
Pro SQL Server
Always On
Availability
Groups

Enterprise-level high-availability and
disaster recovery
—
Uttam Parui
Vivek Sanil

www.allitebooks.com

http://www.allitebooks.org

 Pro SQL Server
Always On Availability

Groups

 Uttam Parui

Vivek Sanil

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server Always On Availability Groups

Uttam Parui Vivek Sanil
Mooresville, North Carolina San Antonio, Texas
USA USA

ISBN-13 (pbk): 978-1-4842-2070-2 ISBN-13 (electronic): 978-1-4842-2071-9
DOI 10.1007/978-1-4842-2071-9

Library of Congress Control Number: 2016955944

Copyright © 2016 by Uttam Parui and Vivek Sanil

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Corbin Collins
Technical Reviewer: Rahul Deshmukh
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

 ■Part I: Getting Started ... 1

 ■Chapter 1: High Availability and Disaster Recovery Concepts 3

 ■Chapter 2: Introduction to Always On .. 9

 ■Part II: Planning Always On Availability Groups 17

 ■Chapter 3: Concepts and Common Topologies .. 19

 ■Chapter 4: Data Synchronization Internals .. 35

 ■Chapter 5: Introduction to Windows Server Failover Clustering 45

 ■Chapter 6: Prerequisites .. 53

 ■Part III: Deploying Always On Availability Groups 59

 ■Chapter 7: Create a Windows Server Failover Cluster ... 61

 ■Chapter 8: Create Availability Groups .. 93

 ■Chapter 9: Post-Installation Tasks ... 125

 ■Part IV: Active Secondary Replicas .. 149

 ■Chapter 10: Readable Secondary Replicas .. 151

 ■Chapter 11: Database Maintenance Using Secondary Replicas 163

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

iv

 ■Part V: Managing Availability Groups ... 177

 ■Chapter 12: Common Management Tasks ... 179

 ■Chapter 13: Upgrading and Migrating ... 191

 ■Chapter 14: Performing Database Maintenance Tasks 205

 ■Part VI: Monitoring and Troubleshooting Availability Groups 209

 ■Chapter 15: Monitoring Availability Groups .. 211

 ■Chapter 16: Troubleshooting Availability Groups .. 249

 ■Part VII: Availability Groups in Microsoft Azure 275

 ■Chapter 17: Introduction to Microsoft Azure ... 277

 ■Chapter 18: Availability Groups in Microsoft Azure... 283

Index ... 309

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

 ■Part I: Getting Started ... 1

 ■Chapter 1: High Availability and Disaster Recovery Concepts 3

What Is High Availability? ... 3

Calculating Availability .. 4

Causes of Downtime ... 5

What Is Disaster Recovery?.. 7

Recovery Objectives ... 7

Planning for Disaster Recovery .. 8

Summary .. 8

 ■Chapter 2: Introduction to Always On .. 9

Common Solutions before Always On .. 9

Failover Cluster Instances (FCI) .. 9

Database Mirroring ... 10

Log Shipping ... 11

Replication .. 12

Limitations and Concerns ... 14

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vi

What Is Always On? .. 14

SQL Server 2014 ... 15

SQL Server 2016 ... 15

Summary .. 16

 ■Part II: Planning Always On Availability Groups 17

 ■Chapter 3: Concepts and Common Topologies .. 19

Availability Group Concepts .. 19

Availability Group and Replicas .. 20

Availability Group Listener .. 21

Availability Mode .. 22

Failover and Failover Modes ... 22

Common Topologies ... 25

Stand-alone to Stand-alone .. 25

SQL Failover Clustered Instance (FCI) to Stand-alone and Vice Versa .. 27

SQL FCI to SQL FCI .. 28

Extend On-Premises Always On Availability Groups to Microsoft Azure ... 29

Always On Availability Groups in Azure Virtual Machines (VMs) ... 30

Distributed Availability Groups .. 30

Summary .. 33

 ■Chapter 4: Data Synchronization Internals .. 35

Trade-offs and Opportunity Cost .. 35

Synchronous-Commit Mode ... 35

Asynchronous-Commit Mode ... 37

Synchronization Behavior in Various Scenarios ... 39

Scenario 1: Secondary Replica Goes Offl ine ... 39

Scenario 2: Primary Replica Goes Offl ine ... 41

Summary .. 44

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vii

 ■Chapter 5: Introduction to Windows Server Failover Clustering 45

Overview of a Failover Cluster ... 45

Cluster Node ... 46

Networks .. 47

Cluster Resource .. 47

Resource Dependency .. 47

Role... 47

Failover ... 48

Failback .. 48

Preferred Owner ... 48

Possible Owner ... 49

Heartbeat .. 49

Quorum ... 50

Dynamic Quorum .. 51

Dynamic Witness .. 51

Benefi ts and Limitations of Failover Cluster... 51

Summary .. 52

 ■Chapter 6: Prerequisites .. 53

Windows Requirements ... 53

Recommendations ... 55

SQL Server Instance Requirements .. 55

Availability Database Requirements ... 56

Availability Group Interoperability .. 57

Summary .. 58

 ■Part III: Deploying Always On Availability Groups 59

 ■Chapter 7: Create a Windows Server Failover Cluster ... 61

Create a Windows Server Failover Cluster Using Failover Cluster Manager 62

Step 1: Install Failover Clustering Feature .. 62

Step 2: Validate Failover Cluster ... 69

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Step 3: Create Windows Server Failover Cluster .. 76

Step 4: Confi gure Cluster Quorum .. 82

Create a Windows Server Failover Cluster Using PowerShell .. 89

Step 1: Install Failover Clustering Feature Using PowerShell ... 90

Step 2: Validate Failover Cluster Using PowerShell .. 90

Step 3: Create Windows Server Failover Cluster Using PowerShell ... 90

Step 4: Confi gure Cluster Quorum Using PowerShell ... 90

Workgroup and Multi-Domain Clusters .. 91

Step 1: Create a Local User Account on Each Cluster Node ... 91

Step 2: Ensure All Nodes Have Primary DNS Suffi x .. 92

Step 3: Create Workgroup or Multi-Domain Cluster .. 92

Step 4: Confi gure Quorum .. 92

Summary .. 92

 ■Chapter 8: Create Availability Groups .. 93

Step 1: Enable the Always On Availability Groups Feature ... 93

Step 2: Invoke Availability Group Wizard .. 97

Step 3: Select Availability Group Name .. 98

Step 4: Select Databases ... 100

Step 5: Specify Replicas ... 102

Step 6: Confi gure Endpoint ... 106

Step 7: Confi gure Backup Preferences ... 106

Step 8: Confi gure Listener .. 108

Step 9: Select Initial Data Synchronization .. 112

Step 10: Validate ... 114

Other Ways to Create an Availability Group .. 117

Availability group dialog box ... 117

T-SQL .. 118

PowerShell.. 124

Summary .. 124

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 9: Post-Installation Tasks ... 125

Reviewing the Availability Group .. 125

Using Object Explorer ... 125

Using Always On Availability Groups Dashboard... 131

Using Windows Server Failover Cluster Manager ... 140

Replicating Logins and Jobs .. 146

Replicating Logins .. 146

Using Contained Database with Availability Groups ... 147

Replicating SQL Agent Jobs and SSIS Packages .. 147

Summary .. 148

 ■Part IV: Active Secondary Replicas .. 149

 ■Chapter 10: Readable Secondary Replicas .. 151

Offl oading Reporting Workload ... 151

Solutions Prior to SQL Server 2012 .. 151

Offl oading Reporting Workload Using Always On Availability Groups Secondary Replicas 152

How to Confi gure Readable Secondary .. 153

Using SQL Server Management Studio ... 153

Using Transact-SQL .. 154

Using PowerShell .. 155

Confi gure Client Connectivity ... 155

Confi gure Read-Only Routing ... 155

Confi gure Load Balancing Across Replicas .. 157

Considerations, Limitations, and Best Practices .. 158

Impact of Read Workload .. 159

The Role of Row Versioning .. 160

Query Performance ... 160

Data Latency ... 160

Blocking on Existing Transactions .. 161

No Support for Change Tracking and Change Data Capture ... 161

Ghost Record Cleanup .. 161

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Read-Only Routing Does Not Work if Primary Is Down ... 161

Support for In-Memory OLTP .. 162

Resource Governance ... 162

Multiple Secondary Replicas .. 162

Monitor REDO Activity ... 162

Summary .. 162

 ■Chapter 11: Database Maintenance Using Secondary Replicas 163

Offl oading Database Backups .. 163

Backup Types Supported on Secondary Replica .. 164

Role of Primary in Backups .. 164

How Transaction Log Backups Work ... 165

Confi guring Backup Preference and Priority .. 166

Automating Backups on Secondary Replicas ... 169

Best Practices ... 172

Running Integrity Checks ... 174

Running DBCC CHECKDB on Secondary Replicas ... 174

Different Options to Run DBCC CHECKDB ... 175

Summary .. 176

 ■Part V: Managing Availability Groups ... 177

 ■Chapter 12: Common Management Tasks ... 179

Suspend Secondary Database Synchronization ... 179

Suspend Primary Database Synchronization ... 180

Resume Database Synchronization .. 181

Change the Availability Mode ... 181

Add a Database .. 182

Remove a Database ... 183

Add a Replica ... 184

Remove a Replica ... 185

Remove an Availability Group ... 186

 ■ CONTENTS

xi

Add a File to a Replica Database .. 187

Tune Heartbeat Settings ... 188

Create Multiple Listeners for the Same Availability Group ... 188

Summary .. 189

 ■Chapter 13: Upgrading and Migrating ... 191

Upgrading and Updating SQL Server .. 191

Prerequisites... 191

Rolling Upgrade Best Practices .. 192

Rolling Upgrade Process... 193

Upgrading the Operating System ... 199

Cluster OS Rolling Upgrade .. 199

Cross-Cluster Migration .. 200

Summary .. 204

 ■Chapter 14: Performing Database Maintenance Tasks 205

Index Maintenance ... 205

Assess the Impact in a Test Environment First ... 205

Run during Off-Peak Hours .. 205

Selective/Smart Index Rebuilds/Reorganize .. 205

Statistics Updates .. 206

Update Statistics on the Primary Replica ... 206

Memory-Optimized Tables .. 207

Summary .. 207

 ■Part VI: Monitoring and Troubleshooting Availability Groups 209

 ■Chapter 15: Monitoring Availability Groups .. 211

Using Dashboard .. 211

Using Transact-SQL .. 213

Using Wait Statistics ... 216

Using Performance Monitor ... 217

 ■ CONTENTS

xii

Mapping DMVs, Wait Statistics, and Performance Monitor .. 219

Using Policy-Based Management ... 222

Monitoring Your Availability Groups for RTO and RPO Metrics .. 223

Using Extended Events ... 238

Preconfi gured AlwaysOn_health Extended Events ... 238

Debug Events for Always On Availability Groups .. 240

Confi guring AlwaysOn_health Session Target File .. 241

Viewing Always On Health Events Data .. 241

Using PowerShell ... 244

Using Alerts .. 245

Using Custom Jobs ... 246

Using System Center Operations Manager (SCOM) .. 246

Summary .. 247

 ■Chapter 16: Troubleshooting Availability Groups .. 249

Useful Reports and Logs .. 249

Always On Dashboard ... 250

DMVs .. 252

Extended Event Logs .. 253

SQL Server Error Logs .. 254

Event Logs .. 254

Cluster Log ... 254

Calculating Estimated Data Loss .. 255

Common Failure Scenarios .. 257

Endpoint Connectivity Failure ... 257

Availability Group Creation Failure .. 259

Listener Creation Failure .. 259

Failover Troubleshooting ... 261

Connectivity Failure .. 269

Transaction Log Growing Scenario ... 270

 ■ CONTENTS

xiii

Secondary Replica Falling Behind Primary Scenario ... 271

Replica in Resolving State Scenario ... 273

Summary .. 273

 ■Part VII: Availability Groups in Microsoft Azure 275

 ■Chapter 17: Introduction to Microsoft Azure ... 277

What Is Microsoft Azure? ... 277

Why Use Microsoft Azure? .. 277

IaaS, PaaS, and SaaS .. 279

How to Start Using Microsoft Azure ... 281

Summary .. 281

 ■Chapter 18: Availability Groups in Microsoft Azure... 283

Step 1: Select Template .. 283

Step 2: Confi gure Basic Settings .. 288

Step 3: Confi gure Domain and Network Settings ... 289

Step 4: Confi gure Availability Group Settings ... 290

Step 5: Confi gure VM size and Storage Settings .. 291

Step 6: Confi gure SQL Server Settings ... 301

Performance Best Practices ... 304

Extend On-Prem Always On Availability Groups to Azure ... 306

Summary .. 307

Index ... 309

xv

 About the Authors

 Uttam Parui is a Senior Premier Field Engineer at Microsoft, based out of
Charlotte, North Carolina. He has worked at Microsoft for more than 16
years and has been working with the SQL Server product since SQL Server
6.5. As a Premier Field Engineer, he delivers SQL Server consulting and
support for designated strategic Fortune 500 customers. Also, he has been
developing content, speaking at events, as well as authoring books, white
papers, and articles related to SQL Server administration, high availability,
disaster recovery, and more. Uttam is the coauthor of Microsoft SQL Server
2008 Bible (Wiley Publishing) and technical editor for Pro SQL Server 2008
Failover Clustering (Apress). He has trained and mentored engineers from

the Customer Support Services and Premier Field Engineering teams, and was one of the first to train and
assist in the development of Microsoft's SQL Server support teams in Canada and India. Uttam received his
master's degree in Computer Science from the University of Florida at Gainesville. He can be reached at
uttam_parui@hotmail.com.

 Vivek Sanil is a Senior Premier Field Engineer at Microsoft. Vivek has been
working extensively with SQL Server since joining the industry more than 16
years ago. He has been with Microsoft since 2005. Vivek currently works in a
support and consulting role in a dedicated capacity with a few large Fortune
500 customers. Areas of specialty include Database Engine internals,
SQL Always On, and performance troubleshooting. He has architected and
developed numerous PFE workshops that Microsoft delivers to its
customers. Vivek has also moderated in several worldwide Microsoft Virtual
Academy events. He can be reached at vivek_sanil@hotmail.com .

xvii

 About the Technical Reviewer

 Rahul Deshmukh works as an SQL Server Premier Field Engineer at
Microsoft. He helps Fortune 500 companies with the design,
implementation, and performance tuning of SQL Server HA DR solutions
and has helped architect some of the biggest Availability Groups
deployments. He also has more than 1000 hours of experience teaching
SQL Server internals, administration, and Always On technologies to
customers from all over the continent.

 Rahul has presented at SQL Server user groups and contributed to
one of the most successful PASS Pre-Con sessions on Always On.

 Rahul has SQL Server and Azure certifications from Microsoft. He
holds a master’s degree in Information Science from the University of
North Carolina at Chapel Hill.

 You can reach Rahul at www.RahulDeshmukh.info and follow him on
Twitter @sqlrahul.

http://www.rahuldeshmukh.info/

xix

 Acknowledgments

 From Uttam Parui .

My first thank you goes to my loving wife, Shyama; and my two doting daughters, Nika and Rika, for their
encouragement, understanding, patience, and love while I spent many nights, weekends, and holidays
working on the book. I'd like to thank my parents for their endless love and support and for giving me the
best education they could provide, which has made me successful in life.

 A very special thank you goes out to my coauthor Vivek Sanil and technical reviewer Rahul Deshmukh
for their contributions, feedback, and support. I truly believe that the book came out as good as it has due to
their professionalism and passion for quality and perfection. I could not have asked for a better team.

 A warm thank you goes out to the Microsoft SQL Server Always On experts for sharing their knowledge,
best practices, tips, and solutions: Kevin Farlee, Luis Carlos Vargas Herring, Elden Christensen, Juergen
Thomas, Shon Knoblauch, Charles Mathews, Robert Dorr, Trayce Jordan, Luís Canastreiro, David Levy,
David Browne, and Balmukund Lakhani. My sincerest apologies if I missed anyone.

 Last but not least, I want to thank everyone at Apress who I worked directly or indirectly with on this
book: Jonathan Gennick, Jill Balzano, and Corbin Collins.

 From Vivek Sanil .

 I am grateful for the opportunity to have worked on this book. I am all the more grateful for the help and
encouragement that I have received from so many wonderful friends and colleagues.

 First, my considerable thanks go to Uttam Parui, the coauthor of this book. Having him on the same
team while writing this book made it a fun and fulfilling experience. I hope that the work that we have put
into it is appreciated by all who read it.

 Thanks to Rahul Deshmukh (technical reviewer) for his hard work in reading the chapters, testing the
solutions and code, and providing feedback. I truly believe that his input helped make this book even better
than what we had initially envisioned.

 Heartfelt thanks goes to the team at Apress that helped make this book happen. Jonathan Gennick had
faith in our idea, Jill Balzano managed the project efficiently, and Corbin Collins helped edit and polish the
prose that helped us create a professional product in the end.

 A special thank you to all the Always On experts at Microsoft, who shared their knowledge and helped
answer our questions and clarify our doubts. Throughout the year, there have been many people that have
influenced me greatly, generally without knowing just how much I was influenced by them. Thanks to all of
you and what you have done for me.

 Last, but not least, I thank my wife, Ajita, and my son, Reyansh. Without your support, I would not have
been able to participate in this book. I would also like to thank my parents for providing me the support,
love, and education to be successful in life.

 PART I

 Getting Started

3© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_1

 CHAPTER 1

 High Availability and Disaster
Recovery Concepts

 In a perfect world, data will always remain available no matter what. But in the real world, we know that
there can be multiple problems that can cause data to become unavailable.

 For example, hospitals depend on patient data to be available all the time; otherwise patient care can be
affected. Let’s say that a surgeon is in the operating room and needs to refer to some of the patient’s critical
information. If the surgeon is unable to access the patient data in a reasonable amount of time, it could
result in the loss of the patient’s life. Another example is a 24/7 online retailer such as Amazon.com whose
customer-facing website must be up and running at all times. If the customer cannot see the merchandise
on the website or cannot place an order, the website is considered unavailable from the customer’s point of
view and may cause a loss of sale and revenue.

 What Is High Availability?
 One of the most important goals for critical business applications is ensuring that the data is highly available.
To achieve high availability, you need to formulate a proactive strategy that will mitigate the threats to
availability and also minimize the downtime to users.

 The main goal of high availability (HA) is to minimize and mitigate the impact of downtime to end
users and maximize availability. High availability solutions aim to mask the effects of failures (hardware,
software) or natural disasters and have the critical data available as soon as possible in the event of a failure
or disaster. High availability is about putting together people, processes, and technologies in place before
a failure occurs to prevent the failure from affecting the availability of the data. Most often, people and
processes are forgotten, and technology is given the most importance. It should be the other way around as
most downtimes are caused due to people and process issues. To achieve high availability, you need support
from all three pillars: people, process, and technology.

 Figure 1-1 shows the three pillars of a high availability solution.

CHAPTER 1 ■ HIGH AVAILABILITY AND DISASTER RECOVERY CONCEPTS

4

 It is very important to have people with the right skill set, roles, responsibilities, and leadership in place.
Processes play a very important role, too. Processes should be documented, followed, have clear ownership,
and be practiced and updated as the business application and workload changes with time. Technology
needs to be able to meet the business goals for achieving high availability, be easy to deploy,and supported
and maintained.

 Calculating Availability
 Availability is usually expressed as a percentage of uptime in a given year and is calculated as the following:

Availability

Actual uptime

Expected uptime
 100%

 The resulting value is expressed by the number of 9’s that the solution provides. For example, let’s say
that the total downtime in a given year (365 days x 24 hours = 8760 hours) for a particular high available SQL
Server application is one hour. Then, let’s calculate the following:

Availability 


 

8760 1

8760
100 99 9% . % or three nines

 Table 1-1 shows the translation from a given availability percentage to the corresponding time a system
would be unavailable.

 Figure 1-1. Pillars of a high availability solution

CHAPTER 1 ■ HIGH AVAILABILITY AND DISASTER RECOVERY CONCEPTS

5

 ■ Note As the requirement for the number of 9’s or uptime increases, the cost of the system increases, and
vice versa. In order to achieve a maximum annual downtime of 5 minutes, 15 seconds (i.e., 5 nines) or 31.5
seconds (i.e., 6 nines), you need to eliminate all single points of failures and allow online replacement of all
production-related resources.

 We have seen customers interpreting availability in many different ways. For example, for some
applications, scheduled downtime may not affect the end users. For such applications, customers exclude
the scheduled downtime from the availability calculations. By doing this, they claim to have very high
availability that may seem to give an impression of continuous availability, which in reality is rare and very
costly.

 Another example is a scenario where the SQL Server may be up and running for all the days in a
year but the end users could not access the data for 5 hours due to a network outage. In this scenario, the
SQL Server is up but the services are not available for 5 hours due to the network outage. The database
administrators (DBAs) may claim 100% uptime. However, using the above formula for calculating
availability, the application will be 99.9% available, or 3 nines.

 Causes of Downtime
 Every minute of downtime affects the business either directly (such as loss in sales, revenue, decreased
productivity) or indirectly (loss of goodwill). Figure 1-2 shows some common causes of downtime.

 Table 1-1. Availability Percentage

 Availability Percentage Number of 9’s Maximum Annual Downtime

 90% 1 36 days, 12 hours

 99% 2 3 days, 15 hours

 99.9% 3 8 hours, 45 minutes

 99.99% 4 52 minutes, 32 seconds

 99.999% 5 5 minutes, 15 seconds

 99.9999% 6 31.5 seconds

 99.99999% 7 3.15 seconds

CHAPTER 1 ■ HIGH AVAILABILITY AND DISASTER RECOVERY CONCEPTS

6

 Figure 1-2. Common causes of downtime

 There are mainly two types of downtime:

• Planned downtime

• Unplanned downtime

 Planned downtime, also referred to as planned maintenance, is a duration of time that is planned in
advance for activities such as these:

• Maintenance,

• Upgrades (software, hardware),

• Patching service packs or hotfix (cumulative or security updates).

 Planned downtime typically does not cause data loss but can make the data unavailable from the users
unless preventive steps are taken in advance to minimize the effects of the downtime. Unplanned downtime,
also referred to as an unplanned outage, is an event that you cannot predict in advance:

• Datacenter failure caused by natural disasters, fire loss, or power loss, to name a few;

• Server failure due to software or hardware failures;

• Storage subsystem failure;

• Human error (such as dropping a table by mistake or shutting down the server).

 Unplanned downtime not only will make the data unavailable but in many cases may also cause data
loss. In most cases, data loss can be prevented or minimized by investing in planning for such events in
 advance .

CHAPTER 1 ■ HIGH AVAILABILITY AND DISASTER RECOVERY CONCEPTS

7

 What Is Disaster Recovery?
 Disaster recovery is not the same as high availability although the terms are often mistakenly interchanged.
Earlier in this chapter, we discussed that high availability is about putting together people, processes, and
technologies in place before a failure occurs to prevent the failure from affecting the availability of the data.
 Disaster recovery is about using people, processes, and technologies to recover any lost data and make it
available again after a failure occurs. Figure 1-3 shows some common causes of natural disasters such as fire,
storms, tornadoes, and man-made disasters like bugs, failed changed implementations, spills, and terrorism,
to name a few.

 Figure 1-3. Common causes of disaster

 Many customers use high availability and disaster recovery interchangeably because it is possible to
have a solution that provides both high availability and disaster recovery. However, it is not necessary that if
a solution provides high availability, it will also provide disaster recovery and vice versa. In fact, it is common
to see most of our customers have some form of high availability. However, disaster recovery is mostly on
their to-do project list, which is often never implemented and paid attention to until a disaster actually
occurs.

 Recovery Objectives
 Before implementing a disaster recovery plan, it is important to understand what costs that a disaster can
incur to the business. For example, say your datacenter is destroyed by a hurricane. How long will it take
to recover and return to normal operations? How much data loss can your business accept? To design a
disaster recovery plan, you have three main requirements for the business unit:

• Recovery Time Objective (RTO). It is the maximum allowable downtime when a
failure occurs. In other words, it is the maximum acceptable amount of time by
business to restore normal operations after a failure. After a failure occurs, your
primary goal is to restore normal operations to the point that business can continue
normally.

• Recovery Point Objective (RPO). It is the maximum acceptable level of data loss
after a failure occurs. It represents the point in time to which the lost data can be
recovered.

CHAPTER 1 ■ HIGH AVAILABILITY AND DISASTER RECOVERY CONCEPTS

8

• Recovery Level Objective (RLO). It defines the granularity with which the data needs to
be recovered after a failure occurs. For an SQL Server, it will define whether you must
be able to recover the whole instance or database or a group of databases or tables.

 RTO, RPO, and RLO requirements must be documented in the service-level agreements (SLAs) and
should be reviewed periodically and changed as your environment changes. For example, let’s say your
database size increases from 250 GB to 2.5 TB in a year. This will significantly change the RTO as now you
need to work with a database that is 10 times larger as compared to when the original RTO was documented.

 Most DBAs are not aware of RTO, RPO, or RLO requirements. Without knowing these requirements,
DBAs risk a huge mismatch between what they are able to recover after a failure occurs and what a business
needs to effectively survive a failure. Therefore, it is very important to understand the RTO, RPO, and RLO
requirements before a disaster occurs and proactively design a disaster recovery plan and test it periodically.

 Planning for Disaster Recovery
 Disasters are unpredictable and recovering from them can be stressful, time consuming, and expensive –
especially for businesses that have not proactively thought about such a situation. On the other hand, businesses
that have planned for DR in advance are better able to deal with the disaster and are able to resume normal
operations with comparatively minimal or no loss of data, productivity, and revenue.

 The main goal of a disaster recovery plan is to recover any lost data and resume normal operations after
a failure has occurred. When you are creating a DR plan, management and IT personnel should identify
scenarios for different types of disasters that can affect your business, document the steps that are required
for each scenario, and agree to follow the plan when a disaster occurs. For DR of your SQL Servers, the steps
should be written by your senior-most DBAs in such a way that they can be implemented by your junior-most
DBAs or third party with very little help. The plans should not only include detailed technical steps; it should
also include what steps each person involved in the recovery needs to implement. This type of documentation
is normally referred to as a run-book or a cook-book . Once the steps are written, it is highly recommended to
simulate the disasters and test the steps to ensure it will work when you have a real disaster .

 ■ Note To ensure that the DR plans are up to date; complete; and can meet your RPO, RTO, and RLO
requirements, they should be periodically tested and updated (at least once every six months). DR plans should
be practiced by the same people who will be involved in the recovery process should a disaster occur.

 Summary
 High availability and disaster recovery solutions differ from each other but are often erroneously
interchanged. While HA solution is about preventing a failure from affecting the availability of data, DR
solution is about recovery from a failure and resuming high availability of data. Most customers spend their
time and resources in prevention and have some form of HA solution but only 50% of them have a DR plan.
Out of the 50%, only half have ever tested their DR plans, which is equivalent to not having one at all. While
prevention is important, it is equally important to have a solid DR plan that you can follow to recover with
minimal loss of data, productivity, and revenue should a real disaster occur.

 In the next chapter, we will discuss the common SQL Server solutions that are available to build end-to-
end HA and DR solutions for your mission-critical applications.

9© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_2

 CHAPTER 2

 Introduction to Always On

 In today's fast evolving business and commerce landscape, businesses need to be up all the time. Downtime
equates to revenue loss, and businesses are looking for ways to increase availability and improve their
disaster recovery capability. The IT professional architecting solutions and the IT professional supporting
such solutions are increasingly feeling the heat from businesses to implement cutting-edge technologies to
achieve their uptime goals.

 A recent incident, where the New York Stock Exchange (NYSE) was shut down, caused huge trading
losses as trades could not be made for almost four hours. This incident highlights the importance of high
availability and the impact of downtime on businesses. There are numerous such incidents happening every
day and the IT professionals have to use all the options they have in their arsenal to mitigate such risks. To
cater to this need, Microsoft introduced and provided a new high availability and disaster recovery solution
called Always On in SQL Server 2012. This feature was further enhanced in SQL Server 2014 and then in SQL
Server 2016.

 Common Solutions before Always On
 SQL Server provides several options for creating high availability and/or disaster recovery for a server or
database. Let’s assume you are in the market to buy new phones for yourself and your family. You go to the
electronics shop nearest to your home and pick up the cheapest smartphone they have to offer. This shop
provides great deals but they do not have a return policy. You go back home happy with your purchase. The
next day, you are surfing the Internet and you find that the biggest online retailer had a buy one, get one
free deal going on for the same phone. If only you had done your research and looked at all your options
before heading out to the electronics store, you could have bought two phones for the price of one. Similarly,
investing into a particular HA/DR solution without exploring all the alternatives that the product (SQL
Server in this case) has to offer can cause buyer’s remorse and limit you from meeting your SLA goals.

 Let’s take a brief look at the high availability and disaster recovery solutions that were available before
Always On was released (i.e., before SQL Server 2012). The options we discuss in this chapter are still
available in SQL Server 2016.

 Failover Cluster Instances (FCI)
 Failover Cluster Instance (FCI) is a single instance of SQL Server that is installed across Windows Server
Failover Clustering (WSFC) nodes. Imagine you are traveling on an airplane and during the flight, the pilot
starts feeling dizzy. The co-pilot takes over immediately without any disruption to the service, and the
passengers won’t even notice that someone else is now flying the plane. The two pilots flying the plane are
like two nodes in a cluster. When the main pilot becomes unavailable the co-pilot takes over without any
disruption to the service. Similarly, when one node becomes unavailable the other takes over the services.

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

10

FCI can also be stretched across multiple datacenters residing in the same or different subnets. On the
network, an FCI appears to be an instance of an SQL Server running on a single computer. The clients
connect to a single virtual network name (VNN) for the FCI. When FCI fails over from one WSFC node to
another, the clients use the same VNN to connect to the SQL Server instance even after a failover. SQL Server
data for the instance is stored in the shared storage. On failover the second node connects to the shared
storage and presents the data back to the user. There is no data duplication/redundancy within the failover
cluster configuration.

 Figure 2-1 shows a typical SQL failover cluster setup. The client PCs connect over the public network
and the cluster nodes communicate with each other over the private network(optional). You do not need to
have two separate networks. Both public connectivity and intracluster communication can occur over one
network provided there is redundancy for the network.

 Figure 2-1. SQL failover cluster diagram

 ■ Note FCI is now a part of the SQL Server Always On Offering and renamed/rebranded as Always On
Failover Cluster instance.

 Database Mirroring
 FCI provided an instance and node level failover. Database mirroring is a solution to increase database
availability by supporting almost instantaneous failover at the database level. As the name suggests, a
mirrored database is an exact copy of the database that has been mirrored. Objects outside the database
are not copied to the mirror server as part of the database mirroring synchronization process. Database
mirroring can be used to maintain a single standby database, or mirror database, for a corresponding
production database that is referred to as the principal database. For automatic failover capability, a
witness server can be added to the configuration along with synchronous mirroring. Both synchronous and
asynchronous mirroring can be set up within the same datacenter or across datacenters.

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

11

 Figure 2-2 shows a typical database mirroring setup. Asynchronous mirroring is typically set up
between two SQL Server instances in separate datacenters for disaster recovery purposes. And synchronous
mirroring is typically set up between two SQL Server instances in the same datacenter for high availability.
Witness provides the automatic failover capability.

 Figure 2-2. Database mirroring diagram

 ■ Note Database mirroring feature is deprecated and will be removed in a future version of SQL Server.
Avoid using this feature in new development work, and plan to modify applications that currently use this
feature. It is recommended that you use Always On Availability Groups instead.

 Log Shipping
 Similar to database mirroring, log shipping operates at the database level. You can use log shipping to
maintain one or more warm standby databases (referred to as secondary databases) for a single production
database that is referred to as the primary database.

 Imagine you are driving a car and suddenly you realize that you have a flat tire. You are in luck — you
have a spare tire in the trunk. You pull over and replace the flat tire with the spare one. Log shipping standby
databases are like spare tires. If the primary database becomes unavailable for some reason, you can failover
to your secondary database. If the secondary database needs to be kept up to date using transaction log
backups, then the following things need to happen:

• Transaction log backups need to happen periodically on the primary database
(recovery model needs to set to full recovery model on the primary database for
transaction log backups to be allowed).

• The transaction log backups need to be copied over to the secondary.

• The transaction log backups need to be restored on to the secondary database.

 In log shipping, the backup, copy, and restore activities are managed through SQL Server agent jobs that
are created when log shipping is configured. In newer cars nowadays, sensors notify the driver if the tire air
pressure drops below a certain limit. Similarly, in log shipping, a monitor server does the job of the sensors
by monitoring the health of the backup, copy, and restore jobs. And if they are not healthy, they can be
configured to raise alerts and notify administrators.

 Figure 2-3 shows a typical log shipping setup. Log shipping is typically set up between multiple SQL
instances in separate datacenters for disaster recovery purposes .

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

12

 Replication
 Replication is like a magazine subscription. People subscribe to magazines (articles) and get the latest copy
weekly, biweekly, or monthly (depending on the frequency that they choose). The magazines are distributed
by agents. Similarly, in SQL Server, the objects being replicated are called articles, and articles make up a
publication. The SQL Server instance hosting the publication is called the publisher. SQL Server or non-SQL
Server targets requiring data updates from the publisher and the publication are called the subscribers.
The multiple agents (snapshot, log reader, distribution agents) within SQL Server do the job of replicating
the data from the publisher to the subscriber. The magazine example is just to provide a simple overview of
replication.

 There is a lot more to replication. There are different types of replication that implement different
 methods of moving data from the publisher to the subscriber and in some cases getting the changes from the
subscriber back to the publisher. In replication, you do not have to necessarily replicate the entire database.
You can choose the tables/objects that you want to replicate from within a database. When replication was
first introduced, it was with the intention to provide a read/write copy for reporting purposes, where the
reporting applications would connect to the copy of the production data on the subscriber and not have to
go against the production database itself. Replication has evolved over the years and new types have been
added for scalability and high availability. Since it’s an additional copy of the data, it can be leveraged for
high availability/disaster recovery in certain scenarios.

• Snapshot replication

 Snapshot replication is the most basic type of replication. As the name suggests, it
distributes data exactly as it appears at a specific point in time (snapshot) . Changes
to data are not monitored; hence when data synchronization happens, a snapshot of
the entire publication is generated and sent to subscribers. Snapshot replication is
ideal if the data changes infrequently and if you are replicating small volumes of data
or if a large volume of changes occurs over a short period of time.

 Figure 2-3. Log shipping diagram

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

13

• Transactional replication

 This is the most common type of replication used by our customers. Transactional
replication typically starts with a snapshot of the publication database objects
and data. Subsequent data changes at the publisher are monitored and delivered
to the subscriber as they happen. Basically, incremental changes are propagated
to subscribers as they occur. This replication type is ideal, where the application
requires low latency between the time that changes are made at the publisher and
when the changes arrive at the subscriber. This replication type is also useful in
the case where the publisher has a very high volume of insert, update, and delete
activity.

• Merge replication

 Just like transactional replication, merge replication typically starts with a snapshot
of the publication database objects and data. However, in this case, the data changes
to both the publisher and the subscriber are monitored with the help of triggers. The
changes from the publisher are delivered to the subscriber and vice versa. Conflicts
can occur; however it has the ability to detect and resolve them. It allows multiple
subscribers to update the same data at various times and propagate those changes to
the publisher and to other subscribers.

• Peer-to-Peer replication

 Out of all the different replication types, Peer-to-Peer (P2P) replication is the
most likely to be used for high availability purposes. P2P replication was built on
transactional replication. It provides a scale-out and high availability solution by
maintaining copies of data across multiple server instances, also referred to as
nodes. As data is maintained across the nodes in near real time, P2P replication
provides data redundancy, which increases the availability of data .

 Figure 2-4 shows a typical peer-to-peer replication setup. Read/write data is replicated across multiple
server instances in geographically separate locations.

 Figure 2-4. Peer-to-Peer replication diagram

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

14

 During the holiday season, I was shopping around for a TV. My simple expectation was a high definition
display and amazing surround sound. Unfortunately, I could not find one TV that had both. Every TV had
either great display or great sound. So I settled for a cheaper TV and also got a sound bar. The combination
of TV and sound bar was my solution for the TV viewing experience that I was looking for. Similarly, many
times one high availability/disaster recovery solution may not meet your business needs. In such situations,
you can use more than one solution.

 For example, a very common high availability and disaster recovery solution that organizations use is to
use Failover Cluster Instances (FCIs) to protect SQL Server instances within each datacenter, combined with
asynchronous database mirroring, to provide disaster recovery capabilities for mission-critical databases.
Another common high availability and disaster recovery solution that organizations incorporate (when they
need more than one secondary datacenter or if they do not have shared storage) is database mirroring with a
witness within the primary datacenter combined with log shipping to move data to multiple locations .

 Limitations and Concerns
 The solutions discussed so far achieve high availability and disaster recovery. However, these solutions are
fragmented and have some limitations:

• Database mirroring does not allow multiple secondaries.

• Database mirroring solution is a one-to-one mapping, which means multiple
databases cannot fail over as a group.

• Log shipping might lose data and does not fail over automatically.

• From a cost perspective, investments are not used to their full potential because the
passive servers mostly run idle.

• Offloading of reporting and maintenance tasks from the primary server is not easy.

• SAN is a single point of failure in failover clustering.

• Peer-to-peer transactional replication does not automatically detect a failure or
automatically fail over, so the various nodes in the topology provide warm standby
copies of the published data.

 What Is Always On?
 Always On is a collection of high availability and disaster recovery functionality with the goal to minimize
recovery point objective (RPO) and recovery time objective (RTO) further below the times that can be
already achieved with the above solutions. Always On was introduced in SQL Server 2012 and addresses
most of the above-mentioned limitations. There are two solutions included under the Always On umbrella:

 1. Availability Groups

 2. Failover Cluster Instances

 Availability groups were first introduced in SQL Server 2012 and then got further enhanced in SQL
Server 2014 and 2016. Failover Cluster Instances were the existing FCI feature that got enhanced when it got
rolled under the Always On umbrella. For the purpose of this book, we will be focusing on availability groups
and diving deep into the technology in the later chapters. Each solution has different characteristics, making
them appropriate for different scenarios, and both can be combined in the same deployment.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

15

 You can consider Always On Availability Groups as a greatly enhanced version of database mirroring.
Availability groups address most of the limitations that database mirroring had and enhances the high
availability and disaster recovery capability. It does this by providing an integrated set of options, including
automatic and manual failover of a group of databases , multiple secondaries, active secondaries, fast
application failover, and automatic page repair.

 Always On Failover Cluster Instances enhance the existing SQL Server failover clustering and support
multi-subnet clustering, which helps enable cross-datacenter failover of SQL Server instances. Fast and
predictable instance failover is another key benefit, which helps ensure fast application recovery. Table 2-1
below provides a quick summary of the differences between the two Always On solutions.

 Table 2-1. Always On Solutions

 Failover Cluster Instances (FCI) Availability Group (AG)

 Enhanced under Always On Introduced in SQL 2012

 Server Failover Multi-database failover

 Shared Storage Direct attached storage

 Passive Secondary Nodes Active Secondary Replicas

 Failover takes 30s to a couple of minutes
(server restart)

 Failover takes less than 30s (secondary replicas are online)

 Both solutions require Windows Server Failover Cluster

 Always On Availability Groups have been enhanced quite a bit since they were first introduced in
SQL Server 2012. In SQL Server 2012 it supported up to five availability replicas per availability group (one
primary and up to four secondary replicas). We will be discussing the concepts and the specifics in detail in
later chapters. Let’s take a look at some of the enhancements in the various versions over the years.

 SQL Server 2014
• Number of secondaries increased to eight replicas;

• Increased availability for readable secondaries through reduction in the events that
caused the readable secondaries to be unavailable;

• New wizard added for adding an Azure replica;

• Enhanced diagnostics through new functions like “is_primary_replica” and new
DMVs like “sys.dm_io_cluster_valid_path_names”;

• Simplified dashboard with addition of the “add/remove column” button for the
hidden columns. This made DBAs click on it and discover all those hidden columns
that they didn’t know existed before.

 SQL Server 2016
• Improvement in log transport performance

• Improvement in database level failover trigger

• Load balancing in readable secondaries

CHAPTER 2 ■ INTRODUCTION TO ALWAYS ON

16

• Group-managed service account support

• Microsoft Distributed Transaction Coordinator (MSDTC) support

• More than two automatic failover targets

• Basic Availability Group (BAG) in Standard Edition

• SQL Server 2016 and Windows Server 2016 – Better together

• Domain-Independent Availability Groups

• Automatic Seeding

• Distributed Availability Groups

• Support for encrypted databases

• Support for SSIS Catalog

• Updatable columnstore index support on secondary replica

 Summary
 As you can see, SQL Server offers a gamut of HA/DR solutions. Understanding their benefits and limitations
will equip you with making the right decision when it comes to designing your enterprise SQL Server
environment for HA/DR. Of these solutions, we will focus on availability groups for the remainder of this
book. Availability groups offer both HA and DR and so much more. A lot of improvements were made in SQL
Server 2016. Don’t worry if you are not familiar with some of the terms used in this chapter; it’s okay. This
chapter is just to provide an overview on Always On. We will be looking at the terms, terminology, concepts,
and implementation specifics in detail in the upcoming chapters. In the next chapter, we will take a look at
the availability group concepts and common topologies.

 PART II

 Planning Always On Availability
Groups

19© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_3

 CHAPTER 3

 Concepts and Common Topologies

 Always On Availability Groups (AGs) provide the best in class and cost-effective, high availability (HA)
and disaster recovery (DR) solutions for on-premises and cloud applications. Availability group solutions
are significantly improved as compared to previous SQL Server solutions like database mirroring and log
shipping. It provides an integrated set of options, including automatic and manual failover of a group of
databases, multiple secondaries, active secondaries, fast application failover, and automatic page repair.

 Availability Group Concepts
 The basic concept of an availability group solution is simple. An availability group solution supports a set
of primary user databases and one to eight sets of corresponding secondary user databases. The secondary
databases are kept up to date with the primary databases by transferring transaction log blocks from each
primary database to every secondary database either synchronously or asynchronously over the network.
Figure 3-1 shows a typical availability group solution.

 Figure 3-1. Typical availability group solution

 As we are building the foundation for Always On Availability Group solutions, in this chapter we want to
define the terms that we will be using many times in the next chapters.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

20

 Availability Group and Replicas
 An availability group (AG) is a container for a set of discrete user databases known as availability databases
that fail over together as a group. The unit of failover is the availability group. Any object that resides outside
the availability databases like logins, jobs, and linked servers do not fail over with the availability group .

 Each availability group defines a set of two or more failover partners known as availability replicas . An
availability replica hosts a copy of the availability databases.

 ■ Note There is no enforced limit on the maximum number of availability groups (AGs) or availability
databases. Microsoft has extensively tested with 10 AGs and 100 databases per physical replica. The maximum
number depends on your specific environment (hardware, workload, etc.), and you need to thoroughly test the
solution in a test environment before deploying it in the production environment.

 For a given availability group, the availability replicas must be hosted by separate instances of SQL
Server running on different nodes of the same Windows Server Failover Cluster (WSFC). Availability
groups rely on Windows Server Failover Cluster for health monitoring, failover coordination, and server
connectivity. Each SQL Server instance can be used for many availability groups, but each availability group
can host only one copy of a user database on an SQL Server instance.

 ■ Note Even though availability groups require Windows Server Failover Cluster, it does not require the SQL
Server instance to be clustered nor does it require shared disks. SQL Server instance can be stand-alone or
clustered. Most availability group solutions use stand-alone SQL Server instances and local hard disks.

 An availability group is a WSFC role, previously referred to as a resource group. It defines a set of two or
more failover partners known as availability replicas. There are two types of availability replicas:

• Primary replica

• Secondary replica

 Primary replica is the replica that hosts the primary databases and makes them available for read-write
connections to clients. Secondary replica is the replica that maintains a secondary copy of each primary
database and serves as a potential failover target for the availability group.

 ■ Note An availability group supports one primary replica and up to eight secondary replicas.

 The secondary replica is an active replica as it supports read-only access to the secondary databases
for your reporting workload. Also, it allows performing backups and maintenance tasks such as database
integrity checks on the secondary database without impacting the production workload on the primary
replica. Figure 3-2 shows the availability replicas.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

21

 Each of the readable secondary replicas can be configured using one of the following three options:

• Yes – The secondary replica allows all connections with read-only workload.

• No – The secondary replica denies all connections. This is the default option.

• Read-intent only – The secondary replica allows connections to be made from
applications that explicitly specify the ‘ApplicationIntent=ReadOnly’ connection
string option.

 Availability Group Listener
 An availability group listener is similar to the virtual network name (VNN) and virtual IP (VIP) address(es)
created in an SQL Server failover clustering instance (FCI). An availability group listener allows the clients
to connect to an availability group database in a primary or secondary replica without needing to know
the physical name of the SQL Server instance that it is connecting to. This means that the clients and
applications only need to know about one entry point.

 ■ Note An availability group listener is dedicated to a single availability group. Different availability groups
cannot share the same listener.

 Availability group listener consists of a Domain Name System (DNS) listener name, listener port
number, and one or more IP addresses. Availability group listeners rely on the Windows Server Failover
Cluster (WSFC) to redirect the client connections in the event of availability group failures. When you create
an availability group listener, it becomes a cluster resource with an associated VNN, VIP address(es), and
availability group dependency.

 When a primary replica goes offline and a secondary replica takes the role of the primary replica, the
availability group listener enables the clients to connect to the new primary replica. Also if read-only routing
is configured on the readable secondary replicas, read-intent client connections to the primary replica are
automatically redirected to the readable secondary replica. We will discuss read-only routing and readable
secondary replicas in detail in the chapter about readable secondary .

 Figure 3-2. Availability replicas

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

22

 ■ Note Although an availability group listener allows failover redirection and read-only routing, client
connections are not required to use them. They can directly connect to the SQL Server instance without using
the listener.

 Availability Mode
 The primary replica also sends the transaction log blocks for each primary database to every secondary
database. The availability mode of each availability replica determines whether the primary replica waits to
commit the transactions on the database until the secondary replica has written the transactions log record
to disk. Availability groups have two availability modes:

• Synchronous-commit mode

• Asynchronous-commit mode

 In synchronous-commit mode , the primary replica waits to send the transaction confirmation to the
clients until the secondary replica writes the transaction log records to disk. This mode allows zero data loss
at the cost of increased transaction latency. This mode is recommended when business requirements are to
have zero data loss and high availability .

 In asynchronous-commit mode , the primary replica does not wait for the secondary replica to write the
transaction log records to disk. The primary replica sends the transaction confirmation to the clients as soon
as the transaction log blocks are persisted on the primary database. In this mode, the transaction latency is
reduced as compared to synchronous-commit mode, but since the transaction log blocks may arrive later,
it does not guarantee zero data loss. Asynchronous-commit mode is recommended for disaster recovery
solution where the availability replicas are separated by considerable distances. We will discuss the data
synchronization workings in detail in chapter on data synchronization internals .

 ■ Note Availability groups support one primary replica and up to eight secondary replicas. All the replicas
can run under asynchronous-commit mode, or up to three of them can run under synchronous-commit mode.

 Failover and Failover Modes
 An availability group failover is a process during which the failover target takes over the primary role,
recovers the databases, and brings them online as the new primary databases. When the former primary is
available, it takes over the secondary role and its databases become the secondary database. The failover
process may be triggered by the DBA for administrative purposes or it could occur automatically if the
primary replica is not healthy.

 The type of failover that the availability replicas support s depends on the availability mode and failover
mode . There are two types of failover modes:

• Automatic

• Manual

 Synchronous-commit replicas support both automatic and manual failover modes. Asynchronous-
commit replicas only support manual failover mode.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

23

 There are three types of failover:

• Automatic failover (without data loss),

• Planned manual failover (without data loss), and

• Forced manual failover (with possible data loss).

 Automatic failover (without data loss) occurs on the loss of the primary replica. Automatic failover
causes a synchronized secondary replica to take over the primary replica role with guaranteed data
protection.

 ■ Note Starting with SQL Server 2016, automatic failover replicas have been increased from two replicas to
three replicas. This new enhancement increases the resiliency and scale of the availability groups solution.

 Automatic failover is supported only when the below conditions are satisfied:

 1. Both the primary and secondary replicas are running under synchronous-
commit mode with the failover mode set to automatic.

 2. Each secondary database is synchronized with its corresponding primary
database.

 3. Windows Server Failover Cluster ing (WSFC) has quorum.

 4. A failure condition defined by your flexible failover policy of the availability
group are met .

 Do not worry if you are not familiar with WSFC quorum or flexible failover policy – we will be discussing
them in detail in Chapters 5 and 9 , respectively. Table 3-1 shows the conditions required for automatic
failover (without data loss).

 Table 3-1. Automatic failover (without data loss)

 Replica Property Primary Availability Replica Secondary Availability Replica

 Failover Mode Automatic Automatic

 Availability Mode Synchronous-commit Synchronous-commit

 Synchronization State Synchronized Synchronized

 Availability group health monitoring in SQL Server 2012 and 2014 only monitored the health of the
primary SQL Server instance. This means that if the primary SQL Server instance is online and healthy but
an availability database goes offline or becomes corrupt, automatic failover will not be triggered.

 ■ Note Starting from SQL Server 2016, an availability group allows us to optionally configure the health
monitoring to also consider the health of the availability databases. This means that now an automatic failover
can be triggered when an availability database goes offline or becomes corrupt.

http://dx.doi.org/10.1007/978-1-4842-2071-9_5
http://dx.doi.org/10.1007/978-1-4842-2071-9_9

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

24

 Planned manual failover (without data loss) occurs when an administrator manually initiates the
failover to cause a synchronized secondary replica to take over the primary replica role with guaranteed data
protection. Manual failover is supported only when the below conditions are satisfied:

 1. Both the primary and secondary replicas are running under synchronous-
commit mode.

 2. Each secondary database is synchronized with its corresponding primary
database.

 3. Windows Server Failover Clustering (WSFC) has a quorum.

 Table 3-2 shows the conditions required for planned manual failover (without data loss) .

