InventoryTargetQueue]
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = InventoryTargetProcedure,
 MAX_QUEUE_READERS = 5,
 EXECUTE AS SELF
)
GO

As soon as you set up the internal activation with the managed stored procedure, a client can
send a message to the service. Listing 5-23 shows how to update the inventory with a message of type
[http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage].

8423ch05.fm Page 145 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage

146 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

Listing 5-23. Updating the Inventory Table Through a Service Broker Message

BEGIN TRANSACTION;
 DECLARE @dh UNIQUEIDENTIFIER;
 DECLARE @msg NVARCHAR(MAX);
 DECLARE @count INT;
 DECLARE @MAX INT;

 BEGIN DIALOG @dh
 FROM SERVICE [InventoryInitiatorService]
 TO SERVICE 'InventoryTargetService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<InventoryUpdate>
 <InventoryId>BU1032</InventoryId>
 <Quantity>30</Quantity>
 </InventoryUpdate>';

 SEND ON CONVERSATION @dh MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage] (@msg);
COMMIT;

Figure 5-8 shows the updated Inventory table in the SQL Server database.

Figure 5-8. The updated Inventory table

The second functionality of this sample application is to order items through a message of type
[http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage]. When this message type
arrives at the InventoryTargetQueue, the associated managed stored procedure performs the follow-
ing actions:

• Check if the needed quantity is available in the inventory.

• Calculate the new items count in the inventory.

• Send a response message back to the sender with the result.

Listing 5-24 shows the ProcessInventoryQueryRequest method that handles all three tasks.

8423ch05.fm Page 146 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateContract
http://ssb.csharp.at/SSB_Book/c05/InventoryUpdateMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 147

Listing 5-24. ProcessInventoryQueryRequest Method Handles Three Tasks

[BrokerMethod("http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage")]
public void ProcessInventoryQueryRequest
 Message ReceivedMessage,
 SqlConnection Connection,
 SqlTransaction Transaction)
{
 try
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(ReceivedMessage.BodyAsString);

 XmlNodeList list = doc.GetElementsByTagName("InventoryId");
 string inventoryId = list.Item(0).InnerXml;

 list = doc.GetElementsByTagName("Quantity");
 int quantity = Convert.ToInt32(list.Item(0).InnerXml);

 // Remove the items from the inventory, if available
 bool rc = CheckInventory(Connection, Transaction, inventoryId, quantity);

 // Send a response message back to the initiator of the conversation
 SendCustomerReply(ReceivedMessage.Conversation, Connection, Transaction, rc);
 }
 catch (Exception ex)
 {
 ReceivedMessage.Conversation.EndWithError(
 1, ex.Message, Connection, Transaction);
 }
}

private bool CheckInventory(
 SqlConnection Connection,
 SqlTransaction Transaction,
 string InventoryId,
 int Quantity)
{
 int realQuantity;

 SqlCommand cmd = new SqlCommand("SELECT Quantity FROM Inventory " +
 "WHERE InventoryId = @InventoryId", Connection);
 cmd.Transaction = Transaction;

 // Add InventoryId parameter
 SqlParameter paramInventoryId = new SqlParameter("@InventoryId",
 SqlDbType.NVarChar, 10);
 paramInventoryId.Value = InventoryId;
 cmd.Parameters.Add(paramInventoryId);

8423ch05.fm Page 147 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage

148 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

 SqlDataReader reader = cmd.ExecuteReader();

 if (reader.Read())
 {
 realQuantity = reader.GetInt32(0);
 reader.Close();

 if (Quantity <= realQuantity)
 {
 SubtractFromInventory(Connection, Transaction, InventoryId, Quantity);
 return true;
 }
 else return false;
 }
 else
 {
 reader.Close();
 return false;
 }
}

private void SubtractFromInventory(
 SqlConnection Connection,
 SqlTransaction Transaction,
 string InventoryId,
 int Quantity)
{
 SqlCommand cmd = new SqlCommand("UPDATE Inventory SET Quantity = Quantity – " +
 "@Quantity WHERE InventoryId = @InventoryId", Connection);
 cmd.Transaction = Transaction;

 // Add InventoryId parameter
 SqlParameter paramInventoryId = new SqlParameter("@InventoryId",
 SqlDbType.NVarChar, 10);
 paramInventoryId.Value = InventoryId;
 cmd.Parameters.Add(paramInventoryId);

 // Add Quantity parameter
 SqlParameter paramQuantity = new SqlParameter("@Quantity", SqlDbType.Int);
 paramQuantity.Value = Quantity;
 cmd.Parameters.Add(Quantity);

 // Execute the command
 cmd.ExecuteNonQuery();
}

private void SendCustomerReply(
 Conversation Conversation,
 SqlConnection Connection,
 SqlTransaction Transaction,
 bool InStockFlag)

8423ch05.fm Page 148 Thursday, April 5, 2007 3:11 PM

C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E 149

{
 XmlDocument doc = new XmlDocument();
 XmlElement root = doc.CreateElement("InventoryResponse");
 doc.AppendChild(root);

 XmlElement response = doc.CreateElement("Response");

 if (InStockFlag)
 response.InnerText = "In stock";
 else
 response.InnerText = "Out of stock";

 root.AppendChild(response);

 // Send the message
 Message msg = new Message(
 "http://ssb.csharp.at/SSB_Book/c05/InventoryQueryResponseMessage",
 new MemoryStream(Encoding.ASCII.GetBytes(doc.InnerXml)));
 Conversation.Send(msg, Connection, Transaction);

 // End the dialog
 Conversation.End(Connection, Transaction);
}

After you’ve successfully redeployed the changed managed stored procedure to the database,
you can use the T-SQL code in Listing 5-25 to send a Service Broker message to order items from the
inventory.

Listing 5-25. Ordering Items from the Inventory

BEGIN TRANSACTION;
 DECLARE @dh UNIQUEIDENTIFIER;
 DECLARE @msg NVARCHAR(MAX);
 DECLARE @count INT;
 DECLARE @MAX INT;

 BEGIN DIALOG @dh
 FROM SERVICE [InventoryInitiatorService]
 TO SERVICE 'InventoryTargetService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<InventoryUpdate>
 <InventoryId>BU1032</InventoryId>
 <Quantity>30</Quantity>
 </InventoryUpdate>';

 SEND ON CONVERSATION @dh MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage] (@msg);
COMMIT;

8423ch05.fm Page 149 Thursday, April 5, 2007 3:11 PM

http://ssb.csharp.at/SSB_Book/c05/InventoryQueryResponseMessage
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryContract
http://ssb.csharp.at/SSB_Book/c05/InventoryQueryRequestMessage

150 C H A P T E R 5 ■ S E R V I C E B R O K E R W I T H M A N A G E D C O D E

As soon as this T-SQL batch executes, the InventoryTargetService processes your request and
returns a response message back to the initiator of the conversation. Figure 5-9 shows the returned
response message in the InventoryTargetQueue.

Figure 5-9. The returned response message

The only thing left to do now is to write an activated stored procedure (managed code or T-SQL
code) that processes the response message and the end dialog messages received from the target
service.

Summary
In this chapter, I moved a bit away from T-SQL code and discussed how to implement Service Broker
applications with managed code in SQL Server 2005. I showed how you can build a simple managed
client for Service Broker applications and how messages are sent to Service Broker services.

I described how you can use managed stored procedure to implement service programs for
Service Broker. I introduced the ServiceBrokerInterface managed assembly, which is a sample that
ships with SQL Server 2005. The managed assembly provides several classes that encapsulate the
necessary T-SQL statements needed for Service Broker. Then I showed in detail how to combine
what you learned in previous chapters to write a complete Service Broker application with managed
code. In the next chapter, I’ll explain transaction management and locking strategies in Service
Broker applications.

8423ch05.fm Page 150 Thursday, April 5, 2007 3:11 PM

151

■ ■ ■

C H A P T E R 6

Locking and
Transaction Management

A Service Broker application always must use some kind of locking logic to process messages from
a service queue. Service Broker provides a concept referred to as conversation groups for this reason.
As soon as you begin working with locking, you must also have a look at transaction management
with Service Broker, because transaction management affects the overall performance of your
Service Broker application. This chapter will discuss the following two techniques:

• Conversation groups and locks: Service Broker puts messages of related conversations into a
so-called conversation group. Within a conversation group, Service Broker ensures things
such as ordered message processing, reliable delivery, and synchronization support for mul-
tiple queue readers.

• Transaction management: You can design and build scalable Service Broker applications
through different approaches in the transaction management. This section will look at sev-
eral approaches and show you how they affect performance.

Conversation Groups and Locks
Conversation groups ensure that messages are processed in order. While it is reasonably straight-
forward to ensure that messages are received in order, it is more difficult to ensure that they are
processed in order. To see why this is a problem, just think of a large, multithreaded application that
receives and processes order-entry messages. One thread receives the order-header message and
starts processing it. In the meantime, other threads may receive order-line-item messages that are
related to the order-header message. Because line items are processed quicker than the order-
header message, the order-line-item message transaction commits sooner than the order-header
message and fails. Why? Because no corresponding order header is available in the table.

Even though messages are received in order, a multithreaded application may not process
them in order. Writing an application that works correctly with messages that are processed out of
order and processed on multiple threads simultaneously can be difficult to implement. For this rea-
son, many message-processing applications are single-threaded. While this solves the ordering
problem, it has an impact on the scalability of the application.

The great thing about Service Broker is that it gets around this issue by using a special kind of
lock to ensure that only one task can read messages from a particular conversation at a time. This
ensures that a multithreaded application that receives messages in order will also process them in
order. This special kind of lock is called a conversation group lock.

8423ch06.fm Page 151 Friday, April 6, 2007 11:57 AM

152 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

As described in Chapter 2, a conversation group identifies one or more related conversations
and allows a Service Broker application to easily coordinate conversations involved in a specific
business task. Every conversation belongs to exactly one conversation group. Every conversation
group is associated with several conversations from different services. A conversation group can
contain one or more conversations.

It’s easy to see the value of locking a conversation during message processing, but there are
some cases where this isn’t enough. For example, imagine again an order-entry application that
sends messages to credit-card validation, inventory adjustment, shipping, and accounting services
on four different dialogs. These services may all respond roughly at the same time, so it’s possible
that response messages from these four services for the same order may be processed on different
threads simultaneously. This can cause problems: if two different services update the order status
simultaneously without being aware of each other, status information could get lost.

To solve this problem, Service Broker locks conversation groups, not conversations. By default,
a conversation group contains a single conversation—the conversation that was started from the
initiator’s service. In this case, conversation group locking is the same thing as conversation locking.
The conversation group lock guarantees that a Service Broker application can process messages on
each conversation exactly once in order and keep state on a per-conversation-group basis. Because
a conversation group can contain more than one conversation, a Service Broker application can use
conversation groups to identify messages related to the same business task and process those
messages together. If your Service Broker application can benefit from locking more than one con-
versation at a time, you may expand the conversation group by adding more conversations to it.
Figure 6-1 shows how conversations are grouped together with a conversation group.

Figure 6-1. Conversations grouped by a conversation group

There are several ways to group dialogs into the same conversation group. Any time you create
a new dialog with the BEGIN DIALOG T-SQL statement, Service Broker will automatically create a con-
versation group for you and assign the new dialog to this conversation group. You can retrieve more

8423ch06.fm Page 152 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 153

information about the current opened conversation groups through the sys.conversation_groups
catalog view. Listing 6-1 shows you how to implicitly create a new conversation group.

Listing 6-1. Creating a New Conversation Group

DECLARE @ch UNIQUEIDENTIFIER;

BEGIN DIALOG @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 WITH ENCRYPTION = OFF;
GO

SELECT * FROM sys.conversation_groups
GO

Figure 6-2 shows the result of the sys.conversation_groups catalog view.

Figure 6-2. The sys.conversation_groups catalog view

Table 6-1 describes the columns available in this catalog view.

Table 6-1. Available Columns in the sys.conversation_groups Catalog View

In Figure 6-2, you saw a row in the sys.conversation_groups catalog view that matches the cor-
responding row in the sys.conversation_endpoints table for the conversation just created. This row
is the row that Service Broker locks when it receives messages from any of the conversations in the
conversation group. Notice that Service Broker locks the row in the sys.conversation_groups cata-
log view, not in the sys.conversation_endpoints catalog view or directly in the queue. This means
that if more messages are received for the conversation, they can be added to the conversation while
the conversation group is locked. The sys.conversation_endpoints row isn’t locked, so it can be
changed while the conversation group is locked. Figure 6-3 illustrates this important concept. The
dark gray rows represent the locked rows.

Column Data Type Description

conversation_group_id UNIQUEIDENTIFIER The identifier for the conversation group

service_id INT The identifier of the service for this conversation
group

is_system BIT Specifies whether this is a system instance of a
conversation group

8423ch06.fm Page 153 Friday, April 6, 2007 11:57 AM

154 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Figure 6-3. Locking of the sys.conversation_groups catalog view

To initiate multiple conversations in the same conversation group, you first begin one dialog
that creates a new conversation group automatically. You then expand the conversation group by
adding dialogs related to the first one, as shown in Listing 6-2.

■Note Please create a new database for the samples used in this chapter.

Listing 6-2. Expanding a Conversation Group with Additional Conversations

DECLARE @ch1 UNIQUEIDENTIFIER;
DECLARE @ch2 UNIQUEIDENTIFIER;

BEGIN TRANSACTION;

BEGIN DIALOG @ch1
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService1'
 WITH ENCRYPTION = OFF;

BEGIN DIALOG @ch2
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService2'
 WITH RELATED_CONVERSATION = @ch1,
 ENCRYPTION = OFF;

SEND ON CONVERSATION @ch1
 (CAST('<Request></Request>' AS XML));
SEND ON CONVERSATION @ch2
 (CAST('<Request></Request>' AS XML));

COMMIT TRANSACTION;
GO

SELECT * FROM sys.conversation_groups cg
INNER JOIN sys.services svc on cg.service_id = svc.service_id
GO

8423ch06.fm Page 154 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 155

The difference in Listing 6-2 from all the other listings you’ve already seen is that you use in the
second BEGIN DIALOG T-SQL statement the WITH RELATED_CONVERSATION clause to join the second
dialog to the conversation group of the first conversation. When you use this clause, you must pro-
vide the conversation handle from the conversation to which you want to join the current beginning
conversation. Now, when you do a SELECT to the sys.conversation_groups catalog view, you would
expect that each conversation will belong to the same conversation group. Figure 6-4 shows the out-
put from this catalog view.

Figure 6-4. The conversations don’t belong to the same conversation group.

Figure 6-5 shows the output from both target queues, where you can also see that each message
belongs to another conversation group.

Figure 6-5. The received messages on the queues don’t belong to the same conversation group.

I assume that you now might be asking, “What the heck is going on here? Why did Service
Broker put all conversations in different conversation groups although I placed them into the
same conversation group with the WITH RELATED_CONVERSATION clause?”

The conversation group is a locking primitive. Conversations in the same group are locked
together, so that any transaction is guaranteed to be the only transaction that processes messages on
the current group. As such, conversation groups are pertinent only for the side declaring the conver-
sation group—the sender’s side. The conversation group information doesn’t travel with the
message to the other side—the target service. The two conversations are related, but only on the
sender’s side. If you actually send back a reply on each dialog, then the replies will have the same
conversation_group_id.

Conversation groups can apply to either the initiator or the target or both. The issue here is that
a conversation group is limited to a single queue. This means you can put conversations into a con-
versation group on the initiator, but the conversation group ID isn’t sent over the network to the
target. You can also put conversations into a conversation group on the target queue, but this is
independent of any conversation groups that you may have set up on the initiator. The conversation
group is primarily used for a locking context for Service Broker commands. SEND and RECEIVE com-
mands can’t span queues in a single command, so a lock that locks conversations on two different
queues doesn’t make sense.

Conversation groups aren’t sent along with messages from the initiator to the target, because
there is no way for the sender of the message to know whether the targets of the conversations in the
group are in the same queue. In fact, developers can change around the destination queues, so in
general, the conversation initiator has no knowledge of the queue configuration of the target.

8423ch06.fm Page 155 Friday, April 6, 2007 11:57 AM

156 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

When you want to prove that both messages are sent on the same conversation group, you must
process the sent messages on both targets and send a response message back to the initiator of both
conversations. These response messages are then in the same conversation group on the initiator’s
side. To accomplish, you can create the ProcessTargetQueue1 and ProcessTargetQueue2 stored pro-
cedures that process incoming messages on both queues. Listing 6-3 shows the implementation of
one of these stored procedures.

Listing 6-3. Retrieving Messages on the Target Queue

CREATE PROCEDURE ProcessTargetQueue1
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename NVARCHAR(256)
 DECLARE @messagebody XML

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM TargetQueue1
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = 'DEFAULT')
 BEGIN
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END
END
GO

8423ch06.fm Page 156 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 157

Now when you send both messages with the code from Listing 6-2, you can execute both stored
procedures on the target side to process the received messages and send an END DIALOG message
back to the initiator of the conversation. As soon as the request messages are processed on the target
side, you can do a SELECT on the InitiatorQueue. Now, as you can see in Figure 6-6, both END DIALOG
messages are grouped together to the same conversation group.

Figure 6-6. Both END DIALOG messages are grouped together in the same conversation group.

To get a feeling for how the conversation group lock works, you can try to process messages
from InitiatorQueue on two different threads—just use two SQL Server connections inside
Microsoft SQL Server Management Studio. Inside the first connection, begin a new transaction
and try to receive a message from InitiatorQueue (see Listing 6-4).

Listing 6-4. Processing Messages on the First Thread

BEGIN TRANSACTION;
 RECEIVE TOP (1) * FROM InitiatorQueue

The interesting thing about Listing 6-4 is that a new transaction is opened but not committed.
Therefore, you can guarantee that the conversation group lock is held when you execute the code
from Listing 6-5 in a new connection inside Microsoft SQL Server Management Studio.

Listing 6-5. Processing Messages on the Second Thread

BEGIN TRANSACTION;
 RECEIVE TOP (1) * FROM InitiatorQueue
COMMIT TRANSACTION;

As you can see from the output, nothing is returned in this query. This is because just one other
message is in the queue, and this message belongs to the conversation group where the conversation
group lock is held. Therefore, the query returns no more messages that are ready to process. You can
also have a look into the Activity Monitor of SQL Server 2005, where you can see the conversation
group lock. Refer to Figure 6-7 for further details.

When you do a COMMIT on the opened transaction from Listing 6-4, the conversation group lock
is released and the T-SQL batch from Listing 6-5 can return the one and only message available for
processing in the InitiatorQueue.

8423ch06.fm Page 157 Friday, April 6, 2007 11:57 AM

158 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Figure 6-7. The conversation group lock in the Activity Monitor of SQL Server 2005

State Handling
As you know, Service Broker conversations can be long-running dialogs that last for days or even
months or years. It would obviously be incredibly inefficient and probably impossible to keep a copy
of the application active for every active conversation. Service Broker applications, like most highly
scalable applications, solve this problem by maintaining persistent state between messages.

The state of an application contains enough information to pick up processing when the next
message arrives. For example, the state for an order-entry application might track the status of
each order and the schedule of that order, so that the application knows what’s going on for a
specific order when you ask about it. As soon as the order gets processed through a message, the
status of the order is modified and the state is saved to reflect the changes that processing the mes-
sage caused.

Maintaining too much state in web applications or in web services leads to huge scalability
problems in your application. However, if your application is running in the database, storing
the application state doesn’t impact scalability that much. The messaging operations, database
updates, and state updates are all part of a simple single-phase transaction and are committed with
the same log write.

8423ch06.fm Page 158 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 159

You might wonder how you can identify the state of your current business transaction inside
the database. Because you can group together all dialogs used for a business transaction to a conver-
sation group, you can use the conversation group ID as your key for storing the needed state of the
conversation group. Each message contains the key for the state tables, which makes it simple to
retrieve and restore the state inside your message-processing logic. As an added feature, there is a
lock associated with the conversation group, so if the state only updates while processing messages,
you don’t have to worry about concurrent updates to your state table. The rows in the state table
aren’t actually locked, but if the application only updates the state while it holds the conversation
group lock, only one application thread at a time can do inserts or updates to the state tables.

GET CONVERSATION GROUP
If you implement your message-processing logic in a stored procedure, you can retrieve state infor-
mation whenever you need it. Service Broker includes the GET CONVERSATION GROUP T-SQL statement
to make state-retrieval operations easier for you. This statement locks the first conversation group
with associated messages on the queue and returns the conversation group ID as a result. You can
then select the state from your state tables and receive and process your messages associated with
the previous associated conversation group retrieved by the GET CONVERSATION GROUP T-SQL state-
ment. Listing 6-6 shows the syntax for this T-SQL statement.

Listing 6-6. Syntax for the GET CONVERSATION GROUP T-SQL Statement

[WAITFOR (]
 GET CONVERSATION GROUP @conversation_group_id
 FROM queue
[)] [, TIMEOUT timeout]

Table 6-2 describes the parameters for this statement.

Table 6-2. Parameters for the GET CONVERSATION GROUP T-SQL Statement

Listing 6-7 shows how you use the GET CONVERSATION GROUP T-SQL statement in practice.

Parameter Description

WAITFOR Indicates that the GET CONVERSATION GROUP T-SQL statement waits
for a message to arrive on the queue if no messages are currently
available.

@conversation_group_id This variable stores the conversation group ID returned by the GET
CONVERSATION GROUP T-SQL statement. If no conversation groups
are available, the variable is set to NULL.

queue Specifies the queue name to get the conversation group from.

timeout Specifies the length of time (in milliseconds) that Service Broker
waits for a message to arrive on the queue. This clause may only
be used with the WAITFOR clause. If a statement that uses WAITFOR
doesn’t include this clause or the time-out is -1, the wait time is
unlimited. If the time-out expires, GET CONVERSATION GROUP sets the
@conversation_group_id to NULL.

8423ch06.fm Page 159 Friday, April 6, 2007 11:57 AM

160 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Listing 6-7. Using the GET CONVERSATION GROUP T-SQL Statement

DECLARE @conversationGroup UNIQUEIDENTIFIER;
DECLARE @messageTypeName NVARCHAR(256);
DECLARE @messageBody XML;

WAITFOR (
 GET CONVERSATION GROUP @conversationGroup FROM TargetQueue
), TIMEOUT 1000

IF (@conversationGroup IS NOT NULL)
BEGIN
 RECEIVE TOP (1)
 @messageTypeName = message_type_name,
 @messageBody = CAST(message_body AS XML)
 FROM TargetQueue
 WHERE conversation_group_id = @conversationGroup;

 PRINT 'Message body: ' + CAST(@messageBody AS NVARCHAR(MAX));
END

As you can see in Listing 6-7, you use GET CONVERSATION GROUP in combination with the WAITFOR
statement to wait for one second until a new message arrives on the TargetQueue. Then you check if
you got a message (IF (@conversationGroup IS NOT NULL). When GET CONVERSATION GROUP returns a
conversation group ID, this conversation group is locked. Therefore, you finally retrieve the sent
message through the RECEIVE statement. An important point to mention here is that you must use
the WHERE clause and make a constraint on the conversation_group_id column with the value you got
from the GET CONVERSATION GROUP statement. This way, you can ensure that you’re only processing
messages from the conversation group where you acquired a lock through the GET CONVERSATION
GROUP statement. Otherwise, you may retrieve messages for a different conversation group where
you haven’t acquired a conversation group lock before.

The Receive Loop with State Handling
Retrieving messages with GET CONVERSATION GROUP only makes sense when you also retrieve applica-
tion state from a state table before you retrieve a message from a queue. Retrieving and updating
state changes the receive loop pattern you’ve already encountered and used throughout this book.
Now I want to show you a receive loop pattern where you can also retrieve and save state informa-
tion in a state table. The receive loop now contains two nested loops:

• The outer loop: This loop starts a new transaction, uses the GET CONVERSATION GROUP statement
to lock a conversation group, and retrieves the application state from a state table.

• The inner loop: This loop receives all messages available in the conversation group one at a
time. The inner loop also ensures that all the messages on the queue are associated with the
application state and are processed before the outer loop retrieves another application state
for another conversation group.

Once all the messages in the queue from that conversation group are processed, the state is
updated with any data that has changed while processing the messages. Finally, the transaction
commits. This works well if a limited number of messages from the conversation group are on the
queue. In applications where a continuous stream of messages arrives on a conversation group, you
should consider committing the transaction after a number of messages so that the transactions
don’t get too big. You’ll find more about this topic in the “Transaction Management” section, where
I talk about transaction management with Service Broker. Listing 6-8 shows the basic receive loop

8423ch06.fm Page 160 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 161

pattern. The code in Listing 6-8 assumes that you’ve already created a table called ApplicationState
with the structure shown in Figure 6-8.

Figure 6-8. The ApplicationState table

Let’s have now a look at the code.

Listing 6-8. The Receive Loop with State Handling

CREATE PROCEDURE ProcessOrderMessages
AS
BEGIN
 DECLARE @conversationGroup UNIQUEIDENTIFIER;
 DECLARE @CreditCardValidationStatus BIT;
 DECLARE @InventoryAdjustmentStatus BIT;
 DECLARE @ShippingStatus BIT;
 DECLARE @AccountingStatus BIT;

 -- Outer Loop (State Handling)
 WHILE (1 = 1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR (
 GET CONVERSATION GROUP @conversationGroup FROM [ProductOrderQueue]
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 -- Retrieving the application state for the current conversation group
 SELECT
 @CreditCardValidationStatus = CreditCardValidation,
 @InventoryAdjustmentStatus = InventoryAdjustment,
 @ShippingStatus = Shipping,
 @AccountingStatus = Accounting
 FROM ApplicationState
 WHERE ConversationGroupId = @conversationGroup;

8423ch06.fm Page 161 Friday, April 6, 2007 11:57 AM

162 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 IF (@@ROWCOUNT = 0)
 BEGIN
 -- There is currently no application state available,
 -- so we insert the application state into the state table
 SET @CreditCardValidationStatus = 0;
 SET @InventoryAdjustmentStatus = 0;
 SET @ShippingStatus = 0;
 SET @AccountingStatus = 0;

 -- Insert the state record
 INSERT INTO ApplicationState
 (
 ConversationGroupId,
 CreditCardValidation,
 InventoryAdjustment,
 Shipping,
 Accounting
)
 VALUES
 (
 @conversationGroup,
 @CreditCardValidationStatus,
 @InventoryAdjustmentStatus,
 @ShippingStatus,
 @AccountingStatus
)
 END

 DECLARE @messageTypeName NVARCHAR(256);
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messageBody XML;

 -- Inner Loop (Message Processing)
 WHILE (1 = 1)
 BEGIN
 WAITFOR (
 RECEIVE TOP (1)
 @messageTypeName = message_type_name,
 @messageBody = CAST(message_body AS XML),
 @ch = conversation_handle
 FROM [ProductOrderQueue]
 WHERE conversation_group_id = @conversationGroup
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 BREAK
 END

8423ch06.fm Page 162 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 163

 IF (@messageTypeName =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @ch;
 END

 IF (@messageTypeName =
 'http://schemas.microsoft.com/SQL/ServiceBroker/Error')
 BEGIN
 -- Handle errors
 END CONVERSATION @ch;
 END

 IF (@messageTypeName =
 'http://ssb.csharp.at/SSB_Book/c06/ProductOrderMessage')
 BEGIN
 -- Process the message
 SELECT @messageBody;

 SET @CreditCardValidationStatus = 1;
 END CONVERSATION @ch;
 END
 END

 -- Update the application state
 UPDATE ApplicationState SET
 CreditCardValidation = @CreditCardValidationStatus,
 InventoryAdjustment = @InventoryAdjustmentStatus,
 Shipping = @ShippingStatus,
 Accounting = @AccountingStatus
 WHERE ConversationGroupId = @conversationGroup;

 COMMIT TRANSACTION;
 END
END

Let’s walk through this stored procedure step by step. In the first step, you use the GET
CONVERSATION GROUP T-SQL statement to acquire a conversation group lock on an available con-
versation group:

WAITFOR (
 GET CONVERSATION GROUP @conversationGroup FROM [ProductOrderQueue]
), TIMEOUT 1000

In the second step, you use the returned conversation group identifier to retrieve the applica-
tion state for the current locked conversation group:

SELECT
 @CreditCardValidationStatus = CreditCardValidation,
 @InventoryAdjustmentStatus = InventoryAdjustment,
 @ShippingStatus = Shipping,
 @AccountingStatus = Accounting
FROM ApplicationState
WHERE ConversationGroupId = @conversationGroup;

8423ch06.fm Page 163 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker/Error
http://ssb.csharp.at/SSB_Book/c06/ProductOrderMessage

164 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

If the ProcessOrderMessages stored procedure finds no application state for the current locked
conversation group, then the stored procedure inserts an initial state into the ApplicationState
table. By now, the state-retrieval process is finished, and you start retrieving messages from the cur-
rent locked conversation group inside a nested loop in the stored procedure. You use the RECEIVE
T-SQL statement, and then you use the WHERE clause to restrict the returned result set only to mes-
sages of the current locked conversation group:

WAITFOR (
 RECEIVE TOP (1)
 @messageTypeName = message_type_name,
 @messageBody = CAST(message_body AS XML),
 @ch = conversation_handle
 FROM [ProductOrderQueue]
 WHERE conversation_group_id = @conversationGroup
), TIMEOUT 1000

After the RECEIVE T-SQL statement, you have all required message data stored in local T-SQL vari-
ables, so you can process the message through the specified message type as you’ve already seen in the
previous chapters. After all messages of the current conversation group are processed, the stored pro-
cedure updates the application state in the state table and commits the pending transaction:

UPDATE ApplicationState SET
 CreditCardValidation = @CreditCardValidationStatus,
 InventoryAdjustment = @InventoryAdjustmentStatus,
 Shipping = @ShippingStatus,
 Accounting = @AccountingStatus
WHERE ConversationGroupId = @conversationGroup;

COMMIT TRANSACTION;

As long as messages from other conversation groups are available, the outer loop continues to
run and processes the associated messages inside the inner loop of the stored procedure. You can
start the ProcessOrderMessages stored procedure and view the content of the ApplicationState table
with the following two T-SQL statements:

EXEC ProcessOrderMessages
GO

SELECT * FROM ApplicationState
GO

Figure 6-9 shows the content of the ApplicationState table.

Figure 6-9. The content of the ApplicationState table

State Handling with a Managed Stored Procedure
In Chapter 5, I introduced the ServiceBrokerInterface managed assembly. With this assembly,
you can write Service Broker applications with managed code. One nice thing about this managed
assembly is that it also supports message processing with state handling. In this section, I will show
you step by step how you can port the T-SQL processing logic from Listing 6-8 to a managed stored
procedure that incorporates functionality from the ServiceBrokerInterface managed assembly.

8423ch06.fm Page 164 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 165

First, you have to create a new managed class library that implements the managed stored pro-
cedure. For this sample, I have called this library TargetService. Inside this class library, you create
a new class called ProductOrderService that represents the server-side managed stored procedure
that processes request messages from other Service Broker services. Listing 6-9 shows the skeleton
of the managed stored procedure.

Listing 6-9. The Skeleton of a Managed Stored Procedure

public class ProductOrderService : Service
{
 private Guid _conversationGroupId;
 private bool _creditCardValidationStatus;
 private bool _inventoryAdjustmentStatus;
 private bool _shippingStatus;
 private bool _accountingStatus;

 public ProductOrderService(SqlConnection Connection)
 : base("ProductOrderService", Connection)
 {
 WaitforTimeout = TimeSpan.FromSeconds(1);
 AppLoaderProcName = "LoadApplicationState";
 }

 public static void ServiceProcedure()
 {
 Service service = null;
 SqlConnection cnn = null;

 try
 {
 cnn = new SqlConnection("context connection=true;");
 cnn.Open();

 service = new ProductOrderService(cnn);
 service.FetchSize = 1;
 service.Run(true, cnn, null);
 }
 catch (ServiceException ex)
 {
 if (ex.Transaction != null)
 ex.Transaction.Rollback();
 }
 finally
 {
 if (cnn != null)
 cnn.Close();
 }
 }
}

The only difference in this skeleton is that you initialize the AppLoaderProcName property with
the name of another stored procedure implemented in T-SQL. This stored procedure loads the
application state for the conversation group that is currently processed. For this reason, the man-
aged assembly provides the virtual LoadState method that you can override in your derived service

8423ch06.fm Page 165 Friday, April 6, 2007 11:57 AM

166 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

class. The LoadState method is called inside the private FetchNextMessageBatch method in the
Service base class when the managed stored procedure wants to retrieve new messages from the
service queue. Listing 6-10 shows the implementation of the FetchNextMessageBatch method, which
also calls the overridden LoadState method.

Listing 6-10. The FetchNextMessageBatch Method

private void FetchNextMessageBatch(
 Conversation conversation,
 SqlConnection connection,
 SqlTransaction transaction)
{
 SqlCommand cmd;

 if (conversation != null || m_appLoaderProcName == null)
 {
 cmd = BuildReceiveCommand(conversation, connection, transaction);

 SqlDataReader dataReader = cmd.ExecuteReader();
 m_reader.Open(dataReader);
 }
 else if (m_appLoaderProcName != null)
 {
 cmd = BuildGcgrCommand(connection, transaction);
 SqlDataReader dataReader = cmd.ExecuteReader();

 if (!LoadState(dataReader, connection, transaction))
 {
 dataReader.Close();
 return;
 }

 m_reader.Open(dataReader);
 }
}

As you can see in Listing 6-10, the LoadState method is called automatically when the
AppLoaderProcName property is set accordingly. The interesting thing about this is that your
specified stored procedure was already executed when your implementation of the LoadState
method was called in the derived class. Therefore, you only get as a parameter an instance of a
SqlDataReader class that contains the application state that your specified stored procedure has
returned as a result. Before I show you the actual implementation of the LoadState method, I’ll
show you (in Listing 6-11) the T-SQL statements that the BuildGcgrCommand method creates for
SqlCommand execution.

Listing 6-11. Message Receiving and State Handling in One T-SQL Batch

DECLARE @cgid UNIQUEIDENTIFIER;

WAITFOR (
 GET CONVERSATION GROUP @cgid FROM ProductOrderQueue
), TIMEOUT @to;

8423ch06.fm Page 166 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 167

IF (@cgid IS NOT NULL)
BEGIN
 EXEC LoadApplicationState @cgid;

 RECEIVE TOP (1)
 conversation_group_id,
 conversation_handle,
 message_sequence_number,
 service_name,
 service_contract_name,
 message_type_name,
 validation,
 message_body
 FROM ProductOrderQueue
 WHERE conversation_group_id = @cgid;
END

In Listing 6-11, the T-SQL batch first tries to find a conversation group where messages are
available to process (through the call to GET CONVERSATION GROUP). When the T-SQL batch success-
fully acquires the conversation group lock, then it calls your specified stored procedure (in this case,
LoadApplicationState), which loads the current state for the given conversation group. Finally, the
RECEIVE statement that selects the needed messages from the given queue is executed.

As you can see, it’s important to know that each stored procedure used for state loading must accept
a parameter of the UNIQUEIDENTIFIER data type that represents the conversation group ID of the current
processed conversation group. Listing 6-12 shows the implementation of the LoadApplicationState
stored procedure that loads the application state from the ApplicationState state table.

Listing 6-12. The LoadApplicationState Stored Procedure Used for State Loading

CREATE PROCEDURE LoadApplicationState
@ConversationGroupID UNIQUEIDENTIFIER
AS
BEGIN
 DECLARE @CreditCardValidationStatus BIT;
 DECLARE @InventoryAdjustmentStatus BIT;
 DECLARE @ShippingStatus BIT;
 DECLARE @AccountingStatus BIT;

 SELECT
 @CreditCardValidationStatus = CreditCardValidation,
 @InventoryAdjustmentStatus = InventoryAdjustment,
 @ShippingStatus = Shipping,
 @AccountingStatus = Accounting
 FROM ApplicationState
 WHERE @ConversationGroupId = @ConversationGroupID;

 IF (@@ROWCOUNT = 0)
 BEGIN
 SET @CreditCardValidationStatus = 0;
 SET @InventoryAdjustmentStatus = 0;
 SET @ShippingStatus = 0;
 SET @AccountingStatus = 0;

8423ch06.fm Page 167 Friday, April 6, 2007 11:57 AM

168 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 INSERT INTO ApplicationState (ConversationGroupId, CreditCardValidation,
 InventoryAdjustment, Shipping, Accounting)
 VALUES
 (
 @ConversationGroupID,
 @CreditCardValidationStatus,
 @InventoryAdjustmentStatus,
 @ShippingStatus,
 @AccountingStatus
)
 END

 SELECT
 ConversationGroupId,
 CreditCardValidation,
 InventoryAdjustment,
 Shipping,
 Accounting
 FROM ApplicationState
 WHERE @ConversationGroupId = @ConversationGroupID;
END

With this information, you can now implement the LoadState method inside your managed
stored procedure (see Listing 6-13).

Listing 6-13. Implementation of the LoadState Method

public override bool LoadState(
 SqlDataReader reader,
 SqlConnection connection,
 SqlTransaction transaction)
{
 if (reader.Read())
 {
 _conversationGroupId = new Guid(reader["ConversationGroupId"].ToString());
 _creditCardValidationStatus =
 bool.Parse(reader["CreditCardValidation"].ToString());
 _inventoryAdjustmentStatus =
 bool.Parse(reader["InventoryAdjustment"].ToString());
 _shippingStatus = bool.Parse(reader["Shipping"].ToString());
 _accountingStatus = bool.Parse(reader["Accounting"].ToString());

 return reader.NextResult();
 }
 else return false;
}

The most important aspect of the code in Listing 6-13 is that you must call the NextResult
method on the supplied SqlDataReader. This is important because the SqlDataReader contains at
least two result sets: the result set from your state table, and the result set with the received mes-
sages. Therefore, you must move inside the LoadState method to the last result set that contains the
received messages. Otherwise, your managed stored procedure won’t work.

8423ch06.fm Page 168 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 169

As soon as your message is dispatched to the correct method for processing, the base class calls
the virtual SaveState method that you can override in your implementation class. In this method,
you can write the modified application state back to the state table. Listing 6-14 shows the imple-
mentation of the SaveState method.

Listing 6-14. Implementation of the SaveState Method

public override void SaveState(
 SqlConnection connection,
 SqlTransaction transaction)
{
 string sql = "UPDATE ApplicationState SET ";
 sql += "CreditCardValidation = @CreditCardValidationStatus, ";
 sql += "InventoryAdjustment = @InventoryAdjustmentStatus, ";
 sql += "Shipping = @ShippingStatus, ";
 sql += "Accounting = @AccountingStatus ";
 sql += "WHERE ConversationGroupId = @ConversationGroupId";

 SqlCommand cmd = new SqlCommand(sql, connection);
 cmd.Transaction = transaction;
 cmd.Parameters.Add(new SqlParameter(
 "@CreditCardValidationStatus", SqlDbType.Bit);
 cmd.Parameters.Add(new SqlParameter(
 "@InventoryAdjustmentStatus", SqlDbType.Bit);
 cmd.Parameters.Add(new SqlParameter(
 "@ShippingStatus", SqlDbType.Bit);
 cmd.Parameters.Add(new SqlParameter(
 "@AccountingStatus", SqlDbType.Bit);
 cmd.Parameters.Add(new SqlParameter(
 "@ConversationGroupId", SqlDbType.UniqueIdentifier);

 cmd.Parameters["@CreditCardValidationStatus"].Value =
 _creditCardValidationStatus;
 cmd.Parameters["@InventoryAdjustmentStatus"].Value =
 _inventoryAdjustmentStatus;
 cmd.Parameters["@ShippingStatus"].Value = _shippingStatus;
 cmd.Parameters["@AccountingStatus"].Value = _accountingStatus;
 cmd.Parameters["@ConversationGroupId"].Value = _conversationGroupId;

 cmd.ExecuteNonQuery();
}

When you deploy this managed stored procedure into the database and use this managed
stored procedure for the internal activation of the ProductOrderQueue, your sent messages get pro-
cessed automatically, and the ApplicationState table reflects the state of your ongoing conversation
groups (see Figure 6-10).

Figure 6-10. The stored application state in the ApplicationState table

8423ch06.fm Page 169 Friday, April 6, 2007 11:57 AM

mailto:Parameters["@CreditCardValidationStatus"].Value
mailto:Parameters["@InventoryAdjustmentStatus"].Value
mailto:Parameters["@ShippingStatus"].Value
mailto:Parameters["@AccountingStatus"].Value
mailto:Parameters["@ConversationGroupId"].Value

170 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

A Practical Example
Now that you know the basics about conversation groups and locking in Service Broker, let’s com-
bine all this knowledge into a complete Service Broker application. You’ll enhance this sample in
later chapters to refine and build a complete distributed message-based application.

Let’s build a familiar application for order entry. The order-entry application will consist of sev-
eral Service Broker services to fulfill an order. Figure 6-11 shows the relationship between these
services.

Figure 6-11. The Service Broker services for the order-entry application

As you can see in Figure 6-11, the ClientService starts a new conversation with OrderService.
The OrderService starts three other conversations (on the same conversation group) with other ser-
vices (which may be deployed to different machines) to process your order. The following three
services are called concurrently:

• CreditCardService: This service creates a record of a credit-card transaction showing that
a credit-card company, such as Visa, MasterCard, or American Express, drew money from
your account.

• AccountingService: This service creates a record for the bookkeeping system, such as SAP.

• InventoryService: This service updates the available stocks for your ordered product.

When these three Service Broker services complete successfully, the OrderService starts a con-
versation with the ShippingService (which may be hosted by DHL or FedEx) that sends your ordered
products directly to your specified delivery address. If the ShippingService returns successfully, the
OrderService sends a response message back to the ClientService. The ClientService can then
send an email to the customer and inform him that his order was processed successfully and will be
delivered within the next few days. The exact period of time will be specified in the response mes-
sage sent from the ShippingService back to the OrderService. When you implement this sample,

8423ch06.fm Page 170 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 171

all Service Broker services are hosted inside the same database. However, as you’ll see in the next
chapters, you can easily distribute these services to several individual databases to scale out this
order-entry application.

The OrderService also holds some state so that the service can know when each of these three
services (the CreditCardService, the AccountingService, and the InventoryService) have completed
successfully. As soon as this happens, the OrderService calls the ShippingService. The OrderService
stores this bit of state information in a state table. Let’s start now with the Service Broker objects you
need for this bigger sample. Table 6-3 shows all the message types, the contracts, the queues, and
the services needed to run this sample on one dedicated database.

Table 6-3. The Required Service Broker Objects

You can find further information about the exact definition of these objects in the T-SQL script
OrderService.sql (in the folder OrderService) provided in this chapter’s Source Code/Download
area on the Apress website (http://www.apress.com). Before you develop the stored procedures for
the service programs, Listing 6-15 shows the DDL you need to create the ApplicationState table
used by the OrderService to track which service was already called successfully.

Object Type Used By Object Name

Message type ClientService, OrderService OrderRequestMessage,
OrderResponseMessage

Message type OrderService, CreditCardService CreditCardRequestMessage,
CreditCardResponseMessage

Message type OrderService, AccountingService AccountingRequestMessage,
AccountingResponseMessage

Message type OrderService, InventoryService InventoryRequestMessage,
InventoryResponseMessage

Message type OrderService, ShippingService ShippingRequestMessage,
ShippingResponseMessage

Contract ClientService, OrderService OrderContract

Contract OrderService, CreditCardService CreditCardContract

Contract OrderService, AccountingService AccountingContract

Contract OrderService, InventoryService InventoryContract

Contract OrderService, ShippingService ShippingContract

Queue ClientService ClientQueue

Queue CreditCardService CreditCardQueue

Queue AccountingService AccountingQueue

Queue InventoryService InventoryQueue

Queue ShippingService ShippingQueue

8423ch06.fm Page 171 Friday, April 6, 2007 11:57 AM

http://www.apress.com

172 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Listing 6-15. The ApplicationState Table

CREATE TABLE ApplicationState
(
 ConversationGroupID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 CreditCardStatus BIT NOT NULL,
 AccountingStatus BIT NOT NULL,
 InventoryStatus BIT NOT NULL,
 ShippingMessageSent BIT NOT NULL,
 ShippingStatus BIT NOT NULL
)

As you can see from Listing 6-15, each callable Service Broker service is reflected by one col-
umn of the BIT data type. Each column stores whether the service was called. Additionally, the
ShippingMessageSent column stores the information that states whether the OrderService already
sent the request message to the ShippingService. The sequence diagram in Figure 6-12 gives a
good overview of which message types are exchanged between the individual Service Broker ser-
vices involved in this sample.

Figure 6-12. The exchanged message types between the Service Broker services

The OrderService
Listing 6-16 shows the code you need to write to send a message from the ClientService to the
OrderService. Next, you’ll look at what steps are executed while messages travel between the differ-
ent services.

8423ch06.fm Page 172 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 173

Listing 6-16. Sending a New Message to the OrderService

BEGIN TRANSACTION;
DECLARE @ch UNIQUEIDENTIFIER;
DECLARE @msg NVARCHAR(MAX);

BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [ClientService]
 TO SERVICE 'OrderService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/OrderContract]
 WITH ENCRYPTION = OFF;

SET @msg =
 '<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
 </OrderRequest>';

SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/RequestMessage] (@msg);
COMMIT;

■Note Please note that this code won’t work, because it’s only a part of the whole solution. However, the code
is useful to understand the message structure used for the request message sent to the OrderService.

As you can see in Listing 6-16, the request message sent to the OrderService contains all the
information you need to process the order request submitted by a client application, such as a web
application. When the sent message arrives at the OrderQueue, the internal activation mechanism of
Service Broker starts the ProcessOrderRequestMessages stored procedure. This stored procedure also
uses two loops to process the state information and the messages available on a given conversation
group determined through a call to the GET CONVERSATION GROUP T-SQL statement. Listing 6-17
shows the relevant part of the outer loop of the ProcessOrderRequestMessages stored procedure that
does the state processing for this sample.

8423ch06.fm Page 173 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/OrderContract
http://ssb.csharp.at/SSB_Book/c06/RequestMessage

174 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Listing 6-17. Outer Loop Implements the State-Processing Logic

DECLARE @conversationGroup UNIQUEIDENTIFIER;
DECLARE @CreditCardStatus BIT;
DECLARE @AccountingStatus BIT;
DECLARE @InventoryStatus BIT;
DECLARE @ShippingMessageSent BIT;
DECLARE @ShippingStatus BIT;

WHILE (1 = 1)
BEGIN
 BEGIN TRANSACTION;

 -- Retrieve the next conversation group where messages are available
 -- for processing
 WAITFOR (
 GET CONVERSATION GROUP @conversationGroup FROM [OrderQueue]
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 -- Retrieve the application state for the current conversation group
 SELECT
 @CreditCardStatus = CreditCardStatus,
 @AccountingStatus = AccountingStatus,
 @InventoryStatus = InventoryStatus,
 @ShippingMessageSent = ShippingMessageSent,
 @ShippingStatus = ShippingStatus
 FROM ApplicationState
 WHERE ConversationGroupID = @conversationGroup;

 IF (@@ROWCOUNT = 0)
 BEGIN
 -- There is currently no application state available, so we insert the
 -- initial application state into the state table
 SET @CreditCardStatus = 0;
 SET @AccountingStatus = 0;
 SET @InventoryStatus = 0;
 SET @ShippingMessageSent = 0;
 SET @ShippingStatus = 0;
 END

 -- Insert the new state record
 INSERT INTO ApplicationState (ConversationGroupID, CreditCardStatus,
 AccountingStatus, InventoryStatus, ShippingMessageSent, ShippingStatus)
 VALUES

8423ch06.fm Page 174 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 175

 (
 @conversationGroup,
 @CreditCardStatus,
 @AccountingStatus,
 @InventoryStatus,
 @ShippingMessageSent,
 @ShippingStatus
)
END

-- Here comes the message processing logic
-- ...

-- Update the application state
UPDATE ApplicationState SET
 CreditCardStatus = @CreditCardStatus,
 AccountingStatus = @AccountingStatus,
 InventoryStatus = @InventoryStatus,
 ShippingMessageSent = @ShippingMessageSent,
 ShippingStatus = @ShippingStatus
WHERE ConversationGroupID = @conversationGroup;

COMMIT TRANSACTION;

Let’s have a more detailed look at the interesting parts of the ProcessOrderRequestMessages stored
procedure. In the first step, you retrieve the stored state information from the ApplicationState table:

-- Retrieve the application state for the current conversation group
SELECT
 @CreditCardStatus = CreditCardStatus,
 @AccountingStatus = AccountingStatus,
 @InventoryStatus = InventoryStatus,
 @ShippingMessageSent = ShippingMessageSent,
 @ShippingStatus = ShippingStatus
FROM ApplicationState
WHERE ConversationGroupID = @conversationGroup;

If no state information is available (this is true for the first execution), then the state variables
will be initialized to their initial state:

IF (@@ROWCOUNT = 0)
BEGIN
 -- There is currently no application state available, so we insert the
 -- initial application state into the state table
 SET @CreditCardStatus = 0;
 SET @AccountingStatus = 0;
 SET @InventoryStatus = 0;
 SET @ShippingMessageSent = 0;
 SET @ShippingStatus = 0;
END

8423ch06.fm Page 175 Friday, April 6, 2007 11:57 AM

176 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

If no state information is available, then the stored procedure will insert the new state informa-
tion into the ApplicationState table:

-- Insert the new state record
INSERT INTO ApplicationState (ConversationGroupID, CreditCardStatus,
 AccountingStatus, InventoryStatus, ShippingMessageSent, ShippingStatus)
VALUES
(
 @conversationGroup,
 @CreditCardStatus,
 @AccountingStatus,
 @InventoryStatus,
 @ShippingMessageSent,
 @ShippingStatus
)

After you’ve retrieved the application state, let’s take a look at the message-processing logic for the
OrderQueue inside the ProcessOrderRequestMessages stored procedure. The first message type that the
stored procedure must handle is [http://ssb.cshsarp.at/SSB_Book/c06/OrderRequestMessage]. This
message type is sent from the ClientService to the OrderService when a new order is gathered through
a client application. When this message type is received, the stored procedure must perform the follow-
ing two actions:

• Retrieve the necessary information from the sent XML message.

• Begin a new conversation with the CreditCardService, AccountingService, and
InventoryService on the same conversation group. These three services are all called
concurrently.

Let’s have a look on Listing 6-18, which shows how you implement the message-processing
logic inside the ProcessOrderRequestMessages stored procedure.

Listing 6-18. Inner Loop Handles the OrderRequestMessage Message Type

IF (@messageTypeName = 'http://ssb.csharp.at/SSB_Book/c06/OrderRequestMessage')
BEGIN
 -- Variables for the conversation handles and the messages to be sent
 DECLARE @chCreditCardService UNIQUEIDENTIFIER;
 DECLARE @chAccountingService UNIQUEDIENTIFIER;
 DECLARE @chInventoryService UNIQUEIDENTIFIER;
 DECLARE @msgCreditCardService NVARCHAR(MAX);
 DECLARE @msgAccountingService NVARCHAR(MAX);
 DECLARE @msgInventoryService NVARCHAR(MAX);

 -- Variables needed to store the information extracted
 -- from the OrderRequestMessage
 DECLARE @creditCardHolder NVARCHAR(256);
 DECLARE @creditCardNumber NVARCHAR(256);
 DECLARE @validThrough NVARCHAR(10);
 DECLARE @quantity INT;
 DECLARE @price DECIMAL(18, 2);
 DECLARE @amount DECIMAL(18, 2);
 DECLARE @customerID NVARCHAR(256);
 DECLARE @productID INT;

8423ch06.fm Page 176 Friday, April 6, 2007 11:57 AM

http://ssb.cshsarp.at/SSB_Book/c06/OrderRequestMessage
http://ssb.csharp.at/SSB_Book/c06/OrderRequestMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 177

 -- Extract the necessary information from the OrderRequestMessage
 SET @creditCardHolder =
 @messagebody.value('/OrderRequest[1]/CreditCard[1]/Holder[1]',
 'NVARCHAR(256)');
 SET @creditCardNumber =
 @messagebody.value('/OrderRequest[1]/CreditCard[1]/Number[]1]',
 'NVARCHAR(256)');
 SET @validThrough =
 @messagebody.value('/OrderRequest[1]/CreditCard[1]/ValidThrough[1]',
 'NVARCHAR(256)');
 SET @quantity =
 @messagebody.value('/OrderRequest[1]/Product[1]/Quantity[1]', 'INT');
 SET @price =
 @messagebody.value('/OrderRequest[1]/Product[1]/Price[1]', 'DECIMAL(18, 2)');
 SET @amount = @quantity * @price;
 SET @customerID =
 @messagebody.value('/OrderRequest[1]/Customer[1]/CustomerID[1]',
 'NVARCHAR(256)');
 SET @productID =
 @messagebody.value('/OrderRequest[1]/Product[1]/ProductID[1]', 'INT');

 -- Begin a new conversation with the CreditCardService on the same
 -- conversation group
 BEGIN DIALOG CONVERSATION @chCreditCardService
 FROM SERVICE [OrderService]
 TO SERVICE 'CreditCardService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/CreditCardContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

 -- Send a CreditCardRequestMessage to the CreditCardService
 SET @msgCreditCardService =
 '<CreditCardRequest>
 <Holder>' + @creditCardHolder + '</Holder>
 <Number>' + @creditCardNumber + '</Number>
 <ValidThrough>' + @validThrough + '</ValidThrough>
 <Amount>' + CAST(@amount AS NVARCHAR(10)) + '</Amount>
 </CreditCardRequest>';

 SEND ON CONVERSATION @chCreditCardService
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage)
 (@msgCreditCardService);

 -- Begin a new conversation with the AccountingService on the same
 -- conversation group
 BEGIN DIALOG CONVERSATION @chAccountingService
 FROM SERVICE [OrderService]
 TO SERVICE 'AccountingService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/AccountingContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

8423ch06.fm Page 177 Friday, April 6, 2007 11:57 AM

mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
http://ssb.csharp.at/SSB_Book/c06/CreditCardContract
http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingContract

178 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 -- Send a message to the AccountingService
 SET @msgAccountingService =
 '<AccountingRequest>
 <CustomerID>' + @customerID + '</CustomerID>
 <Amount>' + CAST(@amount AS NVARCHAR(10)) + '</Amount>
 <AccountingRequest>';

 SEND ON CONVERSATION @chAccountingService
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage)
 (@msgAccountingService);

 -- Begin a new conversation with the InventoryService on the same
 -- conversation group
 BEGIN DIALOG CONVERSATION @chInventoryService
 FROM SERVICE [OrderService]
 TO SERVICE 'InventoryService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/InventoryContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

 -- Send a message to the InventoryService
 SET @msgInventoryService =
 '<InventoryRequest>
 <ProductID> + CAST(@productID AS NVARCHAR(10)) + '</ProductID>
 <Quantity' + CAST(@quantity AS NVARCHAR(10)) + '</Quantity>
 </InventoryRequest>';

 SEND ON CONVERSATION @chInventoryService
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c06/InventoryRequestMessage)
 (@msgInventoryService);
END

Let’s have a more detailed look at the different parts of the message-processing logic for the
OrderRequestMessage message type. In the first step, you declare some variables to store the conver-
sation handles for the new started conversations and the messages that are sent over the new
conversations:

-- Variables needed to store the information extracted
-- from the OrderRequestMessage
DECLARE @creditCardHolder NVARCHAR(256);
DECLARE @creditCardNumber NVARCHAR(256);
DECLARE @validThrough NVARCHAR(10);
DECLARE @quantity INT;
DECLARE @price DECIMAL(18, 2);
DECLARE @amount DECIMAL(18, 2);
DECLARE @customerID NVARCHAR(256);
DECLARE @productID INT;

8423ch06.fm Page 178 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage
http://ssb.csharp.at/SSB_Book/c06/InventoryContract
http://ssb.csharp.at/SSB_Book/c06/InventoryRequestMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 179

In the second step, you extract all required information from the received OrderRequestMessage.
I use the value() XML data type method here to simplify this task to its minimum. This XML data
type method returns the extracted value from the XML document as a scalar SQL Server data type,
such as NVARCHAR, DECIMAL, or INT as used in this example:

-- Extract the necessary information from the OrderRequestMessage
SET @creditCardHolder =
 @messagebody.value('/OrderRequest[1]/CreditCard[1]/Holder[1]',
 'NVARCHAR(256)');
SET @creditCardNumber =
 @messagebody.value('/OrderRequest[1]/CreditCard[1]/Number[]1]',
 'NVARCHAR(256)');
SET @validThrough =
 @messagebody.value('/OrderRequest[1]/CreditCard[1]/ValidThrough[1]',
 'NVARCHAR(256)');
SET @quantity =
 @messagebody.value('/OrderRequest[1]/Product[1]/Quantity[1]', 'INT');
SET @price =
 @messagebody.value('/OrderRequest[1]/Product[1]/Price[1]', 'DECIMAL(18, 2)');
SET @amount = @quantity * @price;
SET @customerID =
 @messagebody.value('/OrderRequest[1]/Customer[1]/CustomerID[1]',
 'NVARCHAR(256)');
SET @productID =
 @messagebody.value('/OrderRequest[1]/Product[1]/ProductID[1]', 'INT');

In the next step, you start three new conversations: one with the CreditCardService, one with
the AccountingService, and one with the InventoryService. The associated conversation handles
are stored in the variables declared in the first step. In the final step, you compose for each service
the required request message (each message contains some information that was extracted from the
OrderRequestMessage). The new message is sent over the opened conversation to the other Service
Broker service that processes the message and sends a response message back to the OrderService:

-- Begin a new conversation with the CreditCardService on the same
-- conversation group
BEGIN DIALOG CONVERSATION @chCreditCardService
 FROM SERVICE [OrderService]
 TO SERVICE 'CreditCardService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/CreditCardContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

XML DATA TYPE METHODS

The new XML data type of SQL Server 2005 offers several methods you can use to query and update the stored XML
data directly inside the database. These methods are query(), value(), exist(), nodes(), and modify().
With the query() method, you can directly execute an XPath or XQuery statement that returns an XML fragment
back to you.

When you want to get a scalar value out of the XML data, you can use the value() method on the XML data
type. If you want to check if a specified node is available in the XML, you can use the exist() method. Finally, you
can use the nodes() method to shred XML into multiple rows to propagate parts of the XML data into rowsets.

8423ch06.fm Page 179 Friday, April 6, 2007 11:57 AM

mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
mailto:@messagebody.value('/OrderRequest
http://ssb.csharp.at/SSB_Book/c06/CreditCardContract

180 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

-- Send a CreditCardRequestMessage to the CreditCardService
SET @msgCreditCardService =
 '<CreditCardRequest>
 <Holder>' + @creditCardHolder + '</Holder>
 <Number>' + @creditCardNumber + '</Number>
 <ValidThrough>' + @validThrough + '</ValidThrough>
 <Amount>' + CAST(@amount AS NVARCHAR(10)) + '</Amount>
 </CreditCardRequest>';

SEND ON CONVERSATION @chCreditCardService
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage)
 (@msgCreditCardService);

-- Begin a new conversation with the AccountingService on the same
-- conversation group
BEGIN DIALOG CONVERSATION @chAccountingService
 FROM SERVICE [OrderService]
 TO SERVICE 'AccountingService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/AccountingContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

-- Send a message to the AccountingService
SET @msgAccountingService =
 '<AccountingRequest>
 <CustomerID>' + @customerID + '</CustomerID>
 <Amount>' + CAST(@amount AS NVARCHAR(10)) + '</Amount>
 <AccountingRequest>';

SEND ON CONVERSATION @chAccountingService
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage)
 (@msgAccountingService);

-- Begin a new conversation with the InventoryService on the same
-- conversation group
BEGIN DIALOG CONVERSATION @chInventoryService
 FROM SERVICE [OrderService]
 TO SERVICE 'InventoryService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/InventoryContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

-- Send a message to the InventoryService
SET @msgInventoryService =
 '<InventoryRequest>
 <ProductID> + CAST(@productID AS NVARCHAR(10)) + '</ProductID>
 <Quantity' + CAST(@quantity AS NVARCHAR(10)) + '</Quantity>
 </InventoryRequest>';

SEND ON CONVERSATION @chInventoryService
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c06/InventoryRequestMessage)
 (@msgInventoryService);

8423ch06.fm Page 180 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingContract
http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage
http://ssb.csharp.at/SSB_Book/c06/InventoryContract
http://ssb.csharp.at/SSB_Book/c06/InventoryRequestMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 181

After executing the message-processing logic, you write the modified state information back to
the ApplicationState table with the UPDATE T-SQL statement:

-- Update the application state
UPDATE ApplicationState SET
 CreditCardStatus = @CreditCardStatus,
 AccountingStatus = @AccountingStatus,
 InventoryStatus = @InventoryStatus,
 ShippingMessageSent = @ShippingMessageSent,
 ShippingStatus = @ShippingStatus
WHERE ConversationGroupID = @conversationGroup;

Finally, you configure the ProcessOrderRequestMessages stored procedure for internal activa-
tion on the OrderQueue:

ALTER QUEUE OrderQueue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = ProcessOrderRequestMessages,
 MAX_QUEUE_READERS = 1,
 EXECUTE AS SELF
)
GO

The OrderService retrieves OrderRequestMessages, processes them, and starts new conversa-
tions automatically. Now let’s take a detailed look at how the credit-card, accounting, and inventory
services are implemented.

The CreditCardService
When CreditCardService starts a new conversation, the stored procedure receives messages and
stores the messages in the CreditCardQueue on the target side. Listing 6-19 shows an example
message.

Listing 6-19. The CreditCardRequestMessage Message

<CreditCardRequest>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 <Amount>456.76</Amount>
</CreditCardRequest>

With this information, the CreditCardService can easily create a payment record that a credit-
card company can process. The generated payment record from this request message is finally
stored in the CreditCardTransactions table. Listing 6-20 shows the definition of this table.

8423ch06.fm Page 181 Friday, April 6, 2007 11:57 AM

182 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Listing 6-20. The CreditCardTransactions Table

CREATE TABLE CreditCardTransactions
(
 CreditCardTransactionID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 CreditCardHolder NVARCHAR(256) NOT NULL,
 CreditCardNumber NVARCHAR(50) NOT NULL,
 ValidThrough NVARCHAR(10) NOT NULL,
 Amount DECIMAL(18, 2) NOT NULL
)

Again, you use the new XML data type methods of SQL Server 2005 to extract information from
the XML message (as shown in Listing 6-19) and insert it into the CreditCardTransactions table. This
task is done inside the ProcessCreditCardRequestMessages service program that processes received
messages from CreditCardQueue. Listing 6-21 shows the implementation of this service program.

Listing 6-21. Processing Messages from the CreditCardQueue

CREATE PROCEDURE ProcessCreditCardRequestMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM CreditCardQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage')
 BEGIN
 -- Create a new credit card transaction record
 INSERT INTO CreditCardTransactions (CreditCardTransactionID,
 CreditCardHolder, CreditCardNumber, ValidThrough, Amount)
 VALUES

8423ch06.fm Page 182 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 183

 (
 NEWID(),
 @messagebody.value('/CreditCardRequest[1]/Holder[1]', 'NVARCHAR(256)'),
 @messagebody.value('/CreditCardRequest[1]/Number[1]', 'NVARCHAR(50)'),
 @messagebody.value('/CreditCardRequest[1]/ValidThrough[1]',
 'NVARCHAR(10)'),
 @messagebody.value('/CreditCardRequest[1]/Amount[1]', 'DECIMAL(18, 2)')
)

 -- Create the response message for the OrderService
 SET @responsemessage = '<CreditCardResponse>1</CreditCardResponse>';

 -- Send the response message back to the OrderService
 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage]
 (@responsemessage);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END
GO

As you can see from Listing 6-21, this stored procedure handles the CreditCardRequestMessage
and the EndDialog message sent by another Service Broker service. When the stored procedure
receives a CreditCardRequestMessage, then the required information is extracted from the XML mes-
sage and a new record is created inside the CreditCardTransactions table that holds the values from
the processed XML message:

-- Create a new credit card transaction record
INSERT INTO CreditCardTransactions (CreditCardTransactionID,
 CreditCardHolder, CreditCardNumber, ValidThrough, Amount)
VALUES
(
 NEWID(),
 @messagebody.value('/CreditCardRequest[1]/Holder[1]', 'NVARCHAR(256)'),
 @messagebody.value('/CreditCardRequest[1]/Number[1]', 'NVARCHAR(50)'),
 @messagebody.value('/CreditCardRequest[1]/ValidThrough[1]',
 'NVARCHAR(10)'),
 @messagebody.value('/CreditCardRequest[1]/Amount[1]', 'DECIMAL(18, 2)')
)

8423ch06.fm Page 183 Friday, April 6, 2007 11:57 AM

mailto:@messagebody.value('/CreditCardRequest
mailto:@messagebody.value('/CreditCardRequest
mailto:@messagebody.value('/CreditCardRequest
mailto:@messagebody.value('/CreditCardRequest
http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
mailto:@messagebody.value('/CreditCardRequest
mailto:@messagebody.value('/CreditCardRequest
mailto:@messagebody.value('/CreditCardRequest
mailto:@messagebody.value('/CreditCardRequest

184 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Here it depends on your business requirements how you implement the credit-card payment of
your customer. When everything goes fine, a response message is created that is finally sent through the
SEND ON CONVERSATION T-SQL statement back to the initiator of the conversation—the OrderService:

-- Create the response message for the OrderService
SET @responsemessage = '<CreditCardResponse>1</CreditCardResponse>';

-- Send the response message back to the OrderService
SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage]
 (@responsemessage);

-- End the conversation on the target's side
END CONVERSATION @ch;

The AccountingService
The OrderService sends in parallel a message to the AccountingService that creates a booking record
that a booking system such as SAP can use. Messages for the AccountingServices are described
through the AccountingRequestMessage message type and are received on the target side on the
AccountingQueue. Listing 6-22 shows the request message sent by the OrderService.

Listing 6-22. The AccountingRequestMessage Message

<AccountingRequest>
 <CustomerID>1223</CustomerID>
 <Amount>456.76</Amount>
</AccountingRequest>

The stored procedure can then transfer the extracted information from this message to a book-
ing system. To simplify this sample, I stored the required information in a table stored in the same
database as the AccountingService. Listing 6-23 shows the definition of the AccountingRecordings
table that is used for this purpose.

Listing 6-23. The AccountingRecordings Table

CREATE TABLE AccountingRecordings
(
 AccountingRecordingsID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 CustomerID NVARCHAR(10) NOT NULL,
 Amount DECIMAL(18, 2) NOT NULL
)

As with the CreditCardService, the required information is extracted from the XML message
and stored in this table. This task is handled by the ProcessAccountingRequestMessages stored
procedure, which processes messages from the AccountingQueue. Listing 6-24 shows this stored
procedure.

8423ch06.fm Page 184 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 185

Listing 6-24. The ProcessAccountingRequestMessages Stored Procedure

CREATE PROCEDURE ProcessAccountingRequestMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM AccountingQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage')
 BEGIN
 -- Create a new booking record
 INSERT INTO AccountingRecordings
 (AccountingRecordingsID, CustomerID, Amount)
 VALUES
 (
 NEWID(),
 @messagebody.value('/AccountingRequest[1]/CustomerID[1]',
 'NVARCHAR(10)'),
 @messagebody.value('/AccountingRequest[1]/Amount[1]', 'DECIMAL(18, 2)')
)

 -- Construct the response message
 SET @responsemessage = '<AccountingResponse>1</AccountingResponse>';

 -- Send the response message back to the OrderService
 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage]
 (@responsemessage);

8423ch06.fm Page 185 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage
mailto:@messagebody.value('/AccountingRequest
mailto:@messagebody.value('/AccountingRequest
http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage

186 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END
GO

As you can see from Listing 6-24, the ProcessAccountingRequestMessages stored procedure
handles the AccountingRequestMessage and the EndDialog message sent by another Service Broker
service. When the stored procedure receives an AccountingRequestMessage, the information from
the XML message is extracted and a new record in the AccountingRecordings table is created with the
extracted values:

-- Create a new booking record
INSERT INTO AccountingRecordings
 (AccountingRecordingsID, CustomerID, Amount)
VALUES
(
 NEWID(),
 @messagebody.value('/AccountingRequest[1]/CustomerID[1]',
 'NVARCHAR(10)'),
 @messagebody.value('/AccountingRequest[1]/Amount[1]', 'DECIMAL(18, 2)')
)

It depends on your business requirements how you process an accounting message from
your customer. Sometimes you must work with another backend system, such as SAP, where you
create a new booking record for the customer. When everything goes fine, a response message is cre-
ated that is finally sent through the SEND ON CONVERSATION T-SQL statement back to the initiator of
the conversation:

-- Construct the response message
SET @responsemessage = '<AccountingResponse>1</AccountingResponse>';

-- Send the response message back to the OrderService
SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage]
 (@responsemessage);

-- End the conversation on the target's side
END CONVERSATION @ch;

The InventoryService
The third service that gets a request message when the OrderService processes an OrderRequestMessage
from a client application is the InventoryService. Messages for the InventoryService are described
through the InventoryRequestMessage message type and are received for processing on the
InventoryQueue. The purpose of this service is for your inventory to get updated as soon as a customer

8423ch06.fm Page 186 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
mailto:@messagebody.value('/AccountingRequest
mailto:@messagebody.value('/AccountingRequest
http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 187

orders a product through a client application, such as your company’s website. Listing 6-25 shows the
XML message that the InventoryService receives.