 Table 3-2. Planned manual failover (without data loss)

 Replica Property Primary Availability Replica Secondary Availability Replica

 Failover Mode Automatic/Manual Automatic/Manual

 Availability Mode Synchronous-commit Synchronous-commit

 Synchronization State Synchronized Synchronized

 Table 3-3. Forced manual failover (with possible data loss)

 Replica Property Primary Availability Replica Secondary Availability Replica

 Failover Mode Automatic/Manual Automatic/Manual

 Availability Mode Synchronous or Asynchronous-commit Synchronous or Asynchronous-commit

 Synchronization State Synchronized or Synchronizing Synchronizing

 Forced manual failover (with possible data loss) i s the only type of failover that an administrator can
initiate when the primary replica is lost and the secondary replica is not failover ready or no secondary
replica is synchronized. This is the only form of failover supported by asynchronous-commit replicas
because they are never synchronized. Forcing failover requires that the WSFC cluster has quorum. Forced
manual failover is also referred to as forced failover . Table 3-3 shows the conditions required for forced
manual failover (with possible data loss).

 ■ Note If you issue a forced failover on a synchronized secondary replica, all secondary databases are
suspended. You need to manually resume each suspended database individually on all secondary replicas.

 Forced manual failover is a disaster recovery option that allows an administrator to use a secondary
replica as a warm standby replica after a failure occurs. As there is a potential for data loss, the forced manual
failover option should be used with caution. The amount of data loss depends on whether any transaction
log blocks were not sent to the secondary replica before the failure. Table 3-4 shows the possibility of data
loss for a particular database on the replica after a forced manual failover .

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

25

 Common Topologies
 Now that we have defined the most common terms, let’s discuss the commonly used Always On Availability
Groups topologies and their advantages and limitations. The most common topologies that we see in the
field are the following:

• Stand-alone to Stand-alone

• SQL Failover Clustered Instance (FCI) to Stand-alone and vice versa

• SQL FCI to SQL FCI

• Extend on-premises Always On Availability Groups to Microsoft Azure

• Always On Availability Groups in Azure Virtual Machines (VMs)

• Distributed Availability Groups (introduced in SQL Server 2016)

 Stand-alone to Stand-alone
 This is the most commonly used Always On Availability Groups topology. In fact, more than 90% of the
Always On Availability Groups solutions that we see in the field use this topology. In this topology, we have
a two or more node Windows Server Failover Clusters (WSFCs) with stand-alone instances of SQL Server
running on each cluster node. Figure 3-3 shows the simplest form of an Always On Availability Groups
solution implementation. The figure shows a two-node WSFC with two stand-alone instances of SQL Server
each running on separate nodes of the cluster.

 Table 3-4. Possibility of data loss after forced manual failover

 Availability mode of Secondary Replica Database Synchronization State Is data loss possible?

 Synchronous-commit Synchronized No

 Synchronous-commit Synchronizing Yes

 Asynchronous-commit Synchronizing Yes

 Figure 3-3. Stand-alone to Stand-alone AG Topology using two-node WSFC

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

26

 ■ Note Since the SQL Server instances are stand-alone, there is no shared storage required in this topology.
Each stand-alone SQL Server instance has its own copy of the data stored in local storage.

 In the simplest form, the above topology will have both the cluster nodes in the same datacenter and
the replicas running under synchronous-commit mode with the failover mode set to automatic. With this
configuration, you will achieve a highly available solution with automatic failover (without data loss). You
also have disaster recovery as there are two sets of databases (one on each node). Additionally, you can
configure the secondary replica as readable and offload the reporting workload to the secondary replica
without impacting the primary workload running on the primary replica.

 The disadvantage to this configuration is that since both the nodes are in the same datacenter, there
is no datacenter level disaster recovery available. As Availability Groups support one primary replica and
up to eight secondary replicas, you can easily add more replicas and configure them to achieve the HA and
DR business requirements for your applications. One popular configuration to achieve high availability
and datacenter level disaster recovery is to add a third node in a disaster recovery datacenter. Figure 3-4
shows a similar topology. The replicas (primary replica and secondary replica 1) in the primary datacenter
are running under synchronous-commit mode with automatic failover to provide high availability. The
third replica (secondary replica 2) is in a disaster recovery datacenter and is running under asynchronous-
commit mode to provide datacenter level disaster recovery. Also, since the third replica is running under
asynchronous-commit mode, the performance of the Availability Groups solution will not be affected by the
network latency between the two datacenters .

 Figure 3-4. Stand-alone to Stand-alone AG Topology using three-node WSFC for HA and DR

 ■ Note All the three nodes are participating in the same WSFC and do not use any shared storage. This is a
non-shared solution as the stand-alone SQL Server instances store the databases in local storage.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

27

 If your budget does not allow adding a third replica but you still need to provide datacenter level
disaster recovery, then you can place the second replica in the disaster recovery datacenter. In this
configuration, you will need to set the availability mode appropriately based on the network latency between
the two datacenters. For example, you may have to set the availability mode to asynchronous-commit mode
when the datacenters are far apart and network latency is a problem.

 As you can imagine, there are a lot of possibilities in the stand-alone to stand-alone topology to deploy a
complete HA and DR solution based on your business requirements.

 SQL Failover Clustered Instance (FCI) to Stand- alone and Vice Versa
 Always On Availability Groups solutions are not limited to using stand-alone SQL Server instances. SQL
Server Failover Clustering Instance (SQL FCI) for the primary or the secondary replica is also supported.
Figure 3-5 shows a two-node SQL FCI configured as a primary replica of an availability group with a stand-
alone SQL Server secondary replica. Typically, the SQL FCI is placed in the primary datacenter to provide
high availability and the stand-alone SQL Server replica is placed in another datacenter for disaster recovery
purposes.

 Figure 3-5. SQL FCI to Stand-alone AG Topology

 There are a couple of things that you need to know if you use SQL FCI in an AG topology.

 1. The SQL FCI and stand-alone SQL Server are all members of the same Windows
Server Failover Cluster.

 2. Always On Availability Groups do not support automatic failovers to and from an
SQL FCI. SQL Server enforces this behavior by disabling the option for automatic
failover for any replica that is an SQL FCI. You can still have automatic failover
from one node to another node within the SQL FCI, but the availability replica on
the FCI can only manually fail over to or from another replica in the availability
group. Typically, this is not a problem as you do not want automatic failover from
the primary datacenter to the disaster recovery datacenter.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

28

 3. SQL FCI can host only one replica for a given availability group across all its
cluster nodes. When an availability replica is running the SQL FCI, the possible
owners list for the AG will contain only the active SQL FCI node.

 4. SQL FCI replica uses a shared storage solution. The shared storage solution is
shared only by the nodes within the SQL FCI and not between the availability
group replicas .

 SQL FCI to SQL FCI
 In this topology, both the primary replica and the secondary replicas are SQL Server FCIs. Figure 3-6 shows
SQL FCIs used as primary and secondary replicas in primary and secondary datacenters, respectively, to
provide an HA and DR solution.

 Figure 3-6. SQL FCI to SQL FCI AG Topology

 As mentioned earlier, Always On Availability Groups do not support automatic failovers to and from an
SQL FCI. So in this topology, similar to the previous topology, automatic failover will only be that of the SQL
FCI from one node to another within the SQL FCI.

 Although Always On Availability Groups support SQL FCIs as availability replicas, it is not very
commonly used by our customers. Most customers are able to meet all their high availability and disaster
recovery requirements using the stand-alone to stand-alone availability group topology. We have seen this
topology used by customers who already had an SQL FCI and wanted to extend the environment to another
datacenter using a secondary replica purely for disaster recovery scenarios.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

29

 Extend On-Premises Always On Availability Groups to
Microsoft Azure
 What if one of the business requirements is to achieve cross-site disaster recovery but the IT department
does not have a cross-site datacenter? Microsoft Azure Virtual Machines (VMs) can help us achieve cross-site
disaster recovery by extending our on-premises Always On Availability Groups to Azure. Figure 3-7 shows
two replicas in a stand-alone to stand-alone AG on-premises topology and a third replica in Microsoft Azure
making it a Hybrid IT high availability and disaster recovery solution. This solution requires a virtual private
network (VPN) connection between on-premises network and Microsoft Azure. Also, it requires a multi-
subnet Windows Server Failover Cluster (WSFC) as all the AG replicas are required to be in the same WSFC.

 Figure 3-7. Hybrid IT: Extend on-premises Always On AG to Microsoft Azure Topology

 You can use the built-in ‘Add Azure Replica Wizard’ in SQL Server Management Studio to extend the
on-premises Always On Availability Group solution to include Azure replicas. Below are some benefits that
such a hybrid solution provides:

 1. Microsoft Azure secondary replica will protect your application from issues
impacting your on-premises datacenter.

 2. Microsoft Azure provides high availability mechanisms, such as service healing
for cloud services and failure recovery detection for the VMs that further
improves the availability of your replicas.

 3. This solution will in most cases eliminate the need of an expensive disaster
recovery (DR) site, which will eliminate costs associated with DR site hardware,
maintenance, and operational costs.

 4. Also, there is no charge for network traffic going into Microsoft Azure VMs. So,
the synchronization traffic from an on-premises primary replica to a Microsoft
Azure replica will be free of charge .

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

30

 Always On Availability Groups in Azure Virtual Machine s (VMs)
 You can build a high availability (HA) and disaster recovery (DR) solution for your SQL Server databases in
Microsoft Azure using Always On Availability Groups. Figure 3-8 shows an Azure-only: HADR solution using
Always On Availability Groups.

 Figure 3-8. Azure-only: Alw ays On Availability Groups in Azure Virtual Machines Topology

 To achieve high availability, the primary replica and secondary replica 1 are running in Azure VMs
within the same region under synchronous-commit mode. To achieve disaster recovery, the secondary
replica 2 is running in a different datacenter in Azure VMs under asynchronous-commit mode. This solution
provides cross-region disaster recovery .

 ■ Note In the Azure Management Portal, there is a new gallery setup for Always On Availability Groups with a
Listener. This allows you to configure everything you need for an Always On AG solution automatically.

 Distributed Availability Groups
 Let’s say that you need to implement an HA and DR solution for a mission- critical application using SQL
Server 2016 Always On Availability Groups. You need to use the existing two-node Windows Server 2012 R2
failover clusters in your primary and secondary datacenters that are in different domains without making a
lot of big changes.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

31

 After reviewing the preceding topologies, you may have realized that they all need one single Windows
Server Failover Cluster (WSFC). But here one of the requirements is to use the two existing WSFCs. Another
requirement is to implement the solution without making a lot of big changes. That means you cannot work
with your infrastructure team to make both the datacenters in the same domain. Nor can you upgrade the
clusters to Windows Server 2016 and then create a single multi-domain cluster. So how can you accomplish
the goal of implementing an HA and DR solution using SQL Server 2016 Always On Availability Groups?

 Before discussing the solution, let’s consider another scenario. Say you have two geographically
dispersed datacenters and there are different applications (App1 and App2) in each datacenter using
Always On Availability Groups for high availability. You have been asked to include disaster recovery for the
applications in each datacenter by using the other datacenter for disaster recovery.

 One of the ways to implement a solution for both the scenarios is by combining Always On Availability
Groups with Log Shipping or Replication but you want to use Always On exclusively to make the solution
simple to deploy, administer, maintain, and troubleshoot.

 SQL Server 2016 introduced a new feature called a Distributed Availability Group that will enable you
to accomplish both the above scenarios with minimal work. Distributed availability group lets you associate
two availability groups residing on different WSFC. Figure 3-9 shows the architecture of a distributed
availability group.

 Figure 3-9. Distributed availability group

 In Figure 3-9 , there are two separate clusters (WSFC1 and WSFC2). WSFC1 is in the primary datacenter
and WSFC2 is in the secondary datacenter. Each cluster has its own availability group (AG1 and AG2)
with a matching configuration of databases. AG1 and AG2 are associated to each other with a distributed
availability group. AG1 is the primary availability group in this figure and AG2 is the secondary availability
group. All your read-write activities occur on the primary replica AlwaysOnN1, and then get replicated to
its secondary replicas (AlwaysOnN2). The changes are also replicated to the primary replica (AlwaysOnN3)
on the secondary availability group AG2 on WSFC2. The primary replica (AlwaysOnN3) replicates those
changes to its secondary replicas (AlwaysOnN4).

 ■ Note In a distributed availability group, the secondary availability group (AG2 in Figure 3-9) automatically
becomes read-only and read/write activities can occur only on the primary replica of the primary availability
group (AG1 in Figure 3-9).

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

32

 The topology shown in Figure 3-9 can be used to implement the solution for scenario 1 discussed in
this section. To implement a solution for scenario 2, you can create distributed availability groups for each
application (App1 and App2) as shown in Figure 3-10 .

 Figure 3-10. Multiple distributed availability groups

 Figure 3-10 shows two distributed availability groups . Distributed availability group 1 associates AG1
and AG2, whereas distributed availability group 2 associates AG3 and AG4. All your read/write activities
for App1 occur on the primary replica AlwaysOnN1 of primary availability group AG1 and then gets
replicated to its secondary replica AlwaysOnN2. The changes also get replicated to the primary replica
AlwaysOnN3 of the secondary availability group AG2, which then replicates the changes to its secondary
replica AlwaysOnN4. Similarly, all read/write activity for App2 occurs on the primary replica AlwaysOnN4
of primary availability group AG3. The changes then get replicated to its secondary replica AlwaysOnN3 and
then to the primary replica AlwaysOnN2 of the secondary availability group AG4.

 ■ Note Figures 3-9 and 3-10 show asynchronous-commit mode between the primary and secondary availability
groups as typically this topology is used for geographically dispersed sites. If you have a high-speed, reliable
network between your sites then you can configure synchronous-commit mode between the availability groups.

CHAPTER 3 ■ CONCEPTS AND COMMON TOPOLOGIES

33

 The following are some key differences between a regular availability group and a distributed
availability group:

• Since the distributed availability group has two WSFCs and each cluster maintains
its own quorum mode and node voting configuration, the health of the secondary
cluster does not affect the primary cluster. In a regular availability group topology,
we would need to exclude the cluster nodes at the DR site for voting to ensure that
the health of the cluster nodes in the DR site does not affect the health of the primary
site cluster nodes.

• In a distributed availability group, changes are replicated once over the network to
the secondary WSFC and then replicated within the cluster. In a regular availability
group with a single WSFC, the changes are replicated to each and every individual
replica. This makes distributed availability groups very efficient for geographically
dispersed sites.

• Automatic failover from primary availability group to secondary availability group is
not supported since automatic failover functionality is provided by WSFC, and there
is no single WSFC between the two sites in a distributed availability group .

• The operating system version on the primary and secondary WSFC can be different.
In a regular availability group, as there is only one WSFC, the operating system
version on all the cluster nodes has to be the same. Due to this advantage, you can
use distributed availability groups as one of the methods to perform rolling updates/
upgrades of the operating system.

• A distributed availability group is limited to two availability groups. However,
an availability group can be a member of more than one distributed availability
group. So, you can have distributed availability group 1 contain AG1 and AG2 and
distributed availability group 2 contain AG2 and AG3, with AG1 replicating to AG2
and AG2 replicating to AG3.

 Summary
 This chapter introduced the concepts and topologies that are important to understand in order to effectively
build, configure, and manage SQL Server 2016 Always On Availability Groups High Availability (HA) and
Disaster Recovery (DR) solutions.

 In the next chapter, we will discuss how transaction log blocks are replicated from the primary replica to
a secondary replica in synchronous and asynchronous modes.

35© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_4

 CHAPTER 4

 Data Synchronization Internals

 Now that we have looked at the Availability Groups concepts and common topologies, it’s time to dive
deeper into the internals. We have already seen that, Always On Availability Groups support two availability
modes (i.e., asynchronous-commit mode and synchronous-commit mode). In this chapter, we will try to
understand how the replication of a transaction log blocks work from the primary replica to a secondary
replica in synchronous-commit and asynchronous-commit modes.

 Trade-offs and Opportunity Cost
 Haven’t we all heard the saying, “you can’t have it all”? For example, “You can’t have all the advantages of
the single life and be married.” And, “You can’t have a busy weekend and get lots of rest.”

 Similarly, when it comes to choosing the right data synchronization mode for Always On Availability
Groups, you have to weigh the trade-offs and the opportunity cost .

 In synchronous-commit mode, the emphasis is on high availability over performance, at the cost of
increased transaction latency. Primary replicas wait to send the transaction confirmation to the client until
the secondary replica has hardened the log to disk.

 Asynchronous-commit mode runs with minimum transaction latency at the cost of high availability.
The primary replica does not wait for any of the secondary replicas to harden the log. Rather, immediately
after writing the log record to the local log file, the primary replica sends the transaction confirmation to
the client.

 To paraphrase a wise person, The bad news is that you can’t have it all. The good news is that when you
know what’s really important, you don’t want it all anyway.

 Synchronous-Commit Mode
 Figure 4-1 gives an overview of how the replication of transaction log blocks from the primary replica to a
secondary replica works in synchronous-commit mode. For synchronous-commit to occur, both the current
primary replica and the secondary replica in question must be configured for synchronous-commit.

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

36

 Data synchronization in synchronous-commit mode works as follows:

 1. A client issues a transaction against the database participating in the availability
group on the primary replica.

 2. Primary replica generates transaction log blocks. In the background, the
secondary replica initiates a request to the primary, asking for the log blocks to
be shipped. The secondary and primary will negotiate the proper log sequence
number (LSN) staring point and other necessary information. Primary replica’s
log cache gets filled with these log blocks.

 ■ Note Log block is a contiguous chunk of memory (often 60K) and maintained by the Log Manager.

 3. When the log block becomes full or the primary replica issues a commit
operation, the log blocks from the log cache are flushed to the log file to make it
persistent. In an Always On Availability Group configuration, when the log block
is being flushed to the disk on the primary replica, it also gets copied to the log
pool.

 4. The log blocks in the log pool are read by a thread called log capture, and its
job is to read the log blocks from the log pool and send them to the secondary
replica. In case of multiple secondary replicas, there is one log capture thread for
each replica that ensures that the log blocks are sent across multiple replicas in
parallel. The log content gets compressed and encrypted before being sent over
to the secondary replicas.

 Figure 4-1. Data synchronization in synchronous-commit mode

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

37

 5. On the secondary replica, a thread called log receive receives the log blocks from
the network .

 6. It writes to the log cache on the secondary replica.

 7. There’s one redo thread per database that is always running on the secondary
replica. While the log blocks are being written to the log cache, it reads those log
blocks and applies those changes to the data pages and the index pages in the
database on the secondary to bring it up to date with whatever has happened on
the primary replica. When the log block on the secondary replica becomes full,
or it receives a commit log record, it hardens the content of log cache onto the log
disk on the secondary replica.

 8. If the secondary replica is configured to run in synchronous mode, it will send
an acknowledgment on the commit to the primary node indicating that it has
hardened the transaction, and so it is safe to tell the user that the transaction is
committed. And because the log has been hardened on the secondary, there is a
guarantee that in case there is a failover, there will be no data loss.

 9. The redo thread runs independently of how log blocks are being generated on
the secondary or being copied and persisted. If the redo thread is a running few
minutes behind, those log blocks may not be available in the log cache. In that
case, the redo thread will pick up those log blocks from the log disk, and that is
what is shown in the dotted line on the right side of the figure above.

 ■ Note Availability group replicas ping each other to signal that they are still active. If a replica receives a
ping back from the other replica during the session-timeout period (default 10 seconds), it indicates that the
replicas are up and running and are communicating to each other. If the primary replica does not get a ping
response from the secondary replica within the session-timeout period, the primary replica temporarily shifts
into asynchronous-commit mode for that secondary replica. When the secondary replica reconnects with the
primary replica, they resume synchronous-commit mode.

 Asynchronous-Commit Mode
 Figure 4-2 gives an overview of how the replication of transaction log blocks from the primary replica to a
secondary replica works in an asynchronous-commit mode. The process is similar to synchronous mode
except that the acknowledge message of a successful commit is sent after the log blocks are persisted on the
primary replica’s transaction log.

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

38

 1. A client issues a transaction against the database participating in the availability
group on the primary replica.

 2. Primary replica generates transaction log blocks. In the background, the
secondary replica initiates a request to the primary, asking for the log blocks to
be shipped. The secondary and primary will negotiate the proper LSN staring
point and other necessary information.

 3. When the log block becomes full or the primary replica issues a commit
operation, the log blocks from the log cache are flushed to the log file to make it
persistent. In an Always On Availability Group configuration, when the log cache
is being flushed to the disk on the primary replica, they also get copied to the log
pool.

 4. If all secondary replicas are in an asynchronous availability mode, the success
of this step is good enough to send an acknowledgment message of a successful
commit back to the application when the I/O to the local transaction log has
completed. At the same time, the log blocks in the log pool are read by a thread
called log capture. Its job is to read the log blocks from log pool and send them
to the secondary replica. In case of multiple secondary replicas, there is one log
capture thread for each replica that ensures that the log blocks are sent across
multiple replicas in parallel. The log content gets compressed and encrypted
before being sent over to the secondary replicas .

 5. There is a thread called log receive that is running on the secondary replica. It
receives the log blocks from the network and it starts writing to the log cache .

 6. It writes to the log cache on the secondary replica.

 Figure 4-2. Data synchronization in asynchronous-commit mode

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

39

 7. There’s a redo thread that is always running on the secondary replica. While
the log blocks are being written to the log cache, it reads those log blocks and
applies those changes to the data pages and the index pages in the database on
the secondary to bring it up to date with whatever has happened on the primary
replica. When the log cache on the secondary replica becomes full, or it receives
a commit log record, it hardens the content of log cache onto the log disk on the
secondary replica.

 8. The redo thread runs independently of how log blocks are being generated on
the secondary or being copied and persisted. If the redo thread is running a few
minutes behind, those log blocks may not be available in the log cache. In that
case, the redo thread will pick up those log blocks from the log disk, and that is
what is shown in the dotted line on the right side of the figure above.

 ■ Note Starting with SQL Server 2016, the synchronization throughput of Availability Groups has increased
~10x due to improvements in the data synchronization process. The performance improvements include
parallel and faster compression of log blocks on the primary replica, an optimized synchronization protocol, and
parallel decompression and redo of log records on the secondary replica. In SQL Server 2012 and 2014, the
redo process is executed serially by a single thread and therefore bound to a single CPU core. For high-write
workloads the secondary replicas are no longer able to keep up, resulting in long downtimes during a failover.
In SQL Server 2016, the redo is executed in parallel to make use of all the available CPU cores. The database
recovery times on failover has improved, and the freshness of data on the secondary has increased due to
these improvements.

 Synchronization Behavior in Various Scenarios
 Let’s take a look at how data synchronization is affected when the primary or secondary replica fails or if
they get disconnected and what happens when they recover.

 Scenario 1: Secondary Replica Goes Offline
 While a secondary replica is unhealthy (i.e., it goes offline or gets disconnected), it is still part of the
availability group. This means that any transaction log entries that are not hardened by all the replicas in an
AG are retained by the primary replica database. This ensures that when the secondary replica comes back
online, it can receive all the log blocks that it hasn’t hardened yet. This can cause the transaction log on the
primary and other healthy secondary replicas to grow and fill the disk.

 If this happens, either you have to fix the secondary replica and bring it back online so it will start
accepting those log blocks or you need to remove the replica from the availability group. Once the unhealthy
replica is taken out of the availability group, the primary replica database doesn’t have to hold those log
blocks anymore and can overwrite them, thus reusing the transaction log.

 The same rules apply if a secondary replica database becomes unhealthy. If a secondary replica
database is taken out of the availability group or if a whole secondary replica is taken out of the availability
group, while adding it back, every secondary replica database must have the latest full backup, latest
differential log backup, and all the transaction log backups since the last backup was applied to it. This
ensures that any transaction log entries that were truncated from the transaction log of the primary replica
database after the secondary replica database was taken out of the availability group have been applied

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

40

to the secondary replica database before it is introduced back in the availability group. For a very large
database or a busy database with frequent transaction log backups, this could be difficult to achieve during
business hours. In such cases, it may be beneficial to add the databases back during off hours.

 How Does a Synchronous Secondary Replica Resynchronize with
the Primary Replica?
 1. When the synchronous secondary replica goes offline, its status changes from

Synchronized to ‘Not Synchronizing’. As soon as it changes its status, the primary
replica stops waiting for an acknowledgment that the secondary has hardened
a commit and starts treating it as an asynchronous replica. This ensures that
commits on the primary replica won’t be delayed by an unhealthy synchronous
secondary replica.

 2. Once the secondary replica is brought back online, it establishes a connection
with the primary replica and sends its End of Log (EOL) LSN to the primary
replica.

 3. On receiving this, the primary then starts sending it the log blocks that it
hardened after the EOL LSN.

 4. As soon as the secondary starts receiving and hardening these log blocks, its
status changes to Synchronizing. This indicates that the secondary replica is
connected to the primary and is catching up (i.e., it is essentially behaving as an
asynchronous replica).

 5. The secondary replica keeps hardening the log blocks, keeps applying
the hardened transactions with the REDO thread, and keeps sending this
information back to the primary replica.

 6. This goes on until the Last Hardened (LH) LSN of the primary and secondary
replica match. As soon as they do, the status of the secondary replica changes to
Synchronized and from that point onwards, primary replica starts treating it as a
synchronous replica.

 7. Primary replica starts waiting on an acknowledgment for the commit from the
secondary replica before letting the user know that the transaction has been
committed successfully.

 How Does an Asynchronous Secondary Replica Resynchronize with the
Primary Replica?
 1. When the asynchronous secondary replica goes offline, its status changes from

Synchronizing to ‘Not Synchronizing’. Primary replica responds in the same way.

 2. Once the secondary replica is brought back online, it establishes a connection with
the primary replica and sends its End of Log (EOL) LSN to the primary replica.

 3. On receiving this, the primary then starts sending it the log blocks that it
hardened after the EOL LSN.

 4. As soon as the secondary starts receiving and hardening these log blocks, its
status changes to Synchronizing. This indicates that the secondary replica is
connected to the primary and is catching up.

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

41

 Scenario 2: Primary Replica Goes Offline
 When a primary replica goes offline, the failover target takes over the primary role, recovers its databases,
and brings them online as the new primary databases. The former primary replica, when available, switches
to the secondary role, and its databases become secondary databases.

 We saw in the last chapter that there are three types of failover:

• Automatic failover (without data loss)

• Planned manual failover (without data loss)

• Forced failover (with possible data loss)

 Table 4-1 summarizes which forms of failover are supported under different availability and failover
modes. For each pair of availability replicas, the effective availability mode and failover mode is determined
by the intersection of the modes of the primary replica plus the modes of one or more secondary replicas.

 Table 4-1. Forms of failover and availability modes

 Asynchronous-commit
mode

 Synchronous-commit mode
with manual failover mode

 Synchronous-commit mode
with automatic failover mode

 Automatic
failover

 No No Yes

 Planned manual
failover

 No Yes Yes

 Forced failover Yes Yes Yes*

 * If you issue a forced failover command on a synchronized secondary replica, the secondary replica behaves
the same as for a manual failover.

 Automatic Failover Sequence of Actions
 To support an automatic failover , the conditions for automatic failover discussed in the previous chapter
on Availability Groups concepts and common topologies must be met. An automatic failover initiates the
following sequence of actions:

 1. The state of the primary databases is changed to DISCONNECTED, if the primary
replica is still running and all the clients are also disconnected.

 2. The secondary database rolls forward any log waiting in the recovery queue on
the secondary database.

 ■ Note Recovery queue is the amount of log records in the log files of the secondary replica that has not yet
been redone. The amount of log in the recovery queue, speed of the system, and the workload would determine
the amount of time required to complete the roll forward process in the secondary database.

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

42

 3. At this point, the secondary replica becomes the new primary replica. Its
databases become the primary databases. The new primary replica rolls back any
uncommitted transactions (the undo phase of recovery) as quickly as possible.
Rollback occurs in the background while clients use the database. Committed
transactions are not rolled back as part of this process.

 4. Until the secondary databases connect and resynchronize to the new primary
database, the databases are marked as NOT SYNCHRONIZED . Before the
rollback recovery starts, secondary databases can connect to the new primary
databases and quickly transition to the SYNCHRONIZED state.

 5. The original primary replica becomes the secondary replica and its databases
become secondary databases when the replica comes back online again. And it
resynchronizes with the corresponding primary replica and the databases. After
the databases have resynchronized, failover is possible again, however in the
reverse direction this time.

 Planned Manual Failover Sequence of Actions
 To support a planned manual failover , the conditions for planned manual failover discussed in the previous
chapter on Availability Groups concepts and common topologies must be met.

 You can manually fail over an availability group using SQL Server Management Studio, T-SQL, or
PowerShell. A planned manual failover, which must be initiated on the target secondary replica, initiates the
following sequence of actions:

 1. A request is sent to the primary replica by the WSFC to go offline in order to
ensure that there are no new user transactions occurring on the original primary
databases.

 2. The secondary database rolls forward any log waiting in the recovery queue on
the secondary database.

 3. At this point, the secondary replica becomes the new primary replica, and the
original primary replica becomes the new secondary replica.

 4. Any uncommitted transactions are rolled back by the new primary replica and
the databases are brought online as the primary databases.

 5. Until the secondary databases connect and resynchronize to the new primary
database, the databases are marked as NOT SYNCHRONIZING. Committed
transactions are not rolled back as part of this proces s.

 6. The original primary replica becomes the secondary replica and its databases
become secondary databases when the replica comes back online again. And it
resynchronizes with the corresponding primary replica and the databases. After
the databases have resynchronized, failover is possible again, however in the
reverse direction this time.

 Forced Failover Sequence of Actions
 You can manually fail over an availability group using SQL Server Management Studio, T-SQL, or
PowerShell.

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

43

 Forcing failover involves the following sequence of actions:

 1. Change of role for the target secondary replica to primary role is initiated from
RESOLVING or any other state.

 2. The failover target becomes the new primary replica and immediately makes its
copies of the databases available to clients.

 3. The original primary replica becomes the secondary replica and its databases
become secondary databases when the replica comes back online again.
However, all secondary databases (including the former primary databases,
when they become available) will be in the SUSPENDED state. This suspended
secondary copy might be suitable for recovering missing committed data for
the primary database. However, recovering missing data would depend on the
previous data synchronization state of the suspended secondary database.

 4. If a secondary replica is configured as readable, then you can query the
secondary databases to manually discover missing data. T-SQL statements can
be then issued on the new primary databases to make any necessary changes.

 ■ Note We recommend forcing failover only if you must restore service to your availability databases
immediately and are willing to risk losing data.

 How a Forced Failover Can Cause Data Loss
 It is critical to understand that forcing failover can cause data loss. Data loss is possible because the target
replica cannot communicate with the primary replica and, therefore, cannot guarantee that the databases
are synchronized.

 Figure 4-3 gives an overview of how a forced failover causes data loss on the primary replica and how it
can propagate to a secondary replica.

 Figure 4-3. Forced manual failover impact

CHAPTER 4 ■ DATA SYNCHRONIZATION INTERNALS

44

 1. In the above example, before the primary replica goes offline, the last hardened
LSN on the primary replica is 100 while that of the asynchronous secondary
replica is 50.

 2. After the primary replica goes offline and a forced failover is initiated, the
secondary replica becomes the new primary replica and marks its last hardened
LSN as 50.

 3. Once the old primary replica is brought online, it shows its synchronization as
suspended.

 4. If the synchronization on the old primary is resumed, it synchronizes with the
new primary; sends its last hardened LSN as 100; and when it sees that the last
hardened LSN of the new primary is 50, it rolls back its transaction log to LSN 50
and from that LSN onwards, starts accepting the transaction log blocks from the
primary replica. Thus data loss is propagated from the primary to the secondary
replica if the synchronization is resumed.

 Summary
 This chapter should have helped you understand the internal workings of data synchronization within
Availability Groups. In the next chapter, we will take a look at one of the key requirements for Availability
Groups: that is, Windows Server Failover Clustering.

45© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_5

 CHAPTER 5

 Introduction to Windows Server
Failover Clustering

 In the previous chapters, we mentioned that Always On solutions leverage the Windows Server operating
system and Windows Server Failover Cluster (WSFC) as a platform technology. For a given Always On
Availability Group, the availability replicas must be hosted by separate instances of SQL Server running
on different nodes of the same WSFC. Availability groups rely on WSFC for health monitoring, failover
coordination, and server connectivity. Hence it’s crucial that SQL Server database architects and
administrators have a better understanding of WSFC.

 Overview of a Failover Cluster
 A failover cluster is a group of independent servers that work together to increase the availability and
scalability of mission-critical applications such as SQL Server, Exchange, SAP, File Server, and Virtual
Machines. Even though a group of independent servers are working together in a failover cluster, the failover
cluster appears as a single system to the clients. Figure 5-1 shows a typical failover cluster.

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

46

 To understand the various components that make up the Windows Server failover cluster, we will define
the most common failover clustering terms.

 Cluster Node
 The independent servers that work together in a failover cluster are referred to as a cluster node . Each
cluster node has a working installation of Microsoft Windows Server operating system.

 ■ Note In Windows Server 2012 R2 and earlier versions, all the cluster nodes were required to be members
of the same domain. Starting with Windows Server 2016, you can create failover clusters without active
directory dependencies.

 You can now create failover clusters in the following configurations:

• Single-domain clusters – cluster nodes joined to the same domain.

• Multi-domain clusters – cluster nodes joined to multiple domains.

• Workgroup clusters – cluster nodes that are member servers/workgroups and not
joined to any domain.

 Figure 5-1. Typical Windows Server failover cluster

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

47

 Networks
 To ensure smooth cluster operations, it is important to have redundant and reliable communications among
all cluster nodes. Properly configured connectivity between the cluster nodes is required to provide access to
the highly available services required by the clients and to guarantee the internal cluster communications.

 To avoid a single point of failure, two or more independent networks must be connected to all the
cluster nodes. A network component failure (NIC, router, switch, hub, etc.) should not cause the cluster
communication to break down and communication should continue to make progress in a timely manner.
If cluster communication cannot proceed on one network, the switchover to the other cluster-enabled
network is automatic. This is why the cluster nodes must have multiple network adapters available to
support cluster communications and each one should be connected to a different switch.

 ■ Note Starting with Windows Server 2008 clustering, there is no concept of a public and private network.

 In previous versions of Windows failover cluster, the public network provided clients with access to
the highly available cluster services and the private network was used for internal cluster communications.
Starting from Windows Server 2008 clustering (and above), cluster communications go over all networks
that can communicate between the nodes. It’s part of the cluster health process to see if the network is up
and can talk to the other node.

 Cluster Resource
 A cluster resource is a physical or logical entity that can do the following:

• be managed by a failover cluster,

• be brought online or taken offline,

• be hosted (owned) by only one cluster node at any point of time.

 Examples of cluster resources are a network name, IP address, disk, and Availability Group listener.

 Resource Dependency
 Resource dependency is a two-way association between resources. If a resource A depends on resource B,
then resource B is a dependency of resource A. As an example, a network name resource depends on an IP
address resource. This means that for a network name resource to be online, an IP address resource needs to
be online first. Also, if you take the network name resource offline, the IP address resource will be first taken
offline followed by the network name resource. A resource can be dependent on multiple resources using
 AND or OR logic.

 Role
 A role , previously referred to as resource group, is a collection of resources that are required to run a specific
application or service. An Availability Group is a role.

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

48

 Failover
 Failover is the process of moving a group from one cluster node to another in the case of a failure. Windows
server failover cluster attempts to perform a failover of a group when the following happens:

• A cluster node failure or a resource failure occurs and the restart threshold is hit

 Or

• An administrator performs a manual failover

 Failback
 Failback is the process of moving a group to the preferred owner. When a node becomes inactive for some
reason, the failover cluster fails over the groups hosted by the node. When the node becomes active again,
the failover cluster can fail back the groups originally hosted by the node. By default, failback is disabled on
the groups. The default setting is useful as you do not want the groups to be in a ping-pong situation when
they fail over from one node to another and then fail back to the original node as soon as it is active and
then again fail over if the original node becomes inactive again. It is better to first evaluate the cause of the
original failure and remediate the issue and only after ensuring that the node is healthy is when you should
manually fail back the groups to the original node.

 ■ Note Even though the default failback settings work for most scenarios, you can configure the failback to
occur during a specific time period, say between 8 p.m. to midnight. If you do configure failback, it is important
to set the failback time such that failback does not happen during peak business hours.

 Preferred Owner
 Preferred owner (also referred to as preferred node) is the cluster node where you want the resource group
to run. Most customers do not set the preferred owner for a group because it does not matter where the
group resides. All that matters is that the group is running on one of the cluster nodes. When a node fails, the
remaining nodes take over the groups from the failed node. This will increase the load on the other nodes
and unless it has the capacity to take on more loads, performance will be affected. Hence, it is important
to design the failover cluster such that the nodes can host the groups in case of failover with minimum
performance impact. Failback does not occur if a preferred owner is not configured for the group.

 ■ Note One strong motivation to use preferred owners with availability groups is due to licensing. Availability
groups (AG) does not require a SQL Server license for one disaster recovery (DR) replica as long as it is truly
passive and the primary SQL Server instance is covered by active Software Assurance (SA). In this case,
Microsoft usually places a limit on how many days you can run the AG on the DR replica in a year. To ensure
that the limit is not exceeded, you can utilize preferred owners and scheduled failbacks.

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

49

 Possible Owner
 Possible owner (also referred to as possible node) is a cluster node that can run a resource. By default, all
cluster nodes are possible owners so that the resources can run on any node. In most cases, we use the default
settings. But if you have a scenario where you have a multi-node cluster and you do not want a particular
node to not run some resources, you can remove the node from the possible owners list of the resource.

 Heartbeat
 The failover cluster keeps track of the current state of the cluster nodes within a cluster and determines
when a group and its resources fail over to another cluster node. The communication takes place in the form
of messages that are sent regularly between each cluster node. These messages are called cluster heartbeats .
The cluster heartbeats let all nodes know which node is up and down. The cluster heartbeat mechanism
uses port 3343 and is unicast in nature and uses a Request-Reply type process. This provides for higher
security and more reliable packet accountability.

 Table 5-1 shows the heartbeat configuration settings along with default and maximum values.

 Table 5-1. Heartbeat Configuration Settings

 Parameter Windows Server 2012
R2 (default)

 Windows Server 2016
(default)

 Maximum

 SameSubnetDelay 1 second 1 second 2 seconds

 SameSubnetThreshold 5 heartbeats 10 heartbeats 120 heartbeats

 CrossSubnetDelay 1 second 1 second 4 seconds

 CrossSubnetThreshold 5 heartbeats 20 heartbeats 120 heartbeats

 CrossSiteDelay NA 1 second 4 seconds

 CrossSiteThreshold NA 20 heartbeats 120 heartbeats

 ■ Tip To be more tolerant of transient failures on Windows Server 2012 R2 and below, it is recommended
to increase the SameSubnetThreshold and CrossSubnetThreshold values to the higher Windows Server 2016
values.

 The delay parameter is the frequency at which the cluster heartbeats are sent between cluster nodes. It
is the number of seconds before the next heartbeat is sent. By default, for single subnet (SameSubnetDelay)
and multi-subnet clusters (CrossSubnetDelay), a heartbeat is sent every one second.

 The threshold parameter is the number of heartbeats that a cluster node can miss before the failover
cluster takes recovery action. By default, for single subnet (SameSubnetThreshold) and multi-subnet
(CrossSubnetThreshold) clusters, if a node misses a series of five heartbeats, the cluster considers the node
to be unreachable and takes recovery action.

 CrossSiteDelay and CrossSiteThreshold are new parameters for Windows Server 2016 failover clusters
that have nodes in different fault domain sites.

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

50

 It is important to understand the following:

 1. Both the delay and threshold have a cumulative effect on the total health
detection. For example, setting SameSubnetDelay to send a heartbeat every 2
seconds and setting the SameSubnetThreshold to 10 heartbeats missed, means
that the cluster can have a total network tolerance of 20 seconds before recovery
action is taken.

 2. Increasing the network resiliency to network hiccups comes at a cost of increased
downtime when there is a complete loss of server also referred to as ‘hard’
failures.

 3. Increasing the thresholds to higher values does not resolve the transient network
issue: it simply masks the problem by making health monitoring less sensitive.

 The cluster heartbeat configuration settings are advanced settings and are exposed only via PowerShell.
These settings take effect immediately and can be run any time without causing any downtime .

 Quorum
 Mission-critical workloads hosted on failover clusters are considered highly available if the cluster nodes
that are hosting the resources are up. However, the cluster generally requires more than half the nodes to
be up and running, which is known as having a quorum. The quorum of a failover cluster determines the
number of failures the cluster can sustain while still remaining online. If an additional failure occurs beyond
this threshold, the cluster will stop running.

 Quorum is extremely important for any high availability solution and is designed to handle the scenario
when there is a communication problem between sets of cluster nodes, so that two nodes do not try to
simultaneously host a resource group and write to the same disk at the same time. This is known as split-brain
syndrome , and you need to prevent this to avoid any potential corruption to a disk by having two simultaneous
disk owners. The failover cluster forces the cluster service to stop in one of the subsets of nodes to ensure that
there is only one true owner of a particular resource group. Once the stopped nodes can communicate with the
main group of nodes, they will automatically rejoin the cluster and start the cluster service.

 Quorum is based on a voting algorithm where more than half of the voters must be online and be able
to communicate to each other. The concept is similar to a parliament house or committee. If there are too
few members present, then the committee does not have a quorum (required number of votes) and cannot
hold an election. More than half of the total votes is required to achieve quorum to avoid having a tie in the
number of votes in a partition, since majority will mean that the other partition has less than half the votes.
In a five-node failover cluster, three voters must be online; yet in a four-node failover cluster, three voters
must also remain online to have majority. Because of this logic, it is recommended to have an odd number of
voters in the cluster. A voter in a cluster can be the following:

• A cluster node – every cluster node has one vote.

• Disk witness, file share witness, or cloud witness – either a disk witness, file share
witness, or a cloud witness can have one vote in the cluster but not multiple disks,
multiple file shares, multiple cloud witnesses, nor any combination of the three.
 Cloud witness is only available in Windows Server 2016.

 ■ Note If a healthy failover cluster loses quorum, failover cluster is designed to stop the cluster services
causing our mission-critical applications such as Always On Availability Groups to shut down. Therefore, it is
critical to ensure that Quorum is always maintained or the cluster service will be stopped.

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

51

 Dynamic Quorum
 To understand this concept, let’s assume you have a five-node failover cluster. If you lose three nodes, the
remaining nodes would go offline even though there are two nodes remaining. To avoid this scenario,
starting from Windows Server 2012 failover clustering, a new functionality called dynamic quorum was
introduced. As the name implies, dynamic quorum adjusts the quorum dynamically. This allows the failover
cluster to continue to function when less than 50% of the nodes are active.

 Dynamic quorum works only if the nodes are shut down sequentially. So, in the five-node failover
cluster scenario above, assuming you didn’t lose all the three nodes at the same time, as cluster nodes went
offline, the number of votes in the quorum would adjust dynamically. When the first node failed, you would
in theory have a four-node cluster. When the second node failed, you would then have a three-node cluster,
and so on. If you continued to lose cluster nodes one by one, you could go all the way down to a one-node
cluster also referred to as Last Man Standing and still remain online .

 ■ Note Dynamic Quorum is enabled by default when a Windows Server 2012 (or above) failover cluster is
created.

 Dynamic Witness
 Even with dynamic quorum functionality, the administrator had to determine whether to add a quorum
witness (disk or file share) or not depending on the number of nodes to make it always an odd number.
The administrator had to monitor and manually keep changing the value as nodes were added or evicted
from the cluster. To relieve this burden from the administrator, starting with Windows Server 2012 R2,
 dynamic witness is enabled by default when the failover cluster is created. As the name suggests, dynamic
witness automatically takes care of when to use the quorum witness or not, relieving the burden from the
administrator.

 ■ Note The new recommendation for Windows Server 2012 R2 (and above) failover clusters is to include
the quorum witness and the cluster will decide when to use its vote or not. Windows Server 2012 R2 has two
types of quorum witnesses (disk and file share) and Windows Server 2016 has an additional witness type (cloud
witness).

 If there is an even number of nodes in the cluster, then the cluster will consider the witness as a vote
(1) and will make the total votes an odd number. If there is an odd number of nodes in the cluster, then the
cluster will not consider the witness vote (0) as you already have an odd number. If the witness goes offline,
then the cluster makes the witness vote as 0 to prevent any unnecessary issues due to quorum failures .

 Benefits and Limitations of Failover Cluster
 Now that you are familiar with the most common cluster terms, we will discuss the benefits and limitations
of failover cluster. This will help you understand what a cluster is capable of doing and what it cannot do.

CHAPTER 5 ■ INTRODUCTION TO WINDOWS SERVER FAILOVER CLUSTERING

52

 As discussed earlier in this chapter, if one cluster node fails, a process called failover automatically shifts
the workload of the failed node to another working node in the cluster. This ability of a failover cluster to
handle failures allows the cluster to meet two important requirements:

• High availability – the ability to provide the end users access to a service for a high
percentage of time while reducing unscheduled outages.

• High reliability – the ability to reduce the frequency of system failures.

 Because the mission-critical services are not bound to any specific cluster node, interruption to any
such node only has a minor impact on the overall availability of the service. On the other hand, a single
server solution would be completely offline during a patch window or disaster that affected the host. On a
multi-node cluster, the hosted mission-critical services can be easily moved from the node that needs to
be taken offline for maintenance or disaster recovery, which greatly improves the overall uptime of the
mission-critical application.

 Another benefit of failover cluster is Scalability. Starting with Windows Server 2012 (and above),
failover clustering supports up to 64 cluster nodes. This helps to easily scale out the solution by adding
nodes to it. For example, if you have a two-node failover cluster hosting applications that is getting close
to hitting a node-specific capacity limit such as CPU or memory, it is very easy to add a third node and
redistribute the load.

 The total cost of ownership (TCO) has been reduced for failover clusters as the failover clustering
feature is now included (starting from Windows Server 2012 and above) in Standard Edition. With this
change, small- and medium-size businesses can take advantage of high availability in their standard server
deployments.

 Although failover clustering has a lot of benefits it is important to understand its limitations, too.
Failover clustering does not protect from these :

• Shared storage failures,

• Network failures,

• Hack attacks,

• Operational errors.

 Failover clustering does not provide load balancing and fault tolerance. Fault tolerant servers are those
that have complete redundancy across all components. If one component fails, the secondary component
takes over in a process that is seamless to the application running on the server. This is different from a
failover cluster where a hardware or software failure causes the workload to move from the failed node to
a healthy node. During the failover process, the end users are disconnected briefly and there is minimum
downtime incurred.

 Summary
 In this chapter, we provided an overview of Windows Server failover cluster and covered all the basics
of failover cluster. We defined the most common failover cluster terms and discussed the benefits and
limitations of failover cluster. In the next chapter, we will discuss the requirements and considerations for
deploying Always On Availability Groups.

53© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_6

 CHAPTER 6

 Prerequisites

 Chapter 5 looked at Windows Server Failover Cluster (WSFC), one of the key requirements for Always On
Availability Groups. In this chapter, we will look at the prerequisites for deploying availability groups.

 Windows Requirements
 To support the Always On Availability Groups feature, ensure that every computer that is participating in one
or more Availability Groups meets the following fundamental requirements:

• OS is Windows Server 2008 or later

• Each computer should be running either x86 (non-WOW64) or x64 Windows
Server 2008 or later versions.

 ■ Note Server Core version is supported for availability groups.

• OS edition supports Windows Server Failover Clustering (WSFC) feature

• For Windows Server 2008 and 2008 R2, the failover clustering feature is available
in Enterprise and Windows Datacenter editions.

• For Windows Server 2012 and 2012 R2, the failover clustering feature is available
in Standard and Datacenter editions.

• At the time of writing this book, Windows Server 2016 edition features have not
been announced. But in all probability, the failover clustering feature will be
available in Standard and Datacenter editions.

• Members of the same domain (only for SQL Server 2012 and SQL Server 2014)

• Each computer participating in the SQL Server 2012 or 2014 availability groups
should be a member of the same domain.

http://dx.doi.org/10.1007/978-1-4842-2071-9_5

CHAPTER 6 ■ PREREQUISITES

54

• In Windows Server 2012 R2 and previous versions, a cluster can only be created
between member nodes joined to the same domain. However, starting with
Windows Server 2016, you can now create a Failover Cluster without Active
Directory dependencies, as discussed in Chapter 7 .

 Failover clusters can be created in the following configurations:

• Single-domain Clusters - Clusters with all nodes joined to the same
domain.

• Multi-domain Clusters - Clusters with nodes that are members of different
domains.

• Workgroup Clusters - Clusters with nodes that are member servers /
workgroup (not domain joined).

• Hence SQL Server 2016 on Windows Server 2016 is supported in the following
environments:

• Cross domains (with trust)

• Cross domains (no trust)

• No domain at all

 ■ Note Windows Server 2016 clusters use certificates for intra-cluster authentication. Management of SQL
Server does not change; it uses certificate-secured endpoints internally like database mirroring.

• Not a domain controller

• The computer should not be a domain controller.

• Install Windows Server updates and hotfixes

• The SQL Server product group provided a list of hotfixes to be installed on
the operating system if it were to host an availability group. Refer to the
recommended hotfix list documented in books online in the link below:

 http://msdn.microsoft.com/en-us/library/ff878487.aspx#WinHotfixes

 ■ Note Windows Server 2012 includes all the fixes recommended for availability groups on Windows Server
2008 R2.

• Is a node of the same Windows Server Failover Cluster (WSFC)

• Each computer should be a node in a WSFC.

http://dx.doi.org/10.1007/978-1-4842-2071-9_7
http://msdn.microsoft.com/en-us/library/ff878487.aspx#WinHotfixes

CHAPTER 6 ■ PREREQUISITES

55

 ■ Note Distributed Availability Groups can be set up between availability groups in different WSFCs as seen
in Chapter 3 . However, the nodes participating in the individual availability groups should be in the same WSFC.

• Sufficient nodes to support your Availability Group configuration

• For a given availability group, a WSFC node can host only one availability
replica. However, on a given WSFC node one or more instances of SQL Server
can host availability replicas for many Availability Groups. So make sure you
have sufficient nodes to support your availability group configuration.

 Recommendations
 Now let’s take a look at some recommendations for the computers that host availability replicas:

• OS - Windows Server 2012 or above

• Windows Server 2012 and above works best with availability groups and
includes all the fixes for Availability Groups.

• Can handle comparable workload

• For a given availability group, all the availability replicas should run on
comparable computers that can handle identical workloads.

• Sufficient disk space

• Every computer on which a SQL Server instance hosts an availability replica
must possess sufficient disk space for all the databases in the availability group.

• Dedicated network adapters

• Use a dedicated network adapter (NIC) for availability group data
synchronization to achieve best performance. The same network links
should be used for communications between WSFC cluster members and
communications between availability replicas. If separate network links are
used, then it can cause unexpected behaviors in case some of the links fail.

 SQL Server Instance Requirement s
 To support the Always On Availability Groups feature, ensure that every SQL Server instance that is to
participate in one or more availability groups meets the following requirements:

• Windows Server Failover Clustering (WSFC) host

• The computer hosting the SQL Server instance must be a Windows Server
Failover Clustering (WSFC) node.

• Reside on separate nodes of a single WSFC

• The SQL Server instance that host availability replicas for a given availability
group must reside on separate nodes of a single WSFC cluster.

http://dx.doi.org/10.1007/978-1-4842-2071-9_3

CHAPTER 6 ■ PREREQUISITES

56

 ■ Note In case of a distributed availability group, the SQL instances can reside on nodes in different WSFCs,
as a distributed availability groups can be set up between availability groups in different WSFCs. However, the
SQL Instances participating in the individual availability group should still be on the nodes of a single WSFC.

• Enterprise Edition

• Use SQL Server Enterprise Edition to configure availability groups on SQL
Server Instances.

 ■ Note Basic Availability Groups do not need SQL Server Enterprise Edition and is supported on SQL Server
Standard Edition.

• Same SQL Server collation

• All the SQL Server instances that host availability replicas for an availability
group must use the same SQL Server collation.

• Enable availability groups feature

• On each SQL Server instance that will host an availability replica for any
availability group, enable the availability groups feature.

• For Kerberos support with the Availability Group:

• Use the same SQL Server service account for all the SQL Server instances that
host an availability replica for the availability group.

• Manually register a Service Principal Name (SPN) with Active Directory on
the SQL Server service account for the virtual network name (VNN) of the
Availability Group listener. Domain administrator permissions are required to
perform this operation.

• For FILESTREAM support for databases in the availability group:

• Make sure that the FILESTREAM feature is enabled on every SQL Server
instance that will host an availability replica for the Availability Group.

• For contained databases, support for databases in the Availability Group :

• Make sure that the contained database authentication server option is set
to 1 on every SQL Server instance that will host an availability replica for the
availability group.

 Availability Database Requirement s
 To support the availability groups feature, ensure that every database that is to participate in the availability
group meets the following requirements:

• It should be a user database

 ■ Note System databases cannot be part of an availability group.

CHAPTER 6 ■ PREREQUISITES

57

• It should be a read-write database

 ■ Note Read-only databases cannot belong to an availability group.

• It should be a multiuser database

• It should not have AUTO_CLOSE option enabled

• It should have its recovery model set to full recovery

• It should have at least one full backup

• It should not belong to an existing availability group

• It should not be configured for database mirroring

 Availability Group Interoperability
 There are scenarios where you need to use certain other SQL Server features along with availability groups.
The following features interoperate with Always On availability groups in SQL Server 2016:

• Analysis Services

• Change data capture

• Change tracking

• Contained databases

• ColumnStore Indexes (support for updatable columnstore index on the secondary
replicas was introduced in SQL Server 2016)

• Cross-database transactions between databases hosted on two different SQL Server
instances

• Database encryption

• Database snapshots

• FILESTREAM and FileTable

• Full-text search

• In-Memory OLTP

• Log shipping

• Remote Blob Store (RBS)

• Reporting Services

• Service Broker

• SQL Server Agent

• Stretch Database

• Server instances

• Replication

CHAPTER 6 ■ PREREQUISITES

58

 Only certain types and certain components of replication are supported.
 Following is the support matrix for the different types and components of replication :

 Publisher Distributor Subscriber

 Transactional Yes No Yes (No automatic failover)

 Peer to Peer No No No

 Merge Yes No Yes (No automatic failover)

 Snapshot Yes No Yes (No automatic failover)

 ■ Note Bidirectional and reciprocal transactional replication is not supported.

 Summary
 This chapter should have helped you understand the requirements and considerations for deploying
Availability Groups. You might want to use the above as a checklist for your availability groups deployment.
Now that you have a good understanding of the requirements and considerations for deploying availability
groups, in the next chapter we will take a look at how to create a WSFC .

 PART III

 Deploying Always On Availability
Groups

61© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_7

 CHAPTER 7

 Create a Windows Server Failover
Cluster

 After reviewing the requirements and considerations for creating Always On Availability Groups in chapter 6 ,
you understand that one of the key requirements for creating Always On Availability Groups is creating a
Windows Server Failover Cluster (WSFC). In this chapter we will provide step-by-step instructions to create a
Windows Server 2016 failover cluster using Failover Cluster Manager interface and Windows PowerShell.

 The setup environment used in this book simulates an almost real-life production environment. It
consists of five servers:

• One Domain Controller (DC) named AlwaysOnDC.

• Two member servers named AlwaysOnN1 and AlwaysOnN2 in the primary
datacenter for high availability.

• Third member server named AlwaysOnN3 in the secondary datacenter for disaster
recovery.

• One client machine named AlwaysOnClient in the primary datacenter.

 ■ Note Most real-life production environments typically will have at least two domain controllers to provide
high availability and fault tolerance.

 All the servers (AlwaysOnN1, AlwaysOnN2, and AlwaysOnN3) are members of the same domain
CORPNET.CONTOSO.COM and have Windows Server 2016 Standard Edition and stand-alone instances of
SQL Server 2016 Enterprise Edition installed. To provide a high availability and disaster recovery solution
using Always On Availability Groups, we will create a three-node Windows Server 2016 Failover Cluster.
Figure 7-1 shows the setup environment that we have used in the book.

http://dx.doi.org/10.1007/978-1-4842-2071-9_6

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

62

 ■ Note Before proceeding to create the failover cluster, ensure that the setup account that will be used
to create the failover cluster has membership in the local Administrators group on all the servers that will
become cluster nodes and active directory Create Computer Objects and Read All Properties privileges in the
organization unit (OU) to create the computer objects.

 Create a Windows Server Failover Cluster Using Failover
Cluster Manager
 We first discuss the steps to create a Windows Server Failover Clustering using the Failover Cluster Manager
graphical user interface (GUI). By default, the Failover Cluster Manager interface is not installed on the
operating system. In the first step, you will install the failover clustering feature during which you will also
install the failover clustering tools including the Failover Cluster Manager interface.

 Step 1: Install Failover Clustering Feature
 Before you can create a Windows Server 2016 Failover Cluster, you need to install the Failover Clustering
feature on the servers that you want to include in the cluster. In this step, we will show you how to install the
Failover Clustering feature on the servers using the Add Roles and Features Wizard.

 ■ Note The minimum permissions required to install the Failover Clustering feature on a server is
membership in the local Administrators group.

 Figure 7-1. Setup environment used in this book

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

63

 Open Add Roles and Features Wizard
 Using the setup account, log on to the server that you want to include in the failover cluster. Right-click Start
menu and select Control Panel. In Control Panel, select Administrative Tools and then Server Manager.
In Server Manager, click the Manage menu and select Add Roles and Features from the list as shown in
Figure 7-2 .

 Figure 7-2. Accessing Add Roles and Features Wizard from Server Manager

 This will invoke the Add Roles and Features Wizard as shown in Figure 7-3 . Review the Before you begin
screen and then select Next.

 Figure 7-3. Add Roles and Features Wizard

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

64

 Select Installation Type
 In the Select installation type screen, you can install roles and features or virtual machines. To install the Failover
Clustering feature, select Role-based or feature-based installation as shown in Figure 7-4 and click Next.

 Figure 7-4. Selecting the installation type

 Select the Servers
 In the Select destination server screen as shown in Figure 7-5 , select the correct server on which you want to
install the Failover Clustering feature and click Next. This will open the Select server roles screen. Since you
want to install the Failover Clustering feature and not a role, click Next.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

65

 Select Failover Clustering Feature
 In the Select features screen, click Failover Clustering as shown in Figure 7-6 . A pop-up screen will appear with
additional tools to manage the Failover Clustering feature as shown in Figure 7-7 . Click Add Features to install
the Failover Cluster Management Tools and Failover Cluster Module for Windows PowerShell. Click Next.

 Figure 7-5. Selecting the server to install the Failover Clustering feature

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

66

 Figure 7-6. Selecting the Failover Clustering feature

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

67

 Confirm Installation Selections
 In the Confirm installation selections, review your selections and click Install as shown in Figure 7-8 .

 Figure 7-7. Adding additional tools to manage the Failover Clustering feature

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

68

 ■ Note The installation of the Failover Clustering feature does not require a reboot, making it unnecessary to
check the Restart the destination server automatically if required check box.

 When the Failover Clustering feature is installed, you will see the Results screen shown in Figure 7-9 .
Click Close.

 Figure 7-8. Confirming the installation selections for the Failover Clustering feature

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

69

 After you install the Failover Clustering feature, the Failover Cluster Manager interface is available in
the Tools menu of the Server Manager interface. Alternately, you can also open Failover Cluster Manager by
opening Control Panel then selecting Administrative Tools and Failover Cluster Manager.

 ■ Note Repeat the above steps to add the Failover Clustering feature to all the servers that you want to
include in the Windows Server 2016 Failover Cluster. Without installing the Failover Clustering feature on a
server, you cannot include it in a failover cluster.

 Step 2: Validate Failover Cluster
 After installing the Failover Clustering feature on all the servers that you want to include in the cluster, the
next step is to run the cluster validation wizard to ensure that failover clustering will be supported on the
entire configured solution (servers, network, storage). The cluster validation wizard tests the underlying
hardware and software and tells us if anything is missing or configured improperly. It also simulates
common cluster operations to obtain an accurate assessment of how well failover clustering can be installed
and supported.

 A Windows Server 2016 Failover Cluster is considered to be officially supported by Microsoft Customer
Support Services (CSS) if they meet the below criteria:

• All the hardware and software components are “Certified for Windows Server 2016” and

• The fully configured solution (servers, network and storage) must pass all tests in the
cluster validation wizard.

 In this step, we will show how to run the cluster validation wizard using Failover Cluster Manager.

 Figure 7-9. Results screen for installing the Failover Clustering feature

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

70

 Open Cluster Validation Wizard
 Using the setup account, log on to one of the servers that you want to include in the failover cluster. Right-
click Start menu and select Control Panel. In Control Panel, select Administrative Tools and then Failover
Cluster Manager. In Failover Cluster Manager, select Validate Configuration action, which can be found in
three places as shown in Figure 7-10 .

 Figure 7-10. Invoking the Cluster Validation Wizard using Failover Cluster Manager

 This will invoke the Validate a Configuration Wizard (also referred to as the Cluster Validation wizard)
as shown in Figure 7-11 . Review the Before You Begin screen and click Next to start the validation process.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

71

 Select Servers or a Cluster
 In the Select Servers or a Cluster screen, enter the names of all the servers that will be part of the failover
cluster separated by a semicolon and click Add. Figure 7-12 shows the screen for our environment with the
three server names AlwaysOnN1, AlwaysOnN2, and AlwaysOnN3. Click Next to continue.

 Figure 7-11. Reviewing the Before you begin screen of the Cluster Validation Wizard

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

72

 Select Testing Options
 In the Testing Options screen, select Run all tests (recommended) as shown in Figure 7-13 . As mentioned
earlier, Microsoft supports a cluster solution only if the complete configuration can pass all the tests in the
wizard. Click Next to continue.

 Figure 7-12. Entering the servers names that you want to include in the cluster

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

73

 The cluster validation wizard is a very powerful tool and is not only used for initial cluster validation,
but it is often used to troubleshoot an existing failover cluster. While troubleshooting an existing cluster, you
may not want to run all the tests and run only the tests that are affecting the issue. For such scenarios, select
the second testing option Run only tests I select. A common scenario is to uncheck some or all the storage
tests when you are not troubleshooting storage. If storage tests are selected, the disks assigned to cluster
roles will be taken offline during the tests, making them unavailable during the tests.

 Confirm Selections
 In the Confirmation screen as shown in Figure 7-14 , review the settings and confirm that you want to run the
selected validation tests. Click Next to start the validation process .

 Figure 7-13. Selecting Run all tests in the Testing Options screen

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

74

 Review Report
 In the Summary screen, ensure that the tests completed successfully and the configuration is suitable for
clustering. A sample Summary screen is shown in Figure 7-15 .

 Figure 7-14. Confirming the selections for Cluster Validation

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

75

 Click View Report to review the validation report. A sample validation report is shown in Figure 7-16 .
Click Finish to close the wizard. The validation report is stored on the C:\Windows\Cluster\Reports folder
for future review.

 Figure 7-15. Reviewing Cluster Validation Summary Screen

 Figure 7-16. Sample Validation Report

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

76

 ■ Note If any tests fail, Microsoft does not consider the configuration to be supported. The problem must be
corrected and the cluster validation wizard rerun to confirm that the configuration passes all the tests.

 Step 3: Create Windows Server Failover Cluster
 After installing the failover clustering feature and validating the configuration, you are ready to create a new
failover cluster. In this step, we will demonstrate how to create a failover cluster using the Failover Cluster
Manager interface.

 Open Create Cluster Wizard
 Open Failover Cluster Manager (Start menu ➤ Control Panel ➤ Administrative Tools ➤ Failover Cluster
Manager) and select Create Cluster action, which can be found in three places as shown in Figure 7-17 .

 Figure 7-17. Invoking Create Cluster action in the Failover Cluster Manager

 This invokes the Create Cluster Wizard as shown in Figure 7-18 . Review the Before You Begin screen
and click Next to start creating the failover cluster.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

77

 Figure 7-18. Reviewing the Before You Begin screen of the Create Cluster Wizard

 Select Servers
 In the Select Servers screen, enter the names of all the servers that will be part of the failover cluster
separated by a semicolon and click Add. Figure 7-19 shows the screen for our environment with the three
server names AlwaysOnN1, AlwaysOn2, and AlwaysOnN3. Click Next to continue.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

78

 Type Access Point for Administering the Cluster
 In the Access Point for Administering the Cluster screen, type the name for the failover cluster. This cluster
name is also the name that can be used to connect to manage it. During the cluster creation, the cluster
name is registered as the cluster name object (CNO) in the Active Directory domain. By default, the CNO gets
created in the same organization unit (OU) where the computer objects for the cluster nodes reside.

 For increased flexibility, if you wish to create the CNO in a different OU location, you can do so by
specifying the fully distinguished name. The distinguished name includes the path to the OU under which
you would like the computer object created. For example, if you want to create a cluster name object named
AlwaysOnCluster and want to place it in an OU called AlwaysOnOU in the Corpnet.Contoso.Com domain, the
fully distinguished name will be CN=AlwaysOnCluster,OU=AlwaysOnOU,DC=Corpnet,DC=Contoso,DC=Com

 The cluster name account (CNO) is very important, because through this account, other accounts
also referred to as Virtual Computer Objects (VCOs) are automatically created as you configure new
highly available roles in the cluster. This would include roles such as availability group, SQL Server failover
clustering instance (FCI), etc.

 Figure 7-19. Adding the servers that you want to include in the cluster

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

79

 ■ Note The cluster name object (CNO) needs to have Create Computer Objects privilege on the organization
unit (OU) it currently resides in to be able to create Virtual Computer Objects (VCOs). If the cluster name account
is deleted or permissions are removed, other accounts cannot be created until the cluster name account is
restored or the correct permissions are reinstated.

 Also, in the Access Point for Administering the Cluster screen, select the networks you want to be used
and type the cluster IP address as shown in Figure 7-20 . In this figure, we have two cluster IP addresses as we
have two subnets (one in primary datacenter and the other in the disaster datacenter) in our environment.
Click Next to continue.

 Figure 7-20. Entering the cluster name and network address to access the failover cluster

 ■ Note If you are using a specific organizational unit (OU) like we have done in our setup environment,
ensure that the setup account is given the Create Computer Objects and Read all Properties on the OU.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

80

 Figure 7-21. Review selections in the Confirmation screen

 ■ Note Uncheck Add all eligible storage to the cluster. By default, this box is checked. Failure to uncheck this
box will add all the storage (including the local drives) to the cluster. If you choose not to add all eligible storage
to the cluster, you can always add specific disks after the cluster is created.

 Confirm Selections
 Confirm the selections in the Confirmation screen as shown in Figure 7-21. Click Next to continue.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

81

 Review any warnings that may be displayed. For example, the following warning is displayed in the
Summary screen for our setup:

 An appropriate disk was not found for configuring a disk witness. The cluster is not
configured with a witness. As a best practice, configure a witness to help achieve the highest
availability of the cluster. If this cluster does not have shared storage, configure a File Share
Witness or a Cloud Witness.

 This warning is expected in our environment as we do not have any shared disk in the environment.
Click the View Report to review the report created by the wizard. This report is stored on the C:\Windows\
Cluster\Reports folder for future review. Click Finish to close the wizard. The Failover Cluster Manager
interface will automatically connect to the cluster when the wizard closes as shown in Figure 7-23 .

 Figure 7-22. Reviewing the Create Cluster Summary

 Review Report
 Review the Summary screen to ensure that the cluster is successfully created as shown in Figure 7-22 .

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

82

 Figure 7-23. Failover Cluster Manager connected to the newly created cluster

 Step 4: Configure Cluster Quorum
 Since we did not have shared storage, the Create Cluster Wizard did not configure the cluster with a witness.
It gave us a warning and recommended to configure a File Share Witness or a Cloud Witness to help achieve
high availability of the cluster. In this step, we will demonstrate the steps to configure cluster quorum with a
File Share Witness.

 A file share witness is a Server Message Block (SMB) file share that is configured on a file server running
on a Windows Server. The file share witness must meet the following requirements:

• Must have a minimum of 5MB free space

• Must be dedicated to a single failover cluster

• Must not be used to store user or application data

• Cluster name object (CNO) must have write permissions on the file share witness

 Below are some considerations for the file server that hosts the file share witness:

• If you need the file server to be highly available, you can configure the file server on a
separate failover cluster

• A single file server can be configured with multiple file share witnesses for multiple
clusters

• For multisite clusters, consider having the file server on a different site to allow equal
opportunity for any cluster site to survive if site-to-site networking has problems.

 Open Configure Cluster Quorum Wizard
 Open Failover Cluster Manager, right-click cluster name, select More Actions, and then select Configure
Cluster Quorum Settings as shown in Figure 7-24 .

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

83

 Figure 7-24. Invoking Configure Cluster Quorum Wizard

 This will open the Configure Cluster Quorum Wizard as shown in Figure 7-25 . Review the Before You
Begin screen and click Next to continue.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

84

 Select Quorum Configuration Option
 On the Select Quorum Configuration Option screen, choose Select the quorum witness option as shown in
Figure 7-26 . Click Next to continue.

 Figure 7-25. Reviewing the Before You Begin Screen of Configure Cluster Quorum Wizard

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

85

 Select Quorum Witness
 On the Select Quorum Witness screen, choose Configure a file share witness as shown in Figure 7-27 . Click
Next to continue.

 Figure 7-26. Selecting a quorum configuration

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

86

 Starting with Windows Server 2016 Technical Preview, failover cluster introduces the cloud witness
quorum type. The cloud witness quorum takes advantage of the Microsoft Azure public cloud as the witness
for the failover cluster. This can be very useful for multisite clusters that do not have a third site to place a
file share witness. The cloud witness acts the same as a file share witness, gets a vote, and can participate in
quorum calculations.

 ■ Note To configure a cloud witness quorum, you need a valid Microsoft Azure Storage Account Name and
Access Key corresponding to the Storage Account. This information is entered in the Configure cloud witness
screen that is invoked by selecting the option Configure a cloud witness in the Select Quorum Witness screen
shown in Figure 7-27 .

 Figure 7-27. Selecting a quorum witness option

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

87

 Configure File Share Witness
 On the Configure File Share Witness screen, type or browse the file share that will be used as the file share
witness as shown in Figure 7-28 and then click Next to continue.

 Figure 7-28. Configuring file share witness

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

88

 Figure 7-29. Confirming cluster quorum settings

 Confirm Selections
 Confirm the quorum settings on the Confirmation screen as shown in Figure 7-29 and then click Next to start
the quorum configuration.

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

89

 Review Report
 Review the Summary screen to ensure that the quorum is configured successfully as shown in Figure 7-30 .

 Click the View Report to review the report created by the wizard. This report is stored on the
C:\Windows\Cluster\Reports folder for future review. Click Finish to close the wizard.

 Create a Windows Server Failover Cluster Using PowerShell
 Earlier in this chapter, we demonstrated the steps to create a three-node Windows Server 2016 Failover
Cluster using the Graphical User Interface Server Manager and Failover Cluster Manager. In this section, we
will demonstrate the steps to create the failover cluster using Windows PowerShell cmdlets.

 ■ Note To run the PowerShell cmdlets, open the PowerShell console with elevated privileges by right-clicking
the PowerShell app and selecting Run as administrator .

 Figure 7-30. Reviewing the Cluster Quorum Settings Summary

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

90

 Step 1: Install Failover Clustering Feature Using PowerShell
 Log on to the server that you want to include in the failover cluster using your setup account. Open an
elevated PowerShell console and type the Install-WindowsFeature PowerShell cmdlet to install the
Failover Clustering feature as shown below:

 Install-WindowsFeature -Name Failover-Clustering - IncludeManagementTools

 ■ Note The -IncludeManagementTools switch in the above command installs the Failover Cluster
Management tools and Failover Cluster Module for Windows PowerShell.

 If you want to install the Failover Clustering feature on other servers without having to log into them,
use the -ComputerName parameter as shown below:

 Install-WindowsFeature -Name Failover-Clustering -IncludeManagementTools -ComputerName
server_name

 To view the installed Failover Clustering feature, run the below PowerShell command:

 Get-WindowsFeature *clus*

 Step 2: Validate Failover Cluster Using PowerShell
 Open an elevated PowerShell console and type the below PowerShell cmdlet Test-Cluster followed by the
server names as shown below:

 Test-Cluster -Node AlwaysOnN1,AlwaysOnN2,AlwaysOnN3

 Step 3: Create Windows Server Failover Cluster Using PowerShell
 Open an elevated PowerShell console and type the PowerShell New-Cluster cmdlet to create a new cluster
and have the cluster name object (CNO) AlwaysOnCluster placed in the OU named AlwaysOnOU in the
Corpnet.Contoso.com domain as shown below:

 New-Cluster -Name "CN=AlwaysOnCluster,OU=AlwaysOnOU,DC=CORPNET,DC=CONTOSO,DC=COM" -Node
AlwaysOnN1,AlwaysOnN2,AlwaysOnN3 –StaticAddress 10.1.1.201,20.1.1.201 -NoStorage

 ■ Note The -NoStorage parameter is specified to not add all eligible storage to the cluster.

 Step 4: Configure Cluster Quorum Using PowerShell
 To configure the cluster quorum to use file share witness using PowerShell, use the Set-ClusterQuorum
cmdlet as shown below:

 Set-ClusterQuorum –NodeAndFileShareMajority “\\File Share Path”

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

91

 Workgroup and Multi-Domain Clusters
 As we discussed in chapter 5 , Windows Server 2016 Failover Clusters no longer require the cluster nodes to
be part of the same domain or live in any domain at all. Now you can create a failover cluster using servers
that are in workgroups. You can now create failover clusters without Active Directory (AD) dependencies.

 SQL Server 2016 Always On Availability Groups are supported on workgroup and multi-domain
clusters . You can now deploy SQL Server 2016 Always On Availability Groups not only on single-domain
clusters which a majority of our customers use but also on workgroup and multi-domain clusters that caters
to the needs of a select set of customers.

 ■ Note The ability to create failover clusters without domains and support availability groups opens up a
number of new scenarios for our customers, and removes previous blocks that prevented migration from the
deprecated Database Mirroring technology to Always On Availability Groups.

 In this section, we will demonstrate the steps to create a workgroup and/or multi-domain cluster. The
below prerequisites for single-domain clusters still apply for workgroup and multi-domain clusters:

• All the hardware and software components must be “Certified for Windows
Server 2016.”

• The fully configured solution (servers, network and storage) must pass all cluster
validation tests.

 ■ Note Similar to creating traditional single-domain failover clusters, Failover Cluster Manager interface and
Windows PowerShell can be used to create workgroup or multi-domain clusters.

 In addition to the prerequisites of single-domain clusters, the below steps are needed to create a
workgroup and multi-domain cluster .

 Step 1: Create a Local User Account on Each Cluster Node
 In an environment without AD security, you need to do the following on all the nodes of the cluster:

• Create a local user account

• The user name and password of the account must be the same on all nodes

• The account must be a member of the local Administrators group

• If you are using a non-built-in local administrator account to create the cluster,
open an elevated PowerShell console and set the LocalAccountTokenFilterPolicy
registry policy to 1 as follows:

 new-itemproperty -path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System -Name
LocalAccountTokenFilterPolicy -Value 1

http://dx.doi.org/10.1007/978-1-4842-2071-9_5

CHAPTER 7 ■ CREATE A WINDOWS SERVER FAILOVER CLUSTER

92

 ■ Caution Without setting the LocalAccountTokenFilterPolicy registry policy will result in Requested
registry access is not allowed error while trying to create a cluster using non-built-in administrator accounts.

 Step 2: Ensure All Nodes Have Primary DNS Suffix
 One of the many things that happen when a server is joined to a domain is that the primary DNS suffix is
automatically configured, which matches the name of the AD DNS domain name and is identical to the DNS
zone name. However, workgroup servers normally do not have a primary DNS suffix. Before you can create
a workgroup cluster, you will need to manually configure the primary DNS suffix on all the servers that you
want to include in the failover cluster.

 Step 3: Create Workgroup or Multi-Domain Cluster
 Workgroup and multi-domain clusters needs to be created as an Active Directory-Detached Cluster without
any associated computer objects. Therefore, the cluster needs to have a cluster network name (also referred
to as the administrative access point) of type DNS. Open an elevated PowerShell console, and type the below
 New-Cluster cmdlet to create the workgroup or multi-domain cluster

 New-Cluster –Name <Cluster Name> -Node <Nodes to Cluster> -AdministrativeAccessPoint DNS

 Step 4: Configure Quorum
 The recommended cluster witness type for workgroup or multi-domain clusters is a cloud witness or disk
witness. File share witness is not supported with a workgroup or multi-domain cluster. To configure cloud
witness quorum, open an elevated PowerShell command and type the Set-ClusterQuorum cmdlet as shown
below:

 Set-ClusterQuorum –CloudWitness –AccountName <StorageAccountName> -AccessKey
<StorageAccountAccessKey>

 Summary
 In this chapter, we created Windows Server 2016 Failover Cluster, one of the key requirements for availability
groups, using Graphical User Interface (Server Manager and Failover Cluster Manager) and Windows
PowerShell. We also discussed the workgroup and multi-domain cluster deployment that is introduced in
Windows Server 2016. In the next chapter, we will create the Always On Availability Groups.

93© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_8

 CHAPTER 8

 Create Availability Groups

 In chapter 7 you created a Windows Server Failover Cluster (WSFC), one of the key requirements for
Always On Availability Groups. In this chapter, we will look at how to create and configure availability
groups.

 The setup environment used for this chapter was introduced in the previous chapter. Just to recap, the
environment consists of five servers:

• 1 DC (AlwaysOnDC)

• 2 Nodes in the Primary datacenter (AlwaysOnN1 and AlwaysOnN2)

• 1 Node in the secondary datacenter (AlwaysOnN3)

• 1 Client machine (AlwaysOnClient)

 A Windows Server 2016 Cluster (AlwaysOnCluster) was created on three nodes: AlwaysOnN1,
AlwaysOnN2, and AlwaysOnN3 in chapter 7 .

 This chapter assumes a stand-alone SQL Server 2016 Enterprise Edition installation has already
been performed on all machines that are going to be the replicas in the Always On Availability Group.
The SQL instances, AlwaysOnN1, AlwaysOnN2, and AlwaysOnN3 will be the replicas for the availability
groups.

 Review chapter 6 for a detailed list of prerequisites before attempting to create an availability group.

 Step 1: Enable the Always On Availability Groups Feature
 The next step is to ensure that the Always On Availability Group feature is enabled for each SQL Server
instance To do this, open up SQL Configuration Manager ➤ select SQL Server Services ➤ Right-click the
SQL Server Service and click on Properties.

 Figure 8-1 shows the SQL Configuration Manager window to select the SQL Server Service Properties .

http://dx.doi.org/10.1007/978-1-4842-2071-9_7
http://dx.doi.org/10.1007/978-1-4842-2071-9_7
http://dx.doi.org/10.1007/978-1-4842-2071-9_6

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

94

 Figure 8-2 shows the SQL Server service properties box and Always On Availability Group tab with the
option to enable the Always On Availability Groups feature.

 Figure 8-1. SQL Server Service properties option in the SQL Server Configuration Manager

 Figure 8-2. Enable Always On Availability Group Feature

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

95

 After the Properties window opens up, select the Always On High Availability tab and then check
the Enable Always On Availability Groups check box and click Apply. As soon as you click apply, you
will see a dialog box warning that the changes will not take effect until the service is restarted. Click ok
on the dialog box.

 You might have noticed in the above figure that Windows Failover Cluster Name (AlwaysOnCluster)
shows up under the Always On High Availability tab. This is the Windows Cluster you created in chapter 7 .

 While you are in the SQL Server Service Properties window, also review the Log On Service account
being used for the SQL instance by clicking on the Log On tab. Figure 8-3 shows the Log On tab in the SQL
Server Service properties window.

 Figure 8-3. Change SQL Service Log On account

 The SQL Service Log On account should have access to the replica instances. To keep things simple, you
can also use the same Service Log On account on all the replica instances.

http://dx.doi.org/10.1007/978-1-4842-2071-9_7

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

96

 ■ Note Group managed service accounts (gMSA) are now supported in SQL Server 2016. It is recommended
to use gMSA for Always On SQL Server instances. If gMSA cannot be used, then it is recommended to use the
same domain account as the logon account for all the replica SQL server instances.

 MSAs are recommended when resources external to the SQL Server computer are needed, or else
Virtual Accounts are recommended on servers that are Windows Server 2008 R2 and higher. MMSAs
are managed domain accounts that provide automatic password management and simplified SPN
management, including delegation of management to other administrators within the domain. They are
much more secure than regular domain accounts. However, MSAs cannot be shared across multiple hosts;
hence they could not be used on the SQL servers hosting availability groups. gMSAs were introduced in
Windows Server 2012, which extends that functionality over multiple servers.

 After clicking OK, go ahead and restart the SQL Server service during maintenance window to avoid
service interruption, to enable the Always On Availability Groups feature, and to apply the Log On account
change.

 Repeat the above steps on all the SQL Server Instances that will be participating in the Always On
Availability Groups configuration as replicas.

 To enable the Always On feature using PowerShell, either launch it with SSMS as shown in Figure 8-4 or
launch it from Windows and navigate to the SQL Server instance and run the Enable-SQLAlwaysOn cmdlet
to enable the feature. PowerShell will restart the SQL Server service itself and enable the feature. Figure 8-4
shows the PowerShell command to enable availability groups.

 Figure 8-4. Enabling Always On Availability Groups feature using PowerShell

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

97

 Step 2: Invoke Availability Group Wizard
 Now that the SQL Server services have been enabled for the Always On Availability Groups feature, the
next step is to create an availability group. We will be initializing the availability group creation from
AlwaysOnN1 SQL instance. The AlwaysOnN1 instance already has two databases: AdventureWorks2016 and
AdventureWorksDW2016 that will be participating in the availability group.

 Figure 8-5 shows the databases that will be participating in the availability group.

 Figure 8-5. Databases for the availability group

 ■ Note A new sample database (WideWorldImporters) has been released for SQL Server 2016. It is
supposed to be an upgrade over the old AdventureWorks database that has been around since SQL Server
2005. The new sample database can be downloaded from here: https://msdn.microsoft.com/library/
mt734199(v=sql.1).aspx

 We have used AdventureWorks2016 database for our book as it will still be around. It can be downloaded from
here: https://www.microsoft.com/en-us/download/details.aspx?id=49502

 We will be using the availability group Wizard to create an availability group. To invoke this wizard,
right-click either on the Always On High Availability node or availability groups node in SSMS.

 Figure 8-6 shows the location in SSMS from where the New Availability Group Wizard can be launched.

 Figure 8-6. Launching New Availability Group Wizard

https://msdn.microsoft.com/library/mt734199(v=sql.1).aspx
https://msdn.microsoft.com/library/mt734199(v=sql.1).aspx
https://www.microsoft.com/en-us/download/details.aspx?id=49502

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

98

 An Introduction page appears the first time you run this wizard.
 Figure 8-7 shows the introduction page.

 Figure 8-7. New availability group Wizard

 To avoid this page from showing up in the future, you can click the “Do not show this page again” check
box and then click Next.

 Step 3: Select Availability Group Name
 Figure 8-8 shows the Specify Availability Group Name page.

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

99

 On the Specify Availability Group Name page, enter the name of the new availability group. This name
is only to identify the availability group. The clients will not be connecting to this name as they will be
connecting to the listener, which we will be configuring later.

 Prior to SQL Server 2016, availability group health only monitored the health of the instance. A database
can be offline or corrupt, but as long as the instance itself is healthy, a failover won’t be triggered. SQL Server
2016 introduces database level health detection that allows you to optionally change the health monitoring
to also consider the health of the databases in the AG.

 After choosing the Database Level Health Detection option, click Next.

 Figure 8-8. Specify availability group Name

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

100

 Step 4: Select Databases
 Figure 8-9 shows the Select user databases for the availability group page. Here you can select the database
to include in the availability group. Pay special attention to the Status column. If the database does not fulfill
any prerequisite, then it would show up in the Status column: for example, if a Full backup has not been
taken for the database or if the database is not using Full recovery model.

 Figure 8-9. Select user database cannot proceed to next screen

 As can be seen in the Status column, one of the database prerequisites for availability groups has not
been met. In this case, full backup has not been taken. The check box to select the database will be grayed
out, and you won’t be able to proceed to the next screen unless a full backup is taken.

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

101

 ■ Note For a complete list of all the prerequisites for availability groups, please refer to chapter 6 .

 Perform the full backup and on the select user database page, click Refresh. The status should now say
Meets prerequisites .

 Figure 8-10 shows the Select user databases for the availability group page where the prerequisites have
been met.

 Figure 8-10. Select user databases for the availability group

 Click Next.

http://dx.doi.org/10.1007/978-1-4842-2071-9_6

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

102

 ■ Note In SQL Server 2012 and 2014, encrypted databases could be added to an availability group, but they could
not be added using the availability group wizard. Additionally, the encrypted databases could not be accessed in the
event of a failover. SQL Server 2016 adds support to the availability group wizard for adding encrypted databases
and simplifies database access following a failover. In SQL Server 2016, if you select an encrypted database in the
Select Databases page, the wizard detects that the databases is defined with a database master key and prompts the
administrator for the database master key password. After adding the database, the wizard will verify the password
during the validation phase. After you enter all the information and click Finish (Figure 8-24), the wizard creates the
credentials on each replica using the password of the database master key.

 Step 5: Specify Replicas
 The Specify Replicas page has various tabs.

 Figure 8-11 shows the Specify Replicas page.

 Figure 8-11. Specify Replicas page

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

103

 In the first tab Replicas, add the replicas that will be participating in the availability group. In this case,
AlwaysOnN2 and AlwaysOnN3 instances. Click the Add Replicas button to add new Replicas.

 ■ Note We will be covering the Add Azure Replica option later in chapter 18 .

 Figure 8-12 shows the Connect to Server window.

 Figure 8-12. Connect to Server

 In the Connect to Server window, provide the SQL instance name that you want to configure as a replica
for the availability group. Click Connect and repeat the Add Replica step for other replica instances in the
availability group. In this case, that would be the AlwaysOnN3 instance.

 Figure 8-13 shows the Specify Replicas page with all the replicas added.

http://dx.doi.org/10.1007/978-1-4842-2071-9_18

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

104

• Automatic Failover option

 If you want the availability replica to be an automatic failover partner, then select this
check box. Select this option for the initial primary replica and for one secondary
replica. The replicas selected for automatic failover will use the synchronous-commit
availability mode.

 ■ Note In SQL Server 2016 you can have three replicas configured for Automatic Failover.

• Synchronous-Commit option

 Select this checkbox to configure the replica to use synchronous-commit or leave it
blank to use asynchronous-commit mode. We discussed the data synchronization
modes in detail in chapter 4 , the one about Data Synchronization Internals.

 ■ Note Only three replicas can use synchronous-commit mode.

 Figure 8-13. Specify Replicas page with all the replicas added

http://dx.doi.org/10.1007/978-1-4842-2071-9_4

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

105

• Readable Secondary

 The Readable Secondary drop-down has three options:

• No (Default Setting) – Secondary databases of this replica are not available for
read access and direct connections are not allowed to secondary databases of
this replica .

• Read-intent only – The secondary databases are available for read access only if
the connection string has the application intent property set to read only.

• Yes – Read only access is available to the secondary databases for all
connections.

 Figure 8-14 shows the Specify Replicas page with the options selected in the Replicas tab.

 Figure 8-14. Specify Replicas page with the options selected in the Replicas tab

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

106

 Step 6: Configure Endpoint
 Click on the Endpoints tab to review the values.

 Figure 8-15 shows the Specify Replicas page with the Endpoints tab.

 Figure 8-15. Endpoints tab

 By default, port 5022 will be used for the availability group, which is also the default database mirroring
port. You can specify a different port number in the port number column. You can also uncheck the Encrypt
Data check box if you don’t want the data sent over the endpoint to be encrypted.

 ■ Note Ensure that the Endpoint port (5022 in this example) has a firewall exception on all the replicas. If the
firewall exception is not there on this port, deployment of an availability group will fail with error.

 It is recommended to use a dedicated network adapter for the availability groups to achieve optimal
performance. We are not using a dedicated network for the availability group setup in this chapter. If you
choose to do this, then make sure that the cluster uses the same network for cluster communication. We will
cover the TSQL commands to configure availability groups over a dedicated network in the TSQL section
later in this chapter.

 Step 7: Configure Backup Preferences
 Click the Backup Preferences tab to review the values.

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

107

 Figure 8-16 shows the Specify Replicas page with the Backup Preferences tab. The options on this lets
you specify your backup preference for the availability group and your backup priorities for the individual
availability replicas.

 Figure 8-16. Backup Preferences tab

 The options here only matter for automated backups. They do not apply for manual backups. Database
maintenance plan and log shipping are aware of this setting and can leverage the preferences selected here.
For custom maintenance jobs, the script will have to contain the logic to use the preferences selected here.
We will be discussing the script and logic to use in detail later in chapter 11 .

• Prefer Secondary (Default) - Backups occur on a secondary replica except when the
primary replica is the only replica online.

• Secondary only - Backups always occur on the secondary. Backups will not occur if
the primary is the only replica online.

http://dx.doi.org/10.1007/978-1-4842-2071-9_11

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

108

• Primary - Backups always occur on the primary replica. You might want to choose
this option if differential backups are to be taken. Differential backups are not
supported on secondary replicas.

• Any Replica – Backups can occur on any replica; however backup priority will still be
 applicable .

 To set the backup priorities, set the values in the replica backup priorities grid. For the backup priority,
you can select any other integer between 1 and 100. One is the lowest priority, and 100 is the highest priority.
To exclude a replica, check the exclude replica box for that replica.

 Step 8: Configure Listener
 Click on the Listener tab to create a listener.

 Figure 8-17 shows the Specify Replicas page with the Listener tab. The listener for the replica can be
configured from this tab. The creation of the listener during availability group creation is optional. It can be
created after the availability group has been created .

 Figure 8-17. Listener tab

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

109

 Choose the “Do not create an availability group listener now option ” if you do not wish to create the
listener along with the availability group.

 ■ Note Ensure that the cluster name object (AlwaysOnCluster in our setup) has Create Computer Objects
and Read All Properties privileges on the organization unit (AlwaysOnOU in our setup) it currently resides in to
be able to create Virtual Computer Objects (AGCorp_Listen in our setup).

 To create it along with an availability group, select the “Create an availability group listener” option.
 Specify the network name in the Listener DNS name box and the port number in the Port box. Listener

Name must be unique in the domain. It can be alphanumeric and 15 characters long.

 ■ Note If you choose to use port 1433, you do not need to provide a port number in a connection string. If you
choose a port other than 1433 for your listener port, you will also need to explicitly specify a target port in your
connection string. Also ensure that no other services on the cluster node are using this port; otherwise this would
cause a port conflict. If one of the instances of SQL Server is listening on TCP port 1433 and there are no other
services (including additional instances of SQL Server) on the computer listening on port 1433, this will not cause a
port conflict with the availability group listener. An availability group listener can share the same TCP port inside the
same service process. Multiple instances of SQL Server should not be configured to listen on the same port.

 Click on the Network mode drop-down list to select the network mode to be used by this listener. Select
DHCP if you want dynamic IPv4 address assigned by a server running Dynamic Host Configuration Protocol
(DHCP). DHCP is limited to a single subnet. DHCP is not recommended for production environments. If you
want the listener to listen on more than one subnet, use the static IP network mode option. In this chapter
we will be setting up a multi-subnet availability group, hence static IP was selected .

 Next click on the Add button.
 Figure 8-18 shows the IP Address window.

 Figure 8-18. Add IP Address

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

110

 In the Subnet drop-down, select the first subnet and provide a new IPv4 address and click OK.
 Figure 8-19 shows the Specify Replicas page with the IP Address added for the first subnet.

 Figure 8-19. Listener tab with the first IP Address added

 Next click on the Add button again to add the IP Address for the second subnet. You don’t have to do
this if all the replicas are in the same subnet.

 Figure 8-20 shows the IP Address window.

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

111

 This time select the second subnet in the Subnet drop-down and provide a new IPv4 Address and click OK.
 Figure 8-21 shows the Specify Replicas page with both of the IP Addresses for the listener.

 Figure 8-20. Add IP Address

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

112

 Click on Next to proceed to the Data Synchronization screen.

 Step 9: Select Initial Data Synchronization
 Figure 8-22 shows the Select Initial Data Synchronization page .

 Figure 8-21. Listener tab with the second IP Address added

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

113

 Select your preference for initial data synchronization of new secondary databases on this page. The
options you have is Full, Join only, and Skip initial data synchronization.

• Full – If you choose the full option, the wizard will create a full and log backup of the
primary database, create the corresponding secondary databases by restoring these
backups on every server instance that is hosting a secondary replica, and join each
secondary database to an availability group in one workflow. You will need to specify
a network share for the wizard to create and access backups.

 Figure 8-22. Select Initial Data Synchronization

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

114

 ■ Note The SQL Server service logon account on the primary replica must have read and write file-system
permissions on the network share and the SQL Server service logon account on the secondary replica must
have read permission on the network share.

• Join only - Select this option if you have already restored the primary database and its
Log On the secondary replicas. Manual restore must be done from a recent database
backup of the primary database using RESTORE WITH NORECOVERY, followed
by each subsequent log backup restore using RESTORE WITH NORECOVERY. You
will have to perform this restore sequence on every SQL Server instance that hosts
a secondary replica for the availability group. The wizard will attempt to join each
existing secondary database to the availability group.

• Skip initial data synchronization - Select this option if you want to just set up the
availability group but not join any databases. After exiting the wizard, you will have to
perform the database and log backups of every primary database, and restore them
to every SQL Server instance that hosts a secondary replica. Once the databases have
been restored, join every secondary database on every secondary replica .

 After choosing the appropriate option (in this case Full), click Next.

 Step 10: Validate
 Figure 8-23 shows the Validation page. All the validation checks should be successful for the wizard to enable
the Next button.

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

115

 After reviewing the validation results, click Next.
 Figure 8-24 shows Part 1 of the Summary page with values provided for the availability group creation .

 Figure 8-23. Availability group validation

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

116

 Figure 8-25 shows Part 2 of the Summary page with values provided for the availability group creation.

 Figure 8-24. Summary Part 1

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

117

 After reviewing the summary page, click Finish.

 Other Ways to Create an Availability Group
 In this chapter we covered creating availability groups using the availability group wizard. This is the
most common method and the easiest one to create an availability group. Following are some of the other
methods that are available to you:

 Availability group dialog box
 You can invoke the availability group dialog box from SSMS by expanding Always On High Availability node
and right-clicking on the availability groups node. You can enter the name of the availability group, add
Databases and Availability Replicas, modify roles, availability and failover modes, and configure backup
preferences from this dialog box. Unlike the wizard, you cannot create a listener from this dialog box.

 Figure 8-25. Summary Part 2

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

118

 T-SQL
 You can also use the CREATE AVAILABILITY GROUP T -SQL commands to create and configure availability
group. You need to first create a database mirroring endpoint manually using CREATE ENDPOINT T-SQL
command. You would also need to grant CONNECT permissions to appropriate logins if SQL Server service
accounts runs under different domain accounts. You would also need to start the AlwaysOn_Health
extended event session manually using ALTER EVENT SESSION command.

 There are certain availability group operations that can be performed only via TSQL as there is no GUI
support at this time. For example, configuring availability groups over a dedicated network, creating a Basic
Availability Group (BAG), enabling DTC support, enabling automatic seeding on the availability group,
creating a distributed availability group, and configuring an Always On Availability Group without Domains.

 Configuring Availability Groups over a Dedicated Network
 1. Create the endpoints manually or modify them later to use the dedicated NIC IPs .

 Following is the TSQL script for creating endpoints manually (where 10.1.1.x is
the dedicated network):

 -- On AlwaysOnN1 (Replica 1)
 CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022, LISTENER_IP = (10.1.1.1))
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES);
 GO
 -- On AlwaysOnN2 (Replica 2)
 CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022, LISTENER_IP = (10.1.1.2))
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES);
 GO

 -- On AlwaysOnN3 (Replica 3)
 CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022, LISTENER_IP = (10.1.1.3))
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES);
 GO

 2. Provide the dedicated network IP in the endpoint URL, while creating an
availability group.

 CREATE AVAILABILITY GROUP AGCorp
 WITH (AUTOMATED_BACKUP_PREFERENCE = SECONDARY)
 FOR DATABASE [AdventureWorks2016]
 REPLICA
 ON N'AlwaysOnN1' WITH (ENDPOINT_URL = N'TCP:// 10.1.1.1 :5022′, FAILOVER_MODE = AUTOMATIC,
AVAILABILITY_MODE = SYNCHRONOUS_COMMIT, BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_
CONNECTIONS = NO)),
 N'AlwaysOnN2' WITH (ENDPOINT_URL = N'TCP:// 10.1.1.2 :5022′, FAILOVER_MODE = AUTOMATIC,

AVAILABILITY_MODE = SYNCHRONOUS_COMMIT, BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_
CONNECTIONS = NO)),

 N'AlwaysOnN3' WITH (ENDPOINT_URL = N'TCP:// 10.1.1.2 :5022′, FAILOVER_MODE = AUTOMATIC,
AVAILABILITY_MODE = SYNCHRONOUS_COMMIT, BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_
CONNECTIONS = NO)),

 ;

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

119

 Basic Availability Group (BAG)
 BAG replaces the deprecated Database Mirroring feature for SQL Server 2016 Standard Edition. It is a high
availability solution for SQL Server 2016 Standard Edition or higher.

 Following are some of the limitations of BAG:

• It is limited to two replicas (primary and secondary).

• There is no read access on the secondary replica.

• You cannot perform backups on the secondary replica.

• You cannot add or remove a replica to an existing basic availability group.

• Only one availability database is supported in a BAG.

• They cannot be upgraded to advanced availability groups.

• The group must be dropped and re-added to a group that contains servers running
the SQL Server 2016 Enterprise Edition.

 To create a basic availability group, you will have to use the CREATE AVAILABILITY GROUP command
along with the WITH BASIC option. If WITH BASIC option is not provided during the availability group
creation, then an advanced availability group is created by default.

 The following is the sample code for creating a basic availability group:

 CREATE AVAILABILITY GROUP AGCorp
 WITH (BASIC)
 FOR DATABASE AdventureWorks2016
 REPLICA ON
 N'AlwaysOnN1' WITH (ENDPOINT_URL = N'TCP://AlwaysOnN1.Contoso.COM:5022′, FAILOVER_MODE =
AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT),
 N'AlwaysOnN2' WITH (ENDPOINT_URL = N'TCP://AlwaysOnN2.Contoso.COM:5022′, FAILOVER_MODE =
AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT);

• Per Database DTC Support

 Prior to SQL Server 2016, distributed transactions on databases in an availability
group were not allowed. In SQL Server 2016, this is now supported. SQL Server 2016
registers a Resource Manager per availability database, which then works with the
DTC service to keep track of the distributed transactions. This allows guaranteed
integrity of a distributed transaction.

 DTC with availability groups is only available on Windows Server 2012 R2 (with
KB3090973) and above. Also the availability group must have been created with the
 WITH DTC_SUPPORT = PER_DB clause in the CREATE AVAILABILITY GROUP command.

 The following is the sample code for enabling DTC support on the availability group:

 CREATE AVAILABILITY GROUP AGCorp
 WITH (DTC_SUPPORT = PER_DB)
 FOR DATABASE AdventureWorks2016
 REPLICA ON
 N'AlwaysOnN1' WITH (ENDPOINT_URL = N'TCP://AlwaysOnN1.Contoso.COM:5022′, FAILOVER_MODE =
AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT),
 N'AlwaysOnN2' WITH (ENDPOINT_URL = N'TCP://AlwaysOnN2.Contoso.COM:5022′, FAILOVER_MODE =
AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT),
 N'AlwaysOnN3' WITH (ENDPOINT_URL = N'TCP://AlwaysOnN3.Contoso.COM:5022′, FAILOVER_MODE =
MANUAL, AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT);

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

120

 ■ Note SQL Server 2016 RTM only supports distributed transactions where no two databases are hosted by
the same instance. Also an existing availability group cannot be altered.

 Automatic Seeding
 When automatic seeding is enabled for an availability group, SQL Server automatically creates the secondary
databases for every replica in the group. That means you no longer have to manually back up and restore
secondary replicas.

 If you want to enable automatic seeding for an existing availability group, then you can run the ALTER
AVAILABILITY GROUP command.

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN1' WITH (SEEDING_MODE = AUTOMATIC)

 GO

 If you are creating a new availability group, then do the following:

 1. You will have to create an endpoint on each SQL Server instance participating in
the availability group. The following script creates endpoints for TCP port 5022
for the listener.