Listing 6-25. The InventoryRequestMessage Message

<InventoryRequest>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
</InventoryRequest>

With this information, you can easily update the inventory so that it reflects the current avail-
able products in stock. To simplify this sample, I stored the whole inventory data in the Inventory
table with some sample records (see Listing 6-26).

Listing 6-26. The Inventory Table

CREATE TABLE Inventory
(
 ProductID NVARCHAR(10) NOT NULL PRIMARY KEY,
 Quantity INT NOT NULL
)
GO

INSERT INTO Inventory (ProductID, Quantity) VALUES ('123', 50)
INSERT INTO Inventory (ProductID, Quantity) VALUES ('456', 80)
INSERT INTO Inventory (ProductID, Quantity) VALUES ('789', 563)
GO

The difference between the InventoryService and the OrderService is that the InventoryService
checks in the first step to see if the quantity of the ordered product is available in the inventory. If it is,
then the ordered quantity is subtracted from the quantity available in the inventory. If the ordered
quantity isn’t available in the stock, then a different response message is sent back to the OrderService.
In this case, the OrderService must unroll all previous work done on this order request. This could
involve the work done by the CreditCardService and AccountingService.

This concept is referred to as compensating transactions. In the “Compensation Logic with
Service Broker” section, I’ll show you how you can implement compensating transactions for this
sample with the functionality provided by Service Broker. The update process of the inventory is
handled by the ProcessInventoryRequestMessages stored procedure, which processes messages
from the InventoryQueue. Listing 6-27 shows this stored procedure.

Listing 6-27. The ProcessInventoryRequestMessages Stored Procedure

CREATE PROCEDURE ProcessInventoryRequestMessages
AS
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

8423ch06.fm Page 187 Friday, April 6, 2007 11:57 AM

188 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM InventoryQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/InventoryRequestMessage')
 BEGIN
 DECLARE @productID NVARCHAR(10);
 DECLARE @oldQuantity INT;
 DECLARE @newQuantity INT;
 DECLARE @quantity INT;

 -- Check if there is enough quantity of the specified product in stock
 SET @productID = @messagebody.value('/InventoryRequest[1]/ProductID[1]',
 'NVARCHAR(10)');
 SET @quantity = @messagebody.value('/InventoryRequest[1]/Quantity[1]',
 'INT');
 SELECT @oldQuantity = Quantity FROM Inventory WHERE ProductID = @productID;

 SET @newQuantity = @oldQuantity - @quantity;

 IF (@newQuantity <= 0)
 BEGIN
 -- There is not enough quantity of the specified product in stock
 SET @responsemessage = '<InventoryResponse>0</InventoryResponse>';

 -- Send the response message back to the OrderService
 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage]
 (@responsemessage);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END
 ELSE
 BEGIN
 -- Update the inventory with the new quantity of the specified product
 UPDATE Inventory SET Quantity = @newQuantity WHERE ProductID = @productID;

8423ch06.fm Page 188 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/InventoryRequestMessage
mailto:@messagebody.value('/InventoryRequest
mailto:@messagebody.value('/InventoryRequest
http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 189

 -- There is enough quantity of the specified product in stock
 SET @responsemessage = '<InventoryResponse>1</InventoryResponse>';

 -- Send the response message back to the OrderService
 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage]
 (@responsemessage);

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END
GO

Let’s have a more detailed look at the tasks that this stored procedure executes. In the first step,
you extract the ProductID and the Quantity from the received message:

-- Check if there is enough quantity of the specified product in stock
SET @productID = @messagebody.value('/InventoryRequest[1]/ProductID[1]',
 'NVARCHAR(10)');
SET @quantity = @messagebody.value('/InventoryRequest[1]/Quantity[1]', 'INT');

With the ProductID, you get the current available quantity of the product from the Inventory
table. In the second step, you calculate the new quantity of the inventory and check if the quantity
has fallen behind the available stock items:

SELECT @oldQuantity = Quantity FROM Inventory WHERE ProductID = @productID;
SET @newQuantity = @oldQuantity - @quantity;

IF (@newQuantity <= 0)

If it has, you send a response message with the value 0 back to the OrderService, which indi-
cates that the order request can’t be processed:

-- There is not enough quantity of the specified product in stock
SET @responsemessage = '<InventoryResponse>0</InventoryResponse>';

-- Send the response message back to the OrderService
SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage]
 (@responsemessage);

-- End the conversation on the target's side
END CONVERSATION @ch;

8423ch06.fm Page 189 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
mailto:@messagebody.value('/InventoryRequest
mailto:@messagebody.value('/InventoryRequest
http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage

190 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

If the ordered quantity is fine, then the response message contains the value 1, indicating that
everything is fine and that the order can be fulfilled:

-- Update the inventory with the new quantity of the specified product
UPDATE Inventory SET Quantity = @newQuantity WHERE ProductID = @productID;

-- There is enough quantity of the specified product in stock
SET @responsemessage = '<InventoryResponse>1</InventoryResponse>';

-- Send the response message back to the OrderService
SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage]
 (@responsemessage);

-- End the conversation on the target's side
END CONVERSATION @ch;

With this return value, the OrderService must then decide if some compensation transaction
must be executed on the services that already processed the order request. You’ll find more about
this in the “Compensation Logic with Service Broker” section.

Processing Response Messages
Now the OrderService must process and evaluate the response message that it gets back from the
three called services. As soon as the response messages are processed, OrderService must also
update the state information from the current conversation to indicate which conversation with
the three services was already processed. Listing 6-28 shows how the response messages from these
three services are processed inside the ProcessOrderRequestMessages stored procedure, which rep-
resents the service program for the OrderService.

Listing 6-28. Processing the Response Messages

IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage')
BEGIN
 DECLARE @creditCardResult BIT;

 SET @creditCardResult = @messagebody.value('/CreditCardResponse[1]', 'BIT');

 -- Updating the state information, indicating that the CreditCardService
 -- was called
 SET @CreditCardStatus = 1;
END

IF (
 @messagetypename = 'http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage'
BEGIN
 DECLARE @accountingResult BIT;

 SET @accountingResult = @messagebody.value('/AccountingResponse[1]', 'BIT');

8423ch06.fm Page 190 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage
http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage
mailto:@messagebody.value('/CreditCardResponse
http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage
mailto:@messagebody.value('/AccountingResponse

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 191

 -- Updating the state information, indicating that the AccountingService
 -- was called
 SET @AccountingStatus = 1;
END

IF (
 @messagetypename = 'http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage')
BEGIN
 DECLARE @inventoryResult BIT;

 SET @inventoryResult = @messagebody.value('/InventoryResponse[1]', 'BIT');

 -- Updating the state information, indicating that the InventoryService
 -- was called
 SET @InventoryStatus = 1;
END

As you can see in Listing 6-28, you can easily process the response messages from all three called
services. Through the outer loop of this stored procedure, the changed state gets updated automati-
cally, and the ApplicationState table reflects the changed state information. Finally, you need to
implement a call to the ShippingService to ship the ordered products to the customer. You can imple-
ment this call only when you get a response from all three previously called services. You can do this
check easily with the @CreditCardStatus, @AccountingStatus, and @InventoryStatus state variables.

The information for the request message sent to ShippingService must be extracted from the
OrderRequestMessage sent by a client application. Listing 6-29 shows the content of this request
message.

Listing 6-29. The Request Message Sent by the Client Application

<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
</OrderRequest>

8423ch06.fm Page 191 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage
mailto:@messagebody.value('/InventoryResponse

192 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

You run into a big problem here, because the request message was processed and removed
from OrderQueue when you sent out information to CreditCardService, AccountingService, and
InventoryService. How can you access the shipping information stored in the <Shipping> node?
There are two solutions. The first option is to store the request message in the state table when you
receive it from the queue. However, this introduces some overhead in the message-processing logic
and can degrade the performance of your messaging application.

The second option is to use the Service Broker RETENTION feature on OrderQueue. When a queue
specifies message retention, Service Broker doesn’t delete messages from the queue until the con-
versation ends. Furthermore, Service Broker also copies outgoing messages to the queue. This
allows the service to maintain a precise record of the incoming and outgoing messages. Message
retention allows you to maintain an exact record of a conversation for a queue while the conversa-
tion is active. For applications that require detailed auditing or that must perform compensating
transactions when the conversation fails, it can be more efficient than copying each message to a
state table while the conversation is in process.

Message retention increases the number of messages in the queue for active conversations
and increases the amount of work that SQL Server performs when sending a message. Therefore,
message retention reduces the performance. The exact performance impact depends on the com-
munication pattern for the services that use that queue. In general, you should use message
retention any time that message retention is required for an application to operate correctly. If the
application doesn’t require an exact record of all sent and received messages while the conversation
is active, maintaining state in a state table may improve performance. Also, remember that when the
conversation ends, the retained messages are removed from the queue, so if you’re using retention
for auditing purposes, you must be sure to copy the messages to another table before ending the
conversation. To enable RETENTION on a queue, you must specify the RETENTION clause when you cre-
ate or alter a queue (see Listing 6-30).

Listing 6-30. Enabling RETENTION on a Queue

CREATE QUEUE OrderQueue
 WITH STATUS = ON,
 RETENTION = ON

MESSAGE RETENTION FOR COMPLEX MESSAGE PROCESSING

You can also use RETENTION as a staging area for complex message processing. Let’s say that a service has to
receive messages 1, 2, and 3, but it can only start processing when message 3 has arrived. One approach would be
to have the sender send all the information from messages 1, 2, and 3 in one single complex message. However,
often all three messages are simply not available at the same time.

Another approach would be to receive the messages and store them in a state table, When message 3 arrives,
the service can select messages 1 and 2 from the state table. However, the simplest approach is to have
RETENTION enabled. The target simply ignores messages 1 and 2 and when message 3 arrives, it looks up mes-
sages 1 and 2 in the queue, since they were retained.

8423ch06.fm Page 192 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 193

Listing 6-31 shows how you can send the final request message to the ShippingService that is
part of the ProcessOrderRequestMessages stored procedure. This code assumes that the RETENTION
support on the OrderQueue is activated.

Listing 6-31. Sending the Final Message

-- If we received all response messages from the other services we
-- can send the final message to the ShippingService
IF (@CreditCardStatus = 1 AND @AccountingStatus = 1 AND @InventoryStatus = 1
 AND @ShippingMessageSent = 0)
BEGIN
 DECLARE @chShippingService UNIQUEIDENTIFIER;
 DECLARE @msgShippingService NVARCHAR(MAX);

 -- Begin a new conversation with the ShippingService on the same
 -- conversation group
 BEGIN DIALOG CONVERSATION @chShippingService
 FROM SERVICE [OrderService]
 TO SERVICE 'ShippingService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/ShippingContract]
 WITH RELATED CONVERSATION = @ch, ENCRYPTION = OFF;

 -- Send the request message to the ShippingService
 DECLARE @msg XML;

 -- SELECT the original order request message -
 -- RETENTION makes it possible
 SELECT @msg = CAST(message_body AS XML) FROM OrderQueue
 WHERE
 conversation_group_id = @conversationGroup AND
 message_type_name = 'http://ssb.csharp.at/SSB_Book/c06/OrderRequestMessage';

 SET @msgShippingService =
 CAST(@msg.query('/OrderRequest[1]/Shipping[1]') AS NVARCHAR(MAX));

 SEND ON CONVERSATION @chShippingService MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/ShippingRequestMessage]
 (@msgShippingService);

 SET @ShippingMessageSent = 1;
END

8423ch06.fm Page 193 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/ShippingContract
http://ssb.csharp.at/SSB_Book/c06/OrderRequestMessage
mailto:CAST(@msg.query('/OrderRequest
http://ssb.csharp.at/SSB_Book/c06/ShippingRequestMessage

194 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

The ShippingService
The last service I want to describe is the ShippingService. The responsibility of this service is to ship
the order from the customer directly to his supplied post address. DHL or FedEx could host such a
service. Messages for the ShippingService are described through the ShippingRequestMessage mes-
sage type and are received for processing on the ShippingQueue. Listing 6-32 shows the XML message
that the ShippingService receives from the OrderService.

Listing 6-32. The ShippingRequestMessage Message

<Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
</Shipping>

With this information, you can easily ship the ordered products to the specified post address.
To simplify this sample, I’ve stored all the shipping information in the ShippingInformation table.
Listing 6-33 shows the DDL script for this table.

Listing 6-33. The ShippingInformation Table

CREATE TABLE ShippingInformation
(
 ShippingID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 [Name] NVARCHAR(256) NOT NULL,
 Address NVARCHAR(256) NOT NULL,
 ZipCode NVARCHAR(10) NOT NULL,
 City NVARCHAR(256) NOT NULL,
 Country NVARCHAR(256) NOT NULL
)

The ProcessShippingRequestMessages stored procedure acts as the service program for the
ShippingService. This stored procedure retrieves a new message from the ShippingQueue, extracts
the required information from the XML message, inserts a new record into the ShippingInformation
table, and sends a response message back to the OrderService. Listing 6-34 shows the implementa-
tion of this stored procedure.

Listing 6-34. The ProcessShippingRequestMessages Stored Procedure

CREATE PROCEDURE ProcessShippingRequestMessages
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

8423ch06.fm Page 194 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 195

 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM ShippingQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/ShippingRequestMessage')
 BEGIN
 DECLARE @name NVARCHAR(256);
 DECLARE @address NVARCHAR(256);
 DECLARE @zipCode NVARCHAR(10);
 DECLARE @city NVARCHAR(256);
 DECLARE @country NVARCHAR(256);

 -- Extract the information from the ShippingRequestMessage
 SET @name = @messagebody.value('/Shipping[1]/Name[1]', 'NVARCHAR(256)');
 SET @address = @messagebody.value('/Shipping[1]/Address[1]',
 'NVARCHAR(256)');
 SET @zipCode = @messagebody.value('/Shipping[1]/ZipCode[1]',
 'NVARCHAR(10)');
 SET @city = @messagebody.value('/Shipping[1]/City[1]', 'NVARCHAR(256)');
 SET @country = @messagebody.value('/Shipping[1]/Country[1]',
 'NVARCHAR(256)');

 -- Insert the information into the shipping table
 INSERT INTO ShippingInformation
 (ShippingID, [Name], Address, ZipCode, City, Country)
 VALUES
 (
 NEWID(),
 @name,
 @address,
 @zipCode,
 @city,
 @country
)

 -- Send the response message back to the OrderService
 SET @responsemessage = '<ShippingResponse>1</ShippingResponse>';
 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/ShippingResponseMessage]
 (@responsemessage);

8423ch06.fm Page 195 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/ShippingRequestMessage
mailto:@messagebody.value('/Shipping
mailto:@messagebody.value('/Shipping
mailto:@messagebody.value('/Shipping
mailto:@messagebody.value('/Shipping
mailto:@messagebody.value('/Shipping
http://ssb.csharp.at/SSB_Book/c06/ShippingResponseMessage

196 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 -- End the conversation on the target's side
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END
END
GO

The only thing left in this sample application is the logic that processes the sent
ShippingResponseMessage on the OrderQueue. If this message type arrives on that queue,
you only have to send a response message back to the ClientService to inform it about
the outcome of the order request. Listing 6-35 shows the necessary code fragment from the
ProcessOrderRequestMessages stored procedure.

Listing 6-35. Processing ShippingResponseMessages

IF (@messageTypeName = 'http://ssb.csharp.at/SSB_Book/c06/ShippingResponseMessage')
BEGIN
 DECLARE @shippingResult BIT;
 DECLARE @orderResponseMessage NVARCHAR(MAX);
 DECLARE @chClientService UNIQUEIDENTIFIER;

 -- Create the response message for the ClientService
 SET @shippingResult = @messagebody.value('/ShippingResponse[1]', 'BIT');
 SET @orderResponseMessage = '<OrderResponse>' +
 CAST(@shippingResult AS CHAR(1)) + '</OrderResponse>';

 -- The order was shipped
 SET @ShippingStatus = 1;

 -- Get the conversation handle that is needed to send a response message
 -- back to the ClientService
 SELECT @chClientService = conversation_handle FROM sys.conversation_endpoints
 WHERE
 conversation_group_id = @conversationGroup AND
 far_service = 'ClientService';

 -- Send the response message back to the ClientService
 SEND ON CONVERSATION @chClientService MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/OrderResponseMessage]
 (@orderResponseMessage);

 -- End the conversation with the ClientService
 END CONVERSATION @chClientService;
END

8423ch06.fm Page 196 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://ssb.csharp.at/SSB_Book/c06/ShippingResponseMessage
mailto:@messagebody.value('/ShippingResponse
http://ssb.csharp.at/SSB_Book/c06/OrderResponseMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 197

The only difference in this code fragment is that you haven’t stored the conversation handle
back to the ClientService in a local variable. Therefore, you must retrieve the correct conversation
handle from the sys.conversation_endpoints catalog view so that you can send a response message
back to the ClientService. In this SELECT statement, you must restrict your returned result set by the
conversation_group_id and far_service columns, so that you get back the correct conversation
handle. For the ClientQueue, you can write a simple service program that prints the response mes-
sage from the OrderService out. In a real production application, you may send an email to the
customer to inform her about the outcome of her order request. Listing 6-36 shows the simple
ProcessOrderResponseMessages stored procedure.

Listing 6-36. The ProcessOrderResponseMessages Stored Procedure

CREATE PROCEDURE ProcessOrderResponseMessages
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @responsemessage XML;

 WHILE (1 = 1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM ClientQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/OrderResponseMessage')
 BEGIN
 -- Here you can send an email to the customer that his/her order
 -- was successfully processed
 PRINT 'Your order was successfully processed...';
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @ch;
 END

8423ch06.fm Page 197 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/OrderResponseMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

198 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 COMMIT TRANSACTION;
 END
END

Now when you send an OrderRequestMessage to the OrderService, all the necessary steps are
executed asynchronously in the background. After getting back the final response message from
the OrderService, you can make a SELECT on all the tables. You’ll get a result like the one shown in
Figure 6-13.

Figure 6-13. The processed messages from the different Service Broker services

Compensation Logic with Service Broker
As you’ve seen in the previous section, you can easily implement a Service Broker service that spans
several dialogs. The conversation group concept also makes it easy to store application state
between the individual dialogs that are spanned across the different Service Broker services. As you
might expect, the sample application from the previous section has one drawback: what happens
when the InventoryService can’t process the order because too few items are in stock?

In this case, the response message contains a 0 (<InventoryResponse>0</InventoryResponse>),
indicating that the request didn’t process successfully. But what if the CreditCardService and the
AccountingService already processed the request? In this case, your application will be in an invalid
state, because the request would have been processed on some services and not on others. The solu-
tion to this problem is a concept referred to as compensating transactions.

With a compensation transaction, you can undo an action that already executed earlier. In
this case, this means that a corresponding compensation transaction must undo the operations of
the CreditCardService and the AccountingService. For this reason, you have to create two addi-
tional message types and the [http://ssb.csharp.at/SSB_Book/c06/CreditCardContract] and
[http://ssb.csharp.at/SSB_Book/c06/AccountingContract] contracts. Take a look at Listing 6-37.

■Note Please make sure to create a new database for this sample.

8423ch06.fm Page 198 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardContract
http://ssb.csharp.at/SSB_Book/c06/AccountingContract

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 199

Listing 6-37. Defining the Message Types for the Compensation Transactions

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage]
 VALIDATION = WELL_FORMED_XML

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage]
 VALIDATION = WELL_FORMED_XML

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c06/CreditCardContract]
(
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage] SENT BY TARGET,
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage]
 SENT BY INITIATOR
)

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c06/AccountingContract]
(
 [http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage] SENT BY TARGET,
 [http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage] SENT BY
 INITIATOR,
)

As you can see from Listing 6-37, the compensation messages are sent from the initiator of the
conversation to the target—in this sample, from the OrderService to the CreditCardService and
AccountingService. When the target side retrieves the compensation messages, the target service
must undo the previous actions with the data contained in the compensation messages. Listing 6-38
shows both compensation messages that are sent from the OrderService to the corresponding target
service.

Listing 6-38. The Content of Both Compensation Messages

<CreditCardCompensation>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 <Amount>40.99</Amount>
</CreditCardCompensation>

<AccountingCompensation>
 <CustomerID>123</CustomerID>
 <Amount>40.99</Amount>
</AccountingCompensation>

Figure 6-14 shows a sequence diagram of the message exchange that occurs when a compensa-
tion transaction takes place.

8423ch06.fm Page 199 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage
http://ssb.csharp.at/SSB_Book/c06/CreditCardContract
http://ssb.csharp.at/SSB_Book/c06/CreditCardRequestMessage
http://ssb.csharp.at/SSB_Book/c06/CreditCardResponseMessage
http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingContract
http://ssb.csharp.at/SSB_Book/c06/AccountingRequestMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingResponseMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage

200 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Figure 6-14. Sequence diagram of the message exchange

As you can see from Figure 6-14, the ShippingService isn’t called when a compensation transaction
takes place. This makes sense, because you don’t want to ship the goods when you don’t have them in
stock. Now let’s see how to implement the compensation logic in the ProcessOrderRequestMessage
stored procedure that acts as the service program for the OrderQueue. The compensation transaction is
initiated as soon as an InventoryResponseMessage is received from the InventoryService and when the
response message contains a 0 in the message body. Listing 6-39 shows the T-SQL code that initiates
both compensation transactions.

Listing 6-39. Initiating the Compensation Transactions

IF (@messageTypeName = 'http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage')
BEGIN
 DECLARE @inventoryResult BIT;
 SET @inventoryResult = @messageBody.Value('/InventoryResult[1]', 'BIT');

 -- Check if we must compensate any logic that has already taken place,
 -- because the order can not be fulfilled.
 IF (@inventoryResult = 0)
 BEGIN
 -- Variables for the conversation handles and the messages to be sent
 DECLARE @chCreditCardServiceCompensation UNIQUEIDENTIFER;
 DECLARE @chAccountingServiceCompensation UNIQUEIDENTIFER;
 DECLARE @msgCreditCardServiceCompensation NVARCHAR(MAX);
 DECLARE @msgAccountingServiceCompensation NVARCHAR(MAX);
 DECLARE @msgCompensation XML;
 DECLARE @chClientServiceCompensation UNIQUEIDENTIFIER;
 DECLARE @orderResponseMessageCompensation NVARCHAR(MAX);

 -- Variables needed to store the information extracted
 -- from the OrderRequestMessage

8423ch06.fm Page 200 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/InventoryResponseMessage
mailto:@messageBody.Value('/InventoryResult

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 201

 DECLARE @creditCardHolderCompensation NVARCHAR(256);
 DECLARE @creditCardNumberCompensation NVARCHAR(256);
 DECLARE @validThroughCompensation NVARCHAR(10);
 DECLARE @quantityCompensation INT;
 DECLARE @priceCompensation DECIMAL(18, 2);
 DECLARE @amountCompensation DECIMAL(18, 2);
 DECLARE @customerIDCompensation NVARCHAR(256);

 -- SELECT the original order request message from the OrderQueue -
 -- RETENTION makes it possible
 SELECT @msgCompensation = CAST(message_body AS XML) FROM OrderQueue
 WHERE
 conversation_group_id = @conversationGroup AND
 message_type_name = 'http://ssb.csharp.at/SSB_Book/c06/OrderRequestMessage'

 -- Extract the necessary information from the OrderRequestMessage
 SET @creditCardHolderCompensation =
 @msgCompensation.value('/OrderRequest[1]/CreditCard[1]/Holder[1]',
 'NVARCHAR(256)');
 SET @creditCardNumberCompensation =
 @msgCompensation.value('/OrderRequest[1]/CreditCard[1]/Number[1]',
 'NVARCHAR(256)');
 SET @validThroughCompensation =
 @msgCompensation.value('/OrderRequest[1]/CreditCard[1]/ValidThrough[1]',
 'NVARCHAR(10)');
 SET @quantityCompensation =
 @msgCompensation.value('/OrderRequest[1]/Product[1]/Quantity[1]',
 'INT');
 SET @priceCompensation =
 @msgCompensation.value('/OrderRequest[1]/Product[1]/Price[1]',
 'DECIMAL(18, 2)');
 SET @amountCompensation = @quantityCompensation * @priceCompensation;
 SET @customerIDCompensation =
 @msgCompensation.value('/OrderRequest[1]/Customer[1]/CustomerID[1]',
 'NVARCHAR(256)');

 -- Begin a new conversation with the CreditCardService on the same
 -- conversation group to compensate the previous taken action
 BEGIN DIALOG CONVERSATION @chCreditCardServiceCompensation
 FROM SERVICE [OrderService]
 TO SERVICE 'CreditCardService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/CreditCardContract]
 WITH RELATED_CONVERSATION = @ch, ENCRYPTION = OFF;

 -- Send a CreditCardCompensationMessage to the CreditCardService
 SET @msgCreditCardCompensation =
 '<CreditCardCompensation>
 <Holder>' + @creditCardHolderCompensation + '</Holder>
 <Number>' + @creditCardNumberCompensation + '</Number>
 <ValidThrough>' + @validThroughCompensation + '</ValidThrough>
 <Amount>' + CAST(@amountCompensation AS NVARCHAR(10)) + '</Amount>
 </CreditCardCompensation>';

8423ch06.fm Page 201 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/OrderRequestMessage
mailto:@msgCompensation.value('/OrderRequest
mailto:@msgCompensation.value('/OrderRequest
mailto:@msgCompensation.value('/OrderRequest
mailto:@msgCompensation.value('/OrderRequest
mailto:@msgCompensation.value('/OrderRequest
mailto:@msgCompensation.value('/OrderRequest
http://ssb.csharp.at/SSB_Book/c06/CreditCardContract

202 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 SEND ON CONVERSATION @chCreditCardServiceCompensation MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage]
 (@msgCreditCardCompensation);

 -- Begin a new conversation with the AccountingService on the same
 -- conversation group to compensate the previous taken action
 BEGIN DIALOG CONVERSATION @chAccountingServiceCompensation
 FROM SERVICE [OrderService]
 TO SERVICE 'AccountingService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c06/AccountingContract]
 WITH RELATED_CONVERSATION @ch, ENCRYPTION = OFF;

 -- Send a AccountingCompensationMessage to the AccountingService
 SET @msgAccountingMessage =
 '<AccountingCompensation
 <CustomerID>' + @customerIDCompensation + '</CustomerID>
 <Amount>' + CAST(@amountCompensation AS NVARCHAR(10)) + '</Amount>
 </AccountingCompensation';

 SEND ON CONVERSATION @chAccountingServiceCompensation MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage]
 (@msgAccountingServiceCompensation);

 -- End the conversation with the ClientService, because the order request
 -- cannot be fulfilled. Get the conversation handle that is needed to
 -- send a response message back to the ClientService.
 SELECT @chClientServiceCompensation = conversation_handle
 FROM sys.conversation_endpoints
 WHERE
 conversation_group_id = @conversationGroup AND
 far_service = 'ClientService';

 -- Send the response message back to the ClientService
 SET @orderResponseMessageCompensation = '<OrderResponse>0</OrderResponse>';
 SEND ON CONVERSATION @chClientServiceCompensation MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c06/OrderResponseMessage]
 (@orderResponseMessageCompensation);

 -- End the conversation with the ClientService
 END CONVERSATION @chClientServiceCompensation;
 END
END

In the first step of Listing 6-39, you extract the required information from the OrderRequestMessage
sent by the ClientService. This information is needed for the compensation messages sent to the
CreditCardService and AccountingService. Therefore, you initiate a new conversation with both services
and send the corresponding messages as already described in Listing 6-38. When both compensation
transactions are started, you send a response message back to the ClientService and immediately end
the conversation with this service.

The only thing that is missing now is the processing of these compensation messages on the
CreditCardService and the AccountingService. For this simple application, I assume that you
can just delete the previously inserted record from the table, and that’s all that the compensation
transaction must do. In reality, however, it’s always a little bit more complicated when you execute

8423ch06.fm Page 202 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage
http://ssb.csharp.at/SSB_Book/c06/AccountingContract
http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage
http://ssb.csharp.at/SSB_Book/c06/OrderResponseMessage

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 203

compensation transactions, because normally there’s more than one step in a compensation trans-
action. Listing 6-40 shows the handling of the compensation message for the CreditCardService
inside the ProcessCreditCardMessages stored procedure that handles the incoming messages on the
CreditCardQueue.

Listing 6-40. Handling the Compensation Message for the CreditCardService

IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage')
BEGIN
 -- Compensate the previous transaction through a DELETE
 DELETE FROM CreditCardTransactions
 WHERE
 CreditCardHolder = @messagebody.value('/CreditCardCompensation[1]/Holder[1]',
 'NVARCHAR(256)') AND
 CreditCardNumber = @messagebody.value('/CreditCardCompensation[1]/Number[1]',
 'NVARCHAR(50)') AND
 ValidThrough = @messagebody.value('/CreditCardCompensation[1]/Number[1]',
 'NVARCHAR(10)') AND
 Amount = @messagebody.value('/CreditCardCompensation[1]/Number[1]',
 'DECIMAL(18, 2)');

 -- The conversation on the target's side
 END CONVERSATION @ch;
END

As you can see from Listing 6-40, you just execute a DELETE on the CreditCardTransactions table
and specify in the WHERE clause the column values that you inserted previously. Therefore, you can
ensure that the correct record is deleted from the table CreditCardTransactions. Listing 6-41 shows
the compensation transaction for the AccountingService.

Listing 6-41. Handling the Compensation Message for the AccountingService

IF (@messagetypename =
 'http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage')
BEGIN
 -- Compensate the previous transaction through a DELETE
 DELETE FROM AccountingRecordings
 WHERE
 CustomerID = @messagebody.value('/AccountingCompensation[1]/CustomerID[1]',
 'NVARCHAR(10)') AND
 Amount = @messagebody.value('/AccountingCompensation[1]/Amount[1]',
 'DECIMAL(18, 2)');

 -- End the conversation on the target's side
 END CONVERSATION @ch;
END

As soon as you implement the message-processing logic for the compensation messages, your sam-
ple application guarantees you data integrity when you send an OrderRequestMessage with more items
specified than are available in stock, because both compensation transactions are executed automati-
cally in the background when this event occurs. Figure 6-15 shows you the content of the application
tables when a compensation transaction is executed. As you can see, the CreditCardTransactions,
AccountingRecords, and ShippingInformation tables contain no records. Furthermore, the quantity of
the specified product in the Inventory table is unchanged.

8423ch06.fm Page 203 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/CreditCardCompensationMessage
mailto:@messagebody.value('/CreditCardCompensation
mailto:@messagebody.value('/CreditCardCompensation
mailto:@messagebody.value('/CreditCardCompensation
mailto:@messagebody.value('/CreditCardCompensation
http://ssb.csharp.at/SSB_Book/c06/AccountingCompensationMessage
mailto:@messagebody.value('/AccountingCompensation
mailto:@messagebody.value('/AccountingCompensation

204 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Figure 6-15. Data integrity due to compensation transactions

Transaction Management
You can retrieve messages from a queue easily and process them accordingly. But in a production
system where performance is crucial, you need to carefully consider how to get the best possible
performance and message throughput out of Service Broker. In this section, I’ll talk about various
transaction techniques and how they improve the overall performance of service programs.

Basic Receive Loop
One common practice in Service Broker programming is to implement a loop that runs as long as
messages are available on a specified queue. Listing 6-42 shows a typical example of how to do this
by creating a WHILE loop. The RECEIVE TOP (1) statement retrieves the next message from the queue
and processes each message in an individual transaction.

Listing 6-42. Basic Receive Loop for Message Processing

CREATE PROCEDURE [BasicReceive]
AS
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @messagetypename NVARCHAR(256)
 DECLARE @messagebody XML

8423ch06.fm Page 204 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 205

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM
 TargetQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = 'DEFAULT')
 BEGIN
 SEND ON CONVERSATION @ch (@messagebody);
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT;
 END

This stored procedure processes messages as long as they’re available on the queue. When
no messages are available, the loop exits, and the service program terminates. If you look at the
ProcessedMessages table, you’ll see that the stored procedure has processed the sent messages
accordingly. Note that the RECEIVE T-SQL statement doesn’t poll on the specified queue. It doesn’t
consume any processor cycles on the server. The only resource you’re using is a thread that blocks
until a result set is available on the queue.

Measuring Performance
Now the question is whether this is the fastest way to retrieve messages from a queue. First, you need
a strategy for how you can measure the performance of the stored procedure from Listing 6-42. The
simplest way is to preload the queue with a number of messages and then run the stored procedure.
Next, you create a queue and load it with 100 conversations each with 100 messages (for a total of
10,000 messages).

Listing 6-43 shows the needed T-SQL batch.

8423ch06.fm Page 205 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

206 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Listing 6-43. The PreloadQueue Stored Procedure for Preloading the Queue

CREATE PROCEDURE PreloadQueue
 @ConversationCount INT,
 @MessagesPerConversation INT,
 @Payload VARBINARY(MAX)
AS
BEGIN
 DECLARE @batchCount INT
 DECLARE @ch UNIQUEIDENTIFIER

 SELECT @batchCount = 0;

 BEGIN TRANSACTION
 WHILE (@ConversationCount > 0)
 BEGIN
 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 WITH ENCRYPTION = OFF;

 DECLARE @messageCount INT;
 SELECT @messageCount = 0;

 WHILE (@messageCount < @messagesPerConversation)
 BEGIN
 SEND ON CONVERSATION @ch (@payload);

 SELECT @messageCount = @messageCount + 1, @batchCount = @batchCount + 1;

 IF (@batchCount >= 100)
 BEGIN
 COMMIT;
 SELECT @batchCount = 0;
 BEGIN TRANSACTION;
 END
 END

 SELECT @ConversationCount = @ConversationCount - 1
 END
 COMMIT;
END

After you create the stored procedure for the queue preload, you can measure the performance
of the service program from Listing 6-43 with the T-SQL batch from Listing 6-44.

Listing 6-44. Performance Measurement with a Basic Receive Loop

DECLARE @payload VARBINARY(MAX);
SELECT @payload = CAST(N'<PerformanceMeasurements />' AS VARBINARY(MAX));
EXEC PreloadQueue 100, 100, @payload;
GO

8423ch06.fm Page 206 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 207

DECLARE @messageCount FLOAT;
DECLARE @startTime DATETIME;
DECLARE @endTime DATETIME;

SELECT @messageCount = COUNT(*) FROM [TargetQueue];
SELECT @startTime = GETDATE();

EXEC BasicReceive;

SELECT @endTime = GETDATE();

SELECT
 @startTime AS [Start],
 @endTime AS [End],
 @messageCount AS [Count],
 DATEDIFF(second, @startTime, @endTime) AS [Duration],
 @messageCount / DATEDIFF(millisecond, @startTime, @endTime) * 1000 AS [Rate];
GO

First, you declare the variables you need to execute the PreloadQueue stored procedure from
Listing 6-43. The stored procedure enqueues 100 conversations into the TargetQueue, where each
conversation consists of 100 messages. All in all, you’ll have 10,000 messages in the TargetQueue
to process.

After the enqueuing process, you store the current time in the @startTime variable. Then you
start the BasicReceive stored procedure, which processes the messages from the TargetQueue in a
separate transaction. After this stored procedure executes successfully, the end time is stored in the
@endTime variable. Finally, you calculate the processed message count (Count column), the duration
(Duration column), and the message throughput per second (Rate column). When I ran this query
on my notebook with 2 GB RAM and a 2 GHz Intel Pentium processor, I got the values shown in
Figure 6-16.

Figure 6-16. Measurements for a basic receive service program

The basic stored procedure can process about 400 messages per second. This isn’t a bad result,
but let’s see if we can beat it.

PERFORMANCE MEASUREMENTS

When you do some performance measurements with SQL Server 2005, you should fine-tune your system a little bit
so that you get the best possible performance out of it. For example, if you have two hard disks, it’s always good to
store the data files (*.mdf) and the log files (*.ldf) separately on each hard disk. You’ll also get a performance benefit
when you pregrow your data files and log files under stress to an acceptable size to prevent dramatic alterations of
the results due to file growth events.

8423ch06.fm Page 207 Friday, April 6, 2007 11:57 AM

208 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

Batched Commits
A drawback of the basic receive stored procedure from Listing 6-42 is that each message is processed
in its own transaction. The first thing you can look at is changing the one-message-per-transaction
processing into batching multiple messages into one transaction. This is the most simple and basic
optimization any database application developer should think of first, as the commit rate is proba-
bly the first bottleneck any system will hit.

You can do a simple modification to the basic receive procedure from Listing 6-42: keep a
counter of messages processed and commit only after 100 messages were processed. Everything else
in the stored procedure stays the same. Listing 6-45 shows the modified stored procedure.

Listing 6-45. Batched Commit in a Service Program

CREATE PROCEDURE [BatchedReceive]
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @batchCount INT;
 SELECT @batchCount = 0;

 BEGIN TRANSACTION
 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP (1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM
 TargetQueue
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = 'DEFAULT')
 BEGIN
 SEND ON CONVERSATION @ch (@messagebody);
 END CONVERSATION @ch;
 END

8423ch06.fm Page 208 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 209

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 SELECT @batchCount = @batchCount + 1
 IF (@batchCount >= 100)
 BEGIN
 COMMIT;
 SELECT @batchCount = 0;
 BEGIN TRANSACTION;
 END
 END

 COMMIT;
END

Listing 6-46 shows the updated code to measure the performance with the stored procedure
from Listing 6-45 again.

Listing 6-46. Performance Measurement with a Batched Commit

DECLARE @payload VARBINARY(MAX);
SELECT @payload = CAST(N'<PerformanceMeasurements />' AS VARBINARY(MAX));
EXEC PreloadQueue 100, 100, @payload;
GO

DECLARE @messageCount FLOAT;
DECLARE @startTime DATETIME;
DECLARE @endTime DATETIME;

SELECT @messageCount = COUNT(*) FROM [TargetQueue];
SELECT @startTime = GETDATE();

EXEC BatchedReceive;

SELECT @endTime = GETDATE();

SELECT
 @startTime AS [Start],
 @endTime AS [End],
 @messageCount AS [Count],
 DATEDIFF(second, @startTime, @endTime) AS [Duration],
 @messageCount / DATEDIFF(millisecond, @startTime, @endTime) * 1000 AS [Rate];
GO

8423ch06.fm Page 209 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

210 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

The difference in this stored procedure is that you’re not doing a COMMIT after each message. You
defer the COMMIT after a batch of messages are processed, and then you do the COMMIT:

SELECT @batchCount = @batchCount + 1
IF (@batchCount >= 100)
BEGIN
 COMMIT;
 SELECT @batchCount = 0;
 BEGIN TRANSACTION;
END

The overall performance is much better than committing each message separately. When I exe-
cuted this T-SQL batch, I got the results shown in Figure 6-17.

Figure 6-17. Measurements for a batched commit

As you can see from Figure 6-17, the stored procedure now processes around 480 messages per
seconds. This is about 20% faster than the single-message-per-transaction processing algorithm.

Cursor-Based Processing
You can take another approach that’s completely different from the classic RECEIVE procedure.
Instead of using the TOP (1) clause, you can use a cursor and process as many messages as the
RECEIVE statement returns in one execution. Because you unfortunately can’t declare T-SQL cursors
on top of the RECEIVE result set, you need to use a trick: do a RECEIVE into a table variable and then
iterate over the table variable using a cursor. The processing for each message will be identical to the
previous two cases. Listing 6-47 shows the modified stored procedure.

Listing 6-47. Cursor-Based Message Processing

CREATE PROCEDURE CursorReceive
AS
BEGIN
 DECLARE @tableMessages TABLE
 (
 queuing_order BIGINT,
 conversation_handle UNIQUEIDENTIFIER,
 message_type_name SYSNAME,
 message_body VARBINARY(MAX)
);

 DECLARE cursorMessages
 CURSOR FORWARD_ONLY READ_ONLY
 FOR SELECT
 queuing_order,
 conversation_handle,
 message_type_name,
 message_body
 FROM @tableMessages
 ORDER BY queuing_order;

8423ch06.fm Page 210 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 211

 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messageTypeName SYSNAME;
 DECLARE @payload VARBINARY(MAX);
 DECLARE @order BIGINT;

 WHILE (1 = 1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR (
 RECEIVE
 queuing_order,
 conversation_handle,
 message_type_name,
 message_body
 FROM [TargetQueue] INTO @tableMessages
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK;
 BREAK;
 END

 OPEN cursorMessages;

 WHILE (1 = 1)
 BEGIN
 FETCH NEXT FROM cursorMessages
 INTO @order, @ch, @messageTypeName, @payload;

 IF (@@FETCH_STATUS != 0)
 BREAK;

 IF (@messageTypeName = 'DEFAULT')
 BEGIN
 SEND ON CONVERSATION @ch (@payload);
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END
 END

 CLOSE cursorMessages;
 DELETE FROM @tableMessages;
 COMMIT;
 END

8423ch06.fm Page 211 Friday, April 6, 2007 11:57 AM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

212 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 DEALLOCATE cursorMessages;
END
GO

The message processing changes in the CursorReceive stored procedure, making it dramati-
cally different from Listing 6-46, which shows the stored procedure that does the batch commit. In
the first step, you declare a table variable named @tableMessages that stores the received messages
(with its columns) from the TargetQueue:

DECLARE @tableMessages TABLE
(
 queuing_order BIGINT,
 conversation_handle UNIQUEIDENTIFIER,
 message_type_name SYSNAME,
 message_body VARBINARY(MAX)
);

With the statement DECLARE cursorMessages CURSOR, you declare a cursor on top of this table
variable so that you can iterate through it quickly:

DECLARE cursorMessages
 CURSOR FORWARD_ONLY READ_ONLY
 FOR SELECT
 queuing_order,
 conversation_handle,
 message_type_name,
 message_body
 FROM @tableMessages
 ORDER BY queuing_order;

When you execute the WAITFOR statement, you must fetch the messages from the TargetQueue
directly into the declared table variable:

WAITFOR (
 RECEIVE (
 queuing_order,
 conversation_handle,
 message_type_name,
 message_body
 FROM [TargetQueue] INTO @tableMessages
), TIMEOUT 1000

Finally, you must open the cursor as soon as you’ve retrieved the messages from the TargetQueue
and fetch the current row of the cursor into T-SQL variables for further processing:

OPEN cursorMessages;

WHILE (1 = 1)
BEGIN
 FETCH NEXT FROM cursorMessages;
 INTO @ch, @messageTypeName, @payload;

 IF (@@FETCH_STATUS != 0)
 BREAK;

 -- Process the message
END

8423ch06.fm Page 212 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 213

Now when I did a performance measurement with this stored procedure, I got the results
shown in Figure 6-18.

Figure 6-18. Measurements for cursor-based message processing

Wow, great! The message throughput has increased to around 840 messages per seconds. This
is about 75% faster than the approach with the batched commit. Do you think you can push the mes-
sage throughput higher?

Set-Based Processing
The next approach is not a free one. Let’s move away from processing message by message and see
how you can do set-based processing. Note that not all messaging applications can do a set-based
processing of incoming messages. Just assume that you get only a few messages per each conversa-
tion from different initiators.

Whenever one conversation side has to send long streams of messages without a response from
the other side, you can usually apply this kind of processing. For example, with auditing, the front-
end machines have to record user actions for auditing needs. Rather than connecting to a central
database and inserting the audit record directly into the database, you can start a one-directional
conversation on which you send the audit data as messages. The backend processing of messages is
straightforward: extract the audit data from the message payload and insert it into the audit tables.
You can do this as a set-based operation, and you can insert the entire RECEIVE result set as a single
set into the audit table.

Let’s create a dummy audit backend: the messages consist of an XML payload containing the
user name, the date, and some arbitrary audit payload. The backend has to store these records into
a table, shredding the XML into relational columns first. As with any well-planned application that
does this, it should also store the original XML received. Listing 6-48 shows the audit infrastructure
consisting of the table and the message-processing stored procedure.

Listing 6-48. Table and Stored Procedure for Set-Based Message Processing

CREATE TABLE AuditingTrail
(
 Id INT NOT NULL IDENTITY(1, 1),
 Date DATETIME,
 Payload NVARCHAR(MAX),
 [User] NVARCHAR(256),
 OriginalXML XML
)
GO

CREATE PROCEDURE RowsetReceive
AS
BEGIN
 DECLARE @tableMessages TABLE

8423ch06.fm Page 213 Friday, April 6, 2007 11:57 AM

214 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

 (
 queuing_order BIGINT,
 conversation_handle UNIQUEIDENTIFIER,
 message_type_name SYSNAME,
 payload XML
);

 WHILE (1 = 1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR (
 RECEIVE
 queuing_order,
 conversation_handle,
 message_type_name,
 CAST(message_body AS XML) AS payload
 FROM [TargetQueue] INTO @tableMessages
), TIMEOUT 1000;

 IF (@@ROWCOUNT = 0)
 BEGIN
 COMMIT;
 BREAK;
 END

 ;WITH XMLNAMESPACES (DEFAULT 'http://ssb.csharp.at/SSB_Book/c06/Datagram')
 INSERT INTO AuditingTrail
 (
 Date,
 Payload,
 [User],
 OriginalXML
)
 SELECT
 payload.value('(/Datagram/@date-time)[1]', 'DATETIME'),
 payload.value('(/Datagram/@payload)[1]', 'NVARCHAR(MAX)'),
 payload.value('(/Datagram/@user)[1]', 'NVARCHAR(256)'),
 payload
 FROM @tableMessages
 WHERE message_type_name = 'DEFAULT'
 ORDER BY queuing_order;

 COMMIT;

 DELETE FROM @tableMessages;
 END
END
GO

8423ch06.fm Page 214 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/Datagram

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 215

Take a detailed look at this stored procedure. You can see that the received messages are also
stored in a table variable. The difference is that the content of the table variable now is directly
shredded into the AuditingTrail table through the new methods of the XML data type:

;WITH XMLNAMESPACES (DEFAULT 'http://ssb.csharp.at/SSB_Book/c06/Datagram')
INSERT INTO AuditingTrail
(
 Date,
 Payload,
 [User],
 OriginalXML
)
SELECT
 payload.value('(/Datagram/@date-time)[1]', 'DATETIME'),
 payload.value('(/Datagram/@payload)[1]', 'NVARCHAR(MAX)'),
 payload.value('(/Datagram/@user)[1]', 'NVARCHAR(256)'),
 payload
FROM @tableMessages
WHERE message_type_name = 'DEFAULT'
ORDER BY queuing_order;

When you’ve created the AuditingTrail table and the RowsetReceive stored procedure, you
can again do a performance measurement on top of this infrastructure. Listing 6-49 shows the
code for this.

Listing 6-49. Performance Measurement with Set-Based Message Processing

DECLARE @xmlPayload XML;
DECLARE @payload VARBINARY(MAX);

;WITH XMLNAMESPACES (DEFAULT 'http://ssb.csharp.at/SSB_Book/c06/Datagram')
SELECT @xmlPayload = (SELECT
 GETDATE() AS [@date-time],
 SUSER_SNAME() AS [@user],
 'Some auditing data' AS [@payload]
FOR XML PATH('Datagram'), TYPE);

SELECT @payload = CAST(@xmlPayload AS VARBINARY(MAX));
EXEC PreloadQueue 100, 100, @payload;
GO

DECLARE @messageCount FLOAT;
DECLARE @startTime DATETIME;
DECLARE @endTime DATETIME;

SELECT @endTime = GETDATE();

SELECT
 @startTime AS [Start],
 @endTime AS [End],
 @messageCount AS [Count],
 DATEDIFF(second, @startTime, @endTime) AS [Duration],
 @messageCount / DATEDIFF(millsecond, @startTime, @endTime) * 1000 AS [Rate];
GO

8423ch06.fm Page 215 Friday, April 6, 2007 11:57 AM

http://ssb.csharp.at/SSB_Book/c06/Datagram
http://ssb.csharp.at/SSB_Book/c06/Datagram

216 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

As you can see from Listing 6-49, you use the FOR XML PATH clause to produce the required XML
that the RowsetReceive stored procedure processes. Figure 6-19 shows the results of this processing
technique.

Figure 6-19. Measurements for set-based messaging processing

Great, isn’t it? You’ve now achieved a message throughput of about 1,750 messages per second.
When you compare this with the previous results shown in Figure 6-17, this is a performance improve-
ment of 100%. Now give me one last chance, and I’ll try to overbid this result.

Binary Payload
You may like XML, but at the end of the day, XML is text. How much could you improve performance
by moving to a binary payload for the audit records? Doing binary marshaling and unmarshaling in
T-SQL code isn’t for the faint of heart, but it’s not only for the bravest. You need to create two stored
functions: one that marshals the audit data into a binary blob and one that unmarshals the original
data out of a blob. Listing 6-50 shows these two stored functions.

Listing 6-50. Marshaling and Unmarshaling Binary Data

CREATE FUNCTION BinaryMarshalPayload
(
 @DateTime DATETIME,
 @Payload VARBINARY(MAX),
 @User NVARCHAR(256)
)
RETURNS VARBINARY(MAX)
AS
BEGIN
 DECLARE @marshaledPayload VARBINARY(MAX);
 DECLARE @payloadLength BIGINT;
 DECLARE @userLength INT;

 SELECT @payloadLength = LEN(@Payload);
 SELECT @userLength = LEN(@User) * 2;

 SELECT @marshaledPayload =
 CAST(@DateTime AS VARBINARY(MAX)) +
 CAST(@payloadLength AS VARBINARY(MAX)) +
 @payload +
 CAST(@userLength AS VARBINARY(MAX)) +
 CAST(@User AS VARBINARY(MAX));

 RETURN @marshaledPayload;
END
GO

8423ch06.fm Page 216 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 217

CREATE FUNCTION BinaryUnmarshalPayload
(
 @MessageBody VARBINARY(MAX)
)
RETURNS @UnmarshaledBody TABLE
(
 [DateTime] DATETIME,
 [Payload] VARBINARY(MAX),
 [User] NVARCHAR(256)
)
AS
BEGIN
 DECLARE @dateTime DATETIME;
 DECLARE @user NVARCHAR(256);
 DECLARE @userLength INT;
 DECLARE @payload VARBINARY(MAX);
 DECLARE @payloadLength BIGINT;

 SELECT @dateTime = CAST(SUBSTRING(@MessageBody, 1, 8) AS DATETIME);
 SELECT @payloadLength = CAST(SUBSTRING(@MessageBody, 9, 8) AS BIGINT);
 SELECT @payload = SUBSTRING(@MessageBody, 17, @payloadLength);
 SELECT @userLength = CAST(SUBSTRING(@MessageBody, @payloadLength + 17, 4)
 AS INT);
 SELECT @user = CAST(SUBSTRING(@MessageBody, @payloadLength + 21, @userLength)
 AS NVARCHAR(256));

 INSERT INTO @UnmarshaledBody
 VALUES (@datetime, @payload, @user);

 RETURN;
END
GO

The first stored function, BinaryMarshalPayload, makes one VARBINARY(MAX) from the given
arguments and also stores the length of the payload and of the user inside the marshaled data. The
second stored function, BinaryUnmarshalPayload, returns a table that includes the unmarshaled val-
ues from the given VARBINARY(MAX) parameter. With these two stored functions, you can now write a
stored procedure that retrieves the marshaled messages from TargetQueue and processes them (see
Listing 6-51).

Listing 6-51. Processing Marshaled Messages

CREATE TABLE PayloadData
(
 [Id] INT NOT NULL IDENTITY(1, 1),
 [DateTime] DATETIME,
 [Payload] NVARCHAR(MAX),
 [User] NVARCHAR(256)
)
GO

8423ch06.fm Page 217 Friday, April 6, 2007 11:57 AM

218 C H A P T E R 6 ■ LO C K I N G A N D T R A N S A C T I O N M A N A G E M E N T

CREATE PROCEDURE RowsetBinaryDatagram
AS
BEGIN
 DECLARE @tableMessages TABLE
 (
 queuing_order BIGINT,
 conversation_handle UNIQUEIDENTIFIER,
 message_type_name SYSNAME,
 message_body VARBINARY(MAX)
);

 WHILE (1 = 1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR (
 RECEIVE
 queuing_order,
 conversation_handle,
 message_type_name,
 message_body
 FROM TargetQueue INTO @tableMessages
), TIMEOUT 1000;

 IF (@@ROWCOUNT = 0)
 BEGIN
 COMMIT;
 BREAK;
 END

 INSERT INTO PayloadData ([DateTime], [Payload], [User])
 SELECT [DateTime], [Payload], [User] FROM @tableMessages
 CROSS APPLY BinaryUnmarshalPayload(message_body)
 WHERE message_type_name = 'DEFAULT';

 COMMIT;

 DELETE FROM @tableMessages;
 END
END
GO

The stored procedure in Listing 6-51 uses the CROSS APPLY operator to unmarshal the binary
message data and inserts the retrieved data in the PayloadData table. Figure 6-20 shows the result of
the execution of this stored procedure.

8423ch06.fm Page 218 Friday, April 6, 2007 11:57 AM

C H A P T E R 6 ■ L O C K I N G A N D T R A N S A C T I O N M A N A G E M E N T 219

Figure 6-20. Measurements for processing a binary message payload

You’ve now outperformed the last stored procedure by 70%! Think back to Listing 6-42, where
you processed each message separately in a transaction and had a message throughput of 400 mes-
sages per second. Compared to this, the new result shows a performance benefit of 750%!

This means that you can theoretically process around 3,000 messages per second on a really
low-end machine similar to my notebook. Now imagine that you do your message processing on
an HP Superdome . . . The actual results you get in your application may differ from these results,
because you must always include the message-processing logic itself, which could sometimes be the
more time-consuming task. Figure 6-21 shows the results of these performance tests compared to
each other.

Figure 6-21. Service Broker performance statistics

Summary
This chapter featured two big logical sections. The first section covered Service Broker’s locking sup-
port: conversation group locking. With this kind of lock, you can ensure that messages on the same
conversation group are processed sequentially and in the correct message order.

The second section took a closer look at several message-processing technologies and their
potential performance advantages. In the next chapter, you’ll learn how to distribute Service Broker
applications. Stay tuned.

8423ch06.fm Page 219 Friday, April 6, 2007 11:57 AM

8423ch06.fm Page 220 Friday, April 6, 2007 11:57 AM

221

■ ■ ■

C H A P T E R 7

Distributed Service Broker
Applications

One big advantage of Service Broker is that it easily lets you distribute Service Broker applications
to different physical machines without any service implementation changes. In this chapter, I’ll give
you a general overview of distributed Service Broker applications and how they are created. This
chapter will cover the following topics:

• Communication: Service Broker uses standard Transmission Control Protocol (TCP)
connections for the communication between distributed Service Broker services. The
communication protocol—the adjacent broker protocol (ABP)—is a proprietary protocol
optimized for the efficient and reliable delivery of dialog messages.

• Routing: A Service Broker route maps a service name to a destination network address
where the Service Broker service is deployed. Therefore, you can easily change the deploy-
ment topology of your Service Broker services.

• Distributed applications: You can easily distribute a Service Broker application. You simply
have to deploy the Service Broker services on different machines and set up the security con-
figuration and the routing information.

Communication
So far, each of the services has run in the same SQL Server instance. That’s ideal during develop-
ment, but in production, Service Broker services are typically spread across several SQL Server
instances. For Service Broker applications, it doesn’t matter whether a remote service is located on
the same SQL Server instance, on an instance on the same computer, or on an instance on another
computer connected through a local area network (LAN) or a wide area network (WAN).

Service Broker uses standard Transmission Control Protocol/Internet Protocol (TCP/IP) con-
nections to send messages between SQL Server instances. Like many reliable messaging systems,
the Service Broker communication protocol (the ABP) is a proprietary protocol optimized for the
efficient, reliable delivery of dialog messages. The communication system architecture makes it easy
to support other communication protocols, so it’s likely that future releases of Service Broker will
support web services protocols.

In order for a remote system to open a TCP/IP connection to Service Broker, the Service
Broker service must be listening on a TCP/IP port for incoming connections and requests. This
port is configured through the creation of an endpoint object in SQL Server 2005. SQL Server 2005
uses endpoints to configure all incoming connection points, including T-SQL, Service Broker,
database mirroring, and HTTP.

8423ch07.fm Page 221 Monday, April 9, 2007 7:31 PM

222 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Service Broker Protocols
Multiple protocols are involved in a Service Broker conversation. At the high level, there is the dialog
protocol (also called the endpoint protocol), which handles the exchange of messages between two
dialog endpoints. This protocol manages message ordering, reliable delivery, dialog-level authenti-
cation, encryption, and dialog lifetime. Often hundreds of dialogs are opened between two Service
Broker services (just remember the order service from the last chapter), even though only a few of
these are sending or receiving messages at any given moment.

The lower-level protocol is the ABP, which manages the TCP/IP connections between two
Service Brokers. An ABP connection multiplexes messages from many dialogs over a single TCP/IP
connection. As you’ll see in Chapter 11, when we discuss forwarding services, a message between
two dialog endpoints can traverse several adjacent broker connections as it is routed to its final des-
tination, the target service.

One way to understand the difference between the two protocols is to think about the way the
telephone network works. At the high level, you make a phone call from your phone to another
phone. You and the other endpoint then carry on a conversation. At the low level, hundreds or even
thousands of these conversations travel over a single wire or fiber. In the same way, many Service
Broker conversations can be multiplexed over a single TCP/IP connection between two SQL Server
instances.

Sending a Message
This section follows a message from a sending application to a receiving application on another SQL
Server instance. The journey starts when the sending application issues a SEND command. As soon as
the local SQL Server transaction commits, Service Broker tries to send the message asynchronously
in the background to the specified destination. To handle this task, Service Broker uses a concept
referred to as routes. A route specifies on which network address a Service Broker service is available.

Because of this abstraction, you always have to specify the TO SERVICE parameter in the BEGIN
DIALOG T-SQL statement as a string literal. This string literal is used to find a route to the target service.
A component referred to as classifier does this lookup inside Service Broker. The logic of the classifier
component uses the information in the sys.conversation_endpoints and the sys.routes catalog views
to determine what to do with the message. If the destination for this message is a queue in the same
SQL Server instance as the source, and if the queue is ready to receive messages, the message is
inserted into the destination queue; otherwise, it is inserted into the sys.transmission_queue of the

WCF CHANNEL FOR SERVICE BROKER

Even before SQL Server 2005 was finally released, Microsoft played around with and implemented a Windows
Communication Foundation (WCF) channel for Service Broker. This channel was shown at Microsoft’s Professional
Developers Conference (PDC) 2005 in Los Angeles. Unfortunately, the WCF channel wasn’t released with SQL Server
2005 and won’t be part of a future SQL Server service pack or add-on.

The purpose of this demo was to prove that it is possible to write a WCF channel that directly supports Service
Broker. Maybe a WCF channel will be available in the next version of SQL Server. Such a channel won’t be a queued
channel, such as the MSMQ channel available in WCF. It will be a reliable, full-duplex session channel, similar to a
TCP channel, but with much stronger reliability and availability semantics.

8423ch07.fm Page 222 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 223

sending database. If the RETENTION option is set on the queue of the sending side, then the message is
also copied to the sending queue.

If the destination is a local queue, you’re done with the send when the transaction commits. Other-
wise, the message is committed into the sys.transmission_queue. A reference to the message is stored on
an instance-wide list of messages to be sent. This global list ensures fairness in message dispatching
across all the databases in the SQL Server instance. The message-sending order is independent of which
transmission queue the messages come from.

Dialog messages routed to the same destination network address are assembled into transport
messages to be sent over an adjacent broker connection to the remote Service Broker. For efficiency,
Service Broker sends multiple dialog message fragments with each socket call when possible. This is
referred to as boxcarring. Before each message is sent, it is signed to prevent alterations in the trans-
mission and is optionally encrypted.

Service Broker also fragments large messages. This keeps a single large message from tying up
all the available bandwidth for the amount of time it takes to transfer the contents to the network.
Fragmentation allows messages from other dialogs to be interleaved with fragments of a large mes-
sage. If an adjacent broker connection is open to the remote destination, the assembled boxcar is
sent. If no connection is available, a connection is opened and authenticated. While the adjacent
broker logic is waiting for the send to complete, another boxcar is assembled. This means an adja-
cent broker connection can effectively use all the bandwidth available. For this reason, only one
connection is maintained between any two adjacent brokers.

Opening an adjacent broker connection can be relatively expensive, because several messages
are exchanged to create and authenticate the connection. For this reason, adjacent broker connec-
tions are kept open for up to 90 seconds of idle time. As long as there is never a gap of more than
90 seconds between messages, the connection will stay open. When the message is received at the
destination, Service Broker checks the signature and decrypts the message if necessary. The classi-
fier component is called again to determine which queue the message should be inserted into. The
sys.routes table in the msdb database is used for messages arriving from the network. If the message
is bound for a queue in this instance, Service Broker inserts it into that queue. To maximize effi-
ciency, several inserts are grouped into a single transaction if more messages are available.

Once the received message is successfully inserted into the queue, an acknowledgment mes-
sage is sent back to the sender of the original message. The acknowledgment message can either be
included in the header of another message that is returning on the same dialog, or it can be a sepa-
rate message. An acknowledgment message can accept several different messages or message
fragments with a single message. To maximize the possibility that the acknowledgment message will
be returned as part of a normal dialog message and that it will acknowledge more than one message
or fragment, the Service Broker receive logic waits for up to a second before acknowledging the cur-
rent received message. This delay doesn’t increase latency, because the message has already been
successfully delivered to the target of the conversation. The delay just means the message will stay
on the transmission queue at the sender’s side a while longer than normal.

When the sender receives the acknowledgment message, the message status is marked as suc-
cessfully sent, and the message is deleted from the sys.transmission_queue. If the adjacent broker
logic has problems either sending the message or opening a connection to the remote Service
Broker, the last_transmission_error column of the sys.transmission_queue will contain informa-
tion about the error.

If an acknowledgment message for a message or fragment isn’t received within the retry time-
out, the message is sent again. The retry timeout starts at 4 seconds and doubles after each retry until
it reaches a maximum of 64 seconds. After this maximum of 64 seconds, the message is resent again

8423ch07.fm Page 223 Monday, April 9, 2007 7:31 PM

224 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

once every 64 seconds. This means that messages are not retried too often if the sends fail multiple
times. It also means that when the destination server comes back online after a failure, it can take up
to a minute for some of the messages to be resent. Messages that arrive at the destination in a bad
state—that is, corrupted, incomplete, or with invalid signatures—are dropped by the destination
and resent by the sender. You can use SQL Trace events available in the Broker events to find out
why messages are dropped at the destination. Please refer to Chapter 12 for more information about
this. If Service Broker drops a message, it won’t return an error back to the original sender. Monitor-
ing the dropped message trace is the only way to find out that messages are being dropped at the
target of a conversation.

Routing
A Service Broker route maps a service name to a destination network address where messages to that
service should be sent. As the previous section already mentioned, the classifier component of
Service Broker uses this routing information to decide what to do with sent messages. All in all, four
routes are involved in successfully delivering a message to its destination network address:

• A route from the local sys.routes table (ssb_db database, SQL Server A) to the destination
network address

• A route from the remote msdb database to the correct database

• A route from the remote sys.routes table (ssb_db database, SQL Server B) back to the initi-
ator’s network address

• A route from the local msdb database to the correct database

Figure 7-1 illustrates this concept.

Figure 7-1. The four routes involved in a distributed Service Broker scenario

8423ch07.fm Page 224 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 225

Let’s have a look at each of these four routes. The first route (route #1 in Figure 7-1) is set up in
the initiator’s database and stores the network address of the remote Service Broker service. As soon
as the SEND T-SQL command executes, the necessary route is picked up from the sys.routes table to
determine where to send the message.

When the message arrives at the destination SQL Server instance, Service Broker uses a route
from the sys.routes table in the msdb database to determine which database will receive the mes-
sage. This is route #2 in Figure 7-1. This step is necessary because the same service may be defined
in more than one database in the destination SQL Server instance. Once the message has been suc-
cessfully committed in the proper queue in the destination database, an acknowledgment message
is sent back to the sender, either as part of the header of another dialog message or as a separate
message.

A route from the sys.routes table is used to determine where to send the acknowledgment
message. This is route #3 in Figure 7-1. This is an important concept to understand. One of the most
common configuration issues with distributed Service Broker scenarios is forgetting this return
route back to the initiator of the conversation. If you forget the return route, messages will be deliv-
ered successfully to the destination queue, but they will never be acknowledged. Messages stay in
the sys.transmission_queue on the sender’s side and are resent periodically forever (or until some-
one adds the correct return route at the destination). If you notice successfully delivered messages
still sitting in the sys.transmission_queue, or if you run SQL Profiler on the destination server and
see a bunch of messages being dropped because of duplicates, check the route back to the sender’s
service in the destination database.

When the acknowledgment message arrives at the sender’s SQL Server instance, Service Broker
uses a route in the msdb database to route the message to the correct sending service queue in the
sending database. This is route #4 in Figure 7-1.

These same four routes are used whether the message is sent from the initiator of the dialog
to the target or from the target to the initiator. This explanation assumes that the sender and the
receiver make a direct connection between Service Broker endpoints. In some cases, a message may
be routed through multiple Service Broker instances to reach its destination. You can read more
about forwarding in Chapter 11, where I talk about scale-out scenarios with Service Broker.

You might be wondering, why does the target need a return route back to the initiator? Doesn’t
the target know where the message comes from? Also, why is the routing information used for each
message? Once the first message is sent successfully, why not just keep track of the addresses in
the dialog endpoint? In answer to these questions, dialogs can last for days, months, or even years,
so there’s a good chance that the addresses may change in the life of a conversation between two
Service Broker services. Checking the route for every message ensures that messages are getting
delivered to a new destination as soon as the routing configuration is changed.

Routing Algorithm
When the Service Broker classifier tries to find a route for a Service Broker service, it uses a routing
algorithm. The following procedure describes how the classifier matches routes. At each step, if one

8423ch07.fm Page 225 Monday, April 9, 2007 7:31 PM

226 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

or more routes match, the matching process will ends, and the classifier will choose one of the
matching routes as described:

1. If the conversation specifies a Service Broker identifier, the classifier will try to find a route
with an exact match for both the service name and the Service Broker identifier.

2. If a route isn’t found, the classifier will try to find an exact match for the service name among
the routes that don’t specify a Service Broker identifier.

3. If the conversation doesn’t specify a Service Broker identifier, the classifier will try to find an
exact match for the service name among the routes that specify a Service Broker identifier. If
the routing table contains routes that match the service name and have different Service
Broker identifiers assigned, the classifier will randomly pick a route from among these
routes. This is referred to as load balancing. Please refer to Chapter 11 for more information
about this topic.

4. The classifier tries to find a route that doesn’t specify either the service name or the Service
Broker identifier.

5. If the conversation specifies a Service Broker identifier, and if the SQL Server instance con-
tains one or more databases that contain Service Broker services with service names that
match the name specified in the conversation, the message will be routed as though the
routing table, which contains a route with the service name and the network address LOCAL.

6. If the classifier can’t find a route, the conversation will be marked as DELAYED in
sys.transmission_queue. When a conversation is marked as DELAYED, Service Broker
performs the matching process again after a time-out period. Notice that failure to
find a matching route is not considered an error.

Managing Routes
Service Broker routes are SQL Server metadata objects created with the DDL statement CREATE
ROUTE. Listing 7-1 shows the syntax for this T-SQL statement.

Listing 7-1. The CREATE ROUTE T-SQL Statement

CREATE ROUTE route_name
[AUTHORIZATION owner_name]
WITH
 [SERVICE_NAME = 'service_name']
 [BROKER_INSTANCE = 'broker_instance_identifier']
 [LIFETIME route_lifetime]
 ADDRESS = 'next_hop_address'
 [, MIRROR_ADDRESS = 'next_hop_mirror_address']

Table 7-1 describes the several parameters for this T-SQL statement.

8423ch07.fm Page 226 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 227

Table 7-1. Parameters for the CREATE ROUTE T-SQL Statement

Parameter Description

route_name The name of the route to create in the current database and
owned by the principal specified in the AUTHORIZATION clause.
It must be a valid SYSNAME, and you cannot specify server, data-
base, or schema names.

owner_name The owner of the route. The default is the current user. It may be
the name of any valid user or role if the current user is a member
of the DB_OWNER fixed database role or a member of the SYSADMIN
fixed server role. Otherwise, it must be the name of the current
user, of a user that the current user has to impersonate permis-
sions for, or of a role to which the current user belongs.

service_name Sets the name of the remote Service Broker service that is addressed
by this route. The comparison of the service_name is case-sensitive
and doesn’t use the current collation. If service_name isn’t speci-
fied, the route matches any service name. It then has a lower priority
in the matching process than a route that has a service_name
specified.

broker_instance_identifier Sets the Service Broker Globally Unique Identifier (GUID) of the
database that hosts the target service specified in service_name.
When broker_instance_identifier isn’t specified, the created
route matches any broker instance at the remote network
address. A route without the broker_instance_identifier speci-
fied has a higher priority in the matching process than a route
where the broker_instance_identifier is specified. For conversa-
tions where the broker_instance_identifier is specified, the route
has a higher priority than a route that hasn’t specified the
broker_instance_identifier.

route_lifetime Indicates the time (in seconds) of how long the route is stored in
the routing table. After this time-out period, the route expires,
and the classifier component doesn’t consider this route when
determining a route for a Service Broker service. If route_lifetime
isn’t specified, it is set to NULL and the route never expires.

next_hop_address Specifies the network address used by this route. It must be a
valid TCP address in the following format: TCP://{dns_name |
netbios_name | ip_address}:port_number. Please make sure that
the port number matches the port number of the Service Broker
endpoint created at the specified network address.

next_hop_mirror_address Specifies the network address for a mirrored database where one
mirrored database is hosted at the specified network address. It
must also be a valid TCP address with the format as described by
the next_hop_address.