 CREATE ENDPOINT HADR_Endpoint
 STATE=STARTED
 AS TCP (LISTENER_PORT = 5022, LISTENER_IP = ALL)
 FOR DATA_MIRRORING (ROLE = ALL, AUTHENTICATION = WINDOWS

NEGOTIATE, ENCRYPTION = REQUIRED ALGORITHM AES)
 GO

 ■ Note Open inbound firewall rules to the mirroring endpoint port on each server as automatic seeding
communicates over the mirroring endpoint.

 2. Next create the availability group with seeding_mode set to automatic.

 CREATE AVAILABILITY GROUP AGCorp
 FOR DATABASE db1
 REPLICA ON'AlwaysOnN1'
 WITH (ENDPOINT_URL = N'TCP://AlwaysOnN1.contoso.com:5022',
 FAILOVER_MODE = AUTOMATIC,
 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50,
 SECONDARY_ROLE(ALLOW_CONNECTIONS = NO),
 SEEDING_MODE = AUTOMATIC),
 ON N'AlwaysOnN2'WITH (ENDPOINT_URL = N'TCP://AlwaysOnN2.contoso.
com:5022',
 FAILOVER_MODE = AUTOMATIC,

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

121

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50,
 SECONDARY_ROLE(ALLOW_CONNECTIONS = NO),
 SEEDING MODE = AUTOMATIC),
 ON N'AlwaysOnN3'WITH (ENDPOINT_URL = N'TCP://AlwaysOnN3.contoso.
com:5022',
 FAILOVER_MODE = AUTOMATIC,
 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50,
 SECONDARY_ROLE(ALLOW_CONNECTIONS = NO),
 SEEDING_MODE = AUTOMATIC);
 GO

 ■ Note Data and log file paths should be the same on every SQL Server instance participating in the
availability group. This is a requirement for automatic seeding to work. Also the database should be in full
recovery model and should have a current full and transaction log backup.

 3. Next join the secondary server to the availability group and grant availability
group permission to create databases .

 ALTER AVAILABILITY GROUP AGCorp JOIN
 GO
 ALTER AVAILABILITY GROUP AGCorp GRANT CREATE ANY DATABASE
 GO

 You can also prevent automatic seeding on the secondary replicas by denying secondary replica
availability group permission to create databases.

 ALTER AVAILABILITY GROUP AGCorp DENY CREATE ANY DATABASE
 GO

 There might be scenarios where you might want to stop the automatic seeding. Run the following
command on the primary replica to switch the seeding mode to manual.

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN1'
 WITH (SEEDING_MODE = MANUAL)
 GO

 Be careful while using automatic seeding with very large databases (VLDBs). If it is added during
business hours, then the network load caused by automatic seeding could potentially impact data
synchronization performance. You might want to consider temporarily turning off automatic seeding while
VLDBs are being added to the availability group .

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

122

 Distributed Availability Group
 Distributed Availability Groups enable you to associate two availability groups residing on different Windows
Server Failover Clusters (WSFC). In chapter 3 , we looked at the distributed availability group topology and
how it differs from an availability group on the same WSFC. Here we will look at how to create a distributed
availability group.

 1. To create a distributed availability group, create an availability group and listener
on each WSFC and join the replicas to their availability group. For example,
create availability group AGCorp1 with AGCorp1-listen as the listener name on
the first cluster and create availability group AGCorp2 with AGCorp2-listen as
the listener name on the second cluster.

 2. Create the distributed availability group on the first cluster.

 Use the CREATE AVAILABILITY GROUP command with the DISTRIBUTED option.

 CREATE AVAILABILITY GROUP [distributedAGCorp]
 WITH (DISTRIBUTED)
 AVAILABILITY GROUP ON
 'AGCorp1' WITH
 (
 LISTENER_URL = 'tcp://AGCorp1_listen.contoso.com:5022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = AUTOMATIC
),
 'AGCorp2' WITH
 (
 LISTENER_URL = 'tcp://AGCorp2_listen.contoso.com:5022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = AUTOMATIC
);
 GO

 The AVAILABILITY GROUP ON clause specifies the member availability groups of
the distributed availability. In this case, they are AGCorp1 and AGCorp2 .

 ■ Note The LISTENER_URL option specifies the listener for each availability group along with the database
mirroring endpoint of the availability group. Hence the port number 5022 in the example is the mirroring port.

 3. On the second cluster, join the distributed availability group.

 ALTER AVAILABILITY GROUP [distributedAGCorp]
 JOIN
 AVAILABILITY GROUP ON
 'AGCorp1' WITH
 (
 LISTENER_URL = 'tcp://AGCorp1_listen.contoso.com:5022',

http://dx.doi.org/10.1007/978-1-4842-2071-9_3

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

123

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = AUTOMATIC
),
 'AGCorp2' WITH
 (
 LISTENER_URL = 'tcp://AGCorp2_listen.contoso.com:5022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = AUTOMATIC
);
 GO
 Following is the command to failover to the secondary
availability group:ALTER AVAILABILITY GROUP [distributedAGCorp]
FORCE_FAILOVER_ALLOW_DATA_LOSS

 ■ Note Only manual failover is supported at this time.

 Following is the command to drop a distributed availability group:

 DROP AVAILABILITY GROUP [distributedAGCorp]

 ■ Note As distributed availability groups associates two availability groups that have their own listeners, you
could use the old database mirroring connection string syntax for transparent client redirection after failover.

 For example: "Server=AGCorp1_listen; Failover_Partner=AGCorp2_listen; Database=Adventure
Works2016"

 Configuring an Always On Availability Group without Domains
 Starting with Windows Server 2016, WSFC will no longer require that all nodes in a cluster reside in the same
domain or in any domain. Due to this change, SQL Server 2016 is now able to deploy Always On Availability
Groups in multi-domain or domain-less environments. Let me warn you that this is a cumbersome process
right now as there is no GUI support and it involves a number of steps to get it configured.

 1. In order to set up an availability group in a multi-domain or domain-less
environment, you will have to first set up a multi-domain or domain-less
Windows Server 2016 Failover Cluster. Please refer to chapter 7 for information
on the WSFC setup steps.

 2. It is recommended to configure the SQL Server service to run as a user account
with the same user name and password on all the nodes. This account does not
need to be an administrator on the nodes. However, this account will need to
have read/write access on the certificate network share that will be used later.

http://dx.doi.org/10.1007/978-1-4842-2071-9_7

CHAPTER 8 ■ CREATE AVAILABILITY GROUPS

124

 3. Create an endpoint on each node:

 a. Create a certificate (master key will need to be created if it does not exist).

 b. Create a database mirroring endpoint authenticated by the certificate.

 c. Back up the certificate to a common network share that is accessible by all
the nodes for import into the other nodes.

 4. Install the certificates on each node:

 a. Create a login and a user for each remote machine.

 b. Create a certificate from the certificate backup file for each remote machine
and grant authorization to the login created in step a.

 c. Grant connect permission to the remote computer login created in step a to
the endpoint.

 ■ Note To help simplify the implementation, the Always On feature Program Manager created
and published two stored procedures (CreateEndpointCert and InstallEndpointCert) in a blog article.
Consider using these two stored procedures if you need to configure a multi-domain or a domain-less
availability group. The stored procedures can be found here: https://blogs.technet.microsoft.com/
dataplatforminsider/2015/12/15/enhanced-always-on-availability-groups-in-sql-server-2016/

 PowerShell
 PowerShell cmdlets such as New-SqlAvailabilityReplica , New-SqlAvailabilityGroup , Join-
SqlAvailabilityGroup, and Add-SqlAvailabilityDatabase can be used for creating availability groups.
Just like in case of T-SQL, a database mirroring endpoint needs to be created (using New-SqlHadrEndPoint)
on each replica and an AlwaysOn_Health extended event session also needs to be started manually.

 Summary
 In this chapter we saw how to successfully configure and deploy availability groups using the availability
group wizard. In the next chapter we will take a look at the post-installation/deployment tasks.

https://blogs.technet.microsoft.com/dataplatforminsider/2015/12/15/enhanced-always-on-availability-groups-in-sql-server-2016/
https://blogs.technet.microsoft.com/dataplatforminsider/2015/12/15/enhanced-always-on-availability-groups-in-sql-server-2016/

125© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_9

 CHAPTER 9

 Post-Installation Tasks

 After creating Always On Availability Groups in chapter 8 , you are now ready to review the resources that
were created by the availability group deployment and discuss the important post-installation tasks. In this
chapter, you will review the newly created availability group, learn about different ways to connect to the
availability group, observe the current health of the availability group, review and modify the availability
group configuration, and replicate the logins and jobs to the secondary replicas.

 Reviewing the Availability Group
 In this section, you will use SQL Server Management Studio (SSMS) and Failover Cluster Manager to
review the availability group that you created in chapter 8 . You will also learn about the built-in Always On
Dashboard tool to review the availability group details.

 Using Object Explorer
 Open SSMS, type the availability group listener name in the Connect to Server dialog box as shown in
Figure 9-1 , and click Connect.

http://dx.doi.org/10.1007/978-1-4842-2071-9_8
http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 9 ■ POST-INSTALLATION TASKS

126

 ■ Note An availability group listener allows us to connect to primary replica for read-write access without
needing to know the name of the SQL Server instance that it is connecting to. Also, when a primary replica
goes offline and a secondary replica takes the role of the primary replica, the availability group listener enables
the new connections to automatically connect to the new primary replica. The existing connections are
disconnected and the client must establish a new connection in order to work with the same database.

 You will be connected to the primary replica for the availability group. To verify this, open a query
window, execute the command select @@servername, and verify that the results displayed the name of the
SQL Server instance hosting the primary replica.

 If your application is using ADO.NET or SQL Native Client driver to connect to an availability
database, specify the availability group listener name followed by the availability group listener port in your
application’s connection string as shown here:

 Server=tcp: AGCorp_Listen,1433;Database=AdventureWorks2016;IntegratedSecurity=SSPI

 Figure 9-1. Using availability group listener to connect to primary replica

CHAPTER 9 ■ POST-INSTALLATION TASKS

127

 It is recommended to use the MultiSubnetFailover connection option (if supported by your client
libraries) in the connection string for both single and multi-subnet connections to availability groups
listeners as shown below:

 Server=tcp: AGCorp_Listen,1433;Database=AdventureWorks2016;IntegratedSecurity=SSPI;MultiSub
netFailover=True

 ■ Note By default, starting from .NET Framework 4.6.1, MultiSubnetFailover property is set to true.

 Although the MultiSubnetFailover connection option is not required, it provides faster subnet
failover because the client driver attempts to open up a TCP socket for each IP address associated with
availability group in parallel. The client driver waits for the first IP to respond with success and uses it for
connection. Using the MultiSubnetFailover connection option in a single subnet configuration allows
you to preconfigure new clients to support future spanning of subnets without any need for future client
connections string changes.

 ■ Note In a multi-subnet cluster setup, if your application is using a legacy client that does not support the
 MultiSubnetFailover property, then consider setting the listener’s RegisterAllProvidersIP value to 0 to
avoid intermittent timeout issues.

 Viewing Availability Groups
 After getting connected to the availability group listener in Object Explorer, expand Always On High
Availability and then expand Availability Groups as shown in Figure 9-2 .

CHAPTER 9 ■ POST-INSTALLATION TASKS

128

 You will see all the availability groups running on this SQL Server instance. Figure 9-2 shows only one
availability group named AGCorp (Primary) as you created only one availability group in chapter 8 . Notice
it has the availability replica role in parentheses after the availability group name. Expand the availability
group to see availability replicas, availability databases, and availability group listeners. Expand Availability
Replicas to see all the SQL Server instances participating in the availability group. In Figure 9-2 , there are
three availability replicas: AlwaysOnN1 is the current primary replica, and AlwaysOnN2 and AlwaysOnN3
are the secondary replicas. Expand Availability Databases, and you will see the availability databases that
are being replicated to the replicas. Figure 9-2 shows two availability databases AdventureWorks2014 and
AdventureWorksDW2014. These are the two databases that you selected while creating availability groups in
chapter 8 . Expand Availability Group Listeners to see the availability group listener. Also, if you expand the
Databases node you will see the two availability databases along with their synchronization state.

 A client connection can use the SQL Server instance name directly instead of using the availability
group listener name. SQL Server instance does not care if a client connects using the availability group

 Figure 9-2. Reviewing availability groups using Object Explorer

http://dx.doi.org/10.1007/978-1-4842-2071-9_8
http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 9 ■ POST-INSTALLATION TASKS

129

listener name or another instance endpoint. SQL Server instance verifies the state of the targeted database
and either allows or disallows connections based on the availability group configuration. Here is a sample
connection string to connect directly using the SQL Server instance name (AlwaysOnN1):

 Server=tcp: AlwaysOnN1,1433;Database=AdventureWorks2016;IntegratedSecurity=SSPI

 ■ Note If you choose to connect directly using the SQL Server instance name and not the availability group
listener name, you will lose the benefit of new connections being directed automatically to the current primary
replica. Also, you will lose the benefit of read-only routing, which we will discuss in chapter 10 .

 Viewing Availability Group Properties
 To review the properties of an availability group, expand Always On High Availability, expand Availability
Groups, and then right-click the availability group and select Properties. This will show the availability group
properties as shown in Figure 9-3 .

 Figure 9-3. Reviewing availability group properties

 ■ Note If you open the availability group properties from a secondary replica, you will only be able to review
the properties and will not be able to modify them.

 In the availability group properties window, most of the columns are self-explanatory. Notice the
column called Session Timeout (seconds) . The session timeout (default value is 10 seconds) controls how
long an availability replica waits for a ping response from a connected replica before considering the
connection to have failed. If a replica receives a ping within the session timeout period, then it means

http://dx.doi.org/10.1007/978-1-4842-2071-9_10

CHAPTER 9 ■ POST-INSTALLATION TASKS

130

that the connection is still active and the replicas are still communicating. If no ping is received within the
session timeout period, the replica times out. Its connection is closed and the timed-out replica enters the
 DISCONNECTED state. This replica property applies only to the connection between a given secondary
replica and the primary replica of the availability group .

 ■ Note The default session timeout period of 10 seconds works well for most of the environment. It is
recommended to set this value to 10 seconds or greater. If you set this value to less than 10 seconds, you have
a possibility of declaring a false failure when the replica is busy.

 Viewing Availability Group Listener Properties
 To review the properties of an availability group listener as shown in Figure 9-4 , right-click the availability
group listener and select Properties.

 Figure 9-4. Reviewing availability group listener properties

CHAPTER 9 ■ POST-INSTALLATION TASKS

131

 Using Always On Availability Groups Dashboard
 In this section, you will learn about a very powerful tool called Always On Availability Group Dashboard or
simply Always On Dashboard. Always On Dashboard is a Graphical User Interface (GUI) that, similar to your
automobile’s dashboard, organizes and presents the information about availability groups in a way that is
easy to interpret. Always On Dashboard is available after you deploy availability groups. Some of the typical
uses of the Always On Dashboard are the following:

• Monitoring the health of availability groups, availability replicas, and availability
databases. For example, you can use the dashboard to monitor the status of the data
synchronization as it is happening. Or you can use it to estimate the data loss if you
lose your primary replica and perform a forced failover.

• Administering the availability group. For example, you can use the dashboard to
manually failover the availability group from one replica to another.

• Troubleshooting the availability group if there is an issue.

 Invoking Always On Dashboard
 1. Open SQL Server Management Studio and connect to the SQL Server instance on

which you want to run the Always On Dashboard.

 2. Expand the Always On High Availability node, right-click Availability Groups
node, and then click Show Dashboard as shown in Figure 9-5 .

 Figure 9-5. Opening the Always On Dashboard

CHAPTER 9 ■ POST-INSTALLATION TASKS

132

 3. This will open the Always On Dashboard on the SQL Server instance. The
dashboard will show you the name of all the availability groups configured on
the SQL Server instance, the primary instance name, the failover mode, and
issues (if any) as shown in Figure 9-6 . Figure 9-2 displays one availability group
named AGCorp hosted on primary instance AlwaysOnN1 and configured with
“Automatic” failover mode. This is the availability group that you created in
chapter 8 . If you had multiple availability groups on this instance, then you
would have seen them over here too.

 Figure 9-6. Sample Always On dashboard

 4. To see the availability group details, click the availability group name. Alternately,
you can see the availability group details from the Object Explorer by expanding
the Always On High Availability node, expanding Availability Groups node,
right-clicking the availability group name, and then clicking Show Dashboard as
shown in Figure 9-7 .

http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 9 ■ POST-INSTALLATION TASKS

133

 5. This will open the availability group details dashboard as shown in Figure 9-8 .

 Figure 9-7. Opening availability group details dashboard

CHAPTER 9 ■ POST-INSTALLATION TASKS

134

 Reviewing the Always On Availability Group Health
 The Always On Dashboard displays most of the information you need to monitor an availability group.
Figure 9-8 shows the details for AGCorp availability group hosted by primary replica AlwaysOnN1. The
dashboard has three main sections:

• Availability Group Health – The availability group health section displays the health
of the availability group. This section tells us the health of the availability group,
the current primary replica for the availability group, failover mode (automatic or
manual), and the cluster state.

• Availability Replica Health – The availability replica health section displays the
health of the availability replica. By default, this section shows us the availability
group replicas, their current role (primary or secondary), their failover mode
(automatic or manual), synchronization state (synchronized, synchronizing or not
synchronized), and issues (if any).

• Availability Database Health – The availability database health section displays
the health of the availability databases. By default, this section is grouped by
replicas. For each replica, it displays the availability databases in the replica, their
synchronization state, failover readiness and issues (if any).

 ■ Note You can group the availability group information by clicking Group by and selecting one of the
following: Availability replicas, Availability databases, Synchronization state, Failover readiness, Issues or None.

 Figure 9-8. Sample availability group details dashboard launched from the primary replica

CHAPTER 9 ■ POST-INSTALLATION TASKS

135

 Apart from the above three main sections, the dashboard has three links on the top right-hand corner:

• Start Failover Wizard – As the name suggests, this link invokes the Failover Availability
Group Wizard . This wizard allows us to perform a planned failover. It allows us to failover
the availability group to a new secondary replica, making it the new primary replica.

• View Always On Health Events – This link allows us to view the Extended Events
captured via the AlwaysOn_Health session. A sample Always On Health Events
screen is shown in Figure 9-9 . In this screen, you can view the recent availability
group activity and state changes and events. You can add columns by right-clicking
the column headers and then selecting what you need. Also, when you click a
specific row, you can see the details of the rows below .

 Figure 9-9. Sample Always On Health Events screen

CHAPTER 9 ■ POST-INSTALLATION TASKS

136

• View Cluster Quorum Information – This link displays the Windows Cluster Quorum
information as shown in Figure 9-10 . This screen tells us the Windows Server
Failover Cluster (WSFC) name, Quorum model, member name, member type,
member state, and vote count. By default, all cluster members can vote and have
a vote count of 1. Administrators can change the vote functionality in the quorum
model by configuring a node to have 0 votes. For example, say you have a node
in a disaster recovery datacenter and you have poor network connectivity to that
datacenter. To ensure the node in the DR datacenter does not participate in the
quorum voting, you can configure its vote to 0 using the Failover Cluster Manager or
PowerShell.

 Figure 9-10. Sample Cluster Quorum Information screen

 So far we have discussed the default view of the Always On Dashboard. The dashboard is highly
configurable, and there are many settings that you can add to the view to provide you with even more
information on the current state of the availability group. You can add additional columns by right-clicking
the column headings or by clicking the Add/Remove Columns. Figure 9-11 shows the additional column for
the Availability Replica Health section.

CHAPTER 9 ■ POST-INSTALLATION TASKS

137

 For example, one column that you may want to add is the Availability mode column. This tells us if
the availability mode is synchronous-commit or asynchronous-commit mode. Or you may want to add the
Secondary Connection Mode column. This tells us if the secondary is connected or not.

 ■ Note The dashboard remembers the columns that you add/remove manually from the Add/Remove
Columns list. Check it out by adding some columns manually and then close and reopen the dashboard. You
should see all the columns that you had added manually. If you want to revert back to the default columns, then
select Reset view.

 Figure 9-12 shows the additional column for the Availability Database Health section.

 Figure 9-11. Additional columns to monitor availability replicas

CHAPTER 9 ■ POST-INSTALLATION TASKS

138

 Say your boss comes up to you and asks you, “If we lose our primary replica or databases, how much
data will we lose and how much time will it take us to recover?” Or maybe, you are asked, “If the primary
replica goes down, how many seconds or minutes’ worth of data will we lose at this time?” Or if the primary
replica goes down and automatic failover happens, how much time will the secondary replica take to finish
the recovery and make the databases available for use? Without writing a single line of code and almost
instantly you can find the answer and impress your boss, by opening the availability group dashboard and
manually adding the Estimated Recovery Time (seconds) and Estimated Data Loss (time) columns. You will
be able to see this information for every individual availability database for every replica. So you can quickly
provide the information to your boss. Most of the columns are self-explanatory but do not worry too much if
you are not familiar with them. We will cover the most important columns in chapter 15 .

 It is important to note that the dashboard shows a different view based on where you launch it. The
dashboard shown in Figure 9-8 was launched from the primary replica. From this view, you can monitor the
health of the whole availability group. If you launch the dashboard from a secondary replica, then the view
only shows the health of that secondary replica. Figure 9-13 shows the dashboard when launched from the
secondary replica AlwaysOnN2. As can be seen in Figure 9-13 , you are only getting the information from the
perspective of the secondary replica AlwaysOnN2. Even if you open the dashboard from a secondary replica,
the dashboard does show which SQL Server instance is our primary instance. For example, Figure 9-13
shows that AlwaysOnN1 is the primary instance. If you click AlwaysOnN1 on the dashboard, it will show you
the full dashboard as in Figure 9-8 .

 Figure 9-12. Additional columns to monitor availability databases

http://dx.doi.org/10.1007/978-1-4842-2071-9_15

CHAPTER 9 ■ POST-INSTALLATION TASKS

139

 ■ Tip To ensure that you launch the dashboard from the primary replica, connect to SQL Server Management
Studio using the availability group listener name instead and then invoke the dashboard.

 Changing Always On Dashboard Options
 As you have seen, the dashboard provides us with a lot of useful information. You might wonder how often
the information displayed on the dashboard is refreshed and if you can change the dashboard options. You
can change the Always On Dashboard options from SQL Server Management Studio as follows:

 1. Click the Tools menu and select Options. This will invoke the Options screen as
shown in Figure 9-14 .

 Figure 9-13. Sample availability group details dashboard launched from the secondary replica

CHAPTER 9 ■ POST-INSTALLATION TASKS

140

 2. In the left-hand pane of the Options screen, expand SQL Server Always On, and
then expand Dashboard.

 3. As can be seen in Figure 9-14 , by default Turn on automatic refresh is selected
and the default refresh interval is 30 seconds. To change the default settings,
enter the new refresh interval in seconds and optionally change the number of
times you want to retry the connection. Typically, I change the refresh interval
from 30 seconds to 10 seconds or lower when I am monitoring the availability
groups. If you want to enable user-defined Always On policy, select Enable
user-defined Always On policy. Click OK to apply the changes.

 ■ Note The Dashboard options are client-specific configuration options and will only apply to the current
user’s SQL Server Management Studio.

 Using Windows Server Failover Cluster Manager
 While it’s true that a SQL DBA will typically spend most of the time reviewing the availability group in SSMS,
there are sometimes when you may need to use the Failover Cluster Manager. In this section, you will review
the availability group using the Failover Cluster Manager tool. After creating an availability group, a new
role for the availability group is created in Failover Cluster Manager. Open Failover Cluster Manager, expand
cluster name, and click Roles. Within that role you will find the SQL Server Availability Group resource,
availability group listener resource and its associated IP address resource(s) as shown in Figure 9-15 .

 Figure 9-14. Changing Always On Dashboard Options

CHAPTER 9 ■ POST-INSTALLATION TASKS

141

 Notice that the name AGCorp_Listen that you typed while creating availability group listener in
chapter 8 has been added to the AGCorp role as a cluster resource. Expand AGCorp_Listen resource to see
the dependent IP address resources that you had specified during the availability group listener creation.
Notice that the IP address 20.1.1.105 is offline and 10.1.1.105 is online because at any point of time only one
of the IP address resources can be online. Currently, AGCorp is owned by AlwaysOnN1 node residing in the
primary datacenter and hence the IP address 10.1.1.105 is online. If AGCorp had failed over to the disaster
recovery datacenter and was owned by AlwaysOnN3, then the IP address 20.1.1.105 will become online and
10.1.1.105 will become offline. In case all the replicas are in the same subnet, only one IP Address resource
will exist and will be online all the time.

 Right-click the SQL Server Availability Group Resource AGCorp, select More Actions, and then select
Show Dependency Report to see the dependency report for the availability group as shown in Figure 9-16 .

 Figure 9-15. Availability group role in Failover Cluster Manager

 Figure 9-16. Availability group dependency report in Failover Cluster Manager

http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 9 ■ POST-INSTALLATION TASKS

142

 Configuring Flexible Failover Policy
 Always On Availability Groups has a flexible failover policy that provides granular control over the conditions
that need to be met to cause automatic failover for an availability groups. Flexible failover policy is defined
by the failure condition level and heath-check timeout thresholds. To review the failure condition level and
heath-check timeout thresholds, right-click the availability group resource in Failover Cluster Manager,
select Properties, and then click Properties tab to see the default properties of availability group as shown in
Figure 9-17 .

 ■ Note The flexible failover policy of an availability group can be modified from Failover Cluster Manager or
PowerShell or Transact-SQL.

 Figure 9-17. Reviewing availability group properties in Failover Cluster Manager

CHAPTER 9 ■ POST-INSTALLATION TASKS

143

 The availability group resource DLL performs a health check of the primary replica by calling the
 sp_server_diagnostics stored procedure with a repeat interval. It captures diagnostic data and health
information of the primary replica and returns results at an interval that equals one-third of the HealthCheck
Timeout period. The sp_server_diagnostics stored procedure collects the data on the following five
components: system, resource, query_processing, io_subsystem, and events. It also provides the health state
of each component as clean, warning, error, or unknown. Additionally, on the primary replica, sp_server_
diagnostics displays the availability group name and whether the lease is valid or not for each availability
group. Table 9-1 has the description of the five components:

 Table 9-1. Component Level Description

 Components Description

 system Collects data from a systems perspective on spinlocks, severe processing conditions,
non-yielding tasks, page faults, and CPU usage.

 resource Collects data from a resource perspective on physical and virtual memory, buffer
pools, pages, cache, and other memory objects.

 query_processing Collects data from a query-processing perspective on the worker threads, tasks, wait
types, CPU intensive sessions, and blocking tasks.

 io_subsystem Collects data on IO subsystem.

 events Collects data on the errors and event of interest recorded by the server, including
details about out of memory, scheduler monitor, buffer pool spinlocks, security,
connectivity, ring buffer exceptions, and ring buffer events about memory broker.

 ■ Note Even though sp_server_diagnostics stored procedure collects data for five components, only
the data for system, resource and query_processing are currently being used for failure detection whereas
io_subsystem and events data are available for diagnostic purposes only.

 Based on the issues reported in the result sets of the sp_server_diagnostics stored procedure
and FailureConditionLevel, the resource DLL decides whether the primary replica is healthy or not. The
availability group resource DLL responds back to the WSFC cluster. The WSFC cluster then initiates an
automatic failover to the secondary replica.

 When an availability group failover occurs, existing connections to the primary replica are terminated,
and the client applications must establish a new connection in order to continue working. While a failover
is occurring, connectivity to the availability group databases will fail, forcing the client applications to retry
connecting until the primary is fully online and ready to accept connections. If the availability group comes
back online during the client’s connection attempt but before the connection timeout period, the client may
successfully connect during one of the retry attempts and no error will be reported to the application.

 As seen in Figure 9-17 , the default HealthCheck Timeout is 30 seconds. Hence, the sp_server_
diagnostics stored procedure returns results at a 10-second interval. If the primary replica is unresponsive
and not a single result set has been received by the resource DLL during the 30 second period, the server is
considered to be hung.

 The FailureConditionLevel determines whether the diagnostic information returned by sp_server_
diagnostics warrants an automatic failover. The FailureConditionLevel specifies what failures trigger an
automatic failure. There are five failure conditions level 1 through 5. The checks are accumulative with 1
being the least restrictive and 5 being the most restrictive. The checks that are done in level 5 are all checks
of the lower levels plus the checks of level 5. Table 9-2 shows the FailureConditionLevel and its description ,

CHAPTER 9 ■ POST-INSTALLATION TASKS

144

 The default failover condition level is 3, which means that it checks if the SQL Server service is up,
whether the sp_server_diagnostics stored procedure responds within the health check timeout, and
whether there are critical server errors reported in the result set.

 ■ Note The failure condition level and sp_server_diagnostics only monitors the health of the SQL Server
instance and not the health of the database. However, starting from SQL Server 2016, if you selected Database
Level Heath Detection while creating the availability group (or added the detection after the creation of
availability group), then an automatic failover is initiated when the database status on the primary replica is
anything other than ONLINE. If you did not select Database Level Heath Detection, then only the health of the
instance is used to trigger automatic failover.

 Figure 9-17 has another property called the Lease Timeout . The Lease Timeout is set to a default value of
20,000 ms or 20 secs. The Lease Timeout is used to avoid split brain scenarios in availability group. A split brain
scenario occurs if more than one availability replica considers itself to be the primary replica, tries to bring
the availability group online and thereby accepting queries and responding to queries. This typically happens
when the cluster nodes are disconnected. To understand this better, let’s consider a scenario where in the SQL
Server instance running the primary replica of an availability group is detected unresponsive and a failover is

 Table 9-2. Failure Condition Level

 Failure Condition Level Description

 1 (least restrictive) Level 1 checks if SQL Server is down. An automatic failover is initiated if any
one of the following occurs:
 • The SQL Server service is down.
 • Lease of the availability group for connecting to the Windows Server

Failover Cluster expires.

 2 Level 2 checks if the server is unresponsive. An automatic failover is initiated if
any one of the following occurs:
 • Any condition of lower level is satisfied.
 • The SQL Server instance does not connect to the cluster, and the

HealthCheck Timeout is exceeded.
 • The availability replica is in a failed state.

 3 (Default level) Level 3 checks for critical server errors. An automatic failover is initiated if any
one of the following occurs:
 • Any condition of lower level is satisfied
 • Critical SQL Server internal errors like orphaned spinlocks, serious write-

access violations, or too many dumps occur.

 4 Level 4 checks for moderate server errors. An automatic failover is initiated if
any one of the following occurs:
 • Any condition of lower level is satisfied
 • Moderate SQL Serve internal errors like out-of-memory conditions occurs.

 5 (most restrictive) Level 5 checks for qualified failure conditions. An automatic failover is
initiated if any one of the following occurs:
 • Any condition of a lower level is satisfied
 • Any qualified failure conditions like exhaustion of SQL Server engine

worker-threads, detection of an unsolvable deadlock occurs.

CHAPTER 9 ■ POST-INSTALLATION TASKS

145

initiated. However, the resource DLL is not able to connect to the unresponsive SQL Server instance anymore.
Therefore, the SQL Server instance would think that it is still the primary replica and will accept queries and
respond to queries. To avoid such a scenario, the SQL Server instance running the primary replica needs to get
a lease from the resource DLL before the lease timeout threshold hits. If the lease is not renewed within that
threshold, the primary replica is removed from the primary and a failover to a secondary is initiated .

 Viewing Availability Group Failover Properties
 While testing availability group failure, oftentimes I have seen our customers complaining that the
availability group failover worked fine for first one or two times but now it has stopped working. This
typically happens when the availability group exceeds it WSFC failure threshold . The WSFC failure threshold
is defined as the maximum number of failures supported for the availability group in a specified period.
To check the WSFC failure threshold, right-click availability group role in Failover Cluster Manager, select
Properties, and then click the Failover tab as shown in Figure 9-18 .

 Figure 9-18. Reviewing availability group WSFC failure threshold

CHAPTER 9 ■ POST-INSTALLATION TASKS

146

 The default time period is 6 hours, and the maximum failures supported is N-1, where N is the number
of cluster nodes. Since we have a 3-node WSFC, maximum failures allowed is (3 - 1) = 2 in 6 hours. This
means that if you are testing automatic failover on our 3-node cluster, you will be able to perform automatic
failover only twice in 6 hours. The third time, the availability group will remain in a failed state until a cluster
administrator manually brings the failed availability group resource online or a DBA performs a manual
failover of the availability group.

 Replicating Logins and Jobs
 In chapter 6 , you learned that availability groups provide user database level protection because system
databases are not allowed to participate in availability groups. This means that any objects that are stored in
the system databases on the primary replica are not being replicated to the secondary replicas. We know that
logins are stored in the master database and jobs are stored in the msdb database. Even if the user databases
are available on the secondary replicas, if we are unable to log in to the secondary replicas then the data on
the secondary replicas is unusable. Similarly, if the availability group fails over from the primary replica to
the secondary replica, you would like the jobs to be running on the new primary replica (i.e., old secondary
replica). For this reason, you need to replicate the logins and jobs to all availability replicas. This is true for
linked servers or anything that is not a part of the user databases.

 Replicating Logins
 The steps to replicate the logins on all replicas are still the same as you used to transfer logins from one SQL
Server to another SQL Server. There are various methods to replicate the logins but one of the best methods
is to use the T-SQL script in Microsoft Knowledge Base article titled “How to transfer logins and passwords
between instances of SQL Server” available at https://support.microsoft.com/en-us/kb/918992 . Here
are the high-level steps that you need to follow for availability groups:

 1. On the primary replica, run the script in step 2 of “Method 3: Create a log in
script that has a blank password” in the above Microsoft Knowledge Base article.

 2. This script will create two stored procedures in the master database. The stored
procedures are named sp_help_revlogin and sp_hexadecimal.

 3. On the primary replica, execute the stored procedure sp_help_revlogin. This will
create the login script.

 4. Review the login script that was generated in step 3 and execute it against all the
secondary replicas.

 5. The login script creates the logins that have the original Security Identifier (SID)
and the original password.

 Another method to replicate the logins to secondary replicas is to use the SQL Server Integration
Services (SSIS) – Transfer Logins Task. The Transfer Logins Task can be configured to transfer all the logins,
only specified logins, or all the logins that have access to specified databases only.

 ■ Note If you are using the Transfer Logins Task, the transferred logins are disabled and assigned random
passwords at the secondary replicas. A database administrator (DBA) who has membership in the sysadmin role
on the secondary replicas need to change the password and enable the logins before you can use it.

http://dx.doi.org/10.1007/978-1-4842-2071-9_6
https://support.microsoft.com/en-us/kb/918992

CHAPTER 9 ■ POST-INSTALLATION TASKS

147

 If you only have few logins, you could create the logins on the secondary replicas using the T-SQL
 CREATE LOGIN command.

 Using Contained Database with Availability Groups
 SQL Server 2016 supports partially contained databases. A partially contained database allows us to create
contained users that authenticate at the database level making the database more independent from the
SQL Server instance. Creating contained users allows the users to directly connect to the partially contained
database without creating logins on the instance hosting the database. This feature can be very useful for
availability groups. If the availability database is a partially contained database with contained users and a
failover occurs, clients can connect to the secondary replica without creating the logins on the secondary
replica.

 ■ Note Partially contained databases do not store the jobs. So you still need to replicate the jobs to all the
secondary replicas.

 Replicating SQL Agent Jobs and SSIS Packages
 To ensure that you have all the jobs and SSIS packages on the secondary replicas, you need to manually
copy them from the primary replica to all the secondary replicas. Before copying them, you need to modify
them by adding some logic. For example, you may need to run the job only if the local replica is the primary
replica. Or you may need to run the backup job on the preferred replica.

 We have two functions that we can use:

• sys.fn_hadr_backup_is_preferred_replica ('dbname') – This function is used
in backup jobs to find out if the local replica is the preferred replica for backups,
according to the backup preferences that you learned in chapter 8 . If the availability
replica that is hosted by the current SQL Server instance is the preferred replica for
backups, this function returns 1. If not, the function returns 0. Below is a sample
code to use this function in backup jobs

 If sys.fn_hadr_backup_is_preferred_replica(@dbname) <> 1
 BEGIN
 -- If this is not the preferred backup replica, exit
 END
 -- If this is the preferred replica, continue to do the backup.

 ■ Note Backup jobs created using the built-in Maintenance Plan Wizard and Log Shipping Wizard
automatically calls and checks the sys.fn_hadr_backup_is_preferred_replica function.

• sys.fn_hadr_is_primary_replica ('dbname') – This function is used to
determine if the current replica is the primary replica for the specified availability
database. If the availability database on the current SQL Server instance is the
primary replica, this function returns 1. If not, the function returns 0. This function is
typically used for non-backup jobs. Below is some sample code to use this function .

http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 9 ■ POST-INSTALLATION TASKS

148

 If sys.fn_hadr_is_primary_replica (@dbname) <> 1
 BEGIN
 -- If this is not the primary replica, exit.
 END
 -- If this is the primary replica, continue to do the job.

 ■ Note SQL Server Integration Services (SSIS) – Transfer Jobs Task can also be used to transfer one or more
SQL Server Agent jobs between the SQL Server instances.

 Summary
 In this chapter, we covered the post-installation tasks and ensured that everything was configured properly.
Now you are ready to explore the benefits of availability groups. In the next chapter, we will discuss about
Always On Availability Groups Readable Secondary feature that allows read-only access to all the secondary
databases. We will learn the benefits, configuration, limitations and performance considerations of using
readable secondaries.

 PART IV

 Active Secondary Replicas

151© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_10

 CHAPTER 10

 Readable Secondary Replicas

 Now that we have created an Availability Group and made sure it’s configured correctly, let’s take a look at
how to fully leverage the features provided by this technology within SQL Server. The secondary replicas
participating in the Availability Group maintain redundant copies of the production data on the primary
replica. Wouldn’t it be nice to leverage the redundant copies and the processing power on the secondary
replicas to offload some of the production workload? The readable secondary feature within Always On
Availability Groups allows you to do that.

 It allows you to leverage the investment in highly available hardware by offloading read workload such
as reporting to one or more secondary replicas. Offloading reporting workload to secondary replicas frees
up resources on the primary replica to achieve higher throughput, at the same time allowing resources on
secondary replicas for reporting workload to deliver higher performance.

 Whenever we are overloaded with work, we usually wish we could clone ourselves and offload some of
our work to our clones. We would be more effective and would be able to focus on the important tasks rather
than trying to do everything ourselves. But this is just wishful thinking.

 The world is becoming a 24/7 global marketplace. Sharing same servers/databases for the primary
and reporting workloads takes CPU cycles and IO bandwidth away from the main workload. Sharing of
workloads can also cause contention, impacting the overall performance and availability of the applications.
In addition, server and database maintenance is critical for maintaining the health of the database servers
and to protect the data from unexpected failures. But due to the 24/7 global marketplace, maintenance
windows are shrinking day-by-day, making it difficult for administrators to perform maintenance without
impacting performance and availability.

 Offloading Reporting Workload
 Offloading the reporting workloads to a secondary copy of the database on a different server will free up
the resources on the primary for the OLTP workload to achieve higher throughput. It also allows you to
leverage the existing resources on the secondary replica to provide higher performance for the reporting
workloads. Before we proceed, let’s quickly take a look at the options available prior to SQL Server 2012 for
offloading reporting workloads. This will help us better understand what Always On Availability Groups
bring to the table.

 Solutions Prior to SQL Server 2012
 Figure 10-1 shows the options in SQL Server for offloading reporting workloads prior to SQL Server 2012.

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

152

• Database Snapshot with Database Mirroring

 You can create a point-in-time copy of your database called database snapshot
on the mirror database and use it for reporting. But it will be a static copy with
data as it existed at the moment of snapshot creation. Hence, it is not useful if
you need near real-time data for your reporting. Also, the database must be in a
synchronized mirroring state for the snapshot to be created.

• Log Shipping with Standby option

 You can also configure log shipping with the secondary database in Standby
mode. This places the secondary database in read-only mode, which can be used
for limited reporting functionality. But the database will not be available for read-
only access while applying transactional log backups, which limits reporting
functionality. Also the data is as current as the frequency of the transactional log
restores.

• Transactional Replication

 The subscription database of a transactional replication can be used for
offloading reporting workloads. However, being configured at the individual
object level, all the data from the primary database may not be available at the
subscription database, leading to reporting inaccuracies. Also, Replication is
relatively complex to configure and manage compared to other synchronizing
technologies. There are specific scenarios where Transactional replication might
be a more viable reporting solution than Availability Group Active Secondary.

 Offloading Reporting Workload Using Always On Availability Groups
Secondary Replicas
 Figure 10-2 shows a stand-alone SQL Server instance at the primary datacenter, configured as a primary
replica of an availability group with three secondary replicas configured as readable secondary. Two replicas
have been configured as synchronous replicas, whereas one is configured as an asynchronous replica.

 Figure 10-1. Offload reporting workload options prior to SQL Server 2012

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

153

 ■ Note SQL Server 2012 supports one primary replica and up to four secondary replicas. SQL Server 2014
and 2016 support one primary replica and up to eight secondary replicas.

 As shown in Figure 10-2 , you can configure multiple secondary replicas, each of which can be used
for read-only workload and/or backups and/or DBCC integrity checks. The secondary can be either in
synchronous-commit mode or asynchronous-commit mode for using it as an Active Secondary .

 ■ Note We cover the Secondary Replica on Microsoft Azure later in chapter 18 .

 How to Configure Readable Secondary
 You can configure connection access on a Secondary Replica of an Availability Group in SQL Server by
using SQL Server Management Studio , Transact-SQL, or PowerShell. The settings can be selected during
Availability Group creation itself or after by altering the Availability Group.

 Using SQL Server Management Studio
 In SSMS, you can configure connectivity to the secondary replica during the creation of Availability Groups
by using the Availability Group Wizard. In Object Explorer, connect to the server instance that hosts the
primary replica, and expand the server tree. Then expand the Always On High Availability node and the
Availability Groups node ➤ Right-click the availability replica, and click on Properties.

 Figure 10-3 shows the Availability Group properties dialog box.

 Figure 10-2. Readable secondary architecture

http://dx.doi.org/10.1007/978-1-4842-2071-9_18

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

154

 You can change the connection access for the secondary role by selecting Yes, No, or Read-intent only
options, as shown in the diagram. We had discussed these options in detail in the chapter 8 earlier.

 Using Transact- SQL
 You can also configure the connection access for the secondary role by using CREATE/ALTER AVAILABILITY
GROUP commands. The SECONDARY_ROLE option in the ADD/MODIFY REPLICA clause will take NO, ALL, or
READ_ONLY options, which equates to No, Yes, or Read-intent only options respectively.

 Figure 10-4 shows the TSQL command to configure connection access for the secondary role.

 Figure 10-3. Availability Group properties

 Figure 10-4. Configure connection access using TSQL

http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

155

 Using PowerShell
 If creating a new replica, use the New-SqlAvailabilityReplica cmdet or when modifying an existing replica
use the Set-SqlAvailabilityReplica cmdlet. To configure connection access for the secondary role, specify the
ConnectionModeInSecondaryRole secondary_role_keyword parameter, where secondary_role_keyword
equals one of the following values:

 AllowNoConnections, AllowReadIntentConnectionsOnly, or AllowAllConnections
 Figure 10-5 shows the PowerShell command to configure connection access for the secondary role.

 Figure 10-5. Configure connection access using PowerShell

 Configure Client Connectivity
 Applications can specify the purpose of the connection through a property of the connection string called
 Application Intent . This property specifies whether the connection is directed to a read-write or a read-
only version of the availability group database. Not all client drivers support this property in the connection
string. SQL Native Client (SNAC) , SQL OLEDB, ADO.net, JDBC, and new versions of ODBC currently support
this property.

 The following is an example of a connection string using the Application Intent property:

 Server=AGCorp,1433;Database=AdventureWorks2016;IntegratedSecurity=SSPI; ApplicationIntent=Read
Only

 The Application Intent options are ReadOnly a nd ReadWrite (default).
 Clients can connect either directly to the SQL Server instance name hosting the read-only database or

by using the Availability Group listener name.
 Using the availability group listener name allows for read-only routing to an available readable

secondary replica. Read-only routing refers to the ability of SQL Server to route incoming connections to an
availability group listener to a secondary replica that allows read-only workloads .

 Configure Read-Only Routing
 Read-only routing refers to the ability of SQL Server to route incoming connections to a secondary replica
that is configured to allow read-only workloads. An availability group listener must be specified in order to
use read-only routing, and the following should be true:

• Application Intent is set to READONLY f or the incoming connections.

• Allow connections property of the secondary replica is set to READ_ONLY or ALL .

• The READ_ONLY_ROUTING_URL for each replica is set. This option must be set before
configuring the read-only routing list.

• The READ_ONLY_ROUTING_LIST option must be set for each replica.

 Execute the following query to check if a routing list has been configured for your Availability Group:

 SELECT ag.name, ar.replica_server_name as primary_server_role,
 (SELECT replica_server_name from sys.availability_replicas as b WHERE
 b.replica_id = a.read_only_replica_id) as secondary_route_reader_server,

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

156

 Figure 10-6. Is read-only routing configured?

 a. routing_priority, ar.availability_mode_desc, ar.failover_mode_desc,
 ar.secondary_role_allow_connections_desc
 FROM sys.availability_read_only_routing_lists as a
 RIGHT JOIN sys.availability_replicas as ar
 ON a.replica_id = ar.replica_id
 INNER JOIN sys.availability_groups as ag
 ON ar.group_id = ag.group_id

 Figure 10-6 shows the output from the preceding query. As you see, there is no read-only routing
currently set up for any of the replicas.

 Next we will configure the read-only routing list .

 ■ Note There is no GUI available in SSMS to accomplish this task; it can only be accomplished through
 ALTER AVAILABILITY GROUP DDL scripts.

 The first step is to configure the read-only routing URL for each replica. Read-only routing URL is used
for routing read-intent connection requests to a specific readable secondary replica. A routing URL consists
of a system address for the replica and the port number that is used by the database engine of that instance.
For example, the routing URL for AlwaysOnN1 would be tcp://alwaysonn1:1433. Note that since we are
specifying the port number used by the database engine, we do not specify the name of the SQL Server
instance, only the server name. Usually, every readable secondary replica is assigned a read-only routing
URL. To configure read-only routing URL, connect to the primary replica in the script window and execute
the following code. In the below example we are configuring the routing URL for all the replicas in the
availability group.

 USE MASTER
 GO

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN1' WITH
 (secondary_role(read_only_routing_url='tcp://AlwaysOnN1:1433'))

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN2' WITH
 (secondary_role(read_only_routing_url='tcp://AlwaysOnN2:1433'))

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN3' WITH
 (secondary_role(read_only_routing_url='tcp://AlwaysOnN3:1433'))

 ■ Note You must set the read-only routing URL before configuring the read-only routing list.

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

157

 Next configure the routing list:

 USE MASTER
 GO

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN1' WITH
 (primary_role(read_only_routing_list=('AlwaysOnN2','AlwaysOnN3','AlwaysOnN1')))

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN2' WITH
 (primary_role(read_only_routing_list=('AlwaysOnN3','AlwaysOnN1','AlwaysOnN2')))

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN3' WITH
 (primary_role(read_only_routing_list=('AlwaysOnN1','AlwaysOnN2','AlwaysOnN3')))

 ■ Note Prior to SQL Server 2016, read-only routing always directed traffic to the first available replica in
the routing list, unless it was not accessible, and then it would direct the connection to the next replica in the
routing list. It wasn’t possible to spread out the load across replicas, even when you had multiple secondaries .

 Configure Load Balancing Across Replicas
 Starting SQL Server 2016, you can now configure load balancing across a set of read-only replicas. Use one
level of nested parentheses around the READ_ONLY_ROUTING_LIST to achieve this:

 USE MASTER
 GO
 -- Configure routing list on current primary replica
 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN1' WITH
 (primary_role(read_only_routing_list=(('AlwaysOnN2','AlwaysOnN3'),'AlwaysOnN1')))

 The nested parentheses that surround the servers identify the load-balanced set.
 Basically there are two lists in the preceding example:
 List 1: AlwaysOnN2 and AlwaysOnN3
 List 2: AlwaysOn1

 Routing logic
 The read-only connections will be routed to the replicas in the first list AlwaysOnN2 and AlwaysOnN3.
There will be a round-robin distribution of read-only connections between the two replicas in the first
list. In the preceding example, the first incoming read-only connection will be routed to AlwaysOnN2, the
second read-only connection will be routed to AlwaysOnN3, the third read-only connection will be routed to
AlwaysOnN2, the fourth read-only connection will be routed to AlwaysOnN3, and so on.

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

158

 If a replica becomes unavailable, routing will continue with remaining replicas in the first list. In the
preceding example, if AlwaysOnN2 becomes unavailable, then the read-only connections will only be routed
to AlwaysOnN3.No read-only connections will be routed to the primary (AlwaysOnN1), if there is at least one
readable secondary replica is accessible in the routing list. If all replicas in the first list are unavailable, then
the read-only connections are routed to the replicas in the next list. In the preceding example, the read-only
connections will be routed to AlwaysOnN1, If AlwaysOnN2 and AlwaysOnN3 become unavailable.

 If any replicas in the first list become available again, a read-only connection once again will start
routing to those replicas as they have higher priority.

 Make sure you configure the routing list on all the replicas, as they would assume the primary role after
failover.

 USE MASTER
 GO

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN2' WITH
 (primary_role(read_only_routing_list=(('AlwaysOnN3','AlwaysOnN1'),'AlwaysOnN2')))

 ALTER AVAILABILITY GROUP AGCorp
 MODIFY REPLICA ON 'AlwaysOnN3' WITH
 (primary_role(read_only_routing_list=(('AlwaysOnN1','AlwaysOnN2'),'AlwaysOnN3')))

 Now execute the following query again to check if a routing list has been configured correctly for your
Availability Group:

 SELECT ag.name, ar.replica_server_name as primary_server_role,
 (SELECT replica_server_name from sys.availability_replicas as b WHERE
 b.replica_id = a.read_only_replica_id) as secondary_route_reader_server,
 a. routing_priority, ar.availability_mode_desc, ar.failover_mode_desc,
 ar.secondary_role_allow_connections_desc
 FROM sys.availability_read_only_routing_lists as a
 RIGHT JOIN sys.availability_replicas as ar
 ON a.replica_id = ar.replica_id
 INNER JOIN sys.availability_groups as ag
 ON ar.group_id = ag.group_id

 Figure 10-7 shows the output from the preceding query. Review the secondary_route_reader_server
and routing_priority column values.