8423ch07.fm Page 227 Monday, April 9, 2007 7:31 PM

228 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Listing 7-2 shows how you can set up a route with the CREATE ROUTE statement.

Listing 7-2. Creating a Route

CREATE ROUTE TargetServiceRoute
 WITH SERVICE_NAME = 'TargetService',
 ADDRESS = 'TCP://targetserver:4743'

The name of the route has no special meaning, because you only use the route name when you
want to ALTER or DROP a route through the T-SQL commands ALTER ROUTE and DROP ROUTE. Listing 7-3
shows how you can alter and finally drop a route from a SQL Server database.

Listing 7-3. Altering and Deleting a Route

ALTER ROUTE TargetServiceRoute
 WITH SERVICE_NAME = 'TargetService',
 ADDRESS = 'TCP://new_targetserver:4743'
GO

DROP ROUTE TargetServiceRoute
GO

Distributed Applications
This section will show you how you can create a distributed application based on Service Broker. As
I’ve already mentioned, it’s normal that Service Broker applications in the first step are developed on
a single SQL Server instance and then installed on several SQL Servers through the deployment pro-
cess. Service Broker makes the physical distribution of your Service Broker services completely
transparent from your service implementation code through the use of routes.

With routes, you can easily define where each Service Broker service is deployed and running.
You don’t have to make any changes to your service implementation, even when you want to scale
out your Service Broker solution to thousands of concurrent users. This is an important point to
understand in the Service Broker programming paradigm. For example, let’s say you have to scale
out an MSMQ messaging application that was developed on a single machine to support several
thousand users. Here you have to change the whole implementation so that you can scale it out to
handle the user load. With Service Broker, it’s just a configuration issue—nothing more. Let’s now
take a look at the application as it was developed on a single SQL Server instance.

The Application
In this section, I want to show you how to deploy the different services of the Service Broker applica-
tion you developed in Chapter 6 to several SQL Server instances and scale it out to any required size.
I’ll describe how to distribute CreditCardService and AccountingService to different SQL Server
instances.

8423ch07.fm Page 228 Monday, April 9, 2007 7:31 PM

TCP://targetserver:4743
TCP://new_targetserver:4743

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 229

Setting Up Routes
Let’s begin in the first step with the setup of the necessary routes. Looking ahead to Figure 7-2, you can
see that CreditCardService and AccountingService are running on different SQL Server machines.
Therefore, you need routes to these services and from these services back to the OrderService. As you
know, four routes are involved when setting up a route to another Service Broker service and back. To
simplify this sample, you don’t have to create routes from the msdb database to the correct application
database, because the four Service Broker services are defined only once in each SQL Server instance
(SQL Server B and SQL Server C).

Because of this simplification, you have to define the following four routes:

• A route from the local sys.routes table (named CreditCardServiceRoute) to the destination
network address of SQL Server B

• A route from the local sys.routes table (named AccountingServiceRoute) to the destination
network address of SQL Server C

• A route from the sys.routes table (named OrderServiceRoute) on SQL Server B back to the
network address of SQL Server A

• A route from the sys.routes table (named OrderServiceRoute) on SQL Server C back to the
network address of SQL Server A

SECURITY IN SERVICE BROKER

When you distribute a Service Broker application to several SQL Server instances, you need to do a lot more than just
setting up and configuring the necessary routes. After you configure the different routes successfully, you also have
to pay attention to security. Service Broker supports several kinds of security, and you must enable a minimum secu-
rity set (the transport security) to allow distributed Service Broker applications to communicate with each other.

In this chapter, I’ll show you only the basics of Service Broker security that you need to successfully set up and
deploy the distributed Service Broker application. The next chapter gives more detailed information on the different
kinds of security models that Service Broker supports.

MSDB ROUTES

You don’t have to specify routes from the msdb database to the application database, because there is always a route
named AutoCreatedLocal that is created as soon as SQL Server is installed. This route always routes your Service
Broker messages to the correct service on that SQL Server instance as long as each Service Broker service is only
deployed once in this SQL Server instance. Otherwise, Service Broker will randomly pick one of the available target
services from this database. Refer to Chapter 11 for more information on this scale-out topic.

When you move your Service Broker application into production, it’s always a good idea to delete the
AutoCreatedLocal route and add a more specific route to the msdb database. Therefore, you can exactly
ensure that messages are only traveling to the services you’ve explicitly defined through routes.

8423ch07.fm Page 229 Monday, April 9, 2007 7:31 PM

230 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Figure 7-2 shows the direction of each route for the message flow.

Figure 7-2. The four necessary routes for the distributed application

For this sample, you can assume that the various Service Broker services are deployed on the
following computers:

• OrderService: NetBIOS name OrderServiceInstance

• CreditCardService: NetBIOS name CreditCardServiceInstance

• AccountingService: NetBIOS name AccountingServiceInstance

Listing 7-4 shows how you can assign a different NetBIOS name to your computer.

Listing 7-4. Assigning Different NetBIOS Names to a Computer

192.168.0.200 OrderServiceInstance
192.168.0.201 CreditCardServiceInstance
192.168.0.202 AccountingServiceInstance

DYNAMIC NETBIOS NAMES

It’s very unlikely that your SQL Servers where you run this sample have the same NetBIOS names as used in the
demo scripts for this distributed Service Broker sample. However, you can assign different NetBIOS names (aliases)
to your computers so that you don’t have to change the network addresses in the CREATE ROUTE T-SQL statement.
In reality, my computers at home also have different NetBIOS names, so I’ve also assigned aliases to them to make
the understanding of this sample a little bit clearer.

You can assign different NetBIOS names to a computer through a file called hosts. This file is located in the
folder %systemroot%\system32\drivers\etc. In this file, you can assign different NetBIOS names to a com-
puter. Refer to Listing 7-4 for a simple sample on this topic. When you’re done with editing this file, just save it and
make a ping to the new assigned NetBIOS name to verify your configured settings.

8423ch07.fm Page 230 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 231

Before you create all the necessary routes between the several Service Broker services, you
have to create on both new SQL Server instances the corresponding application databases that
host the implementation of the CreditCardService and the AccountingService. Therefore, you
have to deploy all needed tables and stored procedures for each Service Broker service. You
also must deploy the message types and the contracts that are used between OrderService and
CreditCardService/AccountingService into the application database. This is understandable,
because the message types and the contracts form the communication protocol shared between
OrderService and CreditCardService/AccountingService. Table 7-2 shows the SQL Server objects
that you must deploy on the CreditCardServiceInstance machine where CreditCardService runs.

Table 7-2. SQL Server Objects for the CreditCardServiceInstance Machine

Table 7-3 shows the SQL Server objects you have to create on the AccountingServiceInstance
machine.

Table 7-3. SQL Server Objects for the AccountingServiceInstance Machine

Listing 7-5 shows the creation of the routes from OrderService to CreditCardService and
AccountingService. You must run this T-SQL script on the SQL Server instance where OrderService
is deployed (OrderServiceInstance).

Object Type Name

Message type [http://ssb.csharp.at/SSB_Book/c07/CreditCardRequestMessage]

Message type [http://ssb.csharp.at/SSB_Book/c07/CreditCardResponseMessage]

Contract [http://ssb.csharp.at/SSB_Book/c07/CreditCardContract]

Queue CreditCardQueue

Service CreditCardService

Table CreditCardTransactions

Stored procedure ProcessCreditCardRequestMessages

Object Type Name

Message type [http://ssb.csharp.at/SSB_Book/c07/AccountingRequestMessage]

Message type [http://ssb.csharp.at/SSB_Book/c07/AccountingResponseMessage]

Contract [http://ssb.csharp.at/SSB_Book/c07/AccountingContract]

Queue AccountingQueue

Service AccountingService

Table AccountingRecordings

Stored procedure ProcessAccountingRequestMessages

8423ch07.fm Page 231 Monday, April 9, 2007 7:31 PM

http://ssb.csharp.at/SSB_Book/c07/CreditCardRequestMessage
http://ssb.csharp.at/SSB_Book/c07/CreditCardResponseMessage
http://ssb.csharp.at/SSB_Book/c07/CreditCardContract
http://ssb.csharp.at/SSB_Book/c07/AccountingRequestMessage
http://ssb.csharp.at/SSB_Book/c07/AccountingResponseMessage
http://ssb.csharp.at/SSB_Book/c07/AccountingContract

232 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Listing 7-5. Setting Up the Routes from the OrderService to the Other Services

CREATE ROUTE CreditCardServiceRoute
 WITH SERVICE_NAME = 'CreditCardService',
 ADDRESS = 'TCP://CreditCardServiceInstance:4741'
GO

CREATE ROUTE AccountingServiceRoute
 WITH SERVICE_NAME = 'AccountingService',
 ADDRESS = 'TCP://AccountingServiceInstance:4742'
GO

Listing 7-6 shows the creation of the returning route from the CreditCardService and the
AccountingService back to the OrderService. You must create this route both on the
CreditCardServiceInstance and AccountingServiceInstance.

Listing 7-6. Setting Up the Route from the CreditCardService and from the AccountingService to the
OrderService

CREATE ROUTE OrderServiceRoute
 WITH SERVICE_NAME = 'OrderService',
 ADDRESS = 'TCP://OrderServiceInstance:4740'
GO

Establishing a Communication Channel
You’ve now created all the necessary routes between the Service Broker services that are deployed
on different physical machines. However, if you try to send a message, it won’t work. There are two
important reasons why:

• You haven’t yet configured the needed Service Broker endpoints.

• You haven’t yet set up security between the different deployed Service Broker services.

In this section, I’ll show you how you can create the Service Broker endpoints needed for the com-
munication in this distributed Service Broker sample. As mentioned at the beginning of this chapter,
Service Broker uses TCP/IP. A TCP/IP connection is able to multiplex several dialogs over a single con-
nection. In Listings 7-5 and 7-6, you saw that each network address in the CREATE ROUTE statement also
consists of a port number. This is the port number where the other Service Broker endpoint is listening
for incoming TCP/IP connections from other Service Broker services. For the sample application, you
need three different endpoints. You need to deploy each endpoint at each of the three SQL Server
instances (OrderServiceInstance, CreditCardServiceInstance, and AccountingServiceInstance):

• OrderServiceEndpoint listening on port 4740

• CreditCardServiceEndpoint listening on port 4741

• AccountingServiceEndpoint listening on port 4742

8423ch07.fm Page 232 Monday, April 9, 2007 7:31 PM

TCP://CreditCardServiceInstance:4741
TCP://AccountingServiceInstance:4742
TCP://OrderServiceInstance:4740

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 233

SQL Server 2005 offers the T-SQL statement CREATE ENDPOINT for the creation of a new endpoint
inside the current SQL Server instance. Listing 7-7 shows the syntax for this T-SQL statement. This
listing only includes the relevant options for Service Broker, because endpoints are also used for web
services support and for database mirroring.

Listing 7-7. Syntax for the CREATE ENDPOINT T-SQL Statement

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS TCP
(
 LISTENER_PORT = listenerPort
)
FOR SERVICE_BROKER
(
 [AUTHENTICATION = { WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 | CERTIFICATE certificate_name
 | WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name
 | CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] }]
 [, ENCRYPTION = { DISABLED | SUPPORTED | REQUIRED }
 [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }]]
 [, MESSAGE_FORWARDING = { ENABLED | DISABLED }]
 [, MESSAGE_FORWARDING_SIZE = forward_size]
)

Table 7-4 describes the several parameters for the CREATE ENDPOINT T-SQL statement.

Table 7-4. Parameters for the CREATE ENDPOINT T-SQL Statement

SERVICE BROKER ENDPOINTS

Currently, SQL Server 2005 only supports one Service Broker endpoint per instance. If you host multiple Service
Broker services on one SQL Server instance, they will all share the same endpoint with the same port number. In
such a case, you should choose a more generic name for the endpoint that doesn’t have a naming relationship with
a Service Broker service, such as in this case.

Parameter Description

endPointName The name assigned to the endpoint and used during updating and
deleting.

AUTHORIZATION login Must be a valid SQL Server or Windows login that is assigned to
the created endpoint. If the AUTHORIZATION clause isn’t specified, the
caller of the CREATE ENDPOINT statement becomes the owner of the
created endpoint.

Continued

8423ch07.fm Page 233 Monday, April 9, 2007 7:31 PM

234 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Table 7-4. Continued

Listing 7-8 creates the various endpoints used for the communication between the different
Service Broker services. You have to create each endpoint on the correct machine.

Listing 7-8. Setting Up the Needed Endpoints for the Service Broker Communication

-- Create this endpoint on the machine OrderServiceInstance
CREATE ENDPOINT OrderServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4740
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = WINDOWS
)
GO

-- Create this endpoint on the machine CreditCardServiceInstance
CREATE ENDPOINT CreditCardServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4741
)
FOR SERVICE_BROKER

Parameter Description

STATE Specifies the state of the endpoint when it is created. When the
state isn’t specified, the endpoint’s state is set to STOPPED, which
means the endpoint isn’t started and is therefore unavailable for
other clients.

LISTENER_PORT The endpoint uses the specified port listening for incoming TCP/IP
Service Broker connections. If not specified, the default port num-
ber is 4022.

AUTHENTICATION With this clause, you set the TCP/IP authentication requirements for
the incoming Service Broker connection. The default authentication is
WINDOWS. Service Broker supports the authentication methods NTLM or
Kerberos, or both.

ENCRYPTION Indicates if encryption is used or not.

MESSAGE_FORWARDING Indicates if message forwarding is enabled on this endpoint. Please
refer to Chapter 11 for more information about message forwarding.

MESSAGE_FORWARDING_SIZE If message forwarding is enabled, MESSAGE_FORWARDING_SIZE speci-
fies the amount of storage (in MB) that is allocated for the message
forwarding endpoint in the RAM.

8423ch07.fm Page 234 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 235

(
 AUTHENTICATION = WINDOWS
)
GO

-- Create this endpoint on the machine AccountingServiceInstance
CREATE ENDPOINT AccountingServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4742
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = WINDOWS
)
GO

As you can see in Listing 7-8, each endpoint is created for the TCP protocol. This is a restric-
tion of Service Broker, because Service Broker currently supports only TCP connections. The next
version of Service Broker may offer more available protocols. After you set up the endpoints, you
must also make sure that SQL Server allows incoming connections for the SQL Server instance.

When you create a new SQL Server instance, incoming connections from other machines are
prohibited and must be enabled explicitly with the SQL Server Surface Area Configuration utility.
You can find this utility in the Configuration Tools folder inside the Microsoft SQL Server 2005 folder
of the Start menu. Figure 7-3 shows this utility and the option that you must enable to accept other
incoming connections for this SQL Server instance.

Figure 7-3. Allowing remote connections through the Surface Area Configuration utility

8423ch07.fm Page 235 Monday, April 9, 2007 7:31 PM

236 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Setting Up Security
After configuring the endpoints, you must set up security between the distributed Service Broker
services. By default, Service Broker doesn’t allow two Service Broker services to communicate with-
out configured security. This is a server-hardening feature provided by Service Broker, so you can
ensure that only allowed services can talk to a deployed Service Broker service on your production
machine. When talking about security in Service Broker, you must differentiate between two differ-
ent security modes:

• Transport security

• Dialog security

Service Broker uses transport security to secure the TCP/IP connection between two Service
Brokers that are connected through a network. Dialog security, on the other hand, secures each indi-
vidual dialog between the Service Broker endpoints, regardless of how many networks the messages
traverse as they travel between the conversation endpoints.

Transport security is easier to set up, while dialog security is significantly more efficient in com-
plex networks where messages traverse multiple forwarding Service Brokers. In some cases where
the highest level of security is required, using both may be appropriate. Because I want to make the
distributed Service Broker application in this chapter as simple as possible, I will only demonstrate
how to set up transport security. You’ll learn more about dialog security in the next chapter.

Setting Up Windows-Based Transport Security
Transport security secures the TCP/IP connection between two SQL Server instances on different
machines. Transport security covers the following two parts:

• Authentication

• Encryption

Authentication makes sure that each SQL Server instance knows the identity of the other SQL
Server instance. Furthermore, both SQL Server instances must agree that they can talk with each
other. Encryption defines whether the messages sent over the wire are encrypted. Authentication is
always needed by a distributed Service Broker application where encryption is optional.

Service Broker offers two types of connection authentication: Windows and certificate-based
authentication. Windows authentication uses the normal Windows authentication protocols such
as NTLM or Kerberos to establish authentication between the two endpoints of the connection.
Certificate-based authentication uses the Transport Layer Security (TLS) authentication protocol to
authenticate the two endpoints. In general, you should use Windows authentication if both end-
points are in the same Windows domain, and you must use certificate-based authentication if the
endpoints are in different Windows domains. Let’s take a look at how to set up Windows authentica-
tion used by the transport security for your distributed Service Broker application.

In general, you can use Windows authentication only if a Windows domain is available and both
SQL Server instances are registered in the same domain. It would even work if you have a trusted rela-
tionship between two Windows domains. When your SQL Server service account is LocalSystem or
Network Service, then Windows authentication through Kerberos is the only option for you. You
can use NTLM to authenticate these accounts. Kerberos authentication requires the registration of a
Service Principal Name (SPN). You have to register this SPN using a tool such as setspn.exe, and the
format of the SPN requested by Service Broker is MSSQLSvc/<MachineName>:<BrokerPort>.

8423ch07.fm Page 236 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 237

If your network doesn’t have Kerberos, you’ll need to either run the SQL Server instance with a
domain user account as the service account or use certificate-based authentication as already men-
tioned. For this sample, you can assume that Kerberos isn’t available, so you must run both SQL
Server instances with a domain user account that you can create inside the Computer Management
Microsoft Management Console (MMC) snap-in. Table 7-5 shows the domain user accounts for
each SQL Server machine.

Table 7-5. The Domain User Accounts for the Various SQL Server Machines

After you set up the domain user accounts, you have to use the Services MMC snap-in to con-
figure SQL Server so that the new domain user account is used as the service account with which
SQL Server is started. See Figure 7-4.

Figure 7-4. Configuring the SQL Server service account

After configuring the new SQL Server service accounts for each SQL Server machine, you now
have to create SQL Server logins for the SQL Server that communicates with you. Note that this login
represents the service account of the remote SQL Server machine, not the service account of the
instance where you’re creating the Service Broker endpoint. Figure 7-5 illustrates this.

Machine Domain User Account

OrderServiceInstance OrderLogin

CreditCardServiceInstance CreditCardLogin

AccountingServiceInstance AccountingLogin

8423ch07.fm Page 237 Monday, April 9, 2007 7:31 PM

238 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Figure 7-5. Configuring Windows-based transport security

Listing 7-9 shows how to add the necessary SQL Server logins to the master database.

■Note Please make sure to set up the necessary Service Broker services. Refer to the T-SQL scripts for this
chapter in the Source Code/Download area of the Apress website (http://www.apress.com).

Listing 7-9. Adding the Required SQL Server Logins

-- Execute this T-SQL batch on machine OrderServiceInstance
USE master
GO

CREATE LOGIN [DOMAIN\CreditCardLogin] FROM WINDOWS
CREATE LOGIN [DOMAIN\AccountingLogin] FROM WINDOWS
GO

-- Execute this T-SQL batch on machine CreditCardServiceInstance
USE master
GO

CREATE LOGIN [DOMAIN\OrderLogin] FROM WINDOWS
GO

-- Execute this T-SQL batch on machine AccountingServiceInstance
USE master
GO

CREATE LOGIN [DOMAIN\OrderLogin] FROM WINDOWS
GO

8423ch07.fm Page 238 Monday, April 9, 2007 7:31 PM

http://www.apress.com

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 239

You now must authorize the remote SQL Server machine to connect to the endpoint of the local
SQL Server machine by granting the login the CONNECT permission to the previously created end-
point. Listing 7-10 shows this step.

Listing 7-10. Granting the CONNECT Permission to the SQL Server Login

-- Execute this T-SQL batch on machine OrderServiceInstance
USE master
GO

GRANT CONNECT ON ENDPOINT::OrderServiceEndpoint TO [DOMAIN\CreditCardLogin]
GRANT CONNECT ON ENDPOINT::OrderServiceEndpoint TO [DOMAIN\AccoutingLogin]
GO

-- Execute this T-SQL batch on machine CreditCardServiceInstance
USE master
GO

GRANT CONNECT ON ENDPOINT::CreditCardServiceEndpoint TO [DOMAIN\OrderLogin]
GO

-- Granting the SEND permission
USE Chapter7_CreditCardService
GO

GRANT SEND ON SERVICE::[CreditCardService] TO PUBLIC
GO

-- Execute this T-SQL batch on machine AccountingServiceInstance
USE master
GO

GRANT CONNECT ON ENDPOINT::AccountingServiceEndpoint TO [DOMAIN\OrderLogin]
GO

-- Granting the SEND permission
USE Chapter7_AccountingService
GO

GRANT SEND ON SERVICE::[AccountingService] TO PUBLIC
GO

As you can see in Listing 7-10, you must also grant the SEND permission to the PUBLIC database
role, so that the messages can be exchanged between the Service Broker services. This is only neces-
sary for anonymous dialogs or dialogs without configured dialog security. You’ll learn more about
anonymous dialogs and dialog security in the next chapter.

You can now initiate a Service Broker conversation between your distributed deployed Service
Broker services. Listing 7-11 shows the code to send a message.

8423ch07.fm Page 239 Monday, April 9, 2007 7:31 PM

240 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Listing 7-11. Starting a Conversation with Distributed Deployed Service Broker Services

BEGIN TRANSACTION
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [ClientService]
 TO SERVICE 'OrderService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c07/OrderContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
 </OrderRequest>';

 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c07/OrderRequestMessage] (@msg);

COMMIT;
GO

The code in Listing 7-11 doesn’t differ from the sending code you’ve used throughout this book.
The only difference lives in the configuration, because now Service Broker finds routing information
when the classifier searches for the target network address of the requested Service Broker services.
You don’t have to change anything in your service implementation. Distributing Service Broker ser-
vices to different machines is only a configuration issue. Easy, isn’t it?

8423ch07.fm Page 240 Monday, April 9, 2007 7:31 PM

http://ssb.csharp.at/SSB_Book/c07/OrderContract
http://ssb.csharp.at/SSB_Book/c07/OrderRequestMessage

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 241

Setting Up Certificate-Based Transport Security
The other option that Service Broker provides for transport security is based on certificates. Windows-
based transport security works well if both endpoints are in the same Windows domain. However, if
they’re in different domains, setup can be complex, and authentication can be very slow. It’s rare
that both Service Broker services are in the same domain when you communicate with your trading
partners. In these cases, you should use certificate-based transport security. Before I go into the details
of certificate-based transport security, I’ll give you a short introduction to certificates, because this is a
new feature introduced with SQL Server 2005.

Certificates

One of the new features in SQL Server 2005 is the ability to create and store certificates inside a SQL
Server database. Most modern distributed systems use certificates to establish user identity. If
you’ve set up secure websites or web services, you’re probably familiar with certificate authorities
and trust chains.

For Service Broker, however, a certificate is a handy container for public-key/private-key pairs. I’ll
talk more about keys in the next section, but for now, it’s sufficient to know that a certificate contains
a key and that you can use the key to prove who you are to a remote user. For some scenarios, Service
Broker uses certificates to authenticate the identity of the user who sent a message instead of using a
password, as most other SQL Server features do. To see why this is, imagine sending a Service Broker
message to a remote service that might be down, or perhaps to a batch service that only runs at night.
This is no problem for Service Broker, because messages are persisted and reliably delivered.

The problem, though, is in how Service Broker can access the password for authenticating the
other user who started the conversation. In fact, there is no way to access that password automati-
cally in the background if no user is present. Therefore, you can only use certificates with Service
Broker that are encrypted with the database master key. If you use certificates encrypted with a pass-
word, Service Broker won’t allow it to you without using a database master key.

Public and Private Keys

Normally, you use the same key to lock and unlock things. Public and private keys (also called asym-
metric keys) are different: there are two keys, and what you lock with one key can only be unlocked
with the other key. If I encrypt something with my private key, you can decrypt it with my public key.
If you encrypt something with my public key, only I can decrypt it, because I’m the only person who
has my private key.

You can use this unique property of asymmetric keys to establish a secure communication
channel. I can send my public key out to you and anyone else who wants to send me data securely.
You can then encrypt the data with my public key and send it to me, secure in the knowledge that
only I can decrypt it because only I have the corresponding private key. If you send me your public
key, I can in turn send you data that only you can decrypt. As long as we are both careful to be sure
that our private keys remain secret, we can reliably establish each other’s identity through the
exchange of public keys.

8423ch07.fm Page 241 Monday, April 9, 2007 7:31 PM

242 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Service Broker just relies on the public key/private key aspect of certificates and not on building
trust chains. In order to establish identity, each endpoint must have the opposite endpoint’s public
key. Whether that public key is obtained from a certificate authority or exchanged via email is a
detail left up to the people deploying the system. You tell Service Broker which keys to use, and
Service Broker uses them to securely establish identity.

Symmetric Keys

Using asymmetric keys to reliably establish identity and encrypt messages works conceptually, but
in reality, it’s not practical. The reason is that using asymmetric keys to encrypt and decrypt data is
very slow. Sending a few megabytes of data using asymmetric keys can take hours. On the other
hand, symmetric key encryption and decryption is very fast, but it’s not so secure because you
encrypt and decrypt data with the same key.

The disadvantage of symmetric keys is that both ends of the conversation must have the same
key. Transferring a symmetric key between both endpoints is risky, because if it’s intercepted, a
hacker can decrypt all the information sent using the key. To get both the speed advantages of sym-
metric keys and the security advantages of asymmetric keys, Service Broker uses asymmetric keys to
securely exchange a symmetric key, which can then be used to encrypt the messages exchanged
between two endpoints. This concept is referred to as hybrid encryption.

Certificate-Based Transport Security

As you learned earlier, two systems can authenticate each other if each one has a certificate with its
own private key and another certificate with the opposite endpoint’s public key. Any data encrypted
with the private key at one endpoint can only be decrypted with the corresponding public key at the
opposite endpoint. Two endpoints can use this technique to securely establish each other’s identity.
One endpoint encrypts some data with its private key, and the opposite endpoint decrypts this data
with the first endpoint’s public key. If the data decrypts successfully, the decrypting endpoint knows
that only the endpoint that owns the private key could have encrypted it.

When this exchange happens in both directions, both endpoints can be sure that they are talk-
ing to the opposite endpoint they expect. The advantage of this method is that authentication only
requires the certificates. There is no need for the endpoints to contact a domain controller, as they
need to do with Windows-based transport security. Each endpoint requires two certificates for this
key exchange to succeed:

• The endpoint’s own private key

• The corresponding public key of the opposite endpoint

This is a total of seven keys for the distributed Service Broker application. OrderService has its
private key and the public keys of CreditCardService and AccountingService. CreditCardService
and AccountingService have their own private keys and the public key of OrderService. Figure 7-6
shows these seven certificates and how they relate to each endpoint.

8423ch07.fm Page 242 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 243

Figure 7-6. Certificate-based transport security

The private key certificate is associated with the endpoint, and the public key certificate is
owned by a user that has the CONNECT permission on the endpoint. If you want to allow any Service
Broker to connect to this SQL Server instance, you can grant the CONNECT permission to the PUBLIC
database role. In this case, authentication between the two SQL Server instances will still be done,
but if the authentication succeeds, the connection will be allowed unconditionally. This is useful
when all the connecting machines are located in the same trusted network, and network security
will prevent connections from untrusted machines.

Let’s now look at how to set up certificate-based transport security with Service Broker. To sim-
plify the example, you use certificates that are generated with SQL Server 2005. However, you can
also use certificates obtained from a certificate authority or your organization. To create a certifi-
cate, SQL Server 2005 provides the CREATE CERTIFICATE T-SQL statement. Listing 7-12 shows the
syntax for this statement.

8423ch07.fm Page 243 Monday, April 9, 2007 7:31 PM

244 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

Listing 7-12. Syntax for the CREATE CERTIFICATE T-SQL Statement

CREATE CERTIFICATE certificate_name [AUTHORIZATION user_name]
 { FROM <existing_keys | <generate_new_keys }
 [ACTIVE FOR BEGIN DIALOG = { ON | OFF }]

<existing_keys> ::=
 ASSEMBLY assembly_name
 | {
 [EXECUTABLE] FILE = 'path_to_file'
 [WITH PRIVATE KEY (<private_key_options>)]
 }

<generate_new_keys> ::=
 [ENCRYPTION BY PASSWORD = 'password']
 WITH SUBJECT = 'certificate_subject_name'
 [, <date_option> [,...n]]

<private_key_options> ::=
 FILE = 'path_to_private_key'
 [, DECRYPTION BY PASSWORD = 'password']
 [, ENCRYPTION BY PASSWORD = 'password']

<date_options> ::=
 START_DATE = 'mm/dd/yyy' | EXPIRY_DATE = 'mm/dd/yyyy'

Table 7-6 describes the parameters for the CREATE CERTIFICATE T-SQL statement.

Table 7-6. Parameters for the CREATE CERTIFICATE T-SQL Statement

Parameter Description

certificate_name Indicates the name under which the certificate is stored
and referenced inside the database.

AUTHORIZATION user_name Specifies the name of the user that owns this certificate.

[EXECUTABLE] FILE = 'path_to_file' Specifies the complete path (including the file name)
to a file that contains a Distinguished Encoding Rules
(DER)-encoded certificate. path_to_file can be a local
path, a Universal Naming Convention (UNC) file
share, or a network location. The specified file is
accessed under the security context of the SQL Server
service account. Therefore, you must make sure that
this account has the needed file system permissions to
read the file.

WITH PRIVATE KEY Specifies that the private key of the certificate is also
imported in the database. You can only use this clause
when the certificate is created from a file. If you want to
load the private key of an assembly, please use the
ALTER CERTIFICATE T-SQL statement.

8423ch07.fm Page 244 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 245

Listing 7-13 shows how to create the necessary certificates on each SQL Server machine. The
code also exports the public key of each certificate in a file. The public key in the exported file can
then be imported into other SQL Server machines to establish a trust relationship between the dif-
ferent deployed Service Broker services. As you can also see from Listing 7-13, each certificate must
be created in the master database and associated with the Service Broker endpoint.

Listing 7-13. Creating the Necessary Certificates to Establish a Trust Relationship Between the Service
Broker Services

-- Execute this T-SQL batch on OrderServiceInstance
USE master
GO

FILE = 'path_to_private_key' Specifies the complete path (including the file name) to
a private key file. path_to_private_key can be a local
path, a UNC file share, or a network location. Service
Broker accesses the specified file under the security
context of the SQL Server service account. Therefore,
you must make sure that this account has the needed
file system permissions to read the file.

DECRYPTION BY PASSWORD = 'password' Specifies the password that SQL Server uses to decrypt a
private key loaded from a file. This clause is optional if
the private key is protected by a null password. Please be
aware that saving a private key to a file without password
protection is a dangerous risk. If the password is required
and you don’t supply one, the statement will fail.

ENCRYPTION BY PASSWORD = 'password' Specifies the password used to encrypt the private key
of the created certificate. If you omit this clause, the
private key will be encrypted with the database master
key of the current database. If you specify a password,
the password must meet the configured password com-
plexity policy.

SUBJECT = 'certificate_subject_name' Specifies the subject of the certificate as defined in
the X.509 standard. A specified subject can be up to
4,096 bytes long. If the subject is longer, SQL Server
will truncate it.

START_DATE = 'mm/dd/yyyy' Specifies the start date of the certificate when it will
become valid. START_DATE must be set equal to the cur-
rent date and can’t be in the past.

EXPIRY_DATE = 'mm/dd/yyyy' Specifies the expiration date of the certificate. If the
clause is not specified, the EXPIRY_DATE is set to the date
one year after START_DATE.

ACTIVE FOR BEGIN DIALOG Makes the certificate available to the initiator of a
Service Broker conversation. This clause is useful
when you have to change a deployed certificate.
Please refer to Chapter 8 for more information about
this topic.

Parameter Description

8423ch07.fm Page 245 Monday, April 9, 2007 7:31 PM

246 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE OrderServiceCertPrivate
 WITH SUBJECT = 'For Service Broker authentication',
 START_DATE = '01/01/2007'
GO

-- Create the Service Broker endpoint
CREATE ENDPOINT OrderServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4740
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE OrderServiceCertPrivate
)
GO

BACKUP CERTIFICATE OrderServiceCertPrivate
 TO FILE = 'c:\OrderServiceCertPublic.cert'
GO

-- Execute this T-SQL batch on CreditCardServiceInstance
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE CreditCardServiceCertPrivate
 WITH SUBJECT = 'For Service Broker authentication',
 START_DATE = '01/01/2007'
GO

-- Create the Service Broker endpoint
CREATE ENDPOINT CreditCardServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4741
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE CreditCardServiceCertPrivate
)
GO

BACKUP CERTIFICATE CreditCardServiceCertPrivate
 TO FILE = 'c:\CreditCardServiceCertPublic.cert'
GO

8423ch07.fm Page 246 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 247

-- Execute this T-SQL batch on AccountingServiceInstance
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE AccountingServiceCertPrivate
 WITH SUBJECT = 'For Service Broker authentication',
 START_DATE = '01/01/2007'
GO

-- Create the Service Broker endpoint
CREATE ENDPOINT AccountingServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4742
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE AccountingServiceCertPrivate
)
GO

BACKUP CERTIFICATE AccountingServiceCertPrivate
 TO FILE = 'c:\AccountingServiceCertPublic.cert'
GO

All three Service Broker endpoints now have private keys associated with them. Now you have
to introduce the endpoints to each other by exchanging the public keys. Whether you exchange the
public keys via File Transfer Protocol (FTP), over email, or on a floppy disk is up to you. Once you’ve
exchanged the public keys, all you have to do is associate them with a SQL Server login that has a
CONNECT permission for the endpoint. Listing 7-14 shows how you can import the public keys of the
opposite endpoint into the master database.

Listing 7-14. Importing the Public Keys

-- Execute this T-SQL batch on OrderServiceInstance
USE master
GO

CREATE LOGIN CreditCardServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER CreditCardServiceUser FOR LOGIN CreditCardServiceLogin
GO

CREATE CERTIFICATE CreditCardServiceCertPublic
 AUTHORIZATION CreditCardServiceUser
 FROM FILE = 'c:\CreditCardServiceCertPublic.cert'
GO

8423ch07.fm Page 247 Monday, April 9, 2007 7:31 PM

248 C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S

GRANT CONNECT ON ENDPOINT::OrderServiceEndpoint TO CreditCardServiceLogin
GO

CREATE LOGIN AccountingServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER AccountingServiceUser FOR LOGIN AccountingServiceLogin
GO

CREATE CERTIFICATE AccountingServiceCertPublic
 AUTHORIZATION AccountingServiceUser
 FROM FILE = 'c:\AccountingServiceCertPublic.cert'
GO

GRANT CONNECT ON ENDPOINT::OrderServiceEndpoint TO AccountingServiceLogin
GO

-- Execute this T-SQL batch on CreditCardServiceInstance and
-- AccountingServiceInstance
USE master
GO

CREATE LOGIN OrderServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER OrderServiceUser FOR LOGIN OrderServiceLogin
GO

CREATE CERTIFICATE OrderServiceCertPublic
 AUTHORIZATION OrderServiceUser
 FROM FILE = 'c:\OrderServiceCertPublic.cert'
GO

-- Execute this T-SQL batch on CreditCardServiceInstance
GRANT CONNECT ON ENDPOINT::CreditCardServiceEndpoint TO OrderServiceLogin
GO

-- Execute this T-SQL batch on AccountingServiceInstance
GRANT CONNECT ON ENDPOINT::AccountingServiceEndpoint TO OrderServiceLogin
GO

To revoke a remote Service Broker service’s right to connect to your SQL Server instance, just
drop the user or deny the login connection permission on the endpoint. By now, you’ve set up the
whole certificate-based transport security. You’re now able to send messages between the different
deployed Service Broker services by executing the sending code from Listing 7-11. Again, you didn’t
have to change the message-sending code and the service implementation to reflect the different
deployment and the different security model. You did everything just by configuring the Service
Broker services.

8423ch07.fm Page 248 Monday, April 9, 2007 7:31 PM

C H A P T E R 7 ■ D I S T R I B U T E D S E R V I C E B R O K E R A P P L I C A T I O N S 249

Summary
In this chapter, I introduced distributed Service Broker applications. When you distribute Service
Broker services to different SQL Server machines (maybe because of scale-out scenarios), you only
have to configure the Service Broker applications. You don’t have to change any service implemen-
tation or the message-sending code. Service Broker accomplishes this with routes. A route defines
on which network address a Service Broker service is physically available.

It doesn’t matter whether a Service Broker service is deployed locally or on a remote machine
connected through a LAN or WAN. After setting up all necessary routes, you have to create endpoints
on each SQL Server machine. An endpoint enables another SQL Server instance to communicate
with you over a TCP/IP connection. The underlying communication protocol of Service Broker (the
ABP) is also able to multiplex several different Service Broker conversations over a single TCP/IP
connection.

After you set up your Service Broker endpoints, you have to configure transport security.
Service Broker offers you two different modes: Windows-based and certificate-based transport
security. Certificate-based transport security provides you more flexibility, because Windows-based
transport security only works when both Service Broker endpoints are located in the same Windows
domain, which is seldom the case when you communicate with your trading partners.

By now, you’ve seen everything about Service Broker that you need to implement asynchro-
nous, reliable, distributed, and secure message-based applications with Service Broker. This chapter
is also the end of the first part of this book, which was devoted to the general Service Broker pro-
gramming model. In the second part of this book, which starts with the next chapter about advanced
distributed Service Broker programming, I’ll show you more complex Service Broker scenarios.

In the next part, I’ll cover advanced security configurations, using Service Broker as the mes-
sage bus for SODA architectures, using Service Broker in real-world scenarios, and scaling out
Service Broker applications to any required size. Finally, I’ll end with a chapter about the adminis-
tration of Service Broker applications. Stay tuned.

8423ch07.fm Page 249 Monday, April 9, 2007 7:31 PM

8423ch07.fm Page 250 Monday, April 9, 2007 7:31 PM

■ ■ ■

P A R T 2

Advanced Service Broker
Programming

Aschenbrenner842-3.book Page 251 Wednesday, April 18, 2007 3:19 PM

Aschenbrenner842-3.book Page 252 Wednesday, April 18, 2007 3:19 PM

253

■ ■ ■

C H A P T E R 8

Advanced Distributed Service Broker
Programming

The first part of this book covered the general aspects of Service Broker programming. By now, you
can implement asynchronous, reliable, secure, and distributed Service Broker applications. The sec-
ond part of this book will concentrate on advanced areas of Service Broker programming. In this
chapter, I’ll build on Chapter 7 and investigate advanced distributed Service Broker scenarios. I’ll
cover the following topics:

• Transport security: Service Broker offers you additional transport security features, such as
the LOCAL route and the TRANSPORT route.

• Dialog security: Dialog security secures complete dialogs from the initiator of the dialog to
the target of the dialog. The difference from transport security is that dialog security works
between dialog endpoints instead of between transport endpoints.

• Encryption: Service Broker can also encrypt messages to prevent them from being moni-
tored. If you use encryption, you have two different options: transport encryption and
dialog encryption.

• Transport protocol: Service Broker uses a TCP-based transport protocol (adjacent broker
protocol, or ABP) to exchange Service Broker messages between two endpoints. I’ll show
you how you can trace the TCP communication between two Service Broker endpoints.

• Replacing certificates: By default, certificates expire and become unusable. Service Broker
provides features you can use to replace certificates when they expire. You must distinguish
between certificates used for transport security and certificates used for dialog security.

• Service Listing Manager: Service Listing Manager is a graphical tool for the setup and config-
uration of Service Broker security. I’ll give you an introduction to this tool and show you how
you can use it to set up transport security and dialog security.

Let’s start with more details about transport security.

Transport Security
In addition to the transport security features mentioned in Chapter 7, Service Broker offers two
more: LOCAL routes and TRANSPORT routes. These routes are known as wildcard routes. With these
kinds of routes, you’re able to implement more complex distributed Service Broker applications. On
the other hand, encryption makes it possible to encrypt messages that are transferred between two
Service Broker endpoints. I’ll give you more information on encryption in the “Encryption” section.

Aschenbrenner842-3.book Page 253 Wednesday, April 18, 2007 3:19 PM

254 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

A Service Broker component called a classifier uses a combination of the service name and the
broker identifier to select the route to use for a message. If the classifier can’t find an exact match for
the service name and the broker identifier specified in the BEGIN DIALOG command, it will look for a
wildcard route. A route with no broker instance specified will match any broker instance, and a route
with no service name specified will match any service name.

LOCAL Route
Two addresses have special meaning for Service Broker routes. When the route for a service name
has an address of LOCAL, the classifier will look for the service name in the local instance to find which
queue to put the message in. The first priority is the database where the route is located. If the
classifier doesn’t find the service there, it checks the services list, which contains all the services
available in the local SQL Server instance. Listing 8-1 shows how you can create a route with the
LOCAL address.

Listing 8-1. Creating a LOCAL Route

CREATE ROUTE InventoryRoute
 WITH SERVICE_NAME = 'InventoryService'
 ADDRESS = 'LOCAL'
GO

One possible unforeseen consequence of using a LOCAL route is that if the service name isn’t
found in the current database and is available in more than one other database in the current SQL
Server instance, the classifier will see this as a load-balancing scenario and will randomly pick one of
the services as the target of the dialog. This usually isn’t what the application intends and can lead to
strange behaviors. To avoid this, I recommend using a route with a BROKER_INSTANCE parameter to
ensure that the dialog target is the database you intend. Because this is a common issue, Service
Broker implicitly routes local dialogs that have a BROKER_INSTANCE parameter to the specified data-
base even if there isn’t a route specified for the target service.

If you look in the sys.routes catalog view of a newly created database, you’ll find a route called
AutoCreatedLocal. This route has no service name or broker identifier and an address of LOCAL. This
route is the one you’ve used in all the examples so far that were deployed to only one SQL Server
instance. Because it is a wildcard route, the classifier uses this route for any service name that
doesn’t have another route available. This is why you haven’t had to create routes for any of the
examples you deployed to one SQL Server instance. The AutoCreatedLocal route was sufficient,
because they all sent messages to local services. While this route makes developing simple applica-
tions easy, I recommend dropping it when you deploy your distributed Service Broker application
into production. Without a wildcard route, you can be sure that messages only go where you intend
them to go. Listing 8-2 shows the definition of the AutoCreatedLocal route that is always present in a
newly created SQL Server database.

Listing 8-2. Definition of the AutoCreatedLocal Route

CREATE ROUTE AutoCreatedLocal
 WITH ADDRESS = 'LOCAL'
GO

Aschenbrenner842-3.book Page 254 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 255

TRANSPORT Route
The following question often arises: “If a Service Broker application has several hundred dialog
initiators opening dialogs with the same target, does the target need to have routes back to all the
initiators?” The short answer to this question is yes. Fortunately, Service Broker has a way to make
a single route work for all the return messages. This shortcut is the TRANSPORT route. If the classifier
finds a wildcard route with a TRANSPORT address after failing to find a more specific route, it will try to
use the service name from the dialog as a return address to the initiator of the conversation.

This sounds a little bit curious, but just think of a Smart Client scenario where hundreds of dif-
ferent deployed Smart Client applications want to access a Service Broker service. You have also the
requirement that deploying a new Smart Client application should be as easy as possible. Therefore,
you don’t want to add a route for each new Smart Client application on the SQL Server, where the
consumed Service Broker service is deployed back to the initiator of the conversation—the Smart
Client application.

In this case, you can embed the address of the return route to the Smart Client application in
the name of the Service Broker service. Therefore, you don’t need to add routes on the SQL Server
where the target service is located. Let’s say you want to deploy the ClientService from Chapter 6 to
a SQL Express Edition that is used by a Smart Client application. Figure 8-1 shows the final architec-
ture after the distribution of this service to SQL Express Edition.

Figure 8-1. Using the TRANSPORT route in a Smart Client scenario

If you want to configure this distributed scenario, you have to do the following steps:

1. Create the endpoints on both SQL Server instances.

2. Configure the necessary routes between the ClientService and the OrderService.

3. Change the service name of the ClientService to include the network address in its name.

4. Set up transport security.

Aschenbrenner842-3.book Page 255 Wednesday, April 18, 2007 3:19 PM

256 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Because I’ve already talked about creating endpoints and setting up transport security in
Chapter 7, I want to concentrate now on steps 2 and 3—configuring the Service Broker routes
and changing the service name of ClientService. Listing 8-3 shows the code you need to set up
the routes between ClientService and OrderService.

Listing 8-3. Creating the Necessary Routes

-- Execute this T-SQL batch on the SQL Express Edition
CREATE ROUTE OrderServiceRoute
 WITH SERVICE_NAME = 'OrderService',
 ADDRESS = 'TCP://OrderServiceInstance:4740'
GO

-- Execute this T-SQL batch on the OrderServiceInstance
CREATE ROUTE ClientServiceTransportRoute
 WITH ADDRESS = 'TRANSPORT'
GO

The returning route from OrderService uses the TRANSPORT address. This indicates to Service
Broker to retrieve the complete returning route from the service name of the initiator service. There-
fore, you have to change the name of the ClientService in the second step (see Listing 8-4).

Listing 8-4. Creating a New ClientService That Contains the Network Address in the Name

-- Execute this T-SQL batch on the SQL Express Edition
CREATE SERVICE [TCP://SmartClient1:4001/ClientService]
 ON QUEUE [ClientQueue]

When the OrderService needs to send a response message on the dialog, the classifier looks
for a route for a service called TCP://SmartClient1:4001/ClientService. If it doesn’t find one, it
will find the wildcard route with the TRANSPORT address and attempt to open a connection to
TCP://SmartClient1:4001. In this example, this succeeds and the message is returned successfully
to the initiator—the Smart Client application.

The huge benefit of the TRANSPORT route is that you don’t need a returning route from
OrderService for each Smart Client application. If you deploy a new Smart Client application, you
just have to create the Service Broker service on that Smart Client (inside the SQL Server Express
Edition), as in Listing 8-4. The only difference here is that SmartClient1 is replaced by the NetBIOS
name of the new Smart Client application. You don’t have to change anything on the SQL Server
instance where OrderService is deployed (when anonymous transport security is enabled). Easy,
isn’t it?

You can also use a TRANSPORT route in the TO SERVICE clause of the BEGIN DIALOG T-SQL statement.
This allows ad-hoc connections to services without creating the routing infrastructure normally
required. The biggest disadvantage of using transport routes is that the address is embedded in the
service name, so you can’t move the service to another server without destroying all existing dialogs to
the moved service. If you move the service, the service will be available on a different network address,
and you must also reflect this change in the service name. So you have to change the service
implementation.

Aschenbrenner842-3.book Page 256 Wednesday, April 18, 2007 3:19 PM

TCP://OrderServiceInstance:4740
TCP://SmartClient1:4001/ClientService
TCP://SmartClient1:4001/ClientService
TCP://SmartClient1:4001

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 257

Dialog Security
The default security model options that Service Broker provides for data sent between two con-
nected Service Broker endpoints are adequate for most applications, but for certain applications,
you may need to use dialog security in addition to transport security. This section explains what dia-
log security is and when you should consider using it in addition to transport security.

As the name implies, you use dialog security to secure complete dialogs, from the initiator of the
dialog to the target of the dialog. The security features are similar to transport security: authentica-
tion, message integrity, and encryption. The difference is that dialog security works between dialog
endpoints instead of between transport endpoints. This means that dialog messages that are routed
through a complex network topology of different Service Broker forwarders to reach their final des-
tination are encrypted at one of the dialog endpoints and decrypted at the other endpoint.

When you use dialog security, the messages going from the initiator to the target are encrypted
at the initiator and decrypted at the target. If you use transport security instead, the messages will be
decrypted and reencrypted at each forwarder, so the message will be encrypted and decrypted three
times in route. The extra overhead can cause significant delays and increase processing loads.

Dialog security also provides authentication at the dialog level. This means that two services
engaging in a dialog can reliably know that the service they are talking to is exactly who they think it
is. Authentication is a harder problem in asynchronous dialogs than it is with normal connection-
oriented network protocols. Dialogs are persistent and can last through multiple database server
restarts, moving the database to a different server, failovers, and so on. Dialogs may last for years.
Maintaining secure communication between dialog endpoints under these circumstances requires
a different kind of security protocol.

Service Broker Security Protocol
Before getting into how to configure and manage dialog security, let’s spend a little time under-
standing the basic security protocol used by Service Broker. Dialog authentication uses certificates
to authenticate the endpoints with each other. The way this works is a little different from the
certificate-based authentication approach used by the Service Broker transport security model.
This difference occurs because dialog endpoints are authenticated with each other once, and this
authentication lasts for the lifetime of the dialog. The asynchronous nature of dialogs also means
that it’s possible that the two services communicating over a dialog may never be running at the
same time, so connection-oriented protocols won’t work.

Dialog authentication requires a total of four certificates. Each SQL Server instance has its
own private key certificate and a certificate with the public key of the opposite SQL Server instance.
Because dialogs only exist between two endpoints, only these four certificates are required. The ini-
tiator of the dialog encrypts some data with both its own private key and the target endpoint’s public
key. This encrypted data is sent to the target in the header of the first dialog message. When this mes-
sage arrives at the target endpoint, the public and private keys corresponding to the keys used to
encrypt the data are used to decrypt it. If it is decrypted successfully, the two endpoints have reliably
established each other’s identity, because only the four keys at these two endpoints could have suc-
cessfully encrypted and decrypted the data.

Aschenbrenner842-3.book Page 257 Wednesday, April 18, 2007 3:19 PM

258 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

As mentioned in the previous chapter, asymmetric key encryption and decryption are expen-
sive operations. If you used them every time a dialog was established, Service Broker throughput
would degrade. To get around this problem, part of the data encrypted and decrypted during the
authentication process is a symmetric key called the key exchange key (KEK). Once the KEK has been
reliably transferred between the initiator and the target of the dialog, the two endpoints have a
shared secret (the KEK) that only the two of them know. The shared KEK can be used to transfer
more data between the two endpoints. Successfully transferring this data can now be used to estab-
lish the identities of the endpoints, because only the endpoints sharing this symmetric key can
successfully encrypt and decrypt the data.

Using the KEK to establish authentication means that you only need to use the asymmetric key
encryption and decryption when a new KEK must be exchanged. Because the KEK is cached in
memory, the KEK must be reestablished whenever the database is restarted. The KEK also expires
periodically, and a new KEK is created and exchanged. The KEK is transferred with the first message
of every dialog so that it is always available when required.

The data transferred with the KEK is the session key for the dialog. The session key is the sym-
metric key used to encrypt and sign every message sent on the dialog. The initiator generates a
session key, encrypts it with the KEK, and sends it to the target in the header of the first message. The
target generates another session key and sends it back to the initiator in the header of the first mes-
sage in that direction. I haven’t discussed anonymous dialogs yet, but you should understand that
an anonymous dialog uses the same session key in both directions.

To summarize, the dialog initiator generates a KEK if one isn’t already available for the target
and signs it with the initiator’s private key. It then encrypts it with the target’s public key. A session
key is generated and encrypted with the KEK. The encrypted keys are copied into the header of the
first message and cached locally. The KEK is stored in memory and never written to disk. The session
key is encrypted with the database master key and stored in the conversation endpoint table. The
KEK encrypted with the public key and private key is also cached in memory, so that Service Broker
can use it in other messages without redoing the asymmetric encryption. The message is then
hashed, signed, and encrypted with the session key and given to the transmission layer for transport
to the target endpoint.

When the message arrives at the target endpoint, Service Broker checks its cache for the KEK
used in the message. If it isn’t already cached, the encrypted KEK from the message header is
decrypted with the public key and the private key from the local certificates and is cached in mem-
ory. Service Broker decrypts the session key with the KEK, stores it in the conversation endpoint
table, and uses it to decrypt and verify the sent message. When the first message is sent back to the
initiator, a new session key for the return direction is generated, encrypted with the KEK, and used
to sign and encrypt the return message.

The initiator includes the security header with the keys in every message it sends until it
receives a message from the target. Once the first message is received from the target, the initiator
can be sure that the target has the proper session key. The security header isn’t then sent in subse-
quent messages. Messages include a timestamp and are valid for 30 seconds after they are sent. In
reality, this time is 30 minutes and 30 seconds, because a 30-minute allowance for clock synchroni-
zation between the message sender and receiver is included in the time-out. KEKs are valid for six
hours from the time they are generated. This time might be different from the time they are stored in
memory.

Service Broker provides two types of dialog security: full dialog security and anonymous dialog
security.

Aschenbrenner842-3.book Page 258 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 259

Full Dialog Security
Full dialog security helps to protect the initiating service from sending messages to an untrusted
database and helps to protect the target service from receiving messages from an untrusted data-
base. Service Broker encrypts messages transmitted over the network when the conversation uses
full security.

Full security provides identification for both the initiating service and the target service. Full
security requires that the initiating service trust the target service and also requires that the target
service trust the initiating service. You can establish trust by exchanging certificates that contain
public keys. For full dialog security, each side of the conversation contains a private key for a local
user and a public key for a remote user. The database that hosts the initiating service contains a
remote service binding.

The remote service binding specifies the local user who owns the certificate that corresponds to
the private key in the remote database. Therefore, operations on behalf of the initiating service run
as the designated user in the target database. The target database contains a user who owns a certif-
icate that corresponds to a private key that is owned by the user who owns the initiating service.
Therefore, operations on behalf of the target service run in the initiating database as the user who
owns the initiating service.

Anonymous Dialog Security
Anonymous dialog security helps protect the initiating service against sending messages to an
untrusted database. Service Broker encrypts messages transmitted over the network when the con-
versation uses anonymous security. Anonymous security identifies the target service to the initiating
service, but doesn’t identify the initiating service to the target service.

Because the target service can’t verify the identity of the initiating service, operations on behalf
of the initiating service run as members of the fixed [PUBLIC] database role in the target database.
The target database receives no information about the user who initiated the conversation. The tar-
get database doesn’t need to contain a certificate for the user who initiates the conversation. For
dialogs that use anonymous security, both sides of the conversation use the session key generated
by the initiating database. The target database doesn’t return a session key to the initiating database.

Configuration
In the previous sections, you learned the theory about dialog security. In this section, I’ll show you
step by step how to configure full dialog security to secure the communication over a Service Broker
conversation.

One important thing to know about dialog security is that you always need to set up transport
security, because it establishes a secure communication channel between two Service Broker end-
points and allows two SQL Server instances to authenticate and authorize each other. Transport
security also provides functionalities to protect and encrypt messages between two SQL Server
instances.

In this example, let’s use the OrderService sample application from Chapter 6 as a foundation and
extend it to use dialog security for a secure exchange of dialog messages. You’ll want to distribute
CreditCardService and AccountingService to different SQL Server instances and set up dialog security
between OrderService and the other two distributed Service Broker services. Figure 8-2 shows the
architecture that you want to achieve with the distribution of the Service Broker services. As an addi-
tional exercise, you can distribute the other used Service Broker services (InventoryService and
ShippingService) to different physical SQL Server machines and configure the needed security set-
tings on your own.

Aschenbrenner842-3.book Page 259 Wednesday, April 18, 2007 3:19 PM

260 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Figure 8-2. Dialog security architecture

When you set up transport security for this sample application, you’ll use another option for
certificate-based authentication. Service Broker allows you to grant the CONNECT permission of the
endpoint to the [PUBLIC] database role. In this case, you don’t need to deploy the certificate with the
public key of the opposite endpoint to the local master database. This feature is needed to cover a
scenario like an online shop.

Just imagine that an online shop provides you a Service Broker service with which you can order
products from the shop’s website in a reliable manner. In this case, the Service Broker endpoint of
the online shop must be able to authenticate millions of different users. The administrator of this
Service Broker endpoint must deploy millions of certificates with the public key of each potential
user and must configure the needed security settings (granting the CONNECT permission on that end-
point). Because of this, you can grant the CONNECT permission of the Service Broker endpoint to the
[PUBLIC] database role. In this case, any incoming connection is authorized automatically, and you
don’t have to deploy the other endpoint’s public key certificate.

Setting Up Anonymous Transport Security
If you set up anonymous transport security, you have to perform the following steps:

1. Set up the certificate: You have to create a certificate in the master database that holds the
private key used for transport security.

2. Set up the endpoint: You have to create a Service Broker endpoint and authorize it on the pre-
viously created certificate.

3. Grant permissions: Finally, you grant the CONNECT permission on the created Service Broker
endpoint to the [PUBLIC] database role.

Listing 8-5 shows the needed code for the initiator’s endpoint, the OrderService.

Aschenbrenner842-3.book Page 260 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 261

Listing 8-5. Setting Up Anonymous Transport Security on the Initiator’s Side

-- Execute this T-SQL batch on the OrderServiceInstance
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE OrderServiceTransportCertPrivate
 WITH SUBJECT = 'For Service Broker authentication',
 START_DATE = '01/01/2006'
GO

-- Create the Service Broker endpoint
CREATE ENDPOINT OrderServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4740
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE OrderServiceTransportCertPrivate
)
GO

-- Everyone (anonymous security) can now connect to this Service Broker endpoint!!!
GRANT CONNECT ON ENDPOINT::OrderServiceEndpoint TO [PUBLIC]
GO

Listing 8-6 shows the code needed on the SQL Server machine where the CreditCardService is
hosted to set up anonymous transport security. The same code with the object names adjusted appro-
priately must be also executed on the SQL Server machine where AccountingService is deployed.

Listing 8-6. Setting Up Anonymous Transport Security on the Target’s Side

-- Execute this T-SQL batch on the CreditCardInstance
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE CreditCardServiceTransportCertPrivate
 WITH SUBJECT = 'For Service Broker authentication',
 START_DATE = '01/01/2006'
GO

Aschenbrenner842-3.book Page 261 Wednesday, April 18, 2007 3:19 PM

262 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

-- Create the Service Broker endpoint
CREATE ENDPOINT CreditCardServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4741
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE CreditCardServiceTransportCertPrivate
)
GO

-- Everyone (anonymous security) can now connect to this Service Broker endpoint!!!
GRANT CONNECT ON ENDPOINT::CreditCardServiceEndpoint TO [PUBLIC]
GO

As soon as you execute these T-SQL batches on each SQL Server machine, anonymous trans-
port security is set up and ready to use. As you can see, you don’t need to import the public key
certificate from the opposite Service Broker endpoint when you use anonymous transport security.
However, keep in mind that everyone is now able to connect to both Service Broker endpoints.

Setting Up Full Dialog Security
After you set up transport security, you can send messages between the Service Broker endpoints.
The only disadvantage of transport security occurs when a message is forwarded through multiple
Service Broker forwarders. In this case, Service Broker must encrypt and decrypt each sent message
at each forwarder—and this stuff can hurt your overall Service Broker performance.

For this reason, Service Broker includes dialog security. With dialog security, you have the
chance to encrypt the message once at the initiator and decrypt it finally only at the target of the con-
versation. When such a message passes a Service Broker forwarder, nothing happens (no decryption
and encryption), because all necessary information (such as the final destination of the message) is
stored in the header of the message, and the header isn’t encrypted.

Let’s look at how to set up dialog security for Service Broker conversations. Dialog security
requires four certificates to secure a dialog: one public key and one private key for each direction. In
this section, you’ll learn how to create the certificates and the users required to make dialog security
work. Figure 8-3 shows the SQL Server objects you must create for dialog security. The main differ-
ence from transport security is that the needed certificates are associated with database users
instead of database logins.

Aschenbrenner842-3.book Page 262 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 263

Figure 8-3. Setting up dialog security

Security configuration normally starts at the target endpoint. The target endpoint provides the
service to one or more initiator endpoints. You set up the target once when the service is deployed,
and you set up the initiator on any database that uses the service supplied by the target. Listing 8-7
shows the T-SQL code you need to create the database user who represents the CreditCardService.

Listing 8-7. Dialog Security on the Target Service

CREATE USER CreditCardServiceUser WITHOUT LOGIN
GO

-- Grant the CONTROL permission
GRANT CONTROL ON SERVICE::CreditCardService TO CreditCardServiceUser
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE CreditCardServiceCertPrivate
 AUTHORIZATION CreditCardServiceUser
 WITH SUBJECT = 'Private certificate for CreditCardService',
 START_DATE = '01/01/2006'
GO

BACKUP CERTIFICATE CreditCardServiceCertPrivate
 TO FILE = 'c:\CreditCardServiceCertPublic.cert'
GO

Aschenbrenner842-3.book Page 263 Wednesday, April 18, 2007 3:19 PM

264 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

The CREATE USER T-SQL statement creates a new database user who represents the user for the
CreditCardService. You create the user with no login so that you can move the database between
servers or duplicate it without moving the logins between servers. In the next step, you grant the
CONTROL permission to this user on the CreditCardService. This is a requirement when you set up
dialog security. Once the user setup is complete, you create a new certificate that stores the private
key used for dialog security. This certificate is owned by the previously created database user. In
the last step, you export the public key certificate of the previously created certificate and store it
in the file system. You then import this public key certificate on the initiator’s endpoint. The next
steps in setting up dialog security on the initiator’s endpoint are as follows:

1. Transfer the public key certificate of the target endpoint to the initiator’s endpoint.

2. Create a database user who represents the initiator’s service.

3. Create a new private key certificate that is owned by the newly created database user.

4. Dump the public key of the newly created certificate to the file system so that the target’s
endpoint can import it.

Listing 8-8 implements the required steps.

Listing 8-8. Dialog Security on the Initiator Service

CREATE USER OrderServiceUser WITHOUT LOGIN
GO

ALTER AUTHORIZATION ON SERVICE::OrderService TO OrderServiceUser
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE OrderServiceCertPrivate
 AUTHORIZATION OrderServiceUser
 WITH SUBJECT = 'Private certificate for OrderService',
 START_DATE = '01/01/2006'
GO

BACKUP CERTIFICATE OrderServiceCertPrivate
 TO FILE = 'c:\OrderServiceCertPublic.cert'
GO

As you can see in Listing 8-8, you change the authorization of OrderService so that the newly
created database user owns this Service Broker service. Now that you have established the identity of
the initiator, you can import the target’s public key certificate to authenticate the target. Listing 8-9
shows you how.

Listing 8-9. Importing the Public Key Certificate of the Target

CREATE USER CreditCardServiceUser WITHOUT LOGIN
GO

CREATE CERTIFICATE CreditCardServiceCertPublic
 AUTHORIZATION CreditCardServiceUser
 FROM FILE = 'c:\CreditCardServiceCertPublic.cert'
GO

Aschenbrenner842-3.book Page 264 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 265

The TargetService must also import the public key certificate of the initiator’s service. You
must also grant the SEND permission of the target service to the user who owns the public key certif-
icate of the initiator service. Listing 8-10 shows the needed T-SQL code.

Listing 8-10. Importing the Public Key Certificate of the Initiator

CREATE USER OrderServiceUser WITHOUT LOGIN
GO

CREATE CERTIFICATE OrderServiceCertPublic
 AUTHORIZATION OrderServiceUser
 FROM FILE = 'c:\OrderServiceCertPublic.cert'
GO

GRANT SEND ON SERVICE::CreditCardService TO OrderServiceUser
GO

The only thing that is left now is to indicate which user the BEGIN DIALOG T-SQL statement will
use to find the right certificate to authenticate with the target service. For this reason, Service Broker
provides you with a remote service binding. A remote service binding establishes a relationship
between a local database user, the certificate for the user, and the name of a remote Service Broker
service. Service Broker determines the users for a conversation when a conversation begins, using
the information in the database that hosts the initiating service. The remote service binding speci-
fies the user for the target of the conversation. To create a new remote service binding, Service
Broker provides the CREATE REMOTE SERVICE BINDING T-SQL statement. Listing 8-11 shows the syntax
for this T-SQL statement.

Listing 8-11. Syntax for the CREATE REMOTE SERVICE BINDING T-SQL Statement

CREATE REMOTE SERVICE BINDING binding_name
 [AUTHORIZATION owner_name]
 TO SERVICE 'service_name'
 WITH USER = user_name [, ANONYMOUS = { ON | OFF }]

Table 8-1 describes the parameters for this T-SQL statement.

Table 8-1. Parameters for the CREATE REMOTE SERVICE BINDING T-SQL Statement

Parameter Description

binding_name The name of the remote service binding. The name must be a valid SYSNAME.
Please note that you can’t specify server, database, and schema.

owner_name Sets the owner of the remote service binding.

service_name Specifies the remote service to which you want to bind the user specified in
the WITH USER clause.

user_name Specifies the database principal who owns the certificate that is associated
with the remote service specified with the TO SERVICE clause. Service Broker
uses this certificate for encryption and authentication of the messages
exchanged with the remote service.

ANONYMOUS Specifies if anonymous authentication is used when the communication with
the remote service occurs. If you use anonymous authentication, operations
in the remote database are executed as a member of the PUBLIC fixed database
role. Otherwise, operations are executed as the specific user in that database.
The default is OFF.

Aschenbrenner842-3.book Page 265 Wednesday, April 18, 2007 3:19 PM

266 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

For dialog security to work, you must set up a remote service binding at the initiator’s endpoint.
Listing 8-12 shows the needed T-SQL code.

Listing 8-12. Creating a Remote Service Binding

CREATE REMOTE SERVICE BINDING RemoteServiceBindingToCreditCardService
 TO SERVICE 'CreditCardService'
 WITH USER = CreditCardServiceUser
GO

As you can see in Listing 8-12, the remote service binding associates the CreditCardServiceUser
with the CreditCardService. Therefore, Service Broker now knows to use the
CreditCardServiceCertPublic—the certificate that is associated with the CreditCardServiceUser—
when sending new messages to CreditCardService. The remote service binding provides the
necessary mapping information to the Service Broker infrastructure.

When you now send a new message from ClientService to OrderService, OrderService starts
new conversations with CreditCardService, AccountingService, and InventoryService. The first
two communication channels are secured by both transport security and dialog security. By using
dialog security, you can also forward messages between OrderService, CreditCardService, and
AccountingService through a Service Broker forwarder without performance losses, because mes-
sages are only encrypted at the initiator’s endpoint and are decrypted at the final destination, the
target endpoint. That’s the power of dialog security.

Setting Up Anonymous Dialog Security
If the target service is going to supply services to a large number of dialog initiators, importing the
certificates of the initiator services and provisioning users for all the initiators can be a significant
administrative burden. There are other scenarios where the target service wants to process requests
from any initiator who makes the request without authenticating the initiator. Just think back to the
scenario with the online shop. If you deploy these kinds of Service Broker services to the general
public, you can’t authenticate each initiator to the target service.

To accommodate these scenarios, Service Broker includes the anonymous dialog feature. In an
anonymous dialog, the target service is authenticated to the initiator service, so that the initiator
service can be sure that the correct service processes its messages, but the initiator service isn’t
authenticated with the target service.

To indicate to Service Broker that an anonymous dialog is used, you create the REMOTE SERVICE
BINDING on the initiator service with the ANONYMOUS option set to ON. The security header in the first
message from the initiator is sent with only the target’s public key. The owner of the initiator service
doesn’t need a private key certificate because it isn’t used to authenticate the connection. On the
target side, you don’t need to create a user to own the initiator’s public key certificate. One implica-
tion of this is that there is no user to grant the SEND permission for the target service, because the
target has no way to know which user sent the message. For this reason, you must grant the SEND per-
mission to the database role PUBLIC for the target service when anonymous dialogs are used.

Listing 8-13 shows how to set up anonymous dialog security on the target side.

Aschenbrenner842-3.book Page 266 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 267

Listing 8-13. Anonymous Dialog Security on the Target Side

USE Chapter8_CreditCardService
GO

CREATE USER CreditCardServiceUser WITHOUT LOGIN
GO

-- Grant the CONTROL permission to the previous created database user
GRANT CONTROL ON SERVICE::CreditCardService TO CreditCardServiceUser
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

-- Create the certificate that represents the CreditCardService
CREATE CERTIFICATE CreditCardServiceCertPrivate
 AUTHORIZATION CreditCardServiceUser
 WITH SUBJECT = 'Private certificate for CreditCardService',
 START_DATE = '01/01/2006'
GO

-- Back up the public key of the certificate
BACKUP CERTIFICATE CreditCardServiceCertPrivate
 TO FILE = 'c:\CreditCardServiceCertPublic.cert'
GO

-- Grant the SEND permission to the database role [PUBLIC]
GRANT SEND ON SERVICE::CreditCardService TO [PUBLIC]
GO

As you can see in Listing 8-13, you create the private key certificate for CreditCardService and
authorize the CreditCardServiceUser on that certificate. Finally, you dump the public key of the cer-
tificate to the file system so it can be imported from the initiator service. (And don’t forget to grant
the SEND permission to the PUBLIC database role.) Listing 8-14 shows how to set up anonymous dia-
log security on the initiator side.

Listing 8-14. Anonymous Dialog Security on the Initiator Side

USE Chapter8_OrderService
GO

-- Create the database master key
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

-- Create a database user that represents the CreditCardService
CREATE USER CreditCardServiceUser WITHOUT LOGIN
GO

Aschenbrenner842-3.book Page 267 Wednesday, April 18, 2007 3:19 PM

268 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

-- Create the certificate that represents the CreditCardService
CREATE CERTIFICATE CreditCardServiceCertPublic
 AUTHORIZATION CreditCardServiceUser
 FROM FILE = 'c:\CreditCardServiceCertPublic.cert'
GO

-- Create the remote service binding, specifying that anonymous dialog
-- security is used
CREATE REMOTE SERVICE BINDING ServiceBindingToCreditCardService
 TO SERVICE 'CreditCardService'
 WITH USER = CreditCardServiceUser,
 ANONYMOUS = ON
GO

In the first step, you create a database master key in the application database. Then you create
the database user who represents the target service, the CreditCardService. Next, you import the
public key certificate of the target service and authorize the previously created user on this certifi-
cate. Finally, you create the REMOTE SERVICE BINDING and specify with the ANONYMOUS option that
anonymous dialog security is used.

As soon as you set up the initiator side and the target side of the Service Broker conversation,
you can send a new message. The message will arrive at the target, and the activated stored proce-
dure will process it automatically. As you can see, it’s an easy task to set up anonymous dialog
security when you have a lot of initiator services and when you can’t authorize each one separately
to work together with the target service.

Encryption
Authentication is required for all transport connections. Along with authentication, all transport
messages are checksummed and signed to ensure that the messages aren’t altered during transport.
Service Broker also encrypts messages to prevent them from being monitored, if desired. Message
encryption is required by default. When you don’t want to use encryption, you must indicate it sep-
arately. Encryption imposes some processor overhead, so if Service Broker traffic is being sent over
a trusted LAN connection where tight security isn’t required, you may want to turn off encryption to
increase the efficiency of message transmission. Service Broker provides two different options for
message encryption:

• Transport encryption: When you use transport encryption, Service Broker encrypts the whole
message, including the header and payload. Transport encryption is configured through the
Service Broker endpoint.

• Dialog encryption: When you use dialog encryption, the dialog encrypts the message payload.
As such, only the target service can decrypt it. However, the message header is sent in clear
text over the wire. Service Broker forwarders cannot decrypt the message payload, but they
can see the unencrypted message header needed to correctly forward the message to the next
hop on the route to the target service.

Message encryption gets more complex when you use transport and dialog encryption in combi-
nation. When you use both encryption options, Service Broker encrypts the message payload with
dialog encryption and the message header with transport encryption. This is important, because often
the message payload is the largest amount of the message (besides the message header), and if trans-
port encryption would always encrypt everything (including the message header and message body),
then the message payload would be encrypted twice (when you also use dialog encryption). This
would be an unnecessary overhead, since encryption/decryption has a significant cost.

Aschenbrenner842-3.book Page 268 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 269

Transport Encryption
You can configure transport encryption through the Service Broker endpoint. When you create
a new endpoint without specifying the encryption option, the Service Broker endpoint will be
encrypted by default. Therefore, all the samples shown in this and in the last chapter have used
transport encryption by default. To turn off encryption, you may set the ENCRYPTION attribute of the
endpoint to DISABLED with the CREATE ENDPOINT or ALTER ENDPOINT T-SQL statement. Listing 8-15
shows how to turn off encryption at OrderServiceEndpoint and CreditCardServiceEndpoint.

Listing 8-15. Disabling Encryption for Service Broker Endpoints

ALTER ENDPOINT OrderServiceEndpoint
STATE = STARTED
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE OrderServiceTransportCertPrivate,
 ENCRYPTION = DISABLED
)

ALTER ENDPOINT CreditCardServiceEndpoint
STATE = STARTED
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE CreditCardServiceTransportCertPrivate,
 ENCRYPTION = DISABLED
)

There are three possible values for the ENCRYPTION attribute:

• DISABLED: Specifies that data sent over a connection isn’t encrypted.

• SUPPORTED: Specifies that the data is encrypted only if the opposite endpoint specifies either
SUPPORTED or REQUIRED.

• REQUIRED: Specifies that connections to this endpoint must use encryption. Therefore, to con-
nect to this endpoint, another endpoint must have ENCRYPTION set to either SUPPORTED or
REQUIRED.

These three values let the administrator set up a complex network where some connections use
encryption and others don’t, even when these connections use the same endpoint. Table 8-2 shows
the possible combinations of the ENCRYPTION attribute and whether data on the connection will be
encrypted or not.

Table 8-2. Setting Up Transport Security

Endpoint A Endpoint B Encrypted?

Required Required Yes

Required Supported Yes

Required Disabled Error

Disabled Disabled No

Disabled Supported No

Supported Supported Yes

Aschenbrenner842-3.book Page 269 Wednesday, April 18, 2007 3:19 PM

270 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Dialog Encryption
Dialog encryption is specified when you begin a new conversation with the target service with the
BEGIN DIALOG T-SQL statement. Here you use the ENCRYPTION = ON/OFF clause to specify if dialog
encryption should be used for the current conversation. When you use encryption, the whole mes-
sage body is encrypted with the session key (refer back to the “Service Broker Security Protocol”
section for more information).

This way, only the destination service can decrypt the message body. Because it has the corre-
sponding private key for the remote service binding user’s certificate, it can decrypt the KEK and
then decrypt the session key. After the message is decrypted, the receiver can use the signature of the
message to validate that the sender sent the message—the signature proves that the sender is in pos-
session of the private key.

Even when you specify ENCRYPTION = OFF in the BEGIN DIALOG T-SQL statement, the conversa-
tion might end up encrypted. Why? Because the presence of a remote service binding overrides
the ENCRYPTION = OFF option and enforces encryption on the conversation. Table 8-3 represents the
interaction between the ENCRYPTION option of BEGIN DIALOG and the presence of a remote service
binding (RSB).

Table 8-3. Remote Service Binding and Encryption

In the case when the BEGIN DIALOG T-SQL statement has an ENCRYPTION = ON clause (or the
ENCRYPTION clause is omitted) and there is no remote service binding present, the messages sent on this
conversation will be delayed. They will remain in sys.transmission_queue with a transmission_status
that indicates that a remote service binding is required.

At first glance, this seems wrong. Why is the ENCRYPTION = OFF option overridden by the pres-
ence of a remote service binding? The answer is that Service Broker has to consider the difference
between encryption being required by the application (development time) or encryption being
required by the environment (deployment time). The ENCRYPTION ON/OFF clause is hard-coded in the
application that issues the BEGIN DIALOG T-SQL statement. You cannot change it by configuration. As
such, this is the appropriate option to use if you determine at development time whether encryption
is required or not.

On the other hand, a remote service binding is a configuration option. You create it when the
application is deployed, and you can change it as conditions change in the environment in which
the application is running. Even if the application doesn’t require encryption, you can add it at
deployment time by creating a remote service binding if you determine that it is needed. When you

RSB Present No RSB

ENCRYPTION = ON Conversation is encrypted. Conversation is delayed.

ENCRYPTION = OFF Conversation is encrypted. Conversation is clear text.

ENCRYPTION clause omitted Conversation is encrypted. Conversation is delayed.

Aschenbrenner842-3.book Page 270 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 271

write an application, you have three different options to use ENCRYPTION in the BEGIN DIALOG T-SQL
statement:

• If there is no requirement for the conversations to be encrypted, then you should explicitly use
the ENCRYPTION = OFF clause: This allows an administrator to configure your application by
adding a remote service binding.

• If the application requires secure conversations, then you should use the ENCRYPTION = ON
clause in the application code: This forces the administrator to provide a remote service
binding at deployment time.

• If the ENCRYPTION clause is omitted, then it is equivalent to specifying ENCRYPTION = ON.
ENCRYPTION = ON is the default value.

Recommendation
In general, the overhead of encrypting all the network traffic is high enough that you should look
closely at whether or not to enable encryption on a connection. If your normal network security
is adequate to protect Service Broker data or if the data isn’t highly confidential, you probably
shouldn’t use encryption. Remember that authentication and signing of the data detects any data
alterations on the network, so the only thing encryption adds is privacy.

Many companies use virtual private networks (VPNs) or other technologies to protect network
data. If the data is already protected by one of these means, Service Broker encryption is probably
redundant. Remember that Service Broker defaults to the most secure options. You must con-
sciously decide that the default settings provide more security than required and configure a less
secure connection.

Transport Protocol
When you disable the transport encryption between two different deployed Service Broker services,
you’re able to trace the TCP traffic between those two services. In this section, I’ll show you how a
simple message exchange between two Service Broker services occurs at the TCP protocol level.
I won’t investigate things such as message fragmentation, acknowledgment messages, and so on,
because Microsoft doesn’t document them officially.

Setting Up Tracing
To sniff the Service Broker network traffic, you need a tool that can display the traffic on the wire. I’ve
chosen Microsoft Network Monitor 3.0. You can find more information about the Network Monitor
on http://blogs.technet.com/netmon. Figure 8-4 shows this tool in action.

Aschenbrenner842-3.book Page 271 Wednesday, April 18, 2007 3:19 PM

http://blogs.technet.com/netmon

272 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Figure 8-4. Microsoft Network Monitor 3.0

After you start a new capture with File ➤ New ➤ Capture, the first thing that you must do is add
a filter. You can use the filter to specify which TCP packages should be traced. As you can see in
Figure 8-4, I’ve chosen the following filter:

ipv4.DestinationAddress == 192.168.0.102

192.168.0.102 is the IP address where the CreditCardService is deployed in my network configura-
tion. After you apply the filter, you can start the trace and send a request message from the ClientService
to the OrderService. As soon as this message is sent, the ProcessOrderRequestMessages stored proce-
dure starts automatically (because of internal activation) and sends a separate message to the
CreditCardService and the AccountingService. If you’ve set up everything correct, Microsoft Network
Monitor should now show several TCP packages that are exchanged between your machine and the
machine where the OrderService is deployed.

Inside Microsoft Network Monitor, you must search through the captured frames until you find
the one where the message sent to the CreditCardService is contained. Figure 8-5 shows you the
hexadecimal details of this frame.

Aschenbrenner842-3.book Page 272 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 273

Figure 8-5. The TCP frame with the captured Service Broker message

The traced Service Broker message shown in Figure 8-5 contains the message header and the
message body.

The Captured Service Broker Message
The message header contains all the information Service Broker needs to route the message from
one Service Broker forwarder to the next until the message reaches its final destination. The current
scenario is very simple, because the message is sent directly from the initiator to the target, and no
Service Broker forwarders exist along the route. The message header of a Service Broker message
contains the following information:

• From service: Contains the name of the initiator service—in this case, OrderService

• To service: Contains the name of the target service—in this case, CreditCardService

• From broker instance identifier: The Service Broker GUID of the sending database

• To broker instance identifier: The Service Broker GUID of the receiving database

• Contract name: The name of the used contract

• Message type name: The name of the used message type

Aschenbrenner842-3.book Page 273 Wednesday, April 18, 2007 3:19 PM

274 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Let’s now take a look at where this information is located inside the captured TCP frame.
Table 8-4 shows the message header format.

Table 8-4. The Format of the Service Broker Message Header

When the first message is exchanged between the OrderService and the CreditCardService, the
To Broker Instance Identifier is omitted, because Service Broker can’t know the broker instance
identifier of the other Service Broker service. When you look into the captured TCP frame, you’ll find
the message header information starting with the To Service name (see Figure 8-6).

Figure 8-6. The captured Service Broker message header

Service Broker Message Header

To broker instance identifier

To service

From broker instance identifier

From service

Contract name

Message type name

Aschenbrenner842-3.book Page 274 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 275

As you can see from Figure 8-6, all information in the message header is transferred unencrypted
across the wire. That’s because transport encryption was disabled on the Service Broker endpoint. The
message payload—the request message that is sent from OrderService to CreditCardService—follows
the message header. Listing 8-16 shows the XML message. You can also find the message below the
selected header in the captured TCP frame from Figure 8-6.

Listing 8-16. The XML Message Sent to the CreditCardService Service

<CreditCardRequest>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 <Amount>204.95</Amount>
</CreditCardRequest>

Figure 8-7 shows the captured TCP frame that contains the response message sent back to the
OrderService by the CreditCardService.

Figure 8-7. The captured Service Broker response message

As you can see in Figure 8-7, the message header (the selected part of the TCP frame) now
contains the To Broker Instance Identifier (the first GUID in the selected part). This makes sense,
because when Service Broker sends the response message, the To Broker Instance Identifier
known from the first request message is sent to the CreditCardService (the From Broker Instance
Identifier). You might be asking where this Broker Instance Identifier is stored inside SQL
Server. Because a Service Broker service is always bound to a database, the sys.databases catalog
view contains a column named service_broker_guid. This column stores the Broker Instance
Identifier. When you capture the necessary TCP frames, you can compare the sent Broker
Instance Identifier with the values in sys.databases, and you’ll see that they’re identical.

This section was a small excursion through the Service Broker transport protocol. The most
important issue to remember here is that everyone is able to trace your Service Broker messages
when you don’t encrypt them! So please make sure that you encrypt your messages when they con-
tain sensitive data and are transferred across an unsecure connection.

Aschenbrenner842-3.book Page 275 Wednesday, April 18, 2007 3:19 PM

276 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Replaying Service Broker Messages
You might think that you can replay a Service Broker message with changed data when you capture
one in the network (and also when the message is not signed). However, Service Broker provides a
mechanism that prevents replaying captured messages.

Unlike initiator endpoints, target endpoints of a conversation are not deleted imme-
diately. When you open a new conversation and close it, you can see on the target side in the
sys.conversation_endpoints catalog view that the conversation is in the CLOSED state (state_desc
column). But the conversation endpoint is deleted at least 30 minutes after receiving the first
acknowledgment message for a message sent by the target. The threat Service Broker tries to
mitigate is the possibility that an attacker will capture a message on the wire and replay it later,
causing the opened dialog to perform the requested action again. Just imagine that you send a
message to request the withdrawal of money from your account . . .

When the initiator sends such a message, the target accepts it, performs the action, and finally
ends the dialog. Suppose that an attacker has intercepted this message and is capable of resending
it again. If the target endpoint was deleted, there would be no evidence in the database that this
dialog has already occurred once, so the target would be created again and the action would be
performed again. The attacker might repeat this again and again while the message is valid. The
messages have a timestamp on them, and the target accepts the messages with a timestamp toler-
ance of 30 minutes, so the attacker would be able to repeat the messages several times during those
30 minutes.

To prevent this, the target endpoint is not deleted for 30 minutes. If an attacker replays the mes-
sage during those 30 minutes, the endpoint already exists (in the CLOSED state), so the message will
be discarded. After 30 minutes, the target endpoint will be deleted, but by now the message will have
become out of date and won’t be accepted if replayed because the message timestamp has expired.

Replacing Certificates
By default, certificates expire and become unusable. In the previous examples, you created certifi-
cates without specifying an expiration date. In this case, the expiration date is set to one year after
the specified start date. If you want to specify a longer or shorter expiration period, the CREATE
CERTIFICATE T-SQL statement provides you the EXPIRY_DATE option, where you can specify the
needed expiration date of the certificate.

When a certificate is about to expire, you must replace it inside SQL Server 2005. How you do
this depends on whether the certificate was used for transport security or for dialog security. Let’s
have a look at each of these two different options.

Transport Security
If you have to change the certificate in a Service Broker endpoint, all connections to the endpoint
that don’t have the new certificate will fail to deliver messages. However, an open dialog between
two services won’t fail, so when you replace the certificate, the open dialog will continue from where
it left off. To avoid this, create a new certificate and send the public key certificate to all remote
connections.

The remote Service Broker can associate this new certificate with the user who represents the
SQL Server instance whose certificate will be changed. You can associate a user with multiple
certificates by using the AUTHORIZATION clause in the CREATE CERTIFICATE T-SQL statement. Once
all the remote endpoints have added the new certificate to their users, you can change the local
endpoint (the side where the initiator’s service lives) to point to the new certificate by using the

Aschenbrenner842-3.book Page 276 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 277

ALTER ENDPOINT T-SQL statement. Once all the endpoints are using the new certificate, you can drop
the old certificate from SQL Server 2005. This process can take a while, so don’t wait until the certif-
icate expires to change it.

Dialog Security
The certificates used for dialog security must also be replaced before they expire. This procedure
also takes advantage of the fact that a single user can own multiple certificates. The message trans-
mission logic chooses a private key certificate owned by the owner of the initiator’s service. If this
user owns more than one certificate, the certificate with the latest expiration date will be used. This
can cause problems, because when a new private key certificate is created for the user, the BEGIN
DIALOG T-SQL statement will immediately start using it because it will have the latest expiration date.

These dialogs will fail until the public key for this certificate is exported and distributed to the
target service. To get around this problem, the ACTIVE FOR BEGIN_DIALOG option on the CREATE
CERTIFICATE T-SQL statement will allow you to create a certificate but prevent its use in the BEGIN
DIALOG T-SQL statement until the target endpoint is ready. Listing 8-17 shows how you can use this
option when you create a new certificate inside SQL Server 2005.

Listing 8-17. The ACTIVE FOR BEGIN_DIALOG Option

CREATE CERTIFICATE OrderServiceCertPrivate2
 WITH SUBJECT = 'A new private certificate for the OrderService',
 AUTHORIZATION OrderServiceUser
 ACTIVE FOR BEGIN_DIALOG = OFF

Back up the public key portion of this new certificate, and import it as a new certificate owned
by the user who represents the initiator in the target database. When this is complete, the dialogs will
be able to use the new certificate. Use the option from Listing 8-18 to switch the BEGIN DIALOG T-SQL
statement to use the new certificate.

Listing 8-18. Using the New Certificate

ALTER CERTIFICATE OrderServiceCertPrivate2
 ACTIVE FOR BEGIN_DIALOG = ON

Now that both the initiator and the target are using the new certificate, drop the old certificate
from both the initiator and the target database. This won’t affect any existing dialogs, because they
already exchanged a session key. They no longer need the certificates. You must also replace the
certificate owned by the user who has the CONTROL permission of the target service, and you must
distribute the corresponding public key to the initiators of the service. You should do this by first
creating the private key certificate in the target database and then distributing the public key certif-
icate to the initiators, where it will be owned by the user specified in the REMOTE SERVICE BINDING for
the service.

Service Listing Manager
As you’ve seen, many steps are involved when you want to set up transport and dialog security.
Unfortunately, SQL Server 2005 ships without some of the tools for easily setting up Service Broker
security, creating routes between Service Broker services, and setting up the necessary permissions.
That’s bad, but the good thing is that the Service Broker development team provides a tool called
Service Listing Manager, through http://www.gotdotnet.com, for setting up and configuring Service

Aschenbrenner842-3.book Page 277 Wednesday, April 18, 2007 3:19 PM

http://www.gotdotnet.com

278 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

Broker security. In this section, I’ll give you an introduction to Service Listing Manager and show you
how you can use it to set up transport and dialog security in a few steps.

Service Listing Manager is a .NET Windows application that also uses some of the SQLCLR
features of SQL Server 2005. Figure 8-8 shows the startup screen of Service Listing Manager.

Figure 8-8. Running Service Listing Manager

Service Listing Manager is based on the Service Listing concept. A Service Listing is like an iden-
tity card for a service. It is an XML document that contains all the necessary information needed
to establish a conversation with a Service Broker service. When two Service Broker services need to
establish a connection between each other, they can exchange the Service Listing documents of the
two services, and the tool will create the entire infrastructure needed to establish a connection
between those two services. Optionally, the Service Listing Manager can also create the message
types and the contracts supported by the target service in the initiator service database.

When you want to establish a connection between your service and another Service Broker
service, you have to perform two steps:

1. Export a Service Listing: You have to export all the necessary security settings for your Service
Broker services into a Service Listing document. The exported Service Listing document
contains information such as the public key certificates used for transport and dialog
security, the needed routes, and the used message types and contracts.

2. Import a Service Listing: When you want to establish a connection with another Service
Broker service, you have to import the Service Listing document of this service. During the
import, the tool creates all the necessary certificates, routes, logins, and users and sets up
the required permissions.

When you set up a bidirectional connection between two Service Broker services (which is the
standard case with Service Broker), you have to export your own Service Listing document, and you
have to import the Service Listing document of the other Service Broker service and vice versa. Let’s
have a look at each of these two steps.

Aschenbrenner842-3.book Page 278 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 279

■Note In this section, I assume that you’ve set up an initiator service and a target service on different SQL Server
machines, without any security settings (transport security and dialog security). You’ll set up both transport security
and dialog security with the Service Listing Manager.

Exporting a Service Listing
To export a Service Listing from an existing Service Broker service, you have to connect to your SQL
Server instance and select the service from the correct database. Then use the Export button from
the menu bar. In this case, Service Listing Manager starts the Export Service Listing Wizard, as shown
in Figure 8-9.

Figure 8-9. Exporting a Service Listing

The Export Service Listing Wizard ensures that the necessary requirements are met before cre-
ating the Service Listing:

• It ensures that the needed database master key is created in the application database and also
inside the master database.

• It ensures that a certificate is created for the service owner.

• It ensures that a Service Broker endpoint is created.

If you haven’t already created a database master key in your Service Broker database, then the
Export Service Listing Wizard will ask you to supply a password for the database master key that it
creates automatically. Next, the Export Service Listing Wizard asks for a new certificate name if you
haven’t yet created a certificate for the exported Service Broker service.

Aschenbrenner842-3.book Page 279 Wednesday, April 18, 2007 3:19 PM

280 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

The Export Service Listing Wizard then asks you to create a Service Broker endpoint for the SQL
instance where the Service Broker service is deployed. Here you can supply an endpoint name and a
TCP port number, and you can choose between Windows-based transport security and certificate-
based transport security. If you choose certificate-based transport security, you have to supply the
correct certificate used for transport security. In the final step, the Export Service Listing Wizard dis-
plays the Service Listing document that was created from the service definition and your inputs.
You’re also able to save the Service Listing document to the file system. The Service Listing docu-
ment is an XML file that describes your exported Service Broker service. Listing 8-19 shows the most
important information of the exported Service Listing document for OrderService.

Listing 8-19. The OrderService Service Listing Document

<definition author="vista_notebook\Klaus Aschenbrenner">
 <message
 name="http://ssb.csharp.at/SSB_Book/c08/OrderRequestMessage"
 validation="XML" />
 <message
 name="http://ssb.csharp.at/SSB_Book/c08/OrderResponseMessage"
 validation="XML" />
 <contract name="http://ssb.csharp.at/SSB_Book/c08/OrderContract">
 <message
 name="http://ssb.csharp.at/SSB_Book/c08/OrderRequestMessage"
 sent-by="INITIATOR" />
 <message
 name="http://ssb.csharp.at/SSB_Book/c08/OrderResponseMessage"
 sent-by="TARGET" />
 </contract>
 <service
 name="OrderService"
 broker-instance="40E889B4-4802-41FE-8460-5E4B821D8BE9"
 public-access="No">
 <contract name="http://ssb.csharp.at/SSB_Book/c08/OrderContract" />
 <certificate
 issuer-name="Private certificate for OrderService"
 serial-number="...">
 <blob>...</blob>
 </certificate>
 </service>
 <endpoint
 machinename="VISTA_NOTEBOOK"
 tcp-port="4740"
 authentication="CERTIFICATE"
 encryption="RC4"
 public-access="No">
 <certificate
 issuer-name="For Service Broker authentication"
 serial-number="...">
 <blob>...</blob>
 </certificate>
 </endpoint>
</definition>

Aschenbrenner842-3.book Page 280 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c08/OrderRequestMessage
http://ssb.csharp.at/SSB_Book/c08/OrderResponseMessage
http://ssb.csharp.at/SSB_Book/c08/OrderContract
http://ssb.csharp.at/SSB_Book/c08/OrderRequestMessage
http://ssb.csharp.at/SSB_Book/c08/OrderResponseMessage
http://ssb.csharp.at/SSB_Book/c08/OrderContract

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 281

As you can see from Listing 8-19, the Service Listing document contains the following XML nodes:

• <message>: Contains all the message types used by the exported Service Broker service.

• <contract>: Contains all the contracts used by the exported Service Broker service.

• <service>: Contains information about the exported Service Broker service. It also contains the
<certificate> node. This node contains the public key certificate used by dialog security.

• <endpoint>: Contains information about the created Service Broker endpoint, such as the
used TCP port, the authentication mode, and the used encryption algorithm. If you use
certificate-based authentication, then there is also a <certificate> node that contains the
public key certificate of the certificate used for transport security.

■Note Please make sure to export the Service Listing document on both the initiator and the target side.

Importing a Service Listing
As soon as you export the Service Listing document, you can distribute it to the Service Broker ser-
vice with which you want to establish a connection. You can exchange the Service Listing document
in any way you want—whether by email or FTP, it doesn’t matter.

When you get the Service Listing document from the other Service Broker service, you have to
open it inside Service Listing Manager. Service Listing Manager shows you graphically the definition
of the other Service Broker service (see Figure 8-10).

Figure 8-10. The Service Listing to import

Aschenbrenner842-3.book Page 281 Wednesday, April 18, 2007 3:19 PM

282 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

To start the import of the Service Listing document, click on the Import button in the menu bar.
This starts the Service Listing Import Wizard, which provides three different deployment options in
the first step:

• Initiator at Target: The service in the Service Listing is an initiator service that needs to access
a target service. This option deploys the proxy user and certificate, grants the SEND permission
on a selected target service, and deploys the routing information.

• Target at Initiator: The service in the Service Listing is a target service that needs to be
accessed by an initiator service. This option deploys the proxy user and certificate, the
remote service binding, and the routing information.

• Endpoint: This additional option deploys the Service Broker endpoint proxy login and certif-
icate, and it grants the CONNECT permission on the Service Broker endpoint. This option allows
the SQL Server instance that hosts the service in the Service Listing to connect to the selected
SQL Server instance. This option needs to be run only once per pair of SQL Server instances.

Initiator at Target
When you import a Service Listing document of an initiator service at a target service, you must con-
figure the target service settings in the next step of the Service Listing Import Wizard (see Figure 8-11).

Figure 8-11. Initiator at Target

You have to provide the following information:

• Target service: The service in the Service Listing document is granted the permissions
required to begin a dialog with the provided target service.

• Proxy user: This database user represents the initiator service in the database of the target
service.

• Certificate name: The public key certificate used by the service in the Service Listing docu-
ment is imported in the target database under the specified name.

Aschenbrenner842-3.book Page 282 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G 283

In the next step of the Service Listing Import Wizard, you have to provide the name of the route
that points back to the initiator service. You configure Service Broker endpoint settings in the next
step. You have to provide the following information:

• Proxy login: This login represents the SQL Server instance in the Service Listing document.

• Login password: The password for the login is used in the certificate-based transport
authentication.

• Certificate name: The certificate used by the SQL Server instance in the Service Listing
document is imported in the master database under this name.

• Service Broker endpoint name: The SQL Server instance in the Service Listing document is
granted the CONNECT permission on this endpoint.

Finally, you can drop any existing objects with the same names, as defined through the Service
Listing Import Wizard, from the SQL Server database where you import the Service Listing docu-
ment. This makes sense when you import the same Service Listing document several times.

Target at Initiator
When you import a Service Listing document of a target service to an initiator service, you have
to supply the initiator service settings in the first step of the Service Listing Import Wizard (see
Figure 8-12).

Figure 8-12. Target at Initiator

Aschenbrenner842-3.book Page 283 Wednesday, April 18, 2007 3:19 PM

284 C H A P T E R 8 ■ A D V A N C E D D I S T R I B U T E D S E R V I C E B R O K E R P R O G R A M M I N G

You must supply the following settings:

• Remote service binding name: Service Broker uses this remote service binding when initiating
dialogs with the target service defined in the Service Listing document.

• Proxy user: This user represents the target service from the Service Listing document.

• Certificate name: The target service in the Service Listing document uses this certificate.

• Anonymous remote service binding: This indicates if you want to use an anonymous remote
service binding.

• Import service interface: This indicates if you want to import the service interface (such as
message types contracts) of the target service.

In the next step of the wizard, you have to select a name for the route from the initiator service
to the target service. Finally, you can configure the Service Broker endpoint settings. You have to
provide the following information:

• Authentication type: You can choose between Windows-based and certificate-based
authentication.

• Proxy login: This login represents the SQL Server instance in the Service Listing document.

• Login password: The password is used for login in certificate-based endpoint authentication.

• Certificate name: The certificate name used by the SQL Server instance in the Service
Listing document is imported in the master database under this name.

• Service Broker endpoint name: The SQL Server instance in the Service Listing document is
granted the CONNECT permission on this Service Broker endpoint.

Finally, you can also drop any existing objects with the same names, as defined through the
Service Listing Import Wizard, from the SQL Server database from which you imported the Service
Listing document. This makes sense when you import the same Service Listing document several
times. After you import the opposite Service Listing document (on each side), the necessary Service
Broker infrastructure between your two Service Broker services is set up, and you can exchange mes-
sages between these two Service Broker services. Easy, isn’t it?

Summary
This chapter provided more detailed information about Service Broker security and distributing
Service Broker services. You learned about special routes, such as the LOCAL and TRANSPORT routes.
You then learned about dialog security, which provides better performance for your Service Broker
application when you want to route encrypted messages across several Service Broker forwarders.

This chapter also discussed encryption and described the differences between transport and
dialog encryption. Without using encryption, everyone can trace and interpret Service Broker mes-
sages sent across the network. You also saw a short introduction to the TCP transport protocol used
by Service Broker. If you use certificates for encryption, eventually the certificates will expire, and
you must replace them with new ones. You saw the necessary steps for this.

Finally, this chapter looked at the Service Listing Manager. With this graphical tool, you can dis-
tribute Service Broker services to different SQL Server machines without writing tons of T-SQL code
for creating certificates, logins, and users and for setting permissions needed by Service Broker. You
simply export the settings of a Service Broker service and import them on the other side. In the next
chapter, you’ll learn about Service-Oriented Database Architecture (SODA) and how Service Broker
fits into this new architectural trend.

Aschenbrenner842-3.book Page 284 Wednesday, April 18, 2007 3:19 PM

285

■ ■ ■

C H A P T E R 9

Service-Oriented Database
Architecture

In this chapter, you’ll learn how to build SODA database applications. This chapter will cover the
following topics in detail:

• Service-Oriented Database Architecture: SODA is a new concept and builds on the foundation
of SOA. With SODA, you can build, deploy, and run SOA applications directly inside a data-
base, such as SQL Server 2005.

• Data in SODA: When you implement SODA applications, you deal with data outside and
inside service boundaries.

• SODA features in SQL Server 2005: SQL Server provides you with several features to imple-
ment SODA. You’ll get an introduction to them by using them in applications.

Service-Oriented Database Architecture
The dominant client/server and n-tier application architectures of the last decades raised serious
scalability and availability issues. One of the major problems was that data tended to be stored in
massive, centralized databases that all client components had direct access to. Virtually all com-
munication with the database was in the form of SQL statements (or batches of them in stored
procedures), producing a set of data for a specific task as a result.

Other problems arose when trying to incorporate legacy systems into newer applications. After
decades of deploying a wide variety of systems using various proprietary technologies and plat-
forms, the world was full of systems that did their job perfectly well but had no clear path to interact
with other applications in an increasingly connected environment. Providing the agility needed by
today’s applications has been extremely difficult. Business-to-business (B2B) interactions compli-
cate things even further, requiring standard, reliable ways of conducting business electronically.
Clearly, systems that meet the needs of today’s global business environments require an architec-
ture that uses legacy systems efficiently and provides an agile commerce infrastructure.

Aschenbrenner842-3.book Page 285 Wednesday, April 18, 2007 3:19 PM

286 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

SOA
In response to these problems, the past several years have seen the emergence of large-scale, loosely
coupled, and distributed system architectures. SOA has emerged as the dominant, loosely coupled,
service-centric architecture. Applications based on SOA are more resistant to failure, can be more
easily scaled up by adding resources to meet changing demands, and support more flexible integra-
tion of legacy systems.

SOA service providers, consumers, and other components handle data as a natural feature of
their roles in an SOA application. An SOA application typically still uses central databases to store
and protect data, but is likely to use several large databases that hold classes of data—for example,
separate databases for sales, manufacturing, and operations data and specialized subsets of each.
Each service provider and consumer may have a localized need for cached data or its own special-
ized data store. Also, the messages that travel between the disparate parts of an application are
themselves often data that is worth archiving. The “Data in SODA” section looks at the different
kinds of data in SOA and SODA.

Figure 9-1 shows a few of the endpoints that might make up a loosely-coupled application
based on SOA. A service consumer, which could be a client application, a server application such as
a web server, or any other kind of application, sends a message to a service provider. In complex sys-
tems, a message router might initially receive the message and apply some logic to route the request
to the appropriate service provider. The service provider would then receive the message, perhaps
unpack and reformat it, do whatever work is required for the message, and then send a response
message back to the service consumer.

Figure 9-1. An application based on SOA principles

The important detail in Figure 9-1 is that each node in the transaction receives, stores, and
transmits data in various forms. Sometimes the data is transient; at other times, each node might
persist the data either to a cache or to its own local database. In light of these new ways of handling
data within an application, the databases at the core of SOA applications face a different set of

Aschenbrenner842-3.book Page 286 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 287

challenges than they did with monolithic, n-tier applications. Data integrity is just as important as
ever, but now there are additional requirements:

• The database must operate in an environment where requests come from XML-based
messages rather than dedicated connections from client applications.

• Repositories of cached data need to know when to refresh the data more dynamically than
just doing a refresh on a set schedule.

• The database has to participate in dialogs that must occur in a set sequence.

• Complex logic must be hosted in or near the database.

XML makes a good message format for widely distributed systems. Almost any system can parse
it easily, and it has a schema-modeling language to define the proper structure of the data. Systems
exchanging messages can attach information to an XML message so that data accumulates in the
message as it flows through the system. Systems can parse and process what they understand and
ignore the rest. Simply put, XML is a highly adaptable format to support distributed systems.

Reasons for SODA Architectures
Microsoft recognized these architectural trends and built SQL Server 2005 to meet new challenges
while continuing to support the many existing non-SOA applications. Many of the new features in
SQL Server 2005 are part of an integrated architectural design that supports the use of the database
as an SOA service provider. The SQL Server team at Microsoft calls this Service-Oriented Database
Architecture, or SODA. There are a number of compelling reasons for implementing SOA features
directly in the database engine, including the following:

• Scaling up and down: In even the largest enterprise SOA application, an individual service
might be instantiated at almost any scale; a lightly used service might have less activity than
a typical small departmental database. Integration with SQL Server means that a service pro-
gram can take advantage of all the native support for scaling from embedded devices to the
most substantial enterprise database server, without increasing administrative complexity.
Service logic code can execute at any scale, and any implementation can scale out to a sepa-
rate middle tier at deployment time. With SQL Server 2005, service logic can scale out to a
separate middle tier at deployment time and can run either in the data tier or be deployed in
the middle tier. If you design an application carefully, choosing how to scale can be a deploy-
ment decision rather than a design or development-time decision.

• Scaling out: You can scale out data-centric computing in a number of different ways, gen-
erally either by scaling out the database or by distributing the processing based on SOA
principles. Scaling out the database results in a database cluster that is relatively tightly
coupled, while the service-oriented solution is more loosely coupled. Building support for
SOA directly in the database reduces the component processes required for a true grid
solution.

• Messages are data: Request and response messages are data that may have enough value to be
archived in a database. Keeping messages available over time provides a history that allows
you to audit and analyze business transactions. Because messages are stored in tables and
have system catalog views available, you can easily use T-SQL to see the status of any part of
the overall system.

Aschenbrenner842-3.book Page 287 Wednesday, April 18, 2007 3:19 PM

288 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

These are enormous benefits to implementing SOA features in SQL Server so that it can act as a
stand-alone service provider for an SOA application. But to do so, it must be able to act like a service
provider, which demands a minimum set of capabilities.

Requirements for a SODA Service Provider
For SQL Server 2005 or any database engine to take on a role as a stand-alone SOA service program,
it must implement several features beyond its native ability to handle data:

• Endpoint support: The SODA provider must provide support for communication to receive
and transmit messages, typically as a TCP socket, HTTP GET or HTTP PUT, SOAP endpoint, or
other type of endpoint.

• Service request processing: Most messages in SOA are formatted using XML, so the service
provider must be able to process and possibly transform the enclosed data into other forms
as needed by the components that make up the service. It must also be able to participate
in complex dialogs and conversations as interdependent messages are received and sent to
other components.

• Service logic hosting: The provider must be able to perform whatever complex logic is required
to process the message and provide the necessary response, as well as possibly coordinate the
input of several other services. This may require common application server tasks, such as
pooling resources, activation, and scaling out logic processing.

The various new features of SQL Server 2005 provide support for these functions, besides plenty
of other infrastructure to support data management. For example, a service provider must securely
participate in an SOA system and be able to authenticate clients and in turn provide credentials to
authenticate itself to others, provide durability, participate in conversations and transactions, and per-
form other application-level features. SQL Server 2005 built on the features of the SQL Server 2000
relational database engine as well as interim releases of new technologies since its original release,
such as SQLXML 3.0, Notification Services, and other tools, to fully realize a Service-Oriented Database
Architecture.

Data in SODA
When exploring the concepts behind SODA, it quickly becomes clear that each component in the
overall system includes receiving, processing, and transmitting data among its primary functions.
Even if a service provider’s response to a message sent from a service consumer is to simply flip a bit
to turn something on or off without interacting with a database, the service provider must process
the data in the message in order to determine the work that is to be done. However, modern busi-
ness applications deal extensively with data, so it’s common for a SODA component to have access
to either a local or centralized database, or frequently both. It’s important to make a distinction
between the data inside of services and the data outside of services. Let’s have a more detailed look
at data outside of a service and data inside of a service.

Aschenbrenner842-3.book Page 288 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 289

Outside Data
Data outside a service is sent between services as messages and must be defined in a way under-
standable to both the service consumer and the service provider. The need to interpret the data in
at least two different services makes the existence and availability of a common schema impera-
tive. The schema should also have certain characteristics. First, independent schema definition is
important. This means the sender and the receiver of a message should be able to define message
schemas without having to consult each other. Second, the message schema should be extensible.
Extensibility allows the service provider to add information to the message beyond what is speci-
fied in the schema.

■Note The sender of the message may or may not be the definer of the message schema.

Sending Messages
Every message traveling through a network may be retransmitted in the event that the message is
lost. Every message sent is guaranteed to be delivered zero or more times. Considerations are based
on the following events:

• Networks losing messages

• Networks retrying messages

• Retries actually being delivered

It is important for retransmitted messages to remain unaltered no matter how many times they
are sent. Therefore, all messages should be immutable.

IMMUTABLE DATA

Data exists in many forms. One type of data is immutable data. Essentially, immutable data is unchangeable once it
is written. You can find immutable data almost anywhere in the real world: the first edition of a published book is
unchangeable, the words spoken by the United States president on television are unchangeable, and the past stock
prices of a company are unchangeable.

All immutable data has identifiers. An identifier ensures the same data is returned each time it is requested, no
matter when it is requested or where it is requested. Therefore, if the same identifier is used, then the same data is
returned.

Aschenbrenner842-3.book Page 289 Wednesday, April 18, 2007 3:19 PM

290 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Reference Data
Reference data is information published across service boundaries. For each collection of reference
data, one service creates it, publishes it, and periodically sends it to other services. There are three
broad uses for reference data:

• Operands: Operands add crucial information, such as parameters or options, to the operator
requests sent out for processing. Examples of operands are the customer ID for the customer
placing the order, the part numbers for the parts being ordered, or the expected shipment
date and the price agreed to for the order.

• Historical artifacts: Historical artifacts are another type of reference data. Their purpose is
documenting past information within a transmitting service. Related services receive and
use historical artifacts to perform other business operations. Examples of historical data
include quarterly sales results, monthly banking statements, and monthly bills.

• Shared collections of data: Reference data sometimes shares the same collection of data
across an enterprise or different enterprises. Even after this collection of data is accessed
across an enterprise, it continues to evolve and change. Typically, one special service owns
this information and is responsible for updating and distributing new versions of the data
across systems. Examples of shared collections of data include customer databases (which
contain all the relevant information about the customers of the enterprise), employee data-
bases (which contain information about every employee in the enterprise), parts databases,
and price lists.

Inside Data
Unlike data outside of services, data on the inside is private to the service. In fact, it is only loosely
correlated to the data on the outside. Data on the inside is always encapsulated by service code, so the
only way of accessing it is through the business logic of the service. Data on the inside comprises
the tables where you store your transactional data. Just think back to the CreditCardTransaction table
from Chapter 6, where you implemented the CreditCardService.

Messages
All services receive messages. These messages contain operations asking the service to perform a
function. The function may be a business instruction or perhaps a product order. The function may
also be to accept some incoming reference data.

Once a service receives messages, it records and commits them as data in a database table.
This ensures that the data is stored and retrievable. In the next step, a transaction takes place that
marks the incoming messages as consumed. As a part of the transaction, outgoing messages are
queued in the local database for later transmission. Finally, the whole transaction is committed. If
the transaction terminates before the entire operation is committed, the incoming message will
reappear in the queue, and the transaction will be retried. With the possibility that a transaction

Aschenbrenner842-3.book Page 290 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 291

may abort, outgoing messages are never sent until the transaction is processed to ensure message
transmission is atomic with the rest of the transaction. If, for instance, a message is sent and then
the transaction is aborted, the message may still be processed even when the transaction fails. The
atomicity of the transaction is violated in this situation, because the transaction has not been
completely undone.

In addition to the transactional support achieved by storing incoming messages in the data-
base, there are also business benefits. The contents of the messages can be easily retrieved for
different purposes, such as audits and business intelligence analysis. As an added benefit, data in a
database allows for management and monitoring of the ongoing work to be based on SQL queries.

Reference Data
You use reference data to create service requests, such as a product catalog. Reference data must be
in a format that is usable by both the service provider and the service consumer and is identified in
a way that doesn’t change over time, such as a catalog date. Reference data may also be imported
into a service. As it is read into a service, it may be processed, reformatted, and indexed. Reference
data stored in the service remains immutable. While the syntax and the internal representation of
the reference data may be changed to suit the needs of the service, the semantics remain intact and
are considered a representation of the same immutable data.

Activity Data
Activity data is data used to perform a specific activity, such as a pick list that is used to retrieve
purchased items from an inventory. Since it is private to the service, other services don’t need to
understand the format. The lifetime of activity data is generally bound to the executed business
transaction.

Resource Data
Resource data is long-lived data that is used internally by a service, such as a Stock Keeping Unit
(SKU), customer data, or accounting data. The format and the update period of resource data is an
internal detail left up to the service.

Service Interaction Data
Service interaction data is used to communicate between services. It must be in a format that all
incorporated services understand, and it must remain constant over time. For example, an order
form is communicated between services. If the order is lost, it must be able to be regenerated in the
same form as the original and transmitted again.

Aschenbrenner842-3.book Page 291 Wednesday, April 18, 2007 3:19 PM

292 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

SODA Features in SQL Server 2005
Now that you’ve had a short tour of the different types of data encountered in SODA architectures, let’s
concentrate on the SQL Server 2005 features that make it possible to create a SODA architecture:

• XML support: SQL Server 2005 provides the new XML data type. This data type makes it pos-
sible to store XML data directly in the database and execute queries against the stored XML
data. SQL Server 2005 makes it also possible to modify XML data directly inside the database,
without leaving the database.

• Native web services: Native web service support allows message-based communication
based on SOAP and other protocols that take advantage of the Windows Server 2003 HTTP
kernel-mode driver, http.sys. With this support, you’re now able to publish stored proce-
dures that implement Service Broker message-sending logic directly as a web service that
can be used by other client applications that have no direct access to the SQL Server where
your Service Broker application is deployed.

• SQLCLR: SQL Server provides support for integrating the .NET runtime into the database.
You can use the SQLCLR feature of SQL Server to write .NET code that runs within a SQL
Server process. With .NET code executed in the database, you can increase the perfor-
mance, the functionality, and the maintainability of your Service Broker applications
compared to those implemented completely in T-SQL.

• Query notifications: One of the most useful ways to improve the performance of a widely
distributed, loosely coupled application is to cache data. Such a system needs a way to
refresh data when the data has changed at the source. Query notifications provide you a
way to become informed automatically when your cached data has changed.

• Service Broker: Service Broker acts as an asynchronous, reliable, and secure message bus in
SODA architectures. As you’ve already seen from the previous chapters, you can easily build
powerful, distributed solutions based on Service Broker. In SODA-based architectures, Service
Broker acts as a reliable messaging bus.

As you can see, SQL Server 2005 provides a lot of new technologies and functionalities. But you
can only take best advantage of them by using the technologies in conjunction to implement SODA
applications. In the next sections, I’ll show you how you can incorporate these features into the
OrderService from the previous chapters to make it a more SODA-based one.

XML Support
SQL Server 2005 is the first version of SQL Server that supports storing native XML data directly in
the database. In the previous versions of SQL Server, you had to store XML data in data types such
as NVARCHAR. The XML data type lets you store XML documents and fragments in a column. An XML
fragment is an XML instance that is missing a single top-level element. You can create columns,
parameters, and variables of the XML data type and store XML instances in them. Note that the stored
representation of the XML data type cannot exceed 2 GB per instance.

You can also optionally associate an XML schema collection with a column, a parameter, or a
variable of the XML data type. The schemas in the collection are used to validate and type the XML
instance stored in the XML data type. In this case, the XML is said to be typed; otherwise, it’s untyped.

The XML data type provides methods to query and transform the XML data directly inside SQL
Server 2005. These methods are convenient, considering that Service Broker sends messages as XML
data. In this case, you can process and create messages for other Service Broker services directly
inside SQL Server 2005 without leaving SQL Server 2005 for further message processing.

Aschenbrenner842-3.book Page 292 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 293

XML Data Type Methods
The XML data type also offers so-called data type methods. With these data type methods, you’re able
to query and modify the XML data type instance directly inside SQL Server 2005. The XML data type
offers you the following five data type methods:

• query(): Use this method to execute an XQuery-based query over an XML instance. The result
of the query is also XML data.

• value(): Use this method to retrieve a scalar SQL Server value from an XML instance.

• exist(): Use this method to determine whether a query returns a non-empty result.

• modify(): Use this method to specify XML Data Modification Language (DML) statements
to perform updates in the XML instance.

• nodes(): Use this method to shred XML into multiple rows to propagate parts of XML docu-
ments into row sets.

Let’s take a more detailed look at each of these methods.

query()

With the query() method, you can execute an XQuery statement over an XML instance. Listing 9-1
shows a simple example of this method.

Listing 9-1. Using the query() XML Data Type Method

DECLARE @myDoc XML
SET @myDoc =
'<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
</OrderRequest>'

Aschenbrenner842-3.book Page 293 Wednesday, April 18, 2007 3:19 PM

294 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

-- Extracting some information from the XML data
SELECT
 @myDoc.query('/OrderRequest/Customer') AS 'Customer',
 @myDoc.query('/OrderRequest/Product') AS 'Product',
 @myDoc.query('/OrderRequest/CreditCard') AS 'CreditCard',
 @myDoc.query('/OrderRequest/Shipping') AS 'Shipping'
GO

Figure 9-2 shows the result of the T-SQL batch from Listing 9-1.

Figure 9-2. Using the query() XML data type method

value()

With the value() method, you can perform an XQuery statement against an XML instance. value()
returns a scalar SQL Server value as a result. You typically use this method to extract a value from an
instance stored in an XML column, parameter, or variable. In this way, you can specify SELECT queries
that combine or compare XML data with data in non-XML columns. Listing 9-2 shows how you can
use this method to work with XML data.

Listing 9-2. Using the value() XML Data Type Method

DECLARE @myDoc XML
-- @myDoc is initialized as in Listing 9-1
SELECT
 @myDoc.value('/OrderRequest[1]/CreditCard[1]/Holder[1]',
 'NVARCHAR(256)') AS 'CreditCardHolder',
 @myDoc.value('/OrderRequest[1]/CreditCard[1]/Number[1]',
 'NVARCHAR(256)') AS 'CreditCardNumber',
 @myDoc.value('/OrderRequest[1]/CreditCard[1]/ValidThrough[1]',
 'NVARCHAR(256)') AS 'ValidThrough',
 @myDoc.value('/OrderRequest[1]/Product[1]/Quantity[1]',
 'INT') AS 'Quantity',
 @myDoc.value('/OrderRequest[1]/Product[1]/Price[1]',
 'DECIMAL(18, 2)') AS 'Price',
 @myDoc.value('/OrderRequest[1]/Customer[1]/CustomerID[1]',
 'NVARCHAR(256)') AS 'CustomerID',
 @myDoc.value('/OrderRequest[1]/Product[1]/ProductID[1]',
 'INT') AS 'ProductID'

Figure 9-3 shows the result of the T-SQL batch from Listing 9-2.

Figure 9-3. Using the value() XML data type method

exist()

With the exist() method, you can check if a specific element or value is stored inside an XML
instance. This method is easy to use, as you can see in Listing 9-3.

Aschenbrenner842-3.book Page 294 Wednesday, April 18, 2007 3:19 PM

mailto:@myDoc.query('/OrderRequest/Customer
mailto:@myDoc.query('/OrderRequest/Product
mailto:@myDoc.query('/OrderRequest/CreditCard
mailto:@myDoc.query('/OrderRequest/Shipping
mailto:@myDoc.value('/OrderRequest
mailto:@myDoc.value('/OrderRequest
mailto:@myDoc.value('/OrderRequest
mailto:@myDoc.value('/OrderRequest
mailto:@myDoc.value('/OrderRequest
mailto:@myDoc.value('/OrderRequest
mailto:@myDoc.value('/OrderRequest

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 295

Listing 9-3. Using the exist() XML Data Type Method

DECLARE @myDoc XML
-- @myDoc is initialized as in Listing 9-1
SELECT
 @myDoc.exist('/OrderRequest[1]/CreditCard') AS 'CreditCardAvailable',
 @myDoc.exist('/OrderRequest[1]/Inventory') AS 'InventoryDataAvailable'

Figure 9-4 shows the result of the T-SQL batch from Listing 9-3.

Figure 9-4. Using the exist() XML data type method

modify()

With the modify() method, you can modify an XML instance directly inside SQL Server 2005. This
method takes an XML DML statement to insert, update, or delete nodes from XML data. You can
only use the modify() method with the SET clause in the UPDATE T-SQL statement. See Listing 9-4.

Listing 9-4. Using the modify() XML Data Type Method

DECLARE @myDoc XML
-- @myDoc is initialized as in Listing 9-1
SET @myDoc.modify('insert <MyNewNode></MyNewNode> as first into (/OrderRequest)[1]')
SELECT @myDoc

nodes()

The nodes() method is useful when you want to shred an XML instance into relational data. It allows
you to identify nodes that will be mapped into a new row. The result of the nodes() method is a result
set that contains logical copies of the original XML instance. See Listing 9-5.

Listing 9-5. Using the nodes() XML Data Type Method

SELECT T.c.query('.') AS result FROM @myDoc.nodes('/OrderRequest') T(c)

Native Web Services
For years, the only real way to communicate from a client to a server running SQL Server was by using
the proprietary Tabulator Data Stream (TDS) protocol of SQL Server. TDS is still the fastest and most
efficient data access method, but to communicate with the server, the client must have the proper
libraries installed. Sometimes, SQL Server clients must use Microsoft Data Access Components
(MDAC). The MDAC stack is installed on the client computer that connects to SQL Server. For SQL
Server 2005 to be a full SODA service provider, it must support standards-based protocols to provide
endpoints for accepting and processing service requests for any kind of service consumer.

The SQLXML extensions to SQL Server 2000 laid the foundation for this feature by including
an Internet Server API (ISAPI) filter to use with Internet Information Services (IIS) to allow HTTP
web service-based communication with SQL Server. SQL Server 2005 supports a formal endpoint
abstraction that you can use to support a variety of endpoint types, including TDS, database mirror-
ing, web services, and Service Broker. The HTTP endpoint allows the SQL Server instance to serve as
a service provider for any kind of application on any kind of device that has support for web services
over HTTP.

Aschenbrenner842-3.book Page 295 Wednesday, April 18, 2007 3:19 PM

mailto:@myDoc.exist('/OrderRequest
mailto:@myDoc.exist('/OrderRequest
mailto:@myDoc.modify
mailto:@myDoc.nodes('/OrderRequest

296 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

http.sys
Full native web service access requires that SQL Server 2005 be installed on Windows Server 2003 to
take advantage of the Windows Server kernel-mode driver, http.sys. SQL Server can register in this
kernel-mode driver to reserve portions of the URL namespace. Figure 9-5 shows the tight integration
and direct connection between the kernel-mode driver and the SQL Server database. When the
HTTP listener detects an HTTP request over a configured port, it routes the request directly to the
endpoint that you define within SQL Server. SQL Server then does whatever processing is required
and returns a response back to the caller.

Figure 9-5. Integration of the kernel-mode driver http.sys in SQL Server 2005

Because the installation doesn’t require IIS and because requests are sent directly from the
kernel-mode driver http.sys to SQL Server, such requests are efficient and simple to administer.
http.sys provides kernel-based process isolation between the various applications that might own
different portions of the URL namespace. Therefore, different endpoints in the same and other
instances of SQL Server cannot interfere with each other.

HTTP Endpoints
To use native web services in SQL Server 2005, an HTTP endpoint must be established at the server.
This endpoint is essentially the gateway through which HTTP-based clients can query the server. After
you establish an HTTP endpoint, you can add stored procedures and user-defined functions to make
them available to endpoint users. This can occur when the endpoint is either created or updated.
When procedures and functions are enabled, they are specified as web methods. A collection of Web
methods that are designed to be used together can be called a web service.

You can describe these web services by using the Web Services Description Language (WSDL)
format. The WSDL format is generated by an instance of SQL Server and returned to SOAP clients for
any HTTP endpoint on which WSDL generation is enabled, as shown in Figure 9-6. If required, the
WSDL format can be a custom solution instead of one generated by SQL Server. The endpoint can
optionally be configured to not answer WSDL requests.

Aschenbrenner842-3.book Page 296 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 297

Figure 9-6. HTTP endpoints in SQL Server 2005

A web method that is bound to an HTTP endpoint can be a stored procedure or a scalar-valued
user-defined function. The name of the method within SQL Server doesn’t have to be the same as
the publicly defined web method name. The implementation of the web method doesn’t have any
code to parse the request or to format the result for return to the service consumer, because SQL
Server 2005 manages that functionality for you.

Endpoints support basic authentication, digest authentication, Windows integrated authenti-
cation (NTLM or Kerberos), and SQL Server authentication, but they don’t support anonymous
requests. This selection of authentication methods supports almost any client in a mixed-platform
SODA application. You can use Windows integrated authentication with Windows consumers, and
you can use SQL Server authentication for all other consumers. SQL Server 2005 also supports the
Web Services Security (WS-Security) specification, so you can pass credentials by using the user-
name token headers for SQL Server authentication. You can further restrict or allow requests based
on the consumer’s IP address.

HTTP endpoints are off by default, so a newly installed SQL Server instance is secure by default.
This means that attacks aren’t possible unless an administrator explicitly enables HTTP endpoints.
Only members of the SYSADMIN fixed server role or the endpoint creator can initially connect to the
endpoint. Other users can connect to the endpoint when you explicitly grant permissions, by using
the GRANT CONNECT T-SQL statement. As with any HTTP connection, you can secure the channel by
using Secure Sockets Layer (SSL) to protect any clear-text credentials that some of the authentica-
tion methods transmit. You can activate an HTTP endpoint through the SQL Server utility SQL Server
2005 Surface Area Configuration, as shown in Figure 9-7.

Aschenbrenner842-3.book Page 297 Wednesday, April 18, 2007 3:19 PM

298 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Figure 9-7. Managing HTTP endpoints

As soon as you enable an HTTP endpoint, the endpoint is accessible from a client application.

Namespace Reservation
An HTTP endpoint uses a URL namespace that is reserved in the kernel-mode driver http.sys. URL
namespaces are reserved for the following reasons in SQL Server 2005:

• Non-administrative permissions: If an application is running as a nonadministrator account,
it cannot bind to the namespace at runtime without having an administrator reserve the
required URL namespace.

• Other applications can’t use the namespace: Reserving a URL namespace guarantees that
other applications cannot bind to it. Therefore, the application has ownership of the reserved
namespace.

You can reserve a URL namespace for use with SQL Server 2005 either with an explicit reserva-
tion with the sp_reserve_http_namespace stored procedure or with an implicit reservation with the
CREATE ENDPOINT T-SQL statement.

Aschenbrenner842-3.book Page 298 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 299

Explicit Reservation

To create an explicit reservation, an administrator who wants to expose an HTTP endpoint has
to reserve a URL namespace by using the sp_reserve_http_namespace stored procedure. For exam-
ple, you can connect to an instance of SQL Server 2005 and execute the T-SQL code, as shown in
Listing 9-6, to make a URL namespace reservation.

Listing 9-6. Explicit URL Namespace Reservation

USE master
GO

sp_reserve_http_namespace 'http://csharp.at:80/sql'
GO

Implicit Reservation

SQL Server 2005 creates an implicit namespace reservation when you use the CREATE ENDPOINT
T-SQL statement. When an implicit reservation is made, other applications can take the namespace
if the SQL Server instance isn’t running. In the “Exposing Web Services” section, you’ll see how to
use the CREATE ENDPOINT T-SQL statement.

Verifying HTTP Namespace Reservations

To determine what namespaces are reserved in http.sys, you can run the HTTP configuration utility
httpcfg.exe. Listing 9-7 shows an example of using httpcfg.exe to return the list of reserved HTTP
namespaces.

Listing 9-7. Verifying HTTP Namespace Reservations

-- Execute from the command line
httpcfg.exe query urlacl

-- Here is a typical output for this command
URL: http://csharp.at:80/sql
ACL: D:(A;;GA;;;S-1-5-21-123456789-1234567890-1262470759-1010)

URL : https://csharp.at:443/sql/
ACL : D:(A;;GA;;;NS)

■Note httpcfg.exe is a tool available in the Windows Support Tools of Windows Server 2003. This tool is not
installed by default and must be installed additionally on a Windows Server 2003 installation. Refer to the Books
Online topic “Configuring the HTTP Kernel-Mode Driver (Http.sys)” for more information.

Aschenbrenner842-3.book Page 299 Wednesday, April 18, 2007 3:19 PM

http://csharp.at:80/sql
http://csharp.at:80/sql
https://csharp.at:443/sql

300 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Exposing Web Services
You use the CREATE ENDPOINT T-SQL statement to create an HTTP endpoint and expose a stored pro-
cedure as a web method. Listing 9-8 shows the syntax for the CREATE ENDPOINT T-SQL statement for
creating an HTTP endpoint. You’ve already seen the CREATE ENDPOINT T-SQL statement in Chapter 7,
where you created a Service Broker endpoint with it. Now you create an HTTP endpoint.

Listing 9-8. Syntax for the CREATE ENDPOINT T-SQL Statement

CREATE ENDPOINT endPointName [AUTHORIZATION login]
[STATE = { STARTED | STOPPED | DISABLED }]
AS HTTP
(
 PATH = 'url',
 AUTHENTICATION = ({ BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS } [,...n]),
 PORTS = ({ CLEAR | SSL } [,... n])
 [SITE = { '*' | '+' | 'website' } ,]
 [[,] CLEAR_PORT = clearPort]
 [[,] SSL_PORT = sslPort]
 [[,] AUTH_REALM = { 'realm' | NONE }]
 [[,] DEFAULT_LOGON_DOMAIN = { 'domain' | NONE }]
 [[,] COMPRESSION = { ENABLED | DISABLED }]
)
FOR SOAP
(
 [{ WEBMETHOD ['namespace' .] 'method_alias'
 (
 NAME = 'database.schema.name'
 [[,] SCHEMA = { NONE | STANDARD | DEFAULT }]
 [[,] FORMAT = { ALL_RESULTS | ROWSETS_ONLY | NONE }]
)
 } [,...n]]
 [[,] BATCHES = { ENABLED | DISABLED }]
 [[,] WSDL = { NONE | DEFAULT | 'sp_name' }]
 [[,] SESSIONS = { ENABLED | DISABLED }]
 [[,] LOGIN_TYPE = { MIXED | WINDOWS }]
 [[,] SESSION_TIMEOUT = { timeoutInterval | NEVER }]
 [[,] DATABASE = { 'database_name' | DEFAULT }]
 [[,] NAMESPACE = { 'namespace' | DEFAULT }]
 [[,] SCHEMA = { NONE | STANDARD }]
 [[,] CHARACTER_SET = { SQL | XML }]
 [[,] HEADER_LIMIT = int]
)

Table 9-1 describes the arguments for the CREATE ENDPOINT T-SQL statement.

Aschenbrenner842-3.book Page 300 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 301

Table 9-1. Arguments for the CREATE ENDPOINT T-SQL Statement

Argument Description

endpointName Specifies the name for the endpoint.

AUTHORIZATION login A valid SQL Server or Windows login to be assigned to the newly
created endpoint object.

STATE = { STARTED | STOPPED |
DISABLED }

Specifies the state of the endpoint when it is created.

PATH = 'url' Specifies the location of the endpoint on the host computer as a
URL (as specified in the SITE argument). It is a logical partitioning
of the URL namespace that is used by http.sys to route requests.

AUTHENTICATION = { BASIC |
DIGEST | INTEGRATD | NTLM |
KERBEROS }

The authentication type used to authenticate users that access the
endpoint.

PORTS = ({ CLEAR | SSL }
[,...n])

Associates one or more listening port types with this endpoint.

SITE = { '*' | '+' | 'website' } The name of the host computer. If you don’t specify this
parameter, the asterisk (‘*’) is the default. If you use the
sp_reserve_http_namespace stored procedure, pass the host
part to this argument. ‘+’ implies that a listening operation
applies to all possible host names for the computer. website
is the specific host name for the computer.

CLEARPORT = clearPort The clear port number of the endpoint. If PORTS = (CLEAR),
clearPort specifies the clear port number.

SSL_PORT = sslPort Specifies the SSL port number.

AUTH_REALM = { 'realm' |
NONE }

If you use AUTHENTICATION = DIGEST, AUTH_REALM specifies the hint
that returns to the client, which sent the SOAP request to the end-
point, as part of HTTP authentication challenge.

DEFAULT_LOGON_DOMAIN = {
'domain' | NONE }

If you use AUTHENTICATION = BASIC, DEFAULT_LOGON_DOMAIN speci-
fies the default login domain.

COMPRESSION = { ENABLED |
DISABLED }

If you set this parameter to ENABLED, SQL Server will honor requests
where gzip encoding is requested, and will return compressed
responses.

WEBMETHOD ['namespace'.]
'method_alias'

Specifies a method for which you can send HTTP SOAP requests
to an endpoint. Each WEBMETHOD clause describes one method. You
can expose multiple methods through the endpoint.

NAME =
'database.schema.name'

Specifies the stored procedure name or user-defined function
name that is exposed as a web method. You must supply the
three-part name of the stored procedure or user-defined function
you want to expose.

Continued

Aschenbrenner842-3.book Page 301 Wednesday, April 18, 2007 3:19 PM

302 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Table 9-1. Continued

Let’s see how you can use this T-SQL statement to expose a stored procedure as a web service.
In SODA architectures, stored procedures are often used to expose the Service Broker message-
sending logic (from the initiating service to the target service) to clients that have no direct access to
the SQL Server hosting the initiating service.

Let’s take the OrderService application from previous chapters and wrap the message sending
logic from the ClientService into a stored procedure that is then exposed as a web service to other
clients. You can then call the message-sending logic from other applications through the web
service—it doesn’t matter if the client is written in C#, PHP, Java, or even Perl.

Listing 9-9 shows the T-SQL statement needed to create the stored procedure that sends a mes-
sage of the message type OrderRequestMessage from the ClientService to the OrderService.

■Note Please make sure that you create a new database for the following samples and that you deploy all the
necessary Service Broker objects.

Argument Description

SCHEMA = { NONE | STANDARD |
DEFAULT }

Specifies if inline XSD schemas are returned for the web method
in a SOAP response.

FORMAT = { ALL_RESULTS |
ROWSETS_ONLY | NONE }

Specifies if a row count, error messages, and warnings are
returned with the result set.

BATCHES = { ENABLED |
DISABLED }

Specifies if ad hoc SQL requests are supported on the endpoint.

WSDL = { NONE | DEFAULT |
'sp_name' }

Specifies if WSDL document generation is supported for this
endpoint.

SESSIONS = { ENABLED |
DISABLED }

Specifies if the SQL Server instance allows session support. If
allowed, multiple SOAP request/response message pairs can be
identified as part of a single SOAP session.

LOGIN_TYPE = { MIXED |
WINDOWS }

Specifies the SQL Server authentication mode for this endpoint.

SESSION_TIMEOUT =
{ timeoutInterval | NEVER }

Specifies the time in seconds (as an integer) that is available
before a SOAP session expires at the server when no further
requests are received.

DATABASE = {
'database_name' | DEFAULT
}

Specifies the database in the context of which the requested oper-
ation is executed.

NAMESPACE = { 'namespace'
| DEFAULT }

Specifies the namespace for the endpoint.

SCHEMA = { NONE | STANDARD } Specifies whether an XSD schema is returned by the endpoint
when SOAP results are sent.

CHARACTER_SET = { SQL | XML } Defines the behavior when the result of an operation includes
characters that are not valid in XML.

HEADER_LIMIT Specifies the maximum size, in bytes, of the header section in the
SOAP envelope.

Aschenbrenner842-3.book Page 302 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 303

Listing 9-9. Stored Procedure with the Message-Sending Logic

CREATE PROCEDURE SendOrderRequestMessage
@RequestMessage XML
AS
 BEGIN TRY
 BEGIN TRANSACTION;
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [ClientService]
 TO SERVICE 'OrderService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c09/OrderContract]
 WITH ENCRYPTION = OFF;

 SET @msg = CAST(@RequestMessage AS NVARCHAR(MAX));

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage]
 (@msg);
 COMMIT;
 END TRY
 BEGIN CATCH
 ROLLBACK TRANSACTION;
 END CATCH

After you create the SendOrderRequestMessage stored procedure, you can easily send a new
Service Broker message to the OrderService. Refer to Listing 9-10.

Listing 9-10. Sending a New Service Broker Message with the Created Stored Procedure

EXEC SendOrderRequestMessage
'<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
</OrderRequest>'

Aschenbrenner842-3.book Page 303 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/OrderContract
http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage

304 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

The only thing left to do is to create the HTTP endpoint that exposes this stored procedure as a
web service to other clients. Listing 9-11 shows the CREATE ENDPOINT T-SQL command that creates
the necessary HTTP endpoint.

Listing 9-11. Creating the HTTP Endpoint

CREATE ENDPOINT WebServiceEndpoint
STATE = STARTED
AS HTTP
(
 PATH = '/SendOrderRequestMessage',
 AUTHENTICATION = (INTEGRATED),
 PORTS = (CLEAR),
 SITE = '*'
)
FOR SOAP
(
 WEBMETHOD 'SendOrderRequestMessage'
 (
 NAME = 'Chapter9_SODA_Services.dbo.SendOrderRequestMessage'
),
 WSDL = DEFAULT,
 SCHEMA = STANDARD,
 DATABASE = ' Chapter9_SODA_Services',
 NAMESPACE = 'http://www.csharp.at'
)
GO

As soon as you create the HTTP endpoint, the endpoint becomes browsable through your web
browser. Just navigate to the URL http://your-computer-name/SendOrderRequestMessage?wsdl to view
the WSDL document for the exposed web service. Make sure to replace http://your-computer-name
through the value you’ve specified in the SITE argument of the CREATE ENDPOINT T-SQL statement.
Figure 9-8 shows the generated WSDL document for the web service.

■Caution Don’t use http://localhost when you want to connect to the SQL Server web service! You must
always use the NetBIOS name of the computer you’ve specified in the SITE argument in the CREATE ENDPOINT
T-SQL statement.

Aschenbrenner842-3.book Page 304 Wednesday, April 18, 2007 3:19 PM

http://www.csharp.at
http://your-computer-name/SendOrderRequestMessage?wsdl
http://your-computer-name
http://localhost

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 305

Figure 9-8. Browsing the deployed SQL Server web service

Using Web Services
After you deploy the stored procedure SendOrderRequestMessages as a web service, you can easily
call the stored procedure from a client application, thereby sending a Service Broker message in the
background when the stored procedure executes. Listing 9-12 shows a simplified console applica-
tion that calls the web service for sending a Service Broker message.

Aschenbrenner842-3.book Page 305 Wednesday, April 18, 2007 3:19 PM

306 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Listing 9-12. Using the Web Service

public static void Main(string [] args)
{
 string message =
 "<OrderRequest>" +
 "<Customer>" +
 "<CustomerID>4242</CustomerID>" +
 "</Customer>" +
 "<Product>" +
 "<ProductID>123</ProductID>" +
 "<Quantity>5</Quantity>" +
 "<Price>40.99</Price>" +
 "</Product>" +
 "<CreditCard>" +
 "<Holder>Klaus Aschenbrenner</Holder>" +
 "<Number>1234-1234-1234-1234</Number>" +
 "<ValidThrough>2009-10</ValidThrough>" +
 "</CreditCard>" +
 "<Shipping>" +
 "<Name>Klaus Aschenbrenner</Name>" +
 "<Address>Wagramer Strasse 4/803</Address>" +
 "<ZipCode>1220</ZipCode>" +
 "<City>Vienna</City>" +
 "<Country>Austria</Country>" +
 "</Shipping>" +
 "</OrderRequest>";

 ClientApplication.vista_notebook.WebServiceEndpoint svc =
 new WebServiceEndpoint();
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(message);

 xml requestMessage = new xml();
 requestMessage.Any = new XmlNode[1] { doc.DocumentElement.ParentNode };

 svc.UseDefaultCredentials = true;
 svc.SendOrderRequestMessage(requestMessage);

 Console.WriteLine("Done");
 Console.ReadLine();
}

When you execute this simple C# program and then look into the various queues of the different
Service Broker services, you’ll see that your sent message gets processed automatically. As you can
see, you can easily provide Service Broker functionality to other clients that have no direct access to
your SQL Service where your initiating service is hosted.

Web services for exposing SQL Server functionality are one pillar of SODA in SQL Server 2005.
Let’s now look at another interesting SODA feature, the SQLCLR.