 Figure 10-7. Review routing list

 Considerations, Limitations, and Best Practices
 Now that we have looked at how to configure a replica as a readable secondary, it’s also important to
understand some of the considerations.

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

159

 Impact of Read Workload
 Read or reporting workloads that run on the secondary replica need system resources and so does the REDO
thread. REDO thread is the one that is applying transactions from the transaction log to keep the database
in sync. The REDO thread needs I/O to read the transaction log and to fetch the page from disk to apply the
change, and it requires CPU to apply the change. Significant resource contention is possible between REDO
and Read workloads as they have to share resources. This can cause blocking and even deadlock scenarios.
SQL Server never chooses REDO thread as the victim in deadlock scenarios. Any increase in latency on the
Secondary Replica can impact the Recovery Time Objective (RTO) of your application.

 Figure 10-8 shows the REDO thread operation and the possibility of resource contention due to the
reporting workloads.

 Figure 10-8. REDO thread operation and reporting workload

 The read operations do not take shared locks because of row versioning; however they do take schema
stability (Sch-S) locks. Redo operations applying DDL changes can get blocked due to this. Hence monitor
your secondary replica for resource contention issues and provision adequate resources on the secondary
replica. Extended events can be used to monitor REDO thread blocking, sqlserver.lock_redo_blocked
event will be raised if the REDO thread is blocked. Ensure that you are using best practices while building
the reporting queries to minimize resource consumption. Also consider running or scheduling the resource
intensive queries during low-latency periods.

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

160

 The Role of Row Versioning
 All reporting workloads will internally use the snapshot isolation level to avoid blocking between REDO and
the read workloads. Snapshot isolation level means that row versions will be created and used. As shared
locks are not taken on rows by the reporting workload, the redo thread will not be blocked when it wants to
update that row. However, the row version has an overhead. TempDB will require more space for the row
versions. Also, the row version requires a 14-byte pointer added to each data/index row on the primary on
deleted, modified, or inserted data rows as they cannot be directly added on the Secondary Replica. When
this 14-byte pointer is added to the primary database it is carried over to the secondary database. Increase
in page size can cause frequent page splits, which impacts performance. This all happens internally without
having snapshot isolation enabled on the primary. The 14-byte pointer will be added as soon as at least one
secondary’s readable secondary option is set to either yes or read intent only and the pointer will be copied
over to all the secondaries (even those that are not readable).

 Hence plan for the additional space usage on the primary and the secondary database and additional
TempDB usage on the secondary.

 Figure 10-9 shows the 14-byte pointer that gets added to the data/index row if the secondary replica is
made readable.

 Figure 10-9. 14-byte pointer

 Query Performanc e
 Statistics on the primary databases are available on the secondary databases. However, if the read-only
secondary database needs statistics that are different from the ones on the primary database then those
statistics cannot be manually created as the database is read-only. In this case, SQL Server creates temporary
statistics in the TempDB on the secondary replica. These temporary statistics have readonly_database_
statistic appended to its name. They are also generated if the permanent statistics are stale. If the
permanent statistics are updated on the primary, then they are copied over to the secondary and SQL Server
uses the updated permanent statistics rather than the temporary statistics. Temporary statistics are dropped
if the availability group fails over or if the SQL Server is restarted.

 Indexes required for the read-only workload on the secondary need to be created on the primary
database.

 Keep these indexing and statistics considerations in mind while planning the read-only workload or
when you are troubleshooting any read-only workload performance issues on the Readable Secondary .

 Data Latency
 When the log records are sent from the primary replica to the secondary replicas, a dedicated REDO
thread applies those log records on each secondary database. If you query the secondary database, the
committed data is only available once the REDO thread has applied the logs to the database. In this case,
the Always On dashboard would show zero data loss under the estimated data loss column, which is an
accurate representation as the data is committed. However, a common misconception is that the data on
the secondary replica when queried will be up-to-date if the dashboard shows zero data loss. This is not the

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

161

case. Hence offloading your reporting workloads to the Readable Secondary is only useful if the application
can tolerate some amount of data latency . If not, then it might be better to run the reporting queries against
the primary replica. The latency is usually only a matter of seconds, between the primary and secondary
replicas. In some cases, if there is resource contention then the latency can increase.

 In the case of In-Memory OLTP tables, when accessing these tables on secondary replica, a safe
timestamp is used to return rows from transactions that have committed earlier than a safe timestamp.
Garbage collection uses this as the oldest timestamp hint to garbage collect the rows on the primary replica.
If transactional activity on the primary replica stops before the internal threshold for the safe-timestamp
update is reached, the changes made since the last update to the safe timestamp will not be visible on the
secondary replica. You may need to run a few DML transactions on a dummy durable memory-optimized
table on the primary replica to work around this issue. Or run a manual checkpoint to force shipping of a
safe timestamp, although this is not recommended.

 Blocking on Existing Transactions
 Secondary databases can start accepting connections as soon as it is enabled for read. However, the row
versions will not be fully available on the secondary database if there are active transactions existing on a
primary database. The active transactions on the primary when the secondary replica was configured must
commit or roll back. Until this happens, the transaction isolation level mapping on the secondary database
is not complete and queries are temporarily blocked.

 The same is true for memory-optimized tables. Even though row versions are always generated for
memory-optimized tables, queries are blocked until all existing transactions are completed.

 No Support for Change Tracking and Change Data Capture
 Both Change tracking and change data capture are not supported on Readable Secondary databases.
Change Tracking is disabled on Secondary databases. However, Change Data Capture can be enabled, but
not supported.

 Ghost Record Cleanup
 When rows are deleted from an index leaf page, they are logically removed by marking them for deletion as
 ghost records . SQL Server has a background thread that periodically checks B-trees for ghosted records and
asynchronously removes them from the leaf level of the index. The cleanup of ghost records on the primary
replica can be blocked by transactions on the secondary replicas. You may need to kill a long-running
query on a Secondary for the Ghost record cleanup on the Primary to continue in some cases. In-Memory
OLTP tables do not have this problem, as the row versions are kept in memory and are independent of the
row versions on the primary replica. DBCC SHRINKFILE also gets impacted by this and it might fail on the
primary replica if the file contains ghost records that are still in use on a secondary replica.

 Read-Only Routing Does Not Work if Primary Is Down
 Read-only routing does not work if the primary is down, because the availability group listener is offline as
well. Clients would have to connect directly to the read-only secondary replicas for read-only workloads.
Prior to SQL 2014, you could not read from a secondary replica database if it was in a disconnected or not
synchronized state. Hence the direct connection to read from the secondary is only available from SQL
Server 2014 onwards.

CHAPTER 10 ■ READABLE SECONDARY REPLICAS

162

 Support for In-Memory OLTP
 Querying In-Memory OLTP tables is supported on the secondary replica. In-Memory OLTP tables in an
availability group can be setup using the same steps that you would use for any other disk-based tables
database. One main difference is, unlike disk-based tables, there is no need to map the connections to
Snapshot Isolation level. This is because the access to memory-optimized tables is done using optimistic
concurrency by default. There are, however, certain restrictions on the usage of isolation levels and hints on
both Primary and Secondary Replicas.

 Following are some best practices to use if you are considering read-only workloads on your secondary
databases.

 Resource Governance
 To manage the CPU, Memory, and I/O resources used by connections from Reporting Workload, use the
Resource Governor feature. This will ensure that enough resources are available for the REDO thread and
hence reduce contention between the REDO thread and Reporting Workload.

 Multiple Secondary Replicas
 Distribute the Reporting Workload using multiple secondary replicas. As explained earlier in the chapter,
with the introduction of load balancing for read-only routing , this is much easier with SQL 2016. This will
ensure that a single Secondary replica is not overloaded. Also, having multiple Secondary replicas gives
the flexibility to reserve one or more Secondary Replicas purely for failover, hence removing the possibility
of RTO (Recovery Time Objective) getting impacted by reporting workload. Also, when you have multiple
Secondary replicas, prefer replicas in Asynchronous-Commit availability mode for reporting workload.

 Monitor REDO Activity
 Always monitor REDO activity , such as redo queue size, redo rate, and redo blocked events on the
Secondary. Set certain thresholds on these counters based on your RTO requirements and take necessary
actions when REDO activity exceeds your thresholds.

 Summary
 In this chapter we saw how to successfully configure Readable Secondary and some considerations
and limitations of using a Readable Secondary. In the next chapter we will take a look at the database
maintenance operations using Readable Secondary.

163© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_11

 CHAPTER 11

 Database Maintenance Using
Secondary Replicas

 Now that you have deployed your high availability and disaster recovery (HADR) solution using Always On
Availability Groups, it’s important to ensure that you are maximizing the investment made in the solution by
fully utilizing all the replicas. Unfortunately, we still find database administrators (DBAs) using the primary
replica for almost everything and rarely using the secondary replicas for production, reporting and/or
database maintenance workloads. It’s very common to see DBAs using the secondary replicas only for DR
just like they did with older HADR solutions. Most of the older solutions did not allow use of the secondary
replicas for anything except for DR and one of the asks from customers was the ability to fully utilize the
secondaries.

 In chapter 10 , you saw how you can leverage the investment in the hardware by offloading reporting
workload to one or more secondary replicas thereby freeing up resources on the primary replica to achieve
higher throughput. In this chapter you will see how you can further free up resources on the primary replica
by offloading resource intensive jobs like database backup and integrity check to the secondary replicas.

 Offloading Database Backups
 We all know how important it is to take database backups and most DBAs do it religiously. Also, to minimize
the work-loss exposure and to keep the transaction log size in check, it is very common to take transaction
log backups every 15 minutes to 30 minutes. We know that running backup jobs on the SQL Server is a
very I/O intensive operation that may affect the production workload. Backup operations can also be CPU
intensive if we are using the backup compression feature. Also, production workload may affect the backup
speed. Wouldn’t it be nice if we could perform backups without affecting the production workload? Also,
wouldn’t it be nice if the production load did not affect the backup operations? In an availability group
environment, can we take backups on the secondary replicas since it has a copy of the availability databases?
These are some of the features customers have been asking Microsoft for a long time with previous HADR
solutions.

 Always On Availability Groups allow us to run backups (with some restrictions) on the secondary
replicas. Taking backups on the secondary replicas significantly increases the performance of the mission-
critical workload on the primary replica by reducing the I/O and CPU contention usually caused by backups.
This may increase the speed of the backups too if there is no significant reporting workload running on the
secondary replica.

http://dx.doi.org/10.1007/978-1-4842-2071-9_10

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

164

 Backup Types Supported on Secondary Replica
 Secondary replica supports the following backup types :

• BACKUP DATABASE – supports only copy-only full backups of databases, files, or filegroups.

 ■ Note A copy-only full backup is an SQL Server backup that is independent of the sequence of regular
SQL Server backups. They do not impact the log chain or clear the differential bitmap. Copy-only full backups
cannot be used as a base for differential backups. However, copy-only full backup can still be used as a base
for subsequent transaction log backups.

• BACKUP LOG – supports only regular transaction log backups.

 Secondary replicas do not support the following backup types:

• Differential backups and

• Copy-only transaction log backups.

 If your backup strategy uses differential backups, then you need to take regular full backups and
differential backups on the primary replica. You can still offload the transaction log backups on the
secondary replica.

 In order for the backups to work on the secondary replica, the secondary replica needs to be
communicating with the primary replica. The secondary replica needs to be in synchronized or
synchronizing state for backups to work on secondary replica. The replica state cannot be in ‘not
synchronizing’, ‘disconnected’, or ‘resolving’ state.

 ■ Note Secondary replica can be in synchronous or asynchronous availability mode. Even if an
asynchronous replica has significant latency, you can still take backups from it. If the secondary replica is
lagging behind the primary replica, then the backup on the secondary replica will not have all the data that the
primary replica has at that point.

 Role of Primary in Backups
 Regardless of the type of backup that you take on the secondary replica, the primary replica plays a major
role in coordinating the backups between replicas. Figure 11-1 shows the communication between the
 primary and secondary replicas.

 Figure 11-1. Primary playing a major role in backups

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

165

 When a secondary replica starts a backup, it notifies the primary replica that it wants to start a backup.
The primary replica will attempt to take a BulkOp lock for that database. The BulkOp lock prevents two
replicas to take backup at the same time. Assuming no other replica is taking a backup, primary replica will
get the BulkOp lock on the database on behalf of the secondary replica and notify the secondary replica.
The secondary replica will start performing the backup locally. It is going to copy data out of the secondary
database or transaction log depending upon the type of backup to the backup media. There is no interaction
for backup purposes with the primary replica during this stage.

 After the secondary replica completes the backup, it notifies the primary replica and gives it the last log
sequence number (LSN) that was active in the log at the point it stopped copying data from the transaction
log. The primary replica updates the last LSN in its copy of the database, which is the updatable copy, and
that’s the one that is used for the next backup. The update of the last backup LSN now gets replicated to
all the secondary replicas. At this point, the primary replica also releases the BulkOp lock so other backup
operations can take place. Also, now each replica can perform log truncation based on this last backup LSN.

 How Transaction Log Backups Work
 You may already know this but as a refresher, a series of ordered transaction log backups is called a log
chain. When the log chain is intact, you can restore the database from the full database backup followed
by subsequent log backups. Always On Availability Groups guarantee a consistent log chain of log backups
taken across replicas (primary or secondary configured with synchronous- or asynchronous-commit
availability mode). Regardless of which replica that the transaction log backup is taken, there will be
no overlap of the contents between these backups. Figure 11-2 shows the three replicas AlwaysOnN1,
AlwaysOnN2, and AlwaysOnN3 that you configured using availability groups in chapter 8 .

 Figure 11-2. Taking transaction log backups on all replicas

http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

166

 Let’s assume that currently AlwaysOnN1 is the primary replica and AlwaysOnN2 and AlwaysOnN3 are
the secondary replicas. AlwaysOnN1 and AlwaysOnN2 are configured with synchronous availability mode
whereas AlwaysOnN3 is configured as asynchronous availability mode. To minimize the impact of the
backups on the primary, you want to take backups on the secondary replica preferably AlwaysOnN2 as it is
in the same datacenter and is in synchronous availability mode.

 The first transaction log backup is taken on secondary replica AlwaysOnN2. Let’s assume that this log
backup (Log Backup1) includes transactions with log sequence numbers (LSNs) from 1 to 10. The next
transaction log backup (Log Backup2) occurs on AlwaysOnN2. This backup will include any transactions
with LSN after the last LSN from Log Backup1 taken on AlwaysOnN2. Let’s assume this second log backup
includes transactions with LSNs 11 to 24.

 Let’s assume that AlwaysOnN2 is down for some reason and the next log backup (Log Backup3) is
taken on our secondary replica AlwaysOnN3 that is located in the DR datacenter. Log Backup3 will have
LSNs from 25 onwards. Let’s assume the third log backup includes transactions with LSNs 25 to 32. Now say,
AlwaysOnN3 also goes down and you take the next transaction log backup (Log Backup 4) on the primary
replica AlwaysOnN1, this backup will have LSNs from 33 onwards. Let’s say it has LSNs 33 to 40.

 By this time, let’s assume AlwaysOnN2 and AlwaysOnN3 are back online. And you resume taking
transaction log backup on AlwaysOnN2. The fifth log backup will include transactions from 41 onwards. As
you may have noticed, there are no overlaps of LSNs between the log backups. If you need to recover the
database using the backups, you will need to restore a full backup (or a copy-only full backup) followed by all
the transaction log backups taken from all the replicas and restored in order as if they were all taken from a
single SQL Server .

 Configuring Backup Preference and Priority
 In the preceding section, you saw how the transaction log backups occurred on the secondary replica
AlwaysOnN2 and how the backups continued on AlwaysOnN3 when AlwaysOnN2 was unavailable and later
continued on the primary replica AlwaysOnN1 when both our secondary replicas were unavailable. Also,
you saw the log backups resumed on AlwaysOnN2 once it was available again. In this section, we will show
you how to configure backup priority when you have multiple secondary replicas and ensure that backups
still continue to occur even if the secondary replica/s fail. As with most configurations, you can configure
backup preferences and priority using SQL Server Management Studio (SSMS) , TSQL, or PowerShell.

 ■ Note You can configure the backup preferences and priorities either during creation of the availability
group as you saw in chapter 8 or after creating the availability group. After configuring the backup preferences
and priorities, you need to script backup jobs (discussed later in this chapter) to account for them as there is
no automatic enforcement of these settings. Ad-hoc backup jobs do not check these preferences by default.
However, backup jobs created using default SQL Server maintenance plan and Log Shipping checks the backup
settings that you configure.

 Using SSMS
 To configure or review the backup preferences and priority using SSMS, open Availability Group Properties
and select the Backup Preferences page as shown in Figure 11-3 . This page is very similar to the Backup
Preferences tab that you saw in chapter 8 while creating the availability group.

http://dx.doi.org/10.1007/978-1-4842-2071-9_8
http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

167

 As shown in Figure 11-3 , you have the following options for backup preference

• Prefer Secondary – This is the default backup preference. As the name suggests, when
this option is selected, backups will occur on a secondary replica except when the
primary replica is the only replica online. When there are multiple secondary replicas
available, backup priority defines the secondary with highest priority for backups.

• Secondary only – If you do not want backups to occur on the primary replica then
select this option. When this option is selected, backups always occur on the
secondary and will not occur if primary is the only replica online.

• Primary – As the name suggests, when this option is selected, backups always occur
on the primary replica. You want to choose this option if differential backups are to
be taken as differential backups are not supported on secondary replicas.

• Any Replica – When this option is selected, backups can occur on any replica;
however backup priority will still be applicable.

 Figure 11-3. Configuring backup preferences and priorities using SSMS

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

168

 Now let’s discuss how to handle backups when there are multiple secondary replicas. For example,
the availability group that you created in chapter 8 has two secondary replicas. If you select the option
Prefer Secondary, which replica will be selected for the backup operation? To specify where the backup
jobs should be performed relative to other replicas in the same availability group, you will set the backup
priorities in the Replica backup priorities grid in the Backup Preferences page. For the backup priority,
you can select any integer between 1 and 100. One has the lowest priority, and 100 has the highest
priority. If the secondary replicas have the same priority, then the preferred replica is selected by ordering
the replicas by their name in ascending order .

 To exclude a replica, you can check the Exclude Replica box for that replica. For example, say you
have a replica in the DR datacenter and you want to use it only for DR purposes and not for any other
load. Or maybe the network connectivity to a secondary replica is not reliable and you do not want to
use that replica for backups. In that case you can exclude the replica. In Figure 11-3 , we have given the
primary replica AlwaysOnN1 a backup priority of 20, secondary replica AlwaysOnN2 a backup priority
of 30, and AlwaysOnN3 a backup priority of 10. We could have given them backup priorities of 2, 3, and 1
respectively too and it would behave similarly. With these priorities, it means that our preferred backup
replica is AlwaysOnN2 as it has the highest backup priority followed by AlwaysOnN1 and AlwaysOnN3 has
the lowest priority.

 ■ Note Even though AlwaysOnN1 (primary) has a higher priority than AlwaysOnN3 (secondary), if
AlwaysOnN2 (secondary) is unavailable then AlwaysOnN3 will become the preferred backup replica as the
backup preference is set to Prefer Secondary.

 Using TSQL
 To configure backup preference and priority using TSQL set the WITH AUTOMATED_BACKUP_PREFERENCE option
and BACKUP_PRIORITY option respectively of the CREATE AVAILABILITY GROUP or ALTER AVAILABILITY
GROUP TSQL. Below is a sample code to configure backup preference to prefer secondary.

 USE [master]
 GO
 ALTER AVAILABILITY GROUP [AGCorp] SET(AUTOMATED_BACKUP_PREFERENCE = SECONDARY);
 GO

 The following is a sample code to configure backup priority of 20 for AlwaysOnN1 replica, 30 for
AlwaysOnN2 replica and 10 for AlwaysOnN3 replica:

 ALTER AVAILABILITY GROUP [AGCorp]
 MODIFY REPLICA ON N'ALWAYSONN1' WITH (BACKUP_PRIORITY = 20)
 GO
 ALTER AVAILABILITY GROUP [AGCorp]
 MODIFY REPLICA ON N'ALWAYSONN2' WITH (BACKUP_PRIORITY = 30)
 GO
 ALTER AVAILABILITY GROUP [AGCorp]
 MODIFY REPLICA ON N'ALWAYSONN3' WITH (BACKUP_PRIORITY = 10)
 GO

http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

169

 Using PowerShell
 To configure backup preference and priority using PowerShell , use the AutomatedBackupPreference option
and BackupPriority options respectively of the Set-SqlAvailabilityGroup cmdlet. Below is a sample code
to configure backup preference to prefer secondary.

 Set-SqlAvailabilityGroup –Path SQLSERVER:\Sql\AlwaysOnN1\DEFAULT\AvailabilityGroups\AGCorp
–AutomatedBackupPreference Secondary

 The following is a sample code to configure backup priority of 20 for AlwaysOnN1 replica, 30 for
AlwaysOnN2 replica, and 10 for AlwaysOnN3 replica.

 Set-SqlAvailabilityReplica -BackupPriority 20 -Path SQLSERVER:\Sql\AlwaysOnN1\DEFAULT\
AvailabilityGroups\AGCorp\AvailabilityReplicas\ALWAYSONN1
 Set-SqlAvailabilityReplica -BackupPriority 30 -Path SQLSERVER:\Sql\AlwaysOnN1\DEFAULT\
AvailabilityGroups\AGCorp\AvailabilityReplicas\ALWAYSONN2
 Set-SqlAvailabilityReplica -BackupPriority 10 -Path SQLSERVER:\Sql\AlwaysOnN1\DEFAULT\
AvailabilityGroups\AGCorp\AvailabilityReplicas\ALWAYSONN3

 Automating Backups on Secondary Replicas
 To automate the backups on secondary replicas and ensure that the backups run on the preferred replica
and follow the replica priorities, you need to script the backup jobs for the availability group databases. To
check if the current replica is the preferred backup replica, you can use the built-in system function sys.fn_
hadr_backup_is_preferred_replica . We discussed this function in chapter 9 . As a refresher, this function
takes a database name as a parameter and returns a 1 if the availability replica that is hosted by the current
instance is the preferred backup replica. If not, the function returns a 0.

 The following is a sample code to use this function in backup jobs:

 If sys.fn_hadr_backup_is_preferred_replica(@dbname) <> 1
 BEGIN
 -- If this is not the preferred backup replica, exit
 END
 -- If this is the preferred replica, continue to do the backup.

 If you use the default SQL Server Maintenance Plan for your backups, then you will not need to do
anything extra as the maintenance plan uses this function by default to decide if the backups need to occur
on a particular replica. If you do not use maintenance plans and have custom backup jobs, then you will
need to modify the backup job using something similar to the sample code shown earlier.

 To ensure that the backups will occur on the current preferred backup replica at the time of starting the
backup job, you need to create the same jobs (using maintenance plan for backups or custom backup jobs)
with the same schedule on all replicas. Say, for example, you configure the backup preference and priority
as shown in Figure 11-3 and you want to take transaction log backups every 15 minutes as per these backup
configuration settings. You can create the automated transaction log backup job very easily by creating a
database maintenance plan wizard on each replica to take log backups every 15 minutes with the same
schedule. The jobs will run on each replica at the same time but the actual backup will occur only on the
replica that is the current preferred backup replica. The jobs on non-preferred replicas will do nothing and
exit. The same logic applies for all supported backup types .

 If you are creating a database maintenance plan to take full backups, you will see the warning message
shown in Figure 11-4 .

http://dx.doi.org/10.1007/978-1-4842-2071-9_9

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

170

 This is expected as regular full backups are not supported on a secondary replica. To clear the warning,
click the Options tab and select Copy-only backup check box as shown in Figure 11-5 .

 Figure 11-4. Warning message while creating database maintenance plan for full backup

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

171

 Also, notice the check box labelled For availability databases, ignore replica priority for backup and
backup on primary settings. This option allows us to override the backup preference settings if we need to.

 To see how the database maintenance plan uses the system function sys.fn_hadr_backup_is_the
preferred_replica , right-click the maintenance plan, and select Modify. In the Design Maintenance Plan
page, right-click Backup Database Task (Full), select Edit, and click the View T-SQL button in the Back Up
Database Task page. Notice the function used in the backup script, as shown in Figure 11-6 .

 Figure 11-5. Selecting copy-only backup option for full backups

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

172

 Best Practices
 Having a good backup strategy in place helps us to restore the databases from any failure in a very efficient
way. As you might be aware, in order to restore a database from a set of backups, you need to create a
recovery sequence for a given point of time. This can be complicated especially since you have different
types of backups. Also, since now you can take backups on any replica, you can have a bigger problem when
you need to restore all the backups in the same order it was taken. If you miss a backup, then you will break
the backup chain.

 ■ Note MSDB database is only aware of the backups taken on the local SQL Server instance. It does not
know about the backups that are taken on the other replicas.

 To ensure that you do not have to search all the replicas for all the backup files during recovery, it is
highly recommended to maintain a central location for all backups, which is accessible from all replicas.
This will ensure that during a failure, anyone can find all the backup files. Also, if the centralized location
is separate from the replicas then you can ensure that you will not lose the backup files if any of the
replicas fail.

 Figure 11-6. Ensuring that the maintenance plan uses the system function sys.fn_hadr_backup_is_
preferred_ replica

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

173

 Also, you can use the SSMS built-in tool Recovery Advisor to quickly create a correct and optimal restore
sequence.

 ■ Tip To open the Recovery Advisor tool in SSMS, right the Databases node and select Restore Database….
Click the ellipses next to the Device dialog box and add the path(s) to the backup locations. To perform point-in-
time restore, click Timeline button on the Restore Database dialog box.

 All you need to provide is the location of the backup sets and the Recovery Advisor tool automatically
comes up with the correct restore sequence based on the header and LSN information available in the
backup files. Again, if you have a centralized backup location, then you will only need to provide the path to
the centralized backup location. But if for some reason, there are multiple backup locations, the Recovery
Advisor tool allows us to add the paths to all the backup locations. Of course, if you forget about one or more
backup paths then the tool will not be able to create the correct restore sequence and may throw an error.
This tool can also be used to perform point-in-time restores easily too. You can select a point-in-time to
restore by simply moving the slider on the time line or by entering the date and time values in the text boxes.
The tool automatically chooses the right backup files required to restore the database to that point .

 ■ Note To restore a database that is a part of an availability group, you will first need to remove it from the
availability group.

 We mentioned earlier that availability groups do not support taking differential backups on the
secondary replicas. Also, copy-only full backups that are supported on the secondary replicas cannot be
used as a base for differential backups. So, how do we handle this if our backup strategy requires differential
backups? If you need to take differential backups, then you can set the backup preference to be Primary so
that the full and differential backups will always be taken from the current primary replica. But this also will
mean that the transaction log backups will take place on the current primary replica.

 We know that transaction log backup jobs typically run every 15 to 30 minutes whereas the full and
differential backups jobs run once a day after business hours. So, the transaction log backups that are
running during business hours will have the maximum impact on the production load. What if you want
to offload the transaction log backups to the secondary replica and only take the full and differential log
backups on the primary replica? To achieve this, one method is to set the backup preference to Prefer
Secondary as you saw in Figure 11-3 to ensure that the transaction log backups created using maintenance
plans execute on secondary replicas. And for the full and differential backups, you can create custom jobs
that will identify the primary replica before executing the backup. You can use the built-in system function
 sys.fn_hadr_is_primary_replica for this purpose. As per our discussion about this function in chapter
 9 , this function takes a database name as a parameter and returns a 1 when the database on the current
instance is the primary replica. If not, the function returns 0. Below is some sample code that you can use to
perform full and/or differential backups on the primary replica.

 If sys.fn_hadr_is_primary_replica (@dbname) = 1
 BEGIN
 -- This is the primary replica. Perform the backup job.
 END
 -- This is not the primary replica, exit .

http://dx.doi.org/10.1007/978-1-4842-2071-9_9

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

174

 Running Integrity Checks
 Running database integrity checks using DBCC CHEKDB is an important part of database maintenance. This
allows us to identify any database consistency issues well in advance so that we can take appropriate actions
to fix the issue before we incur data corruption and/or data loss. The rule of thumb is to run database
integrity checks once a week. Most DBAs follow this rule but tend to delay the schedule to once every two
weeks or once every month or sometimes even disable the job due to the time and resources this operation
takes. As the databases becomes bigger, these checks take longer and soon the maintenance windows
become too small to accommodate these jobs. You don’t want to run these checks during business hours as
these jobs are resource intensive and may affect performance of your mission critical production workload
especially when there is a lot of activity on the server.

 What if you can run the database integrity checks while minimizing the impact on the production
workload? If that is possible, then most DBAs will happily run these checks regularly again. Availability
groups allow us to do just that. It allows us to perform DBCC CHECKDB jobs on the secondary replica while
minimizing the performance impact on the production load on the primary replica. Let’s look if running
 DBCC CHECKDB on the secondary replicas is enough and what the considerations are to run it on the
secondary replicas.

 Running DBCC CHECKDB on Secondary Replicas
 To be able to run DBCC CHECKDB on secondary replicas, you need to configure the secondary replicas as
 readable as discussed in chapter 10 . If you try to run DBCC CHECKDB on a non-readable secondary replica, you
will get the following error message:

 Msg 976, Level 14, State 1, Line 1
 The target database, 'AdventureWorks2016', is participating in an availability group
and is currently not accessible for queries. Either data movement is suspended or the
availability replica is not enabled for read access. To allow read-only access to this and
other databases in the availability group, enable read access to one or more secondary
availability replicas in the group. For more information, see the ALTER AVAILABILITY GROUP
statement in SQL Server Books Online.

 As you might be aware, DBCC CHECKDB creates an internal snapshot and performs copy-on-write activity
in order to check a specific point-in-time while allowing redo to progress. While performing DBCC CHECKDB
on the secondary replica, it is possible that the secondary replica is behind the primary replica. If you
want to avoid creating an internal snapshot, you can execute DBCC CHECKDB WITH TABLOCK . This operation
requires a database lock and to obtain the database lock you need to first suspend the HADR activity on the
database, run DBCC CHECKDB WITH TABLOCK and then resume the HADR activity.

 ■ Note Suspending the HADR activity on the database will cause a backlog of log blocks and cause the
transaction log file(s) to grow on the primary and other remaining replicas that do not have data synchronization
suspended.

 Running integrity checks on the secondary minimizes the impact of the production load on the primary
replica but it does not completely replace the act of running it on the primary replica. This is due to the fact
that the primary cause of corruption issues that we see is due to I/O subsystem corruption. As we are aware,
each replica has a separate copy of the databases that are stored on a different I/O subsystem (or different
portion of the I/O subsystem) and hosted on different servers with different memory.

http://dx.doi.org/10.1007/978-1-4842-2071-9_10

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

175

 ■ Note SQL Server 2016 supports running DBCC CHECKDB on databases that contain memory-optimized
tables. However, validation only occurs on the disk-based tables. Also, DBCC repair options are not available
for memory-optimized tables. Therefore, you must continue to back up your databases regularly and test
the backups. You will need to restore from the last good backup if there are any data integrity issues in the
memory-optimized tables. Also, as part of database backup and recovery, a CHECKSUM validation is done for files
in memory-optimized filegroups.

 Running DBCC CHECKDB only on the secondary replica is not sufficient. It is possible that one availability
replica may be corrupted while the other replica may not be corrupted, and the only way to detect any
corruption to the database files from the I/O subsystem on a particular replica is via running DBCC CHECKDB
on that replica .

 Different Options to Run DBCC CHECKDB
 To ensure that you are running DBCC CHECKDB on all the replicas while minimizing the performance impact
on the production replica, consider the below options:

 1. Run on secondary replica and failover periodically (recommended).

 2. Run on all replicas but more frequently on the secondary replicas.

 3. Run lightweight checks on primary replica.

 In option 1 - Run on secondary replica and failover periodically is the preferred option if the secondary
replicas are built exactly similar to the primary replica and you don’t have any concerns running the
integrity checks on the secondary replicas for a long time. In this option, you will schedule DBCC CHECKDB
jobs on all the replicas and use the sys.fn_hadr_is_primary_replica function to run the DBCC CHECKDB
only on the current secondary replica. Below is a sample code that performs DBCC CHECKDB for database
AdventureWorks2016 only on the secondary replica.

 IF sys.fn_hadr_is_primary_replica('AdventureWorks2016')<>1
 BEGIN
 DBCC CHECKDB(AdventureWorks2014)
 END
 ELSE
 PRINT 'This is the primary replica, exit!'

 You will perform availability group failover periodically (say once every other week) so that the
next DBCC CHECKDB will run on the new secondary. This way, databases on both primary and secondary
replicas are checked for corruption while minimizing the performance impact caused by DBCC CHECKDB.
Also another benefit of this option is that you will know that all our replicas are functional and operating
optimally and in case of a real disaster you can confidently failover to any replica and continue to operate
normally. If you always use a particular server as your primary replica and use the secondary replica only for
DR purposes, then you may not be 100% sure how it will perform when you do a failover.

 If for some reason, you cannot use option 1, then you can consider using option 2 - Run on all replicas
but more frequently on the secondary replicas. In this option, run DBCC CHECKDB on all replicas but run it
more frequently (once a week, for example) on the secondary replicas as compared to the primary replica
(monthly, for example). This option will not fully compensate for database integrity checks on the primary
replica but it will reduce the impact on the primary replica .

CHAPTER 11 ■ DATABASE MAINTENANCE USING SECONDARY REPLICAS

176

 If you cannot use either options 1 or 2, consider using option 3 - Runlight weight checks on primary
replica. In this method, you run DBCC CHECKDB WITH PHYSICAL_ONLY to reduce the impact on the primary
replica. This option has a small overhead and a shorter run time as compared to running the full DBCC
CHECKDB and it checks the physical consistency of the database, detect torn pages, checksum failures, and
common hardware failures that can corrupt user databases.

 ■ Note It is still recommended to run the full DBCC CHECKDB periodically to check both the physical and
logical integrity of the user databases.

 Summary
 In this chapter, you learned the benefits of active secondary replicas and how to leverage the hardware of
the secondary replicas to run database backup and integrity check jobs. In the next chapter, we will discuss
other common management tasks that DBAs need to perform on an availability groups HADR solution.

 PART V

 Managing Availability Groups

179© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_12

 CHAPTER 12

 Common Management Tasks

 In this chapter we will take a look at all the common management tasks that an administrator would need to
perform on an availability group. Creation of availability group is a one-time operation; however, you would need
to manage the availability groups on an ongoing basis.

 Suspend Secondary Database Synchronization
 If the primary replica is experiencing performance degradation with queries and transactions taking longer, then
suspending the synchronization on one or more secondary databases briefly might be useful to temporarily
improve performance on the primary replica. By suspending the synchronization, the primary doesn’t have to
send the transaction log blocks to the secondary replica and can perform the commits more quickly.

 To suspend the synchronization using SQL Server Management Studio, connect to the secondary
replica, then under Availability Groups right-click the database and click Suspend Data Movement.

 Figure 12-1 shows the Suspend Data Movement option in the SSMS GUI on Secondary Replica instance.

 Figure 12-1. Suspend Data Movement on Secondary Replica Instance

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

180

 Suspending an Always On secondary database does not directly affect the availability of the primary
database. However, it can impact redundancy and failover capabilities for the primary database.

 After the secondary database synchronization is suspended, the transaction log of the corresponding
primary database cannot be truncated. This causes log records to accumulate on the primary database.
Therefore, try to resume or remove a suspended secondary database as quickly as possible. Also consider
adding some temporary space for logs on the primary and other secondaries as it starts growing when the
data synchronization is suspended .

 Suspend Primary Database Synchronization
 If multiple secondary replicas are causing performance issues on the primary replica for the same
database(s) then it might be easier and faster to suspend the synchronization on the primary databases itself
instead of going to each and every one of the secondary databases and suspending the synchronization.

 ■ Note Starting SQL Server 2014, you can have up to eight secondary replicas for an availability group.

 To suspend the synchronization using SQL Server Management Studio, connect to the primary replica,
then under Availability Groups right-click the database and click Suspend Data Movement.

 Figure 12-2 shows the Suspend Data Movement option in the SSMS GUI on Primary Replica instance .

 Figure 12-2. Suspend Data Movement on Primary Replica Instance

 Suspending a primary database stops the data synchronization between the primary and all the
secondary databases. In this case, the transaction log of the primary database cannot be truncated, and also
changes made to the primary databases are not propagated to any of the secondary databases. Hence in
case of a disaster on the primary replica instance there can be data loss. Therefore, try to resume the primary
database synchronization as quickly as possible. Also consider adding some temporary space for logs on the
primary and other secondaries, as it starts growing when the data synchronization is suspended.

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

181

 Resume Database Synchronization
 Resuming a suspended database puts the database into the SYNCHRONIZING state. Resuming the primary
database also resumes any of its secondary databases that were suspended as the result of suspending the
primary database .

 To resume the synchronization using SQL Server Management Studio, connect to the replica database
and then under Availability Groups, right-click the database and click Resume Data Movement .

 Figure 12-3 shows the Resume Database Movement option in the SSMS GUI.

 Figure 12-3. Resume Data Movement

 If a secondary database was suspended locally, that is, from the SQL Server instance that hosts the
secondary replica, then that secondary database must be resumed locally .

 Once the primary database is in the SYNCHRONIZING state, we know that the synchronization has
resumed on the secondary database.

 Change the Availability Mode
 The availability mode is a replica property that controls whether the replica commits asynchronously or
synchronously. Availability mode can only be changed from the primary replica instance.

 When synchronous-commit availability mode is used, the primary replica waits for the secondary
replica to commit the transaction to the transaction log before confirming the commit back to the
application. This can cause performance issues on the primary if the commits to synchronous secondary
replica are delayed. In such scenarios, the Availability Mode of the secondary replica could be changed
to asynchronous-commit, so that the primary replica doesn’t have to wait for the confirmation from the
secondary anymore. This will provide temporary relief to the SQL transaction performance on the primary.
However, this temporary relief measure increases the chances of data loss as the Availability mode is now set
to asynchronous-commit.

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

182

 To change the Availability Mode of a replica using SQL Server Management Studio, connect to the
primary replica and then under Availability Groups, right-click the availability group and click on Properties.
Use the Availability Mode drop-down list to change the availability mode of the replica.

 Once Availability Mode is changed, review the availability group configuration to ensure that the
availability group will be able to meet the RTO and RPO requirements in the SLA.

 Figure 12-4 shows the Availability Mode setting in the Availability Group Properties .

 Figure 12-4. Availability Mode

 Add a Database
 A database can be added to an availability group by adding it first to the primary replica instance and then
restoring and adding it to the secondary replica instances. A database can also be added to a secondary
replica instance if it is already present on the primary replica instance. This is possible if the availability
group was created with Skip Initial Synchronization option or if the secondary database was removed from
the availability group due to performance bottleneck.

 If the database is added to the primary replica instance, then add it to all the secondary replica
instances at the earliest chance. If automatic seeding is enabled for an availability group, SQL Server
automatically creates the secondary replicas when you add a database to the availability group. That means

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

183

you no longer have to manually back up and restore secondary replicas. For automatic seeding to work,
the data and log file path should be the same on every SQL Server instance participating in the availability
group. Also the database should be in full recovery model and should have a current full and transaction log
backup.

 To add a database to an availability group using SQL Server Management Studio, connect to the
primary replica instance and under Availability Groups right-click Availability Group and click Add Database
to launch the Add Database to the Availability Group wizard.

 Figure 12-5 shows the Add Database option in the SSMS GU.I

 Figure 12-5. Add Database

 To add a database to a secondary replica of an availability group using SQL Server Management Studio,
first ensure that the database is prepared for availability group. Then connect to the secondary replica
instance and under Availability Groups, right-click the Availability Group and click Join to Availability Group
to launch the Join Database to Availability Group wizard .

 Remove a Database
 The transaction log can start growing when database synchronization is suspended. If the synchronization
cannot be resumed, then the database should be removed from the secondary replica. The removed
secondary database goes into the RESTORING state.

 Figure 12-6 shows the Remove Database option in the SSMS GUI.

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

184

 When a replica database is removed from the primary replica, the database is removed from the
Availability Group on all the replicas. It remains online on the primary replica and on the secondary replicas
it goes into the RESTORING state.

 To remove a database from a secondary replica of an availability group using SQL Server Management
Studio, connect to the secondary replica and under the Availability Groups, right-click the database and click
Remove Secondary Database to launch the Remove Database from Availability Group wizard.

 To remove a database from an availability group using SQL Server Management Studio, connect to the
primary replica instance and then under Availability Groups, right-click the database to launch the Remove
Database from Availability Group wizard.

 If the database was removed due to performance considerations, then plan to add it back to the
availability group at the earliest chance .

 Add a Replica
 A new replica can be added to an existing availability group.

 Before you add an instance to an availability group as a secondary replica, first ensure that the instance
satisfies all the prerequisites discussed in the prerequisites chapter.

 To add a replica to an availability group using SQL Server Management Studio, connect to the primary
replica and then under Availability Groups, right-click the Availability Group and click Add Replica to launch
the Add Replica to the Availability Group wizard.

 Once the replica is added, review the replica properties such as Availability Mode, Backup
Preference, etc.

 Figure 12-7 shows the Add Replica option in the SSMS GUI.

 Figure 12-6. Remove Database

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

185

 Remove a Replica
 A replica can be removed from an existing availability group. If an availability group has multiple databases
and if a secondary replica is causing performance issues to the primary replica, it might be better to remove
the secondary replica than removing selected replica databases.The most common reason to remove
the secondary replica is that it is either disconnected or down and you no longer want to be part of the
availability group.

 To remove a replica from an availability group using SQL Server Management Studio, connect to the
primary replica instance and under the Availability Groups, right-click the replica that you want to remove
and click Remove from Availability Group to launch the Remove Secondary Replica from the Availability
Group wizard.

 Figure 12-8 shows the Remove Replica option in the SSMS GUI.

 Figure 12-7. Add Replica

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

186

 Once the replica is removed, review the availability group properties such as Availability Mode, Backup
preference, etc. to ensure that you will still be able to achieve RTO and RPO objectives with the change in the
configuration.

 Remove an Availability Group
 An availability group can be deleted from the following locations:

 1. Primary replica instance

 Post availability group deletion, the replica databases on the (former) primary
replica instance will be online and available for operations.

 2. Any of the secondary replica instances (use this in emergency scenarios only)

 Post availability group deletion, the (former) secondary replica databases are left
in the RESTORING state. They can be manually bought online.

 3. Windows Server Failover Cluster (WSFC)

 Use this option only if none of the nodes hosting the replica instances of the
availability group are online. It can be deleted from any node in the (WSFC) that
possesses the correct security credentials for the Availability Group.

 Ensure that the WSFC has quorum, before attempting to remove the Availability Group .
 Figure 12-9 shows the Delete Availability Group option in the SSMS GUI.

 Figure 12-8. Remove Replica

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

187

 Deleting an availability group also deletes the listener. However, the Virtual Computer Object (VCO) for
the listener still remains in the Active Directory. Clean up the VCO from the AD OU post availability group
deletion.

 Add a File to a Replica Database
 As part of the prerequisites, we had recommended using the same file path or the database on all the
replicas in the prerequisites chapter. If the data path is the same, then adding the file on the primary
database automatically adds it to the secondary database when the secondary replica performs the REDO
activity. However, If the data path is different on a secondary database as compared to the primary database,
the add-file operation will cause the secondary database synchronization to be suspended.

 To resolve this problem, you will have to perform the following steps:

 1. Remove the secondary database from the availability group.

 2. Then restore a full backup that contains the added file and a transaction log
backup to the secondary replica, using WITH NORECOVERY and WITH MOVE.

 3. Restore any other outstanding log backups from the primary replica and then
rejoin the secondary database to the availability group.

 Figure 12-9. Delete Availability Group

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

188

 Tune Heartbeat Settings
 By default, for single subnet and multi-subnet clusters, a heartbeat is sent every 1 second (set by Subnet
Delay parameter). If a node misses a series of 5 heartbeats (set by the Subnet Threshold value), another
node initiates failover. Normally, for most networks the default values work well. However, if you have poor/
unreliable network connection then you may consider increasing the SameSubnetThreshold to 10 and
CrossSubnetThreshold to 20. This will allow the cluster heartbeat to be more tolerable across the subnets.
Table 12-1 lists the cluster properties to tune the cluster heartbeats along with their default, maximum and
recommended values.

 Table 12-1. Cluster properties and their values to tune the cluster heartbeats

 Parameter Default Value Maximum Value Recommended for unreliable
networks

 SameSubnetDelay 1 second 2 seconds 1 second

 SameSubnetThreshold 5 heartbeats 120 heartbeats 10 heartbeats

 CrossSubnetDelay 1 second 4 seconds 1 second

 CrossSubnetThreshold 5 heartbeats 120 heartbeats 20 heartbeats

 The existing heartbeat settings can be viewed by running the following PowerShell command:

 PS C:\Windows\system32> get-cluster | fl *subnet*

 To change the setting, the following PowerShell command can be used

 PS C:\Windows\system32> (get-cluster).CrossSubnetThreshold = 20

 Create Multiple Listeners for the Same Availability Group
 There might be some scenarios where you may need to create additional listeners for your availability
group. For example, you might have multiple legacy clients that use different instance names to connect
to the databases that are now part of the availability group. In that case, if client connection strings cannot
be changed, then you would need multiple listener names that the clients could connect to using the same
connection string.

 ■ Note You cannot create multiple listener names using the SSMS GUI.

 To create multiple listeners, follow the steps below:

 1. Pre-stage the listener names as Virtual Computer Objects (VCO) in the
Organizational Unit (OU) where the Cluster Name Object (CNO) resides. Give
the CNO full permissions on the VCOs.

 2. In the Windows Server Failover Cluster (WSFC) manager, create Client Access
Points (CAP) for the new listener IP and Name.

 3. After all the listener names are online, in the WSFC add them as OR
dependencies to the availability group resource.

CHAPTER 12 ■ COMMON MANAGEMENT TASKS

189

 4. Assign the port(s) to the listeners using T-SQL.

 5. Set RegisterAllProvidersIP=1 for all the listeners using PowerShell.

 6. Connect to the listeners to confirm that the listener creation was successful.

 Summary
 In this chapter we covered some of the common management tasks that you might have to perform
on availability groups. In the next chapter we will take a look on how to upgrade, update, and migrate
availability groups.

191© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_13

 CHAPTER 13

 Upgrading and Migrating

 Microsoft SQL Server team announced the general availability of the SQL Server 2016 on June 1, 2016. Your
company’s mission-critical production application currently uses SQL Server 2014 Always On Availability
Groups. Your business unit wants you to start testing the upgrade to SQL Server 2016 so that the production
availability group (AG) environment can be upgraded in six months. Everything needs to be tested and one
of the critical requirements for the upgrade is that the downtime for the production client applications needs
to be minimum as it is a 24/7 application. You have been asked to keep the actual downtime that the client
applications will experience during the upgrade to only few minutes (say less than 5 mins.). You might be
wondering that this is wishful thinking and if it is even possible to perform an upgrade from SQL Server 2014
to SQL Server 2016 with less than 5 minutes of downtime. From past experiences, you know that even for a
regular stand-alone SQL Server instance upgrade, the typical downtime is around 1 to 4 hours. And this is
an Always On Availability Group environment with multiple SQL Server instances running on a Windows
Server Failover Cluster (WSFC). How are you going to achieve this task?

 Upgrading and Updating SQL Server
 We have found that most database administrators (DBAs) are aware of the various advantages and
capabilities of Always On Availability Groups as discussed in chapters 10 and 11 . Very few, though, are aware
of the advantage that Always On environment allows us to perform rolling upgrades and rolling updates .
 Rolling upgrade process is a way to upgrade the SQL Server version with minimum downtime and maximum
uptime with minimum risk. Rolling update process is a way to install an SQL Server/Windows Server update,
security patch, or cumulative update and/or service pack. A rolling update process also helps minimize
downtime and maximize availability with minimum risk. In the following sections, we will discuss how to
reduce the downtime of the primary replica to only one or two manual failovers by performing a rolling
upgrade of an SQL Server Always On Availability Group.

 ■ Note The rolling upgrade and update process are exactly the same. Even though the following sections
discuss about rolling upgrade, you can simply replace the word upgrade with update and use the same process
to apply an update to availability group replicas.

 Prerequisites
 Even though rolling upgrade lets us minimize the actual downtime for the client applications, it does not
mean the actual process of upgrading takes only a few minutes. The actual upgrade itself takes much
longer but business is happy as long as the client applications are not experiencing any outage and can

http://dx.doi.org/10.1007/978-1-4842-2071-9_10
http://dx.doi.org/10.1007/978-1-4842-2071-9_11

CHAPTER 13 ■ UPGRADING AND MIGRATING

192

perform their work normally. We cannot stress enough that it is very important to plan and test the upgrade
thoroughly in a test environment to achieve minimal downtime and risk. Only after thorough testing
is completed and all your time requirements are met, can you perform the upgrade on the production
environment.

 Here are some important prerequisites that should be completed before the upgrade to SQL Server 2016:

• Review the hardware and software requirements for installing SQL Server 2016.

• Review your current SQL Server and Windows Server versions and editions. Do
they have a supported upgrade path to SQL Server 2016? If you are on SQL Server
2012 and want to upgrade to SQL Server 2016 then you will need a minimum of
SP1 for SQL Server 2012 installed. You can upgrade SQL Server 2014 release to
manufacturing (RTM) and up to SQL Server 2016. For more information, review the
Microsoft MSDN article titled “Supported version and edition upgrades” at https://
msdn.microsoft.com/en-us/library/ms143393.aspx

 ■ Note When you upgrade availability group replicas from a prior version of SQL Server Enterprise Edition
to SQL Server 2016, you will need to choose between Enterprise Edition: Core-based licensing and Enterprise
Edition. Enterprise Edition: Core-based licensing supports all the cores as reported by the operating system
whereas the Enterprise Edition (not available for new agreement) is limited to a maximum of 20 cores per SQL
Server instance.

• Review the SQL Server 2016 backward compatibility topic to review the changes in
behavior between SQL Server 2016 and the SQL Server version you are upgrading from.

• Run the SQL Server 2016 Data Migration Assistant tool to see if there are any upgrade
blockers, and if any modifications have to be made to scripts or applications due to
breaking changes. You can download the SQL Server 2016 Data Migration Assistant
tool from http://www.microsoft.com/en-us/download/details.aspx?id=53595 .
SQL Server Upgrade Advisor tool is deprecated and replaced with Data Migration
Assistant tool.