Aschenbrenner842-3.book Page 306 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 307

SQLCLR
One critical ingredient in SODA is the logic itself—that is, the ability to run high-level code to control
all aspects of the system, process input, and respond to changing conditions in the environment.
SQL Server has long included T-SQL and the ability to invoke external applications, such as COM
components, using the sp_OA system stored procedure.

However, a viable SODA service provider must be able to run integrated, high-level, efficient
code capable of implementing highly complex business logic functionality. T-SQL is great for
manipulating set-based, relational data, but it’s not a programming language for coding complex,
high-performance, business-logic code. The .NET Base Class Library (BCL) provides exactly the pro-
gramming infrastructure needed to write this kind of code.

.NET 2.0 has a CLR hosting API that lets you execute CLR applications within a host process
such as SQL Server 2005. You can use the SQLCLR feature of SQL Server 2005 to write .NET code that
runs within the SQL Server process. The SQLCLR is close to the data and to the other SODA features,
and it’s integrated with database security. .NET assemblies are stored and loaded directly from the
database instead of the file system. This improves efficiency and reduces administrative complexity
when you back up and restore databases with .NET code inside.

You can use SQLCLR to write functions as replacements for extended stored procedures and to
create user-defined functions and data types. It has a variety of other uses within the database for
more traditional applications (although it doesn’t replace all T-SQL applications). In an application
that is based on SODA, hosting the CLR provides a code execution environment that supports mul-
tiple programming languages, garbage collection, memory management, resource pooling, system
resource management, and code-access security. The primary SQL Server process works with the
CLR to control global process resources such as memory, concurrency primitives, and threads.

SQLCLR radically changes and expands the programming paradigm supported by SQL Server
2005. It allows you to develop the following database objects in a .NET language of your choice:

• Managed stored procedures: Managed stored procedures provide you the ability to imple-
ment a stored procedure in a .NET language such as C# or VB. Managed stored procedures
also improve the performance of your business logic compared to when it is written in T-SQL,
because T-SQL is a more data-centric programming language.

• User-defined functions: With user-defined functions, you can write scalar- and table-valued
functions directly in .NET code.

• User-defined data types: With a custom data type, you’re able to extend the type system of
SQL Server 2005. You can use a custom data type everywhere you can use a built-in data
type. Custom data types contain both logic and data.

• User-defined aggregates: You can also develop a set of custom aggregate functions on top of
your custom data type.

• Triggers: With SQLCLR, you can write triggers in a .NET language.

These sophisticated features are required by a service program within SODA architectures.
You can place any or all of the logic within the database rather than develop and deploy a separate
application external to the database for business-logic processing. For more traditional three- or
n-tier applications, the line between hosting data-processing code in the database and business
logic in a middle tier is blurred. However, it is now relatively easy to develop one code base that
you can deploy either to the database or to a middle-tier application server as demands placed on
the system change.

Aschenbrenner842-3.book Page 307 Wednesday, April 18, 2007 3:19 PM

308 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

You can use SQLCLR to extend the built-in T-SQL functions. Once deployed to the database,
each managed code object is available for use within any query. Since the CLR functions are com-
piled into intermediate language (IL) and ultimately into native machine instructions, the functions
can run much faster than equivalent functions written in T-SQL, which are interpreted at runtime
rather than compiled.

SQLCLR also provides a data access library, which can run inside the relational data engine.
When the SQLCLR data access code is executed within a SQL Server process, latencies and the trans-
action costs of connecting to a remote database and acquiring data are significantly reduced. Data
that is required to process a service request from an external server doesn’t have to travel across a
portion of the network or even from an adjacent machine on the server rack.

Writing .NET Service Logic
As you saw in Chapter 5, the ServiceBrokerInterface managed assembly enables you to write
Service Broker service programs and also client applications for Service Broker in a .NET language.
With this managed assembly, you can easily implement Service Broker message-processing logic
in C# or VB. In Chapter 5, you also saw the CREATE ASSEMBLY T-SQL statement with which you can
register a managed assembly in SQL Server 2005.

To give you a practical example of how to use SQLCLR in SODA, let’s transform all the T-SQL
service programs from the OrderService application into managed stored procedures that leverage
the .NET support in SQL Server 2005. This approach has different advantages:

• Performance: If you have complex business logic in your service program (which isn’t the case
in this example), then SQLCLR will boost the performance of your service program, since
SQLCLR handles the execution of complex business logic more efficiently than T-SQL.

• Extensibility: As you saw in Chapter 6, the ProcessOrderRequestMessages stored procedure was
complex and long, because all the different message types were processed in one stored proce-
dure. When you implement the message-processing logic with the ServiceBrokerInterface
managed assembly, you can assign each message type a separate method that does its message
processing.

Implementing State Handling
Before you implement the whole message-processing logic of the different Service Broker services,
let’s write the code that does the state handling inside OrderService. As you learned in Chapter 6,
you need a state table that stores the state of the ongoing conversations between the different ser-
vices. Figure 9-9 shows the structure of the ApplicationState table.

Figure 9-9. The ApplicationState table

Aschenbrenner842-3.book Page 308 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 309

After creating the state table, you have to override the LoadState and SaveState methods in the
OrderService that represent your Service Broker service. Listing 9-13 shows the LoadState method.

Listing 9-13. Implementation of the LoadState Method

public override bool LoadState(SqlDataReader reader, SqlConnection connection,
 SqlTransaction transaction)
{
 if (reader.Read())
 {
 _conversationGroupId = new Guid(reader["ConversationGroupID"].ToString());
 _creditCardStatus = bool.Parse(reader["CreditCardStatus"].ToString());
 _accountingStatus = bool.Parse(reader["AccountingStatus"].ToString());
 _inventoryStatus = bool.Parse(reader["InventoryStatus"].ToString());
 _shippingMessageSent =
 bool.Parse(reader["ShippingMessageSent"].ToString());
 _shippingStatus = bool.Parse(reader["ShippingStatus"].ToString());

 // Advances the cursor to the next result set that contains
 // the received message(s)
 return reader.NextResult();
 }
 else
 // Something went wrong...
 return false;
}

The most important part of Listing 9-13 is the line where the database cursor is moved to the
next result set inside the SqlDataReader instance:

return reader.NextResult();

This is necessary, because the SqlDataReader contains two result sets, and you must move the
cursor to the result set that contains the retrieved message:

• The first result set contains the state data from the state table.

• The second result set contains the message retrieved from the queue.

Listing 9-14 shows the implementation of the SaveState method.

Listing 9-14. Implementation of the SaveState Method

public override void SaveState(SqlConnection connection, SqlTransaction transaction)
{
 // Create the T-SQL command for updating the application state
 string sql = "UPDATE ApplicationState SET ";
 sql += "CreditCardStatus = @CreditCardStatus, ";
 sql += "AccountingStatus = @AccountingStatus, ";
 sql += "InventoryStatus = @InventoryStatus, ";
 sql += "ShippingMessageSent = @ShippingMessageSent, ";
 sql += "ShippingStatus = @ShippingStatus ";
 sql += "WHERE ConversationGroupID = @ConversationGroupID";

Aschenbrenner842-3.book Page 309 Wednesday, April 18, 2007 3:19 PM

310 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

 // Create the necessary T-SQL parameters
 SqlCommand cmd = new SqlCommand(sql, connection);
 cmd.Transaction = transaction;
 cmd.Parameters.Add("@CreditCardStatus", SqlDbType.Bit);
 cmd.Parameters.Add("@AccountingStatus", SqlDbType.Bit);
 cmd.Parameters.Add("@InventoryStatus", SqlDbType.Bit);
 cmd.Parameters.Add("@ShippingMessageSent", SqlDbType.Bit);
 cmd.Parameters.Add("@ShippingStatus", SqlDbType.Bit);
 cmd.Parameters.Add("@ConversationGroupID", SqlDbType.UniqueIdentifier);

 // Set the T-SQL parameters
 cmd.Parameters["@CreditCardStatus"].Value = _creditCardStatus;
 cmd.Parameters["@AccountingStatus"].Value = _accountingStatus;
 cmd.Parameters["@InventoryStatus"].Value = _inventoryStatus;
 cmd.Parameters["@ShippingMessageSent"].Value = _shippingMessageSent;
 cmd.Parameters["@ShippingStatus"].Value = _shippingStatus;
 cmd.Parameters["@ConversationGroupID"].Value = _conversationGroupId;

 // Execute the query
 cmd.ExecuteNonQuery();
}

As you can see in Listing 9-14, SaveState is straightforward, because it just executes a simple
UPDATE T-SQL statement that updates the ApplicationState table.

Implementing the OrderService
Once you implement state handling, you’re ready to write the message-processing logic. The main
logic of OrderService is executed when an OrderRequestMessage is received from ClientService.
You implement the message-processing logic for the OrderRequestMessage message type in
ProcessOrderRequestMessage. Listing 9-15 shows the concrete implementation.

Listing 9-15. Implementation of the ProcessOrderRequestMessage Method

[BrokerMethod("http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage")]
public void ProcessOrderRequestMessage(Message ReceivedMessage,
 SqlConnection Connection, SqlTransaction Transaction)
{
 BeginConversationWithCreditCardService(ReceivedMessage, Connection, Transaction);
 BeginConversationWithAccountingService(ReceivedMessage, Connection, Transaction);
 BeginConversationWithInventoryService(ReceivedMessage, Connection, Transaction);
}

You simply call three methods: BeginConversationWithCreditCardService,
BeginConversationWithAccountingService, and BeginConversationWithInventoryService.
In each method, you send the required request message to each Service Broker service
(CreditCardService, AccountingService, InventoryService) for further processing. The
main difference between these three methods is the creation of the message structure,
because the XML message is different for each service. Listing 9-16 shows the imple-
mentation of the BeginConversationWithAccountingService method.

Aschenbrenner842-3.book Page 310 Wednesday, April 18, 2007 3:19 PM

mailto:Parameters["@CreditCardStatus"].Value
mailto:Parameters["@AccountingStatus"].Value
mailto:Parameters["@InventoryStatus"].Value
mailto:Parameters["@ShippingMessageSent"].Value
mailto:Parameters["@ShippingStatus"].Value
mailto:Parameters["@ConversationGroupID"].Value
http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 311

Listing 9-16. Implementation of the BeginConversationWithAccountingService Method

private void BeginConversationWithAccountingService(Message ReceivedMessage,
 SqlConnection Connection, SqlTransaction Transaction)
{
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(ReceivedMessage.BodyAsString);

 int quantity = int.Parse(doc.GetElementsByTagName("Quantity").Item(0).InnerText);
 double price = double.Parse(doc.GetElementsByTagName("Price").Item(0).InnerText);

 XmlDocument accountingDoc = new XmlDocument();
 XmlElement root = accountingDoc.CreateElement("AccountingRequest");
 XmlElement accountingCustomerID = accountingDoc.CreateElement("CustomerID");
 XmlElement accountingAmount = accountingDoc.CreateElement("Amount");

 accountingCustomerID.InnerText =
 doc.GetElementsByTagName("CustomerID").Item(0).InnerText;
 accountingAmount.InnerText = (price * quantity).ToString();

 root.AppendChild(accountingCustomerID);
 root.AppendChild(accountingAmount);
 accountingDoc.AppendChild(root);

 Conversation conv = this.BeginDialog("AccountingService", null,
 "http://ssb.csharp.at/SSB_Book/c09/AccountingContract",
 TimeSpan.FromMinutes(99999), false, ReceivedMessage.Conversation, Connection,
 Transaction);
 conv.Send(new Message(
 "http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage",
 new MemoryStream(Encoding.Unicode.GetBytes(accountingDoc.InnerXml))),
 Connection, Transaction);
}

The last lines where you begin a new dialog with the AccountingService and send a request
message to this service are the most important part:

Conversation conv = this.BeginDialog("AccountingService", null,
 "http://ssb.csharp.at/SSB_Book/c09/AccountingContract",
 TimeSpan.FromMinutes(99999), false, ReceivedMessage.Conversation, Connection,
 Transaction);
conv.Send(new Message(
 "http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage",
 new MemoryStream(Encoding.Unicode.GetBytes(accountingDoc.InnerXml))),
 Connection, Transaction);

When you begin the dialog, you must ensure that you also specify the existing conversation
(ReceivedMessage.Conversation). If you forget this, the newly created dialog will belong to a new
conversation group, and the previously implemented state-handling logic won’t work. For the
implementation of all the other mentioned methods, refer to the enclosed source code provided
in this chapter’s Source Code/Download area on the Apress website (http://www.apress.com).

Aschenbrenner842-3.book Page 311 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/AccountingContract
http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage
http://ssb.csharp.at/SSB_Book/c09/AccountingContract
http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage
http://www.apress.com

312 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Implementing the Other Services
By now, you’ve seen how OrderService handles the OrderRequestMessage message type. In this sec-
tion, I want to show how the other Service Broker services (AccountingService, CreditCardService,
and InventoryService) are implemented with SQLCLR. Because they just differ in the INSERT T-SQL
statement that inserts the data of a newly received message into a table, I’ll present only the imple-
mentation of the AccountingService. For the implementation of the other two services, refer to this
chapter’s enclosed source code. The AccountingService service has to handle the following two
message types:

• http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage

• http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

Listing 9-17 shows how AccountingService handles the AccountingRequestMessage message type.

Listing 9-17. Processing the AccountingRequestMessage Message Type

[BrokerMethod("http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage")]
public void ProcessAccountingRequestMessage(Message ReceivedMessage,
 SqlConnection Connection, SqlTransaction Transaction)
{
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(ReceivedMessage.BodyAsString);

 // Create the T-SQL command for updating the application state
 string sql = "INSERT INTO AccountingRecordings (AccountingRecordingsID, " +
 "CustomerID, Amount) VALUES ";
 sql += "(NEWID(), @CustomerID, @Amount)";

 // Create the necessary T-SQL parameters
 SqlCommand cmd = new SqlCommand(sql, Connection);
 cmd.Transaction = Transaction;
 cmd.Parameters.Add("@CustomerID", SqlDbType.NVarChar);
 cmd.Parameters.Add("@Amount", SqlDbType.Decimal);

 // Set the T-SQL parameters
 cmd.Parameters["@CustomerID"].Value =
 doc.GetElementsByTagName("CustomerID").Item(0).InnerText;
 cmd.Parameters["@Amount"].Value =
 decimal.Parse(doc.GetElementsByTagName("Amount").Item(0).InnerText);

 // Execute the query
 cmd.ExecuteNonQuery();

 // Construct the response message
 XmlDocument responseDoc = new XmlDocument();
 XmlElement root = responseDoc.CreateElement("AccountingResponse");
 root.InnerText = "1";
 responseDoc.AppendChild(root);

Aschenbrenner842-3.book Page 312 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://ssb.csharp.at/SSB_Book/c09/AccountingRequestMessage
mailto:Parameters["@CustomerID"].Value
mailto:Parameters["@Amount"].Value

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 313

 // Send the response message back to the OrderService
 ReceivedMessage.Conversation.Send(
 new Message("http://ssb.csharp.at/SSB_Book/c09/AccountingResponseMessage",
 new MemoryStream(Encoding.Unicode.GetBytes(responseDoc.InnerXml))),
 Connection, Transaction);

 // End the conversation with the OrderService
 ReceivedMessage.Conversation.End(Connection, Transaction);
}

The ProcessAccountingRequestMessage method first constructs a new XML structure that represents
the message sent back to OrderService. You use classes in the System.Xml namespace—in particular,
XmlDocument and XmlElement. After constructing the message, you send it back to OrderService with the
Send method of the Conversation class available in the ServiceBrokerInterface managed assembly.
Finally, you end the conversation with OrderService by calling ReceivedMessage.Conversation.End.

Processing Response Messages
Processing the response messages from the three other services (AccountingService, CreditCardService,
and InventoryService) is easy, because you just have to update the corresponding status variable in the
OrderService instance. Because of the state-handling logic you already implemented (see Listings 9-13
and 9-14), the updated application status is reflected automatically in the ApplicationState table by the
SaveState method in the ServiceBrokerInterface managed assembly described in Listing 9-14.

Listing 9-18 shows how easy it is to update the application state when a response message
arrives from the three other services.

Listing 9-18. Updating the Application State

[BrokerMethod("http://ssb.csharp.at/SSB_Book/c09/AccountingResponseMessage")]
public void ProcessAccountingResponseMessage(Message ReceivedMessage,
 SqlConnection Connection, SqlTransaction Transaction)
{
 // The AccountingResponseMessage was successfully received
 _accountingStatus = true;
}

Interaction with the ShippingService
More interesting is the interaction with the ShippingService. I’ve written the
SendShippingRequestMessage method to send the ShippingRequestMessage as soon as all
the other three services have successfully returned their response messages. This method
checks first for the response messages from the three other services. If this is the case, it
retrieves the original OrderRequestMessage from OrderQueue (the retention support of
the queue makes this possible). Finally, you send the <Shipping> node of this message to
ShippingService. Listing 9-19 shows the implementation of the SendShippingRequestMessage
method.

Aschenbrenner842-3.book Page 313 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/AccountingResponseMessage
http://ssb.csharp.at/SSB_Book/c09/AccountingResponseMessage

314 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Listing 9-19. The SendShippingRequestMessage Method

private void SendShippingRequestMessage(Message ReceivedMessage,
 SqlConnection Connection, SqlTransaction Transaction)
{
 // If we received all response messages from all the other services,
 // we can send the final message to the shipping service
 if (_accountingStatus && _creditCardStatus && _inventoryStatus)
 {
 // SELECT the original order request message from the OrderQueue –
 // RETENTION makes it possible
 string sql = "SELECT CAST(message_body AS XML) FROM OrderQueue " +
 "WHERE conversation_group_id = @ConversationGroupID AND " +
 "message_type_name = " +
 "'http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage'";

 SqlCommand cmd = new SqlCommand(sql, Connection);
 cmd.Transaction = Transaction;

 // Create and set the parameters for the T-SQL command
 cmd.Parameters.Add("@ConversationGroupID", SqlDbType.UniqueIdentifier);
 cmd.Parameters["@ConversationGroupID"].Value = _conversationGroupId;

 // Execute the T-SQL command
 SqlDataReader reader = cmd.ExecuteReader();

 if (reader.Read())
 {
 // Get the <ShippingNode> from the original order request message
 SqlXml xml = reader.GetSqlXml(0);
 XmlDocument requestDoc = new XmlDocument();
 requestDoc.LoadXml(reader.GetSqlXml(0).Value);
 reader.Close();
 string shippingNode =
 requestDoc.SelectSingleNode("OrderRequest/Shipping").OuterXml;

 // Send the request message to the shipping service
 Conversation conv = this.BeginDialog("ShippingService", null,
 "http://ssb.csharp.at/SSB_Book/c09/ShippingContract",
 TimeSpan.FromSeconds(999999), false, ReceivedMessage.Conversation,
 Connection, Transaction);
 conv.Send(new Message(
 "http://ssb.csharp.at/SSB_Book/c09/ShippingRequestMessage",
 new MemoryStream(Encoding.Unicode.GetBytes(shippingNode))),
 Connection, Transaction);

 // The shipping request message was successfully sent
 _shippingMessageSent = true;
 }
 }
}

Aschenbrenner842-3.book Page 314 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage
mailto:Parameters["@ConversationGroupID"].Value
http://ssb.csharp.at/SSB_Book/c09/ShippingContract
http://ssb.csharp.at/SSB_Book/c09/ShippingRequestMessage

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 315

You retrieve the original request message easily from OrderQueue with this code:

// SELECT the original order request message from the OrderQueue –
// RETENTION makes it possible
string sql = "SELECT CAST(message_body AS XML) FROM OrderQueue " +
 "WHERE conversation_group_id = @ConversationGroupID AND " +
 "message_type_name = " +
 "'http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage'";

SqlCommand cmd = new SqlCommand(sql, Connection);
cmd.Transaction = Transaction;

// Create and set the parameters for the T-SQL command
cmd.Parameters.Add("@ConversationGroupID", SqlDbType.UniqueIdentifier);
cmd.Parameters["@ConversationGroupID"].Value = _conversationGroupId;

// Execute the T-SQL command
SqlDataReader reader = cmd.ExecuteReader();

More interesting is how OrderService processes the ShippingResponseMessage. This functional-
ity is implemented in the ProcessShippingResponseMessage method of the OrderService class. You
must determine the correct conversation handle that leads you back to the ClientService. You
obtain the conversation handle from the sys.conversation_endpoints catalog view and create a new
Conversation object that represents the ongoing conversation with ClientService. Finally, you send
an OrderResponseMessage over this conversation back to ClientService. See Listing 9-20 for the
detailed implementation.

Listing 9-20. The ProcessShippingResponseMessage Method

[BrokerMethod("http://ssb.csharp.at/SSB_Book/c09/ShippingResponseMessage")]
public void ProcessShippingResponseMessage(Message ReceivedMessage,
 SqlConnection Connection, SqlTransaction Transaction)
{
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(ReceivedMessage.BodyAsString);

 // Create the order response message
 XmlDocument responseDoc = new XmlDocument();
 XmlElement root = responseDoc.CreateElement("OrderResponse");
 root.InnerText = doc.GetElementsByTagName("ShippingResponse").Item(0).InnerText;
 responseDoc.AppendChild(root);

 // Create the T-SQL command to retrieve the conversation handle
 // back to the client service
 string sql = "SELECT conversation_handle FROM sys.conversation_endpoints " +
 "WHERE conversation_group_id = @ConversationGroupID " +
 "AND far_service = 'ClientService'";
 SqlCommand cmd = new SqlCommand(sql, Connection);
 cmd.Transaction = Transaction;
 cmd.Parameters.Add("@ConversationGroupID", SqlDbType.UniqueIdentifier);
 cmd.Parameters["@ConversationGroupID"].Value = _conversationGroupId;

Aschenbrenner842-3.book Page 315 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/OrderRequestMessage
mailto:Parameters["@ConversationGroupID"].Value
http://ssb.csharp.at/SSB_Book/c09/ShippingResponseMessage
mailto:Parameters["@ConversationGroupID"].Value

316 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

 // Execute the T-SQL command
 SqlDataReader reader = cmd.ExecuteReader();

 if (reader.Read())
 {
 // Re-create the conversation object that represents the conversation
 // back to the client service
 Conversation conv = new Conversation(reader.GetGuid(0));
 reader.Close();

 // Send the response message back to the OrderService
 conv.Send(new Message(
 "http://ssb.csharp.at/SSB_Book/c09/OrderResponseMessage",
 new MemoryStream(Encoding.Unicode.GetBytes(responseDoc.InnerXml))),
 Connection, Transaction);

 // End the conversation with the OrderService
 conv.End(Connection, Transaction);
 }

 // The shipment was successfully completed
 _shippingStatus = true;
}

The most interesting part of Listing 9-20 is retrieving the conversation handle back to
ClientService and creating the Conversation object with it:

string sql = "SELECT conversation_handle FROM sys.conversation_endpoints " +
 "WHERE conversation_group_id = @ConversationGroupID " +
 "AND far_service = 'ClientService'";

// ...

Conversation conv = new Conversation(reader.GetGuid(0));
reader.Close();

// Send the response message back to the OrderService
conv.Send(new Message(
 "http://ssb.csharp.at/SSB_Book/c09/OrderResponseMessage",
 new MemoryStream(Encoding.Unicode.GetBytes(responseDoc.InnerXml))),
 Connection, Transaction);

As you can see, you can write all your Service Broker service programs completely with SQLCLR
instead of T-SQL. But be careful in choosing between .NET code and T-SQL. In these simple examples,
it might be better in some circumstances to use T-SQL, because there isn’t a lot of business logic—only
message retrieval and data logic. But as your service programs get bigger and more complex and need
to support additional message types, it’s easier to use SQLCLR with the ServiceBrokerInterface meth-
ods. You can easily access the complete .NET BCL, and you have a powerful programming language
and environment for coding business logic.

Query Notifications
One of the classic problems when writing distributed database applications is refreshing data. Imag-
ine a website or smart client application where you display products and price lists. The same data

Aschenbrenner842-3.book Page 316 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c09/OrderResponseMessage
http://ssb.csharp.at/SSB_Book/c09/OrderResponseMessage

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 317

is retrieved from the database over and over again. This is inefficient if the data rarely changes, and
it wastes resources and execution time on the database server.

Caching is one technique for minimizing demands on the database server. The data is que-
ried once and stored in a cache on the client side, and the application then repeatedly accesses the
cache. Occasionally, the cache is updated to refresh the data. The issue is deciding when to update
the cache. If you don’t do it often enough, users see old data; if you update the cache too often,
then you don’t optimally reduce your demand on the server side.

Query notifications help you to solve this tricky problem. Query notifications allow you to cache
data and be notified by SQL Server when data has been changed. You can then refresh your cache or
take whatever other action you need. Why mention query notifications in a chapter about SODA?
There are two main reasons:

• Query notifications are needed for SODA: Query notifications are the fourth technology
offered by SQL Server 2005 to support SODA. Query notifications are mainly used on the
middle tier to update caches when they have changed on the database server.

• Query notifications are based on Service Broker: Query notifications are internally imple-
mented with Service Broker. As soon as a data change is detected on the database server,
query notifications generate a new Service Broker message that gets sent to the subscriber
that’s caching the data. It doesn’t matter if the subscriber is implemented in the middle tier,
as a Web service, or as a Smart Client—the reliability and routing features of Service Broker
make sure that the message is sent successfully to the subscriber.

Query Notifications Implementation
Clients can submit a query that requests to be notified when data is modified in a manner that
would change the query result, and the database server sends a notification when such changes
occur. This notification is sent through a Service Broker message to the subscriber. These requests
are called query notification subscriptions. You can find the list of notification subscriptions in the
sys.dm_qn_subscriptions server-level view. Table 9-2 describes the available columns of this cat-
alog view.

Table 9-2. Columns of the sys.dm_qn_subscriptions Catalog View

Column Data Type Description

id INT Stores the query notification subscription ID.

database_id INT The ID of the database in which the query notification was exe-
cuted. In this database, you’ll find related information about the
query notification subscription.

sid VARBINARY(85) The security ID of the server principal that created and owns the
query notification subscription.

object_id INT The ID of the internal table that stores information about the
query notification subscription parameters.

created DATETIME The date and time when the query notification subscription was
created.

timeout INT The time-out value of the query notification subscription. The
query notification will be flagged to fire after this time has elapsed.

status INT The status of the query notification subscription.

Aschenbrenner842-3.book Page 317 Wednesday, April 18, 2007 3:19 PM

318 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Although you must take a number of actions to allow SQL Server to provide this service to .NET
clients, the key is that queries sent to SQL Server have a flag attached to them telling SQL Server that
in addition to returning the result set, SQL Server should register the query (and its subscriber) into
query notifications. It does this by using a queue that is aware of the query and a Service Broker
service that is attached to the queue and knows how to get back to the client (through the routing
configuration). If any of the rows in that result set get updated in the database, the item in the related
queue is triggered and in turn, sends a Service Broker message to its service and then sends a notice
back to the application that initiated the request.

You’ve seen that the notification is not delivered back to the subscriber, but a Service Broker
message is instead sent to the service that the subscriber provided in the subscription request. All
normal rules for delivery, routing, and dialog security apply to the dialog used to send this message.
This means that the notification message can be sent to a service hosted in the same database, in a
different database, or even on a remote machine (such as a SQL Express Edition running on a Smart
Client). Also, there is no need for the subscriber to be connected to receive the notification. It is per-
fectly acceptable for a subscriber to submit a query for a query notification subscription and then
disconnect and shut down.

The subscriber consumes the notification message just like any other Service Broker message:
by receiving it from the service queue. The notification message will be of the message type [http://
schemas.microsoft.com/SQL/Notifications/QueryNotification], an XML message type. This message
type is part of the [http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]
contract, which means that the service that receives the notification message must be bound to this
contract. After the subscriber receives the message, the subscriber is supposed to end the conversation
on which the message was received, using the END CONVERSATION T-SQL statement.

Clients can submit query notification subscription requests by programming directly against
the SQL Native Client, using native web services support to access SQL Server, or, most commonly,
using the ADO.NET client components. You must understand several important things when you
want to use query notifications successfully:

• There are rules about what types of queries are acceptable to SQL Server: Therefore, subscribers
can’t subscribe to all types of queries.

• The information returned to the subscriber isn’t much more than something has changed:
The subscriber doesn’t get notified about what was changed.

• Although the dependency is tied to the rows that are returned from the query, it isn’t filtered by the
individual columns of the query: If you have a query that returns the first and the last names of
a customer, and the addresses of those customers change (but their first or last name doesn’t
change), this also triggers a query notification.

• Notifications are returned through a single System.Data.SqlClient.SqlConnection that is
established solely for this purpose: This connection isn’t engaged in connection pooling.

When you want to use query notifications in the middle tier or on a Smart Client, the .NET
Framework provides you classes with which you can directly interact with the query notifications
implementation on the database server. .NET provides you two possibilities:

• SqlDependency: The .NET class System.Data.SqlDependency is a high-level implementation
to access the query notifications feature on SQL Server 2005. This class allows you to use a
dependency to detect changes on the database server. In most cases, this is the simplest and
most effective way to leverage the SQL Server 2005 notifications capability by managed client
applications using the .NET Framework data provider for SQL Server.

• SqlNotificationRequest: The low-level implementation is provided by the
System.Data.SqlNotificationRequest class that exposes server-side functionality,
enabling you to execute a command with a notification request.

Aschenbrenner842-3.book Page 318 Wednesday, April 18, 2007 3:19 PM

http://schemas.microsoft.com/SQL/Notifications/QueryNotification
http://schemas.microsoft.com/SQL/Notifications/QueryNotification
http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 319

■Note When you use query notifications, you must make sure to enable Service Broker for the database. You can
use the ALTER DATABASE MyDatabase SET ENABLE_BROKER T-SQL statement.

SqlDependency
If you want to use query notifications without paying attention to the underlying Service Broker
infrastructure, the SqlDependency .NET class from the namespace System.Data is your choice. The
SqlDependency class represents a query notification dependency between an application and an
instance of SQL Server 2005. When you use query notifications, SQL Server 2005 provides you the
queue and the service object, because they are created automatically when you create a new
database:

• [QueryNotificationErrorsQueue]

• [http://schemas.microsoft.com/SQL/Notifications/QueryNotificationService]

■Note As you’ll see in the upcoming “SqlNotificationRequest” section, it’s also possible for you to use your own
created queue and service objects with query notifications.

Figure 9-10 shows both Service Broker objects within SQL Server Management Studio.

Figure 9-10. The query notifications objects of a new database

An application can create a SqlDependency object and register to receive notifications via an
event handler. Table 9-3 shows the most important members of the SqlDependency class.

Table 9-3. Members of the SqlDependency Class

Member Description

Start This static method starts the listener for receiving dependency change
notifications.

Stop This static method stops the listener specified in the previous call to
the Start method.

Continued

Aschenbrenner842-3.book Page 319 Wednesday, April 18, 2007 3:19 PM

http://schemas.microsoft.com/SQL/Notifications/QueryNotificationService

320 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Table 9-3. Continued

To set up a dependency, you have to do the following:

1. Call SqlDependency.Start to start the listener for receiving dependency change notifications.

2. Associate a SqlDependency object to one or more SqlCommand objects.

3. Subscribe to the OnChange event of the SqlDependency object.

4. Implement the event handler of the OnChange event accordingly.

Let’s take a detailed look at each of these steps. I’ve written a simple Windows Forms application
called SimpleQueryNotification, which demonstrates how to use query notifications in a Smart Client
application. This sample application shows the rows from the Products table in a DataGridView.
Listing 9-21 shows the CREATE TABLE T-SQL statement needed to create this table.

Listing 9-21. Creating the Products Table

CREATE TABLE Products
(
 ID INT PRIMARY KEY IDENTITY(1, 1) NOT NULL,
 ProductName NVARCHAR(256) NOT NULL,
 ProductDescription NVARCHAR(256) NOT NULL
)

Inside the MainForm class of the sample application, you define various member variables used
for the data retrieval, as shown in Listing 9-22.

Listing 9-22. The Member Variables

public partial class MainForm : Form
{
 private string _connectionString =
 "Data Source=localhost;Initial Catalog=Chapter9_QueryNotifications;" +
 "Integrated Security=SSPI;";
 private SqlConnection _cnn;
 private SqlCommand _cmd;
 private DataSet _dataToWatch;
}

The user interface (UI) of the MainForm class is simple: it’s a DataGridView control that shows the
records from the Products table and a button for retrieving the records. Figure 9-11 shows the UI.

Member Description

AddCommandDependency This method associates a SqlCommand object with the SqlDependency object.

OnChange This event occurs when a notification is received for any of the com-
mands associated with the SqlDependency object.

Aschenbrenner842-3.book Page 320 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 321

Figure 9-11. The UI of the sample application

When you click the Get Data button, the cmdGetData_Click method gets called, which then calls
the GetData method. Listing 9-23 shows the implementation of both methods.

Listing 9-23. Implementation of the cmdGetData_Click and GetData Methods

private void cmdGetData_Click(object sender, EventArgs e)
{
 SqlDependency.Stop(_connectionString);
 SqlDependency.Start(_connectionString);

 if (_cnn == null)
 _cnn = new SqlConnection(_connectionString);

 if (_cmd == null)
 _cmd = new SqlCommand(
 "SELECT ProductName, ProductDescription FROM Products", _cnn);

 if (_dataToWatch == null)
 _dataToWatch = new DataSet();

 GetData();
}

private void GetData()
{
 _dataToWatch.Clear();
 _cmd.Notification = null;

Aschenbrenner842-3.book Page 321 Wednesday, April 18, 2007 3:19 PM

322 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

 SqlDependency dependency = new SqlDependency(_cmd);
 dependency.OnChange += new OnChangeEventHandler(dependency_OnChange);

 using (SqlDataAdapter adapter = new SqlDataAdapter(_cmd))
 {
 adapter.Fill(_dataToWatch, "Products");
 dataGridView1.DataSource = _dataToWatch;
 dataGridView1.DataMember = "Products";
 lblCount.Text = _dataToWatch.Tables["Products"].Rows.Count.ToString();
 }
}

As you can see in Listing 9-23, cmdGetData_Click stops and starts the query notifications for the
current database connection. On first execution, the SqlConnection and SqlCommand objects are cre-
ated and used inside GetData. GetData creates a new SqlDependency object and registers an event
handler for the OnChange event of the SqlDependency object. In the last step, you retrieve the available
data from the Products table through the SqlDataAdapter class. Listing 9-24 is the event handler for
the OnChange event of the SqlDependency class.

Listing 9-24. The OnChange Event Handler for the SqlNotification Class

private void dependency_OnChange(object sender, SqlNotificationEventArgs e)
{
 ISynchronizeInvoke i = (ISynchronizeInvoke)this;

 if (i.InvokeRequired)
 {
 OnChangeEventHandler tempDelegate =
 new OnChangeEventHandler(dependency_OnChange);
 object[] args = { sender, e };

 i.BeginInvoke(tempDelegate, args);
 return;
 }

 SqlDependency dependency = (SqlDependency)sender;
 dependency.OnChange -= dependency_OnChange;

 GetData();
}

You retrieve the changed data from the database with GetData, as shown in Listing 9-23. Prior to
calling GetData, you check if the dependency_OnChange method is executing on a background thread.
If this is the case, you transition to the UI thread with BeginInvoke of the ISynchronizeInvoke inter-
face. This is necessary because you can only update UI controls from the UI thread. As you can see
in GetData, you’re changing the content of the DataGridView control.

Take a careful look at Listing 9-24.
You’ll see that the OnChange event handler of the SqlNotification class has a second parameter

that specifies an instance of the SqlNotificationEventArgs class. Table 9-4 describes the properties
of the SqlNotificationEventArgs class.

Aschenbrenner842-3.book Page 322 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 323

Table 9-4. Properties of the SqlNotificationEventArgs Class

The properties of the SqlNotificationEventArgs class provide you further information
about the raised query notification. However, keep in mind that the properties don’t tell you
what data was changed on the database server. The properties give you most details you’re
going to see in a notification and can be really useful for troubleshooting. You can find detailed
information about the provided enumerations at http://msdn2.microsoft.com/en-us/library/
system.data.sqlclient.sqlnotificationeventargs.aspx.

SqlNotificationRequest
The SqlDependency class is a high-level implementation of the SqlNotificationRequest class. With
the SqlNotificationRequest class, you’re required to create your own Service Broker services and
queues in SQL Server as well as your own listener to process the sent notification accordingly. You
may choose to use this lower-level class for more granular control over the notification architecture.
Another benefit is that you can create your own messages that are returned along with the notifica-
tion, similar to the SqlNotificationInfo enumeration. Let’s have a look at how the
SqlNotificationRequest class is used. There are three steps involved:

1. Set up the Service Broker service and queue.

2. Create an instance of the SqlNotificationRequest class and attach it to the
SqlCommand.Notification property.

3. Write a listener that retrieves and reacts to the received query notifications message.

Let’s have a look at each of these steps.

Setting Up the Service Broker Service and Queue

The first step is to set up the required Service Broker objects: a service with an associated queue. The
queue used for query notifications must support the contract [http://schemas.microsoft.com/SQL/
Notifications/PostQueryNotification]. Listing 9-25 shows the required T-SQL code.

Listing 9-25. Setting Up the Required Service Broker Objects Needed for Query Notifications

CREATE QUEUE QueryNotificationQueue
GO

CREATE SERVICE QueryNotificationService
ON QUEUE QueryNotificationQueue
(
 [http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]
)
GO

Property Description

Info Gets a value of the SqlNotificationInfo enum that indicates the reason for the
notification event

Source Gets a value of the SqlNotificationSource enum that indicates the source that
generated the notification

Type Gets a value of the SqlNotificationType enum that indicates whether the
notification is generated because of an actual change or by the subscription

Aschenbrenner842-3.book Page 323 Wednesday, April 18, 2007 3:19 PM

http://msdn2.microsoft.com/en-us/library
http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification

324 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

■Note Make sure that you enable Service Broker in the database and that you create the Products table from
Listing 9-21.

Creating the SqlNotificationRequest Object

Next, create a SqlNotificationRequest object and associate a SqlCommand object with it. Listing 9-26
shows the cmdGetData_Click and GetData methods where cmdGetData_Click is called when the user
clicks the Get Data button.

Listing 9-26. Creating a SqlNotificationRequest Object

private void cmdGetData_Click(object sender, EventArgs e)
{
 if (_cnn == null)
 _cnn = new SqlConnection(_connectionString);

 if (_cmd == null)
 _cmd = new SqlCommand(
 "SELECT ProductName, ProductDescription FROM Products", _cnn);

 if (_dataToWatch == null)
 _dataToWatch = new DataSet();

 GetData();
}

private void GetData()
{
 _dataToWatch.Clear();
 _cmd.Notification = null;

 SqlNotificationRequest request = new SqlNotificationRequest();
 request.UserData = Guid.NewGuid().ToString();
 request.Options = "service=" + _serviceName + ";";
 request.Timeout = _notificationTimeout;
 _cmd.Notification = request;

 using (SqlDataAdapter adapter = new SqlDataAdapter(_cmd))
 {
 adapter.Fill(_dataToWatch, "Products");
 dataGridView1.DataSource = _dataToWatch;
 dataGridView1.DataMember = "Products";

 StartListener();
 }
}

Note that you must set the UserData and Options properties of the SqlNotificationRequest
object. With UserData, you can assign an application-specific identifier for this notification. This
value is not used by the notification infrastructure. Instead, it is a mechanism that allows an appli-
cation to associate notifications with application state.

Aschenbrenner842-3.book Page 324 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 325

The Options property is used to set the Service Broker service name, the database, or the Service
Broker instance GUID where the notification messages are sent. The value of the Options property
has the following format:

service=<service-name>
 {;(local database=<database>|broker instance=<broker instance>)}

Finally, you fill the DataGridView control with the data retrieved by the SqlDataAdapter and call
StartListener to retrieve and react on the sent query notification.

Writing a Listener

The last step to set up query notifications with SqlNotificationRequest is to write a listener method
that processes the incoming query notifications. You called the listener, StartListener, in Listing 9-26.
Listing 9-27 is the implementation of this method.

Listing 9-27. Starting Up the Listener

private void StartListener()
{
 Thread listener = new Thread(Listen);
 listener.Name = "Query Notification Watcher";
 listener.Start();
}

You just start a new thread and pass the Listen method as a parameter. This means that the
query notifications are retrieved by Listen. Refer to Listing 9-28.

Listing 9-28. Implementation of the Listener

private void Listen()
{
 using (SqlConnection cnn = new SqlConnection(_connectionString))
 {
 using (SqlCommand cmd = new SqlCommand(
 "WAITFOR (RECEIVE * FROM QueryNotificationQueue);", cnn))
 {
 // cmd.CommandTimeout = _notificationTimeout + 100;
 cnn.Open();
 SqlDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 }

 object[] args = { this, EventArgs.Empty };
 EventHandler notify = new EventHandler(OnNotificationComplete);

 // Switch back to the UI-Thread
 this.BeginInvoke(notify, args);
 }
 }
}

As soon as the query notifications are received from the queue through the RECEIVE T-SQL
statement, the method OnNotificationComplete is called and it just calls GetData from Listing 9-26.

Aschenbrenner842-3.book Page 325 Wednesday, April 18, 2007 3:19 PM

326 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

You also make sure that you switch back from the background thread to the UI thread, so that the
runtime can update the DataGridView control.

When you click Get Data the first time, the query notifications are set up. You can now change
the data in the Products table through an INSERT, DELETE, or UPDATE T-SQL statement, and your
changes will be reflected in the application. See Figure 9-12.

Figure 9-12. The UI of the sample application

Troubleshooting Query Notifications
While the SqlDependency class provides you access to query notifications without knowing anything
about the underlying Service Broker infrastructure, it’s hard to troubleshoot query notifications with-
out this essential knowledge. The profiler can show the query notification events that are reported
when a new subscription is registered. Once a query notification subscription is notified, the notifica-
tion message is delivered using Service Broker. If the notification message isn’t delivered, the first
place to look is the transmission_status column in the sys.tranmission_queue in the sender’s data-
base. Let’s have a look at some helpful information for diagnosing common query notifications
problems.

Checking a Subscription

Subscriptions for notifications are stored in the database where the query is executed. If your appli-
cation isn’t receiving notifications, request a notification and then immediately check to see if the
subscription appears in the sys.dm_qn_subscriptions server-level view. If SQL Server doesn’t pro-
duce a notification event and no notification subscription appears, the parameter for the request is
invalid. In this case, SQL Server refuses the notification request. SQL Server reports information on
refused requests in two places:

• The event log

• The SQL Profiler

Aschenbrenner842-3.book Page 326 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E 327

Notice that notification subscriptions are tracked using the query and the notification message.
When you submit a subscription with the same message, the same query, and the same delivery ser-
vice as an existing subscription, SQL Server updates the time-out for the existing subscription rather
than creating a new subscription.

Notification Message Not Produced

If a subscription is registered successfully but a query that should produce a notification doesn’t
produce a notification even though the subscription is removed, SQL Server can’t deliver the notifi-
cation message to the specified Service Broker service. In this case, the statement that updated the
data may return an error, or Service Broker sends an error to the QueryNotificationErrorsQueue.
SQL Server receives these error messages and writes them to the SQL Server error log.

The most common cause of this problem is that the subscription request didn’t contain a ser-
vice name that matched a service in the database. If the command that changes the data doesn’t
report an error, the most likely problem is that the service that receives the request isn’t configured
correctly. To diagnose this problem, check the SQL Server error log.

When to Use Query Notifications
Query notifications are designed for data that doesn’t change frequently. They are also best used in
server-side applications rather than client-side applications. Remember that each request for a noti-
fication is registered in SQL Server. If thousands of client applications each request a notification,
this can create a scalability problem on your database server. Microsoft’s recommendation is that
for client-side applications, you should limit the use of query notifications to not more than ten con-
current users.

For large-scale applications, query notifications can be a powerful addition to meet high load
demands. Imagine a large-scale website that provides online information to thousands or even
millions of users. Rather than having each user’s update trigger yet another query on the server to
see which information is available, the query can be cached, and matching queries can be served
directly from the cache.

On a smaller scale, drop-down lists are another typical set of data that is requested frequently
but not updated often. Product lists, state lists, country lists, vendors, salespeople, and other
information that changes at a much lower frequency than it is requested are great candidates for
notifications.

■Note If your query notifications stop working after five minutes, have a look at this Microsoft Knowledge Base
article: http://support.microsoft.com/Default.aspx?kbid=913364.

Summary
In this chapter, I’ve shown how SQL Server 2005 enables a SODA architecture. I first gave an intro-
duction to the various data types that are used inside and outside a service boundary. These are
important concepts to understand. Next, I introduced the SODA features of SQL Server 2005. The
XML support of SQL Server 2005 makes it possible to store XML data inside SQL Server. Combined
with the native web service support in SQL Server 2005, XML and web services provide you all the
features needed to connect your Service Broker application to other clients—even those written on
different platforms.

The integration of the .NET runtime into SQL Server 2005 makes it possible to write service logic
for Service Broker applications directly with managed programming languages such as C# or VB.

Aschenbrenner842-3.book Page 327 Wednesday, April 18, 2007 3:19 PM

http://support.microsoft.com/Default.aspx?kbid=913364

328 C H A P T E R 9 ■ S E R V I C E - O R I E N T E D D A T A B A S E A R C H I T E C T U R E

Therefore, you can move your externally implemented business logic directly inside SQL Server 2005
without learning new things. The last SODA feature I covered was query notifications. Query notifi-
cations provide notification from the database server as soon as cached data has changed. The use
of query notifications makes it possible to write fast data-driven applications. In the next chapter, I’ll
show you several real-world application scenarios with Service Broker.

Aschenbrenner842-3.book Page 328 Wednesday, April 18, 2007 3:19 PM

329

■ ■ ■

C H A P T E R 1 0

Real-World Application Scenarios

In this chapter, I’ll show you several real-world application scenarios where you can use Service
Broker to implement scalable and reliable database solutions based on SQL Server 2005. This chap-
ter will cover the following topics:

• Asynchronous triggers: Under normal conditions, a database trigger is executed synchro-
nously. But what if the trigger has to do a lot of time-consuming work? In this case, it would
be great if the functionality of the trigger could be executed in an asynchronous fashion. With
the use of Service Broker, this is possible. I’ll show you a complete sample that implements an
asynchronous trigger with the use of Service Broker.

• Batch frameworks: Many people around the world have implemented various batch job sys-
tems with SQL Server. But what would you say if you could use the features provided by
Service Broker to implement an asynchronous, reliable, secure, and distributed batch
framework based on the SQLCLR? I’ll show you how to make this possible.

• Publish-subscribe frameworks: Service Broker doesn’t provide out-of-the-box functional-
ities for publish-subscribe scenarios. However, this doesn’t mean that you can’t achieve
such scenarios with Service Broker. I’ll show you how to implement a complete publish-
subscribe framework with Service Broker.

• Priority-based message processing: Priority-based messaging for conversations in Service
Broker can get a little bit tricky because of the complexity involved in those scenarios. I’ll
provide you a complete sample that implements priority-based message processing for
conversation groups in Service Broker.

• Reliable web service requests: Calls to ASP.NET 2.0 web services aren’t very reliable because of
the underlying unreliable HTTP protocol. I’ll provide you with a complete solution for using
Service Broker to call ASP.NET 2.0 web services in a reliable way.

Asynchronous Triggers
When you combine database triggers with Service Broker functionality, you can achieve great
results. Let’s assume you have a table in your database with some data. Each time you insert or
update a new record in the table, you must execute a business functionality that takes some amount
of time. Just imagine when you have to call a web service to validate a credit-card number, or when
you have to communicate with other systems. Or think about when you must start a workflow, such
as in BizTalk Server or Windows Workflow Foundation. It would be your death if you do this directly
in the trigger. The only solution here is to use an asynchronous approach, such as the one that
Service Broker provides you.

Aschenbrenner842-3.book Page 329 Wednesday, April 18, 2007 3:19 PM

330 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Defining the Problem
A quick and dirty solution would be to write a trigger that calls the desired business functionality
directly. But what if your database is part of a high-performance, mission-critical, enterprise appli-
cation? In that case, you must always make an expensive (in terms of time) synchronous call to your
business functionality. As soon as you insert or update more records simultaneously in the table, the
performance of your solution will get slower and slower. In addition, you’ll probably also have locks
on the inserted or updated records, so other writers and readers will have to wait until the trigger
finishes and releases the locks. You can see that this simple and quick approach is not suitable for
scalable, mission-critical, enterprise applications.

Instead, I suggest that you use a trigger that fires when you insert a record in a specified table.
You use this trigger to send a Service Broker message to a Service Broker service that contains all
the needed information for further processing. As soon as the message arrives on the other Service
Broker endpoint, the activation feature starts a managed stored procedure (written with the
SQLCLR) that handles this message. Within the managed stored procedure, you can then execute
whatever business functionality you need—it doesn’t matter how long the execution takes. There-
fore, all the other stuff (sending the message, retrieving the message, processing the message, and
executing the business functionality) is done in an asynchronous way. Because of this approach, the
trigger finishes in a short time, and the acquired locks on the data are held as little as possible. The
result is an asynchronous solution that is suitable for high-performance, scalable, enterprise appli-
cations. Figure 10-1 shows the architecture of this application.

Figure 10-1. An asynchronous trigger with Service Broker

Aschenbrenner842-3.book Page 330 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 331

Implementing the Trigger
First, let’s look at the asynchronous OnCustomerInserted trigger that fires when a new record is
inserted in the Customers table. You implement the trigger with the SQLCLR support in SQL Server
2005. The implementation of a managed trigger must meet the following requirements:

• The trigger must be implemented with a static method without parameters and without a
return value.

• You can use the attribute [SqlTrigger] for the method. With this attribute, you can specify for
which table and for which event the trigger is fired. The advantage of using the [SqlTrigger]
attribute is that you can deploy the managed trigger automatically from Visual Studio 2005. If
you don’t specify the [SqlTrigger] attribute, you have to deploy the trigger to the SQL Server
database manually.

When you use the attribute [SqlTrigger], you can automatically deploy the trigger from Visual
Studio 2005 to the configured database. To do this, right-click on the project inside Visual Studio
2005 and select the Deploy command. This feature is useful during the development, but as soon as
you have to deploy the trigger (or any other SQLCLR component running inside SQL Server 2005)
into a production environment, you must know which T-SQL statements are needed for deploying
these components.

■Tip Use the attributes for deployment during the development of your SQLCLR components, but also create
T-SQL scripts for deploying these components to SQL Server 2005. You can use these scripts for the final deploy-
ment into the production system. You can gather the required T-SQL statements, for example, with SQL Profiler
during an automatic deployment with Visual Studio 2005.

Listing 10-1 shows the C# code you need to implement the managed trigger.

Listing 10-1. The Implementation of the Managed Trigger

[Microsoft.SqlServer.Server.SqlTrigger(
 Name="OnCustomerInserted",
 Target="Customers",
 Event="FOR INSERT")]
public static void OnCustomerInserted()
{
 using (SqlConnection cnn = new SqlConnection("context connection=true;")
 {
 try
 {
 SqlCommand cmd = new SqlCommand("SELECT * FROM INSERTED", cnn);
 cnn.Open();

 SqlDataReader reader = cmd.ExecuteReader();

Aschenbrenner842-3.book Page 331 Wednesday, April 18, 2007 3:19 PM

332 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

 if (reader.Read())
 {
 SqlCommand sendCmd = new SqlCommand(GetServiceBrokerScript(
 (string)reader[1],
 (string)reader[2],
 (string)reader[3],
 (string)reader[4]), cnn);
 reader.Close();
 sendCmd.ExecuteNonQuery();
 }
 }
 finally
 {
 cnn.Close();
 }
 }
}

Let’s have a detailed look at the C# trigger code. The [SqlTrigger] attribute receives the follow-
ing named parameters:

• Name: Specifies the name of the trigger used to identify the trigger inside SQL Server 2005

• Target: Specifies the target of the trigger—in this case, the name of the table

• Event: Specifies for which events the trigger is fired—in this case, for the insertion of new
records (FOR INSERT)

The first step within the trigger is to open a connection to the database. Because the trigger is
already running in the context of an active database connection, you can use the connection string
context connection=true to get back the current connection in which the trigger fires and executes.
In the next step, the trigger reads the new inserted record from the INSERTED table. This special table
is only available within the trigger context, when a new record is inserted into the table. Finally, you
create and execute a new SqlCommand against the current connection. The T-SQL script that is exe-
cuted through the SqlCommand is taken from the GetServiceBrokerScript method. Listing 10-2 shows
this method.

Listing 10-2. The GetServiceBrokerScript Method

private static string GetServiceBrokerScript(string customerNumber,
 string customerName, string customerAddress, string emailAddress)
{
 // Create the request message
 StringBuilder xmlBuilder = new StringBuilder("<InsertedCustomer>");
 xmlBuilder.Append("<CustomerNumber>").Append(customerNumber).Append(
 "</CustomerNumber>");
 xmlBuilder.Append("<CustomerName>").Append(customerName).Append(
 "</CustomerName>");
 xmlBuilder.Append("<CustomerAddress>").Append(customerAddress).Append(
 "</CustomerAddress>");
 xmlBuilder.Append("<EmailAddress>").Append(emailAddress).Append(
 "</EmailAddress>");
 xmlBuilder.Append("</InsertedCustomer>");

Aschenbrenner842-3.book Page 332 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 333

 // Create the T-SQL statement for sending the Service Broker message
 StringBuilder sqlBuilder = new StringBuilder("BEGIN TRANSACTION; ");
 sqlBuilder.Append("DECLARE @ch UNIQUEIDENTIFIER; ");
 sqlBuilder.Append("DECLARE @msg NVARCHAR(MAX); ");
 sqlBuilder.Append("BEGIN DIALOG CONVERSATION @ch ");
 sqlBuilder.Append("FROM SERVICE [CustomerInsertedClient] ");
 sqlBuilder.Append("TO SERVICE 'CustomerInsertedService' ");
 sqlBuilder.Append("ON CONTRACT
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract] ");
 sqlBuilder.Append("WITH ENCRYPTION=OFF; ");
 sqlBuilder.Append("SET @msg = '").Append(xmlBuilder.ToString()).
 Append("'; ");
 sqlBuilder.Append("SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedRequestMessage]
 (@msg); ");
 sqlBuilder.Append("COMMIT;");

 // Return the whole T-SQL script
 return sqlBuilder.ToString();
}

Listing 10-2 creates an XML document with the given parameters. Finally, the whole T-SQL script,
which is necessary for sending the Service Broker message, is created and returned to the caller.

Creating the Service Broker Infrastructure
In Listing 10-2, a message is sent from the CustomerInsertedClient to the CustomerInsertedService
based on the [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract] contract. Figure 10-2
shows the Service Broker objects needed for this solution.

Figure 10-2. The needed Service Broker objects

Aschenbrenner842-3.book Page 333 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedRequestMessage
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract

334 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-3 shows the T-SQL code needed to create the various Service Broker objects used by
this sample.

Listing 10-3. Creation of the Needed Service Broker Objects

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedRequestMessage]
 VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedResponseMessage]
 VALIDATION = WELL_FORMED_XML
GO

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract]
(
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedRequestMessage]
 SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedResponseMessage]
 SENT BY TARGET
)
GO

CREATE QUEUE [CustomerInsertedServiceQueue]
GO

CREATE QUEUE [CustomerInsertedClientQueue]
GO

CREATE SERVICE [CustomerInsertedService]
 ON QUEUE [CustomerInsertedServiceQueue]
(
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract]
)
GO

CREATE SERVICE [CustomerInsertedClient]
 ON QUEUE [CustomerInsertedClientQueue]
(
 [http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract]
)
GO

Writing the Service Program
After you set up the whole Service Broker infrastructure, you need to write a service program
that processes the incoming message from the CustomerInsertedClient and executes the
required business functionality. For this sample, you’ll create the managed stored procedure,
ProcessInsertedCustomers, which gets activated automatically as soon as a new message arrives
on the CustomerInsertedServiceQueue.

Aschenbrenner842-3.book Page 334 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedRequestMessage
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedResponseMessage
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedRequestMessage
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertedResponseMessage
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract
http://ssb.csharp.at/SSB_Book/c10/CustomerInsertContract

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 335

The stored procedure uses the RECEIVE T-SQL statement to retrieve the received Service Broker
message from CustomerInsertedServiceQueue. You could also use the ServiceBrokerInterface man-
aged assembly you saw in Chapter 5. After the stored procedure retrieves the message from the
queue, the content of the XML message is parsed through some XPath expressions, and each piece
of information is written to a text file stored in the local file system. The functionality you implement
here depends only on you. You can also call a web service. However, it’s important that this func-
tionality be purely asynchronous, so you avoid performance overhead when inserting new records.
Listing 10-4 shows the code needed to retrieve the XML message from
CustomerInsertedServiceQueue.

Listing 10-4. Retrieving the Received Message from the Queue

[Microsoft.SqlServer.Server.SqlProcedure]
public static void ProcessInsertedCustomer()
{
 string sql = "RECEIVE conversation_handle, CAST(message_body AS " +
 "NVARCHAR(MAX)) FROM [CustomerInsertedServiceQueue]";
 string message = string.Empty;

 using (SqlConnection cnn = new SqlConnection("context connection=true;"))
 {
 try
 {
 cnn.Open();
 SqlDataReader reader = new SqlCommand(sql, cnn).ExecuteReader();

 if (reader.Read())
 {
 Guid conversationHandle = (Guid)reader[0];
 message = (string)reader[1];
 reader.Close();

 new SqlCommand("END CONVERSATION '" +
 conversationHandle.ToString() + "'", cnn).ExecuteNonQuery();
 }
 }
 finally
 {
 cnn.Close();
 }
 }

 if (message != string.Empty)
 WriteCustomerDetails(message);
}

As soon as the XML message is read from the queue, you can use the WriteCustomerDetails
method, shown in Listing 10-5, to process the message and write it to the file system.

Aschenbrenner842-3.book Page 335 Wednesday, April 18, 2007 3:19 PM

336 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-5. Processing the Received Message

private static void WriteCustomerDetails(string xmlMessage)
{
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(xmlMessage);

 using (StreamWriter writer = new
 StreamWriter(@"c:\InsertedCustomers.txt", true))
 {
 writer.WriteLine("New Customer arrived:");
 writer.WriteLine("=====================");
 writer.WriteLine("CustomerNumber: " + xmlDoc.SelectSingleNode(
 "//CustomerNumber").InnerText);
 writer.WriteLine("CustomerName: " + xmlDoc.SelectSingleNode(
 "//CustomerName").InnerText);
 writer.WriteLine("CustomerAddress: " + xmlDoc.SelectSingleNode(
 "//CustomerAddress").InnerText);
 writer.WriteLine("EmailAddress: " + xmlDoc.SelectSingleNode(
 "//EmailAddress").InnerText);

 writer.Close();
 }
}

As you can see, you can easily write the content from the received XML message into a file in
the local file system. After you deploy all needed objects (such as the Service Broker objects and the
managed assembly) to the database, you can try to insert a new record into the Customers table. See
Listing 10-6.

Listing 10-6. Inserting a New Record into the Customers Table

INSERT INTO Customers
(
 ID,
 CustomerNumber,
 CustomerName,
 CustomerAddress,
 EmailAddress
)
VALUES
(
 NEWID(),
 'AKS',
 'Aschenbrenner Klaus',
 'A-1220 Vienna',
 'Klaus.Aschenbrenner@csharp.at'
)

■Note Please make sure that the .NET Framework execution support is enabled in the target database. You can
activate it with sp_configure 'clr enabled', 1 and then run the RECONFIGURE T-SQL statement.

Aschenbrenner842-3.book Page 336 Wednesday, April 18, 2007 3:19 PM

mailto:Aschenbrenner@csharp.at

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 337

As soon as you execute the T-SQL batch from Listing 10-6, the trigger fires and executes the
managed stored procedure. This stored procedure retrieves the inserted record and creates a new
XML message out of this data. This message is then sent to the CustomerInsertedService, where the
ProcessInsertedCustomers stored procedure gets activated automatically through Service Broker.
Inside this stored procedure, you write the content of the retrieved message to the file system.
Figure 10-3 shows the content of the created file.

Figure 10-3. The content of the created file

Batch Frameworks
Another useful example of when you can use Service Broker to realize a scalable solution is when
processing batch jobs in an asynchronous way. In this section, you’ll write a simple batch framework
that processes batch jobs submitted from client applications. The batch framework itself is com-
pletely extensible through new types of batch jobs, so it’s completely up to you which types of batch
jobs you want to support. Figure 10-4 shows the overall architecture of the batch framework.

Figure 10-4. The architecture of the batch job framework

Aschenbrenner842-3.book Page 337 Wednesday, April 18, 2007 3:19 PM

338 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

First, the client sends a Service Broker message to a Service Broker service that acts as the batch
job processor. The request message sent by the client contains the following important information:

• General information about the batch job: The request message contains general information
about the submitted batch job, such as the submission time, the sender (the client), the
owner of the job, and so on.

• Batch job type: The request message contains an identifier that describes which batch job
must be instantiated to process this batch job request successfully.

• Payload for the batch job: The request message contains the payload that the concrete batch
job needs to process the batch job request.

As you can see, each submitted batch job request contains a batch job type. The client can use
this batch job type to control which concrete batch job is executed. Because of this, you have the
possibility to extend the batch job framework with additional batch job types.

Creating the Service Broker Infrastructure
Let’s have a look at which Service Broker objects you need for the batch job framework. As with
every Service Broker solution, you must define in the first step the needed message types and con-
tracts that are used between the initiator service (the BatchJobSubmissionService) and the target
service (the BatchJobProcessingService). These are the [http://ssb.csharp.at/SSB_Book/c10/
BatchJobRequestMessage] and the [http://ssb.csharp.at/SSB_Book/c10/BatchJobResponseMessage]
message types. Both message types are used in the [http://ssb.csharp.at/SSB_Book/c10/
SubmitBatchJobContract] contract. Figure 10-5 shows these Service Broker objects in more detail.

Figure 10-5. Processing the Received Message

Aschenbrenner842-3.book Page 338 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/BatchJobRequestMessage
http://ssb.csharp.at/SSB_Book/c10/BatchJobRequestMessage
http://ssb.csharp.at/SSB_Book/c10/BatchJobResponseMessage
http://ssb.csharp.at/SSB_Book/c10/SubmitBatchJobContract
http://ssb.csharp.at/SSB_Book/c10/SubmitBatchJobContract

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 339

Let’s take a more detailed look at the request message that the client sends. As you already
know, this request message contains a lot of information needed by the BatchJobProcessingService
to process the batch job request message correctly. Listing 10-7 shows a typical request message
sent from the initiator service to the target service.

Listing 10-7. The Batch Job Request Message

<BatchJobRequest
 Submittor="vista_notebook\Klaus Aschenbrenner"
 SubmittedTime="06.01.2007 14:23:45"
 ID="D8E97781-0151-4DBF-B983-F1B4AE6F2445"
 MachineName="win2003dev"
 BatchJobType="http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA">
 <BatchJobData>
 <ContentOfTheCustomBatchJob>
 <FirstElement>This is my first information for the batch job</FirstElement>
 <SecondElement>
 This is my second information for the batch job
 </SecondElement>
 <ThirdElement>This is my third information for the batch job</ThirdElement>
 </ContentOfTheCustomBatchJob>
 </BatchJobData>
</BatchJobRequest>

In Listing 10-7, the <BatchJobRequest> element includes several attributes that contain addi-
tional information about the submitted batch job request. The most important attribute here is
the BatchJobType attribute. With this attribute, you can control which concrete batch job is instan-
tiated and executed on the database server. In the next section, “The Implementation of the Batch
Framework,” you’ll see how this instantiation works in detail. When you send the request message
from Listing 10-7 to the BatchJobProcessingService, the [http://ssb.csharp.at/SSB_Book/c10/
BatchJobTypeA] batch job type will be instantiated and executed.

Finally, you’ll find the <BatchJobData> element in the batch job request message. This XML
element contains the payload that is needed for the specified batch job type in the BatchJobType
attribute. The content of the <BatchJobData> element differs from the used batch job type and must
be understandable by the instantiated batch job type. In this case, this XML element contains the
child elements <FirstElement>, <SecondElement>, and <ThirdElement>. It’s completely up to the
batch job type which payload the batch job type expects here. You can also say that this is the vari-
able part of the request message.

The Implementation of the Batch Framework
Let’s take a look at the implementation of the batch framework. As soon as a request message of
the [http://ssb.csharp.at/SSB_Book/c10/BatchJobRequestMessage] message type is sent to the
BatchJobProcessingService, the sp_ProcessBatchJobSubmissions stored procedure starts automati-
cally through Service Broker. This stored procedure reads the received batch job request message
from the BatchJobSubmissionQueue and finally calls the ProcessBatchJobs stored procedure that you
write in C# with the features provided by the SQLCLR. Listing 10-8 shows the implementation of the
sp_ProcessBatchJobSubmissions stored procedure.

Aschenbrenner842-3.book Page 339 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA
http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA
http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA
http://ssb.csharp.at/SSB_Book/c10/BatchJobRequestMessage

340 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-8. The Implementation of the sp_ProcessBatchJobSubmissions Stored Procedure

CREATE PROCEDURE sp_ProcessBatchJobSubmissions
AS
 DECLARE @conversationHandle AS UNIQUEIDENTIFIER;
 DECLARE @messageBody AS XML;

 BEGIN TRY
 BEGIN TRANSACTION;

 RECEIVE TOP (1)
 @conversationHandle = conversation_handle,
 @messageBody = CAST(message_body AS XML)
 FROM [BatchJobSubmissionQueue]

 IF @conversationHandle IS NOT NULL
 BEGIN
 EXECUTE dbo.ProcessBatchJob @messageBody, @conversationHandle;

 DECLARE @data NVARCHAR(MAX)
 SET @data = CAST(@messageBody as NVARCHAR(MAX))
 INSERT INTO MessageLog VALUES (GETDATE(), @data);
 END

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 -- Log error (eg. in an error table)
 PRINT ERROR_MESSAGE()
 ROLLBACK TRANSACTION
 END CATCH
GO

In Listing 10-8, the ProcessBatchJob managed stored procedure accepts two parameters: the
message body of the received message, and the conversation handle of the ongoing conversation
with the submitter of the batch job. The received message is also inserted in the MessageLog table for
auditing purposes. You can easily check if the batch framework successfully processed a sent mes-
sage. Listing 10-9 shows the definition of the MessageLog table.

Listing 10-9. Definition of the MessageLog Table

CREATE TABLE MessageLog
(
 Date DATETIME,
 LogData NVARCHAR(MAX)
)
GO

Aschenbrenner842-3.book Page 340 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 341

After you call the ProcessBatchJobs managed stored procedure, this stored procedure performs
the following steps:

1. Instantiate the batch job: With the information in the BatchJobType attribute of the request
message, the stored procedure is able to instantiate the concrete batch job.

2. Execute the batch job: After the instantiation of the batch job, the received message is
handed over to the batch job, and the batch job itself is executed.

Let’s have a more detailed look at each of these two steps.

Batch Job Instantiation
Each supported batch job in the batch framework is implemented as a .NET class and must imple-
ment the IBatchJob interface. Listing 10-10 shows the definition of this interface.

Listing 10-10. Definition of the IBatchJob Interface

public interface IBatchJob
{
 // This method is called, when the batch job gets executed
 // through the batch framework.
 void Execute(SqlXml Message, Guid ConversationHandle, SqlConnection Connection);
}

In Listing 10-10, the IBatchJob interface defines only one method—the Execute method. The
batch framework calls this method as soon as a batch job gets instantiated and executed. Let’s have
a look at how the batch framework does this.

Each batch job that the BatchJobType attribute requests must be mapped to a concrete CLR
class that implements the IBatchJob interface. For this reason, the batch job framework comes with
a lookup table that achieves this mapping—the BatchJobs table. Listing 10-11 shows the definition
of this table.

Listing 10-11. Definition of the BatchJobs Table

CREATE TABLE BatchJobs
(
 ID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 BatchJobType NVARCHAR(255) NOT NULL,
 CLRTypeName NVARCHAR(255) NOT NULL
)
GO

To support the [http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA] batch job type (as
defined in the batch job request message in Listing 10-7), you must map this batch job type to a
concrete CLR class, such as the BatchJobTypeA class. Listing 10-12 shows the mapping information
needed in the BatchJobs table.

Aschenbrenner842-3.book Page 341 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA

342 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-12. The Needed Mapping Information for BatchJobTypeA

INSERT INTO BatchJobs
(
 ID,
 BatchJobType,
 CLRTypeName
)
VALUES
(
 NEWID(),
 'http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA',
 'BatchFramework.Implementation.BatchJobTypeA,BatchFramework.Implementation,
 Version=1.0.0.0,Culture=neutral, PublicKeyToken=neutral'
)

After you know the required mapping information is stored in the database, you can have a look at
the code that instantiates a specified batch job. This code is encapsulated inside the BatchJobFactory
class. This class contains only one method, the GetBatchJob method. Listing 10-13 shows the implemen-
tation of this method.