• Run the SQL Server 2016 System Configuration Checker tool to see if the SQL Server
setup programs detect any blocking issues before actually upgrading. To run the
System Configuration Checker tool, run SQL Server 2016 setup.exe, click Tools on the
left-hand side, and then click System Configuration Checker on the right-hand side.

• Plan and Thoroughly Test the Upgrade Plan and Document All the Steps with
Detailed Information.

 Rolling Upgrade Best Practices
 Similar to the best practices list for upgrading a regular SQL Server instance, we have a list of best practices
for performing rolling upgrade for availability group replicas. Following the best practices will avoid data
loss, maximize the uptime, and minimize the downtime for client applications using the availability groups.

• Take a full database backup of all databases (if you already don’t have one).

• Run DBCC CHECKDB on all databases and ensure that there are no errors.

• Manually failover on at least one of your synchronous-commit secondary replicas
and ensure that it fails over as expected.

https://msdn.microsoft.com/en-us/library/ms143393.aspx
https://msdn.microsoft.com/en-us/library/ms143393.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=53595

CHAPTER 13 ■ UPGRADING AND MIGRATING

193

• Remove automatic failover from all synchronous-commit replicas. This is to avoid
any unintended failovers during the upgrade process.

• Change the automated backup preference as discussed in chapter 11 to ensure that
the backups will not run on the replica being upgraded.

• Always upgrade the remote secondary replicas first followed by the local secondary
replicas, and the primary replica the last.

• Before upgrading the primary replica, fail over the availability group to an upgraded
synchronous-commit secondary replica with a SYNCHRONIZED state. If you fail
over to an asynchronous-commit secondary replica, then you can have data loss and
all availability databases will be suspended requiring us to manually resume them.

 ■ Note Failure to fail over to an upgraded secondary replica before upgrading the primary replica will affect
the applications and users and will extend the downtime during the primary replica upgrade.

• If the replicas are SQL Server failover clustering instances (FCIs), then upgrade the
inactive node of the FCI before you upgrade the active node.

 Rolling Upgrade Process
 Rolling upgrade process involves multiple steps in a certain order. The actual steps depend on the
availability group topology and the availability of replica-commit mode. Figure 13-1 shows the rolling
upgrade process for the availability group environment that we created in chapter 8 . In this environment
we have three replicas: primary replica (AlwaysOnN1) and secondary replica (AlwaysOnN2) are in the
primary datacenter. They are configured with synchronous-commit availability mode and automatic failover
mode. The remote secondary replica (AlwaysOnN3) is in the disaster recovery datacenter configured with
asynchronous-commit availability mode.

 Figure 13-1. Rolling Upgrade Process for an AG environment used for HA and DR

http://dx.doi.org/10.1007/978-1-4842-2071-9_11
http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 13 ■ UPGRADING AND MIGRATING

194

 The steps for rolling upgrade for our availability group environment are as follows:

 1. Remove automatic failover from all synchronous-commit replicas (AlwaysOnN1
and AlwaysOnN2). This is to prevent any automatic failovers during the upgrade
process.

 2. Upgrade remote secondary replica (AlwaysOnN3).

 3. Upgrade local secondary replica (AlwaysOnN2). At this point, we have upgraded
all secondary replicas and the client applications connected to the primary
replica (AlwaysOnN1) have not experienced any downtime.

 ■ Note During the upgrade process, the secondary replica is not available for failover or for read-only
reporting workloads. But the production OLTP workload on the primary replica is not affected. After the upgrade
of the secondary replicas, depending upon the activity on the primary replica, it may take some time for the
secondary replica to catch up with the primary replica.

 4. Ensure that the local secondary replica (AlwaysOnN2) has caught up with the
primary replica and is in a SNYCHRONIZED state. Whenever you have some
downtime, manually fail over the availability group to the SYNCHRONIZED
secondary replica. After the availability group fails over to AlwaysOnN2, client
applications can get connected again and work normally. The only downtime
they will experience is the time it takes the availability group to fail over from
AlwaysOnN1 to AlwaysOnN2, which is typically a few seconds. To find the exact
downtime, it is important to test in your test environment.

 5. Upgrade the former primary replica (AlwaysOnN1).

 6. Configure the automatic failover mode for the replicas (AlwaysOnN1 and
AlwaysOnN2).

 ■ Note If you need AlwaysOnN1 to be the primary replica, wait for it to catch up with the AlwaysOnN2 and
achieve SYNCHRONIZED state. Then manually fail over the availability group from AlwaysOnN2 to AlwaysOnN1.
This will cause some downtime (few seconds) and the total downtime will be equal to two manual failovers.

 Availability Group with One Local Secondary Replica
 Let’s consider an availability group environment with one primary replica and one local secondary replica
used for only high availability with synchronous-commit availability mode and automatic failover mode.
Figure 13-2 shows such an environment.

CHAPTER 13 ■ UPGRADING AND MIGRATING

195

 The rolling upgrade process for such an environment is as follows:

 1. Remove automatic failover from the synchronous-commit replicas (AlwaysOnN1
and AlwaysOnN2).

 2. Upgrade local secondary replica (AlwaysOnN2).

 3. Ensure that the local secondary replica (AlwaysOnN2) has caught up with the
primary replica and is in a SNYCHRONIZED state. Whenever you can take some
downtime, manually fail over the availability group to the SYNCHRONIZED
secondary replica.

 4. Upgrade the former primary replica (AlwaysOnN1).

 5. Configure the automatic failover mode for the replicas (AlwaysOnN1 and
AlwaysOnN2).

 ■ Note If you need AlwaysOnN1 to be the primary replica, wait for it to catch up with the AlwaysOnN2 and
achieve SNYCHRONIZED state. Then manually fail over the availability group from AlwaysOnN2 to AlwaysOnN1.
This will cause some downtime (few seconds) and the total downtime will be equal to two manual failovers.

 Availability Group with One Remote Secondary Replica
 Let’s consider an availability group environment with one primary replica and one remote secondary replica
used for only disaster recovery with asynchronous-commit availability mode and manual failover mode.
Figure 13-3 shows such an environment.

 Figure 13-2. Rolling Upgrade Process for an AG environment used for only HA

CHAPTER 13 ■ UPGRADING AND MIGRATING

196

 The rolling upgrade process for such an environment is as follows:

 1. Upgrade remote secondary replica (AlwaysOnN2).

 2. To avoid data loss, change the availability mode to synchronous-commit.

 3. Wait for the secondary replica to catch up and the synchronization state is
SYNCHRONIZED. The following is a sample TSQL code to check if the database
is ready for failover on the remote secondary replica AlwaysOnN2. If the is_
failover_ready column in the DMV sys.dm_hadr_database_replica_cluster_
states equals to 1 on a database, you can fail over without any data loss. If
the value is 0 and you force the failover to your secondary replica, data loss is
possible.

 SELECT is_failover_ready, *
 FROM sys.dm_hadr_database_replica_cluster_states
 WHERE replica_id = (SELECT replica_id FROM sys.availability_replicas
WHERE replica_server_name = 'AlwaysOnN2');

 4. Whenever, you can take some downtime, manually fail over the availability
group to the SYNCHRONIZED secondary replica (AlwaysOnN2) on the disaster
recovery data center.

 5. Upgrade the former primary replica (AlwaysOnN1).

 6. Manually fail over the availability group from AlwaysOnN2 to AlwaysOnN1 and
change the commit mode to asynchronous-commit.

 Distributed Availability Groups
 We learned about distributed availability groups (DAGs) in chapter 3 . As a refresher, a distributed availability
group can be thought of as an “availability group of availability groups.” Figure 13-4 shows such an
environment.

 Figure 13-3. Rolling Upgrade Process for an AG environment used for only DR

http://dx.doi.org/10.1007/978-1-4842-2071-9_3

CHAPTER 13 ■ UPGRADING AND MIGRATING

197

 The rolling upgrade process for distributed availability groups is as follows:

 1. Perform rolling upgrade for AG2 in the disaster recovery datacenter. Follow the
steps as explained in the section titled “Availability Group with One Remote
Secondary Replica” in this chapter.

 2. Perform rolling upgrade for AG1 in the primary recovery data center. Follow
the steps as explained in the section titled “Availability Group with One Local
Secondary Replica” in this chapter.

 Availability Group with Failover Cluster Nodes
 Let’s consider an availability group environment where in both the primary replica and remote secondary
replicas are SQL Server failover clustering instances (FCIs) for HA and DR. Figure 13-5 shows such an
environment.

 Figure 13-4. Rolling Upgrade Process for Distributed AG

 Figure 13-5. Rolling Upgrade Process for an AG environment with SQL Server FCIs

CHAPTER 13 ■ UPGRADING AND MIGRATING

198

 The rolling upgrade process for such an environment is as follows:

 1. Upgrade the SQL Server binaries on the inactive node (Node4) of the FCI in the
disaster recovery datacenter.

 2. Manually fail over the SQL Server failover clustering instance from Node3 to
Node4.

 3. Upgrade the SQL Server binaries on Node3.

 4. Upgrade the SQL Server binaries on the inactive node (Node2 of the FCI in the
primary data center).

 5. Manually fail over the SQL Server failover clustering instance from Node1 to
Node2.

 6. Upgrade the SQL Server binaries on Node1.

 Multiple Availability Groups
 So far we have considered availability group environments with only one AG. If you are running multiple
AGs with primary replicas on separate nodes, the rolling upgrade path will involve more failover steps to
preserve high availability. Suppose you have a three-node Windows Server Failover Cluster (WSFC) with the
availability groups as shown in Table 13-1 .

 Table 13-1. Availability groups on a 3-node WSFC

 Availability Group Node1 Node2 Node3

 AG1 Primary

 AG2 Primary

 AG3 Primary

 The rolling upgrade process in such an environment will be as follows:

 1. Manually fail over AG2 to Node3. This will free up Node2.

 2. Upgrade Node2.

 3. Manually fail over AG1 to Node 2. This will free up Node1.

 4. Upgrade Node1.

 5. Manually fail over AG2 and AG3 to Node1. This will free up Node3.

 6. Upgrade Node3.

 7. Manually fail over AG3 to Node3.

 Table 13-2 shows the resulting configuration.

CHAPTER 13 ■ UPGRADING AND MIGRATING

199

 ■ Note In this environment, the rolling upgrade process causes an average downtime of less than two
failovers per availability group.

 Upgrading the Operating System
 So far we have discussed the steps to upgrade SQL Server and/or apply an update or service pack to SQL
Server or Windows Server in an availability group environment. There are situations you may need to
upgrade the operating system. As you know, availability groups run on top of a WSFC and upgrading the
Windows operating system hosting the WSFC is not supported before Windows Server 2012 R2. In this
section we will discuss the steps that will need to be taken to upgrade Windows Server 2012 R2 (and below).

 Cluster OS Rolling Upgrade
 Windows Server 2016 introduced a new feature called Cluster OS Rolling Upgrade . Cluster OS Rolling Upgrade
feature introduced a new concept called Mixed-OS mode , which allows us to start with a Windows Server 2012 R2
failover cluster and upgrade the operating system of the cluster nodes from Windows Server 2012 R2 to Windows
Server 2016 with minimum downtime. Figure 13-6 shows high-level sequential steps that need to be performed
for each Windows Server 2012 R2 cluster node during a Cluster OS Rolling Upgrade.

 Table 13-2. Resulting availability groups configuration after rolling upgrade

 Availability Group Node1 Node2 Node3

 AG1 Primary

 AG2 Primary

 AG3 Primary

 Figure 13-6. Cluster OS Rolling Upgrade Workflow for each Windows Server 2012 R2 cluster node

CHAPTER 13 ■ UPGRADING AND MIGRATING

200

 ■ Note During a Cluster OS Rolling Upgrade, it is recommended to use a clean Windows Server 2016 install,
which means you will need to reinstall SQL Server and add the replica to the availability group. In-place Windows
upgrade is not encouraged although it may work in some cases where default drivers are used. The actual downtime
for availability group primary replica during a Cluster OS Rolling Upgrade is the time taken for one manual failover.
Once Windows Server 2016 is released, we recommend you review the Technet article at https://technet.
microsoft.com/windows-server-docs/compute/failover-clustering/cluster-operating-

system-rolling-upgrade to see if they are any updates to the Cluster OS Rolling Upgrade process.

 Cluster OS Rolling Upgrade starts with a Windows Server 2012 R2 cluster and includes the following
high-level steps:

 1. Select half of the cluster nodes that have the secondary replicas. Remove the
secondary replicas from the existing availability group.

 2. Pause, drain, evict, reformat, and install Windows Server 2016 on these cluster
nodes.

 3. On the Windows Server 2016 nodes, add Failover Clustering feature, configure
networking and storage connectivity, and add the node to the existing Windows
Server 2012 R2 cluster.

 4. Reinstall SQL Server and add the replica to the availability group. At this time,
availability group can fail over to this cluster node if required. The time required
to perform the manual fail over is the only downtime that the clients connecting
to the primary replica will experience.

 5. Perform steps 2, 3, and 4 to the remaining half nodes.

 6. At this time, all the cluster nodes are upgraded to Windows Server 2016. At this
point, the process can be fully reversed, and Windows Server 2012 R2 nodes can
be added to the cluster.

 7. The cluster is still running at the Windows Server 2012 R2 functional level.

 8. When you are certain that you want to run at Windows Server 2016 functional
level, run the Update-ClusterFunctionalLevel PowerShell cmdlet.

 ■ Note After you update the cluster functional level, you cannot go back to Windows Server 2012 R2
functional level and Windows Server 2012 R2 nodes cannot be added to the cluster.

 Cross-Cluster Migration
 Let’s say the operating system on your availability group cluster nodes is Windows Server 2008 R2 and you
have been asked to plan and upgrade to Windows Server 2012 R2. You know that upgrading the operating
system hosting the WSFC nodes is not supported before Windows Server 2012 R2. So how are you going to
upgrade the operating system? To address this, Microsoft introduced cross-cluster migration starting in SQL
Server 2012 SP1. The cross-cluster migration lets us move one or more availability groups from one WSFC
(source cluster) to a new version WSFC (destination cluster) with little downtime.

https://technet.microsoft.com/windows-server-docs/compute/failover-clustering/cluster-operating-system-rolling-upgrade
https://technet.microsoft.com/windows-server-docs/compute/failover-clustering/cluster-operating-system-rolling-upgrade
https://technet.microsoft.com/windows-server-docs/compute/failover-clustering/cluster-operating-system-rolling-upgrade

CHAPTER 13 ■ UPGRADING AND MIGRATING

201

 ■ Note Cross-cluster migration of Always On Availability Groups is intended primarily for an operating
system upgrade to a Windows Server 2012 (or R2) cluster.

 To support cross-cluster migration , an equal or higher version of SQL Server (a minimum of SQL Server
2012 SP1) must be installed on two or more nodes of the destination cluster, and these SQL Server instances
must be enabled for Always On. Figure 13-7 shows two WSFCs. The first one (source cluster) is a two-node
Windows Server 2008 R2 cluster, each hosting a stand-alone SQL Server instance (SQL Server 2012 SP1 or
higher). Both the instances are part of an availability group AG1 with instance 1 being the primary replica
and instance 2 being the synchronous secondary replica. The second cluster (destination cluster) is a two-
node Windows Server 2012 R2 cluster. The goal is to migrate AG1 from source cluster to destination cluster
with minimum downtime.

 Figure 13-7. Upgrading operating system from Windows Server 2008 R2 to 2012 R2 using cross-cluster
migration

 Cross-cluster migration involves the following high-level phases:

 1. Preparation of the destination cluster. This step has no downtime.

 2. Data migration. This step has no downtime.

 3. Availability group resource migration. This step has planned minimal downtime.

 Preparation
 This phase prepares the destination cluster and involves the following steps:

 1. Create a new Windows Server 2012 R2 cluster.

 2. Install SQL Server 2012 SP1 or higher on each cluster node.

 3. Configure each SQL Server instance to support availability group.

 4. On each source cluster node, grant cluster registry permissions to the service
account of each SQL Server instance on the destination cluster node.

 5. For each availability group listener that needs to be migrated, grant the
destination cluster full permission on the virtual network name (VNN) computer
object in the Active Directory Server.

CHAPTER 13 ■ UPGRADING AND MIGRATING

202

 Data Migration
 This phase involves creating and configuring two new secondary replicas on the destination cluster for each
availability group. Figure 13-8 depicts the data migration phase.

 Figure 13-8. Data migration phase

 The data migration phase involves the following steps:

 1. On each destination SQL Server instance, switch the HADR cluster context to
the source cluster name. This step enables the destination server instances to
host availability replicas for availability groups on the source cluster. Below is a
sample TSQL command to switch the HADR cluster context.

 ALTER SERVER CONFIGURATION SET HADR CLUSTER CONTEXT = 'cluster_name'

 ■ Note Switching HADR cluster context is supported starting from SQL Server 2012 SP1.

 2. For each availability group to be migrated in a given batch, choose two
destination instances. Seed new secondary databases on these instances.

 3. Connect to the primary replica on the source cluster, and create secondary
replicas on the destination SQL Server instances.

 4. Connect to the destination instances and join the secondary replicas and
databases to AG1. Configure a synchronous-commit secondary replica on one
destination instance and an asynchronous-commit secondary replica on the
second destination instance.

 ■ Note The Add Replica Wizard can automate steps 2, 3, and 4.

CHAPTER 13 ■ UPGRADING AND MIGRATING

203

 Resource Migration
 This phase moves the availability group resources from the source cluster to the destination cluster.
Figure 13-9 depicts the resource migration (planned downtime) phase.

 Figure 13-9. Resource migration phase

 Resource migration phase involves the following steps:

 1. Delete the availability group listener on the primary replica.

 2. Take the availability group offline from Failover Cluster Manager.

 ■ Note SQL Server 2012 SP1 introduced a new ALTER AVAILABILITY GROUP option for taking an availability
group offline.

 3. On each destination SQL Server instance, switch the HADR cluster context to
LOCAL cluster.

 4. For each availability group in the batch, create new availability group on the
destination instance.

 5. Create new availability group listener.

 After migrating your availability groups, remember to perform the post-installation tasks as discussed in
chapter 9 . For example, create the SQL Agent jobs on the destination SQL Server instances for the databases
that were migrated.

 ■ Note Starting with SQL Server 2016, distributed availability groups (DAGs) as discussed in chapters 3 and
 8 are another option to perform rolling upgrades of the operating system. After upgrading the operating system
on the second WSFC, wait until the second availability group catches up. Then perform a manual failover to the
second availability group and drop the distributed availability group using the DROP AVAILABILITY GROUP T-SQL
command. As distributed availability groups associate two availability groups that have their own listeners, you could
use the old database mirroring connection string syntax for transparent client redirection after failover. For example:
 "Server=AGCorp1_listen; Failover_Partner=AGCorp2_listen; Database=AdventureWorks2016"

http://dx.doi.org/10.1007/978-1-4842-2071-9_9
http://dx.doi.org/10.1007/978-1-4842-2071-9_3
http://dx.doi.org/10.1007/978-1-4842-2071-9_8

CHAPTER 13 ■ UPGRADING AND MIGRATING

204

 Summary
 In this chapter, we discussed Always On Availability Group rolling upgrade and rolling update features.
These features enable us to upgrade the SQL Server version and apply SQL Server and Windows Server
updates like security patches, cumulative updates, and service packs with minimal downtime and minimal
risk. We also discussed the steps to upgrade the Windows operating system using Cluster OS Rolling
Upgrade feature introduced in Windows Server 2016 to perform rolling upgrade of the operating system
Windows Server 2012 R2 to Windows Server 2016. Last, we discussed the cross-cluster migration feature
that was introduced in SQL Server 2012 SP1 to upgrade the operating system Windows Server 2008 R2 to
Windows Server 2012 R2. In the next chapter, we will review the common database maintenance tasks that
an administrator would need to perform on an availability group.

205© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_14

 CHAPTER 14

 Performing Database Maintenance
Tasks

 In this chapter we will take a look at some of the considerations for the database maintenance tasks that an
administrator would need to perform on an availability group.

 Since the secondary replica databases are read-only, index maintenance and statistics updates need to
be performed on the primary replica SQL Server instance.

 Index Maintenance
 As Index maintenance is performed on the primary, it not only impacts the primary replica, but it can also
impact the data synchronization between replicas. Index maintenance operations can involve massive
amounts of data, and this data change would also need to be synchronized with the secondary replicas. This
impacts the performance of data synchronization causing data transfer delays in case of asynchronous-
commit and performance impact on the primary in case of synchronous-commit.

 Assess the Impact in a Test Environment First
 Index maintenance tasks can stress the system depending on the workload, system configuration, and
fragmentation on the indexes. Hence it would be better to test the index maintenance tasks in a test
environment first and assess the impact before performing them on a production SQL Server instance.

 Run during Off-Peak Hours
 One way to reduce the impact of index maintenance is to run it during off-peak hours for the reorganize
operation and preferably during no activity for rebuilds.

 Selective/Smart Index Rebuilds/Reorganize
 A smart rebuilding strategy of only rebuilding or reorganizing selective indexes based on the index
fragmentation percentage and number of pages in the index could also help relieve the stress on the system.
Rebuilding an index will drop and re-create the index. Reorganizing an index will use minimal system
resources to defragment the leaf level of clustered and nonclustered indexes. However, reorganization
swaps one page at a time to reduce fragmentation. Hence it may cause the transaction log to grow and cause

CHAPTER 14 ■ PERFORMING DATABASE MAINTENANCE TASKS

206

additional synchronization overhead for databases in an availability group. Take this into consideration
while deciding on rebuild vs reorganize. Also it is recommended to rebuild if the fragmentation is more than
30% and reorganize if less than 30% and more than 10%. Defragmenting small tables may not provide any
performance benefit, hence it is better to check for fragmentation in tables with page count greater than
1000 pages.

 Switch Availability Mode
 Significant amounts of data get written to the transaction log on the primary replica instance while

rebuilding, which it then sends to the secondary replica instances. Hardening of transaction logs on a
secondary replica instance can be slowed down due to this additional workload. In case of a synchronous-
commit replica, this can result in a higher than normal HADR_SYNC_COMMIT wait on the primary. To
avoid this situation, consider switching the availability Mode of all the secondary replicas to asynchronous-
commit during the maintenance period and then switch it back to the original mode after the maintenance
is completed.

 Statistics Updates
 Although temporary statistics are created and maintained on the Read-only replica, there are some
maintenance tasks still that need to be performed on the primary replica. The permanent statistics on the
primary replica are replicated to the secondary replicas.

 ■ Note Missing statistics are automatically created both on primary and secondary replica.

 Update Statistics on the Primary Replica
 If the primary replica instance holds statistics that the secondary replica instance is using for its read
workload, then updating those statistics often on the primary replica can help speed up the read workload
on the secondary replica. If you run heavy reporting on the secondary replica, then consider reviewing
the temporary stats to convert some of them to permanent stats on the primary replica. Temporary stats
are stored in tempdb. Once created on the primary replica, update them frequently for the read-only
replica workload to benefit from them. If for some reason you need to create the reporting workload index
and statistics on the secondary replica itself, then consider using transactional replication to maintain
a secondary copy instead of using Always On Availability Groups. The subscriber data in transactional
replication can be updated and indexes and statistics can also be created on the subscriber.

 Use the following query to gather temporary stats information:

 USE tempdb
 GO

 SELECT OBJECT_NAME(s.object_id) AS object_name,
 COL_NAME(sc.object_id, sc.column_id) AS column_name,
 s.name AS statistics_name
 FROM sys.stats AS s JOIN sys.stats_columns AS sc
 ON s.stats_id = sc.stats_id AND s.object_id = sc.object_id
 WHERE s.is_temporary <> 0
 ORDER BY s.name;

CHAPTER 14 ■ PERFORMING DATABASE MAINTENANCE TASKS

207

 ■ Note Transactional replication can be configured on Always On Availability Group databases.

 Memory-Optimized Tables
 Memory-optimized tables are supported in availability groups. However, automatic statistics update for
memory-optimized tables on the primary or secondary replica is not supported prior to SQL Server 2016.
Hence monitor the query performance and execution plans on the secondary replica and manually update
the statistics on the primary replica when needed.

 ■ Note Automatic update of statistics is now supported starting SQL Server 2016 when using database
compatibility level of 130, for memory-optimized tables.

 Summary
 In this chapter we covered some of the database maintenance tasks that you might have to perform on
availability groups. In the next chapter we will take a look how to monitor availability groups.

 PART VI

 Monitoring and Troubleshooting
Availability Groups

211© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_15

 CHAPTER 15

 Monitoring Availability Groups

 Now that you have successfully deployed Always On Availability Groups and configured them per
Microsoft best practices, it’s time to discuss monitoring the health of the availability groups. Monitoring
availability groups is an important activity that allows us to review the availability groups quickly to
ensure that everything is working as expected. Also, the data generated by the monitoring tools are
invaluable while troubleshooting a problem and finding the root cause of the problem. In this chapter,
we will explore different ways to monitor the current health and synchronization status of availability
groups.

 Using Dashboard
 We discussed about the Always On Availability Groups dashboard in chapter 9 . As a refresher, the
dashboard is a graphical user interface (GUI) that, similar to your automobile’s dashboard, organizes
and presents the information about availability groups in a way that is easy to interpret. The dashboard
displays the health and details of the availability groups, availability replicas, and availability
databases that allow database administrators (DBAs) to make quick operational decisions. It shows the
synchronization states and provides performance indicators that allow us to monitor the availability
groups without writing a single line of code. Figure 15-1 shows a sample Always On dashboard when
launched from the primary replica.

http://dx.doi.org/10.1007/978-1-4842-2071-9_9

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

212

 The dashboard displays a lot of information and is also highly configurable. There are many hidden
columns that can be added for additional information. Below we will discuss some of the useful columns:

• Failover Mode lets us know the failover mode for which the replica is configured. The
possible values are Automatic or Manual.

• Availability Mode lets us know the availability mode for which the replica is
configured. The possible values are synchronous or asynchronous.

• Synchronization State column is in both the availability replica health section and
the availability database health section. In the availability replica health section, it
tells us whether the secondary replica is currently synchronized with the primary
replica. The typical values are synchronized, synchronizing, or not synchronized.
If the local SQL Server instance cannot communicate with WSFC then the value is
 NULL . In the availability database health section, it tells us whether the availability
database is currently synchronized with the primary replica. The possible values
here are synchronized, synchronizing, not synchronizing, reverting, or initializing.

 ■ Note Do not force failover to the secondary replica when a database is in the reverting or initializing state
as that may leave the database in a state in which it cannot be started.

• Issues tells us if there is any issue. The possible values are Warnings or Critical. To
review the issue details, click the hyperlink for the Warning or Critical.

• Connection State indicates whether the secondary replica is currently connected to
the primary replica. The possible values are connected and disconnected.

 Figure 15-1. Sample availability group dashboard launched from the primary replica

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

213

• Last Connection Error No ., Description and Timestamp columns provide us with the
timestamp of the last connection error along with the number and brief description.

• Failover Readiness tells us to which replica can the availability group be failed over
with or without potential data loss.

• Estimated Data Loss (seconds) is a very useful column to monitor recovery point
objective (RPO). It tells us the time in seconds that the data is not synchronized to
the secondary database. If the primary replica fails, all data within this time window
will be lost.

• Estimated Recovery Time (seconds) is a very useful column to monitor the recovery
time objective (RTO). It tells us the time in seconds it will take for the secondary
replica to catch up with the primary replica.

• Log Send Queue Size (KB) indicates the amount of log records in KB needed
to be sent from the primary database to the secondary database to complete
synchronization.

• Log Send Rate (KB/sec) indicates the rate in KB per second at which the log records
are being sent from the primary replica to the secondary replica.

• Redo Queue Size (KB) indicates the amount of log records in KB needed to be redone
in the secondary database to complete synchronization.

• Redo Rate (KB/sec) indicates the rate in KB in second at which the log records are
being redone in the secondary database to complete synchronization.

 Figure 15-2 shows the dashboard with some of the useful hidden columns displayed.

 Figure 15-2. Customized dashboard displaying useful hidden columns

 Using Transact-SQL
 SQL Server 2016 availability groups has a rich set of catalog views, dynamic management views (DMVs), and
functions (DMFs) that allow us to monitor the availability groups and availability replicas and availability
databases.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

214

 Following are some commonly used catalog views:

• sys.availability_groups reports the configuration information for each
availability group, such as failure condition level, health check timeout, and
automated backup preference.

• sys.availability_replicas reports the configuration information for all
availability replicas, such as availability mode, failover mode, and primary/
secondary connectivity.

• sys.availability_read_only_routing_lists reports information about the read-
only routing list of each availability replica.

• sys.availability_listeners reports configuration information for each
availability group listener, such as port, IP address, and IP subnet mask.

• sys.databases reports additional information if the database is enabled for Always On.
The replica_id and group_database_id columns are added, which identifies the database
in the replica and the availability group respectively.

 Here are some commonly used dynamic management views and functions:

• sys.dm_hadr_availability_replica_states return information about the state of
the availability replicas. It returns a row for each replica when run from the primary
replica.

• sys.dm_hadr_database_replica_states return information about the state of each
database in a given availability group. It returns a row for each replica database per
replica when run from the primary replica. When this is run from the secondary
replica, it returns a row of each replica database for the local replica.

• sys.dm_hadr_cluster return information about the Windows Server Failover
Cluster, such as cluster name and quorum information.

• sys.dm_hadr_auto_page_repair returns a row for the latest automatic page-repair
attempts on any availability database on that server with a maximum of 100 rows per
database.

• sys.dm_hadr_automatic_seeding (new in SQL Server 2016) provides information on
successful or failed database seeding and error messages explaining why the seeding
may have failed. It returns one row for each seeding process.

• sys.dm_hadr_physical_seeding_stats (new in SQL Server 2016) provide statistical
information on completed and ongoing availability databases seeding. It returns
rows when seeding is running.

 The following T-SQL script can be used to monitor the health of the availability group:

 SELECT ag.name AS 'AG Name', ar.replica_server_name AS 'Replica Instance',
 dr_state.database_id AS 'Database ID',
 Location = CASE
 WHEN ar_state.is_local = 1 THEN N'LOCAL'
 ELSE 'REMOTE' END,
 Role = CASE
 WHEN ar_state.role_desc IS NULL THEN N'DISCONNECTED'

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

215

 ELSE ar_state.role_desc END,
 ar_state.connected_state_desc AS 'Connection State', ar.availability_mode_desc AS 'Mode',
 dr_state.synchronization_state_desc AS 'State'
 FROM ((sys.availability_groups AS ag JOIN sys.availability_replicas AS ar ON ag.group_id =
ar.group_id)
 JOIN sys.dm_hadr_availability_replica_states AS ar_state ON ar.replica_id = ar_state.
replica_id)
 JOIN sys.dm_hadr_database_replica_states dr_state ON
 ag.group_id = dr_state.group_id and dr_state.replica_id = ar_state.replica_id;

 Results for the preceding script are shown in Figure 15-3 .

 Figure 15-3. Monitoring the health of the availability groups using T-SQL

 The next T-SQL script can be used to monitor the current workload and synchronization status of the
availability group:

 SELECT ag.name AS 'AG Name', ar.replica_server_name AS 'Replica Instance',
dr_state.database_id as 'Database ID',

 Location = CASE
 WHEN ar_state.is_local = 1 THEN N'LOCAL'
 ELSE 'REMOTE' END ,
 Role = CASE
 WHEN ar_state.role_desc IS NULL THEN N'DISCONNECTED'
 ELSE ar_state.role_desc END,
 dr_state.log_send_queue_size AS 'Log Send Queue Size', dr_state.redo_qeue_

size AS 'Redo Queue Size',
 dr_state.log_send_rate AS 'Log Send Rate',dr_state.redo_rate AS 'Redo Rate'
 FROM ((sys.availability_groups AS ag JOIN sys.availability_replicas AS ar

ON ag.group_id = ar.group_id)
 JOIN sys.dm_hadr_availability_replica_states AS ar_state ON ar.replica_id =

ar_state.replica_id)
 JOIN sys.dm_hadr_database_replica_states dr_state on
 ag.group_id = dr_state.group_id and dr_state.replica_id = ar_state.replica_id;

 Results for that script are shown in Figure 15-4 .

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

216

 The next T-SQL script can be used to monitor the automatic seeding progress and performance using
the two new DMVs introduced in SQL Server 2016:

 SELECT start_time,
 completion_time,
 is_source,
 current_state,
 failure_state,
 failure_state_desc
 FROM sys.dm_hadr_automatic_seeding;

 SELECT * FROM sys.dm_hadr_physical_seeding_stats;

 Using Wait Statistics
 Most DBAs are familiar and are using wait types and wait statistics to monitor SQL Server instances. They
can continue to do the same for monitoring SQL Server configured with Always On Availability Groups. This
methodology is great as waits indicates where SQL Server is spending lots of time working. The biggest waits
point out the most important and relevant Performance Monitor counters for the workload, which in turn
provides us with the next troubleshooting steps.

 SQL Server 2016 tracks 872 different wait types. There are around 75 wait types related to Always On.
Always On wait type names begin with HADR. Execute the following T-SQL query to review all wait statistics
with the Always On wait types:

 SELECT * FROM sys.dm_os_wait_stats
 WHERE wait_type LIKE '%hadr%'
 ORDER BY wait_time_ms DESC;

 ■ Note A lot of the Always On wait types are expected waits when everything is running normally. Just
because a wait type appears on the top of the list, it does not mean that there is some issue. For a description
of all the wait types, refer to the MSDN article https://msdn.microsoft.com/en-us/library/ms179984.
aspx . It is recommended to have a baseline of the wait types when everything is working normally so that the
values can be compared with the wait types when there is a performance issue.

 Figure 15-4. Monitoring current workload and synchronization status using T-SQL

https://msdn.microsoft.com/en-us/library/ms179984.aspx
https://msdn.microsoft.com/en-us/library/ms179984.aspx

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

217

 Let’s review some of the Always On wait types that are commonly seen when you are monitoring the
wait types:

• HADR_SYNC_COMMIT is expected for synchronized availability groups. This wait
type tracks the time it takes the primary to send the transaction log blocks to the
secondary, for the secondary to receive them, harden them, and sent the commit
acknowledgement back to the primary. A consistently high value for this wait type
could mean that the synchronous secondary has a performance bottleneck that is
affecting the commits on the primary replica instance. This wait type is also reflected
by the Transaction Delay performance monitor counter.

• HADR_CLUSAPI_CALL is very frequently seen when reviewing the wait statistics in an
availability group environment. There is nothing to be worried about it even if you
see this at the top of your wait statistics list. All this wait type tells us is that the SQL
Server thread is waiting to switch from non-preemptive mode (scheduled by SQL
Server) to preemptive mode (scheduled by Windows Server) to invoke the WSFC
APIs. As you know, availability groups work very closely with the WSFC, there are
many cluster APIs and activities that are being executed and it is very natural to see
this one at the top of the list.

• HADR_LOGCAPTURE_WAIT indicates the time SQL Server is waiting for the log records to
be become available. If the hardening is completely caught up and there are no log
blocks that are waiting to be hardened to the transaction log on the disk, SQL Server
will wait to get the next log block. So if the log scan is completely caught up, you will
actually see a high value for this wait type. This is expected and does not mean that
something is necessarily wrong.

• HADR_SYNCHRONIZING_THROTTLE indicates the time it takes a synchronizing
secondary database to catch up with the primary database in order to transition
from synchronizing state to synchronized state. This is an expected wait when a
secondary database is trying to catch up with the primary database. If you are having
latency issues and you see this wait type on the top, you may consider switching
the secondary replica to asynchronous commit and later during off-peak hours
when the estimated data loss on that secondary nears zero, you can switch back to
synchronous-commit mode and it will quickly change its status to synchronized.

• WRITELOG is not an Always On wait type but you see this quite often in an availability
group environment. This wait type indicates the time it takes for SQL Server to
harden the log blocks to the transaction log. If you see a high value for this wait type,
it typically means that you may have a disk subsystem bottleneck. It means that
SQL Server is sending writes to the transaction log but the writes are not happening
quickly enough. This is when you want to review the disk subsystem, review disk
performance monitor counters, and work with storage administrators as a high value
of this wait type can have a direct impact on the availability group synchronization,
which in turn will affect your service level agreements (SLAs).

 Using Performance Monitor
 Performance Monitor is still very useful and popular in monitoring SQL Servers. SQL Server Always On
performance monitor counters are a part of the Availability Replica and Database Replica objects. Also some
counters in the Databases object are useful for monitoring Always On availability group synchronization.

 For every availability replica that you have, there are some performance counters that are specific to the
replica. These counters are a part of the SQL Server: Availability Replica object.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

218

 ■ Note All the availability replica performance counters can be traced on both the primary and the secondary
replicas. Some counters may show a zero value depending on the current role of the local replica.

• Bytes Received from Replica/sec indicates the number of bytes received from the
availability replica per second.

• Bytes Sent to Replica/sec indicates the number of bytes sent per second to the remote
replica. On a primary replica, this counter indicates the number of bytes sent per
second to the secondary replica. On a secondary replica, this counter indicates the
number of bytes sent per second to the primary replica.

 ■ Note Bytes Sent to Replica/sec on the primary replica reflects the same values as Bytes Received from
Replica/sec on the secondary replica.

• Bytes Sent to Transport/sec indicates the actual number of bytes sent per second to
the remote replica over the network. This counter closely follows the same pattern
as Bytes Sent to Replica/sec but it averages higher as the transport bytes also contain
control block overhead.

• Resent Messages/sec indicates the number of Always On messages resent in the last
second. Basically it means that SQL Server has sent the message but something
happened (may be corruption) and SQL Server has to send the message again. A
non-zero value for this performance counter should be further investigated to see
why messages are being sent over and over again. Trace this counter at the primary
and secondary replicas.

 The preceding counters are specific to the availability replica. The next set of counters are specific to
every availability database. These counters are part of the SQL Server: Database Replica object.

• Log Send Queue indicates how much log (in KB) has not been sent from the primary
database to the secondary database. This counter tells us the amount of log the
secondary database does not have at the time of failover and the amount of data loss
customers will experience. A high value of log send queue counter may directly mean
that you may not be able to achieve our RPO. You may be looking at data loss if you have
a high log send queue value and the only available replicas are asynchronous replicas.
The log send queue is also reported in the log_send_queue_size column of the sys.
dm_hadr_database_replica_states DMV. Trace this counter at the primary replica.

 ■ Note As Log Send Queue counter rises, the Log Bytes Received/sec counter trends down.

• Transaction Delay indicates the time (in milliseconds) it takes the primary to send
the transaction log blocks to the secondary, for the secondary to receive them,
harden them, and sent the acknowledgement commit back to the primary. This
is similar to the HADR_SYNC_COMMIT wait type. Since asynchronous commit mode
does not need acknowledgement to commit a transaction, this counter reports 0
for database in asynchronous commit mode. For multiple secondaries, this counter
measures the total time all transactions wait for the secondary acknowledgement.
Trace this counter at the primary replica.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

219

• Mirrored Write Transactions /sec indicates the number of transactions per second
that were written to the primary database and waited for the log to be sent to the
secondary database in order to commit. This counter is a measure of transactions
that are waiting to be hardened to the primary because synchronous availability
mode requires that they harden at the secondary too. This counter reports 0 for
asynchronous availability mode or an unhealthy synchronous mode. Trace this
counter at the primary replica.

• Recovery Queue indicates the number of log records in the log file of the secondary
database that has not yet been redone. Trace this counter at the secondary replica.

• Redone Bytes/sec indicates the number of log records that were redone on the
secondary database in the last second. Trace this counter at the secondary replica.

 ■ Note To measure recovery time, divide Recovery Queue by Redone Bytes/sec.

• Redo Bytes Remaining indicates the amount of log records that is remaining to be
redone to finish the reverting phase. Trace this counter at the secondary replica.

 ■ Note If Log Bytes Received/sec trends higher than Redone Bytes/sec for a sustained period of time, then
it indicates that REDO latency is building up between the primary and the secondary replicas. If Redo Bytes
Remaining and Recovery Queue are growing, then it also indicates that REDO is the bottleneck.

• Redo Blocked/sec indicates the number of times the redo thread is blocked per
second on locks held by database readers.

 While monitoring the Always On performance counters, you may also want to monitor the Log Bytes
Flushed/sec counter in the SQL Server: Databases object. This is not an Always On performance counter
but is very useful. This counter indicates the total number of log bytes flushed per second. It tells us at what
rate you are writing to the transaction log. If the Log Bytes Flushed/sec is very low, then it may indicate some
disk subsystem bottleneck. Review other disk performance counters to review the disk subsystem and
collaborate with your storage administrators as required.

 ■ Note You may have noticed that we haven’t provided any threshold values for the performance counters
because none exist. There are no magic values for these counters. Hence, it is very important to have a baseline
by monitoring these performance counters when everything is working fine. That way when things are not
working fine, you can collect the performance counters and compare the values with the baseline.

 Mapping DMVs, Wait Statistics, and Performance Monitor
 Now that we have discussed the DMVs, wait statistics, and the performance monitor counters, we will
map them together and provide an overview of the data that can be collected during the replication of
the transaction log blocks from the primary replica to a secondary replica in a synchronous mode. To
understand this section, it is important to review the data synchronization in synchronous-commit mode
that we discussed in chapter 4 .

http://dx.doi.org/10.1007/978-1-4842-2071-9_4

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

220

 As a refresher, data synchronization in synchronous-commit mode is shown in Figure 15-5 and the
useful metrics that can be collected during the data synchronization are discussed next:

 Figure 15-5. Data synchronization in synchronous-commit mode

 1. A client issues a transaction against the database participating in the availability
group on the primary replica.

 2. Primary replica generates transaction log blocks. In the background, the
secondary replica initiates a request to the primary, asking for the log blocks to
be shipped.

 3. When the log block becomes full or the primary replica issues a commit
operation, the log blocks from the Log Cache are flushed to the log file to make it
persistent. At this point you can track the performance monitor counter Log Bytes
Flushed/sec in the SQL Server: Databases object and track the rate at which the
log hardening is occurring on the primary. In an Always On Availability Group
configuration, when the log block is being flushed to the log file on the primary
replica, they also get copied to the Log Pool.

 4. The log blocks in the Log Pool are read by the Log Capture thread. The rate at
which the Log Capture is reading the log blocks can be tracked by capturing the
performance monitor counter Bytes Sent to Replica/sec , which in the SQL Server:
Availability Replica object. Also, you can look at the log_send_queue_size (KB)
and log_send_rate (KB/sec) in the dmv sys.dm_hadr_database_replica_
states to track the amount of log records of the primary database that has not
been sent to the secondary database and the rate at which log records are being
sent to the secondary database respectively.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

221

 ■ Note If the primary replica were to fail at this time and there is only asynchronous secondary replica
available then you may lose data. You can divide log_send_queue_size (KB) by log_send_rate (KB/sec) to
calculate the data loss and see if you are meeting your RPO.

 In case of multiple secondary replicas , there is one Log Capture thread for each
replica, which ensures that the log blocks are sent across multiple replicas in
parallel. The log content gets compressed and encrypted before being sent
over to the secondary replicas. The actual number of bytes that are sent can be
tracked by the performance monitor counter Bytes Sent to Transport/sec in the
 SQL Server: Availability Replica counter.

 5. On the secondary replica, Log Receive thread receives the log blocks from the
network. The number of bytes received from the replica per second can be
tracked by capturing the performance monitor counter Bytes Received from
Replica/sec in the SQL Server: Availability Replica object.

 6. It writes to the log cache on the secondary replica.

 7. When the log block on the secondary replica becomes full, or it receives a
commit log record, it hardens the content of log cache onto the log disk on the
secondary replica. This can be tracked by capturing the performance monitor
counter Log Bytes Flushed/sec in the SQL Server: Databases object to track the
rate at which the log hardening is occurring on the secondary.

 8. If the secondary replica is configured to run in synchronous mode, it will send
an acknowledgement on the commit to the primary node indicating that it has
hardened the transaction, and so it is safe to tell the user that the transaction is
committed. At this point you can monitor the wait type HADR_SYNC_COMMIT . What
if the primary replica is having some disk bottlenecks or the primary is so slow
with the amount of workload running on the primary that it still hasn’t hardened
the transaction log blocks on the primary replica? The additional wait that is
being introduced due to this issue will be tracked using the WRITELOG wait type.
So if you see high values of WRITELOG wait type on the primary replica, it means
that as far as transaction log hardening is concerned, the primary replica is
slower than the synchronous-commit secondary replica. At this point, if you see
the commits are delayed or queries are timing out, focus on the primary replica
instead of worrying about the secondary replicas.

 9. The redo thread runs independently of how log blocks are being generated on
the secondary or being copied and persisted. If the redo thread is a running few
minutes behind, those log blocks may not be available in the Log Cache . In that
case, the redo thread will pick up those log blocks from the log disk, and that is
what is shown in the dotted line on the right side of the figure above. You can
track the redo thread activity by monitoring the performance monitor counters
 Redone Bytes/sec and Recovery Queue in the SQL Server: Database Replica
object and the redo_queue_size (KB) and redo_rate (KB/sec) in the dmv sys.
dm_hadr_database_replica_states. To track the RTO, divide redo_queue_size
(KB) by redo_rate (KB/sec).

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

222

 Using Policy-Based Management
 Have you ever wondered how the health information, errors, and warnings are generated in the Always On
Availability Group dashboard that we discussed earlier in this chapter? For example, if you suspend the data
synchronization for a secondary database, the dashboard gives us a warning at the secondary database level
saying that the data synchronization state of this availability database is unhealthy. So where does all these
errors and warnings come from on the dashboard? When you create an availability group, it creates certain
Always On system policies on the availability replicas that evaluate whether the availability group is healthy
or not and displays the results on the dashboard. Always On health model is built on top of the Policy-Based
Management (PBM) feature of SQL Server. To review the system policies, open SQL Server Management
Studio (SSMS) Object Explorer, connect to any of the availability replicas, expand Management, expand Policy
Management, expand Policies, and then expand System Policies as shown in Figure 15-6 . The Always On policy
names start with Always On.

 Figure 15-6. System policies created after deploying availability groups

 If a system policy evaluates to false, you will see an error/warning in the dashboard. If you click the
hyperlink for the error/warning, you will see the underlying policies that evaluated to false and their
corresponding messages.

 ■ Note Policy-Based Management (PBM) is a feature that was originally introduced in SQL Server 2008
to manage SQL Server instances. PBM allows us to define and enforce policies for the SQL Server instances.
If you are not familiar with PBM, refer to Microsoft’s MSDN article “Administer Servers by Using Policy-Based
Management” at https://msdn.microsoft.com/en-us/library/bb510667.aspx for more information.

https://msdn.microsoft.com/en-us/library/bb510667.aspx

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

223

 Monitoring Your Availability Groups for RTO and RPO Metrics
 You are not restricted to using only the system policies. In fact, Microsoft encourages us to create our own
PBM policies and alter a few settings so that our policies will be automatically evaluated by the Always On
dashboard. The two key metrics that you want to monitor in an Always On Availability Groups environment
are the recovery time objective (RTO) and recovery point objective (RPO) metrics.

 Recovery Time Objective (RTO) is the maximum allowable downtime when a failure occurs. RTO
depends on the failover time of your Always On Availability Group implementation at any given time and
can be expressed as

 Tfailover = Tdetection + Tredo + Toverhead
 Tdetection is the time it takes for the availability group to detect the failure. This time depends on

Windows cluster level settings. It can be as fast as the sp_server_diagnostics error report is sent to the
cluster (the default interval is 1/3 of the health check timeout) or as long as the timeout interval (higher of
health check timeout and lease timeout).

 Tredo is the time taken for the redo thread to catch up to the end of the log. It is calculated as redo_
queue_size(kb) divided by redo_rate(kb/sec) .

 Toverhead is the time taken to fail over the cluster and to bring the databases online. This time is usually
short and constant.

 Recovery Point Objective (RPO) is the maximum acceptable level of data loss after a failure occurs. RPO
depends on the possible data loss of your Always On Availability Group implementation at any given time
and can be expressed as

 Tdata_loss = log_send_queue_size / (Log Bytes Flushed/sec)

 ■ Note If an availability group contains more than one availability database, then the availability database
with the highest Tfailover and Tdata_loss becomes the limiting value for RTO and RPO compliance respectively.

 Next we’ll walk through the process of creating a policy to monitor the RTO and RPO metrics, and
integrating this policy into the Always On health model. We will create two policies that will have the
following characteristics:

• An RTO policy that is evaluated every 5 minutes and will fail when the estimated
failover time exceeds 10 minutes.

• An RPO policy that is evaluated every 30 minutes and will fail when the estimated
data loss exceeds 1 hour.

• The policy is evaluated only if the local availability group replica is the primary
replica.

• Policy failures are displayed on the primary replica’s dashboard.

 If you have used PBM before, you may already know that the process for creating and managing polices
includes four steps:

 1. Select a facet and configure its properties.

 2. Set the condition that specifies the state of the facet.

 3. Create a policy with the condition/s that you have created, the targets that are to
be evaluated with the condition, and its evaluation mode.

 4. Execute the policy to verify if the SQL Server instance is in compliance with the
policy.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

224

 Follow the step-by-step instructions below on all the SQL Server instances that are participating in your
Always On Availability Group environment.

 Step 1: Select a Facet and Configure its Properties
 Open the Facets folder under Policy Management, and scroll through them as shown in Figure 15-7 .

 Figure 15-7. Reviewing the available facets

 Once you find a facet that seems to describe what you are looking for, right-click it and select Properties.
For our example, we will be using the Availability Group and Database Replica State facets.

 ■ Note For more information on all the properties of Availability Group facet, visit https://msdn.
microsoft.com/en-us/library/microsoft.sqlserver.management.smo.availabilitygroupstate

(v=sql.130).aspx .

 For more information on all the properties of Database Replica State facet, visit https://msdn.microsoft.com/
en-us/library/microsoft.sqlserver.management.smo.databasereplicastate(v=sql.130).aspx .

 The Availability Group facet has eight different properties as shown in Figure 15-8 . One of the property
is LocalReplicaRole that is used to get the role (primary, secondary, resolving or unknown) of the local
availability replica.

https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.availabilitygroupstate(v=sql.130).aspx
https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.availabilitygroupstate(v=sql.130).aspx
https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.availabilitygroupstate(v=sql.130).aspx
https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.databasereplicastate(v=sql.130).aspx
https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.databasereplicastate(v=sql.130).aspx

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

225

 The Database Replica State facet has 36 different properties as shown in Figure 15-9 .