Listing 10-13. Implementation of the GetBatchJob Method

public static IBatchJob GetBatchJob(string BatchJobType)
{
 SqlConnection cnn = new SqlConnection("context connection=true");

 try
 {
 SqlCommand cmd = new SqlCommand(
 "SELECT CLRTypeName FROM BatchJobs WHERE BatchJobType = @BatchJobType",
 cnn);
 cmd.Parameters.Add("@BatchJobType", SqlDbType.NVarChar, 255);
 cmd.Parameters["@BatchJobType"].Value = MessageType;

 cnn.Open();
 SqlDataReader reader = cmd.ExecuteReader();

 if (reader.Read())
 {
 string typeName = (string)reader["CLRTypeName"];
 reader.Close();

 return InstantiateBatchJob(typeName);
 }
 else
 throw new ArgumentException(
 "The given BatchJobType was not found.", BatchJobType);
 }
 finally
 {
 cnn.Close();
 }
}

Aschenbrenner842-3.book Page 342 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/BatchJobTypeA
mailto:Parameters["@BatchJobType"].Value

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 343

In Listing 10-13, you retrieve the CLR type name from the BatchJobs table. After the retrieval,
the InstantiateBatchJob method instantiates the specified CLR type name and returns it as a type
of IBatchJob back to the caller of the method. Listing 10-14 shows the implementation of the
InstantiateBatchJob method.

Listing 10-14. Implementation of the InstantiateBatchJob Method

private static IBatchJob InstantiateBatchJob(string fqAssemblyName)
{
 if (null == fqAssemblyName || fqAssemblyName.Length == 0)
 throw new ArgumentException("AssemblyName parameter cannot be null or empty",
 fqAssemblyName);

 Type type = Type.GetType(fqAssemblyName);

 if (null == type)
 {
 throw new ArgumentException(string.Format(CultureInfo.InvariantCulture,
 "Requested type {0} not found, unable to load", fqAssemblyName),
 "fqAssemblyName");
 }

 ConstructorInfo ctor = type.GetConstructor(new Type[] { });
 IBatchJob job = (IBatchJob)ctor.Invoke(new object[] { });

 return job;
}

Batch Job Execution
As soon as the BatchJobFactory.InstantiateBatchJob method returns, the Execute method is called
through the IBatchJob interface. It’s now up to you how you implement the Execute method in your
batch job. Listing 10-15 shows a simple implementation of this method that only ends the Service
Broker conversation with the initiator service. In the next section, “Extending the Batch Frame-
work,” you’ll find a more complex implementation of this interface.

Listing 10-15. Implementation of the Execute Method of a Batch Job

public class BatchJobTypeA : IBatchJob
{
 public void Execute(System.Data.SqlTypes.SqlXml Message, Guid ConversationHandle)
 {
 new ServiceBroker("context connection=true;").EndDialog(ConversationHandle);
 }
}

Listing 10-16 shows the implementation of the ProcessBatchJobTasks method that receives the
sent message as a parameter, instantiates the concrete batch job, and executes it.

Aschenbrenner842-3.book Page 343 Wednesday, April 18, 2007 3:19 PM

344 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-16. Implementation of the ProcessBatchJobTasks Method

public static void ProcessBatchJobTasks(SqlXml Message, Guid ConversationHandle)
{
 if (Message.IsNull)
 {
 SqlContext.Pipe.Send("No message was supplied for processing.");
 new ServiceBroker("context connection=true;").EndDialog(ConversationHandle);
 return;
 }

 XmlDocument doc = new System.Xml.XmlDocument();
 doc.LoadXml(Message.Value);

 // Execute the requested batch job
 IBatchJob task = BatchJobFactory.GetBatchJob(
 doc.DocumentElement.Attributes["BatchJobType"].Value);
 task.Execute(Message, ConversationHandle);
}

Finally, you must deploy to the database the managed assembly that contains the implemen-
tation of the batch framework. As you already know, you can do this through the CREATE ASSEMBLY
T-SQL statement. Listing 10-17 shows the needed T-SQL code.

Listing 10-17. Deployment of the Managed Assembly

-- Register the managed assembly
CREATE ASSEMBLY [BatchFramework.Implementation]
FROM 'c:\BatchFramework.Implementation.dll'
GO

-- Add the debug information to the registered assembly
ALTER ASSEMBLY [BatchFramework.Implementation]
ADD FILE FROM 'c:\BatchFramework.Implementation.pdb'
GO

-- Register the managed stored procedure "ProcessBatchJobs"
CREATE PROCEDURE ProcessBatchJobs
(
 @Message XML,
 @ConversationHandle UNIQUEIDENTIFIER
)
AS
EXTERNAL NAME
 [BatchFramework.Implementation].
 [BatchFramework.Implementation.BatchFramework].ProcessBatchJobs
GO

After you deploy the managed assembly and you set up the required mapping information,
you’re able to submit a new batch job to the BatchJobProcessingService. Listing 10-18 shows the
required code.

Aschenbrenner842-3.book Page 344 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 345

Listing 10-18. Submitting a New Batch Job to the BatchJobProcessingService

BEGIN TRANSACTION
DECLARE @conversationHandle UNIQUEIDENTIFIER

BEGIN DIALOG @conversationHandle
 FROM SERVICE [BatchJobSubmissionService]
 TO SERVICE 'BatchJobProcessingService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c10/SubmitBatchJobContract]
 WITH ENCRYPTION = OFF;

SEND ON CONVERSATION @conversationHandle
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/BatchJobRequestMessage]
 (
 -- Please use here the message as shown in Listing 10-7...
)
COMMIT
GO

When the message is processed successfully, you should see one record in the MessageLog table,
as shown in Figure 10-6.

Figure 10-6. The processed message in the MessageLog table

Extending the Batch Framework
By now, you’ve seen the complete implementation of the batch framework. The great thing about
this framework is that you can extend it easily by just adding a new batch job type. In this section,
you’ll implement a batch job with which you can order flight tickets from a website. You’ll discover
the necessary steps to implement and use the new batch job.

Implementing the New Batch Job Type
First, you must implement the new batch job type. To implement this scenario, you must first create a
table that stores the entered flight ticket information from the website. Let’s call this table FlightTickets.
Listing 10-19 shows the definition of this table.

Listing 10-19. Definition of the FlightTickets Table

CREATE TABLE FlightTickets
(
 ID UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 [From] NVARCHAR(255) NOT NULL,
 [To] NVARCHAR(255) NOT NULL,
 FlightNumber NVARCHAR(255) NOT NULL,
 Airline NVARCHAR(255) NOT NULL,
 Departure NVARCHAR(255) NOT NULL,
 Arrival NVARCHAR(255) NOT NULL
)

Aschenbrenner842-3.book Page 345 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/SubmitBatchJobContract
http://ssb.csharp.at/SSB_Book/c10/BatchJobRequestMessage

346 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

After you define the data storage for the new batch job, you create the batch job itself. Before
learning how to implement the batch job, take a look at the request message that is sent for this new
batch job request. Listing 10-20 shows the request message with the payload that is expected by the
new batch job.

Listing 10-20. The Request Message for the New Batch Job Type

<BatchJobRequest
 Submittor="vista_notebook\Klaus Aschenbrenner"
 SubmittedTime="06.01.2007 14:23:45"
 ID="D8E97781-0151-4DBF-B983-F1B4AE6F2445"
 MachineName="vista_notebook"
 BatchJobType="http://ssb.csharp.at/SSB_Book/c10/TicketReservationTask">
 <BatchJobData>
 <FlightTicketReservation>
 <From>IAD</From>
 <To>SEA</To>
 <FlightNumber>UA 119</FlightNumber>
 <Airline>United Airlines</Airline>
 <Departure>2006-11-10 08:00</Departure>
 <Arrival>2006-11-10 09:10</Arrival>
 </FlightTicketReservation>
 </BatchJobData>
</BatchJobRequest>

In Listing 10-20, you can easily map each XML element in the <FlightTicketReservation> element
to the FlightTickets table shown in Listing 10-19. Because you can implement a new batch job indepen-
dent of the batch framework, let’s add a new class library called BatchFramework.FlightTicketJob to the
Visual Studio 2005 solution. In this library, you can add the FlightTicketJob class that implements the
new batch job. See Listing 10-21 for further details.

Listing 10-21. Implementation of the FlightTicketJob Class

public class TicketReservationTask : IBatchJob
{
 public void Execute(
 System.Data.SqlTypes.SqlXml Message,
 Guid ConversationHandle,
 SqlConnection Connection)
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(Message.Value);

 try
 {
 // Construct the SqlCommand
 SqlCommand cmd = new SqlCommand(
 "INSERT INTO FlightTickets (ID, [From], [To], FlightNumber, Airline,
 Departure, Arrival) VALUES ("
 + "@ID, @From, @To, @FlightNumber, @Airline, @Departure, @Arrival)",
 Connection);

Aschenbrenner842-3.book Page 346 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/TicketReservationTask

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 347

 cmd.Parameters.Add(new SqlParameter("@ID", SqlDbType.UniqueIdentifier));
 cmd.Parameters.Add(new SqlParameter("@From", SqlDbType.NVarChar));
 cmd.Parameters.Add(new SqlParameter("@To", SqlDbType.NVarChar));
 cmd.Parameters.Add(new SqlParameter("@FlightNumber", SqlDbType.NVarChar));
 cmd.Parameters.Add(new SqlParameter("@Airline", SqlDbType.NVarChar));
 cmd.Parameters.Add(new SqlParameter("@Departure", SqlDbType.NVarChar));
 cmd.Parameters.Add(new SqlParameter("@Arrival", SqlDbType.NVarChar));
 cmd.Parameters["@ID"].Value = Guid.NewGuid();
 cmd.Parameters["@From"].Value =
 doc.GetElementsByTagName("From").Item(0).InnerText;
 cmd.Parameters["@To"].Value =
 doc.GetElementsByTagName("To").Item(0).InnerText;
 cmd.Parameters["@FlightNumber"].Value =
 doc.GetElementsByTagName("FlightNumber").Item(0).InnerText;
 cmd.Parameters["@Airline"].Value =
 doc.GetElementsByTagName("Airline").Item(0).InnerText;
 cmd.Parameters["@Departure"].Value =
 doc.GetElementsByTagName("Departure").Item(0).InnerText;
 cmd.Parameters["@Arrival"].Value =
 doc.GetElementsByTagName("Arrival").Item(0).InnerText;

 // Execute the query
 cmd.ExecuteNonQuery();
 }
 finally
 {
 // End the ongoing conversation between the two services
 new ServiceBroker(Connection).EndDialog(ConversationHandle);
 }
 }
}

In Listing 10-21, the needed information from the flight ticket reservation is extracted from the
received message and is finally inserted in the FlightTickets table through a SqlCommand.

Registering the New Batch Job Type
After you implement the new batch job, it’s time to register it within the batch framework. First, you
must register the newly created managed assembly inside the database. Listing 10-22 shows the nec-
essary T-SQL code.

Listing 10-22. Registration of the New Managed Assembly

-- Register the new managed assembly
CREATE ASSEMBLY [BatchFramework.TicketReservationTask]
FROM 'c:\BatchFramework.TicketReservationTask.dll'
GO

-- Add the debug information about the assembly
ALTER ASSEMBLY [BatchFramework.TicketReservationTask]
ADD FILE FROM 'c:\BatchFramework.TicketReservationTask.pdb'
GO

Aschenbrenner842-3.book Page 347 Wednesday, April 18, 2007 3:19 PM

mailto:Parameters["@ID"].Value
mailto:Parameters["@From"].Value
mailto:Parameters["@To"].Value
mailto:Parameters["@FlightNumber"].Value
mailto:Parameters["@Airline"].Value
mailto:Parameters["@Departure"].Value
mailto:Parameters["@Arrival"].Value

348 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Finally, add the required mapping information to the BatchJobs table (see Listing 10-23).

Listing 10-23. Registration of the New Batch Job Inside the Batch Framework

INSERT INTO BatchJobs
(
 ID,
 BatchJobType,
 CLRTypeName
)
VALUES
(
 NEWID(),
 'http://ssb.csharp.at/SSB_Book/c10/TicketReservationTask',
 ‚BatchFramework.TicketReservationTask.TicketReservationTask,
 BatchFramework.TicketReservationTask, Version=1.0.0.0,Culture=neutral,
 PublicKeyToken=neutral'
)
GO

Your new batch job is now ready to use. Try to send the request message from Listing 10-20 to the
BatchJobProcessingService. If everything goes fine, you should see a new record in the MessageLog and
in the FlightTickets table. See Figure 10-7.

Figure 10-7. The processed flight ticket reservation

As you’ve seen from this sample, you can easily extend this batch framework with additional
custom batch jobs. In this case, you don’t have to worry about defining message types, contracts,
queues, and services for your additional business functionality. Simply implement the IBatchJob
interface and add the necessary mapping information into the BatchJobs table, and the plumping is
done for you by the batch framework.

Publish-Subscribe Frameworks
Service Broker can also realize a publish-subscribe scenario in which a sent Service Broker message
(referred as an article) from an author is sent to a publisher. The publisher itself distributes the mes-
sage to different subscribers. Each subscriber has subscribed to the received messages through a
subscription. Figure 10-8 illustrates this concept.

Aschenbrenner842-3.book Page 348 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/TicketReservationTask

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 349

Figure 10-8. A publish-subscribe scenario

Let’s have a look at how to implement this scenario with the functionality of Service Broker.

Defining the Infrastructure
You implement the author, publisher, and different subscribers as Service Broker services. Articles
are published by the AuthorService, which begins a new conversation with the PublisherService.
Before the AuthorService sends the actual articles, it notifies the PublisherService about the subject
of the articles that are sent along this conversation.

Subscribers are also Service Broker services that begin conversations with the PublisherService.
They request a subject of interest and then receive all published articles on that subject as they are
published. Because of these requirements, the interface for the PublisherService needs to support the
following two contracts:

• A contract on which author services publish articles

• A contract on which the subscribers subscribe to a subject and receive published articles

Listing 10-24 shows the definition of all Service Broker objects needed for this sample.

Listing 10-24. Defining the Service Broker Infrastructure

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/PublishMessage]
VALIDATION = WELL_FORMED_XML;
GO

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage]
VALIDATION = NONE;
GO

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage]
VALIDATION = WELL_FORMED_XML;
GO

Aschenbrenner842-3.book Page 349 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage

350 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c10/PublishContract]
(
 [http://ssb.csharp.at/SSB_Book/c10/PublishMessage] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage] SENT BY INITIATOR
)
GO

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c10/SubscribeContract]
(
 [http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage] SENT BY TARGET
)
GO

CREATE QUEUE [PublisherQueue]
GO

CREATE SERVICE [PublisherService] ON QUEUE [PublisherQueue]
(
 [http://ssb.csharp.at/SSB_Book/c10/PublishContract],
 [http://ssb.csharp.at/SSB_Book/c10/SubscribeContract]
)
GO

CREATE QUEUE SubscriberQueue1;
GO

CREATE SERVICE SubscriberService1 ON QUEUE SubscriberQueue1;
GO

CREATE QUEUE SubscriberQueue2;
GO

CREATE SERVICE SubscriberService2 ON QUEUE SubscriberQueue2;
GO

CREATE QUEUE AuthorQueue;
GO

CREATE SERVICE AuthorService ON QUEUE AuthorQueue;
GO

After you create the Service Broker infrastructure, you need two tables to store the various pub-
lications and subscriptions. For this sample, you’ll create the Publications and the Subscriptions
tables. Listing 10-25 shows the T-SQL code needed to create these two tables.

Aschenbrenner842-3.book Page 350 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishContract
http://ssb.csharp.at/SSB_Book/c10/PublishMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/SubscribeContract
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/PublishContract
http://ssb.csharp.at/SSB_Book/c10/SubscribeContract

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 351

Listing 10-25. Creation of the Publications and Subscriptions Tables

CREATE TABLE Publications
(
 Publication UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 Subject NVARCHAR(MAX) NOT NULL,
 OriginalXml XML NOT NULL
)
GO

CREATE TABLE Subscriptions
(
 Subscriber UNIQUEIDENTIFIER NOT NULL PRIMARY KEY,
 Subject NVARCHAR(MAX) NOT NULL,
 OriginalXml XML NOT NULL
)
GO

With these two tables, you’re able to match an incoming publication from the AuthorService to
the subscribers. You simply join both tables through the Subject column, as you’ll see in the next sec-
tion, “Publisher Logic.” Let’s have a look at the service program that runs on the PublisherService.

Applying Publisher Logic
You implement the entry point of the service program for the PublisherService in the
sp_PublisherService stored procedure. This stored procedure activates automatically as
soon as a new message arrives at the PublisherQueue and starts to process the message. This
stored procedure is able to process the following message types:

• [http://ssb.csharp.at/SSB_Book/c10/PublishMessage]: The stored procedure receives this
message type from the AuthorService when the stored procedure wants to start publishing
several articles. This message contains the subject to which the following articles follow.

• [http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage]: The stored procedure receives
this message type from the subscriber service when it wants to subscribe to a subject. This
message contains the requested subject to subscribe.

• [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage]: The stored procedure receives this
message type from the AuthorService when it publishes an article.

• [http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog]: The stored procedure
receives this message type from the AuthorService or a subscriber service when it wants to
close the opened conversation with the PublisherService.

• [http://schemas.microsoft.com/SQL/ServiceBroker/Error]: The stored procedure receives
this message type from the PublisherService when a requested subject isn’t available.

Listing 10-26 shows the sp_PublisherService stored procedure that processes these message
types.

Aschenbrenner842-3.book Page 351 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishMessage]:
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage]:
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage]:
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog]:
http://schemas.microsoft.com/SQL/ServiceBroker/Error]:

352 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-26. The sp_PublisherService Service Program

CREATE PROCEDURE sp_PublisherService
AS
BEGIN
 DECLARE @Conversation UNIQUEIDENTIFIER;
 DECLARE @Message VARBINARY(MAX);
 DECLARE @MessageTypeName SYSNAME;

 BEGIN TRANSACTION;

 WAITFOR
 (
 RECEIVE TOP(1)
 @Conversation = conversation_handle,
 @Message = message_body,
 @MessageTypeName = message_type_name
 FROM PublisherQueue
), TIMEOUT 1000;

 WHILE (@Conversation IS NOT NULL)
 BEGIN
 IF (@MessageTypeName = 'http://ssb.csharp.at/SSB_Book/c10/PublishMessage')
 BEGIN
 EXEC sp_ProcessPublicationRequest @Conversation, @Message;
 END
 ELSE IF (@MessageTypeName =
 'http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage')
 BEGIN
 EXEC sp_ProcessSubscriptionRequest @Conversation, @Message;
 END
 ELSE IF (@MessageTypeName =
 'http://ssb.csharp.at/SSB_Book/c10/ArticleMessage')
 BEGIN
 EXEC sp_SendOnPublication @Conversation, @Message;
 END
 ELSE IF (@MessageTypeName IN (
 N'http://schemas.microsoft.com/SQL/ServiceBroker/Error',
 N'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'))
 BEGIN
 END CONVERSATION @Conversation;

 IF (EXISTS (SELECT * FROM Publications
 WHERE Publication = @Conversation))
 BEGIN
 EXEC sp_RemovePublication @Conversation;
 END

Aschenbrenner842-3.book Page 352 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishMessage
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
N'http://schemas.microsoft.com/SQL/ServiceBroker/Error
N'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 353

 IF (EXISTS (SELECT * FROM Subscribers))
 BEGIN
 EXEC sp_RemoveSubscriber @Conversation;
 END
 END
 ELSE
 BEGIN
 -- Unexpected message
 RAISERROR (N'Received unexpected message type: %s', 16, 1,
 @MessageTypeName);
 ROLLBACK;
 RETURN;
 END
 COMMIT;

 SELECT @Conversation = NULL;
 BEGIN TRANSACTION;

 WAITFOR
 (
 RECEIVE TOP(1)
 @Conversation = conversation_handle,
 @Message = message_body,
 @MessageTypeName = message_type_name
 FROM PublisherQueue
), TIMEOUT 1000;
 END
 COMMIT;
END
GO

In Listing 10-26, you retrieve a new message from the PublisherQueue. If it is
the [http://ssb.csharp.at/SSB_Book/c10/PublishMessage] message type, you call the
sp_ProcessPublicationRequest stored procedure to store the received publication in
the Publications table. If the [http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage]
message type is received, the sp_ProcessSubscriptionRequest stored procedure is called.
Within this stored procedure, the received subscription is stored in the Subscriptions table.
Finally, if the [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage] message type is
received, the sp_PublisherService stored procedure calls the sp_SendOnPublication stored
procedure, which sends all publications to the matching subscribers.

You do the publication and subscription management through the sp_ProcessPublicationRequest
and sp_ProcessSubscriptionRequest stored procedures. These stored procedures call other stored
procedures that do an insert into the Publications or Subscriptions table with the data from the
received message. Listing 10-27 shows the sp_ProcessPublicationRequest stored procedure.
I’ve omitted the sp_ProcessSubscriptionRequest stored procedure, because it’s similar to the
sp_ProcessPublicationRequest stored procedure.

Aschenbrenner842-3.book Page 353 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishMessage
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage

354 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-27. The sp_ProcessPublicationRequest Stored Procedure

CREATE PROCEDURE sp_ProcessPublicationRequest
 @Conversation UNIQUEIDENTIFIER,
 @Message VARBINARY(MAX)
AS
BEGIN
 DECLARE @Request XML;
 DECLARE @Subject NVARCHAR(MAX);

 SELECT @Request = CAST(@Message AS XML);

 WITH XMLNAMESPACES (DEFAULT 'http://ssb.csharp.at/SSB_Book/c10/PublishSubscribe')
 SELECT @Subject = @Request.value(N'(//Publish/Subject)[1]', N'NVARCHAR(MAX)');

 IF (@Subject IS NOT NULL)
 BEGIN
 EXEC sp_PublishPublication @Conversation, @Subject, @Message;
 END
 ELSE
 BEGIN
 END CONVERSATION @Conversation
 WITH ERROR = 1
 DESCRIPTION = N'The publication is missing a subject';
 EXEC sp_RemovePublication @Conversation;
 END
END
GO

In Listing 10-27, the sp_ProcessPublicationRequest stored procedure calls the
sp_PublishPublication stored procedure with the conversation handle, the subject, and
the message as parameters. Listing 10-28 shows the sp_PublishPublication stored procedure.

Listing 10-28. The sp_PublishPublication Stored Procedure

CREATE PROCEDURE sp_PublishPublication
 @Publication UNIQUEIDENTIFIER,
 @Subject NVARCHAR(MAX),
 @OriginalXml XML
AS
BEGIN
 INSERT INTO Publications (Publication, Subject, OriginalXml)
 VALUES
 (
 @Publication,
 @Subject,
 @OriginalXml
)
END
GO

In Listing 10-28, the Publication column in the Publications table and the Subscription
column in the Subscriptions table are just storing the conversation handles. You need these conver-
sation handles to send a published article to the subscribers. The only stored procedure that’s left

Aschenbrenner842-3.book Page 354 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishSubscribe
mailto:@Request.value

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 355

is the sp_SendOnPublication stored procedure, which is called from the service program as soon
as the message type [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage] is received from the
AuthorService. Listing 10-29 shows the definition of the sp_SendOnPublication stored procedure.

Listing 10-29. The sp_SendOnPublication Stored Procedure

CREATE PROCEDURE sp_SendOnPublication
 @Publication UNIQUEIDENTIFIER,
 @Article VARBINARY(MAX)
AS
BEGIN
 DECLARE @Subscription UNIQUEIDENTIFIER;
 DECLARE @cursorSubscriptions CURSOR;

 SET @cursorSubscriptions = CURSOR LOCAL SCROLL FOR
 SELECT Subscriber
 FROM Subscriptions s
 JOIN Publications p ON s.Subject = p.Subject
 WHERE p.Publication = @Publication;

 BEGIN TRANSACTION;
 OPEN @cursorSubscriptions;

 FETCH NEXT FROM @cursorSubscriptions
 INTO @Subscription;

 WHILE (@@fetch_status = 0)
 BEGIN
 IF (@Article IS NOT NULL)
 BEGIN
 SEND ON CONVERSATION @Subscription
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage] (@Article);
 END
 ELSE
 BEGIN
 SEND ON CONVERSATION @Subscription
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage];
 END
 FETCH NEXT FROM @cursorSubscriptions
 INTO @Subscription;
 END

 CLOSE @cursorSubscriptions;
 DEALLOCATE @cursorSubscriptions;
 COMMIT;
END
GO

In Listing 10-29, the sp_SendOnPublication stored procedure uses a cursor to send the received
article from the AuthorService to the matched subscribers:

SEND ON CONVERSATION @Subscription
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage] (@Article);

Aschenbrenner842-3.book Page 355 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage

356 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

The matching is done through a join between the Publications and the Subscriptions tables—
through the Subject column:

SELECT Subscriber
FROM Subscriptions s
JOIN Publications p ON s.Subject = p.Subject
WHERE p.Publication = @Publication;

When the [http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog] message type
is received—either from the AuthorService or a subscriber service—the corresponding publica-
tion or subscription is removed from the Publications or Subscriptions table. This is done
through the sp_RemovePublication or sp_RemoveSubscriptions stored procedures. Listing 10-30
shows the sp_RemovePublication stored procedure.

Listing 10-30. The sp_RemovePublication Stored Procedure

CREATE PROCEDURE sp_RemovePublication
 @Publication UNIQUEIDENTIFIER
AS
BEGIN
 DELETE FROM Publications
 WHERE Publication = @Publication
END
GO

Publishing Information
This section takes a look at how a subscriber can request information from the PublisherService through
a subscription and how the AuthorService can send new articles to the PublisherService for distribution.
Before a subscriber service receives new articles from the PublisherService, it must request a subscrip-
tion. It does this through the [http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage] message type, as
shown in Listing 10-31.

Listing 10-31. Requesting a Subscription

DECLARE @ch UNIQUEIDENTIFIER;

BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [SubscriberService1]
 TO SERVICE 'PublisherService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c10/SubscribeContract]
 WITH ENCRYPTION = OFF;

SEND ON CONVERSATION @ch
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage]
(
 N'<?xml version="1.0"?>
 <Request xmlns="http://ssb.csharp.at/SSB_Book/c10/PublishSubscribe">
 <Subject>Subject1</Subject>
 </Request>'
);
GO

Aschenbrenner842-3.book Page 356 Wednesday, April 18, 2007 3:19 PM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage
http://ssb.csharp.at/SSB_Book/c10/SubscribeContract
http://ssb.csharp.at/SSB_Book/c10/SubscribeMessage
http://ssb.csharp.at/SSB_Book/c10/PublishSubscribe

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 357

In Listing 10-31, you must specify in the sent message the subject for which you want to get
publications from the PublisherService. As soon as the subscribers set up subscriptions, the
AuthorService can begin to send articles to the PublisherService. Listing 10-32 shows the code
needed to start sending articles.

Listing 10-32. Sending Articles

DECLARE @ch UNIQUEIDENTIFIER;

BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [AuthorService]
 TO SERVICE 'PublisherService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c10/PublishContract]
 WITH ENCRYPTION = OFF;

SEND ON CONVERSATION @ch
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/PublishMessage]
(
 N'<?xml version="1.0"?>
 <Publish xmlns="http://ssb.csharp.at/SSB_Book/c10/PublishSubscribe">
 <Subject>Subject1</Subject>
 </Publish>'
);

In Listing 10-32, the AuthorService must first specify to which subject the following sent articles
belong. It does this by sending the [http://ssb.csharp.at/SSB_Book/c10/PublishMessage] message
type. Finally, the AuthorService sends the various articles that belong to the previously specified
subject (see Listing 10-33).

Listing 10-33. Sending Articles for the Specified Subject

SEND ON CONVERSATION @ch
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage]
(
 N'This is an article on Subject1'
);

SEND ON CONVERSATION @ch
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/ArticleMessage]
(
 N'And this is another article on Subject1'
);
GO

As soon as the articles are sent from the AuthorService to the PublisherService, they are for-
warded automatically to the subscribed subscriber services through the sp_PublisherService
service program. Now, when you take a look at the associated queues of the subscriber services,
you’ll see that the sent articles were forwarded successfully. See Figure 10-9.

■Note Because of the asynchronous processing nature of Service Broker, you have to wait a few seconds (until
the sent messages are processed) before you can look into the SubscriberQueue1 and SubscriberQueue2.

Aschenbrenner842-3.book Page 357 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/PublishContract
http://ssb.csharp.at/SSB_Book/c10/PublishMessage
http://ssb.csharp.at/SSB_Book/c10/PublishSubscribe
http://ssb.csharp.at/SSB_Book/c10/PublishMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage
http://ssb.csharp.at/SSB_Book/c10/ArticleMessage

358 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Figure 10-9. The articles forwarded to the subscriber services

Priority-Based Message Processing
One of the most frequent questions about Service Broker is whether it supports any sort of priority
messages. Service Broker does offer message priority, because every message has a priority column,
and messages are received in priority order within a dialog or conversation group. However, Service
Broker doesn’t have a way to set message priority within a conversation, because having priority
within a conversation would conflict directly with the exactly-once-in-order delivery of a Service
Broker conversation. In a good SOA design, the two Service Broker services involved in a conversa-
tion are independent. If one service could set the priority of an individual message without the
consent of the others, this action would disturb how the messages are processed, since the other ser-
vices may expect the messages in order. There are two priority-based messaging options possible
with Service Broker:

• Message priority within a conversation: You must realize that with Service Broker priority,
messages can’t have priority—only dialogs can have priority. Because dialogs guarantee mes-
sage ordering, it makes no sense to prioritize messages within a dialog. Message 10 can’t be
processed until messages 1–9 have been processed, no matter what their priority.

• Message priority for individual conversations: However, you can have assigned priorities for
individual conversations. Conversations are independent and atomic; the processing order
shouldn’t matter, so having the ability to set a priority for a conversation makes sense.

Once you set priorities, you need to consider what to do with the priority. Normally, you should
receive messages in priority order. Does that mean that as long as first-priority messages exist in the
queue, you can never receive second-priority messages? That’s the normal interpretation, but it
means that low-priority messages will never be processed if enough high-priority messages are
available.

Let’s say you want to ensure that high-priority messages always have priority. What happens if
all the queue readers are processing low-priority messages when a high-priority message arrives?
If another reader is started, will it have enough resources to process the message while all the low-
priority messages are being processed? Should a low-priority message be rolled back to make room
for the high-priority message, or should the high-priority message wait for one of the low-priority
messages to finish?

Another possibility is that both high- and low-priority messages are being processed, but more
resources are being dedicated to the high-priority messages. For example, you might have ten queue
readers for high-priority messages and one queue reader for low-priority messages. This ensures
that low-priority messages are processed but at a lower rate than high-priority messages.

Implementing Priority-Based Messaging
Given all this, let’s look at a way to implement priorities in Service Broker. The solution presented
here applies to a case when messages are taking a long time to be processed. The service queue will
accumulate a long list of pending messages during peak hours and will slowly progress through the
queue.

Aschenbrenner842-3.book Page 358 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 359

In principle, you can easily achieve priority-based messaging with Service Broker by using the
RECEIVE T-SQL statement, which has the WHERE clause that you can use to specify the desired conver-
sation to process. However, you need a way to pass the conversation IDs and the desired priority to
the processing service.

You can’t just insert a message that sets the priority of a conversation group into the service
queue, simply because the message will be at the bottom of the service queue. A solution to this
problem is to split the service into two services: a frontend service, to which the clients are opening
conversations, and a backend service, which does the real, long-timed processing. Figure 10-10
shows the architecture of this solution.

Figure 10-10. Priority-based message processing

Service Broker Infrastructure
Let’s have a look at how to implement this solution. First, you must define the used message types
and contracts. In this sample, you define the following three message types:

• [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]: This message type
is sent when the client wants to enqueue a long work request at the target service.

• [http://ssb.csharp.at/SSB_Book/c10/SetPriorityRequestMessageType]: This message
type is sent when the client wants to promote the priority of a conversation group to a
higher level.

• [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadResponseMessageType]: This message
type is sent from the target service as an answer back to the client.

Because you have the frontend and the backend Service Broker service in this solution,
you also need to separate contracts. The first contract—the [http://ssb.csharp.at/SSB_Book/
c10/RequestWithPriorityContract] contract—defines the communication between the clients
and the frontend service. The second contract—the [http://ssb.csharp.at/SSB_Book/c10/
RequestInternalContract] contract—defines the communication between the frontend service
and the backend service. Finally, you have to define the two Service Broker services with their
corresponding service queues. Listing 10-34 shows the necessary T-SQL code.

CONVERSATIONS VS. CONVERSATION GROUPS

In practice, you’ll quickly notice that you want to control the priority of conversation groups instead of individual con-
versations. This is because the RECEIVE T-SQL statement locks an entire conversation group and naturally returns
all messages for an entire conversation group in one result set. When you don’t use related conversations, then con-
versation groups map one-to-one to individual conversations, and it makes no difference for you.

Aschenbrenner842-3.book Page 359 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]:
http://ssb.csharp.at/SSB_Book/c10/SetPriorityRequestMessageType]:
http://ssb.csharp.at/SSB_Book/c10/LongWorkloadResponseMessageType]:
http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract
http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract
http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract
http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract

360 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-34. Creating the Service Broker Infrastructure

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]
 VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType]
 VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType]
 VALIDATION = WELL_FORMED_XML;
GO

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract]
(
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]
 SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType]
 SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType]
 SENT BY TARGET
)
GO

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract]
(
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]
 SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType]
 SENT BY TARGET
)
GO

CREATE QUEUE FrontEndQueue
GO

CREATE QUEUE BackEndQueue
GO

CREATE SERVICE [FrontEndService]
ON QUEUE [FrontEndQueue]
(
 [http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract]
)
GO

Aschenbrenner842-3.book Page 360 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType
http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType
http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract
http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType
http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType
http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract
http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType
http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 361

CREATE SERVICE [BackEndService]
ON QUEUE [BackEndQueue]
(
 [http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract]
)
GO

In Listing 10-34, the only difference between the two created contracts is that the
[http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract] contract also supports
setting the priority of a conversation group through the [http://ssb.csharp.at/SSB_Book/c10/
SetPriorityRequestMessageType] message type.

Request Bindings
After you define the Service Broker infrastructure, you’re ready to implement the priority-based
messaging. Because the frontend service only forwards incoming requests from clients directly to
the backend service, you need a table that stores the established link between an incoming conver-
sation from a client and the corresponding conversation with the backend service. I’ve called this
table RequestsBindings, as shown in Listing 10-35.

Listing 10-35. Creation of the RequestsBindings Table

CREATE TABLE RequestsBindings
(
 FrontendConversation UNIQUEIDENTIFIER PRIMARY KEY,
 BackendConversation UNIQUEIDENTIFIER UNIQUE
)
GO

After you create the RequestsBindings table, you need some logic to manipulate the records
inside the table. You implement this logic in the following two stored procedures:

• sp_BindingGetPeer: This stored procedure retrieves the opposite side’s conversation from
the bindings table. It retrieves the frontend conversation from the backend conversation and
vice versa.

• sp_BindingGetBackend: This stored procedure retrieves a backend conversation for a front-
end conversation. It will initiate a new conversation with the BackEndService if one doesn’t
already exist.

Listing 10-36 shows the implementation of the sp_BindingGetPeer stored procedure.

Listing 10-36. The sp_BindingGetPeer Stored Procedure

CREATE PROCEDURE sp_BindingGetPeer (
 @Conversation UNIQUEIDENTIFIER,
 @Peer UNIQUEIDENTIFIER OUTPUT)
AS
SET NOCOUNT ON;
SELECT @Peer =

Aschenbrenner842-3.book Page 361 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract
http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract
http://ssb.csharp.at/SSB_Book/c10/SetPriorityRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityRequestMessageType

362 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

(
 SELECT
 BackendConversation
 FROM RequestsBindings
 WHERE FrontendConversation = @Conversation

 UNION ALL

 SELECT FrontendConversation
 FROM RequestsBindings
 WHERE BackendConversation = @Conversation
)

IF (@@ROWCOUNT = 0)
BEGIN
 SELECT @Peer = NULL;
END
GO

In Listing 10-36, the sp_BindingGetPeer stored procedure does two lookups in the RequestsBindings
table and joins both result sets through the UNION ALL T-SQL operator. Therefore, it’s possible to retrieve
the frontend conversation from the backend conversation and vice versa.

More interesting is the sp_BindingGetBackend stored procedure, which retrieves the backend con-
versation for the specified frontend conversation supplied as a parameter. If the backend conversation
isn’t already initiated, the stored procedure will start a new conversation with the BackEndService
and store the link between the frontend and backend conversation in the RequestsBindings table.
Listing 10-37 shows the implementation of the sp_BindingGetBackend stored procedure.

Listing 10-37. The sp_BindingGetBackend Stored Procedure

CREATE PROCEDURE sp_BindingGetBackend (
 @FrontendConversation UNIQUEIDENTIFIER,
 @BackendConversation UNIQUEIDENTIFIER OUTPUT)
AS
SET NOCOUNT ON;
BEGIN TRANSACTION;

SELECT @BackendConversation = BackendConversation
 FROM RequestsBindings
 WHERE FrontendConversation = @FrontendConversation;

IF (@@ROWCOUNT = 0)
BEGIN
 BEGIN DIALOG CONVERSATION @BackendConversation
 FROM SERVICE [FrontEndService]
 TO SERVICE N'BackEndService', N'current database'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract]
 WITH
 RELATED_CONVERSATION = @FrontendConversation,
 ENCRYPTION = OFF;

Aschenbrenner842-3.book Page 362 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/RequestInternalContract

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 363

 INSERT INTO RequestsBindings (FrontendConversation, BackendConversation)
 VALUES
 (
 @FrontendConversation,
 @BackendConversation
);
END
COMMIT;
GO

Priority Table
After you implement the request binding between the frontend and the backend service, it’s time
to create the priority table and implement the logic on top of this table. I’ve simply called this the
Priority table. This table stores the current priority for a conversation group. Listing 10-38 shows
the table definition.

Listing 10-38. Creating the Priority Table

CREATE TABLE Priority
(
 ConversationGroup UNIQUEIDENTIFIER UNIQUE,
 Priority TINYINT,
 EnqueueTime TIMESTAMP,
 PRIMARY KEY CLUSTERED
 (
 Priority DESC,
 EnqueueTime ASC,
 ConversationGroup
)
)
GO

In Listing 10-38, the primary key of the table is defined on the columns Priority, EnqueueTime,
and ConversationGroup. To manipulate the content of the Priority table, you can write the following
two stored procedures:

• sp_DequeuePriority: This stored procedure dequeues the next conversation from the
Priority table.

• sp_EnqueuePriority: This stored procedure enqueues a new conversation group into the
Priority table.

Listing 10-39 shows the implementation of the sp_DequeuePriority stored procedure.

Listing 10-39. Implementation of the sp_DequeuePriority Stored Procedure

CREATE PROCEDURE sp_DequeuePriority
@ConversationGroup UNIQUEIDENTIFIER OUTPUT
AS
SET NOCOUNT ON;
BEGIN TRANSACTION;

Aschenbrenner842-3.book Page 363 Wednesday, April 18, 2007 3:19 PM

364 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

SELECT @ConversationGroup = NULL;
DECLARE @cgt TABLE (ConversationGroup UNIQUEIDENTIFIER);

DELETE FROM Priority WITH (READPAST)
OUTPUT DELETED.ConversationGroup INTO @cgt
WHERE ConversationGroup =
(
 SELECT TOP (1) ConversationGroup
 FROM Priority WITH (READPAST)
 ORDER BY Priority DESC, EnqueueTime ASC
)

SELECT @ConversationGroup = ConversationGroup
FROM @cgt;

COMMIT;
GO

Listing 10-40 shows the implementation of the sp_EnqueuePriority stored procedure.

Listing 10-40. Implementation of the sp_EnqueuePriority Stored Procedure

CREATE PROCEDURE sp_EnqueuePriority
@ConversationGroup UNIQUEIDENTIFIER,
@Priority TINYINT
AS
SET NOCOUNT ON;
BEGIN TRANSACTION;

DELETE FROM Priority
WHERE ConversationGroup = @ConversationGroup;

INSERT INTO Priority (ConversationGroup, Priority)
VALUES (@ConversationGroup, @Priority);

COMMIT;

In Listing 10-40, the stored procedure deletes a priority for the given conversation group in the
first step. This is necessary when a priority is assigned twice to a conversation group.

Frontend Service Program
After you implement the complete infrastructure and logic for the priority-based messaging, it’s
time to implement the service program for the FrontEndService. This service program is imple-
mented in the sp_FrontendService stored procedure and is the more interesting part in this
sample. The main functionality of the stored procedure is to accept incoming requests from a
client and forward them to the BackEndService. It also sets the priority of a conversation group
when the [http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType] message type is pro-
cessed from the FrontEndQueue. Because the sp_FrontendService stored procedure is quite

Aschenbrenner842-3.book Page 364 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 365

complex, I’ve split the description into several steps. The first step begins with the message
retrieval from the FrontEndQueue (see Listing 10-41).

Listing 10-41. Message Retrieval in the FrontEndService

CREATE PROCEDURE sp_FrontendService
AS
SET NOCOUNT ON
DECLARE @dh UNIQUEIDENTIFIER;
DECLARE @bind_dh UNIQUEIDENTIFIER;
DECLARE @message_type_name SYSNAME;
DECLARE @message_body VARBINARY(MAX);

BEGIN TRANSACTION;

WAITFOR
(
 RECEIVE TOP (1)
 @dh = conversation_handle,
 @message_type_name = message_type_name,
 @message_body = message_body
 FROM [FrontEndQueue]
), TIMEOUT 1000;

As soon as a new message is received from the FrontEndQueue, the actual message processing starts.
Listing 10-42 shows how the [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]
message type is forwarded to the BackEndService.

Listing 10-42. Message Forwarding

ELSE IF @message_type_name =
 N'http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType'
BEGIN
 -- forward the workload request to the back end service
 EXEC sp_BindingGetBackend @dh, @bind_dh OUTPUT;

 SEND ON CONVERSATION @bind_dh MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]
 (@message_body);
END

In Listing 10-42, you use the sp_BindingGetBackend stored procedure (described in
Listing 10-37) to retrieve the backend conversation from the frontend conversation. If a con-
versation to the BackEndService isn’t available, the sp_BindingGetBackend stored procedure will
start a new conversation with the BackEndService through the BEGIN DIALOG CONVERSATION T-SQL
statement.

More interesting is how the [http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType]
message type is handled inside the sp_FrontendService stored procedure. Listing 10-43 shows the
relevant T-SQL code.

Aschenbrenner842-3.book Page 365 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
N'http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType

366 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-43. Setting the Priority of the Conversation Group

ELSE IF @message_type_name =
 N'http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType'
BEGIN
 -- Increase the priority of this conversation.
 -- We need the target-side conversation group
 -- of the backend conversation bound to @dh
 DECLARE @cg UNIQUEIDENTIFIER;

 SELECT @cg = tep.conversation_group_id
 FROM sys.conversation_endpoints tep WITH (NOLOCK)
 JOIN sys.conversation_endpoints iep WITH (NOLOCK) ON
 tep.conversation_id = iep.conversation_id
 AND tep.is_initiator = 0
 AND iep.is_initiator = 1
 JOIN RequestsBindings rb ON
 iep.conversation_handle = rb.BackendConversation
 WHERE rb.FrontendConversation = @dh;

 IF @cg IS NOT NULL
 BEGIN
 -- retrieve the desired priority from the message body
 DECLARE @priority TINYINT;
 SELECT @priority = cast(@message_body as XML).value (N'(/priority)[1]',
 N'TINYINT');

 EXEC sp_EnqueuePriority @cg, @priority;
 END
END

In Listing 10-43, you need the target-side conversation group of the backend conversation of
which you want to set the priority. To get the conversation group ID, you use the information available
in the sys.conversation_endpoints system catalog view. As soon as you acquire the correct conversa-
tion group ID, you set the new priority of the conversation group through the sp_EnqueuePriority
stored procedure. The processing of all the other message types (such as EndDialog and Error) is
straightforward and easy. Please refer to the source code for this chapter in the Source Code/Down-
load area of the Apress website (http://www.apress.com).

Backend Service Program
Let’s now take a look at the service program for the BackEndService. You implement this service
program in the sp_BackendService stored procedure. This stored procedure must perform the fol-
lowing steps:

1. Retrieve a conversation group with a priority.

2. Receive all the messages from the retrieved conversation group.

3. Process the messages.

Aschenbrenner842-3.book Page 366 Wednesday, April 18, 2007 3:19 PM

N'http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType
http://www.apress.com

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 367

Because the sp_DequeuePriority stored procedure is quite long, I’ll show you the code in sev-
eral steps, as described previously. Listing 10-44 shows the retrieval of a conversation group with a
priority. This code uses the sp_DequeuePriority stored procedure from Listing 10-39.

Listing 10-44. Retrieving a Conversation Group with Priority

CREATE PROCEDURE sp_BackendService
AS
SET NOCOUNT ON
DECLARE @dh UNIQUEIDENTIFIER;
DECLARE @cg UNIQUEIDENTIFIER
DECLARE @message_type_name SYSNAME;
DECLARE @message_body VARBINARY(MAX);

BEGIN TRANSACTION;

-- dequeue a priority conversation_group
-- or wait for an unprioritized one from the queue
EXEC sp_DequeuePriority @cg OUTPUT;

IF (@cg IS NULL)
BEGIN
 WAITFOR
 (
 GET CONVERSATION GROUP @cg
 FROM [BackEndQueue]
), TIMEOUT 1000;
END

In Listing 10-44, you first try to retrieve a conversation group with a priority through the
sp_DequeuePriority stored procedure. This stored procedure returns the conversation group with
the highest priority, if available. If no conversation group with an assigned priority is available
(such as @cg IS NULL), then you just retrieve the next unlocked conversation group with the GET
CONVERSATION GROUP T-SQL statement. Finally, the variable @cg stores the conversation group (with
a priority or without a priority) that is processed within the next steps. Next, you retrieve the mes-
sages for the specified conversation group (variable @cg) for further processing. See Listing 10-45.

Listing 10-45. Retrieving Messages for Processing

WHILE @cg IS NOT NULL
BEGIN
 RECEIVE TOP (1)
 @dh = conversation_handle,
 @message_type_name = message_type_name,
 @message_body = message_body
 FROM [BackEndQueue]
 WHERE conversation_group_id = @cg;

After you store the current message in the @message_body variable and its message type in the
@message_type_name variable, you can process the message in the same way as you’ve already done
in all the other service programs. Listing 10-46 shows the processing of the [http://ssb.csharp.at/
SSB_Book/c10/LongWorkloadRequestMessageType] message type.

Aschenbrenner842-3.book Page 367 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType

368 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-46. Message Processing

ELSE IF @message_type_name =
 N'http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType'
BEGIN
 -- simulate a really lengthy workload. sleep for 2 seconds.
 WAITFOR DELAY '00:00:02';

 -- send back the 'result' of the workload
 -- For our sample the result is simply the request wrapped in a <response> tag
 -- decorated with the current time and @@spid attributes
 DECLARE @result XML;
 SELECT @result =
 (
 SELECT
 @@SPID as [@spid],
 GETDATE() as [@time],
 CAST(@message_body AS XML) AS [*]
 FOR XML PATH ('result'), TYPE
);

 SEND ON CONVERSATION @dh
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType]
 (@result);
END;

In Listing 10-46, the straightforward message-processing logic simply returns XML data with
the current @@SPID and the current time as a response.

Using Priority-Based Message Processing
After you set up the priority-based messaging, it’s time to use it. The only thing left to do is to config-
ure the sp_FrontendService and sp_BackendService stored procedures for internal activation on the
corresponding queues. Listing 10-47 shows the needed T-SQL code.

Listing 10-47. Configuring Service Broker Activation

ALTER QUEUE [FrontEndQueue]
WITH ACTIVATION
(
 STATUS = ON,
 MAX_QUEUE_READERS = 10,
 PROCEDURE_NAME = [sp_FrontendService],
 EXECUTE AS OWNER
)
GO

Aschenbrenner842-3.book Page 368 Wednesday, April 18, 2007 3:19 PM

N'http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/LongWorkflowResponseMessageType

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 369

ALTER QUEUE [BackEndQueue]
WITH ACTIVATION
(
 STATUS = ON,
 MAX_QUEUE_READERS = 10,
 PROCEDURE_NAME = [sp_BackendService],
 EXECUTE AS OWNER
)
GO

Finally, you need to create a simple initiator service that sends messages to the FrontendService
(see Listing 10-48).

Listing 10-48. Creating the Initiator Service

CREATE QUEUE [SampleClientQueue]
GO

CREATE SERVICE [SampleClientService]
ON QUEUE [SampleClientQueue]
GO

By now, you’re able to send messages to the FrontendService and also set the priority of the
conversation groups. To make this sample more realistic, I only set the conversation priority after
ten sent messages. Every tenth message will get processed with a higher priority than the other sent
messages. Listing 10-49 shows the message-sending code.

Listing 10-49. Sending Messages with Priority

DECLARE @dh UNIQUEIDENTIFIER;
DECLARE @i INT;
SELECT @i = 0;
WHILE @i < 100
BEGIN
 BEGIN TRANSACTION;
 BEGIN DIALOG CONVERSATION @dh
 FROM SERVICE [SampleClientService]
 TO SERVICE N'FrontEndService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract]
 WITH ENCRYPTION = OFF;

 DECLARE @request XML;
 SELECT @request =
 (
 SELECT GETDATE() AS [@time],
 @@SPID AS [@spid],
 @i
 FOR XML PATH ('request'), TYPE
);

Aschenbrenner842-3.book Page 369 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/RequestWithPriorityContract

370 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

 SEND ON CONVERSATION @dh MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType]
 (@request);
 -- Every 10 requests ask for a priority bump

 IF (@i % 10) = 0
 BEGIN
 DECLARE @priority XML;

 SELECT @priority = (SELECT @i
 FOR XML PATH ('priority'), TYPE);

 SEND ON CONVERSATION @dh MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType]
 (@priority);
 END

 COMMIT;

 SELECT @i = @i + 1;
END
GO

In Listing 10-49, after ten messages, you send a priority message of the message type [http://
ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType], so that the current conversation group gets
a higher priority than the other conversation groups. Now when you retrieve the response messages
from the FrontendService, you can see from the response that the messages with the higher priority
are processed earlier than all the other messages. Listing 10-50 shows the receiving code for the
response messages.

Listing 10-50. Receiving the Response Messages

DECLARE @dh UNIQUEIDENTIFIER;
DECLARE @message_body NVARCHAR(4000);
BEGIN TRANSACTION

WAITFOR
(
 RECEIVE
 @dh = conversation_handle,
 @message_body = cast(message_body as NVARCHAR(4000))
 FROM [SampleClientQueue]
), TIMEOUT 10000;

WHILE @dh IS NOT NULL
BEGIN
 END CONVERSATION @dh;
 PRINT @message_body;
 COMMIT;

Aschenbrenner842-3.book Page 370 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/LongWorkloadRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType
http://ssb.csharp.at/SSB_Book/c10/SetPriorityMessageType

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 371

 SELECT @dh = NULL;
 BEGIN TRANSACTION;

 WAITFOR
 (
 RECEIVE
 @dh = conversation_handle,
 @message_body = cast(message_body as NVARCHAR(4000))
 FROM [SampleClientQueue]
), TIMEOUT 10000;
END
COMMIT;
GO

In Listing 10-50, the received response messages are printed out through the PRINT T-SQL state-
ment. You can easily inspect the result inside SQL Server Management Studio when you go to the
Messages register in the Results window. Figure 10-11 shows the printed response messages.

Figure 10-11. The response messages

In Figure 10-11, the request messages with the higher priority (90, 80, 70, 60, 50, 40, 30, 20,
and 10) are returned first, and then the other messages with the normal priorities follow (1, 2, 3, 4,
5, 6, 7, . . .). As you can see from this sample, the BackendService is able to process conversations
with an assigned priority easily. You can use this approach for your priority-based messaging infra-
structure and plug in the required service code you need for your implementation.

Reliable Web Service Requests
Service Broker provides reliability features out of the box through its adjacent message-sending pro-
tocol. Web services are a messaging technology that you can also use for communication between
distributed application components. However, one big drawback of using web services is that
they’re based on HTTP, and HTTP isn’t a very reliable or secure protocol.

Fortunately, you can use Service Broker to add reliability to web service calls. The application
that calls the web service can simply begin a Service Broker conversation and send a web service
request over to a proxy Service Broker service that handles the task of actually performing the web
service request and sending the response back over the conversation in a reliable manner. The proxy
Service Broker service can perform all the magic of determining transient errors and retrying the

Aschenbrenner842-3.book Page 371 Wednesday, April 18, 2007 3:19 PM

372 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

web service requests. This section shows you how to implement this proxy Service Broker service
and how to use it in your own Smart Client applications to add reliability to your web service
requests.

Service Broker Infrastructure
Figure 10-12 shows the basic architecture for the next example.

Figure 10-12. Architecture for doing reliable web service calls

The Smart Client application doesn’t communicate directly with the web service. Instead, the
client opens a new Service Broker conversation with a Service Broker service deployed in a local SQL
Server 2005 Edition of your choice (it would also work with a SQL Server Express Edition). When the
conversation is established, the client sends a Service Broker message to the Service Broker service.
This sent message contains the complete HTTP request needed to call the real web service.

As soon as the message from the client application is put into the service queue, a stored proce-
dure, written in managed code, is activated by Service Broker. Inside the managed stored procedure,
the HTTP request is forwarded to the real web service. If an error occurs (such as network unavail-
ability, an HTTP error, or a broken connection), the message containing the HTTP request will be
put in a table that stores all the pending (in other words, incomplete) web service requests. After a
configured retry period, the pending HTTP request is taken from this table, and the stored proce-
dure tries again to forward the HTTP request to the web service. This continues until the web service
request completes successfully or until a configured maximum retry count is reached.

Configuration Information
As you’ve seen, the Service Broker service uses different configuration information, such as a retry
count and a retry period. All of this information is stored primarily in two tables:

• RequestFilter: This table maps an incoming request from a client application to the action to
be taken (such as deny or accept the web service call). If the request is to be accepted, addi-
tional columns will indicate how the service is to behave in case of failures.

• ResponseFilter: This table maps HTTP responses to the action to be taken (such as respond,
retry, or error).

Let’s have a detailed look at each of these two tables. Listing 10-51 shows the structure of the
RequestFilter table.

Aschenbrenner842-3.book Page 372 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 373

Listing 10-51. The Structure of the RequestFilter Table

CREATE TABLE RequestFilter
(
 RequestFilterID INT IDENTITY(1, 1) NOT NULL
 CONSTRAINT PkRequestFilter PRIMARY KEY,
 Method NCHAR(10),
 UrlPattern NVARCHAR(256),
 Timeout INT NOT NULL,
 NumberOfRetries TINYINT NOT NULL,
 RetryDelay INT NOT NULL,
 BackoffFactor REAL NOT NULL,
 [Action] TINYINT NOT NULL
 CONSTRAINT CkRequestAction CHECK (Action >= 0 AND Action <= 1)
)
GO

Table 10-1 describes the columns of the RequestFilter table.

Table 10-1. Columns of the RequestFilter Table

Listing 10-52 shows the definition of the ResponseFilter table.

Listing 10-52. The Structure of the ResponseFilter Table

CREATE TABLE ResponseFilter
(
 ResponsePolicyID INT IDENTITY(1, 1) NOT NULL
 CONSTRAINT PkResponsePolicy PRIMARY KEY,
 StatusCodeLower SMALLINT NOT NULL,
 StatusCodeUpper SMALLINT,
 [Action] TINYINT NOT NULL
 CONSTRAINT CkResponseAction CHECK (Action >= 0 AND Action <= 2)
)
GO

Column Data Type Description

RequestFilterID INT Identifier for the rule.

Method NCHAR(10) HTTP method used in the request—such as GET or POST.

UrlPattern NVARCHAR(256) Regular expression to match the URL.

Timeout INT Amount of time (in milliseconds) to wait for the HTTP
response from the target server before failing and retrying
the HTTP request.

NumberOfRetries TINYINT Number of times to try before giving up and failing the
HTTP request.

RetryDelay INT Number of seconds to wait before the next retry occurs.

BackoffFactor REAL Factor to multiply the time-out with each retry.

Action TINYINT 0 indicates DENY; 1 indicates ACCEPT.

Aschenbrenner842-3.book Page 373 Wednesday, April 18, 2007 3:19 PM

374 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Table 10-2 describes the columns of the ResponseFilter table.

Table 10-2. Columns of the ResponseFilter Table

Finally, you use the sp_MatchRequestFilter and sp_MatchResponseFilter stored procedures to
return the correct request and response filters used by the managed stored procedure to process an
HTTP request or an HTTP response. The “Implementation of the Web Proxy” section looks at the
usage of these stored procedures. Listing 10-53 shows the implementation of both stored proce-
dures to give you an understanding about both of them.

Listing 10-53. The sp_MatchRequestFilter and sp_MatchResponseFilter Stored Procedures

CREATE PROCEDURE sp_MatchRequestFilter
@Method NCHAR(10),
@Url NVARCHAR(256)
AS
BEGIN
 SELECT TOP (1) [Action], Timeout, NumberOfRetries, RetryDelay, BackoffFactor
 FROM RequestFilter
 WHERE
 (Method IS NULL OR Method = @Method)
 AND (UrlPattern IS NULL OR dbo.RegEx(UrlPattern, @Url) = 1)
 ORDER BY
 CASE
 WHEN [Action] = 0 THEN 0
 WHEN Method IS NOT NULL AND UrlPattern IS NOT NULL THEN 1
 WHEN Method IS NULL AND UrlPattern IS NOT NULL THEN 2
 WHEN Method IS NULL AND UrlPattern IS NULL THEN 3
 ELSE 4
 END;
END
GO

CREATE PROCEDURE sp_MatchResponseFilter
@StatusCode SMALLINT
AS
BEGIN
 SELECT TOP(1) [Action]
 FROM ResponseFilter
 WHERE
 (StatusCodeLower = @StatusCode AND StatusCodeUpper IS NULL)
 OR (StatusCodeLower <= @StatusCode AND StatusCodeUpper >= @StatusCode)

Column Data Type Description

ResponseFilterID INT Identifier for the rule.

StatusCodeLower SMALLINT Lower bound of the HTTP status code interval.

StatusCodeUpper SMALLINT Upper bound of the HTTP status code interval.

Action TINYINT 0 indicates RESPOND; 1 indicates RETRY; and 2 indicates ERROR.

Aschenbrenner842-3.book Page 374 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 375

 ORDER BY
 CASE
 WHEN StatusCodeLower = @StatusCode AND StatusCodeUpper IS NULL THEN 0
 ELSE 1
 END
END
GO

Service Broker Objects
Now that you know the details about the configuration information in this sample, let’s concentrate
on the necessary Service Broker objects. First, you need two message types. The first message type,
[http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType], represents the HTTP request
message sent by the client application to the proxy Service Broker service. The second message type,
[http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType], represents the HTTP response
message returned by the web service.

Each message type is also associated with an XML schema collection to use typed XML data
in the messages. Listing 10-54 shows the HttpRequestSchema XML schema collection used by the
request message. You can find the HttpResponseSchema collection in this chapter’s source code.

Listing 10-54. The HttpRequestSchema XML Schema Collection

CREATE XML SCHEMA COLLECTION HttpRequestSchema AS
N'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema"
 xmlns:tns="http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema">
 <xsd:complexType name="headerType">
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:attribute name="value" type="xsd:string" use="required" />
 </xsd:complexType>
 <xsd:complexType name="headersType">
 <xsd:sequence>
 <xsd:element name="header" type="tns:headerType" minOccurs="1"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="httpRequestType">
 <xsd:sequence>
 <xsd:element name="headers" type="tns:headersType" minOccurs="0"
 maxOccurs="1" />
 <xsd:element name="body" type="xsd:base64Binary" minOccurs="0"
 maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="method" type="xsd:string" use="optional" default="GET" />
 <xsd:attribute name="url" type="xsd:anyURI" use="required" />
 <xsd:attribute name="protocolVersion" type="xsd:string" use="optional"
 default="HTTP/1.1"/>
 </xsd:complexType>
 <xsd:element name="httpRequest" type="tns:httpRequestType" />
</xsd:schema>'
GO

Aschenbrenner842-3.book Page 375 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType
http://www.w3.org/2001/XMLSchema
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema

376 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

In Listing 10-54, the HTTP request message contains the root element <httpRequest>, which
contains several attributes (method, url, protocolVersion) and the child elements <headers> and
<body>. In the <headers> element, you can define the needed header information (each header entry
is represented by a <header> element). Finally, the <body> element contains the actual body sent to
the web service. Please note that you must supply the body as a Base64-encoded string. You’ll see
how this is achieved in the “Using the Web Proxy in a Smart Client” section.

After you define both XML schema collections, you can define the mentioned message types and
group them together in the [http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract] con-
tract (see Listing 10-55).

Listing 10-55. Creation of the Message Types and the Contract

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType]
VALIDATION = VALID_XML WITH SCHEMA COLLECTION HttpRequestSchema;

CREATE MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType]
VALIDATION = VALID_XML WITH SCHEMA COLLECTION HttpResponseSchema;
GO

CREATE CONTRACT [http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract]
(
 [http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType] SENT BY INITIATOR,
 [http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType] SENT BY TARGET
)
GO

Finally, you have to create the initiator WebClientService used by the client application to com-
municate with the target service, the WebProxyService. Refer to Listing 10-56 for more information.

Listing 10-56. Creation of the Service Broker Services

CREATE QUEUE [WebClientQueue];
CREATE SERVICE [WebClientService] ON QUEUE [WebClientQueue];
GO

CREATE QUEUE [WebProxyQueue];
CREATE SERVICE [WebProxyService] ON QUEUE [WebProxyQueue]
(
 [http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract]
);
GO

Implementation of the Web Proxy
By now, you’ve implemented the whole infrastructure used by Service Broker. The only thing left is
the stored procedure that acts as a service program for the WebProxyService. As I’ve already men-
tioned, this stored procedure is an internal activated stored procedure that uses the features of the
SQLCLR and of the ServiceBrokerInterface managed assembly I introduced you to in Chapter 5.
You implement this stored procedure in the Run method of the WebProxyService class. Listing 10-57
shows the implementation of this method.

Aschenbrenner842-3.book Page 376 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract
http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract
http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 377

Listing 10-57. The Run Method of the Managed Stored Procedure

public static void Run()
{
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 conn.Open();

 // Create a new WebProxyService on this in-proc connection.
 Service service = new WebProxyService(conn);

 bool success = false;

 // Loop until you can exit successfully
 while (!success)
 {
 try
 {
 service.Run(true, conn, null);
 success = true;
 }
 catch (ServiceException svcex)
 {
 // Let us end the current dialog with the exception
 // wrapped up in the error message.
 if (svcex.CurrentConversation != null)
 {
 svcex.CurrentConversation.EndWithError(2, svcex.Message,
 svcex.Connection, svcex.Transaction);
 }

 success = false;
 }
 }
 }
}

In Listing 10-57, the Service Broker service program starts and waits to receive new messages
from other Service Broker clients. As soon as a client sends the [http://ssb.csharp.at/SSB_Book/
c10/HttpRequestMessageType] message type, the OnHttpRequest method gets called. Listing 10-58
shows the implementation of this method.

Listing 10-58. Implementation of the OnHttpRequest Method

[BrokerMethod(WebProxyService.x_httpRequestMessageType)]
public void OnHttpRequest(
 Message msgReceived,
 SqlConnection connection,
 SqlTransaction transaction)

Aschenbrenner842-3.book Page 377 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType
http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType

378 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

{
 s_connection = connection;
 s_transaction = transaction;
 s_currentConversation = msgReceived.Conversation;
 s_msgReceived = msgReceived;

 try
 {
 XmlSerializer xs = new XmlSerializer(typeof(httpRequestType));
 httpRequestType request = (httpRequestType)xs.Deserialize(msgReceived.Body);
 ServiceRequest(request);
 }
 catch (Exception e)
 {
 SqlContext.Pipe.Send(e.StackTrace);

 if (connection.State == ConnectionState.Open)
 {
 msgReceived.Conversation.EndWithError(1, e.Message + "\n" + e.StackTrace,
 connection, transaction);
 }
 }
}

The important part of Listing 10-58 is how the XmlSerializer class is used. As you can see, you
use the XmlSerializer class to deserialize the message body of the received message to an instance
of the httpRequestType class. The definition of this class is generated automatically from Visual
Studio 2005 from the XML schema definition, as shown in Listing 10-54. Figure 10-13 shows a class
diagram of the generated classes.

Figure 10-13. The generated classes

As soon as the message body is deserialized, the instance of the httpRequestType class is passed
as a parameter to the ServiceRequest method call. The main responsibility of this method is to

Aschenbrenner842-3.book Page 378 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 379

execute the requested web service request. Listing 10-59 shows the part of the method responsible
to execute the request.

Listing 10-59. Web Service Request Execution

RequestFilterAction reqAction = MatchRequestFilter(incomingRequest);

switch (reqAction)
{
 case RequestFilterAction.Deny:
 ErrorConversation(2,
 "Proxy does not accept this type of request to given URL.");
 return;
}

HttpWebRequest outgoingRequest = CreateWebRequest(incomingRequest);

if (outgoingRequest == null)
{
 ErrorConversation(3, m_lastError);
 return;
}

HttpWebResponse incomingResponse = null;
ResponseFilterAction respAction = TryWebRequest(outgoingRequest,
 out incomingResponse);
SqlContext.Pipe.Send(respAction.ToString());

In the first step, the ServiceRequest method retrieves the matching request filter from the
RequestFilter table. This is done through the MatchRequestFilter method call. Internally, this method
uses the sp_MatchRequestFilter stored procedure you’ve seen in Listing 10-53. Listing 10-60 shows the
implementation of the MatchRequestFilter method.

Listing 10-60. Implementation of the MatchRequestFilter Method

private RequestFilterAction MatchRequestFilter(httpRequestType incomingRequest)
{
 SqlCommand cmd = s_connection.CreateCommand();
 cmd.CommandText = "sp_MatchRequestFilter";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Transaction = s_transaction;

 SqlParameter prmMethod = cmd.Parameters.AddWithValue(
 "@Method", incomingRequest.method);
 SqlParameter prmUrl = cmd.Parameters.AddWithValue("@Url", incomingRequest.url);
 SqlDataReader reader = cmd.ExecuteReader();

 if (!reader.Read())
 {
 reader.Close();
 return RequestFilterAction.Deny;
 }

Aschenbrenner842-3.book Page 379 Wednesday, April 18, 2007 3:19 PM

380 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

 RequestFilterAction action = (RequestFilterAction)reader.GetByte(0);

 if (!reader.IsDBNull(1))
 m_timeout = TimeSpan.FromSeconds(reader.GetInt32(1));

 if (!reader.IsDBNull(2))
 m_numRetries = (int) reader.GetByte(2);

 if (!reader.IsDBNull(3))
 m_retryDelay = reader.GetInt32(3);

 if (!reader.IsDBNull(4))
 m_backoffFactor = reader.GetFloat(4);

 reader.Close();

 return action;
}

In Listing 10-60, various columns from the RequestFilter records are stored in the m_timeout,
m_retryDelay, and m_backoffFactor member variables of the WebProxyService class. When the
request filter is retrieved from the database, the ServiceRequest method calls the CreateWebRequest
method. The responsibility of this method is to create an instance of the HttpWebRequest class that
encapsulates all the necessary things to make a web request. Listing 10-61 shows the implementa-
tion of the CreateWebRequest method.

Listing 10-61. Implementation of the CreateWebRequest Method

private HttpWebRequest CreateWebRequest(httpRequestType incomingRequest)
{
 HttpWebRequest outgoingRequest;

 try
 {
 outgoingRequest = (HttpWebRequest)HttpWebRequest.Create(incomingRequest.url);
 }
 catch (NotSupportedException nse)
 {
 m_lastError = nse.Message;
 return null;
 }
 catch (UriFormatException ufe)
 {
 m_lastError = ufe.Message;
 return null;
 }

Aschenbrenner842-3.book Page 380 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 381

 outgoingRequest.Method = incomingRequest.method;
 outgoingRequest.Timeout = (int) m_timeout.TotalMilliseconds;

 if (incomingRequest.protocolVersion != null)
 {
 try
 {
 string[] s = incomingRequest.protocolVersion.Split(new char[] { '/' });

 if (s.Length > 1)
 {
 outgoingRequest.ProtocolVersion = new Version(s[1]);
 }
 }
 catch
 { }
 }

 if (incomingRequest.headers != null)
 {
 foreach (headerType h in incomingRequest.headers)
 {
 // Assigning the HTTP header values
 // See enclosed source code...
 // ...
 SqlContext.Pipe.Send(h.name + ": " + h.value);
 }
 }

 byte[] buffer = incomingRequest.body;

 if (buffer != null && buffer.Length > 0)
 {
 Stream body = outgoingRequest.GetRequestStream();
 body.Write(buffer, 0, buffer.Length);
 body.Close();
 }

 return outgoingRequest;
}

In Listing 10-61, the CreateWebRequest method initializes the HttpWebRequest object with the
information contained in the sent request message. To simplify this example, I omitted the creation
of the HTTP header because it uses a lot of code. Refer to the enclosed source code for more infor-
mation about this. As soon as you construct the HttpRequestObject, the ServiceRequest method
calls the TryWebRequest method, which actually performs the web service request over the network.
Listing 10-62 shows the implementation of this method.