 Figure 15-8. Properties of availability group facet

 Figure 15-9. Properties of Database Replica State facet

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

226

 We are going to use the properties, EstimatedDataLoss and EstimatedRecoveryTime . The
 EstimatedDataLoss property gets us the number of seconds of transactions that has accumulated in the log
send queue on the primary replica. This information will help us to measure the potential for data loss in
terms of time. EstimatedRecoveryTime property gets us the estimated time to recover the transaction log of
the secondary database replica, given the current redo queue size and redo rate. This information will help
us to measure the downtime when a failure occurs.

 Step 2: Set the Condition That Specifies the State of the Facet
 Once you have identified the facet and the property you want to create a policy on, the next step is to create
the property condition. You will create the following three conditions:

 1. Check whether the local availability replica for a given availability group is the
primary replica.

 2. Check if the potential failover exceeds 10 minutes, including 60 seconds
overhead for both failure detection and failover.

 3. Check if the potential data loss exceeds 1 hour.

 To create the first condition, right-click Availability Group facet and select New Condition as shown in
Figure 15-10 .

 Figure 15-10. Creating new condition for the availability group facet

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

227

 Enter the following specifications to create the condition and click OK:

• Name: IsPrimaryReplica

• Field: @LocalReplicaRole

• Operator: =

• Value: Primary

 Figure 15-11 shows the condition that will check whether the local availability replica for a given
availability group is the primary replica.

 Figure 15-11. Condition to check if the role for the local replica is primary

 Next, you will create the second condition. To create the second condition, right-click Database Replica
State facet, select New Condition and use the below specifications:

• Name: RTO

• Field: Add(@EstimatedRecoveryTime, 60)

• Operator: <=

• Value: 600

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

228

 This condition as shown in Figure 15-12 will fail when the potential failover time exceeds 600 seconds
(i.e., 10 minutes), including a 60-second overhead for both failure detection and failover.

 Figure 15-12. Condition to check the potential failover time

 Next, you will create the third condition. To create the third condition, right-click Database Replica State
facet , select New Condition, and use the below specifications:

• Name: RPO

• Field: @EstimatedDataLoss

• Operator: <=

• Value: 3600

 This condition as shown in Figure 15-13 will fail when the potential data loss exceeds 3600 seconds
(i.e., 1 hour).

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

229

 Step 3: Create the Policy
 After creating the conditions for the facets, our next step is to create the policy. You will create two policies:

• RTOPolicy – This policy will fail when the estimated failover time exceeds 10 minutes
and is evaluated every 5 minutes.

• RPOPolicy – This policy will fail when the estimated data loss exceeds 1 hour and is
evaluated every 30 minutes.

 To create the first policy, right-click Database Replica State facet and select New Policy as shown in
Figure 15-14 .

 Figure 15-13. Condition to check the potential data loss

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

230

 Use the below specifications to create the RTOPolicy:
 General Page:

• Name: RTOPolicy

• Check condition: RTO

• Against targets: Every DatabaseReplicaState in IsPrimaryReplica AvailabilityGroup

• Evaluation mode: On schedule

• Schedule: CollectorSchedule_Every_5_min

• Enabled: checked

 The general page for the RTOPolicy is shown in Figure 15-15 .

 Figure 15-14. Creating new policy for the Database Replica State facet

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

231

 Description Page:

• Category: Availability database warnings. This setting will display the policy
evaluation results on the Always On dashboard.

• Description: The current availability replica has a Recovery Time Objective (RTO)
that exceeded 10 minutes, assuming an overhead of one minute for failure detection
and failover. Troubleshoot performance issues on the respective SQL Server instance
immediately.

• Text to display: Recovery Time Objective (RTO) exceeded!

 The description page for the RTOPolicy is shown in Figure 15-16 .

 Figure 15-15. Creating RTOPolicy

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

232

 To create the second policy, right-click Database Replica State facet, select New Policy, and use the
below specifications to create the RTOPolicy:

 General Page:

• Name: RPOPolicy

• Check condition: RPO

• Against targets: Every DatabaseReplicaState in IsPrimaryReplica AvailabilityGroup

• Evaluation mode: On schedule

• Schedule: CollectorSchedule_Every_30_min

• Enabled: checked

 The general page for the RPOPolicy is shown in Figure 15-17 .

 Figure 15-16. Description page for the RTOPolicy

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

233

 Description Page:

• Category: Availability database warnings.

• Description: The availability database has exceeded your Recovery Point Objective
(RPO) of 1 hour. Troubleshoot performance issues on the availability replicas
immediately.

• Text to display: Recovery Point Objective (RPO) exceeded!

 The description page for the RPOPolicy is shown in Figure 15-18 .

 Figure 15-17. Creating RPOPolicy

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

234

 After completing the above three steps, you will have three new conditions; two new policies; and two
new SQL Server Agent jobs, one for each policy evaluation schedule as shown in Figure 15-19 . These jobs
have names that start with syspolicy_check_schedule .

 Figure 15-18. Description page for the RPOPolicy

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

235

 Step 4: Execute the Policy and Inspect the Evaluation Results
 After creating the policy, the only thing left to do is to execute the policy and inspect the evaluation results.
You created the above two policies to run on a schedule. You can also run the policy on demand by right-
clicking the policy and selecting Evaluate . To inspect the evaluation results, view the job history. Evaluation
failures will also be recorded in the Windows application log with the event ID 34052 . You can also create an
alert on error number 34052 to get automatic notification of the policies evaluating to False .

 To display the messages on Always On dashboard, click Tools menu, select Options, expand SQL Server
Always On, expand Dashboard, and check Enable user-defined Always On Policy check box as shown in
Figure 15-20 .

 Figure 15-19. Reviewing the conditions, policies, and jobs created for monitoring RTO and RPO metrics

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

236

 Now the Always On dashboard will pick up our RTOPolicy and RPOPolicy.

 ■ Tip If the Always On dashboard is already open, then refresh the dashboard or close the dashboard and
reopen it to display the new policies.

 Figure 15-21 shows the dashboard when the policy fails.

 Figure 15-20. Enabling user-defined Always On Policy checkbox to display the messages on the dashboard

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

237

 Click on the Warnings (1) hyperlink to display the issue details as shown in Figure 15-22 .

 Figure 15-22. Reviewing the detailed results for a failed policy in Always On dashboard

 Figure 15-21. Always On dashboard displaying failed policy

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

238

 Using Extended Events
 Extended Events originally introduced in SQL Server 2008 is a lightweight performance monitoring system
that is built into the SQL Server engine. Extended events have less overhead as they use very few resources.
Prior to SQL Server 2012, extended events could only be created using T-SQL. Starting with SQL Server 2012,
SQL Server Management Studio (SSMS) provides an excellent graphical user interface (GUI) that can be
used to create and manage extended events.

 After you create the availability group, AlwaysOn_health extended events session gets automatically
created. To view the AlwaysOn_health extended events session, connect to your SQL Server instance
using SSMS Object Explorer, expand Management, expand Extended Events, expand Sessions and expand
AlwaysOn_health as shown in Figure 15-23 .

 Figure 15-23. Viewing AlwaysOn_health extended events session in SSMS

 This session is preconfigured to capture a subset of the Always On related events. This session is
automatically started on every participating availability replica if you created the availability group using
the New Availability Group wizard. The green arrow next to the AlwaysOn_health session indicates that it is
currently running.

 ■ Note If you created the availability group using some other methods (example T-SQL or PowerShell), the
 AlwaysOn_health extended event session may not be automatically started. To start the AlwaysOn_health
session and configure it to start automatically, you can use the GUI or execute the below T-SQL script.

 ALTER EVENT SESSION [AlwaysOn_health] ON SERVER
 WITH (STARTUP_STATE = ON)
 GO
 ALTER EVENT SESSION [AlwaysOn_health] ON SERVER
 STATE = START

 Preconfigured AlwaysOn_health Extended Events
 To review the events that the AlwaysOn_health session captures to monitor the availability groups, right-
click the session and select Properties. Under Select a page, click Events to display the events as shown in
Figure 15-24 .

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

239

 Below is a brief description of the preconfigured events:

• alwayson_ddl_executed – occurs when Always On data definition language (DDL)
statement is executed, including CREATE, ALTER, or DROP.

• availability_group_lease_expired – occurs when the cluster and availability group has
a connectivity issue and the lease is expired.

• availability_replica_automatic_failover_validation – occurs when the automatic
failover validates the readiness of an availability replica as a primary replica.

• availability_replica_manager_state_change – occurs when the state of the availability
replica manager has changed.

• availability_replica_state – occurs when the availability replica is starting or shutting
down.

• availability_replica_state_change – occurs when the state of the availability replica
has changed.

• error_reported – occurs when an error is reported.

• hadr_db_partner_set_sync_state – occurs when the hadr partner sync state has
changed.

• lock_redo_blocked – occurs when the redo thread blocks when trying to acquire a lock.

 To view the definition of the AlwaysOn_health session, right-click the session, click Script Session as,
click CREATE To, and then click New Query Editor Window. This will create the following T-SQL script:

 CREATE EVENT SESSION [AlwaysOn_health] ON SERVER
 ADD EVENT sqlserver.alwayson_ddl_executed,
 ADD EVENT sqlserver.availability_group_lease_expired,
 ADD EVENT sqlserver.availability_replica_automatic_failover_validation,

 Figure 15-24. Viewing the preconfigured events in AlwaysOn_health session

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

240

 ADD EVENT sqlserver.availability_replica_manager_state_change,
 ADD EVENT sqlserver.availability_replica_state,
 ADD EVENT sqlserver.availability_replica_state_change,
 ADD EVENT sqlserver.error_reported(
 WHERE ([error_number]=(9691) OR [error_number]=(35204) OR [error_number]=(9693)

OR [error_number]=(26024) OR [error_number]=(28047) OR [error_number]=(26023)
OR [error_number]=(9692) OR [error_number]=(28034) OR [error_number]=(28036) OR
[error_number]=(28048) OR [error_number]=(28080) OR [error_number]=(28091) OR
[error_number]=(26022) OR [error_number]=(9642) OR [error_number]=(35201) OR
[error_number]=(35202) OR [error_number]=(35206) OR [error_number]=(35207) OR
[error_number]=(26069) OR [error_number]=(26070) OR [error_number]>(41047) AND
[error_number]<(41056) OR [error_number]=(41142) OR [error_number]=(41144) OR [error_
number]=(1480) OR [error_number]=(823) OR [error_number]=(824) OR [error_number]=(829)
OR [error_number]=(35264) OR [error_number]=(35265))),

 ADD EVENT sqlserver.hadr_db_partner_set_sync_state,
 ADD EVENT sqlserver.lock_redo_blocked
 ADD TARGET package0.event_file(SET filename=N'AlwaysOn_health.xel',max_file_size=(5),max_
rollover_files=(4))
 WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_
DISPATCH_LATENCY=30 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_MODE=NONE,TRACK_
CAUSALITY=OFF,STARTUP_STATE=ON)
 GO

 Debug Events for Always On Availability Groups
 In addition to the above events, SQL Server defines an extensive set of debug events for Always On Availability
Groups. To review the debug events, open AlwaysOn_health session properties. Under Select a page, click
Events. In the event library, select always on in the Category column and Debug in the Channel column and
clear all other selections. This will display all the Always On debug events as shown in Figure 15-25 .

 Figure 15-25. Viewing the Always On Debug events

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

241

 To view all the Always On extended events along with a brief description, execute the below T-SQL
statement:

 SELECT name, description FROM sys.dm_xe_objects WHERE name LIKE '%hadr%' order by name;

 Configuring AlwaysOn_health Session Target File
 To configure the AlwaysOn_health session, follow these steps:

 1. Open the AlwaysOn_health session properties.

 2. Under Select a page, select Data Storage.

 3. Select the event_file target from Targets and click on the Remove button.

 4. This will pop up a window saying that the target data will be deleted. If you need
the old event files, then make a backup of the files and then click Yes.

 5. Click Add button to add a target with your own properties. For example,
Figure 15-26 will configure the event file with a maximum of 4 files and a
maximum of 1GB file size.

 Figure 15-26. Configuring AlwaysOn_health session

 Viewing Always On Health Events Data
 To view the Always On health events , simply open the dashboard and click the link View Always On Health
Events on the right-hand top corner of the dashboard. This will open the Always On Health Events screen
as shown in Figure 15-27 below. You can add columns by right-clicking the column headers and then select
what you need. Also, when you click a specific row, you can see the details of the rows below.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

242

 There are other ways to view the data that is captured from an extended event session. In SSMS, Object
Explorer, right-click the target node under the event session node and select View Target Data as shown
below in Figure 15-28 . This will open the Always On Health Events screen but the data will not be updated as
new data is reported by the events. But you can click View Target Data again to get the latest data.

 Figure 15-27. Viewing AlwaysOn_health extended events using Always On dashboard

 Figure 15-28. Viewing AlwaysOn_health extended event_file using SSMS Object Explorer

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

243

 If you want to watch the data as it continues to arrive in real time, you can right-click the event session
node and select Watch Live Data as shown below in Figure 15-29 .

 Figure 15-29. Viewing live AlwaysOn_health extended events data using SSMS Object Explorer

 If you want to view the AlwaysOn_health extended events using T-SQL, then you can use the T-SQL
function sys.fn_xe_file_target_read_file as shown below. You can click a cell in the event_data_XML
column and/or copy the long XML string from the event_data column and paste into your text editor
(example Notepad), save the file with extension .xml and then open the .xml file with a browser.

 SELECT
 object_name,
 file_name,
 file_offset,
 event_data,
 CAST(event_data AS XML) AS [event_data_XML]
 FROM

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

244

 sys.fn_xe_file_target_read_file(
 'ENTER FULL PATH OF YOUR AlwaysOn_health event file name',
 null, null, null
);

 Using PowerShell
 SQL Server 2016 Always On Availability Groups provides a set of PowerShell cmdlets that enable us to
deploy, manage, and monitor availability groups, availability replicas, and availability databases. The
following PowerShell cmdlets are available to monitor the health of availability groups:

 Test-SqlAvailabilityGroup – assesses the health of an availability group by evaluating SQL Server
PBM policies. As an example, the below command shows all availability groups with a health state of Error
on the server instance AlwaysOnN1\Default

 Get-ChildItem SQLSERVER:\Sql\AlwaysOnN1\Default\AvailabilityGroups | Test-
SqlAvailabilityGroup | Where-Object { $_.HealthState -eq "Error" }

 Test-SqlAvailabilityReplica – assesses the health of availability replicas by evaluating SQL Server
PBM policies. As an example, the below command evaluates the health of the availability replica AlwaysOnN1
in the availability group AGCorp

 Test-SqlAvailabilityReplica -Path SQLSERVER:\SQL\AlwaysOnN1\Default\AvailabilityGroups\
AGCorp\AvailabilityReplicas\AlwaysonN1

 Test-SqlDatabaseReplicaState – assesses the health of availability databases by evaluating SQL
Server PBM policies. As an example, the below command evaluates the health of all availability databases in
the availability group AGCorp

 Get-ChildItem SQLSERVER:\Sql\AlwaysOnN1\Default\AvailabilityGroups\AGCorp\
DatabaseReplicaStates | Test-SqlDatabaseReplicaState

 Figure 15-30 shows the PowerShell cmdlets used to monitor the health of the availability group AGCorp
and the corresponding results.

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

245

 Using Alerts
 You can use the in-built alerts feature in SQL Server Agent to monitor availability groups. As you might be
aware, events are generated by SQL Server and entered into Windows application log. SQL Server Agent
reads the application log and compares the events in the log with the alerts that you create. When a match is
found it fires an alert, which basically is an automated response to an event. SQL Server Agent also monitors
performance conditions and Windows Management Instrumentation (WMI) events.

 You can create the following alerts to monitor the health of the availability groups.

• Alerts over Always On errors – To get a complete list of Always On system error
messages, run the below T-SQL command. This will return 17 rows in SQL Server 2016.

 SELECT * FROM sys.messages WHERE text LIKE ('%availability%') AND
language_id = 1033 AND is_event_logged = 1;

• Alerts over other relevant errors – You can create alerts on non-Always On errors too
if they are relevant and need to be monitored to ensure the health of the availability
group. To get a complete list of errors that can be monitored for an availability group,
go to the properties of AlwaysOn_health extended events session, click on Events,
click Configure and select the event error_reported.

• Alerts over Always On Perfmon counters – We discussed some of the important
Performance monitor counters earlier in this chapter. You can create alerts to
monitor these counters.

• Alerts over custom conditions – You can create alerts for specific conditions that need
to be evaluated. For example, to get an alert if our recovery time objective (RTO) will
be exceeded, you can create a SQL Server Agent job that divides Redo Queue Size
by Redo Rate and throw an error if the result exceeds the RTO value. You can then
configure an alert to capture these errors and notify the operators accordingly.

 Figure 15-30. Monitoring availability groups using PowerShell

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

246

 Using Custom Jobs
 Let’s not forget about custom SQL Agent jobs to monitor availability groups. You can create custom jobs
to raise an error if some condition is met and optionally create an alert to capture the error and notify the
operators. Let’s say that you want to know how many milliseconds are the transactions on the primary
replica database being delayed by one or more synchronous-commit secondary replicas. To achieve this,
you can use the following script in a custom job to capture the transaction delay and raise an error if it
exceeds 1 second. After creating the custom job, you can create an SQL Server event alert to notify an
operator when the custom job raises the error.

 DECLARE @Delay INT;
 DECLARE @WritesPerSecond INT;
 DECLARE @TransactionDelay INT;
 DECLARE @ErrorString NVARCHAR(50);
 SET @Delay = (SELECT cntr_value FROM sys.dm_os_performance_counters WHERE object_name =
'SQLServer:Database Replica'
 AND counter_name = 'Transaction Delay' AND instance_name = '_Total');
 SET @WritesPerSecond = (select cntr_value FROM sys.dm_os_performance_counters WHERE object_
name = 'SQLServer:Database Replica'
 AND counter_name = 'Mirrored Write Transactions/sec' AND instance_name = '_Total');
 SET @TransactionDelay = (@Delay/@WritesPerSecond);
 SET @ErrorString = CONCAT('Transactions are being delayed by ', @TransactionDelay, '
milliseconds');
 IF (@TransactionDelay > 1000)
 BEGIN
 RAISERROR (@ErrorString,16,1) WITH LOG;
 END

 ■ Note The preceding script captures two Performance Monitor counters from the SQLServer:Database Replica
object. The first one is Transaction Delay that shows the wait time for an unterminated commit acknowledgement
(in milliseconds). The second one is Mirrored Write Transactions/sec that shows the number of transactions that
are waiting to be hardened to the primary because synchronous availability mode requires that they harden at the
secondary also. Dividing these two counters tells us by how many milliseconds are the transactions on the primary
replica database being delayed by one or more synchronous-commit secondary replicas.

 Using System Center Operations Manager (SCOM)
 In the preceding sections, we have discussed multiple ways to monitor availability groups using in-built SQL
Server and operating system tools. Last but not least, we will discuss System Center Operations Manager
(SCOM). Many of our customers are already using SCOM to monitor their private and public datacenters.
 SCOM provides predictable performance and availability of applications and offers a comprehensive,
flexible and cost-effective infrastructure monitoring system. You can download the management pack for
SQL Server (SQLMP) to monitor your SQL Servers and Always On Availability Group deployments. SQLMP
provides performance, availability, and configuration monitoring, along with performance data collection
and default thresholds. Additionally, SQLMP includes dashboard views, diagram views and extensive

CHAPTER 15 ■ MONITORING AVAILABILITY GROUPS

247

knowledge with embedded inline tasks, and views that enable near real-time diagnosis and resolution of
detected issues. Here are some of the monitoring features that are relevant to availability groups:

• Easily track your Always On Availability Groups inventory by automatically
discovering availability groups, availability replicas and availability databases from
hundreds of computers.

• Enable faster resolution to problems by utilizing SCOM’s alerting and ticketing
feature.

• Create custom tasks to manage availability groups from the SCOM console.

• Easily roll up health from availability databases to availability replicas.

 Summary
 In this chapter, we reviewed multiple ways to monitor the health and synchronization status of Always
On Availability Groups. It’s good to know about all the in-built SQL Server monitoring tools that you have
at your disposal. Sometimes, you may only need to use one tool while other times you may have to use
multiple tools to gather as much data as possible to troubleshoot a problem. In the next chapter, we will
discuss troubleshooting techniques and review some common troubleshooting scenarios that we see at our
customer sites in the field.

249© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_16

 CHAPTER 16

 Troubleshooting Availability
Groups

 This chapter discusses how to use different logs to troubleshoot errors encountered during availability group
setup and usage. You will also learn how to troubleshoot some of the common availability group failures and
performance issues.

 An unplanned failover of an availability group can happen for various reasons. The cause is usually
outside of SQL Server. SQL Server is just an application that is using external resources to perform its duties
and availability group is one of its components. Hence, unless the error message clearly indicates that the
issue is due to SQL Server , start troubleshooting in the following order:

 1. Hardware

 2. Operating system

 3. Network

 4. Security

 5. Windows Server failover cluster

 6. SQL Server

 When an outage occurs, the first step is to define what actually went wrong. Ask the following questions:

• What resource(s) failed?

• Was it the disk? Or was it the network?

• Was it the SQL Server? Or was it the SQL Server Agent?

• Was it the file share?

• Were the users not able to connect even when the SQL Server instance was online?

• Did the problem occur on one node or all nodes?

 To determine the root cause of the failure, determine exactly what failed, on which nodes, and what
actions the cluster performed to try to resolve the problem.

 Useful Reports and Logs
 Let’s take a look at some useful reports and logs that can help in troubleshooting issues with availability
groups.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

250

 Always On Dashboard
 For a quick overview of the availability group, look at the Always On dashboard. It provides information on
the availability group states and other performance indicators allowing you to easily make high availability
operational decisions using the following types of information :

• Replica state

• Synchronization mode and state

• Estimate Data Loss

• Estimated Recovery Time (redo catch up)

• Database Replica details

• Time to restore log

• And more…

 This is a centralized report and the replica status can be viewed from the primary replica itself. You do
not need to go to each replica to view the state of that replica.

 Figure 16-1 shows the Always On dashboard in the SSMS GUI on Primary Replica instance. As you can
see there is a lot of useful information on the dashboard. Important information and report links have been
highlighted.

 Figure 16-1. Always On Dashboard

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

251

 Figure 16-2 shows the Always On dashboard in the SSMS GUI on Primary Replica instance. More
columns can be added to the dashboard result by clicking on the Add/Remove columns option above the
column header and then selecting the columns to add. The below figure shows the options available for the
first result set on the dashboard. The columns highlighted in red are some important columns that you may
want to consider adding to the dashboard.

 Figure 16-2. Columns available to add to the first result set in the Always On Dashboard

 Figure 16-3 shows the options available for the second result set on the dashboard. The columns
highlighted in red are some important columns that you may want to consider adding to the dashboard.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

252

 DMVs
 There are various DMVs and catalog views (that start with sys.dm_hadr_ and sys.availability), which expose
lot of useful information related to availability group troubleshooting. Here are some common ones:

• sys.dm_hadr_availability_group_states - Displays the states that define the health
of a given availability group

• sys.dm_hadr_availability_replica_states – Displays information about the state of a
given availability replica

• sys.dm_hadr_database_replica_states - Returns a row for each database that is
participating in an availability group

• sys.dm_hadr_cluster – Displays information about the cluster and the quorum

• sys.dm_hadr_cluster_members - Returns a row for each of the members that
constitute the quorum and the state of each of them

• sys.availability_groups_cluster – Displays information on the availability group
metadata from the WSFC cluster

• sys.availability_replicas - Returns a row for each of the availability replicas that
belong to any availability group in the WSFC failover cluster

 Figure 16-3. Columns available to add to the second result set in the Always On Dashboard

https://msdn.microsoft.com/en-us/library/hh231519.aspx

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

253

• sys.dm_tcp_listener_states – Displays information on the TCP listener

• sys.dm_hadr_physical_seeding_stats – Displays physical stats of each seeding
process currently running on the primary replica

• sys.dm_hadr_automatic_seeding – Displays the status of the automatic seeding
process on the primary replica

 Extended Event Logs
 The Always On Health Extended Event logs cover the availability group related diagnostics such as state
changes for the group or replica or databases, errors reported, lease expiration, and any availability group
related DDL that is executed. It is created automatically when the availability group is created and captures
availability groups related events The format of the logs is: AlwaysOn_health*.xel and is located by default
under the SQL Server log folder. It is a preconfigured session and is useful for troubleshooting an availability
group.

 Figure 16-4 shows the Always On Extended Events session in the SSMS GUI on Primary Replica
instance.

 Figure 16-4. Always On Health Extended Events Session

https://msdn.microsoft.com/en-us/library/hh245287.aspx

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

254

 ■ Note If you created the availability group using the wizard, then this session is automatically started on
every participating availability replica. If the availability group wasn’t created using the wizard, then this session
should be manually started.

 SQL Server Error Logs
 Check the SQL Server Error Log for events affecting availability groups, such as the following:

• Communication with the Windows Server Failover Clustering (WSFC) cluster

• State transitions of availability replicas

• State transitions of availability databases

• Connectivity state of availability databases between primary and secondary replicas

• Statuses of the availability group endpoints

• Statuses of the availability group listeners

• Lease status between the SQL Server resource DLL

• Error events in the availability group

 Event Logs
 The Cluster Service adds messages about the resource status to the cluster log and the system-event log. The
system-event log is generally easier to read than the cluster logs. You can usually identify failed resources by
searching for event ID 1069 in the system-event log.

 Cluster Log
 If the system-event log has no information about the cause of the failure (for example, the system stops
writing events to the log), use the cluster log. The Cluster.log files can be found in the <systemroot>\cluster\
reports directory (usually c:\windows\cluster\Reports) on each node. Get-ClusterLog is the Windows
PowerShell cmdlet that will generate the cluster.log on each server that is a member of the cluster and is
currently running.

 ■ Note The cluster log is verbose and complex. It should be the last place you go, not the first.

 Figure 16-5 shows the Get-ClusterLog PowerShell command .

 Figure 16-5. PowerShell Command to generate cluster log

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

255

 ■ Note Cluster log timestamps are in GMT, while event log timestamps are in local time.

 Use NET HELPMSG to decipher error codes or ERR.EXE. Start at the bottom and work your way
upwards searching for the following:

• [ERR]

• -->failed – resource failure

• -->failed – group failure

 Figure 16-6 shows the net helmsg command to help decipher error codes logged in the cluster log.

 Figure 16-6. net helpmsg command

 Calculating Estimated Data Loss
 If the primary replica is unhealthy and you do not have a secondary replica with a SYNCHRONIZED state,
you may have to perform a forced failover of the availability group to bring it online. Doing so can cause
data loss. It is not possible to estimate this data loss if the primary replica is not healthy. So it is imperative
that you have monitoring set up to alert you if the estimated data loss grows beyond your RPO for the
availability group.

 You may want to be able to quickly check how much data loss may occur if a forced failover is to be
performed at a particular moment.

 Following are two of the ways to get this information:

• Dashboard - Monitor the “Estimated Data Loss” column values for your secondary
replica databases. In the default dashboard view, this column is hidden. You can add
it by clicking on the “Add/remove columns” link above the replica database table.

 Figure 16-7 shows the Always On dashboard with the estimated data loss column
added to the view.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

256

• System Views – The “last_commit_time” column from the sys.dm_hadr_database_
replica_states DMV gives you an approximate time for the last commit record.
If the value for this column for a secondary replica database is subtracted from its
primary replica counterpart, then you get an estimate of data loss that can occur if a
forced failover is performed to that secondary replica.

 Following is the script to find out how many seconds a SYNCHRONIZING replica is behind the primary
replica.

 WITH PR(database_id, last_commit_time) AS
 (
 SELECT dr_state.database_id as database_id,
 dr_state.last_commit_time FROM
 ((sys.availability_groups AS ag JOIN sys.availability_replicas AS ar ON ag.group_id=ar.
group_id)
 JOIN sys.dm_hadr_availability_replica_states AS ar_state ON ar.replica_id = ar_state.
replica_id)
 JOIN sys.dm_hadr_database_replica_states dr_state on ag.group_id=dr_state.group_id and dr_
state.replica_id=ar_state.replica_id
 WHERE ar_state.role=1
)
 SELECT ar.replica_server_name AS 'Replica Instance', dr_state.database_id as 'Database ID',
 DATEDIFF(s,dr_state.last_commit_time,PR.last_commit_time) AS 'Seconds Behind Primary'
 FROM ((sys.availability_groups AS ag JOIN sys.availability_replicas AS ar ON ag.group_id =
ar.group_id)

 JOIN sys.dm_hadr_availability_replica_states AS ar_state ON ar.replica_id = ar_state.
replica_id)

 Figure 16-7. Estimated data loss column in the Always On Dashboard

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

257

 JOIN sys.dm_hadr_database_replica_states dr_state
 ON ag.group_id = dr_state.group_id and dr_state.replica_id = ar_state.replica_id
 JOIN PR ON PR.database_id=dr_state.database_id
 WHERE ar_state.role!=1 and dr_state.synchronization_state=1

 Figure 16-8 shows the results from the preceding SQL query.

 Figure 16-8. Estimated data loss query result

 Common Failure Scenarios
 Now let’s take a look at some common failure scenarios and how to troubleshoot them.

 Endpoint Connectivity Failure
 For two replicas to connect to each other's database mirroring endpoint, the login account of each SQL
instance requires access to the other instance. Also, each login account requires connect permission to
the Database Mirroring endpoint of the other instance. If the permissions to the endpoint are insufficient,
replicas cannot communicate with each other, resulting in connection handshake failure. When this
happens, the Always On dashboard shows the replica state as “Disconnected.” The SQL error log also shows
the error message as shown in the figure below.

 Figure 16-9 shows the error messages logged in the SQL error log due to insufficient service account
permissions.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

258

 You can resolve this error in one of the following ways:

• Use Group Managed Service Accounts(GMSA) if you are on SQL Server 2016. They
are now supported and recommended as service accounts for SQL Servers running
Always On Availability Groups and Failover Cluster instances.

 GMSAs have the following benefits:

• Domain-scoped and automatically managed service accounts

• Automatic password rotation

• Much more secure than regular domain accounts

• Enables cross system security context

• In SQL 2012 and SQL 2014, as GMSAs are not supported, configure the replica
SQL instances to run under the same domain user account. This user account will
be automatically added to the master database in each SQL instance and granted
CONNECT permissions. This will simplify the security configuration.

• If you need to run both SQL instances under different domain accounts for any
reason, you then have to add each domain account as a login under the other SQL
instance. You also need to manually grant this login CONNECT permissions to the
database mirroring endpoin of the oher SQL Server instancet.

• If you are using non-domain accounts (local accounts or SIDs) as SQL service
startup accounts, you must use certificates for the ENDPOINT authentication.

• If you are using Domain Independent availability groups in SQL Server
2016 then, synchronize the service accounts on all proposed cluster nodes.
That means that there must be an account with the same name and the
same password, on each node in the cluster. Certificates need to be used for
ENDPOINT authentication.

 Figure 16-9. Error message in SQL Error Log

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

259

 Availability Group Creation Failure
 A common error that can occur while attempting to create an availability group is “The connection to the
primary replica is not active (35250).” The error can be seen on the last screen, when creating the availability
group using the availability group wizard. The same error will also be logged in the SQL error log.

 Figure 16-10 shows the error message generated while attempting to create an availability group.

 Figure 16-10. Error message while creating availability group

 Figure 16-11. Error message in SQL Error Log

 The following steps can be taken to resolve this error:

• Create an inbound rule on each replica to open this port:

 Inbound traffic to TCP port 5022 may be blocked by either windows firewall and/
or any external firewall between replicas. Traffic must be allowed on this port
in order for the primary and secondary replica to communicate with each other
during and after availability group creation.

• Create and start database mirroring endpoint, if not done already:

 Also, ensure that sufficient permissions are granted to the SQL service accounts on
the endpoint. In addition, check SQL Server log to ensure that SQL Server is listening
on port 5022 (or any other port being used for database mirroring endpoint).

 Figure 16-11 shows the message logged in the SQL error log due to firewall restrictions on the database
mirroring port.

 Listener Creation Failure
 When you create an availability group listener thru SQL Server, it is creating a client access point (CAP) in the
windows failover cluster. A CAP includes network name and associated IP address. Listener creation may fail
due to issues at the windows failover cluster level.

 Each network name being created in windows failover cluster is associated with a Virtual Computer
Object (VCO) in Active Directory. If VCO with the same name already exists in an active directory, it will
be used at the time of creation of the listener. If it does not exist, then Computer Name Object (CNO) will
attempt to create it in the default computers OU (this is true even if CNO is in a different OU). If the CNO
does not have appropriate permissions to the computer OU, the listener creation will fail.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

260

 To resolve this issue, either pre-stage the VCO in the computers OU or grant the following permissions
to the CNO in the computers OU:

• Read all properties

• Create Computer objects

 The listener creation may also fail if the same name and/or IP addresses are being used elsewhere in
the same network. Resolve any such conflicts and ensure that you are using a unique network name and IP
addresses for the listener. Please note that only the first 15 characters of the network name are considered for
uniqueness.

 Figure 16-12 shows the permissions required for the CNO in the Active Directory.

 Figure 16-12. CNO permissions

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

261

 Failover Troubleshooting
 Availability groups can be configured for automatic or manual failover. Automatic failovers are triggered if a
health issue is detected on the primary replica. Not all failovers might work as expected. Let’s take a look at
some common failover scenarios.

 Automatic Failover Didn’t Work
 When an automatic failover is triggered on the primary replica, it may not be successful for multiple
reasons. When the secondary replica fails to successfully transition to the primary role, the replica goes into
the RESOLVING state and the databases report that they are in the NOT SYNCHRONIZING state. Hence
applications will not be able to access these databases.

 Following are some of the common reasons for an unsuccessful failover:

• Database synchronization state

 For an availability group to automatically fail over, all databases participating in
the availability group must be in a SYNCHRONIZED state between the primary
replica and the secondary replica. This synchronization condition must be met
in order to make sure that there is no data loss. Hence, automatic failover will not
successfully transition the secondary replica into the primary role if any one of
the databases participating in the availability group is in the SYNCHRONIZING
or NOT SYNCHORNIZING state.

 ■ Note Failover readiness of an availability group can be determined by querying the “is_failover_ready”
column of the sys.dm_hadr_database_replica_cluster_states DMV.

 Here is the SQL script to check for failover readiness of replicas:

 Select rs.replica_server_name, r.role_desc,s.database_name, s.is_failover_ready
 From sys.dm_hadr_database_replica_cluster_states s
 inner join sys.dm_hadr_avalability_replica_states r on s.replica_id = r.replica_id
 inner join sys.dm_hadr_availability_replica_cluster_states rs on rs.replica_id = s.replica_id

 Figure 16-13 shows the failover readiness state of various replicas. In the below example, AlwaysOnN2
is ready for failover. However, AlwaysOnN3 replica is not.

 Figure 16-13. Query to check failover readiness of replicas

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

262

• No secondary replicas configured for automatic failover

 If none of the synchronous secondary replicas are configured for automatic
failover then the availability group will not attempt a failover when a helth issue
is detected on the primary. This could cause the database in the availability
group to be unavailable to the users for read/write transactions. Hence ensure
that automatic failover is enabled on the synchronous secondary repilicas.

 ■ Note Prior to SQL 2016, only one out of the two synchronous replicas could be configured for automatic
failover. Starting with SQL Server 2016, both synchronous secondary replicas can be configured as automatic
failover partners with the primary replica. Even if one failover partner is lost, high availability can still be
maintained in this case.

• SYSTEM account permissions

 To monitor health, the SQL Server resource DLL makes a connection to
the primary replica by using ODBC and it uses the local SQL Server NT
AUTHORITY\SYSTEM account logon credentials for the connection. This login
account, by default, has the following permissions:

• Alter Any availability group

• Connect SQL

• Create Availability Group

• View Any Database

• View server state

 If this account does not have any of these permissions on the automatic failover
partner, that is, the secondary replica, then SQL Server cannot start health
detection when an automatic failover occurs. Therefore, the secondary replica
cannot transition to the primary role. To troubleshoot this issue, review the
Windows cluster log. Errors like “failed to execute availability group command
stored procedure” or “cannot alter the availability group… you do not have
permission” will be logged. Review the permissions for the NT AUTHORITY\
SYSTEM account to make sure that it has necessary permissions.

 Figure 16-14 shows the effective permissions of the NT AUTHORITY\SYSTEM login.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

263

• Failover property value for “Maximum Failures in the Specified Period”

 This property is used to avoid the indefinite movement of a clustered resource
when multiple node failures occur. By default, this is set to N-1, where N is the
number of nodes in the cluster. If there are more failures than what is specified
by this value, in a specific amount of time (6 hours by default), the resource will
stay failed. This value can be manually adjusted. To check for this condition,
review the cluster log and search for “failovercount” string.

 ■ Note Before you tweak this value, try to fix the underlying cause for the failover. Increasing this value may
only cause the availability group to fail more times before transitioning to a failed state.

 Figure 16-14. Login properties of NT AUTHORITY\SYSTEM

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

264

 Figure 16-15 shows the availability group cluster resource property. In a three-node cluster the
maximum failures in the specified period would be two.

 Figure 16-15. Maximum failure in the specified period

 When to Force a Failover?
 There might be situations where you have to force a failover. Let’s look at some of the common scenarios that
might need you to force a failover:

• Lost Cluster Quorum

 Quorum is required to keep the cluster up and running. If a catastrophic event
like a datacenter failure occurs and it simultaneously brings down the majority
of clustered nodes, then the entire cluster will go down due to loss of quorum.
The availability groups will go into the RESOLVING state. The cluster log on the
surviving node will have an error event logged for “lost quorum (status = 5925).”

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

265

 The quorum needs to be reestablished or the quorum might need to be forced on
the surviving nodes to bring the availability group back into the healthy state.

 To force quorum, run the following PowerShell command:

 Start Cluster-Node –FQ

 Once the cluster quorum is forced, you will need to force the failover of
availability group accepting data loss.

 Figure 16-16 shows the command to force quorum in the case where the cluster
quorum is lost.

 Figure 16-16. Force cluster quorum

• Primary Replica unavailable

 If the primary replica goes down abruptly, and if there are no failover-ready
secondary replicas, then the availability group on the secondary replicas goes
into the RESOLVING state. If the primary replica cannot be brought up in a
timely manner, the only option available is to force the failover to one of the
surviving secondary replicas.

• No Synchronized Secondary

 If there is no synchronized secondary available, either because the availability
mode of all secondary replicas is set to asynchronous-commit, or if the
synchronization state of a synchronous secondary is SYNCHRONIZING at the
time of a failover, then the only available option is to force a failover allowing
data loss.

 Figure 16-17 shows the Always On dashboard with the secondary replicas in
synchronizing state.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

266

 What Caused an Unexpected Failover?
• Network Connectivity issues

 Network connectivity issues between replicas is one of the common reason for
unexpected failovers. WSFC depends on the heartbeat signals over the network
to identify the availability of a node. If a network issue causes the heartbeats to
miss more than a predefined threshold, this will trigger a failover of all resources
owned by a node.

 To avoid these types of failovers, ensure that the network is stable, NIC drivers are
up-to-date, and tune Receive Side Scaling (RSS)/TCP Chimney offload settings as
per recommendations.

 ■ Note Information on the TCP Chimney Offload, Receive Side Scaling can be found in this KB article
- http://support.microsoft.com/kb/951037 .

 Also consider tuning the cluster heartbeat settings. There are two settings that
affect cluster heartbeat and health detection between nodes (i.e., delay and
threshold).

 Delay defines the frequency at which cluster heartbeats are sent between nodes.

 Threshold defines the number of heartbeats that are missed before the cluster
takes recovery action.

 Table 16-1 shows the default and maxium values for the delay and threshold parameters in the same
subnet, cross subnet and cross site for Windows Server 2012 R2 and Windows Server 2016.

 Figure 16-17. Secondary replicas in Synchronizing state

http://support.microsoft.com/kb/951037

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

267

 Figure 16-18. View current heartbeat configuration values

 Figure 16-19. Change heartbeat configuration values

 Figure 16-18 shows the command to view current heartbeat configuration values.

 Table 16-1. Cluster Heartbeat default values and the maximums

 Parameter Win2012 R2 Win2016 Maximum

 SameSubnetDelay 1 second 1 second 2 seconds

 SameSubnetThreshold 5 heartbeats 10 heartbeats 120 heartbeats

 CrossSubnetDelay 1 second 1 seconds 4 seconds

 CrossSubnetThreshold 5 heartbeats 20 heartbeats 120 heartbeats

 CrossSiteDelay NA 1 second 4 seconds

 CrossSiteThreshold NA 20 heartbeats 120 heartbeats

 ■ Note To be more tolerant of transient failures it is recommended on Win2008 / Win2008 R2 / Win2012 /
Win2012 R2 to increase the SameSubnetThreshold and CrossSubnetThreshold values to the higher Win2016
values.

 Figure 16-19 shows the command to change the heartbeat configuration values.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

268

• System unhealthy event

 Availability group resource DLL monitors sp_server_diagnostics output to
identify any unhealthy events. By default, the failure condition level of availability
group resource is set to 3, which means that it will initiate a failover if there are
any critical system events detected by the sp_server_diagnostics.

• Lease Timeout Expired

 The lease is a standard signaling mechanism between the SQL Server resource
DLL and the availability group and is used to prevent split-brain from occurring
for the availability group. The Least Timeout value defines this signaling interval.
If the Least Timeout is exceeded without the signal exchange, then the lease is
declared as Expired and the SQL Server resource DLL reports that the availability
group no longer looks alive to the WSFC manager. The cluster manager then
undertakes the configured corrective actions, which may include failover.

 Figure 16-20 shows the availability group resource properties. LeaseTimeout is
set to 20 seconds by default.

 Figure 16-20. LeaseTimeout setting

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

269

 Connectivity Failure
 Following are some connectivity scenarios that you may encounter.

 Listener Connection Fails
 When you try to connect to the availability group using the Listener, your connection may fail.

 The following are some possible causes and their resolutions:

• Cause: The login for the listener does not exist on the primary replica instance.

 Resolution : Ensure that the login is created on the primary replica instance. If
the availability group had failed over earlier, ensure that the login was transferred
to the new primary replica instance. Alternately use contained database
authentication if the replica database that you are trying to connect to is a
Contained Database.

• Cause: The listener port was not specified during login

 Resolution : The availability group listener cannot use the SQL Browser service
to resolve the listener name. If the listener was created with a non-default port,
specify the port after the listener name when you try to connect to it.

• Cause: The listener connection timed out

 Resolution : If the availability group is spread over multiple subnets and if it was
failed over from the primary replica to a secondary replica in another subnet,
then the listener name may resolve to an IP address from a different subnet
and connection to the IP address may time out. If supported by the client, set
the MultiSubnetFailover parameter to true in the connection string. If you are
connecting to the listener over a legacy client, set the RegisterAllProviderIPs
value to 0 for the listener network name resource.

 ■ Note Always On availability groups set the Listener cluster resource RegisterAllProvidersIP
property to 1 by default. .NET Framework 4.6.1 provides faster availability group connection by including
“ MultiSubnetFailover=True ” in connection strings by default.

 Read-Only Routing Fails
 When you try to connect to a secondary replica instance using read-only routing, it may fail. If it does, ensure
that the following prerequisites and recommendations are applied:

• Ensure that the routing list is configured and has an entry for the current primary
replica instance.

• Ensure that the routing URLs are configured with the correct server name / IP
address and port number.

• Ensure that the routing list for the current primary replica has at least one secondary
replica that is in a healthy state and has its “Readable Secondary” value set to Yes or
ReadIntentOnly.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

270

• Connect to the listener, if the listener is configured with a non-default port, then
specify the port number in the connection string.

• Add the ApplicationIntent=ReadOnly connection parameter in the connection
string.

• Add the “Initial Catalog” or “Database” connection parameter and set its value to
any replica database for that availability group.

• Ensure that the login that you are using in the connection string exists on the
secondary replica instance that the listener will route you to.

• If the availability group is spread over multiple subnets, ensure that the
“ MultiSubnetFailover=True ” parameter is specified in the connection string.

 Transaction Log Growing Scenario
 In a production environment with a high workload, it is possible for the transaction log to grow and fill
up the disk. If the transaction log belongs to a replica database, the following actions can be taken to
troubleshoot the transaction log growth and get the database back to a healthy state:

• Check the Log_Reuse_wait_Desc column from the sys.databases catalog view. If the
value is not “AVAILABILITY REPLICA” then it means that something else is holding
the transaction log from reusing the inactive portion of the log. Take appropriate
action based on the value. For example, if the value is LOG_BACKUP, take a
transaction log backup of the replica database and rerun the catalog view.

• If the value is “AVAILABILITY REPLICA,” then check if all the secondary replicas are
online. If there are one or more offline replicas, try to bring them online. If they fail to
come online, consider removing them from the availability group.

• If all the replicas are online, check to see if they are connected to the primary replica.
If they are not, investigate the disconnected replica(s).

• If all the replicas are connected, check their health state. For a synchronous-
commit replica, the state should be SYNCHRONIZED and for an asynchronous-
commit replica, the state should be SYNCHRONIZING. If there is an unhealthy
replica, investigate it further. If the synchronization is suspended on that replica,
try to resume the synchronization. If it cannot be resumed, consider removing the
database from that replica.

• If all the replicas are healthy, check to see if one of the replicas is showing a high
value for “Estimated Data Loss.” If a replica is showing a high value for “Estimated
Data Loss” compared to the baseline, then it means that the replica is falling behind
in hardening the log blocks and sending the confirmations back to the primary
replica. This could be caused by latency issue (disk, network, etc.) or a high read
workload. Consider reducing the workload on the secondary replica or adding
additional resources after further troubleshooting.

• If the “Estimated Data Loss” value is close to the baseline (or lower), this could
mean that the primary replica may have latency issues or a high workload. Consider
reducing the workload on the primary replica or adding additional resources after
further troubleshooting.

 Figure 16-21 shows the workflow to troubleshoot transaction log growing scenario.

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

271

 Secondary Replica Falling Behind Primary Scenario
 It is possible for a secondary replica to fall significantly behind the primary replica in terms of the
transaction log blocks hardened. This can be observed by checking for a high value for the “Estimated Data
Loss” column on the dashboard.

 This has a direct impact on the RPO for the availability group in the event of a disaster.
 The following actions can be taken to troubleshoot a secondary replica falling behind the primary

replica:

• Check if the secondary replica is online and connected to the primary replica. If it
is not, troubleshoot the secondary to see why it is offline or disconnected from the
primary replica.

• If the secondary replica is online and connected to the primary, check if it is falling
behind due to network latency between the primary and secondary replica. You
can check for this by comparing the Bytes Sent to Replica/sec and Bytes Received
from Replica/sec PerfMon counters (from the SQLServer:Availability Replica
object) on the primary and secondary replicas. If they differ by a significant amount,
troubleshoot for network latency. If the secondary replica is synchronous-commit,
you may want to consider changing it to asynchronous-commit mode while you
troubleshoot the network for latency.

• If there are no signs of network latency between the primary and secondary
replicas, check if the primary replica is holding back the transactions log
blocks by performing flow control. A primary replica performs flow control if
a secondary replica fails to send acknowledgements for a certain number of
messages received for the whole replica and also per database. In such case,
primary replica only sends the next log blocks if the number of acknowledged
messages drops below the threshold.

 Figure 16-21. Transaction Log growing scenario troubleshooting workflow

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

272

• There are two useful PerfMon counters, Flow control/sec and Flow Control Time
(ms/sec) (from the SQLServer:Availability Replica object), which show you, within
the last second, how many times flow control was activated and how much time was
spent waiting on flow control. If the value for these counters is significantly above the
baseline values, it may mean that the secondary is overwhelmed with the workload it
is processing. In such case, you should troubleshoot the secondary to see if there are
any performance bottlenecks. You could also reduce the read workload (if any) on
the secondary replica and if possible provide additional resources to the secondary.

• If you do not see the flow control getting activated, check the primary replica for
unusually high activity. Examples of activities causing a high number of transaction
log blocks to be generated and sent to secondary replicas are index rebuilds,
bulk operations, etc. If such activities are going on primary, they may need to be
postponed to off-peak hours. If that is not possible then additional resources may
need to be provided so that the environment can sustain such high workload.
Before doing so, ensure that the high workload on primary is causing other
secondary replicas to also fall behind the primary replica. If that is not the case, then
troubleshoot the secondary replica in question further.

• If the primary replica doesn’t show any unusually high activity, troubleshoot the
secondary replica in question further with regards to performance bottleneck.

 Figure 16-22 shows the workflow to troubleshoot secondary falling behind primary scenario.

 Figure 16-22. Secondary falling behind primary scenario troubleshooting workflow

CHAPTER 16 ■ TROUBLESHOOTING AVAILABILITY GROUPS

273

 Replica in Resolving State Scenario
 A secondary replica may show up to be in Resolving state. Following are the scenarios during when this may
happen:

• After an unsuccessful automatic failover – If the primary replica becomes unhealthy
and the availability group does not failover automatically to a secondary replica, the
secondary replicas show their state as Resolving. The secondary replicas revert back
to their original state when either the primary replica becomes healthy again or the
availability group is failed over to a secondary replica. The reasons for unsuccessful
automatic failovers have been discussed earlier in this chapter.

• In the middle of an automatic failover – While an automatic failover of an availability
group is in progress, all the secondary replicas (except the failover target) transition
to a resolving state. As soon as the failover completes, they connect with the new
primary replica and revert to their original state.

 Summary
 In this chapter we covered some of the common availability group failures and performance issues and how
to go about troubleshooting them. In the next chapter we will take a look at Microsoft Azure.

 PART VII

 Availability Groups in Microsoft
Azure

277© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_17

 CHAPTER 17

 Introduction to Microsoft Azure

 So far in this book, we have discussed deploying SQL Server Always On Availability Groups that run on-
premises in your organization. There are situations wherein you are unable to satisfy all the high availability
(HA) and disaster recovery (DR) requirements and meet the service-level agreement (SLA) that the
business unit requires for the SQL Server applications. In this chapter, we introduce you to Microsoft Azure,
which assists you in meeting all the HADR requirements and stay within budget by deploying Always On
Availability Groups as a hybrid solution or an Azure-only solution. In a hybrid environment, part of the
availability group solution runs on-premises and the rest runs in Azure. In an Azure-only solution, the entire
availability group runs in Microsoft Azure.