Aschenbrenner842-3.book Page 381 Wednesday, April 18, 2007 3:19 PM

382 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-62. Implementation of the TryWebRequest Method

private ResponseFilterAction TryWebRequest(HttpWebRequest outgoingRequest,
 out HttpWebResponse incomingResponse)
{
 try
 {
 incomingResponse = (HttpWebResponse)outgoingRequest.GetResponse();
 return MatchResponseFilter(incomingResponse);
 }
 catch (ProtocolViolationException pve)
 {
 incomingResponse = null;
 m_lastError = pve.Message;
 return ResponseFilterAction.Error;
 }
 catch (WebException we)
 {
 incomingResponse = we.Response as HttpWebResponse;
 m_lastError = we.Message;

 if (incomingResponse != null)
 return MatchResponseFilter(incomingResponse);

 return ResponseFilterAction.Retry;
 }
 catch (InvalidOperationException ioe)
 {
 incomingResponse = null;
 m_lastError = ioe.Message;
 return ResponseFilterAction.Error;
 }
}

In Listing 10-62, the MatchResponseFilter method is called when the GetResponse method
of the HttpWebRequest class is called. Internally, the MatchResponseFilter method calls the
sp_MatchResponseFilter stored procedure to retrieve the response filter from the ResponseFilter
table. Refer to Listing 10-53 for the implementation details of this stored procedure. In the error
case, the TryWebRequest method returns the ResponseFilterAction.Error enumeration value. This
indicates to the caller that the web service request wasn’t completed successfully. In this case, the
web service request is queued for a retry. You implement the queuing mechanism for a retry in the
SavePendingRequest method. You’ll learn about the retry mechanism later in this section.

When the web service request completes successfully, a response message with the web service
result is sent to the initiator of the conversation. Finally, the conversation is ended. You use the
SendResponse method to send the result, and you use the EndConversation method to end the con-
versation. Listing 10-63 shows the SendResponse method.

Aschenbrenner842-3.book Page 382 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 383

Listing 10-63. Implementation of the SendResponse Method

private void SendResponse(httpResponseType outgoingResponse)
{
 MemoryStream msgBody = new MemoryStream();
 XmlSerializer xs = new XmlSerializer(typeof(httpResponseType));
 xs.Serialize(msgBody, outgoingResponse);

 Message msgResponse = new Message(x_httpResponseMessageType, msgBody);
 s_currentConversation.Send(msgResponse, s_connection, s_transaction);
}

After sending the response message and ending the conversation, the whole process of execut-
ing the web service request is complete. Let’s concentrate now on the implementation details of the
retry mechanism. As soon as an error is returned from the TryWebRequest method, the retry mecha-
nism does the following two things:

• Saves the request: The retry mechanism stores the failed web request in the PendingRequest
table. Then it retries the pending web request until the configured maximum value is reached
(which is stored in the NumberOfRetries column in the RequestFilter table).

• Starts a dialog timer: Finally, a Service Broker dialog timer is started. A dialog timer sends a
message after a configured period of time. When the service program receives this dialog
timer message, the execution of the pending web request is tried again.

Let’s have a look at each of these two points. The PendingRequest table stores all the web
requests that weren’t executed successfully. These web requests are retried again as soon as the
service program receives the associated dialog timer message. Listing 10-64 shows the CREATE TABLE
T-SQL statement for this table.

Listing 10-64. The CREATE TABLE T-SQL Script for the PendingRequest Table

CREATE TABLE PendingRequest
(
 ConversationHandle UNIQUEIDENTIFIER NOT NULL
 CONSTRAINT PkPendingRequest PRIMARY KEY,
 RequestBody VARBINARY(MAX) NOT NULL,
 RetriesUsed TINYINT NOT NULL,
 Status NVARCHAR(MAX)
)
GO

PendingRequest stores the conversation handle that is associated with the failed web service
request. The table also stores the number of the retries already executed. Therefore, you can easily
determine how many retries are still left. You use the sp_AddOrUpdatePendingRequest stored proce-
dure to insert the pending web service request. Listing 10-65 shows the implementation of this
stored procedure.

Aschenbrenner842-3.book Page 383 Wednesday, April 18, 2007 3:19 PM

384 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-65. Implementation of the sp_AddOrUpdatePendingRequest Stored Procedure

CREATE PROCEDURE sp_AddOrUpdatePendingRequest
 @ConversationHandle UNIQUEIDENTIFIER,
 @RequestBody VARBINARY(MAX),
 @RetriesUsed TINYINT,
 @Status NVARCHAR(256)
AS
BEGIN
 BEGIN TRANSACTION;

 IF (EXISTS
 (
 SELECT * FROM PendingRequest WHERE ConversationHandle = @ConversationHandle
))
 BEGIN
 UPDATE PendingRequest SET
 RetriesUsed = @RetriesUsed,
 Status = @Status
 WHERE ConversationHandle = @ConversationHandle
 END
 ELSE
 BEGIN
 INSERT INTO PendingRequest
 (ConversationHandle, RequestBody, RetriesUsed, Status)
 VALUES
 (
 @ConversationHandle,
 @RequestBody,
 @RetriesUsed,
 @Status
);
 END

 COMMIT;
END
GO

You can use the sp_AddOrUpdatePendingRequest stored procedure to insert a new failed
web request into the PendingRequest table. This is done when the web request fails for the first
time. On the other hand, you can use the sp_AddOrUpdatePendingRequest stored procedure to
update the RetriesUsed and the Status column of the PendingRequest table. This is done when the
execution of a pending web request fails again (until the configured maximum limit is reached).

Inside the managed service program, the SavePendingRequest method uses the
sp_AddOrUpdatePendingRequest stored procedure to put the failed web request into the
PendingRequest table. Listing 10-66 shows the implementation of the SavePendingRequest
stored procedure.

Aschenbrenner842-3.book Page 384 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 385

Listing 10-66. Implementation of the SavePendingRequest Method

private void SavePendingRequest(httpRequestType incomingRequest)
{
 SqlCommand cmd = s_connection.CreateCommand();
 cmd.CommandText = "sp_AddOrUpdatePendingRequest";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Transaction = s_transaction;
 cmd.Parameters.AddWithValue("@ConversationHandle", s_currentConversation.Handle);
 cmd.Parameters.AddWithValue("@RetriesUsed", ++m_numRetriesUsed);

 if (s_msgReceived.Type == x_httpRequestMessageType)
 {
 MemoryStream stream = new MemoryStream();
 XmlSerializer xs = new XmlSerializer(typeof(httpRequestType));
 xs.Serialize(stream, incomingRequest);
 cmd.Parameters.AddWithValue("@RequestBody", stream.ToArray());
 }
 else
 {
 cmd.Parameters.Add("@RequestBody", SqlDbType.VarBinary).Value =
 DBNull.Value;
 }

 if (m_lastError == null)
 cmd.Parameters.AddWithValue("@Status", DBNull.Value);
 else
 cmd.Parameters.AddWithValue("@Status", m_lastError);

 try
 {
 cmd.ExecuteNonQuery();
 }
 catch (SqlException e)
 {
 SqlContext.Pipe.Send(e.Message);
 }
}

The SavePendingRequest method calls the sp_AddOrUpdatePendingRequest stored procedure
to update the PendingRequest table. The method also increments the m_numRetriesUsed member
variable to reflect the retry count of the current failed web request. After the retry mechanism stores
the pending web request in the PendingRequest table, the BeginTimer method is called from the
ServiceRequest method.

The main purpose of this method is to start a Service Broker conversation timer. You use the
BEGIN CONVERSATION TIMER T-SQL statement to do this. Listing 10-67 shows the syntax of this T-SQL
statement.

Aschenbrenner842-3.book Page 385 Wednesday, April 18, 2007 3:19 PM

386 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-67. Syntax of the BEGIN CONVERSATION TIMER T-SQL Statement

BEGIN CONVERSATION TIMER (conversation_handle)
TIMEOUT = timeout

Table 10-3 describes the arguments of the BEGIN CONVERSATION TIMER T-SQL statement.

Table 10-3. Arguments of the BEGIN CONVERSATION TIMER T-SQL Statement

A conversation timer provides a way for an application to receive a message on a conversation
after a specific amount of time. Calling BEGIN CONVERSATION TIMER on a conversation before the timer
has expired sets the time-out to the new value. Unlike the conversation lifetime, each side of the
conversation has an independent conversation timer. The sent conversation timer message arrives
on the local queue without affecting the remote side of the conversation. Therefore, an application
can use a timer message for any purpose.

For example, you can use the conversation timer to keep an application from waiting too long
for an overdue response. If you expect the application to complete a dialog in 30 seconds, you might
set the conversation timer for that dialog to 60 seconds (30 seconds plus a 30-second grace period).
If the dialog is still open after 60 seconds, the application will receive a time-out message on the
queue for that dialog.

Alternatively, an application can use a conversation timer to request activation at a particular
time. For example, you might create a service that reports the number of active connections every
few minutes, or a service that reports the number of open purchase orders every evening. The ser-
vice sets a conversation timer to expire at the desired time. When the timer expires, Service Broker
sends a DialogTimer message. The DialogTimer message causes Service Broker to start the config-
ured stored procedure for the queue. The stored procedure sends a message to the remote service
and restarts the conversation timer. Listing 10-68 shows the implementation of the BeginTimer
method that starts the conversation timer when the execution of a web service request fails.

Listing 10-68. Implementation of the BeginTimer Method

private void BeginTimer()
{
 int timeout = (int)
 (m_retryDelay * Math.Pow(m_backoffFactor, m_numRetriesUsed));
 SqlCommand cmd = s_connection.CreateCommand();
 cmd.CommandText = @"BEGIN CONVERSATION TIMER (@dh) TIMEOUT = @to";
 cmd.Transaction = s_transaction;
 cmd.Parameters.AddWithValue("@dh", s_currentConversation.Handle);
 cmd.Parameters.AddWithValue("@to", timeout);
 cmd.ExecuteNonQuery();
 SqlContext.Pipe.Send("set timer");
}

Argument Description

conversation_handle Specifies the conversation for which the dialog timer is set up. The
conversation_handle must be a UNIQUEIDENTIFIER data type.

timeout Specifies the amount of time (in seconds) to wait before putting the
message on the queue.

Aschenbrenner842-3.book Page 386 Wednesday, April 18, 2007 3:19 PM

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 387

The conversation timer message is delivered to the local queue as soon as the specified time-out
is over. This message follows the [http://schemas.microsoft.com/SQL/ServiceBroker/DialogTimer]
Service Broker message type. As soon as this message type is received on the local queue, the OnTimer
method gets called automatically through the functionality of the ServiceBrokerInterface managed
assembly. Listing 10-69 shows the implementation of the OnTimer method.

Listing 10-69. Implementation of the OnTimer Method

[BrokerMethod(Message.DialogTimerType)]
public void OnTimer(
 Message msgReceived,
 SqlConnection connection,
 SqlTransaction transaction)
{
 s_connection = connection;
 s_transaction = transaction;
 s_currentConversation = msgReceived.Conversation;
 s_msgReceived = msgReceived;

 httpRequestType pendingRequest = GetPendingRequest();

 if (pendingRequest == null)
 {
 ErrorConversation(6, "Your pending request was mysteriously lost.");
 return;
 }

 SqlContext.Pipe.Send("retrieved: " + pendingRequest.url);
 SqlContext.Pipe.Send("num used: " + m_numRetriesUsed);
 ServiceRequest(pendingRequest);
}

As you can see, the OnTimer method uses the GetPendingRequest method to retrieve the pending
web service request from the PendingRequest table. When the web service request is retrieved, it is
handed over to the ServiceRequest method (see Listing 10-59 for reference), which tries to execute
the web service request. Listing 10-70 shows the implementation of the GetPendingRequest method.

Listing 10-70. Implementation of the GetPendingRequest Method

private httpRequestType GetPendingRequest()
{
 SqlCommand cmd = s_connection.CreateCommand();
 cmd.CommandText =
 @"SELECT RequestBody, RetriesUsed FROM PendingRequest WHERE " +
 "ConversationHandle = @ConversationHandle";
 cmd.Transaction = s_transaction;
 cmd.Parameters.AddWithValue("@ConversationHandle", s_currentConversation.Handle);
 SqlDataReader reader = cmd.ExecuteReader();

 if (!reader.Read())
 {
 reader.Close();
 return null;
 }

Aschenbrenner842-3.book Page 387 Wednesday, April 18, 2007 3:19 PM

http://schemas.microsoft.com/SQL/ServiceBroker/DialogTimer

388 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

 SqlBytes requestBytes = reader.GetSqlBytes(0);
 XmlSerializer xs = new XmlSerializer(typeof(httpRequestType));
 httpRequestType pendingRequest =
 xs.Deserialize(requestBytes.Stream) as httpRequestType;

 m_numRetriesUsed = (int) reader.GetByte(1);
 reader.Close();

 return pendingRequest;
}

In Listing 10-70, the retry mechanism retrieves the pending web service from the PendingRequest
table. As soon as the web service request is retrieved, the request is deserialized to an object of the
httpRequestType type. The newly created object instance is finally returned to the caller that hands the
pending request over to the ServiceRequest method for further execution. Listing 10-71 shows how to
register the managed service program inside the database.

Listing 10-71. Registration of the Managed Service Program

CREATE ASSEMBLY [ServiceBrokerInterface]
FROM 'c:\ServiceBrokerInterface.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO

CREATE ASSEMBLY [WebProxy]
FROM 'c:\WebProxy.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS;
GO

CREATE ASSEMBLY [WebProxy.XmlSerializers]
FROM 'c:\WebProxy.XmlSerializers.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS;
GO

CREATE PROCEDURE sp_WebProxyService
AS EXTERNAL NAME [WebProxy].[Microsoft.Samples.SqlServer.WebProxyService].Run
GO

ALTER QUEUE WebProxyQueue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = sp_WebProxyService,
 MAX_QUEUE_READERS = 1,
 EXECUTE AS SELF
)
GO

Using the Web Proxy in a Smart Client
Now let’s have a look at how you can use the reliable web service proxy. First, you need to take a
more detailed look at the request message sent by a client service. The sent request message fol-
lows the message type [http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType], which is

Aschenbrenner842-3.book Page 388 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 389

associated with the HttpRequestSchema XML schema collection. Listing 10-72 shows the basic
structure of the request message.

Listing 10-72. The Sent Request Message

<tns:httpRequest
 url="http://localhost:8080/WebService/Service.asmx"
 method="POST"
 xsi:schemaLocation=
 "http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema/MessageTypes.xsd"
 xmlns:tns="http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <headers>
 <header name="SOAPAction" value="http://tempuri.org/HelloWorld" />
 <header name="Content-Type" value="text/xml; charset=utf-8" />
 </headers>
 <body>
 -- Here comes the SOAP body for the Web service request...
 </body>
</tns:httpRequest>

In Listing 10-72, the <httpRequest> XML element contains some attributes, the most important
of which are url and method. With the url attribute, you specify to which network address the web
service request is forwarded. In this case, the request is forwarded to http://localhost:8080/
WebService/Service.asmx where an ASP.NET 2.0 web service is deployed. With the method attribute,
you specify the HTTP action GET or POST. Finally, you can specify in the <body> XML element the
SOAP message you want to send to the web service specified in the url attribute. Before concentrat-
ing on the SOAP message, take a look at Listing 10-73, which shows the implementation of the
ASP.NET web service.

Listing 10-73. Registration of the Managed Service Program

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = "http://www.csharp.at")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{
 public Service ()
 {
 }

 [WebMethod]
 public string HelloWorld()
 {
 return "Hello World from our reliable web service.";
 }
}

In Listing 10-73, this web service implementation returns the famous Hello World phrase as a
result back to the client. When you navigate to this web service in your Web browser, the web service
helper page displays, as shown in Figure 10-14.

Aschenbrenner842-3.book Page 389 Wednesday, April 18, 2007 3:19 PM

http://localhost:8080/WebService/Service.asmx
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema/MessageTypes.xsd
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema
http://www.w3.org/2001/XMLSchema-instance
http://tempuri.org/HelloWorld
http://localhost:8080
http://www.csharp.at

390 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Figure 10-14. The web service helper page

The web service helper page also shows you the SOAP request that you must send to the web
service to invoke the HelloWorld method. Listing 10-74 shows the SOAP request in detail.

Listing 10-74. The SOAP Request Sent to the Web Service

POST /WebService/Service.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.csharp.at/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorld xmlns="http://www.csharp.at" />
 </soap:Body>
</soap:Envelope>

Now the question is how to embed this SOAP request into the <body> XML element of the Service
Broker request message. The problem is that you can’t just add the SOAP request directly into the
<body> XML element, because it’s not allowed to put an XML fragment into the <body> XML element

Aschenbrenner842-3.book Page 390 Wednesday, April 18, 2007 3:19 PM

http://www.csharp.at/HelloWorld
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://www.csharp.at

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 391

(according to the defined XML schema collection). When you look at the HttpRequestSchema XML
schema collection, you can see that the <body> XML element has the data type xsd:base64binary.

Because of this, you must convert the SOAP request shown in Listing 10-74 to the binary Base64
format. The same applies to the response message sent back from the called web service: here you
must also convert the response message to the binary Base64 format and place it inside the <body>
XML element of the Service Broker response message. Because of these requirements, you’ll write
two managed stored functions that do the conversion from and to the binary Base64 format.
Listing 10-75 shows the implementation of these two methods.

Listing 10-75. Managed Stored Functions for Manipulating Base64 Formats

public static string EncodeToBase64(string Content)
{
 return System.Convert.ToBase64String(new ASCIIEncoding().GetBytes(Content));
}

public static string EncodeFromBase64(string Content)
{
 return new ASCIIEncoding().GetString(System.Convert.FromBase64String(Content));
}

After you implement these two functions, you must register them inside the SQL Server 2005
database. You can use the CREATE FUNCTION T-SQL statement, as shown in Listing 10-76.

Listing 10-76. Creation of the Managed Stored Functions in the SQL Server 2005 Database

CREATE FUNCTION EncodeToBase64
(
@Content NVARCHAR(MAX)
)
RETURNS NVARCHAR(MAX)
AS EXTERNAL NAME
 [WebProxy].[Microsoft.Samples.SqlServer.WebProxyService].
 EncodeToBase64
GO

CREATE FUNCTION EncodeFromBase64
(
@Content NVARCHAR(MAX)
)
RETURNS NVARCHAR(MAX)
AS EXTERNAL NAME
 [WebProxy].[Microsoft.Samples.SqlServer.WebProxyService].
 EncodeFromBase64
GO

With these managed stored functions, you can easily create a Service Broker request message
that contains the <body> XML element the SOAP request message. Listing 10-77 shows the necessary
T-SQL code that constructs the request message and sends the message to the WebProxyService that
processes it.

Aschenbrenner842-3.book Page 391 Wednesday, April 18, 2007 3:19 PM

392 C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S

Listing 10-77. Sending the Service Broker Request Message

BEGIN TRANSACTION
DECLARE @conversationHandle UNIQUEIDENTIFIER
DECLARE @messageBody NVARCHAR(MAX)

SET @messageBody =
'
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorld xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>
'

BEGIN DIALOG @conversationHandle
 FROM SERVICE [WebClientService]
 TO SERVICE 'WebProxyService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract]
 WITH ENCRYPTION = OFF;

SEND ON CONVERSATION @conversationHandle
MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType]
(
 CAST(N'
 <tns:httpRequest
 url="http://localhost:8080/WebService/Service.asmx"
 method="POST"
 xsi:schemaLocation="http://ssb.csharp.at/SSB_Book/c10/
 ReliableWebRequestsSchema/MessageTypes.xsd"
 xmlns:tns="http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <headers>
 <header name="SOAPAction" value="http://tempuri.org/HelloWorld" />
 <header name="Content-Type" value="text/xml; charset=utf-8" />
 </headers>
 <body>' + dbo.EncodeToBase64(@messageBody) +
 '</body>
 </tns:httpRequest>
 '
 AS XML)
)
COMMIT
GO

As soon as you execute the T-SQL batch from Listing 10-77, the request message is sent to the
WebProxyService where it is executed automatically by the sp_WebProxyService stored procedure
that you configured for internal Service Broker activation. As soon as the stored procedure executes
the web request (this could take a few seconds because of the web service call), you can query the
WebClientQueue for the received web service response message. Listing 10-78 shows how you extract
the SOAP response from the Service Broker response message and convert it from the binary Base64
format to plain text.

Aschenbrenner842-3.book Page 392 Wednesday, April 18, 2007 3:19 PM

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://tempuri.org
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestContract
http://ssb.csharp.at/SSB_Book/c10/HttpRequestMessageType
http://localhost:8080/WebService/Service.asmx
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema/MessageTypes.xsd
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema/MessageTypes.xsd
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema
http://www.w3.org/2001/XMLSchema-instance
http://tempuri.org/HelloWorld

C H A P T E R 1 0 ■ R E A L - W O R L D A P P L I C A T I O N S C E N A R I O S 393

Listing 10-78. Retrieving the SOAP Response from the Web Service Call

DECLARE @response XML

SELECT
 TOP (1) @response = message_body
FROM WebClientQueue
WHERE
 message_type_name = 'http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType'

SELECT
 dbo.EncodeFromBase64(@response.value('
 declare namespace
 WS="http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema";
 /WS:httpResponse[1]/body[1]', 'NVARCHAR(MAX)'))
GO

As you can see, you simply call the EncodeFromBase64 managed stored function to convert the
binary Base64 string to plain text. If an error occurs during the web service request, then the request
will move to the PendingRequest table. Don’t worry if you get no response message—just look into
the PendingRequest table to see if the web service request has failed. If this is the case, the managed
service program will try it again until it reaches the configured maximum retry count (configured
through the NumberOfRetries column in the RequestFilter table).

Summary
In this chapter, I showed you several real-world application scenarios in which the Service Broker
functionality provides a lot of advantages. I demonstrated the implementation of asynchronous
triggers to execute the trigger-processing logic asynchronously. Then I talked about the implemen-
tation of a batch framework on top of Service Broker. As you’ve seen, the SQLCLR provides a lot of
power inside SQL Server 2005.

Next, I introduced a simple publish-subscribe framework built with Service Broker. This frame-
work is useful if you want to distribute messages to several registered subscribers. I also talked about
priority-based message processing and how you can achieve priority-based message processing for
conversation groups. Finally, I showed you how you can use Service Broker to call ASP.NET 2.0 web
services reliably.

In the next chapter, I’ll concentrate on addressing several SQL Server scale-out scenarios with
Service Broker. Stay tuned.

Aschenbrenner842-3.book Page 393 Wednesday, April 18, 2007 3:19 PM

http://ssb.csharp.at/SSB_Book/c10/HttpResponseMessageType
mailto:EncodeFromBase64(@response.value
http://ssb.csharp.at/SSB_Book/c10/ReliableWebRequestsSchema

Aschenbrenner842-3.book Page 394 Wednesday, April 18, 2007 3:19 PM

395

■ ■ ■

C H A P T E R 1 1

High Availability and Scalability

This chapter will introduce the high-availability and scalability options you can choose from when
you deploy your Service Broker applications. This chapter will cover the following topics in detail:

• Database mirroring: Database mirroring is a new high-availability feature in SQL Server 2005.
With database mirroring, you can mirror a SQL Server 2005 database between two server
instances. One database acts as the principal, and the other database acts as the mirror.
When you use Service Broker, you can also mirror your Service Broker service between two
databases, and Service Broker will ensure that your messages will be forwarded to the current
principal.

• Load balancing: Service Broker provides built-in functionality for load balancing. When
you provide more than one route at the initiating service for a specific service name, then
Service Broker randomly picks a route from the available ones and sends the conversation’s
messages along this route. Therefore, load balancing is easy with Service Broker.

• Message forwarding: Message forwarding allows an instance of SQL Server to accept mes-
sages from outside the instance and send those messages to a different instance. In this
case, the instance acts as a Service Broker message forwarder. With message forwarding, you
can encapsulate your physical Service Broker infrastructure and use message forwarding to
scale things out.

• Configuration notice service: An administrator typically configures Service Broker routing
information. To provide dynamic routing information for your Service Broker application,
you can use a configuration notice service. A configuration notice service exists on the initiat-
ing service side and provides dynamic routing information for a target service.

The great thing about Service Broker is that you can use all the high-availability and scalability
features provided by SQL Server 2005. Compared to other messaging technologies, such as MSMQ,
this is a huge benefit because you can use the infrastructure already provided by SQL Server 2005.

All the features I’ll discuss in this chapter are configurable at deployment of your Service Broker
applications. You don’t have to concentrate on them during the development phase of Service
Broker projects (as you do with distributed Service Broker applications, discussed in Chapters 7
and 8). Your SQL Server administrator controls how much availability and scalability is needed for
your Service Broker application. Let’s look at the options.

Database Mirroring
Database mirroring is a first-class software solution for providing database availability in SQL
Server 2005. The main difference between database clustering and database mirroring is that you
apply database clustering to a whole SQL Server instance, whereas you implement database mir-
roring per database, and it works only with databases that use the full recovery model.

Aschenbrenner842-3.book Page 395 Tuesday, April 17, 2007 8:09 PM

396 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Database mirroring maintains two copies of a single database that must reside on different
instances of SQL Server 2005. One server instance, the principal server, serves the database to cli-
ents, while the other server acts as a hot standby server, called the mirror server. Database mirroring
is a simple strategy that offers the following benefits:

• Data protection: Database mirroring provides complete or nearly complete data redun-
dancy, depending on whether the supported operating mode is in high-safety mode or
high-performance mode.

• Database availability: In the event of a disaster, failover quickly brings the standby copy of the
database online.

Implementation Details
The principal and mirror servers communicate and cooperate as so-called partners within a data-
base mirroring session. The two partners perform complementary roles in the session: the principal
role and the mirror role. At any given time, one partner performs the principal role, and the other
partner performs the mirror role. Each partner is described as “owning” its current role. The partner
that owns the principal role is known as the principal server, and its copy of the database is the cur-
rent principal database. The partner that owns the mirror role is known as the mirror server, and its
copy of the database is the current mirror database.

When you deploy database mirroring in a production system, the principal database is the
production database. In an alternative configuration, a third SQL Server instance—the so-called
witness—is involved in a database-mirroring scenario. The witness is necessary for the database
mirroring session to support automatic failover in case of emergency, which is the only reason to
have a witness. Figure 11-1 illustrates the architecture of database mirroring.

Figure 11-1. Database mirroring architecture

Database mirroring involves redoing every insert, delete, and update operation that occurs
on the principal database in the mirror database—as quickly as possible. Redoing is accomplished
by sending every active transaction log record to the mirror server, and this is done through the
reliability features of Service Broker. The mirror server applies the received log records to the mir-
ror database, in sequence. Unlike replication, which works at the logical level, database mirroring
works at the level of the physical log record. All database-mirroring sessions support only one
principal server and one mirror server.

Aschenbrenner842-3.book Page 396 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 397

A database-mirroring session runs either synchronously or asynchronously. In an asynchro-
nous operation, transactions are committed without waiting for the mirror server to write the log
to disk, which maximizes the performance between the two mirrored databases. In a synchronous
operation, a committed transaction is committed on both mirroring partners, but with the cost of
increased transaction latency.

There are two mirroring operation modes. The high-safety mode supports synchronous opera-
tion. Under the high-safety mode, when a session begins, the mirror server synchronizes the mirror
database with the principal database as quickly as possible. Once the databases are synchronized
successfully, a committed transaction is committed on both mirroring partners.

The second operating mode, the high-performance mode, runs asynchronously. The mirror
server attempts to keep up with the log records sent by the principal server. The mirror database
might lag somewhat behind the principal database. Typically, the gap between the two databases is
small. However, the gap can become substantial if the principal server is under a heavy workload or
if the system of the mirror server is overloaded.

In high-performance mode, as soon as the principal server sends a log record to the mirror
server, the principal server sends a confirmation to the client without waiting for an acknowledg-
ment from the mirror server. This means that transactions commit without waiting for the mirror
server to write the log to disk. Such asynchronous operations permit the principal server to run with
minimum transaction latency, at the risk of some potential data loss.

Setting Up Database Mirroring
The first thing you need to do when using database mirroring is to configure communication between
the principal and the mirror server. Because database mirroring uses Service Broker as the underlying
communication technology between both mirrored SQL Server instances, you have to configure trans-
port security between those SQL Server instances. When you configure transport security for database
mirroring, there are no differences from normal distributed Service Broker scenarios. You can also use
Windows- or certificate-based transport security. I’ll show you how to configure certificate-based
transport security for database mirroring, because it’s the more complicated one. Let’s start with the
configuration of the database-mirroring endpoint.

Database-Mirroring Endpoint
When configuring database mirroring, you first have to create a new SQL Server endpoint that
supports database mirroring. This endpoint communicates with the endpoint on the mirroring
server. You create this endpoint with the CREATE ENDPOINT T-SQL statement you already know
from Chapter 7. When you create an endpoint for database mirroring, you can specify a lot of
options. Listing 11-1 shows the available options.

Listing 11-1. CREATE ENDPOINT Options for Database Mirroring

FOR DATABASE MIRRORING
(
 [AUTHENTICATION = { WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 | CERTIFICATE certificate_name }]
 [[,] ENCRYPTION = { DISABLED | SUPPORTED | REQUIRED }
 [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }]]
 [,] ROLE = { WITNESS | PARTNER | ALL }
)

Table 11-1 describes the parameters specific to database mirroring.

Aschenbrenner842-3.book Page 397 Tuesday, April 17, 2007 8:09 PM

398 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Table 11-1. Parameters Specific for Database Mirroring

Listing 11-2 creates an endpoint for database mirroring. You also have to create a new certifi-
cate because you’re using certificate-based transport security.

Listing 11-2. Creating an Endpoint for Database Mirroring

USE master
GO

CREATE CERTIFICATE MirroringCertPrivate
 WITH SUBJECT = 'For database mirroring authentication - MirroringCertPrivate',
 START_DATE = '01/01/2007'
GO

CREATE ENDPOINT MirroringEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4740
)
FOR DATABASE_MIRRORING
(
 AUTHENTICATION = CERTIFICATE MirroringCertPrivate,
 ROLE = ALL
)
GO

BACKUP CERTIFICATE MirroringCertPrivate
 TO FILE = 'c:\MirroringCertPrincipalPublic.cert'
GO

Note in Listing 11-2 that you dump the public key portion of the newly created certificate to the
file system, because you must import the public key certificate on the mirror server. You also have to
create an endpoint for database mirroring on the mirror server. You can use the same T-SQL as in
Listing 11-2.

Parameters Description

ROLE The database-mirroring role that the endpoint supports

WITNESS Specifies that the endpoint can perform the witness role

PARTNER Specifies that the endpoint can perform the partner role

ALL Specifies that the endpoint can perform both witness and partner roles

Aschenbrenner842-3.book Page 398 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 399

Security Configuration
Once you create the database-mirroring endpoints on both SQL Server instances and exchange the
public key certificates of both endpoints, you can configure security. First, you have to create a new
SQL Server login and SQL Server user, and then you map the public key certificate to that user. You
have to do this on both the principal and mirror servers. Listing 11-3 shows the relevant T-SQL code.

Listing 11-3. Security Configuration for Database Mirroring

CREATE LOGIN MirrorLogin WITH PASSWORD = 'password1!'
GO

CREATE USER MirrorUser FOR LOGIN MirrorLogin
GO

CREATE CERTIFICATE MirroringCertPublic
 AUTHORIZATION MirrorUser
 FROM FILE = 'c:\MirroringCertMirrorPublic.cert'
GO

GRANT CONNECT ON ENDPOINT::MirroringEndpoint TO MirrorLogin
GO

Listing 11-3 shows how you import the public key certificate from the opposite database
mirroring endpoint and grant the CONNECT permission on that endpoint to the previously created
MirrorLogin. You have to do this on both SQL Server instances participating in the database-
mirroring session.

Database Preparation
Once you configure both SQL Server instances, you must prepare the database to be used for the
database-mirroring session. For this sample, I’ve prepared a database with the OrderService from
the previous chapters. I’ve created all the necessary Service Broker objects (message types, con-
tracts, queues, and routes) as well as the tables needed by the various Service Broker services. Please
refer to the T-SQL script included in the source code for the database-mirroring sample in the
Source Code/Download area of the Apress website (http://www.apress.com).

Let’s take a closer look at how to deploy this database on the principal and the mirror servers,
because this is a little bit different from other SQL Server scenarios. First, you have to create the
whole database on the principal server. You also must make sure that the database uses the full
recovery model. You can check this through the database properties in SQL Server Management
Studio (see Figure 11-2).

Aschenbrenner842-3.book Page 399 Tuesday, April 17, 2007 8:09 PM

http://www.apress.com

400 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Figure 11-2. Checking the recovery model of the deployed database

After you check the recovery model of the database, you have to do a full backup of the database
and then a log backup. This is required for database mirroring to work. Listing 11-4 shows the T-SQL
to accomplish both tasks.

Listing 11-4. Database and Log Backup

BACKUP DATABASE [Chapter11_DatabaseMirroring]
 TO DISK = 'd:\Chapter11_DatabaseMirroring.bak'
 WITH NOFORMAT, NOINIT,
 NAME ='Chapter11_DatabaseMirroring-Full Database Backup',
 SKIP, NOREWIND, NOUNLOAD, STATS = 10
GO

BACKUP LOG Chapter11_DatabaseMirroring
 TO DISK = 'd:\Chapter11_DatabaseMirroringLog.bak'
GO

Aschenbrenner842-3.book Page 400 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 401

After you back up the database and the log, you have to restore the database and the log on the
mirror server. Listing 11-5 shows the necessary T-SQL that you must execute on another SQL Server
instance.

Listing 11-5. Restoring the Database and the Log File on the Mirror Server

RESTORE DATABASE [Chapter11_DatabaseMirroring]
 FROM DISK = 'D:\Chapter11_DatabaseMirroring.bak'
 WITH FILE = 1,
 NOUNLOAD, STATS = 10
GO

RESTORE LOG Chapter11_DatabaseMirroring
 FROM DISK = 'd:\Chapter11_DatabaseMirroringLog.bak'
 WITH FILE = 1,
 NORECOVERY
GO

In Listing 11-5, you restore the database on the principal server with the NORECOVERY option.
This is a requirement for the database on the mirror server. Now that you’ve created the database
on both the principal and the mirror servers, the only thing left to do is to enable database mirror-
ing on both servers. Execute the T-SQL in Listing 11-6 on the mirror server.

Listing 11-6. Setting the Partner on the Mirror Server

ALTER DATABASE Chapter11_DatabaseMirroring
SET PARTNER = 'TCP://PrincipalInstance:4740'
GO

Then execute the T-SQL in Listing 11-7 on the principal server.

Listing 11-7. Setting the Partner on the Principal Server

ALTER DATABASE Chapter11_DatabaseMirroring
SET PARTNER = 'TCP://MirrorInstance:4740'
GO

■Caution Please make sure to always set the database-mirroring partner on the mirror server first and then on
the principal server. If you do this in the wrong order, database mirroring won’t work.

Now database mirroring is completely set up. You can verify that database mirroring is working
with the Database Mirroring Monitor. You start this tool by navigating to the Tasks context menu of
the database. See Figure 11-3.

Aschenbrenner842-3.book Page 401 Tuesday, April 17, 2007 8:09 PM

TCP://PrincipalInstance:4740
TCP://MirrorInstance:4740

402 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Figure 11-3. Starting the Database Mirroring Monitor

You can also now initiate a failover between both partners, so that they change their roles: the
principal server becomes the mirror server, and the mirror server becomes the principal server. You
can do this with the Failover button in the database properties on the Mirroring page.

Using Service Broker with Database Mirroring
If you’ve configured the database that implements OrderService for database mirroring, you can use
the mirrored service from a Service Broker initiator. The only thing you have to change on the initi-
ator’s side is the route to OrderService. When you create the route to OrderService, you also need to
specify the mirror server through the MIRRORED ROUTE parameter. See Listing 11-8.

Listing 11-8. Creating a Route to a Mirrored Service Broker Service

CREATE ROUTE OrderServiceRoute
 WITH SERVICE_NAME = 'OrderService',
 BROKER_INSTANCE = '1F5DB6A9-20FA-4114-BFD9-35FE8B8BE40B',
 ADDRESS = 'TCP://PrincipalInstance:4742',
 MIRROR_ADDRESS = 'TCP://MirrorInstance:4743'
GO

Note in Listing 11-8 that you must also specify the broker instance GUID (through the
BROKER_INSTANCE argument) of the mirrored database. You can get this GUID through the
service_broker_guid column of the sys.databases catalog view. If you’ve created the
route to the mirrored Service Broker service successfully, you can now send a new request
message to OrderService. See Listing 11-9.

Aschenbrenner842-3.book Page 402 Tuesday, April 17, 2007 8:09 PM

TCP://PrincipalInstance:4742
TCP://MirrorInstance:4743

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 403

Listing 11-9. Sending a Message to a Mirrored Service Broker Service

BEGIN TRANSACTION;
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [ClientService]
 TO SERVICE 'OrderService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c11/OrderContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
 </OrderRequest>';

 SEND ON CONVERSATION @ch MESSAGE TYPE
 [http://ssb.csharp.at/SSB_Book/c11/OrderRequestMessage] (@msg);
COMMIT;
GO

As you can see from Listing 11-9, whether or not the Service Broker service is mirrored is
completely transparent to the message-sending code. The mirroring is configured through the
previously created route. So, you can easily configure mirroring for an existing Service Broker ser-
vice, because you do everything through configuration and you don’t have to change the internal
implementation of your Service Broker service.

Aschenbrenner842-3.book Page 403 Tuesday, April 17, 2007 8:09 PM

http://ssb.csharp.at/SSB_Book/c11/OrderContract
http://ssb.csharp.at/SSB_Book/c11/OrderRequestMessage

404 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Load Balancing
Service Broker provides support for load balancing. Load balancing is a technique for spreading
tasks among available resources to avoid some resources being idle while others have tasks queued
for execution. In the context of SQL Server 2005 and Service Broker, the resource is a Service Broker
service that is hosted on different SQL Server instances. In this case, the service is referred to as a
load-balanced Service Broker service. A load-balanced Service Broker service provides you the fol-
lowing advantages:

• High availability: If one of the SQL Server instances of your Service Broker service is offline
(maybe because of maintenance), your Service Broker application will work without any
problems, because the other running SQL Server can handle and execute the request.

• Scale-out: If you have several thousand concurrent clients communicating with your service,
a load-balanced Service Broker service can spread out the Service Broker requests. In this
case, each service just has to handle and execute a few hundred requests instead of all
several-thousand client requests. This approach helps you scale out your Service Broker
application.

Figure 11-4 shows how you can use a load-balanced Service Broker service for a SQL Server
2005 scale-out scenario.

Figure 11-4. A load-balanced Service Broker service

As you can see in Figure 11-4, the same Service Broker service is deployed on two or more SQL
Server instances. Deploying the identical Service Broker service to different SQL Server instances is

Aschenbrenner842-3.book Page 404 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 405

the one and only requirement when you want to support a load-balancing scenario with Service
Broker. Deploying a load-balanced Service Broker application involves the following two steps:

1. Deploying the service: You have to deploy the identical Service Broker service to different SQL
Server instances. This involves the creation of the used message types, contracts, and asso-
ciated queue objects.

2. Configuring the initiator: Once you deploy your Service Broker service to different SQL
Server instances, you must configure the load-balanced scenario. On the initiator’s side
of the Service Broker conversation, you just have to create a dedicated route for each
deployed Service Broker service, and you also have to configure at least transport security
between the Service Broker services.

As you can see, it’s very easy to set up a load-balanced scenario for Service Broker. If you’ve set
up the required routes to the different deployed target services on the initiator’s side, Service Broker
will randomly pick a route from the sys.routes catalog view and forward the request to the chosen
target service. As soon as Service Broker receives an acknowledgment for a message in a conversa-
tion, Service Broker uses the Service Broker identifier contained in the acknowledgment message for
other messages in the conversation. Once the first acknowledgment message is received, all future
messages in the conversation are routed using the Service Broker identifier in the acknowledgment
message.

In this way, you can ensure that for each conversation, a target service is randomly picked up
from the available services (as configured in the sys.routes catalog view) and the started conversa-
tion is completely bound to the originally picked-up SQL Server instance. This makes sense, because
as soon as you start to process messages from a conversation on a SQL Server instance, you have an
affinity to that instance, because the instance stores the data that was generated through message
processing. The instance might also store conversation state information, depending on your ser-
vice implementation details. Let’s have a look at how to set up a load-balanced scenario with Service
Broker.

Service Deployment
The first step in setting up a load-balanced scenario with Service Broker is to deploy the load-
balanced Service Broker service to two or more different SQL Server instances. You have to deploy
the following Service Broker objects:

• Message types

• Contracts

• Queue

• Service

• Service program

As you can see, the deployment of a load-balanced Service Broker service isn’t very different
from the normal deployment process. The only difference is that the service is deployed to two or
more SQL Server instances.

■Note From a Service Broker perspective, load balancing would also work between different SQL Server
instances hosted on the same machine. As you can probably guess, however, it wouldn’t make much sense in
this case, because it’s not a real load-balancing scenario. Therefore, I refer to a SQL Server instance instead of a
different SQL Server machine.

Aschenbrenner842-3.book Page 405 Tuesday, April 17, 2007 8:09 PM

406 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Let’s deploy OrderService from Chapter 6 to support a load-balanced scenario. Figure 11-5
shows the load-balanced scenario you want to achieve.

Figure 11-5. OrderService in a load-balanced scenario

As you can see in Figure 11-5, the OrderService is deployed to two different SQL Server
instances: OrderServiceInstance1 and OrderServiceInstance2. When you deploy OrderService
to the two instances, you have to set up at least transport security between ClientService and the
two instances of OrderService. When you deploy both instances of OrderService, you’ll see that
there is no difference between both deployments. You can easily scale out a Service Broker applica-
tion with load balancing; you just have to deploy an additional instance of the required Service
Broker service on another SQL Server instance. You don’t have to do anything else on the target side.

Initiator Configuration
As soon as you deploy OrderService, you’re ready to deploy ClientService, which communicates
with OrderService. The difference here is that you have to configure two routes: one route to
OrderInstance1 and the other route to OrderInstance2. Finally, you also have to set up transport
security for both deployed OrderServices on the initiator’s side. Listing 11-10 shows the T-SQL
code to configure OrderService on the initiator’s side for load balancing.

Listing 11-10. Configuration of the OrderService for Load Balancing

USE Chapter11_ClientService
GO

CREATE ROUTE OrderServiceRoute1
 WITH SERVICE_NAME = 'OrderService',
 ADDRESS = 'TCP://OrderServiceInstance1:4741'
GO

-- The route to the second load-balanced OrderService
CREATE ROUTE OrderServiceRoute2
 WITH SERVICE_NAME = 'OrderService',
 ADDRESS = 'TCP://OrderServiceInstance2:4742'
GO

Aschenbrenner842-3.book Page 406 Tuesday, April 17, 2007 8:09 PM

TCP://OrderServiceInstance1:4741
TCP://OrderServiceInstance2:4742

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 407

USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE ClientServiceCertPrivate
 WITH SUBJECT = 'For Service Broker authentication - ClientServiceCertPrivate',
 START_DATE = '01/01/2007'
GO

CREATE ENDPOINT ClientServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 474
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE ClientServiceCertPrivate
)
GO

BACKUP CERTIFICATE ClientServiceCertPrivate
 TO FILE = 'c:\ClientServiceCertPublic.cert'
GO

CREATE LOGIN OrderServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER OrderServiceUser FOR LOGIN OrderServiceLogin
GO

CREATE CERTIFICATE OrderServiceCertPublic1
 AUTHORIZATION OrderServiceUser
 FROM FILE = 'c:\OrderServiceCertPublic1.cert'
GO

CREATE CERTIFICATE OrderServiceCertPublic2
 AUTHORIZATION OrderServiceUser
 FROM FILE = 'c:\OrderServiceCertPublic2.cert'
GO

GRANT CONNECT ON ENDPOINT::ClientServiceEndpoint TO OrderServiceLogin
GO

As you can see in Listing 11-10, you configure two routes to OrderService: OrderServiceRoute1
and OrderServiceRoute2. Therefore, Service Broker now has two different options to forward your
message to the final destination OrderService. The Service Broker classifier randomly picks one of
the two routes and forwards the message on the chosen route to the target service.

As soon as you configure the routing information and transport security between the Service
Broker services, you’re able to send a request message ([http://ssb.csharp.at/SSB_Book/c11/
OrderRequestMessage] message type) to OrderService. Refer back to Listing 11-9 for the T-SQL.

Aschenbrenner842-3.book Page 407 Tuesday, April 17, 2007 8:09 PM

http://ssb.csharp.at/SSB_Book/c11/OrderRequestMessage
http://ssb.csharp.at/SSB_Book/c11/OrderRequestMessage

408 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

As you can see in Listing 11-9, there again is almost no difference in the message-sending code
when you send a message to a load-balanced Service Broker service. The only difference lies in the
configuration of the sys.routes catalog view. As soon as the Service Broker classifier finds more than
one route to a target service, the opened conversations are dispatched randomly between the avail-
able Service Broker services. When you connect to each deployed OrderService, you’ll see that the
received messages are processed and that the state information for each individual conversation is
stored in the ApplicationState table. If you have more SQL Server instances available, you could add
additional OrderService instances to the load-balancing scenario. Easy, isn’t it?

Message Forwarding
Message forwarding is another scale-out technology available inside Service Broker. Service Broker
message forwarding allows an instance of SQL Server to accept messages from outside the instance
and send those messages to a different SQL Server instance. You can use message forwarding for the
following scenarios:

• Abstracting your network topology to other messaging applications

• Simplifying administration by creating a single centralized instance that holds the routing
information for your domain

• Distributing work among several instances

When you enable message forwarding, the routing table in msdb.sys.routes determines
whether a message that arrives from another instance is forwarded. If the address for the matching
route is not LOCAL, SQL Server will forward the message to the address specified. Otherwise, the
received message will be delivered locally.

Reliable Delivery
An instance that forwards a message doesn’t acknowledge the message to the sender. Only the final
destination acknowledges the message. If the sender doesn’t receive an acknowledgment from
the destination after a period of time, the sender will try to resend the message. An instance that per-
forms message forwarding doesn’t need to store forwarded messages. Instead, SQL Server holds
messages to be forwarded in the memory of the SQL Server instance.

The amount of memory available for message forwarding is specified when message forwarding
is configured. This strategy allows efficient, stateless message forwarding. In the event that an
instance that performs message forwarding fails, no messages are lost. Each message is always
maintained at the sender until the final destination acknowledges the sent message.

Security
Service Broker message forwarding doesn’t require a forwarding instance to decrypt the for-
warded message. Therefore, only the database that participates in the conversation must have
dialog security configured. However, because transport security applies to the connections
between SQL Server instances, each SQL Server instance must have transport security correctly
configured for the instance that it communicates with.

For example, if instance A and instance B communicate through a forwarding instance, then
both instance A and instance B must have transport security configured correctly for the forward-
ing instance. Because the instances don’t exchange messages directly, the instances don’t have

Aschenbrenner842-3.book Page 408 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 409

transport security configured to communicate with each other. Let’s take a look at the different
scenarios where you can use message forwarding.

Network Topology Abstraction
Service Broker message forwarding allows you to abstract your network topology to other clients who
call your Service Broker service. Let’s assume a scenario where you want to deploy OrderService from
Chapter 6 into your production system, so that other clients can communicate with OrderService.
Figure 11-6 shows a possible deployment scenario.

Figure 11-6. Deploying OrderService into production

As you can see in Figure 11-6, OrderService is deployed on the computer sql.csharp.at. If the
administrator of ClientService wants to create a connection to OrderService, he has to create a
route for OrderService that specifies tcp://sql.csharp.at:4741 as the target address. This approach
will work without any problems. But what if the administrator of the OrderService must move the
Service Broker to another machine, such as sql2005.csharp.at? In this case, the administrator of the
locally deployed ClientService has to change the route to OrderService. Now imagine that several
thousand clients are accessing the OrderService. Figure 11-7 illustrates this problem.

Figure 11-7. Changing the network address of the OrderService

As you can see, it’s not always practical to reference a target service directly, because in this
case, the address is directly associated with the client. Another more suitable approach would
be for the administrator of OrderService to deploy a forwarding service. The forwarding service
just routes the incoming requests from the clients of the OrderService, which you can deploy
everywhere inside the corporate network. If the administrator has to move OrderService from
sql.csharp.at to sql2005.csharp.at, he only has to change one route—the route that is config-
ured at the forwarding service. See Figure 11-8.

Aschenbrenner842-3.book Page 409 Tuesday, April 17, 2007 8:09 PM

tcp://sql.csharp.at:4741

410 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Figure 11-8. Using a forwarding service to abstract network topologies and changes

If you deploy this Service Broker scenario in your production system, all your clients will need
to know is the address of the Service Broker forwarding service, forwarder.csharp.at. If you change
something in your internal network topology, you just have to change the sys.routes catalog view
from the forwarding services. None of your clients will have to do anything, because they’re just
sending messages to the forwarding service, and they have no information about where the real
Service Broker services are deployed. As you can see, message forwarding can help you to decouple
your clients from your internal network topology and configuration.

Centralized Routing Instance
You can also use this scenario to implement a centralized routing instance. When you implement a
centralized routing instance, all clients are sending messages to one Service Broker forwarding ser-
vice. This forwarding service has all available routes to the different deployed target services. This
centralized routing service can also implement things such as load balancing. It would be com-
pletely transparent to your clients if one target service is load-balanced or not. The clients just know
the address of the forwarding service, nothing more. It’s completely up to the administrator how the
target services are deployed in the internal network.

Work Distribution
Another scenario where a Service Broker forwarding service provides a huge benefit is when you
want to distribute the workload among several Service Broker instances. Think of a scenario where
you have a hundred thousand concurrent users. (I know that this is a very rare scenario, but I want
to show you that Service Broker also supports these scenarios.) If a hundred thousand concurrent
users are trying to access a single target service, then the SQL Server instance hosting the target
service can’t possibly accept all client connections because of the maximum available TCP socket
connections. The underlying operating system can’t handle that amount of users.

Aschenbrenner842-3.book Page 410 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 411

However, you can spread out all the client connections to several forwarding services and have
each forwarding service forward requests to a dedicated deployed target service. Which target ser-
vice the incoming request is forwarded to is configured through the sys.routes catalog view.
Figure 11-9 illustrates this.

Figure 11-9. Using forwarding services to implement work distribution

Using Message Forwarding
I’ve shown several scenarios where a Service Broker forwarding service would make sense and
provide you greater flexibility. Now I want to show you how to activate and configure message
forwarding. It’s then completely up to you which scenario you want to support with message for-
warding, because the required configuration steps are always the same:

1. Activate message forwarding.

2. Set up transport security.

3. Route configuration.

Let’s have a detailed look at each of these three steps.

Activate Message Forwarding
In this message-forwarding example, I want to implement the scenario from Figure 11-6 where
ClientService communicates through a forwarding service with OrderService. First, you have to
set up the message-forwarding service. In general, you configure message forwarding at a Service
Broker endpoint. Because you’re hosting the message-forwarding service on a separate instance of
SQL Server 2005 (this could even be a SQL Server Express instance), you have to create a new Service
Broker endpoint and configure it for message forwarding. Listing 11-11 shows the required T-SQL.

Aschenbrenner842-3.book Page 411 Tuesday, April 17, 2007 8:09 PM

412 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Listing 11-11. Setting Up Message Forwarding

USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE MessageForwardingServiceCertPrivate
 WITH SUBJECT =
 'For Service Broker authentication - MessageForwardingServiceCertPrivate',
 START_DATE = '01/01/2007'
GO

CREATE ENDPOINT ForwardingServiceEndpoint
STATE = STARTED
AS TCP
(
 LISTENER_PORT = 4740
)
FOR SERVICE_BROKER
(
 AUTHENTICATION = CERTIFICATE MessageForwardingServiceCertPrivate,
 MESSAGE_FORWARDING = ENABLED
)
GO

BACKUP CERTIFICATE MessageForwardingServiceCertPrivate
 TO FILE = 'c:\MessageForwardingServiceCertPublic.cert'
GO

As you can see in Listing 11-11, the complete infrastructure needed for message forwarding
is configured inside the master database. You don’t need to create another database, because you
don’t have to host a Service Broker service. The only thing needed for message forwarding is a
Service Broker endpoint. Message forwarding is activated on the Service Broker endpoint with the
MESSAGE_FORWARDING parameter. Table 11-2 describes the parameters available to configure message
forwarding for a Service Broker endpoint.

Table 11-2. Parameters for Message Forwarding

Parameter Description

MESSAGE_FORWARDING = { ENABLED | DISABLED } ENABLED specifies that message forwarding is
activated on this Service Broker endpoint.

MESSAGE_FORWARDING_SIZE = forward_size forward_size specifies the maximum amount
of memory (in megabytes) to be used by the
endpoint when storing forwarded messages.

Aschenbrenner842-3.book Page 412 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 413

Setting Up Transport Security
Because the forwarding endpoint establishes a TCP connection with both the initiator service and
the target service, you must also configure at least Service Broker transport security for message
forwarding to function. Because of this, the public key portion of the associated certificate of the
Service Broker endpoint is dumped to the file system. You must import this public key certificate at
both the initiator service and target service, and you must associate it with a SQL Server user, as you
saw in Chapters 7 and 8. Listing 11-12 shows how to configure transport security on the initiator’s
side. You configure the target side in the same way. Please refer to the enclosed T-SQL script in the
source code for more information about the target side’s configuration.

Listing 11-12. Security Configuration on the Initiator’s Side

USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password1!'
GO

CREATE CERTIFICATE ClientServiceCertPrivate
 WITH SUBJECT = 'For Service Broker authentication - ClientServiceCertPrivate',
 START_DATE = '01/01/2007'
GO

BACKUP CERTIFICATE ClientServiceCertPrivate
 TO FILE = 'c:\ClientServiceCertPublic.cert'
GO

CREATE LOGIN MessageForwardingServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER MessageForwardingServiceUser FOR LOGIN MessageForwardingServiceLogin
GO

CREATE CERTIFICATE MessageForwardingServiceCertPublic
 AUTHORIZATION MessageForwardingServiceUser
 FROM FILE = 'c:\MessageForwardingServiceCertPublic.cert'
GO

GRANT CONNECT ON ENDPOINT::ClientServiceEndpoint TO MessageForwardingServiceLogin
GO

As you can see, you’re just creating a new certificate and dumping the public key portion of the
certificate to the file system. Also, you’re creating a new user and associating the public key certifi-
cate of the message-forwarding endpoint to that user. These are just the normal steps needed to set
up transport security for Service Broker.

Further, the Service Broker endpoint must also import the public key certificates of the initiator
service and the target service, so that transport security will function. Listing 11-13 shows the neces-
sary code to create a trust relationship between the initiator service and the target service at the
message forwarder.

Aschenbrenner842-3.book Page 413 Tuesday, April 17, 2007 8:09 PM

414 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Listing 11-13. Security Configuration at the Message Forwarder

CREATE LOGIN ClientServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER ClientServiceUser FOR LOGIN ClientServiceLogin
GO

CREATE CERTIFICATE ClientServiceCertPublic
 AUTHORIZATION ClientServiceUser
 FROM FILE = 'c:\ClientServiceCertPublic.cert'
GO

GRANT CONNECT ON ENDPOINT::ForwardingServiceEndpoint TO ClientServiceLogin
GO

CREATE LOGIN OrderServiceLogin WITH PASSWORD = 'password1!'
GO

CREATE USER OrderServiceUser FOR LOGIN OrderServiceLogin
GO

CREATE CERTIFICATE OrderServiceCertPublic
 AUTHORIZATION OrderServiceUser
 FROM FILE = 'c:\OrderServiceCertPublic.cert'
GO

GRANT CONNECT ON ENDPOINT::ForwardingServiceEndpoint TO OrderServiceLogin
GO

As you can see from Listing 11-13, you map each public key certificate to a database user that
has a CONNECT permission on the ForwardingServiceEndpoint.

Route Configuration
You’re missing the routes on the initiator’s side, the target side, and the message-forwarding end-
point. Listing 11-14 shows the code to create the route from the initiator’s service to the message
forwarder.

Listing 11-14. The Route from the Initiator’s Service to the Message Forwarder

CREATE ROUTE MessageForwardingServiceRoute
 WITH SERVICE_NAME = 'OrderService',
 ADDRESS = 'TCP://MessageForwardingInstance:4740'
GO

All messages targeted to OrderService are sent directly through this route to the message for-
warder. Additionally, you need a route from OrderService back to the message forwarder. This route
is used when OrderService sends a response message or an acknowledgment message back to
ClientService. See Listing 11-15.

Aschenbrenner842-3.book Page 414 Tuesday, April 17, 2007 8:09 PM

TCP://MessageForwardingInstance:4740

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 415

Listing 11-15. The Route from the Target Service Back to the Message Forwarder

CREATE ROUTE MessageForwardingServiceRoute
 WITH SERVICE_NAME = 'ClientService',
 ADDRESS = 'TCP://MessageForwardingInstance:4740'
GO

All messages dedicated for the ClientService are forwarded through this route to the
message-forwarding service at TCP://MessageForwardingInstance:4740. Finally, you have to
deploy the necessary routes at the message forwarder. Here you need the following two routes:

• A route from the message forwarder to OrderService

• A route from the message forwarder back to ClientService

Listing 11-16 shows how to create these two routes.

Listing 11-16. Creating the Routes at the Message Forwarder

CREATE ROUTE OrderServiceRoute
 WITH SERVICE_NAME = 'OrderService',
 ADDRESS = 'TCP://OrderServiceInstance:4742'
GO

CREATE ROUTE ClientServiceRoute
 WITH SERVICE_NAME = 'ClientService',
 ADDRESS = 'TCP://ClientServiceInstance:4741'
GO

As soon as you set up all the required routes, you can send a request message from ClientService
to OrderService. This message will be sent first to the message forwarder, and after passing this inter-
mediary, it will be forwarded to the final destination, OrderService. Please refer back to Listing 11-9,
which shows the necessary T-SQL.

Monitoring Message Forwarding
If you want to monitor the messages that are currently being forwarded to the message forwarder,
Service Broker provides this information through the sys.dm_broker_forwarded_messages catalog
view. Table 11-3 shows the columns of this view.

Table 11-3. Columns of the sys.dm_broker_forwarded_messages Catalog View

Column Data Type Description

conversation_id UNIQUEIDENTIFIER Stores the conversation ID to which the for-
warded message belongs.

is_initiator BIT Indicates if the message is associated with the
initiator of the conversation.

to_service_name NVARCHAR(512) The name of the service to which the message
is forwarded.

Continued

Aschenbrenner842-3.book Page 415 Tuesday, April 17, 2007 8:09 PM

TCP://MessageForwardingInstance:4740
TCP://MessageForwardingInstance:4740
TCP://OrderServiceInstance:4742
TCP://ClientServiceInstance:4741

416 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

Table 11-3. Continued

Configuration Notice Service
In most circumstances, an administrator configures routing information for Service Broker applica-
tions through the CREATE ROUTE T-SQL statement, introduced in Chapter 7. However, in some cases,
it would be better to retrieve routing information dynamically at runtime. Maybe you want to call
another Service Broker service or do a lookup in Active Directory. For these scenarios, Service Broker
provides you the ability to implement a configuration notice service.

With a Service Broker configuration notice service, Service Broker provides functionality that
allows you to create applications that provide dynamic routing information to the Service Broker
application. When Service Broker can’t find a route for a conversation, it checks the routing table
for a service with the name [SQL/ServiceBroker/BrokerConfiguration]. If an entry exists for that
service, Service Broker will create a new conversation with that service and send a message on the
opened conversation requesting that a route be created.

When the conversation with the [SQL/ServiceBroker/BrokerConfiguration] service ends,
Service Broker again attempts to route the message to the next hop along the route to the final
destination. If no route exists at this point, Service Broker will mark all messages for the conversa-
tion as DELAYED. After a time-out period, Service Broker will again request a route from the [SQL/
ServiceBroker/BrokerConfiguration] service.

Column Data Type Description

to_broker_instance NVARCHAR(512) The instance GUID of the service to which the
message is forwarded.

from_service_name NVARCHAR(512) The name of the service from which the mes-
sage is received.

from_broker_instance NVARCHAR(512) The instance GUID of the service from which
the message is received.

adjacent_broker_address NVARCHAR(512) The network address to which the message is
forwarded.

message_sequence_number BIGINT Stores the sequence number of the message.

message_fragment_number INT When the received message is fragmented, this
column stores the current fragment number of
the message.

hops_remaining TINYINT Stores the number of the remaining forward-
ers until the messages reach their final
destination—the target service.

time_to_live INT Indicates the amount of time until the message
is invalid and discarded. In this case, the mes-
sage must be resent.

time_consumed INT Indicates the amount of time the message is
alive. Every time the message is forwarded, this
amount of time is increased by the time it has
taken to forward the message.

message_id UNIQUEIDENTIFIER Stores the ID of the forwarded message.

Aschenbrenner842-3.book Page 416 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 417

Implementing Dynamic Routing
Most of the work involved in implementing dynamic routing is in determining the address for the
requested service name. Which approach you use to determine the address of the requested service
is up to you: you can call another Service Broker service, you can call a web service, or you can start
an Active Directory lookup through a managed stored procedure. It’s completely up to you and
depends on your requirements.

The implementation of the configuration notice service is simple. The service program reads the
received message from the associated queue. This message follows the [http://schemas.microsoft.com/
SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute] message type that is part of the
[http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice] contract. The
retrieved message contains the service name, and the service program must provide the route to this
specified service. If the service program is able to retrieve the requested routing information, the service
program will create the route and finally end the conversation. If the service program isn’t able to deter-
mine the requested route, the service program must end the conversation with an error.

Notice that in each case, the service program that implements the configuration notice ser-
vice has to end the conversation. Service Broker sends one [http://schemas.microsoft.com/SQL/
ServiceBroker/BrokerConfigurationNotice/MissingRoute] message at a time for a specific service,
regardless of the number of conversations to that service. Furthermore, Service Broker uses the larg-
est possible time-out for requests to the configuration notice service. So, if the configuration notice
service doesn’t end the conversation, Service Broker won’t create a new request to the service. If the
configuration notice service doesn’t create a route, or if the lifetime of the route that the service cre-
ated expires, a message to the service will remain delayed until the conversation lifetime expires.

Implementing the Configuration Notice Service
Let’s implement a configuration notice service. To demonstrate the functionality of a configura-
tion notice service, let’s store the routing information for a requested service name in a table
called RoutingInformation. Listing 11-17 shows the definition of this table and how to insert some
sample data.

Listing 11-17. Definition of the RoutingInformation Table

CREATE TABLE RoutingInformation
(
 ID INT IDENTITY(1, 1) PRIMARY KEY NOT NULL,
 ServiceName NVARCHAR(256) NOT NULL,
 Address NVARCHAR(256) NOT NULL
)
GO

INSERT INTO RoutingInformation (ServiceName, Address)
VALUES
(
 'OrderService',
 'TCP://OrderServiceInstance:4741'
)
GO

As you can see in Listing 11-17, the RoutingInformation table stores the service name in the
ServiceName column and the routing information for this service in the Address column. You then
insert a route for the OrderService. This table is used by the configuration notice service to retrieve

Aschenbrenner842-3.book Page 417 Tuesday, April 17, 2007 8:09 PM

http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute
TCP://OrderServiceInstance:4741

418 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

the routing information for the OrderService. Next, you have to create the configuration notice ser-
vice and associate a queue with that service. Listing 11-18 shows the necessary T-SQL.

Listing 11-18. Creating the Configuration Notice Service

CREATE QUEUE BrokerConfigurationQueue WITH STATUS = ON
GO

CREATE SERVICE [SQL/ServiceBroker/BrokerConfiguration]
ON QUEUE BrokerConfigurationQueue
(
 [http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice]
)
GO

As you can see from Listing 11-18, the [SQL/ServiceBroker/BrokerConfiguration] service
supports the [http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice]
contract. This is a requirement for a configuration notice service. As soon as you create the configu-
ration notice service, you have to implement the required service program for that service. This
service program has to do the following steps:

1. Read the received message from the queue.

2. Extract the service name.

3. Retrieve the route for this service.

4. Create the route.

5. End the conversation.

Before learning how to implement the service program, take a look at Listing 11-19, which
shows the message that Service Broker sends automatically when a route to a configuration notice
service is available.

Listing 11-19. Message Sent to the Configuration Notice Service

<MissingRoute
 xmlns="http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/
 MissingRoute">
 <SERVICE_NAME>
 OrderService
 </SERVICE_NAME>
</MissingRoute>

The message shown in Listing 11-19 is created by Service Broker and is forwarded to the config-
uration notice service. Therefore, it’s stored in the BrokerConfigurationQueue for this example.
As you can see, the XML <SERVICE_NAME> element contains the service name for which routing infor-
mation is requested—in this case, for OrderService. With this information, you can now easily
implement the ProcessConfigurationNoticeRequestMessages stored procedure that acts as the ser-
vice program for the configuration notice service. Listing 11-20 shows the whole implementation of
this stored procedure.

Aschenbrenner842-3.book Page 418 Tuesday, April 17, 2007 8:09 PM

http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 419

Listing 11-20. Implementation of the ProcessConfigurationNoticeRequestMessages Stored Procedure

CREATE PROCEDURE ProcessConfigurationNoticeRequestMessages
AS
BEGIN
 DECLARE @ch UNIQUEIDENTIFIER;
 DECLARE @messagetypename NVARCHAR(256);
 DECLARE @messagebody XML;
 DECLARE @responsemessage XML;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION

 WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM [BrokerConfigurationQueue]
), TIMEOUT 1000

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/
 MissingRoute')
 BEGIN
 DECLARE @serviceName NVARCHAR(256);
 DECLARE @route NVARCHAR(256);
 DECLARE @sql NVARCHAR(MAX);

 -- Extract the service name from the received message
 WITH XMLNAMESPACES (DEFAULT
 'http://schemas.microsoft.com/SQL/ServiceBroker/
 BrokerConfigurationNotice/MissingRoute')
 SELECT @serviceName = @messagebody.value(
 '/MissingRoute[1]/SERVICE_NAME[1]', 'nvarchar(max)');

 -- Extract the route from the table "RoutingInformation"
 SELECT @route = Address FROM RoutingInformation
 WHERE ServiceName = @serviceName;

 -- Create the dynamic T-SQL statement that inserts the
 -- configured route into the sys.routes catalog view
 SET @sql = 'IF NOT EXISTS (SELECT * FROM sys.routes WHERE name = ' +
 CHAR(39) + 'OrderServiceRoute' + CHAR(39) + ') '
 SET @sql = @sql + 'BEGIN ';

Aschenbrenner842-3.book Page 419 Tuesday, April 17, 2007 8:09 PM

http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice
http://schemas.microsoft.com/SQL/ServiceBroker
mailto:@messagebody.value

420 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

 SET @sql = @sql + 'CREATE ROUTE OrderServiceRoute WITH SERVICE_NAME = ' +
 CHAR(39) + 'OrderService' + CHAR(39) + ', ADDRESS = ' + CHAR(39) +
 @route + CHAR(39);
 SET @sql = @sql + ' END';

 -- Execute the dynamic T-SQL statement
 EXEC sp_executesql @sql;

 -- End the conversation
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 IF (@messagetypename =
 'http://schemas.microsoft.com/SQL/ServiceBroker/
 BrokerConfigurationNotice/MissingRemoteServiceBinding')
 BEGIN
 -- End the conversation
 END CONVERSATION @ch;
 END

 COMMIT TRANSACTION
 END
END
GO

Let’s take a closer look at the ProcessConfigurationNoticeRequestMessages stored procedure. First,
you use the RECEIVE T-SQL statement to read the received message from the BrokerConfigurationQueue:

WAITFOR (
 RECEIVE TOP(1)
 @ch = conversation_handle,
 @messagetypename = message_type_name,
 @messagebody = CAST(message_body AS XML)
 FROM [BrokerConfigurationQueue]
), TIMEOUT 1000

As soon as a new message is retrieved from the BrokerConfigurationQueue, you process the
[http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute]
message type:

-- Extract the service name from the received message
WITH XMLNAMESPACES (DEFAULT
 'http://schemas.microsoft.com/SQL/ServiceBroker/
 BrokerConfigurationNotice/MissingRoute')
SELECT @serviceName = @messagebody.value(
'/MissingRoute[1]/SERVICE_NAME[1]', 'nvarchar(max)');

Aschenbrenner842-3.book Page 420 Tuesday, April 17, 2007 8:09 PM

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker
http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute
http://schemas.microsoft.com/SQL/ServiceBroker
mailto:@messagebody.value

C H A P T E R 1 1 ■ H I G H A V A I L A B I L I T Y A N D S C A L A B I L I T Y 421

As you can see, you extract through the value() XML data type method the requested service
name from the received XML message. After this bunch of T-SQL statements, the requested ser-
vice name is stored in the local @serviceName variable. Next, you use the retrieved service name to
retrieve the corresponding service address from the RoutingInformation table:

-- Extract the route from the table "RoutingInformation"
SELECT @route = Address FROM RoutingInformation
WHERE ServiceName = @serviceName;

Now that you’ve retrieved the service address, you can create the necessary route to the
requested service—in this case, OrderService. You do this through executing a T-SQL statement
dynamically:

-- Create the dynamic T-SQL statement that inserts the
-- configured route into the sys.routes catalog view
SET @sql = 'IF NOT EXISTS (SELECT * FROM sys.routes WHERE name = ' +
 CHAR(39) + 'OrderServiceRoute' + CHAR(39) + ') '
SET @sql = @sql + 'BEGIN ';

SET @sql = @sql + 'CREATE ROUTE OrderServiceRoute WITH SERVICE_NAME = ' +
 CHAR(39) + 'OrderService' + CHAR(39) + ', ADDRESS = ' + CHAR(39) +
 @route + CHAR(39);
SET @sql = @sql + ' END';

-- Execute the dynamic T-SQL statement
EXEC sp_executesql @sql;

You use the CHAR(39) function to put the character ' into the dynamically built T-SQL state-
ment. You then create the route through the sp_executesql stored procedure. Finally, you end the
conversation. This is an explicit requirement of a configuration notice service, because if you don’t
end the conversation, it won’t work.