 What Is Microsoft Azure?
 Microsoft Azure is a public cloud computing platform and infrastructure created by Microsoft for building,
deploying, and managing applications and services through a global network of Microsoft-managed
datacenters.

 ■ Note Azure was released as Windows Azure in February 2010 and was renamed Microsoft Azure in
March 2014.

 Microsoft Azure offers a collection of services that any organization can use or leverage for their IT
solutions like file servers, database servers, virtual machines, web apps, etc., in their public cloud offering.
Public cloud is cloud services that are available to anyone via the public Internet. The services are located
all over the globe through Microsoft-managed global datacenters. You might be wondering why you need a
public cloud when a private cloud can be created relatively easily.

 Why Use Microsoft Azure?
 Microsoft Azure has a lot of advantages , as depicted in Figure 17-1 .

CHAPTER 17 ■ INTRODUCTION TO MICROSOFT AZURE

278

 One of the biggest advantages is that Microsoft Azure allows you to perform virtually any compute or
data storage operation by provisioning and scaling the necessary resources on demand and on a pay-as-
you-go basis . Microsoft Azure not only allows you to scale your services dynamically to handle the increased
demand that you may run into unexpectedly, it also involves descaling your services when demands shrink
or traffic patterns slow down. It allows for immediate provisioning and de-provisioning and you have to pay
only for what you use.

 Microsoft Azure offers a world-wide solution. At the time of writing this chapter, Microsoft Azure has
datacenters that operate in 24 regions around the world which is more than the other hyperscale cloud
service providers (CSPs) Amazon Web Services (AWS), and Google Cloud combined. This allows us to
deliver our services in a fast, low-latency fashion no matter where our customers are. It exposes the services
to anyone anywhere they need to work from or anywhere they need to access the services from.

 ■ Note Microsoft Azure is the first multinational cloud provider in mainland China.

 You may be thinking, “All this is good, but is my data safe in the cloud?” In fact, this is one of the most
frequently asked questions by our customers who are thinking of leveraging the cloud features. Microsoft
Azure leads the industry in protecting the privacy of your data. It was the first CSP to adopt ISO 27018 that
is the new international standard for cloud privacy. Also, it was the first CSP to be recognized by European
Union’s data protection authorities for its commitment to comply with rigorous EU privacy laws.

 Another common question that we often get is, “We have made a big investment on our on-premises
datacenters. Can we still use our resources in our on-premises datacenters and leverage the cloud?”
Microsoft Azure is hybrid ready. It can seamlessly connect to your existing IT environment so that you can
leverage the resources in your datacenters and within Microsoft Azure itself. You can use a wide set of hybrid
connections, for example virtual private networks (VPNs), ExpressRoute connections, content delivery
networks (CDNs), to ensure performance and ease of use.

 Figure 17-1. Advantages of Microsoft Azure

CHAPTER 17 ■ INTRODUCTION TO MICROSOFT AZURE

279

 Microsoft Azure is an open and flexible CSP . It supports the broadest selection of devices, operating
systems, databases, programming languages, frameworks, and tools. It supports the same technologies most
businesses trust and use today, including Windows, Linux, virtual machines and containers, and Active
directory. This means you can use what you already know and there’s no steep learning curve with Microsoft
Azure.

 Microsoft Azure offers enterprise grade SLAs on services, 24/7 tech support, and round-the-clock health
monitoring. This is the reason more than 66% of Fortune 500 companies rely on Microsoft Azure. The web
site https://azure.microsoft.com/en-us/support/legal/sla/ describes Microsoft’s commitments for
uptime and connectivity and lists the SLA for individual services.

 ■ Note Microsoft Azure is recognized by Gartner, a leading independent research firm, as a leader across six
of their Magic Quadrants for enterprise cloud workloads for the second consecutive year. Visit https://azure.

microsoft.com/en-us/campaigns/magic-quadrant/ to view Gartner’s Magic Quadrant reports.

 IaaS , PaaS , and SaaS
 Microsoft Azure’s compute offerings fall into three main categories

• Infrastructure as a Service (IaaS) ,

• Platform as a Service (PaaS) , and

• Software as a Service (SaaS).

 Figure 17-2 gives us a side-by-side view of each of these offerings compared to the on-premises model
that you are already familiar with.

 Figure 17-2. What is IaaS, PaaS, and SaaS?

https://azure.microsoft.com/en-us/support/legal/sla/
https://azure.microsoft.com/en-us/campaigns/magic-quadrant/
https://azure.microsoft.com/en-us/campaigns/magic-quadrant/

CHAPTER 17 ■ INTRODUCTION TO MICROSOFT AZURE

280

 In a traditional on-premises environment, you manage, own, and are responsible for everything from
networking up through the applications. Private cloud is the first evolution wherein you automate and own
the resources from virtualization down to the networking. This allows you to take the most advantage of the
resources you have, control them in ways you can, and reallocate them in the best possible way.

 The next evolution is the Infrastructure as a Service (IaaS). IaaS looks into the pieces that can be
automated and moves them over to Microsoft Azure. Microsoft Azure takes responsibility of the networking,
storage, servers, and virtualization components. In short, IaaS gives you a server in the cloud (virtual
machine). This frees up your time and allows you to work on the more important tasks like making sure that
the applications are functioning correctly. You have complete control and are responsible for managing
everything from the operating system on up to the application you are running. Some typical scenarios that
organizations use IaaS for include testing and development, web site hosting, storage, backup and recovery,
web apps, high-performance computing, and big data analysis.

 The next evolution is the Platform as a Service (PaaS). Here you focus only on application and data,
that is, the things that really generate revenue for the business and let Microsoft Azure manage the other
components starting from networking up through the runtime. PaaS is a complete development and
deployment environment in the cloud that allows us to deliver everything from a simple cloud-based
application to a sophisticated, cloud-based enterprise application. Like IaaS, PaaS includes infrastructure
(storage, servers) and networking and also operating system, middleware, development tools, database
management systems, business intelligence (BI) services, and more. This allows you to avoid the expense
and complexity of buying and managing the infrastructure, software licenses, middleware, development
tools, and more. It allows you to manage the applications and services and Microsoft Azure manages
everything else. Some typical scenarios that organizations use PaaS for include development framework and
analytics or business intelligence.

 The next evolution is the Software as a Service (SaaS) where you let Microsoft Azure manage everything
right from the networking layer up to the application layer. SaaS allows users to connect to and use cloud-
based applications over the Internet. SaaS provides a complete software solution that you can purchase on
as pay-as-you-go basis from a CSP. You rent the application for your organization, and your users connect
to it over the Internet. This allows your organization to get quickly up and running with an application at
minimal upfront costs. Some examples of SaaS are Microsoft Exchange Online, Microsoft SharePoint Online,
and Microsoft Dynamics CRM Online.

 ■ Note You do not have to use these offerings in isolation. You can combine IaaS, PaaS, and SaaS. You can
also combine your on-premises IT infrastructure with Microsoft Azure to create a hybrid solution. This enables
you to meet unique and diverse business needs by combining on-premises and cloud-hosted deployments,
while using the same set of servers, tools, and expertise across these environments.

 Microsoft Azure has two options for hosting SQL Server workloads:

• SQL Server on Azure virtual machines (IaaS) – As the name suggests, here SQL
Server is installed on Microsoft Azure virtual machines hosted in the cloud. This
falls into the industry category IaaS. Microsoft provides an availability SLA of
99.95% that covers just the VM. This SLA does not cover the processes such as SQL
Server running on the VM and requires that you host at least two VM instances
in an availability set. For SQL Server HA within VMs, you should configure one of
the supported HA options in SQL Server, such as Always On Availability Groups as
discussed in detail in chapter 18 .

http://dx.doi.org/10.1007/978-1-4842-2071-9_18

CHAPTER 17 ■ INTRODUCTION TO MICROSOFT AZURE

281

• Azure SQL Database (PaaS) – It’s a relational database-as-a-service (DBaaS) hosted
in Microsoft Azure cloud. It falls into the industry categories of PaaS and is optimized
for SaaS app development. The database software is automatically configured,
patched, and upgraded by Microsoft, which reduces your administration costs.
For SQL Database Basic, Standard and Premier service tiers, Microsoft provides an
availability SLA of 99.99%. There is a small subset of SQL Server features that are
not available with Azure SQL Database. For more information, refer to Microsoft
article title “Azure SQL Database General Limitations and Guidelines” at https://
azure.microsoft.com/en-us/documentation/articles/sql-database-general-
limitations/ .

 How to Start Using Microsoft Azure
 In order to start using Microsoft Azure, you will need to have a subscription and create an Azure account.
Here are the options to create an Azure account at the time of writing this chapter:

 1. Start a ‘30-day Azure free trial’ at https://azure.microsoft.com/en-us/free/ .
During this trial, subscribers get up to $200 of Azure credit.

 2. Use your MSDN subscriber benefits. If you have a Visual Studio Professional
with MSDN subscription, you will get $50 in free Azure usage credits per month.
Those with Visual Studio Premium with MSDN subscription get $100 in credits,
and those with Visual Studio Ultimate with MSDN subscription get $150 in
credits. These monthly figures add up to $600 per year, $1,200 per year, and
$1,800 per year, respectively. Let’s take an example to illustrate how the benefits
could be used for development and testing. A developer with a Premium-level
MSDN subscription and $100 in Azure credits can run three virtual machines for
16 hours per day or can use 80 virtual machines for a 20-hour load test.

 3. B uy a subscription. They are multiple ways to buy Azure services as detailed at
the Microsoft Pricing site at https://azure.microsoft.com/en-us/pricing/
purchase-options/ .

 Summary
 In this chapter, we introduced you to Microsoft Azure and discussed the three main categories of Microsoft
Azure compute offerings, namely, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). We also discussed the options to host SQL Server workloads using Microsoft
Azure. In the next chapter we will help you get started with Microsoft Azure for your Always On Availability
Groups deployment.

https://azure.microsoft.com/en-us/documentation/articles/sql-database-general-limitations/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-general-limitations/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-general-limitations/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/pricing/purchase-options/
https://azure.microsoft.com/en-us/pricing/purchase-options/

283© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9_18

 CHAPTER 18

 Availability Groups in Microsoft
Azure

 Always On Availability Groups on Microsoft Azure can be created manually or by using the Microsoft Azure
Marketplace image. Azure Marketplace provides preconfigured templates for software deployment in
Azure. It automates the deployment of an SQL Server Always On Availability Group for high availability of
SQL Server. It provisions two SQL Server replicas (primary and secondary) and one witness file share in a
Windows Cluster. It also provisions two Domain Controller replicas (primary and secondary). In addition, it
configures an availability group listener for clients to connect to the primary SQL Server replica.

 This template deploys an Always On Availability Group such that after deployment is complete, the
user has a fully available availability group. The template implements performance, security, and availability
best practices. This template is called SQL Server Always On Cluster. The name is misleading as it gives
the impression that you would be installing an SQL Cluster. However, the fact is that this template would
deploy Always On Availability Groups for you in Microsoft Azure. The Always On label for the clustering
and availability group technology has already caused a lot of confusion and calling the availability groups
deployment template on Azure as an Always On cluster just adds to the confusion. Let’s walk through the
steps for deploying availability groups on Azure using the Marketplace image.

 Step 1: Select Template
 Using your Internet browser, navigate to http://portal.azure.com . You will be prompted to sign in using a
valid Azure account. Once logged in, click on the “+ New” option in the left navigation pane on the screen.

 Figure 18-1 shows the portal.azure.com web site. Once you click on the “+ New” option, the New blade
opens up with the search bar. Type in SQL Always On and then hit enter.

http://portal.azure.com/

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

284

 Figure 18-1. SQL Always On search in Azure Marketplace

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

285

 Select the SQL Server Always On Cluster template .
 Figure 18-3 shows the SQL Server Always On Cluster configuration wizard.

 Figure 18-2 shows the SQL Server Always On Cluster template that shows up in the search results.

 Figure 18-2. Always On Dashboard

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

286

 Resource Group: It is a container that holds related resources for an application. It helps you to deploy,
manage, and monitor all of the resources for your solution as a group, rather than handling these resources
individually. So this new availability group deployment will be grouped under a resource group. Later on,
you will have the option of specifying a new resource group or an existing resource group.

 Figure 18-3. SQL Always On Availability Groups deployment configuration wizard

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

287

 ■ Note Resource Manager is the recommended deployment model for new virtual machines. The SQL
Server Always On Cluster deployment template does not allow you to change the deployment model and uses
resource manager as the default.

 Next let’s review the availability group setup configuration.
 Figure 18-4 shows the deployment according to the default settings of this feature. The deployment will

look slightly different depending on the settings specified by the user.

 Figure 18-4. SQL Always On Availability Groups deployment

 Availability Set: During downtime such as maintenance, an availability set helps keep the virtual
machines available. When two or more similarly configured virtual machines are placed in an availability
set, it creates the redundancy needed to maintain availability of the applications or services that the
virtual machine runs. For example, in this availability group deployment, DC1 and DC2 are placed in
one Availability Set, whereas SQL 1, SQL 2 and the File share witness are placed in another. Hence during
maintenance, DC1 and DC2 will not be unavailable at the same time; likewise SQL 1, SQL 2, and FSW will
not be down at the same time.

 Internal Load Balancer (ILB): The availability group listener name is mapped to a load-balanced IP
address and Azure’s load balancer directs the incoming traffic to only the primary server in the replica set.
The ILB can only be accessed by resources inside the cloud service or via VPN that connects to the Azure
infrastructure. This enables internal applications to run in Azure and be accessed within the cloud or from
on-premises.

 After reviewing the deployment architecture, click on Create.

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

288

 Step 2: Configure Basic Settings
 The portal opens the basic setting configuration blade. Provide the Administrator user name, password,
select subscription and location, and provide the new or existing resource group name.

 Figure 18-5 shows the basics blade.

 Figure 18-5. Configure basic settings

 ■ Note The administrator account will be for all the virtual machines. It will also be the domain administrator
for the new domain deployment.

 Using a new resource group is helpful if you are just testing or learning about SQL Server deployments in Azure.
After you finish with your test, delete the resource group to automatically delete the VMs and all resources
associated with that resource group.

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

289

 Click OK.

 Step 3: Configure Domain and Network Settings
 The portal opens the domain and network configuration blade. Provide the forest root domain name, virtual
network name, domain controller subnet name, and SQL Server subnet name.

 Figure 18-6 shows the domain and networks settings blade .

 Figure 18-6. Configure domain and network settings

 The domain controllers and the SQL Servers will be on separate subnets. All the VMs in the
deployments will be under one virtual network.

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

290

 ■ Note The virtual network address range will be 10.0.0.0/16. The DC subnet address prefix will be
10.0.0.0/24, whereas the SQL subnet address prefix will be 10.0.1.0/26.

 Click OK.

 Step 4: Configure Availability Group Settings
 The portal opens the availability group settings configuration blade. Provide the availability group name,
listener name, and port number.

 Figure 18-7 shows the availability groups settings blade.

 Figure 18-7. Configure Availability group settings

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

291

 A listener will be created with the availability group listener name that you provide.

 ■ Note If you choose to use port 1433, you do not need to provide a port number in a connection string. If
you choose a port other than 1433 for your listener port, you will also need to explicitly specify a target port in
your connection string.

 Click OK.

 Step 5: Configure VM size and Storage Settings
 The portal opens the configure VM size and storage settings blade . Select the SQL Server, DC and file share
witness VM size, configure the SQL storage account and the SQL data disk size, and also select the storage
optimization option.

 Figure 18-8 shows the VM size and storage settings blade.

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

292

 Click on the SQL Server virtual machine size option. The portal opens the size blade on the right side.
 The standard VM sizes consist of several series: A, D, DS, F, Fs, G, and GS.
 D-series VMs are designed to run applications that demand higher compute power and temporary disk

performance.

• Faster processors

• Higher memory-to-core ratio

• Solid-state drive (SSD) for the temporary disk

 Dv2-series is a follow-on to the original D-series, features a more powerful CPU.

• About 35% faster than the D-series CPU.

 Figure 18-8. Configure the VM size and the storage settings

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

293

• Based on the latest generation 2.4 GHz Intel Xeon® E5-2673 v3 (Haswell) processor
with the Intel Turbo Boost Technology 2.0, which can go up to 3.1 GHz.

• Same memory and disk configurations as the D-series.

 F-series provides the best value in price-performance in the Azure portfolio based on the Azure
Compute Unit (ACU) per core

• Based on the 2.4 GHz Intel Xeon® E5-2673 v3 (Haswell) processor, which can achieve
clock speeds as high as 3.1 GHz with the Intel Turbo Boost Technology 2.0.

• Same CPU performance as the Dv2-series of VMs.

 G-series

• Most memory

• Run on hosts that have Intel Xeon E5 V3 family processors

 DS-series

• DSv2-series, Fs-series, and GS-series VMs can use Premium Storage, which provides
high-performance, low-latency storage for I/O intensive workloads.

• Use solid-state drives (SSDs) to host a virtual machine’s disks and also provide a
local SSD disk cache.

• Premium Storage is available in certain regions.

 ■ Note The following VM sizes are recommended for SQL:

 SQL Server Enterprise Edition : DS3 or higher

 SQL Server Standard and Web Editions : DS2 or higher

 A-series

• Can be deployed on a variety of hardware types and processors.

• The size is throttled, based upon the hardware, to offer consistent processor
performance for the running instance, regardless of the hardware it is deployed on.

 A0

• Size is over-subscribed on the physical hardware.

• Other customer deployments may impact the performance of your running
workload.

 ■ Note The size of the virtual machine affects the pricing, processing, memory, and storage capacity of the
virtual machine.

 Figure 18-9 shows the SQL VM size blade .

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

294

 The blade initially displays recommended machine sizes. It also estimates the monthly cost to run
the VM. The virtual machine size is the Azure virtual machine size for both SQL Servers. Choose a virtual
machine size appropriate for your workload. For production workloads choose a virtual machine size that
can support the workload. Many production workloads will require DS4 or larger. The template will build
two virtual machines of this size and install SQL Server on each one. Click on the View All button, which
shows all machine size options.

 ■ Note The Marketplace image will install the Enterprise Edition of SQL Server.

 Choose the machine size, and then click Select.

 ■ Note At the time of writing this book, the Marketplace image provided the option for choosing SQL VMs
with only premium disk support. As a result, the only SQL storage type available was Premium locally redundant
storage (Premium_LRS). We will be discussing the all storage types in detail, later in the chapter.

 Now click on the Domain controller virtual machine size option. The portal opens the size blade on the
right side.

 Figure 18-9. Choose a size for the SQL VMs

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

295

 Figure 18-10 shows the size blade.

 Figure 18-10. Choose a size for the Domain controller VMs

 Like the SQL VM size blade, this blade initially displays recommended machine sizes. It also estimates
the monthly cost to run the VM. Click on the view all button, which shows all machine size options.

 Choose the machine size, and then click Select.
 Now click on the File Share Witness virtual machine size option. The portal opens the size blade on the

right side.
 Figure 18-11 shows the size blade.

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

296

 Choose the machine size, and then click Select.
 Now click on the SQL Storage account option. If no existing storage account exists, then it opens the

create storage account blade on the right side.
 Figure 18-12 shows the storage account creation blade.

 Figure 18-11. Choose a size for the File Share Witness VMs

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

297

 Provide a unique name for the storage account and click on Type. The portal opens the choose storage
type blade.

 Figure 18-13 shows the storage account creation blade.

 Figure 18-12. Create storage account blade

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

298

 As mentioned earlier, the Marketplace image provided the option for choosing SQL VMs with only
premium disk support. As a result, the SQL storage type available is Premium_LRS. However, if you are
building the VMs manually then you can choose VMs without premium disk support, and that will make the
different storage types available.

 ■ Note The data in the storage account is always replicated to ensure durability and high availability,
meeting the Azure Storage SLA even in the face of transient hardware failures.

 Types of storage:
 Locally redundant storage (LRS)
 Data is replicated within the region in which the stored account is created. The data is replicated three

times. A transaction is considered successful only once it has been written to all three replicas. These three
replicas each reside in separate fault domains (FD) and upgrade domains (UD). The three replicas are
spread across UDs and FDs to ensure that data is available even if hardware failure impacts a single rack and
when nodes are upgraded during a rollout.

 Figure 18-13. Create storage account blade

https://azure.microsoft.com/support/legal/sla/storage

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

299

 ■ Note FD is a group of nodes that represent a physical unit of failure and can be considered as nodes
belonging to the same physical rack.

 UD is a group of nodes that are upgraded together during the process of a service upgrade.

 Zone-redundant storage (ZRS)
 Data is replicated across two to three facilities, either within a single region or across two regions,

providing higher durability than LRS.
 Geo-redundant storage (GRS)
 Data is replicated to a secondary region that is hundreds of miles away from the primary region. Data

is durable even in the case of a complete regional outage or a disaster in which the primary region is not
recoverable. An update is first committed to the primary region, where it is replicated three times. Then the
update is replicated to the secondary region, where it is also replicated three times, across separate fault
domains and upgrade domains.

 ■ Note Write data is replicated asynchronously to the secondary region. Since asynchronous replication
involves a delay, in the event of a regional disaster it is possible that changes that have not yet been replicated
to the secondary region may be lost if the data cannot be recovered from the primary region.

 Read-access geo-redundant storage (RA-GRS)
 Availability for the storage account is maximized, by providing read-only access to the data in the

secondary location, in addition to the replication across two regions provided by GRS. The application can
read data from the secondary region, in the event that data becomes unavailable in the primary region.

 Premium local redundant storage (P-LRS)
 Azure Premium Storage is the next generation of storage that provides low latency and high throughput

IO. It works best for key IO intensive workloads, such as SQL Server on IaaS. Premium Storage account only
supports LRS as the replication option and keeps three copies of the data within a single region.

 Click Select and then click OK on the create storage account blade.
 Next provide the SQL Server data disk size in TB. You can specify a number from 1 through 4. This is the

size of the data disk that will be attached to each SQL Server.
 Figure 18-14 shows the SQL Server data size in TB option in the VM size and storage blade.

https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

300

 Next choose the Storage optimization option for your workload. All the SQL Servers in this deployment
use premium storage. In addition, you can optimize SQL Server settings for the workload by choosing one of
these three settings:

• General workload sets no specific configuration settings

• Transactional processing enables trace flag 1117 and 1118 on the SQL Server
instances

• Data warehousing sets trace flag 1117 and 610 on the SQL Server instances

 Figure 18-14. Provide the SQL Server data size in TB

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

301

 Figure 18-15 shows the storage optimization in the VM size and storage blade.

 Figure 18-15. Select the storage optimization option for the workload

 Then click OK.

 Step 6: Configure SQL Server Settings
 The portal opens the SQL Server settings blade .

 Figure 18-16 shows the SQL Server settings to configure.

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

302

 SQL Server Name Prefix is used to create a name for each SQL Server. If the default contoso-ag is used,
then the SQL Server names will be Contoso-ag-0 and Contoso-ag-1.

 SQL Server version is the version of SQL Server that you want to use.
 SQL Server service account user name is the domain account name for the SQL Server service.
 Password is the password for the SQL Server service account.
 SQL Auto Patching maintenance schedule identifies the weekday that Azure will automatically patch the

SQL Servers.
 SQL Auto Patching maintenance start hour is the time of day for the Azure region when automatic

patching will begin.
 After providing and selecting the required options, click OK.
 The portal opens the summary blade as Azure validates the settings.
 Figure 18-17 shows the summary page for review.

 Figure 18-16. Configure SQL Server settings blade

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

303

 Review the summary and then click OK.
 The portal opens the buy blade, which is the final blade that contains Terms of use, and privacy policy.

Review the information and click purchase to start creating the virtual machines, and all of the other
required resources for the availability group.

 Figure 18-18 shows the buy page.

 Figure 18-17. Azure Marketplace Always On image deployment summary blade

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

304

 Post deployment, review the deployment by accessing the deployed resources.

 Performance Best Practices
 Let’s take a look at some best practices for SQL in Azure VMs for optimal performance. Most of the standard
best practices that apply for on-prem SQL instances would apply here as well. However, performance in
Azure depends on certain factors in Azure.

 Choosing VM size

• DS3 or higher is recommended for SQL Enterprise edition.

• DS2 or higher is recommended for SQL Standard and Web editions.

 Choosing Storage

• Premium Storage is recommended for production workloads.

• Standard storage is only recommended for dev/test environments.

• Storage account and SQL Server VM should be in same region.

 Figure 18-18. Buy page with terms of use and privacy policy

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

305

• If you are not using premium storage, then disable Azure geo-redundant storage
(geo-replication) on the storage account.

• Disks

 a. Use at least two premium Storage disks (one for log and the other for data
and tempdb).

 b. The temporary storage drive (D drive), is not persisted to Azure blob
storage. Hence user database files or transaction log files should not be
stored on the temporary storage drive.

 c. If using premium disks, enable read caching on data and TempDB data
disks.

 d. Do not enable caching on transaction log disks.

 e. Do not enable caching if not using premium disks.

• Stripe multiple Azure data disks to get increased IO throughput.

 a. For more throughput, add additional data disks and use disk Striping.

 b. Analyze the number of IOPS available for the data and log disks to
determine the number of data disks.

 c. For Windows 8/Windows Server 2012 or later, use Storage Spaces .

 ■ Note Storage Spaces is a new functionality introduced in Windows Server 2012 R2. It allows provisioning
storage based on a pooled model. It also provides sophisticated storage virtualization capabilities.

 d. For OLTP workloads set the stripe size to 64 KB.

 e. For data warehousing workloads set the stripe size to 256 KB.

 f. For Windows 2008 R2 or earlier, use dynamic disks, that is, OS striped
volumes.

 g. Create one storage pool for the workload that is not log intensive and does
not need dedicated IOPs.

 h. Otherwise, create two storage pools: one for the log files and another
storage pool for the data files and TempDB.

 i. Set column count to equal the number of disks in pool for maximum
performance.

 I/O optimization

• Enable database page compression.

• Enable instant file initialization for data files.

• Disable auto shrink on the database.

• Consider compressing any data files when transferring in/out of Azure.

• Apply the latest SQL Server I/O performance fixes.

https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/#scalability-and-performance-targets-when-using-premium-storage
https://technet.microsoft.com/library/hh831739.aspx

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

306

 Extend On-Prem Always On Availability Groups to Azure
 We just looked at how to deploy Always On Availability Group in Azure. Another practical availability group
scenario is to host a hybrid cloud solution, that is, to extend the On-Prem AG setup to Azure. You can extend
an on-premises availability group to Azure by provisioning one or more Azure VMs with SQL Server and
then adding them as replicas to the on-premises availability group.

 Prerequisites for extending an On-Prem availability group to Azure

• An active Azure subscription.

• An existing availability group on-premises.

• Connectivity between the on-premises network and the Azure virtual network.
A site-to-site VPN would need to be configured between the on-prem site and the
Azure infrastructure to achieve this.

 Figure 18-19 shows the add replica to availability group wizard. The Add Azure Replica button will allow
you to add an Azure replica to an existing on-prem availability group.

 Figure 18-19. Add Azure Replica to an existing on-prem availability group

CHAPTER 18 ■ AVAILABILITY GROUPS IN MICROSOFT AZURE

307

 On clicking the Add Azure Replica button, it opens up the Add Azure Replica page.
 Figure 18-20 shows the Add Azure Replica page .

 After signing in to the Azure account, select the New VM image, size and provide the name and user
credential information to be created. Also select virtual network and subnet for Azure connectivity and
provide the on-premises domain name and user credentials.

 Summary
 The information in this chapter should help you get started with Microsoft Azure for your Always On
Availability Groups deployment. Throughout this book, we have seen the amazing improvements that
have been made to Always On Availability Groups in SQL Server 2016 and the ability to easily deploy it to
Microsoft Azure, providing unparalleled flexibility. We have thoroughly enjoyed writing this book, and we
hope that it has empowered you to put the knowledge gained from this book to practical use.

 Figure 18-20. Add Azure Replica

309

 A
 Always On

 database mirroring , 10
 FCI (see (Failover cluster instance (FCI)))
 limitations , 14
 log shipping , 11
 replication , 12–14
 RPO , 14
 RTO , 14
 SQL Server 2014 , 15
 SQL Server 2016 , 15–16

 Always On Availability Groups
 database requirements , 56
 interoperability , 57–58
 SQL Server instance requirements , 55–56

 AlwaysOnOU . See Organization unit (OU)
 Amazon Web Services (AWS) , 278
 Application Intent , 155
 Asynchronous-commit mode , 22, 38
 Automatic failover , 23
 Availability group cluster resource , 264
 Availability group creation failure , 259
 Availability group environments , 198
 Availability groups (AGs)

 alerts feature , 245
 automatic seeding , 120–121
 availability group Wizard , 97–98
 backup preferences , 106–108
 BAG , 119
 Connection State , 212
 Custom Jobs , 246
 dashboard , 212
 distributed availability groups , 122
 DMVs , 219
 endpoints confi guration , 106
 failover mode , 22–25, 212
 group Name , 98–99
 health events , 241
 last Connection Error No , 213
 listener , 21

 Listener confi guration , 108–112
 mode , 22
 multiple secondary replicas , 221
 NIC IPs , 118
 performance monitor , 217
 policy- based management , 222
 PowerShell , 96
 preconfi gured events , 239
 properties , 93–95, 225
 replicas , 20–21
 RPOPolicy , 233
 SCOM , 246
 Select Databases , 100–101
 Select Initial Data Synchronization , 112–114
 Specify Replicas , 102–105
 synchronization State , 212
 topology

 ays On Availability Groups
in Azure Virtual Machines , 30

 distributed availability groups , 30–33
 extend on-premises Always On AG to

Microsoft Azure , 29
 SQL FCI to SQL FCI , 28
 SQL FCI to stand-alone , 27–28
 stand-alone to stand-alone , 25–26

 T-SQL , 118, 213
 validation , 115, 117

 Availability group settings confi guration , 290
 Availability Groups on Microsoft Azure

 availability group
settings confi guration , 290

 basic setting confi guration , 288
 cluster template , 285
 domain and networks settings blade , 289
 performance , 304
 premium storage , 304
 SQL server , 283
 VM size and storage settings blade , 291

 Availability mode , 181–182
 Azure Replica page , 307
 Azure virtual machines (VMs) , 30

 Index

© Uttam Parui and Vivek Sanil 2016
U. Parui and V. Sanil, Pro SQL Server Always On Availability Groups, DOI 10.1007/978-1-4842-2071-9

■ INDEX

310

 B
 Basic availability group (BAG) , 119

 C
 Change heartbeat confi guration values , 267
 Client access point (CAP) , 259
 Cloud service providers (CSPs) , 278
 Cluster name object (CNO) , 78

 permissions , 260
 Cluster OS rolling upgrade , 199
 Cluster template , 285
 CNO . See Cluster name object (CNO)
 Common management tasks

 Add Database , 183
 Add Replica , 185
 availability mode , 181–182
 cluster heartbeat , 188
 delete availability group , 186–187
 multiple legacy clients , 188
 Remove Database , 184
 Remove Replica , 186
 resume data movement , 181
 suspend data movement , 179–180

 Confi gure Availability group settings , 290
 Confi gure basic settings , 288
 Confi gure domain and network settings , 289
 Cross-cluster migration , 200–201

 D
 Database administrators (DBAs) , 191, 211
 Database maintenance tasks

 index maintenance , 205
 memory-optimized tables , 207
 off -peak hours , 205
 primary replica , 206
 smart rebuilding strategy , 205
 statistics updates , 206
 test environment fi rst , 205

 Database mirroring , 10
 Database Replica State facet , 228, 230
 Data latency , 161
 Data migration phase , 202
 Data synchronization

 asynchronous-commit mode , 38
 opportunity cost , 35
 primary replica

 automatic failover , 41–42
 forced failover sequence , 42–43
 planned manual failover , 42

 secondary replica , 39–40
 synchronous-commit mode , 36–37
 trade-off s , 35

 Data warehousing , 300
 DBCC CHECKDB , 174–175
 Debug events , 240
 Disaster recovery

 causes , 7
 planning , 8
 RLO , 8
 RPO , 7
 RTO , 7

 Distributed availability
groups (DAGs) , 30–33, 122, 196

 Domain controller VMs , 295
 D-series , 292
 DS-series , 293
 Dv2-series , 292
 Dynamic management views (DMVs) , 213
 Dynamic quorum , 51

 E
 Endpoint Connectivity Failure , 257
 Error message in SQL Error Log , 258
 Estimated data loss column , 256

 F
 Failover cluster

 cluster heartbeats , 49–50
 cluster node , 46
 cluster resource , 47
 dynamic quorum , 51
 dynamic witness , 51
 failback , 48
 limitations , 51–52
 networks , 47
 possible owner , 49
 preferred owner , 48
 quorum , 50
 resource dependency , 47

 Failover clustering instances (FCIs) , 9, 197
 FCI . See Failover cluster instances (FCI)
 Force cluster quorum , 265
 Forced manual failover , 24

 G
 Geo-redundant storage (GRS) , 299
 Get-ClusterLog PowerShell command , 254
 Ghost records , 161
 GMSA . See Group managed

service accounts (GMSA)
 Graphical user interface (GUI) , 131, 211, 238
 Group managed service

accounts (GMSA) , 96, 258
 GUI . See Graphical user interface (GUI)

■ INDEX

311

 H
 HADR_CLUSAPI_CALL , 217
 HADR_LOGCAPTURE_WAIT , 217
 HADR_SYNC_COMMIT , 217
 HADR_SYNCHRONIZING_THROTTLE , 217
 High availability (HA)

 calculation , 4–5
 causes of downtime , 5–6
 natural disasters , 3
 pillars , 4

 I, J, K
 Infrastructure as a Service (IaaS) , 279
 In-Memory OLTP , 162

 L
 Lease Timeout Expired , 268
 LeaseTimeout setting , 268
 Listener Connection Fails , 269
 Listener Creation Failure , 259
 Locally redundant storage (LRS) , 298
 Log blocks , 36
 Log Send Queue , 218
 Log shipping , 11–12

 M
 Memory-optimized tables , 207
 Merge replication , 13
 Microsoft Azure

 advantages , 277
 CSP , 279
 defi nition , 277
 hybrid solution , 277
 IaaS , 279
 PaaS , 279
 SaaS , 279
 SQL server , 280
 subscription , 281

 Microsoft SQL Server team , 191
 Mirrored write transactions , 219
 Mixed-OS mode , 199

 N
 Network connectivity issues , 266
 NT AUTHORITY\SYSTEM , 263

 O
 Offl oading reporting workload , 151–153
 One local secondary replica , 194

 One primary replica , 194
 One Remote Secondary Replica , 195
 On-Prem availability group , 306
 Organization unit (OU) , 78

 P, Q
 Peer-to-peer replication , 13
 Planned manual failover , 24
 Platform as a Service (PaaS) , 279
 Policy-Based Management (PBM) , 222
 Post-installation tasks

 Always On Dashboard
 availability group details , 131–134
 Health events , 134–139

 Failover Cluster Manager
 dependency report , 141
 fl exible failover policy , 142–143, 145
 listener resource , 140–141
 WSFC failure threshold , 145

 Object Explorer
 AGCorp , 128
 availability group listener property , 130
 availability group property , 129–130
 primary replica , 126

 partially contained database , 147
 replicating logins , 146
 SQL agent jobs , 147
 SSIS , 147

 PowerShell , 89–90, 155, 244, 254
 Premium local redundant storage (P-LRS) , 299
 Prerequisites

 availability groups , 53, 55
 WSFC (see (Windows Server

Failover Clustering (WSFC)))
 Primary Replica unavailable , 265

 R
 Readable secondary replica

 architecture , 153
 change data capture , 161
 change tracking , 161
 client connectivity , 155
 data latency , 161
 ghost records , 161
 in-memory OLTP , 162
 load balancing , 157
 monitor REDO activity , 162
 offl oading reporting workload , 151–153
 PowerShell , 155
 query performance , 160
 read-only routing , 155–157, 161
 REDO thread operation , 159
 resource governance , 162

■ INDEX

312

 routing list , 157–158
 row versioning , 160
 running database integrity , 174–175
 SQL Server Management Studio , 153–154
 TSQL , 154

 Read-access geo-redundant storage (RA-GRS) , 299
 Read-only routing , 155–157, 161–162
 Read-only routing fails , 269
 Receive side scaling (RSS) , 266
 Recovery level objective (RLO) , 8
 Recovery point objective (RPO) , 7, 14, 223
 Recovery time objective (RTO) , 7, 14, 223, 231
 REDO thread operation , 159
 Release to manufacturing (RTM) , 192
 Replication

 merge , 13
 peer-to-peer , 13
 snapshot , 12
 transactional , 13

 Resource migration phase , 203
 Resume Database Movement , 181
 RLO . See Recovery Level Objective (RLO)
 Rolling upgrade process , 191, 193, 195–196
 RPO . See Recovery point objective (RPO)
 RPOPolicy , 229
 RTO . See Recovery time objective (RTO)
 RTOPolicy , 229, 231

 S
 Secondary replica

 backup preference and priority , 166
 backup types , 164
 PowerShell , 169–173
 primary replica , 164
 SSMS (see (SQL Server Management Studio

(SSMS)))
 transaction log backups , 165–166
 TSQL , 168

 SNAC . See SQL Native Client (SNAC)
 Snapshot replication , 12
 Software as a Service (SaaS) , 279
 Solid-state drives (SSDs) , 293
 SQL FCI , 27–28
 SQL Native Client (SNAC) , 155
 SQL Server

 upgrading and updating , 191
 SQL Server 2014 , 15
 SQL Server 2016 , 15–16
 SQL Server and Windows Server , 192
 SQL Server Error Log , 254

 SQL Server integration services (SSIS) , 147
 SQL Server Management

Studio (SSMS) , 153, 166–168, 222
 SQL Server settings blade , 301
 SQL Server setup programs , 192
 SQL Server version , 302
 SQL VM size blade , 293
 SSMS . See SQL Server Management Studio (SSMS)
 Storage account blade , 297–298
 Storage optimization option , 301
 Stripe multiple Azure data , 305
 Suspend Data Movement , 179–180
 Synchronous-commit mode , 22, 36–37
 System Center Operations

Manager (SCOM) , 246

 T
 Tdetection , 223
 Test-SqlAvailabilityGroup , 244
 Test-SqlDatabaseReplicaState , 244
 Transactional replication , 13
 Transaction Delay performance , 217–218
 Transact-SQL (TSQL) , 154
 Troubleshoot errors

 Always On dashboard , 251
 Cluster Log , 254
 DMVs , 252
 Event Logs , 254
 Extended Event logs , 253
 production environment , 270
 reports and logs , 249
 secondary falling , 272
 SQL Server , 249
 SQL Server Error Log , 254
 SSMS GUI , 251
 types of information , 250

 TSQL . See Transact-SQL (TSQL))

 U
 Upgrading Operating System , 199

 V
 VCOs . See Virtual computer objects (VCOs)
 Virtual computer objects (VCOs) , 78, 259
 Virtual network name (VNN) , 10
 Virtual private network (VPN) , 29
 VM size and the storage settings , 292
 VNN . See Virtual network name (VNN)
 VPN . See Virtual private network (VPN)

Readable secondary replica (cont.)

■ INDEX

313

 W, X, Y
 Wait Statistics , 216
 Windows Server Failover

Cluster (WSFC) , 53–55, 58, 191, 198
 confi gure cluster quorum

 Before You Begin , 84
 confi rmation , 88
 fi le share witness , 87
 selection , 84–85
 Select Quorum Witness , 85–86

 creation
 Access Point for

Administering Cluster , 78–79
 Before You Begin , 77
 confi rmation , 80
 select servers , 77–78
 summary , 81–82

 installation
 Add Roles and Features Wizard , 63
 confi rm installation selections , 67–69

 selecting seature , 65–67
 server selection , 64–65
 type , 64

 PowerShell , 89–90
 setup environment , 61–62
 validation

 confi rmation , 73–74
 select servers/cluster , 71–72
 summary , 74–75
 testing options , 72–73
 validation

confi guration , 70–71
 workgroup and

multi-domain clusters , 91–92
 WSFC . See Windows Server

Failover Cluster (WSFC)

 Z
 Zone-redundant

storage (ZRS) , 299

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Part I: Getting Started
	Chapter 1: High Availability and Disaster Recovery Concepts
	What Is High Availability?
	Calculating Availability
	Causes of Downtime

	What Is Disaster Recovery?
	Recovery Objectives
	Planning for Disaster Recovery

	Summary

	Chapter 2: Introduction to Always On
	Common Solutions before Always On
	Failover Cluster Instances (FCI)
	Database Mirroring
	Log Shipping
	Replication
	Limitations and Concerns

	What Is Always On?
	SQL Server 2014
	SQL Server 2016

	Summary

	Part II: Planning Always On Availability Groups
	Chapter 3: Concepts and Common Topologies
	Availability Group Concepts
	Availability Group and Replicas
	Availability Group Listener
	Availability Mode
	Failover and Failover Modes

	Common Topologies
	Stand-alone to Stand-alone
	SQL Failover Clustered Instance (FCI) to Stand-alone and Vice Versa
	SQL FCI to SQL FCI
	Extend On-Premises Always On Availability Groups to Microsoft Azure
	Always On Availability Groups in Azure Virtual Machines (VMs)
	Distributed Availability Groups

	Summary

	Chapter 4: Data Synchronization Internals
	Trade-offs and Opportunity Cost
	Synchronous-Commit Mode
	Asynchronous-Commit Mode
	Synchronization Behavior in Various Scenarios
	Scenario 1: Secondary Replica Goes Offline
	How Does a Synchronous Secondary Replica Resynchronize with the Primary Replica?
	How Does an Asynchronous Secondary Replica Resynchronize with the Primary Replica?

	Scenario 2: Primary Replica Goes Offline
	Automatic Failover Sequence of Actions
	Planned Manual Failover Sequence of Actions
	Forced Failover Sequence of Actions
	How a Forced Failover Can Cause Data Loss

	Summary

	Chapter 5: Introduction to Windows Server Failover Clustering
	Overview of a Failover Cluster
	Cluster Node
	Networks
	Cluster Resource
	Resource Dependency
	Role
	Failover
	Failback
	Preferred Owner
	Possible Owner
	Heartbeat
	Quorum
	Dynamic Quorum
	Dynamic Witness

	Benefits and Limitations of Failover Cluster
	Summary

	Chapter 6: Prerequisites
	Windows Requirements
	Recommendations
	SQL Server Instance Requirements
	Availability Database Requirements
	Availability Group Interoperability
	Summary

	Part III: Deploying Always On Availability Groups
	Chapter 7: Create a Windows Server Failover Cluster
	Create a Windows Server Failover Cluster Using Failover Cluster Manager
	Step 1: Install Failover Clustering Feature
	Open Add Roles and Features Wizard
	Select Installation Type
	Select the Servers
	Select Failover Clustering Feature
	Confirm Installation Selections

	Step 2: Validate Failover Cluster
	Open Cluster Validation Wizard
	Select Servers or a Cluster
	Select Testing Options
	Confirm Selections
	Review Report

	Step 3: Create Windows Server Failover Cluster
	Open Create Cluster Wizard
	Select Servers
	Type Access Point for Administering the Cluster
	Confirm Selections
	Review Report

	Step 4: Configure Cluster Quorum
	Open Configure Cluster Quorum Wizard
	Select Quorum Configuration Option
	Select Quorum Witness
	Configure File Share Witness
	Confirm Selections
	Review Report

	Create a Windows Server Failover Cluster Using PowerShell
	Step 1: Install Failover Clustering Feature Using PowerShell
	Step 2: Validate Failover Cluster Using PowerShell
	Step 3: Create Windows Server Failover Cluster Using PowerShell
	Step 4: Configure Cluster Quorum Using PowerShell

	Workgroup and Multi-Domain Clusters
	Step 1: Create a Local User Account on Each Cluster Node
	Step 2: Ensure All Nodes Have Primary DNS Suffix
	Step 3: Create Workgroup or Multi-Domain Cluster
	Step 4: Configure Quorum

	Summary

	Chapter 8: Create Availability Groups
	Step 1: Enable the Always On Availability Groups Feature
	Step 2: Invoke Availability Group Wizard
	Step 3: Select Availability Group Name
	Step 4: Select Databases
	Step 5: Specify Replicas
	Step 6: Configure Endpoint
	Step 7: Configure Backup Preferences
	Step 8: Configure Listener
	Step 9: Select Initial Data Synchronization
	Step 10: Validate
	Other Ways to Create an Availability Group
	Availability group dialog box
	T-SQL
	Configuring Availability Groups over a Dedicated Network
	Basic Availability Group (BAG)
	Automatic Seeding
	Distributed Availability Group
	Configuring an Always On Availability Group without Domains

	PowerShell

	Summary

	Chapter 9: Post-Installation Tasks
	Reviewing the Availability Group
	Using Object Explorer
	Viewing Availability Groups
	Viewing Availability Group Properties
	Viewing Availability Group Listener Properties

	Using Always On Availability Groups Dashboard
	Invoking Always On Dashboard
	Reviewing the Always On Availability Group Health
	Changing Always On Dashboard Options

	Using Windows Server Failover Cluster Manager
	Configuring Flexible Failover Policy
	Viewing Availability Group Failover Properties

	Replicating Logins and Jobs
	Replicating Logins
	Using Contained Database with Availability Groups
	Replicating SQL Agent Jobs and SSIS Packages

	Summary

	Part IV: Active Secondary Replicas
	Chapter 10: Readable Secondary Replicas
	Offloading Reporting Workload
	Solutions Prior to SQL Server 2012
	Offloading Reporting Workload Using Always On Availability Groups Secondary Replicas

	How to Configure Readable Secondary
	Using SQL Server Management Studio
	Using Transact-SQL
	Using PowerShell
	Configure Client Connectivity
	Configure Read-Only Routing
	Configure Load Balancing Across Replicas
	Routing logic

	Considerations, Limitations, and Best Practices
	Impact of Read Workload
	The Role of Row Versioning
	Query Performance
	Data Latency
	Blocking on Existing Transactions
	No Support for Change Tracking and Change Data Capture
	Ghost Record Cleanup
	Read-Only Routing Does Not Work if Primary Is Down
	Support for In-Memory OLTP
	Resource Governance
	Multiple Secondary Replicas
	Monitor REDO Activity

	Summary

	Chapter 11: Database Maintenance Using Secondary Replicas
	Offloading Database Backups
	Backup Types Supported on Secondary Replica
	Role of Primary in Backups
	How Transaction Log Backups Work
	Configuring Backup Preference and Priority
	Using SSMS
	Using TSQL
	Using PowerShell

	Automating Backups on Secondary Replicas
	Best Practices

	Running Integrity Checks
	Running DBCC CHECKDB on Secondary Replicas
	Different Options to Run DBCC CHECKDB

	Summary

	Part V: Managing Availability Groups
	Chapter 12: Common Management Tasks
	Suspend Secondary Database Synchronization
	Suspend Primary Database Synchronization
	Resume Database Synchronization
	Change the Availability Mode
	Add a Database
	Remove a Database
	Add a Replica
	Remove a Replica
	Remove an Availability Group
	Add a File to a Replica Database
	Tune Heartbeat Settings
	Create Multiple Listeners for the Same Availability Group
	Summary

	Chapter 13: Upgrading and Migrating
	Upgrading and Updating SQL Server
	Prerequisites
	Rolling Upgrade Best Practices
	Rolling Upgrade Process
	Availability Group with One Local Secondary Replica
	Availability Group with One Remote Secondary Replica
	Distributed Availability Groups
	Availability Group with Failover Cluster Nodes
	Multiple Availability Groups

	Upgrading the Operating System
	Cluster OS Rolling Upgrade
	Cross-Cluster Migration
	Preparation
	Data Migration
	Resource Migration

	Summary

	Chapter 14: Performing Database Maintenance Tasks
	Index Maintenance
	Assess the Impact in a Test Environment First
	Run during Off-Peak Hours
	Selective/Smart Index Rebuilds/Reorganize
	Statistics Updates
	Update Statistics on the Primary Replica
	Memory-Optimized Tables
	Summary

	Part VI: Monitoring and Troubleshooting Availability Groups
	Chapter 15: Monitoring Availability Groups
	Using Dashboard
	Using Transact-SQL
	Using Wait Statistics
	Using Performance Monitor
	Mapping DMVs, Wait Statistics, and Performance Monitor
	Using Policy-Based Management
	Monitoring Your Availability Groups for RTO and RPO Metrics
	Step 1: Select a Facet and Configure its Properties
	Step 2: Set the Condition That Specifies the State of the Facet
	Step 3: Create the Policy
	Step 4: Execute the Policy and Inspect the Evaluation Results

	Using Extended Events
	Preconfigured AlwaysOn_health Extended Events
	Debug Events for Always On Availability Groups
	Configuring AlwaysOn_health Session Target File
	Viewing Always On Health Events Data

	Using PowerShell
	Using Alerts
	Using Custom Jobs
	Using System Center Operations Manager (SCOM)
	Summary

	Chapter 16: Troubleshooting Availability Groups
	Useful Reports and Logs
	Always On Dashboard
	DMVs
	Extended Event Logs
	SQL Server Error Logs
	Event Logs
	Cluster Log
	Calculating Estimated Data Loss

	Common Failure Scenarios
	Endpoint Connectivity Failure
	Availability Group Creation Failure
	Listener Creation Failure
	Failover Troubleshooting
	Automatic Failover Didn’t Work
	When to Force a Failover?
	What Caused an Unexpected Failover?

	Connectivity Failure
	Listener Connection Fails
	Read-Only Routing Fails

	Transaction Log Growing Scenario
	Secondary Replica Falling Behind Primary Scenario
	Replica in Resolving State Scenario

	Summary

	Part VII: Availability Groups in Microsoft Azure
	Chapter 17: Introduction to Microsoft Azure
	What Is Microsoft Azure?
	Why Use Microsoft Azure?
	IaaS, PaaS, and SaaS

	How to Start Using Microsoft Azure
	Summary

	Chapter 18: Availability Groups in Microsoft Azure
	Step 1: Select Template
	Step 2: Configure Basic Settings
	Step 3: Configure Domain and Network Settings
	Step 4: Configure Availability Group Settings
	Step 5: Configure VM size and Storage Settings
	Step 6: Configure SQL Server Settings
	Performance Best Practices
	Extend On-Prem Always On Availability Groups to Azure
	Summary

	Index