After the conversation with the configuration notice service ends, the Service Broker classifier
tries again to resolve the address of OrderService. The classifier succeeds on the second try, because
now you have a configured route to OrderService. Therefore, the sent request message will be deliv-
ered successfully to OrderService. The only thing left to do is to create a route in the local database
to the configuration notice service and to activate the internal activation mechanism on the
BrokerConfigurationQueue. See Listing 11-21 for these two steps.

Listing 11-21. Configuration of the Configuration Notice Service

CREATE ROUTE ConfigurationNoticeServiceRoute
 WITH SERVICE_NAME = 'SQL/ServiceBroker/BrokerConfiguration',
 ADDRESS = 'LOCAL'
GO

ALTER QUEUE BrokerConfigurationQueue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = ProcessConfigurationNoticeRequestMessages,
 MAX_QUEUE_READERS = 1,
 EXECUTE AS SELF
)
GO

Aschenbrenner842-3.book Page 421 Tuesday, April 17, 2007 8:09 PM

422 C H A P T E R 1 1 ■ H I G H A V A I LA B I L I T Y A N D S C A LA B I L I T Y

If you don’t activate the internal activation on the BrokerConfigurationQueue, Service Broker
will try to retrieve the route to OrderService through the configuration notice service. Figure 11-10
shows the sys.transmission_queue catalog view, where the transmission_status column indicates
that a route is located through a configuration notice service.

Figure 11-10. Locating a route through a configuration notice service

Further, you can also look at the sys.conversation_endpoints catalog view, where you can see
an open conversation with the configuration notice service. See Figure 11-11.

Figure 11-11. The open conversation with the configuration notice service

As you can see, a configuration notice service could be helpful if you must dynamically locate
and create routing information in your Service Broker application. It’s completely up to you from
which source you extract the required routing information. You can call another Service Broker ser-
vice, a web service, or even a managed stored procedure that does a lookup in the Active Directory.

Summary
In this chapter, I introduced several high-availability and scale-out scenarios available in SQL Server
2005 and Service Broker. It’s a simple configuration option if you want to use database mirroring, a
load-balanced Service Broker service, or a message-forwarding service. If you need to retrieve rout-
ing information for a Service Broker service dynamically, you can use a configuration notice service.

In the next chapter, the final chapter of this book, I’ll show you how to administer Service
Broker solutions.

Aschenbrenner842-3.book Page 422 Tuesday, April 17, 2007 8:09 PM

423

■ ■ ■

C H A P T E R 1 2

Administration

In this final chapter, I’ll summarize the various administrative options you have with Service
Broker. I’ll cover the following topics:

• SQL Profiler: With SQL Profiler, you can trace the message flow between different Service
Broker services. This is handy for debugging Service Broker applications.

• Performance counters: SQL Server 2005 provides a lot of performance objects and perfor-
mance counters with which you can monitor the overall performance and throughput of
Service Broker applications.

• SQL Server Management Objects: You can use this managed assembly to programmatically
create and retrieve information about Service Broker applications.

SQL Profiler
SQL Profiler is a graphical tool for monitoring and tracing an instance of SQL Server (or SQL Server
Analysis Services). You can find SQL Profiler under the Performance Tools folder inside the
Microsoft SQL Server 2005 startup menu. With SQL Profiler, you can capture data about each
traced event to a file or to a table for later analysis. For example, you can monitor a production
environment to see which stored procedures are executing too slowly.

The recorded events are instances of the event classes in the trace definition. In SQL Profiler,
event classes and their event categories are available from the Events Selection tab of the Trace
Properties dialog box. See Figure 12-1.

Aschenbrenner842-3.book Page 423 Tuesday, April 17, 2007 8:09 PM

424 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

Figure 12-1. Selecting events in SQL Profiler

You can access the dialog from Figure 12-1 when you start SQL Profiler and use the File ➤ New
Trace . . . command. To see all the Service Broker event classes, you have to check the “Show all
events” checkbox and open the Broker node. As Figure 12-1 shows, Service Broker provides a lot of
different event classes that you can monitor and trace with SQL Profiler. Table 12-1 describes the
event classes.

Table 12-1. Service Broker Event Classes

Event Class Description

Broker:Activation This event is generated by Service Broker when a queue
monitor starts an activated stored procedure, when a
QUEUE_ACTIVATION notification is sent, or when an acti-
vated stored procedure started by a queue monitor exists.

Broker:Connection This event is generated by Service Broker to report the
status of a transport connection.

Broker:Conversation This event is generated to report the progress of a Service
Broker conversation.

Broker:Conversation Group This event is generated when Service Broker creates or
drops a conversation group.

Broker:Corrupted Message This event is generated when Service Broker receives a
corrupted message.

Broker:Forwarded Message Dropped This event is generated when a message that was intended
to be forwarded is dropped.

Aschenbrenner842-3.book Page 424 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 2 ■ A D M I N I S T R A T I O N 425

Using SQL Profiler
Let’s look at the events generated in a distributed scenario and how to read the output of SQL Profiler.
I’ll use the OrderService example, introduced in Chapter 7. When you want to trace the Service Broker
traffic occurring between Service Broker services, you have to select the necessary Service Broker event
classes in the first step (refer back to Figure 12-1 and Table 12-1 for the event selection). After you’ve
done the event selection, SQL Profiler starts the tracing process. You can pause and stop the tracing
process through the menu items under the Replay menu.

The Initiator’s Side
Figure 12-2 shows the events displayed by SQL Profiler when ClientService sends a request mes-
sage to OrderService.

Figure 12-2. Generated events on the initiator’s side

Broker:Forwarded Message Sent This event is generated when a message is forwarded to a
Service Broker endpoint configured for message forwarding.

Broker:Message Classify This event is generated when the Service Broker classifier
component determines the routing for a message.

Broker:Message Undeliverable This event is generated when a Service Broker message
can’t be sent to the target service.

Broker:Queue Disabled This event is generated when a queue is disabled (maybe
through a poison message or programmatically through
an application or administrator).

Broker:Message Drop This event is generated when Service Broker is unable to
retain a received message that should have been deliv-
ered to a service in this instance.

Broker:Remote Message Ack This event is generated when Service Broker sends or
receives a message acknowledgment.

Event Class Description

Aschenbrenner842-3.book Page 425 Tuesday, April 17, 2007 8:09 PM

426 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

Listing 12-1 shows the Service Broker code you can use to reproduce the trace events from
Figure 12-2.

Listing 12-1. Sending a Request Message from the ClientService to the OrderService

BEGIN TRANSACTION;
 DECLARE @ch UNIQUEIDENTIFIER
 DECLARE @msg NVARCHAR(MAX);

 BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [ClientService]
 TO SERVICE 'OrderService'
 ON CONTRACT [http://ssb.csharp.at/SSB_Book/c07/OrderContract]
 WITH ENCRYPTION = OFF;

 SET @msg =
 '<OrderRequest>
 <Customer>
 <CustomerID>4242</CustomerID>
 </Customer>
 <Product>
 <ProductID>123</ProductID>
 <Quantity>5</Quantity>
 <Price>40.99</Price>
 </Product>
 <CreditCard>
 <Holder>Klaus Aschenbrenner</Holder>
 <Number>1234-1234-1234-1234</Number>
 <ValidThrough>2009-10</ValidThrough>
 </CreditCard>
 <Shipping>
 <Name>Klaus Aschenbrenner</Name>
 <Address>Wagramer Strasse 4/803</Address>
 <ZipCode>1220</ZipCode>
 <City>Vienna</City>
 <Country>Austria</Country>
 </Shipping>
 </OrderRequest>';

 SEND ON CONVERSATION @ch
 MESSAGE TYPE [http://ssb.csharp.at/SSB_Book/c07/OrderRequestMessage]
 (@msg);
COMMIT;
GO

When the ClientService sends a new message to the OrderService, Service Broker first creates a
new conversation group. You can see this in the EventClass column of Figure 12-2. The EventSubClass
column provides more information about the event. In this case, a conversation group was created.
After the conversation group was created, a new conversation was initialized through the BEGIN DIALOG
CONVERSATION T-SQL statement. Then a message was sent through the opened conversation.

After the message-sending transaction is committed, you invoke the Service Broker classifier
component to retrieve the routing information for the message. In this case, ClientService commu-
nicates with the locally deployed OrderService. The EventSubClass column indicates this with the
string Local. This means that the message is routed within the same SQL Server instance.

Aschenbrenner842-3.book Page 426 Tuesday, April 17, 2007 8:09 PM

http://ssb.csharp.at/SSB_Book/c07/OrderContract
http://ssb.csharp.at/SSB_Book/c07/OrderRequestMessage

C H A P T E R 1 2 ■ A D M I N I S T R A T I O N 427

Next, OrderService sends a request message to CreditCardService, which is indicated through
the event class Broker:Conversation and the BEGIN DIALOG event subclass. When the dialog with the
CreditCardService is established, the message-sending transaction is committed, and the Service
Broker classifier tries to route the committed message. This is indicated through the Broker:Message
Classify event class and the Remote event subclass. The event subclass here is Remote, because
CreditCardService was deployed on a remote SQL Server instance.

The Broker:Activation event class is generated when a configured stored procedure is activated,
so you can easily determine if a received message is processed or not. If Service Broker receives an
acknowledgment message for a sent message, a Broker:Remote Message Acknowledgment event will be
generated. With this event, you can easily determine if the return route from the target service back to
the initiator service works. If you don’t get a Broker:Message Acknowledgment event, your return route
won’t be configured properly, and the initiator service will resend the message. This also means that
the target service will drop the duplicated received message. This is indicated on the target side
through the Broker:Message Drop event.

The Target Side
Let’s have a look now at the target side, CreditCardService. Figure 12-3 shows the profiler output
when a message is received and processed from OrderService.

Figure 12-3. Generated events on the target side

First, Service Broker tries to log in to the master database. The DatabaseID column indicates in
which database the event occurred. In this case, it’s the database with the ID 1, which is the master
database. The value of the DatabaseID column matches the value of the database_id column in the
sys.databases catalog view. This event occurs as soon as another Service Broker application sends a
message to this remote Service Broker instance. This is an essential piece of information for trouble-
shooting a distributed Service Broker application.

After the remote Service Broker application has connected, the classifier tries to route the
received message. In this case, the classifier finds and uses the AutoCreatedLocal route that is
deployed in the msdb database. When the received message is routed to the correct database (in
this case, the database with ID 6), Service Broker creates a conversation group and a dialog on the
target side of the conversation.

Aschenbrenner842-3.book Page 427 Tuesday, April 17, 2007 8:09 PM

428 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

After the conversation is established, the configured stored procedure for CreditCardService is
activated and processes the received message. After the message-sending transaction is committed,
the message is handed over to the classifier, which finds a remote route back to OrderService (the
Remote event subclass). When all messages are processed by the activated stored procedure, the
Broker:Activation event with the event subclass Ended is generated. This means that the running
instance of the stored procedure is shut down and taken out of memory.

I hope you see from this short introduction how handy SQL Profiler is for debugging and
troubleshooting distributed Service Broker applications. You can easily determine if messages are
routed correctly, if security is set up correctly, and if all necessary stored procedures are running and
processing incoming messages. If you have to implement or maintain a distributed Service Broker
application, and a sent message isn’t received on the target side, SQL Profiler should be your first
tool for diagnosing things.

System Monitor
You can use System Monitor to monitor and measure the performance of Service Broker applica-
tions. Service Broker provides performance objects and counters available to System Monitor.
A performance object is used to group a set of performance counters to a logical unit. Table 12-2
describes the available performance objects.

Table 12-2. Service Broker Performance Objects Available to System Monitor

The SQLServer:Broker Activation performance object provides a lot of information, as perfor-
mance counters, for monitoring an activated stored procedure. Table 12-3 lists the performance
counters that are available for SQLServer:Broker Activation.

Table 12-3. Performance Counters for SQLServer:Broker Activation

Performance Object Description

SQLServer:Broker Activation This performance object provides you information on
stored procedure activation.

SQLServer:Broker Statistics This performance object provides general Service Broker
information.

SQLServer:Broker/DBM Transport This performance object provides networking information
for Service Broker and database mirroring.

Performance Counter Description

Stored Procedures Invoked/sec This performance counter provides the number of all acti-
vated stored procedures inside the current SQL Server
instance.

Task Limit Reached This performance counter provides how many tasks (stored
procedures) would have started but did not because the
maximum number of stored procedures were already
running.

Aschenbrenner842-3.book Page 428 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 2 ■ A D M I N I S T R A T I O N 429

The SQLServer:Broker Statistics object contains performance counters that report general
Service Broker information. It provides you statistical information about how long messages are
queued/enqueued, how many messages are forwarded to a Service Broker forwarding service, or
how many messages are rejected and dropped. Table 12-4 lists the performance counters available
in SQLServer:Broker Statistics.

Table 12-4. Performance Counters for SQLServer:Broker Statistics

Task Limit Reached/sec This performance counter provides the number of times per
second of how many tasks (stored procedures) would have
been started but did not because the maximum number of
stored procedures were already running.

Tasks Aborted/sec This performance counter reports the number of activated
stored procedure that ended with an error.

Tasks Running This performance counter reports the current number of
activated stored procedures.

Tasks Started/sec This performance counter reports the average number of
stored procedures activated per second.

Performance Counter Description

Broker Transaction Rollbacks This performance counter provides the number of trans-
actions rolled back on the context of Service Broker.

Dialog timer event count This performance counter contains the number of dialog
timers currently active in the dialog protocol layer.

Enqueued Local Messages Total This performance counter provides the number of mes-
sages placed in the queues on the monitored SQL Server
instance, counting only the messages that didn’t arrive
through the network.

Enqueued Local Messages/sec This performance counter provides the number of mes-
sages per second placed in the queues on the monitored
SQL Server instance, counting only the messages that
didn’t arrive through the network.

Enqueued Messages Total This performance counter provides the total number of
messages placed in the queues on the monitored SQL
Server instance.

Enqueued Messages/sec This performance counter provides the total number of
messages per second placed in the queues on the moni-
tored SQL Server instance.

Enqueued Transport Msg Frag Tot This performance counter provides the total number of
message fragments placed in the queues on the moni-
tored SQL Server instance.

Continued

Performance Counter Description

Aschenbrenner842-3.book Page 429 Tuesday, April 17, 2007 8:09 PM

430 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

Table 12-4. Continued

Performance Counter Description

Enqueued Transport Msg Frags/sec This performance counter provides the total number of
message fragments per second placed in the queues on
the monitored SQL Server instance.

Enqueued Transport Msgs Total This performance counter provides the total number of
messages placed in the queues on the monitored SQL
Server instance, counting only the messages that arrived
through the network.

Enqueued Transport Msgs/sec This performance counter provides the total number of
messages placed in the queues per second on the moni-
tored SQL Server instance, counting only the messages
that arrived through the network.

Forwarded Messages Total This performance counter provides the total number of
messages forwarded on this computer.

Forwarded Messages/sec This performance counter provides the total number
of messages forwarded per second on the monitored
computer.

Forwarded Msg Byte Total This performance counter provides the total size
(in bytes) of messages forwarded on the monitored
computer.

Forwarded Msg Bytes/sec This performance counter provides the total size (in
bytes) of messages forwarded per second on the moni-
tored computer.

Forwarded Msg Discarded Total This performance counter provides the total number of
messages received on the forwarding service but not for-
warded successfully.

Forwarded Msg Discarded/sec This performance counter provides the total number of
messages received per second on the forwarding service
but not forwarded successfully.

Forwarded Pending Msg Bytes This performance counter provides the total size (in
bytes) of messages pending for forwarding on the moni-
tored SQL Server instance.

Forwarded Pending Msg Count This performance counter provides the total number of
messages pending for forwarding on the monitored SQL
Server instance.

SQL RECEIVE Total This performance counter provides the total number of
RECEIVE T-SQL statements processed on the monitored
SQL Server instance.

SQL RECEIVEs/sec This performance counter provides the total number of
RECEIVE T-SQL statements processed per second on the
monitored SQL Server instance.

Aschenbrenner842-3.book Page 430 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 2 ■ A D M I N I S T R A T I O N 431

The SQLServer:Broker/DBM Transport performance object provides you more information
about the physical transportation of Service Broker messages between distributed deployed Service
Broker services. Here you get information about message fragmentation, how many bytes are trans-
ferred between different Service Broker services, how many bytes are pending for transfer across the
wire, how many bytes are received, and how many bytes are sent. Table 12-5 lists the various perfor-
mance counters available in the SQLServer:Broker/DBM Transport performance object.

Table 12-5. Performance Counters for SQLServer:Broker/DBM Transport

SQL SEND Total This performance counter provides the total number of
SEND T-SQL statements processed on the monitored SQL
Server instance.

SQL SENDs/sec This performance counter provides the total number of
SEND T-SQL statements processed per second on the mon-
itored SQL Server instance.

Performance Counter Description

Current Bytes for Recv I/O This performance counter provides the number of bytes to
be read by the currently running transport receive
operation.

Current Bytes for Send I/O This performance counter provides the number of bytes in
message fragments that are currently in the process of being
sent over the network.

Current Msg Frags for Send I/O This performance counter provides the total number of
message fragments that are in the process of being sent over
the network.

Message Fragment Send Size Avg This performance counter provides the average size of the
message fragments sent over the network.

Message Fragment Send Total This performance counter provides the total number of
message fragments sent over the network.

Message Fragment Sends/sec This performance counter provides the total number of
message fragments sent over the network per second.

Msg Fragment Receive Total This performance counter provides the total number of
message fragments received over the network.

Msg Fragment Receives/sec This performance counter provides the total number of
message fragments received over the network per second.

Msg Fragment Recv Size Avg This performance counter provides the average size of mes-
sage fragments received over the network.

Open Connection Count This performance counter provides the number of network
connections that Service Broker has currently open.

Continued

Performance Counter Description

Aschenbrenner842-3.book Page 431 Tuesday, April 17, 2007 8:09 PM

432 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

Table 12-5. Continued

SQL Server Management Objects
SQL Server Management Objects (SMO) is a managed .NET assembly for programmatic access to SQL
Server 2005. Microsoft SQL Server Management Studio is implemented with SMO to provide all the
functionality it has. You can use SMO to build customized SQL Server applications that retrieve infor-
mation from SQL Server and to create, alter, and drop objects inside SQL Server 2005. You can easily
add new message types, new contracts, queues, or even services to your Service Broker application
programmatically. Figure 12-4 shows you the relevant SMO classes for the management of Service
Broker functionality.

Performance Counter Description

Pending Bytes for Recv I/O This performance counter provides the number of bytes
contained in message fragments that have been received
from the network but have not yet been placed on a queue
or have been discarded.

Pending Bytes for Send I/O This performance counter provides the number of bytes in
message fragments that are ready to be sent over the
network.

Pending Msg Frags for Recv I/O This performance counter provides the number of message
fragments that have been received from the network but have
not yet been placed on a queue or have been discarded.

Pending Msg Frags for Send I/O This performance counter provides the total number of mes-
sage fragments that are ready to be sent over the network.

Receive I/O Bytes Total This performance counter provides the total number of
bytes received over the network by Service Broker end-
points and database-mirroring endpoints.

Receive I/O Bytes/sec This performance counter provides the total number of
bytes received per second over the network by Service
Broker endpoints and database-mirroring endpoints.

Receive I/O Len Avg This performance counter provides the average number of
bytes for a transport receive operation.

Receive I/Os/second This performance counter provides the number of trans-
port receive I/O operations per second that the Service
Broker transport layer has completed.

Send I/O Bytes Total This performance counter provides the total number of
bytes sent over the network by Service Broker endpoints
and database-mirroring endpoints.

Send I/O Bytes/sec This performance counter provides the total number of
bytes sent over the network per second by Service Broker
endpoints and database-mirroring endpoints.

Send I/O Len Avg This performance counter provides the average size in bytes
of each transport send operation.

Send I/Os/sec This performance counter provides the number of trans-
port send I/O operations per second that have been
completed.

Aschenbrenner842-3.book Page 432 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 2 ■ A D M I N I S T R A T I O N 433

Figure 12-4. SMO classes for Service Broker

Table 12-6 describes the most important SMO classes for use with Service Broker.

Table 12-6. SMO Classes for Service Broker

All the available SMO classes are implemented in the Microsoft.SqlServer.Smo assembly that is
placed inside the Global Assembly Cache (GAC) during the installation of SQL Server 2005. There-
fore, you must reference this assembly when you want to use the functionality of SMO in your own
project. Now let’s talk about how to use SMO.

SMO Class Description

MessageType This class represents a message type that defines the content of a
Service Broker message.

ServiceQueue This class represents a queue object that stores received Service Broker
messages.

RemoteServiceBinding This class represents a remote service binding used for security pur-
poses when communicating with a remote Service Broker service.

ServiceRoute This class represents a route that contains routing information for a
Service Broker service.

ServiceContract This class represents a contract that specifies the direction and the
used message types in a Service Broker conversation.

BrokerService This class represents a Service Broker service, which can initiate and
accept conversations.

Aschenbrenner842-3.book Page 433 Tuesday, April 17, 2007 8:09 PM

434 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

Creating Service Broker Objects
In this section, I’ll show you how you can programmatically create a new Service Broker service from
scratch with SMO. First, you have to use the Server object to create a connection to a SQL Server
instance (see Listing 12-2).

Listing 12-2. Connecting to SQL Server Through SMO

Server svr = new Server("localhost");

Console.WriteLine("Language: " + svr.Information.Language);
Console.WriteLine("OS version: " + svr.Information.OSVersion);
Console.WriteLine("Edition: " + svr.Information.Edition);
Console.WriteLine("Root directory: " + svr.Information.RootDirectory);

As you can see from Listing 12-2, you can retrieve additional information about the SQL Server
instance through the Information property. Figure 12-5 shows the output of this code fragment.

Figure 12-5. Retrieving connection information

After you establish a connection to the SQL Server instance, you’re able to create a new SQL
Server database that hosts your Service Broker service. You can do this through the Database class
(see Listing 12-3).

Listing 12-3. Creating a New Database

Database db = new Database(svr, "Chapter12_SMOSample");
db.Create();

Note that you have to call the Create method after you’ve created the database object. When
you call the Create method, SMO executes the required CREATE DATABASE T-SQL statement against
the SQL Server connection. As soon as the new database is prepared, you can create all necessary
Service Broker objects. See Listing 12-4 for more information.

Listing 12-4. Creating the Needed Service Broker Objects

// Create the required message types
MessageType requestMessage = new MessageType(db.ServiceBroker, "RequestMessage");
MessageType responseMessage = new MessageType(db.ServiceBroker, "ResponseMessage");

requestMessage.Create();
responseMessage.Create();

// Create the service contract
ServiceContract contract = new ServiceContract(db.ServiceBroker, "SampleContract");

Aschenbrenner842-3.book Page 434 Tuesday, April 17, 2007 8:09 PM

C H A P T E R 1 2 ■ A D M I N I S T R A T I O N 435

contract.MessageTypeMappings.Add(new MessageTypeMapping(contract, "RequestMessage",
 Microsoft.SqlServer.Management.Smo.Broker.MessageSource.Initiator));
contract.MessageTypeMappings.Add(new MessageTypeMapping(contract, "ResponseMessage",
 Microsoft.SqlServer.Management.Smo.Broker.MessageSource.Target));

contract.Create();

// Create the queue
ServiceQueue queue = new ServiceQueue(db.ServiceBroker, "SampleQueue");
queue.Create();

// Create the Service Broker service
BrokerService service = new BrokerService(db.ServiceBroker, "SampleService");
service.QueueName = "SampleQueue";
service.ServiceContractMappings.Add(new ServiceContractMapping(
 service, "SampleContract"));

service.Create();

After you create all the necessary Service Broker objects, you’re able to start a conversation with
another Service Broker service through the BEGIN DIALOG CONVERSATION T-SQL statement. Now let’s
concentrate on how to retrieve Service Broker information through SMO.

Retrieving Information
In this section, I’ll show you how to retrieve information about the deployed Service Broker applica-
tion from the previous section. When you establish a connection to a SQL Server instance, you can
use the collection properties MessageTypes, ServiceContracts, Queues, and Services to retrieve infor-
mation about the deployed Service Broker objects (see Listing 12-5).

Listing 12-5. Retrieving Service Broker Information

foreach (MessageType messageType in db.ServiceBroker.MessageTypes)
{
 Console.WriteLine(messageType.Name);
}

foreach (ServiceContract serviceContract in db.ServiceBroker.ServiceContracts)
{
 Console.WriteLine(serviceContract.Name);
}

foreach (ServiceQueue serviceQueue in db.ServiceBroker.Queues)
{
 Console.WriteLine(serviceQueue.Name);
 Console.WriteLine("\tActivation enabled:" + serviceQueue.IsActivationEnabled);
 Console.WriteLine("\tMax Queue Readers: " + serviceQueue.MaxReaders);
 Console.WriteLine("\tProcedure name: " + serviceQueue.ProcedureName);
}

Aschenbrenner842-3.book Page 435 Tuesday, April 17, 2007 8:09 PM

436 C H A P T E R 1 2 ■ A D M I N I S T R A T I O N

foreach (BrokerService brokerService in db.ServiceBroker.Services)
{
 Console.WriteLine(brokerService.Name);
 Console.WriteLine("\tQueue name: " + brokerService.QueueName);
}

Figure 12-6 shows the output of this simple SMO application.

Figure 12-6. Retrieving Service Broker information

Summary
In this final chapter, I showed you how you can use SQL Profiler to monitor and debug distributed Ser-
vice Broker applications, and how you can trace the message flow between your Service Broker
services through SQL Profiler. Then I covered various performance objects and performance counters
available for monitoring your Service Broker applications. Finally, I showed you how to use SMO to
programmatically create Service Broker applications and retrieve information about deployed Service
Broker applications.

This is the last chapter in this book about Service Broker. I hope that you’ve enjoyed the
12 chapters about Service Broker and that you’ll use this great technology in one of your next SQL
Server projects to implement a great asynchronous, secure, reliable, scalable, and distributed
database application. The only thing I have to say is END CONVERSATION WITH GOOD LUCK. ☺

Aschenbrenner842-3.book Page 436 Tuesday, April 17, 2007 8:09 PM

437

Index

■Numbers and symbols
@ch variable, 48
@msg variable, 48

■A
ABP (adjacent broker protocol)

vs. dialog protocol, 222
managing TCP/IP connections between two

Service Brokers, 222
AccountingRecordings table

creating a new booking record into, 186
definition of, 184

AccountingRequestMessage message, 184
AccountingRequestMessage message type,

processing of, 312–313
AccountingResponse, 186
AccountingService

compensation transactions for, 203
computer deployed on, 230
creating booking record by, 184–186
creating returning route to OrderService

from, 232
function of, 170
starting a new conversation with, 179–181

AccountingService service
message types handled by, 312
processing of AccountingRequestMessage

message type, 312–313
AccountingServiceInstance machine, 231
acknowledgment message, sending, 223–224
activated stored procedure

implementing with the managed assembly,
134–139

strange behavior, 82
activated stored procedures, 117
activation, troubleshooting, 117
ACTIVE FOR BEGIN_DIALOG option, 277
activity data, 291
Activity Monitor, conversation lock in, 157
ADD SIGNATURE statement, 88–89
adjacent broker protocol (ABP), 221
administrative options, with Service Broker, 423
ALTER AUTHORIZATION statement, 35

ALTER MESSAGE TYPE statement, 35
ALTER QUEUE statement, 74–75
ALTER ROUTE command, 228
ALTER SERVICE statement, 44
anonymous dialog security

function of, 259
setting up on the initiator side, 267–268
setting up on the target side, 266–267

anonymous transport security, setting up,
260–262

application state
updating, 313
updating and committing transaction, 164

ApplicationState table
code for creating, 171–172
content of, 164
inserting new state information into, 176
retrieving stored state information from, 175
stored application state in, 169–170
structure of, 161, 308–309
writing modified information back to, 181

articles
defined for publish-subscribe scenario, 348
sending, 357

ASP.NET web service, implementing, 389
asymmetric keys. See also public and private

keys (asymmetric keys)
problems associated with, 242

asynchronous message processing, 6
asynchronous triggers

defining the problem, 338
function of, 329
implementing, 333
with Service Broker, 330

attribute
message types handled by, 136
named parameters received by, 332
using, 123–124, 331

audit backend, creating a dummy, 213–216
auditing, using set-based processing for,

213–216
AuditingTrail table, 215

8423IX.fm Page 437 Monday, May 7, 2007 1:23 PM

438 ■I N D E X

authentication. See also connection
authentication

supported by HTTP endpoints, 297
author, defined for publish-subscribe

scenario, 348
AutoCreatedLocal route, 254–255

■B
backend service program, implementing,

366–368
BackEndService, message forwarding to, 365
base class constructor, implementing, 123
batch frameworks

architecture of, 337
extending, 348
function of, 329–338
implementing, 345
registration of new batch job inside, 348

batch job
creating new, 346
execution, using Execute method, 345
framework, Service Broker objects needed

for, 338
instantiation, function of, 343
type

contained in batch job request, 338
implementing new, 347
registering new, 348
request message for new, 346

batched commits
increasing performance with, 208–209
performance measurement with, 209–210

<BatchJobData> element, 339
BatchJobFactory class, 343
BatchJobProcessingService, 345
BatchJobs table, 341
BatchJobType attribute, 339
BatchJobTypeA class, 342
BEGIN CONVERSATION TIMER statement

arguments for, 386
syntax for, 385–386

BEGIN DIALOG CONVERSATION statement
arguments for, 45–46
syntax for, 45

BEGIN DIALOG statement
creating a new dialog with, 152
options to use ENCRYPTION in, 270–271
switching to use the new certificate, 277
using with WITH RELATED_CONVERSATION

clause, 155

BeginConversationWithAccountingService
method, implementing, 310–311

BeginTimer method, implementing, 386–387
binary data, marshaling and unmarshalling,

216–217
binary payload, moving to for audit records, 216
BizTalk Server, 14
BOL topic

Configuring the HTTP Kernel-Mode Driver
(Http.sys), 299

Extending Database Impersonation by using
EXECUTE AS, 87

Boxcarring, defined, 223
Broker class

available methods of, 101
using Receive method of, 103

BROKER INSTANCE parameter, 254
BrokerMethodAttribute class, 120
BuildCallbackMap method, 124–125
BuildGcgrCommand method, 166–167

■C
Campbell, David, “Service Oriented Database

Architecture: App Server-Lite?,” 13
catalog views, 38
centralized routing instance, implementing, 410
certificate

copying into master database, 89
creating a login and granting it permissions,

89–90
creating for signing stored procedure, 88

certificate-based authentication
function of, 236
option in Service Broker security, 26

certificate-based transport security
function of, 242–248
how certificates relate to each endpoint,

242–243
setting up, 241–248

certificates
as containers for public-key/private-key

pairs, 241
replacing, 276–277
Service Broker features for replacing

expired, 253
switching BEGIN DIALOG statement to use

the new, 277
classifier component

how it matches routes for Service Broker
service, 225–226

for route lookup in Service Broker, 222–223

8423IX.fm Page 438 Monday, May 7, 2007 1:23 PM

439■I N D E X

Find it faster at http://superindex.apress.com

Service Broker component, 254
client application

function of in asynchronous message
processing, 6

waiting for response messages in, 132–133
client/server and n-tier application

architectures, 285
ClientService

creating new with network address in
name, 256

sending a message to OrderService from,
172–173

sending request to the OrderService from, 426
start of new conversation with OrderService

by, 170–171
cmdGetData_Click and Get Data methods,

implementing, 321–322
code signing, 88–89

to correct poison-message error, 93–94
communication, TCP used by Service Broker

for, 221
communication channel, establishing, 232–236
compensating transactions, 187
compensation logic, with Service Broker,

198–203
compensation messages, 199–200
compensation transactions

for AccountingService, 203
defining the message types for, 198–199
initiating, 200–202
for undoing actions executed earlier,

198–203
configuration notice services

configuration of, 421
creating, 418
function of, 395, 416
implementing, 416–417
locating a route through, 422
message sent to, 418
steps for implementing the required service

program, 418
<ConfigurationRecord> element, finding and

matching, 107
Configuring the HTTP Kernel-Mode Driver

(Http.sys), BOL topic, 299
CONNECT permission, 239
connection authentication, 236–248
contracts, 48–49

available through catalog views, 37
creating for Service Broker applications,

36–39

deleting existing, 38–39
how message types are assembled into, 24
and initiator services, 45
on initiator service, 44–45
provided by Service Broker, 39
sending a message on, 48–49
between Service Broker services, 23–24
using on the target service, 44
viewing defined, 37

Conversation class
function of, 120
methods for, 121–122

conversation endpoint, creating, 49
conversation group

acquiring a lock on an available, 163
expanding with additional conversations,

154–155
function of, 19–20
grouping dialogs into, 152–157
how they travel to the target queue, 155
initiating multiple conversations in, 154–157
number of conversations in, 19
ordering books online as example of using,

19–20
proving both messages are sent on same,

156–157
retrieving application state for current

locked, 163–164
setting the priority of, 365–366

conversation group locking
to ensure messages are processed in order,

151–152
feature in Service Broker, 10
function of, 19–20

conversation lock, in Activity Monitor of SQL
Server 2005, 157

conversation timer. See Service Broker
conversation timer

conversation_group_id, 155
using for storing state of conversation

group, 159
conversations

vs. conversation groups, 359
ending one with errors, 66–68
in Service Broker programming, 17
types of in Service Broker architecture, 17

CREATE ASSEMBLY statement
arguments for, 136–137
for deployment of the managed assembly, 344
syntax for, 136
using, 137–138

8423IX.fm Page 439 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

440 ■I N D E X

CREATE CERTIFICATE statement
ACTIVE FOR BEGIN_DIALOG option on, 277
EXPIRY_DATE option for, 276
parameters for, 244–245
syntax for, 243–244

CREATE CONTRACT statement
arguments for, 36–37
syntax for, 36

CREATE ENDPOINT options, for data
mirroring, 397

CREATE ENDPOINT statement
arguments for, 300–302
for creating implicit namespace

reservation, 299
for creating new endpoint in SQL Server

instance, 233
parameters for, 233–234
syntax for, 233, 300

CREATE EVENT NOTIFICATION statement
arguments for, 65, 98–99
creating a new event notification with, 98
for setting up an event notification, 64–65
for subscribing to poison message

notification, 63
CREATE MESSAGE TYPE statement

arguments for, 33–34
creating a new message type with, 32–33

CREATE QUEUE statement
arguments for, 39–40
arguments for internal activation, 74–75
enabling internal activation on a service

queue, 74
syntax for, 39

CREATE REMOTE SERVICE BINDING
statement, 265–266

CREATE ROUTE statement
parameters for, 226–228
for setting up a route, 228
syntax for, 226

CREATE SERVICE statement
arguments for, 42
creating services through, 41–42

CREATE TABLE script, 383
CREATE TABLE statement, 55–56
CREATE USER statement, 264
CreateWebRequest method, implementing,

380–381
credit card transaction record, creating new,

183–184

CreditCardService
computer deployed on, 230
creating returning route to OrderService

from, 232
function of, 170
implementing, 181–184
processing compensation messages on,

202–203
starting a new conversation with, 179–181

CreditCardServiceInstance machine, SQL
Server objects for, 231

CROSS APPLY operator, 217–218
cursor-based processing, 210–213
CursorReceive stored procedure, 212
Customers table, 337

■D
data access library, provided by SQLCLR, 308
data protection, provided by database

mirroring, 396
database

availability, provided by database
mirroring 396

clustering vs. database mirroring 395
creating to host simple logging functionality,

90–92
registering the Service Broker assembly in,

137–138
database mirroring

architecture of, 396
benefits of, 396
CREATE ENDPOINT options for, 397
creating a new certificate for, 398–399
vs. database clustering 395
doing full backup and log backup of

database, 400
enabling on both servers, 401
endpoint, configuring, 397–398
function of, 395
implementation details, 396–397
initiating a failover between both partners, 402
operation modes, 397
parameters specific for, 397–398
providing database availability in SQL Server

2005, 395
security configuration for, 399
setting up, 397–402
using Service Broker with, 402–403

Database Mirroring Monitor, 401–402
database objects, developing with SQLCLR, 307

8423IX.fm Page 440 Monday, May 7, 2007 1:23 PM

441■I N D E X

Find it faster at http://superindex.apress.com

database preparation, for the
database-mirroring session, 399–402

DECLARE cursorMessages CURSOR
statement, 212

deferred message processing, 6
dialog authentication

certificates required for, 257–258
dialog encryption

function of, 268
specifying, 270–271

dialog initiator, summary of KEK actions, 258
dialog lifetime, function of, 18
dialog protocol (endpoint protocol), 222
dialog security

in advanced distributed Service Broker
programming, 253

architecture of, 259–260
authentication provided by, 257
function of, 26–27
next steps in setting up on initiator’s

endpoint, 264
replacing certificates for, 277
in Service Broker applications, 257–268
SQL objects you must create for, 262–263
vs. transport security, 257
vs. transport security in Service Broker,

26–27
dialog timer. See Service Broker dialog timer
dialogs

additional features provided by, 18
function of, 17–18

DialogTimer message, 386
DispatchMessage method, implementing,

128–129
distributed applications

creating based on Service Broker, 228–248
deploying to several SQL Server instances,

228–248
in Service Broker, 221

distributed Service Broker application
keys required for, 242–243
overview of and how they are created,

221–248
distributed Service Broker programming,

advanced, 253
distributed systems

certificates used to establish user identity, 241
security considerations for, 8
using message-based approach for, 7–8

distributed transactions, performance
problems with, 29–30

domain user accounts, 237
DROP MESSAGE TYPE statement, 35
DROP ROUTE command, 228
DROP SERVICE statement, 44
dynamic rerouting, achieving fault tolerance

with, 7
dynamic routing, implementing, 417

■E
Email, 5
encryption

in advanced distributed Service Broker
programming, 253

recommendation for, 271
and remote service binding, 270–271
of Service Broker messages, 268–271
turning off, 269
using transport and dialog in combination, 268

ENCRYPTION = ON/OFF clause, using, 270–271
ENCRYPTION attribute, possible values for,

269–270
END CONVERSATION statement

arguments for, 56–57
closing a conversation between services

with, 56–57
END DIALOG messages, 157
endpoint. See also HTTP endpoints

certificates required for key exchange to
succeed, 242

creating and deploying to SQL Server
instances, 232–236

introducing by exchanging public keys,
247–248

lack of support for anonymous requests, 297
protocol. See dialog protocol (endpoint

protocol)
enterprise application integration (EAI), 14
error handling

in Service Broker, 21
in Service Broker applications, 59–68
stepping through error handling with a

savepoint, 62–63
error messages, extracting and storing in a

table, 67–68
event notification, using, 98–99
EXECUTE AS clause, 117
EXECUTE AS context, 87
Execute method, 341
exist() method, 294–295
explicit reservation, creating, 299
Export Service Listing Wizard, 279–281

8423IX.fm Page 441 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

442 ■I N D E X

Extending Database Impersonation by Using
EXECUTE AS, 87

external activation
combining with internal activation, 70
enabling, 99–100
function of, 70
Service Broker function in, 72
setting up for a Service Broker queue, 98
for several queues, 103–104
using, 97–112
using for parallel activation of internal stored

procedures, 112–114
external activators, 98
external application

configuration for, 106
configuration options for, 106–107

external console applications
activating, 103–112
architecture of multiple, 109–110
implementing, 100–103
Main method of, 101
output of, 103, 109, 111–112
several activated, 109–112

ExternalActivator
application, installing it as a Windows

service, 112
command prompt, 105
configuration options for, 105–106
configuring, 105–109
when running in the console, 104–105

ExternalActivatorQueue, 102–103

■F
fault tolerance, 7
FetchNextMessageBatch method,

implementing, 126–127, 166
FlightTicketJob class, implementing, 347
FlightTickets table, definition of 346
forwarding service, 409
FrontEndQueue, message retrieval from, 365
FrontEndService program, implementing,

364–366
full dialog security, 259–260

setting up, 262–266
full recovery model, checking, 399

■G
GET CONVERSATION GROUP statement,

159–160
GetConversation method, implementing, 126

GetPendingRequest method, implementing,
387–388

GetServiceBrokerScript method, 333
GotDotNet site, 104

■H
hidden tables feature, 24
high availability and scalability options, 395
high-performance mode, in database

mirroring, 397
high-safety mode, in database mirroring, 397
historical artifacts, 290
hosts file, 230
HTTP endpoints

activating, 297–298
authentication types supported by, 297
for using native web services, 296–298
granting permissions for using, 297–298
namespace reservations, verifying, 299–300
in SQL Server 2005, 296–297
syntax for creating, 304

http.sys, function of, 296
httpcfg.exe tool, 299
HttpRequestSchema XML schema collection,

375–376
HttpWebRequest object, initialization of, 381
hybrid encryption, advantage of, 242

■I
immutable data, defined, 289
implicit reservation, creating, 299
initiator, configuration of, 406
initiator at target

information needed for, 282–283
providing name of route back to initiator

service, 283
initiator service

and contracts, 45
creating a trust relationship with target

service, 413
dialog security on, 264

InitiatorQueue
processing incoming messages on, 78–79
writing managed stored procedure for

message processing on, 139–141
InitiatorService, 45–51
InitiatorService class, implementing, 139–141
inner loop, function of in receive loop, 160
inside data, messages, 290–291
InstantiateBatchJob method, implementing, 343

8423IX.fm Page 442 Monday, May 7, 2007 1:23 PM

443■I N D E X

Find it faster at http://superindex.apress.com

internal activation
checking if configuration was successful, 75
configuration on the initiator side, 79
enabling for the TargetQueue, 85–86
enabling on a service queue, 74
function of, 70
queue monitor activation of new instance

in, 72
setting up, 72

inventory application
creating the Service Broker infrastructure

for, 142–143
implementing, 142–150

Inventory table
creating and populating, 143–144
updating, 144–146

InventoryService
function of, 170
getting OrderRequestMessage from

OrderService, 186–190
starting a new conversation with, 179–181

InventoryTargetQueue, 150

■K
KEK. See key exchange key (KEK)
Kerberos authentication, 236–237
key exchange key (KEK), using, 258

■L
letters, as example of messaging, 5
Listener, 14
listener method, implementing, 325–326
load balanced Service Broker application,

deploying, 405
load balanced Service Broker service,

deploying, 404–405
load balancing

achieving fault tolerance with, 7
function of, 395
Service Broker support for, 404

LoadApplicationState stored procedure,
implementing, 167–168

LoadState method, implementing, 168, 309
LOCAL routes

creating, 254–255
in Service Broker, 253–254
unforeseen consequence of using, 254

locking and transaction management, 151–219

■M
Main method, of external console application, 101
MainForm class, user interface of, 320–321
maintenance, in message applications, 11
managed assembly

architecture and design of, 123–129
classes in, 120
deploying, 136–138, 141, 344
implementing activated stored procedure

with, 134–139
for Service Broker objects, 119–123

managed Service Broker client
building, 129–133
built with the managed assembly, 130–131
implementing, 129–130
steps for sending a new message to, 129

managed service program
building, 133–141
registration of, 388–389

managed stored procedures
creating to process incoming messages, 144
development of with SQLCLR, 307
processing Service Broker messages by, 139
registering, 138–139, 145
skeleton of, 165

managed triggers, 331–332
marshaled messages, processing, 217–218
MatchRequestFilter method, 379–380
MAX_QUEUE_READERS

configuration of, 81
starting all configured at once with, 112–116

MDAC. See Microsoft Data Access Components
(MDAC)

message body, defined 4
Message class

function of, 120
methods for, 122–123

message concepts, for message-based
programming, 4–5

message correlation, 11
message delivery, 18
message envelope, defined, 4
message exchange

in Service Broker, 27–28
sequence diagram of, 199–200

message flow, sequence of, 32

8423IX.fm Page 443 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

444 ■I N D E X

message forwarder
deploying necessary routes at, 415
security configuration at, 414

message forwarding
activating and configuring, 411–415
function of, 395
monitoring, 415–416
network topology abstraction, 409–410
parameters available to configure, 412
reliable delivery, 408
scenarios used for, 408
security, 406–407
in Service Broker, 408
setting up, 411–412
using, 411–416

message header, defined 4
message ordering, in Service Broker, 20
message processing

basic receive loop for, 204–205
in Service Broker, 27–28
in Service Broker programming, 17

message queues, retrieving the status of, 75–76
message retention

for complex message processing, 192
using on the OrderQueue, 192–193

message sequencing. See also sequencing
and correlation, in message-based systems,

10–11
and ordering, maintained through sequence

numbers, 20
message throughput, controlling, 79–82
message type handling, implementing, 136
message types

and contract, creating, 376
creating for request and response messages, 34
defining for Service Broker application,

32–34
deleting existing, 35
implementing methods for, 123–124
in Service Broker, 23, 32–35
validations supported in Service Broker, 23
viewing defined, 34–35

message validation, 23
message_body column, 100
message-based applications, 29–30
message-based processing, fundamentals of,

3–15
message-based solutions, implementing, 6

message-based systems, fault tolerance for, 7
message sequencing and correlation in,

10–11
transaction management in, 10

message-processing logic, implementing, 29,
309–310

MessageLog table
definition of, 341
processed message in, 345

messages
anatomy of, 4–5
creating the body of, 48
example of received in the target queue,

51–52
fragmentation of when sending, 223
inside data, 290–291
process of sending, 222–224
processing a retrieved and sending a

response, 55
proving both are sent on same conversation

group, 156–157
received in the initiating queue, 58
reliable delivery of forwarded, 408
reliable delivery of in Service Broker, 20–21
retrieving and processing, 51–59
rolling back, 59–60
routes involved in a distributed Service

Broker scenario, 224–225
sending, 45–51, 289
structure of, 4–5
T-SQL batch for processing on target side,

57–58
validation of, 48

messaging
architectures, for messaging solutions, 12–13
in daily life, 5
performance issues, 8
problems associated with, 8–11
sequence, for HelloWorld application, 32
solutions, reasons to use on projects, 5–8
technologies, others available, 13–15

Microsoft Data Access Components (MDAC), 295
Microsoft Network Monitor 3.0, 271
Microsoft SQL Server 2005 Service Broker. See

Service Broker
mirror server

function of, 396
restoring the database and log file on, 401

modify() method, using, 295
MSDB routes, setting up, 229

8423IX.fm Page 444 Monday, May 7, 2007 1:23 PM

445■I N D E X

Find it faster at http://superindex.apress.com

MSMQ
as available messaging technology, 13–14
drawbacks to using, 14
maintenance in, 11
transaction handling vs. Service Broker’s, 8

multiple queue readers, in Service Broker, 29

■N
namespace reservation

creating explicit, 299
for use by HTTP endpoint, 298

native web services, 295–306
native web services support, for SODA, 292
.NET Base-Class Library (BCL), 307
.NET service logic, writing, 308
NetBIOS names, 230
network topology abstraction, to other clients

409–410
nodes() method, using, 295
notification subscriptions, troubleshooting,

326–327
n-tier and client/server application

architectures, 285

■O
OnChange event handler, 322
OnHttpRequest method, implementing,

377–378
OnTimer method, implementing, 387
operands, using reference data for, 290
order-entry application

building, 170–198
Service Broker services for, 170

OrderQueue, 176
OrderRequestMessage

extracting all required information from
received, 179

message-processing logic for, 178–181
OrderService

changing the network address of, 409
ClientService start of new conversation with,

170–171
computer deployed on, 230
configuration of for load balancing 406–408
creating the route to, 402
deploying into production, 409
deploying to support a load-balanced

scenario, 406
implementing, 309–310
processing response messages, 190–194
sending a new message to, 172–173

sending request from ClientService to, 426
setting up routes to other services from,

231–232
start of conversation with ShippingService, 170

OrderService.sql script, 171
outer loop

function of in receive loop, 160
that implements the state-processing logic,

173–175
outside data, sending, 289–290

■P
parallel activation

setting up the infrastructure for, 113–114
for starting all configured queue readers,

112–116
parameter substitution, creating, 97
partners, principal and mirror servers

functioning as, 396
PendingRequest table, CREATE TABLE T-SQL

script for, 383
performance, in Service Broker programming, 17
performance counters

for monitoring Service Broker
applications, 423

for SQL Server Broker Activation, 428
for SQL Server Broker Statistics, 429
for SQL Server Broker/DBM Transport, 431

performance measurements
with batched commits, 209–210
measuring performance of stored

procedures, 205–207
with set-based message processing, 215–216

Performance Tools folder, 423
permission sets, 137
phone calls. See telephone calls
Player, 14
poison messages

defined, 60
error message in Service Broker, 64
event notification, 63
handling of, 63
support, deactivation of queue by, 92–93

post-event notification, setting up, 116
predefined message type, 35
PreloadQueue stored procedure, 205–206
principal server, 396
priority table, creating, 363–364
priority-based message processing

configuring Service Broker activation,
368–369

8423IX.fm Page 445 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

446 ■I N D E X

priority-based message processing (continued)
creating the initiator service, 369
function of, 329
handling of messages in, 358
implementing, 358–371
receiving the response messages, 370–371
sending messages with priority, 369–370
using, 368–371

private key, 89
ProcessAccountingRequestMessages stored

procedure, 184–186
ProcessBatchJob managed stored procedure

parameters accepted by, 340
steps performed by after calling, 341

ProcessBatchJobTasks method,
implementing, 344

ProcessConfigurationNotice RequestMessages
stored procedure, 418

ProcessInsertedCustomers stored procedure,
using, 337

ProcessInventoryQueryRequest method,
146–149

ProcessInventoryRequestMessage stored
procedure, 187–189

ProcessInventoryUpdate method, 144–145
ProcessMessages method, of TargetService

class, 102–103
ProcessOrderMessages stored procedure, 164
ProcessOrderRequestMessage method, 310
ProcessOrderRequestMessages stored

procedure
compensation logic in, 200–203
message-processing logic inside, 176–178
looking at OrderQueue message-processing

logic inside, 176
ProcessRequestMessages stored procedure,

95–97
ProcessResponseMessages stored procedure,

configuring, 79
ProcessShippingRequestMessages stored

procedure, implementing, 194–196
ProcessShippingResponseMessage method,

implementing, 315–316
ProcessTargetQueue1 stored procedure,

creating, 156–157
ProcessTargetQueue2 stored procedure,

creating, 156–157
public and private keys (asymmetric keys),

241–242
public keys, 247–248
publication and subscription management, 353

publisher, defined for publish-subscribe
scenario, 348

publisher logic, applying, 351–356
PublisherService

contracts support needed for, 349
requesting information from, 356–357

publish-subscribe frameworks, 329, 358
publish-subscribe scenario

defining the infrastructure, 349–351
implementing, 357

■Q
query notifications

based on Service Broker, 317
implementing, 317–319
needed in SODA, 317
objects, in a new database, 319
registration of query and subscriber into, 318
to reduce demands on database server,

316–327
subscriptions, 317
troubleshooting, 326–327
using in middle tier or on a Smart Client,

318–319
when to use, 327
when your cached data has changed, 292

query() method, using, 293–294
queue monitors

determining whether activation is necessary
with, 71–72

listing active in SQL Server instance, 71
queue reader, 71–72
queue reader management, 9
QUEUE_ACTIVATION event notification, 98
Queued Components, 14
queues

columns available for, 52–53
contents of rows in, 24
creating sending and receiving, 40
defining for received message storage, 39–41
implementing, 24–25
PreloadQueue stored procedure for

preloading, 205–206
using single stored procedure to process

many, 94–97

■R
Read method, implementing, 127–128
real-world application secenarios, 329–393

8423IX.fm Page 446 Monday, May 7, 2007 1:23 PM

447■I N D E X

Find it faster at http://superindex.apress.com

receive loop
nested loops in, 160
performance measurement with a basic,

206–207
with state handling, 160–164

RECEIVE statement
arguments for, 53
for processing pending messages from a

queue, 53
for processing received message, 108–109
using, 359
using with WAITFOR statement, 54–55
using with WHERE clause, 164

recovery model, checking, 399
reference data, using, 290–291
reliable messaging, achieving fault tolerance

with, 7
reliable web service proxy. See web proxy
REMOTE SERVICE BINDING, 266
remote service binding

contained by host database initiating
service, 259

creating, 265–266
and encryption, 270–271

request bindings, for priority-based messaging,
361–363

request message
basic structure of, 389
information contained in, 338

RequestFilter table, structure of, 372–373
resource data, 291
response messages

creating and sending back to OrderService, 184
implementing, 382–383
processing, 313
processing by OrderService, 190–194

ResponseFilter table, 372–374
RETENTION feature, 192
retry mechanism, 383–388
route configuration, creating, 414–415
routes

defining for the distributed application,
229–230

in a distributed Service Broker scenario,
224–225

function of, 25
managing, 226–228
scale-out scenarios supported through, 8
setting up between ClientService and

OrderService, 256

setting up for deploying Service Broker
instances, 229–232

understanding function of, 225
used by Service Broker to send messages, 222

routing
for Service Broker services, 221
in Service Broker, 224–225

routing algorithm, 225–226
RoutingInformation table, 417
Run method

implementing, 376–377

■S
SAVE TRANSACTION statement, 60
SavePendingRequest method, 384–385
savepoint, creating, 60
SaveState method, 169–170, 309–310
scheduled tasks, 71
security

between distributed Service Broker services,
236–248

in Service Broker, 17, 25, 229
types provided by Service Broker, 25

security configuration, for database
mirroring, 399

security protocol, used by Service Broker,
257–258

SELECT*FROM sys.conversation_endpoints
query, 51

SEND and RECEIVE commands, 155
SEND ON CONVERSATION statement

arguments for, 47
composing and sending a response message

through, 56
sending a message from initiator to service

with, 46–47
SendOrderRequestMessage stored procedure,

303–304
SendResponse method, implementing, 382–383
SendShippingRequestMessage method,

implementing, 313–315
sequence numbers, 20
sequencing, 10–11
service. See also Service Broker services

anatomy of in Service Broker programming, 17
Service base class, 134
Service Broker

in action, 31–68
activation basics, 69–72
administrative options in, 423
areas performance benefits provided in, 29

8423IX.fm Page 447 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

448 ■I N D E X

Service Broker (continued)
automatic creating conversation group,

152–153
benefits of, 30
captured message, 273–275
centralized administration tools provided

by, 30
compensation logic with, 198–203
configuring routes and changing name of

ClientService, 256
contracts. See contracts
conversation group locking feature in, 10
detecting and dealing with poison messages,

63–66
dialog security, 26–27
dialogs, 17–18
introduction to, 17–30
kinds of activation supported by, 70
locking of conversation groups by, 152
managed assembly. See managed assembly
with managed code, 119–150
message exchange in, 27–28
message forwarding in, 408
message sequencing and ordering in, 20
message types, 23, 32–35
as messaging bus in SODA architectures, 292
vs. MSMQ transaction handling, 8
objects created for message exchange, 28
option for message encryption, 268–271
performance statistics, 219
priority-based message processing in,

358–371
queue reader management in, 9
reliable delivery of messages in, 20–21
reliable messaging provided by, 30
reliable web service requests, 371–393
resending and acknowledgment protocol in,

20–21
retrieving information about deployed

objects, 435
retrieving message routing information 426
running a messaging system based on, 6
scale-out scenarios provided by, 30
security, 25–27
security modes, 236
security protocol, 257–258
service programs in, 25
setting up certificate-based transport

security with, 243–248
setting up security between distributed

services, 236–248

SMO classes for, 432
startup strategies, 70–71
transaction management in, 10, 204–219
transmission queue, 20–21
types of dialog security provided by, 258
use of SOA with, 12
using for message-based processing, 3–15
using with database mirroring, 402

Service Broker activation
configuring, 139
disabling for a service queue, 79–80
issues addressed by, 69–70
when it is necessary, 71–72

Service Broker applications
defining, 31, 45
defining a message type in context of, 32–34
defining the interface for services, 32
error handling, 31
error handling in, 59–68
example of implementing with managed

code, 142–150
implementing, 31–68
retrieving and processing messages, 31
simple HelloWorld application, 31
using System Monitor on, 428–436

Service Broker communication, 234–235
Service Broker contracts, 38
Service Broker conversation timer, 385–387
Service Broker dialog timer, 383
Service Broker endpoints

creating and deploying to SQL Server
instances, 232–236

message forwarding activated on, 412
settings, 284

Service Broker event classes, table of, 424
Service Broker forwarder, 26
Service Broker forwarding service, 410–411
Service Broker infrastructure

creating, 334, 339
defining, 349–351
implementing, 359–361
for reliable web service calls, 372–376

Service Broker messages
example of captured header, 274–275
header format, 274
inability to replay captured, 276
information contained in header, 273–274
for ordering items from inventory, 149–150
replaying, 276

8423IX.fm Page 448 Monday, May 7, 2007 1:23 PM

449■I N D E X

Find it faster at http://superindex.apress.com

Service Broker objects
case sensitivity of, 32
created for message exchange, 28
creating, 434–435
management of, 31
needed for batch job framework, 338
required for order-entry application, 171
retrieving information about deployed, 435
using, 375–376

Service Broker programming, 253–284
Service Broker protocols, 222
Service Broker response message, 275
Service Broker services

anatomy of, 21–22
available in Management Studio after

created, 42–43
configuration information, 372–375
creating, 376
creating certificates to establish trust

relationship between, 245–247
creating for sample application, 42
defining, 41
deployment scenarios supported by, 22
establishing connection between, 278
exchanged message types between, 172
implementing, 312–313
outside data, 289–290
processed messages from, 198
processing of messages in, 24
relationship between for order-entry

application, 170
revoking rights to connect to SQL Server

instance, 248
sending directions defined by, 24
starting a conversation with distributed

deployed, 239–240
using TCP/IP connections to send

messages, 221
Service Broker transport security, configuring, 413
Service class

function of, 120
implementing base class constructor of, 123
methods for, 120–121

service interaction data, 291
Service Listing

exporting, 279–281
importing, 281

Service Listing document
and importing, 282–284
XML nodes contained in, 281

Service Listing Import Wizard, deployment
options, 282

Service Listing Manager
function of, 278–284
for setting up and configuring Service Broker

security, 277–284
startup screen of, 278
tool, 253
website address for, 277–278

Service Principal Name (SPN), 236–237
Service program, 139–141
service programs

activation, 28
error handling in, 59–63
function of, 25
implementing for configuration notice

service, 418
writing, 335

ServiceBrokerInterface
managed assembly, 164
in SQL Server 2005, 119–120

ServiceException class, 120
Service-Oriented Architecture (SOA). See SOA

(Service-Oriented Architecture)
Service-Oriented Database Architecture

(SODA). See SODA (Service-Oriented
Database Architecture)

Services MMC snap-in, 237
SessionServiceProcedure stored procedure, 87
SessionsServiceProcedure, signing, 88–89
set-based message processing, 213–216
shipping information, accessing in <shipping>

node, 192–193
ShippingInformation table, 194
ShippingResponseMessage

method, 315–316
processing, 196–197
sending back to the ClientService, 197–198

ShippingService
interaction with, 313–316
sending final request message to, 193–194

ShippingServiceRequest message, 194
SimpleQueryNotification application, 320–323
single log writes, in Service Broker, 29
smart client, using web proxy in, 388–393
SMO. See SQL Server Management Objects (SMO)
SOA (Service-Oriented Architecture), 12

applications, 286–287
features, 287–288

8423IX.fm Page 449 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

450 ■I N D E X

SOA (Service-Oriented Architecture)
(continued)

principles, an application based on, 286
scaling, 287

SOAP request
converting to binary Base64 format, 391
sent to the web service, 390–391

SODA (Service-Oriented Database
Architecture)

architectures, 287–288
data in, 285, 288–291
evolution of, 285–288
features in SQL Server 2005, 285
function of, 12–13, 285
implementing business functionality in, 13
service provider, 288
white paper by David Campbell, 13

sp_AddOrUpdatePendingRequest stored
procedure, implementing, 383–384

sp_BackendService stored procedure, using,
366–368

sp_BindingGetBackend stored procedure
implementing, 362–363
using, 361, 365

sp_BindingGetPeer stored procedure,
implementing, 361–362

sp_DequeuePriority stored procedure
implementing, 363–364
message processing, 367–368

sp_EnqueuePriority stored procedure,
implementing, 364

sp_executesql, 97
sp_FrontEndService stored procedure, 364
sp_MatchRequestFilter stored procedure,

374–375
sp_MatchResponseFilter stored procedure,

374–375
sp_ProcessPublicationRequest stored

procedure, 353–354
sp_PublisherService stored procedure, 351–356
sp_PublishPublication stored procedure, 354
sp_RemovePublication stored procedure, 356
sp_SendOnPublication stored procedure, 355
SQL Profiler

event classes and categories in, 424–425
function of, 423
generated events, 425–428
pausing and stopping the tracing process, 425
selecting events in, 423
using, 425–428

SQL Server
connecting to through SMO, 432
creating a new database, 434
retrieving connection information, 434

SQL Server 2005
context connections in, 135
conversation lock in Activity Monitor of, 157
endpoints used to configure connection

points, 221
HTTP endpoints in, 296–297
integration of http.sys kernal-mode driver

in, 296
limitation of, 31
namespace reservation in, 298
native web services support for SODA, 292
new features in, 12–13
new XML features in, 56
permission sets supported in, 137
query notifications when cached data has

changed, 292
queue and service objects created in new

database, 319
registration of query and subscriber, 318
SODA features in, 285, 292–327
SQLCLR feature for writing .NET code, 292
using HTTP endpoints for native web

services, 296–298
XML support in, 292–295

SQL Server 2005 database, creating managed
stored functions in, 391

SQL Server 2005 Surface Area Configuration
utility, 297–298

SQL Server Broker Activation, performance
counters for, 428

SQL Server Broker Statistics, performance
counters for, 429

SQL Server Broker/DBM Transport,
performance counters for, 431

SQL Server instances, 231–232
SQL Server logins

adding to the master database, 238–239
creating for SQL Server that communicates

with you, 237–239
granting CONNECT permission to, 239

SQL Server machines, domain user accounts
for, 237

SQL Server management objects (SMO), 432
SQL Server Management Studio

created queues in, 40–41
for message application maintenance, 11

SQL Server objects, 231

8423IX.fm Page 450 Monday, May 7, 2007 1:23 PM

451■I N D E X

Find it faster at http://superindex.apress.com

SQL Server service account, configuring, 237
SQL Server utility, 297–298
SQL Server web service, 304–305
SQLCLR

advantages of using in SODA, 308
data access library provided by, 308
for extending built-in T-SQL functions, 308
function of, 307–316
for integrating .NET runtime into database, 292
using in SODA, 308
for writing functions for stored procedures, 307

sqlcmd, 11
SqlDependency class. See also

System.Data.SqlDependency class
members of, 319–320
setting up a dependency, 320

SqlDependency object, creating by an
application, 319

SqlNotification class, OnChange event handler
for, 322

SqlNotificationEventArgs class, properties for,
322–323

SqlNotificationRequest class, 323–326
SqlNotificationRequest object, 324–325
SqlTrigger attribute, 331–332
startup tasks, 71
state handling

implementing, 308–310
with a managed stored procedure, 164–198
receive loop with, 160–164
for Service Broker conversations, 158–159

state variables, initializing to initial state,
175–176

state_desc column, 51
state-processing logic, implementing by outer

loop, 173–175
Stock Keeping Unit (SKU), 291
stored procedures

calling in another database, 90–94
changing the execution context of, 87
executing with higher privileges, 90
for internal activation on the target side,

72–74
for manipulating content of Priority table, 363
measuring performance of, 205–207
for processing incoming messages, 78–79
using single to process many queues, 94–97
with message-sending logic, 302–303
writing activated to query for messages to

process, 94–97
stored-procedure signing, 82–90

subscriptions
requesting, 356–357
troubleshooting, 326–327

symmetric error handling, 21
symmetric error messaging, 23
symmetric keys, disadvantages of, 242
sys service_message_types catalog view

columns in, 35
for Seeing message types defined in

database, 35
sys.assemblies catalog view

columns in, 138
content of after managed assembly is

deployed, 138–139
sys.conversation_endpoints catalog view

columns in, 49–51
function of, 153–154
open conversation with configuration notice

service in, 422
sys.conversation_groups catalog view

columns in, 153
locking, 153–154

sys.dm_broker_activated_tasks DMV
columns in, 77
output from, 77–78
querying if stored procedure activation was

successful, 77
for showing current activated stored

procedures, 81–82
sys.dm_broker_forwarded_messages catalog

view
columns in, 415
for monitoring forwarded messages, 415

sys.dm_broker_queue_monitors
columns in, 75
viewing currently available queue monitors

with, 75
sys.dm_exec_sessions DMV, 82–84
sys.dm_qn_subscriptions catalog view

columns in, 317–318
sys.routes table, 223
sys.service_contract_message_usage catalog

view
columns in, 38
registered contracts available through, 37

sys.service_contracts catalog view
columns in, 37–38
registered contracts available through, 37

sys.service_queues
for activated stored procedure, 75
catalog view, columns in, 41

8423IX.fm Page 451 Monday, May 7, 2007 1:23 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

452 ■I N D E X

sys.services catalog view
columns in, 43
services available through, 42–43

System Monitor, 428
System.Data.SqlDependency class, using for

query notifications, 318–323
System.Data.SqlNotificationRequest class, 318

■T
Tabular Data Stream (TDS) protocol, 295
target at initiator, settings needed for, 284
target database, enabling .NET Framework

execution support in, 337
target queue

generating a high message workload for, 80
re-enabling, 64
unprocessed messages stored in, 80–81

target side, on SQL Profiler, 427
TargetQueue

message-processing stored procedure for,
131–132

the sent message on, 131
setting up external activation on, 99–100

TargetService
defining in a class derived from Service base

class, 134
implementing the entry point for, 134–135
sending a request message to, 76–77
sending message from InitiatorService to,

45–51
telephone calls, 5
TO SERVICE clause, specifying as a string

literal, 48
TO SERVICE parameter, specifying in BEGIN

DIALOG statement, 222–223
Trace Properties dialog box, 423
tracing, 271–273
transaction management

function of, 151
in message systems, 10
in Service Broker, 10, 29, 30, 204–219

transaction techniques, for improving service
program performance, 204–219

Transmission Control Protocol (TCP), used by
Service Broker, 221

transmission queue
function of in message exchange, 28
in Service Broker, 20–21

transport encryption, 268–270

transport protocol
in advanced distributed Service Broker

programming, 253
function of, 271–276
setting up tracing, 271–273

TRANSPORT routes
configuring in a Smart Client scenario,

255–256
function of, 255–256
in Service Broker, 253–254
using in a Smart Client scenario, 255

transport security. See also Windows-based
transport security

authentication options, 26
combinations of ENCRYPTION attribute

for, 269
configuring on initiator’s side 413
creating a new certificate for, 276–277
vs. dialog security, 257
vs. dialog security in Service Broker, 26–27
function of, 25–26
setting up, 413
TRANSPORT route and LOCAL route, 253
wildcard routes, 253–254

triggers, writing in .NET language with
SQLCLR, 307

troubleshooting
activated stored procedures, 117
query notifications, 326–327

TRUSTWORTHY flag, 90
TRY/CATCH statements, 59–63
TryWebRequest method, 381–382
T-SQL batch, 47–48
T-SQL statements. See also individual

statement names
for reenabling the target queue, 64

■U
UML (Unified Modeling Language), 126
UML sequence diagram, 125–126
Unified Modeling Language. See UML (Unified

Modeling Language)
UPDATE statement, 181
URL namespaces, reserving in SQL Server

 2005, 298
user-defined aggregates, development of, 307
user-defined data types, development of, 307
user-defined functions, development of, 307

8423IX.fm Page 452 Monday, May 7, 2007 1:23 PM

453■I N D E X

Find it faster at http://superindex.apress.com

■V
Validation, supported by Service Broker, 23
value() method, using, 294
Visual Studio 2005

deploying the trigger to database from 331
Service Broker managed assembly inside,

119–120

■W
WAITFOR statement

fetching messages from TargetQueue to
table variable, 212

using with GET CONVERSATION GROUP
statement, 160

using with the RECEIVE statement, 54–55
WCF, function of as messaging technology,

14–15
WCF channel, for Service Broker, 222
web methods, defined, 296
web proxy

implementing, 376–388
using in a smart client, 388–393

web service call
architecture for doing reliable, 372
retrieving the SOAP response from, 392–393

web service helper page, displaying, 389–390
web service request

execution of, 379
reliable, 329, 371–393

web services
defined 296
describing using WSDL format, 296–297
exposing, 300–305
using, 305–306

WebProxyService class
sending the Service Broker request to,

391–392
stored procedure that acts as service

program for, 376

WHERE clause, using on the spid column, 94
WHILE loop, creating, 204–205
Windows authentication, 236–237
Windows-based authentication, option in

Service Broker security, 26
Windows-based transport security

parts of, 236
setting up, 236–240

Windows Communication Foundation (WCF)
channel. See WCF channel

witness, in a database-mirroring scenario, 396
workload distribution, implementing, 410
WriteCustomerDetails method, 336
WSDL document, 304–305

■X
XML data type

for storing XML documents and fragments in
a column, 292

methods to query and transform XML
data, 292

XML data type methods
function of, 293
new in SQL Server 2005, 179

XML format, support for distributed systems, 287
XML message, sent to CreditCardService

service, 275
XML schema collection

assigning to an XML message, 33
associating with a column, parameter, or

variable, 292
defining, 375–376
function of, 33

XML support
for creating SODA architecture, 292
in SQL Server 2005, 292–295

XML web services, function of as messaging
technology, 14

XmlSerializer class, using, 378

8423IX.fm Page 453 Friday, May 4, 2007 3:36 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

